xref: /freebsd/sys/netinet6/nd6.c (revision 271c3a9060f2ee55607ebe146523f888e1db2654)
1 /*-
2  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the project nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_inet.h"
36 #include "opt_inet6.h"
37 #include "opt_mac.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/callout.h>
42 #include <sys/malloc.h>
43 #include <sys/mbuf.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 #include <sys/time.h>
47 #include <sys/kernel.h>
48 #include <sys/protosw.h>
49 #include <sys/errno.h>
50 #include <sys/syslog.h>
51 #include <sys/queue.h>
52 #include <sys/sysctl.h>
53 
54 #include <net/if.h>
55 #include <net/if_arc.h>
56 #include <net/if_dl.h>
57 #include <net/if_types.h>
58 #include <net/iso88025.h>
59 #include <net/fddi.h>
60 #include <net/route.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/if_ether.h>
64 #include <netinet6/in6_var.h>
65 #include <netinet/ip6.h>
66 #include <netinet6/ip6_var.h>
67 #include <netinet6/scope6_var.h>
68 #include <netinet6/nd6.h>
69 #include <netinet/icmp6.h>
70 
71 #include <sys/limits.h>
72 #include <sys/vimage.h>
73 
74 #include <security/mac/mac_framework.h>
75 
76 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
77 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
78 
79 #define SIN6(s) ((struct sockaddr_in6 *)s)
80 #define SDL(s) ((struct sockaddr_dl *)s)
81 
82 /* timer values */
83 int	nd6_prune	= 1;	/* walk list every 1 seconds */
84 int	nd6_delay	= 5;	/* delay first probe time 5 second */
85 int	nd6_umaxtries	= 3;	/* maximum unicast query */
86 int	nd6_mmaxtries	= 3;	/* maximum multicast query */
87 int	nd6_useloopback = 1;	/* use loopback interface for local traffic */
88 int	nd6_gctimer	= (60 * 60 * 24); /* 1 day: garbage collection timer */
89 
90 /* preventing too many loops in ND option parsing */
91 int nd6_maxndopt = 10;	/* max # of ND options allowed */
92 
93 int nd6_maxnudhint = 0;	/* max # of subsequent upper layer hints */
94 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
95 
96 #ifdef ND6_DEBUG
97 int nd6_debug = 1;
98 #else
99 int nd6_debug = 0;
100 #endif
101 
102 /* for debugging? */
103 static int nd6_inuse, nd6_allocated;
104 
105 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
106 struct nd_drhead nd_defrouter;
107 struct nd_prhead nd_prefix = { 0 };
108 
109 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
110 static struct sockaddr_in6 all1_sa;
111 
112 static int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *,
113 	struct ifnet *));
114 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
115 static void nd6_slowtimo(void *);
116 static int regen_tmpaddr(struct in6_ifaddr *);
117 static struct llinfo_nd6 *nd6_free(struct rtentry *, int);
118 static void nd6_llinfo_timer(void *);
119 static void clear_llinfo_pqueue(struct llinfo_nd6 *);
120 
121 struct callout nd6_slowtimo_ch;
122 struct callout nd6_timer_ch;
123 extern struct callout in6_tmpaddrtimer_ch;
124 
125 void
126 nd6_init(void)
127 {
128 	static int nd6_init_done = 0;
129 	int i;
130 
131 	if (nd6_init_done) {
132 		log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
133 		return;
134 	}
135 
136 	all1_sa.sin6_family = AF_INET6;
137 	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
138 	for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
139 		all1_sa.sin6_addr.s6_addr[i] = 0xff;
140 
141 	/* initialization of the default router list */
142 	TAILQ_INIT(&V_nd_defrouter);
143 	/* start timer */
144 	callout_init(&V_nd6_slowtimo_ch, 0);
145 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
146 	    nd6_slowtimo, NULL);
147 
148 	nd6_init_done = 1;
149 
150 }
151 
152 struct nd_ifinfo *
153 nd6_ifattach(struct ifnet *ifp)
154 {
155 	struct nd_ifinfo *nd;
156 
157 	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
158 	bzero(nd, sizeof(*nd));
159 
160 	nd->initialized = 1;
161 
162 	nd->chlim = IPV6_DEFHLIM;
163 	nd->basereachable = REACHABLE_TIME;
164 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
165 	nd->retrans = RETRANS_TIMER;
166 	/*
167 	 * Note that the default value of ip6_accept_rtadv is 0, which means
168 	 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
169 	 * here.
170 	 */
171 	nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
172 
173 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
174 	nd6_setmtu0(ifp, nd);
175 
176 	return nd;
177 }
178 
179 void
180 nd6_ifdetach(struct nd_ifinfo *nd)
181 {
182 
183 	free(nd, M_IP6NDP);
184 }
185 
186 /*
187  * Reset ND level link MTU. This function is called when the physical MTU
188  * changes, which means we might have to adjust the ND level MTU.
189  */
190 void
191 nd6_setmtu(struct ifnet *ifp)
192 {
193 
194 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
195 }
196 
197 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
198 void
199 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
200 {
201 	u_int32_t omaxmtu;
202 
203 	omaxmtu = ndi->maxmtu;
204 
205 	switch (ifp->if_type) {
206 	case IFT_ARCNET:
207 		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
208 		break;
209 	case IFT_FDDI:
210 		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
211 		break;
212 	case IFT_ISO88025:
213 		 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
214 		 break;
215 	default:
216 		ndi->maxmtu = ifp->if_mtu;
217 		break;
218 	}
219 
220 	/*
221 	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
222 	 * undesirable situation.  We thus notify the operator of the change
223 	 * explicitly.  The check for omaxmtu is necessary to restrict the
224 	 * log to the case of changing the MTU, not initializing it.
225 	 */
226 	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
227 		log(LOG_NOTICE, "nd6_setmtu0: "
228 		    "new link MTU on %s (%lu) is too small for IPv6\n",
229 		    if_name(ifp), (unsigned long)ndi->maxmtu);
230 	}
231 
232 	if (ndi->maxmtu > V_in6_maxmtu)
233 		in6_setmaxmtu(); /* check all interfaces just in case */
234 
235 #undef MIN
236 }
237 
238 void
239 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
240 {
241 
242 	bzero(ndopts, sizeof(*ndopts));
243 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
244 	ndopts->nd_opts_last
245 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
246 
247 	if (icmp6len == 0) {
248 		ndopts->nd_opts_done = 1;
249 		ndopts->nd_opts_search = NULL;
250 	}
251 }
252 
253 /*
254  * Take one ND option.
255  */
256 struct nd_opt_hdr *
257 nd6_option(union nd_opts *ndopts)
258 {
259 	struct nd_opt_hdr *nd_opt;
260 	int olen;
261 
262 	if (ndopts == NULL)
263 		panic("ndopts == NULL in nd6_option");
264 	if (ndopts->nd_opts_last == NULL)
265 		panic("uninitialized ndopts in nd6_option");
266 	if (ndopts->nd_opts_search == NULL)
267 		return NULL;
268 	if (ndopts->nd_opts_done)
269 		return NULL;
270 
271 	nd_opt = ndopts->nd_opts_search;
272 
273 	/* make sure nd_opt_len is inside the buffer */
274 	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
275 		bzero(ndopts, sizeof(*ndopts));
276 		return NULL;
277 	}
278 
279 	olen = nd_opt->nd_opt_len << 3;
280 	if (olen == 0) {
281 		/*
282 		 * Message validation requires that all included
283 		 * options have a length that is greater than zero.
284 		 */
285 		bzero(ndopts, sizeof(*ndopts));
286 		return NULL;
287 	}
288 
289 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
290 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
291 		/* option overruns the end of buffer, invalid */
292 		bzero(ndopts, sizeof(*ndopts));
293 		return NULL;
294 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
295 		/* reached the end of options chain */
296 		ndopts->nd_opts_done = 1;
297 		ndopts->nd_opts_search = NULL;
298 	}
299 	return nd_opt;
300 }
301 
302 /*
303  * Parse multiple ND options.
304  * This function is much easier to use, for ND routines that do not need
305  * multiple options of the same type.
306  */
307 int
308 nd6_options(union nd_opts *ndopts)
309 {
310 	struct nd_opt_hdr *nd_opt;
311 	int i = 0;
312 
313 	if (ndopts == NULL)
314 		panic("ndopts == NULL in nd6_options");
315 	if (ndopts->nd_opts_last == NULL)
316 		panic("uninitialized ndopts in nd6_options");
317 	if (ndopts->nd_opts_search == NULL)
318 		return 0;
319 
320 	while (1) {
321 		nd_opt = nd6_option(ndopts);
322 		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
323 			/*
324 			 * Message validation requires that all included
325 			 * options have a length that is greater than zero.
326 			 */
327 			V_icmp6stat.icp6s_nd_badopt++;
328 			bzero(ndopts, sizeof(*ndopts));
329 			return -1;
330 		}
331 
332 		if (nd_opt == NULL)
333 			goto skip1;
334 
335 		switch (nd_opt->nd_opt_type) {
336 		case ND_OPT_SOURCE_LINKADDR:
337 		case ND_OPT_TARGET_LINKADDR:
338 		case ND_OPT_MTU:
339 		case ND_OPT_REDIRECTED_HEADER:
340 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
341 				nd6log((LOG_INFO,
342 				    "duplicated ND6 option found (type=%d)\n",
343 				    nd_opt->nd_opt_type));
344 				/* XXX bark? */
345 			} else {
346 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
347 					= nd_opt;
348 			}
349 			break;
350 		case ND_OPT_PREFIX_INFORMATION:
351 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
352 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
353 					= nd_opt;
354 			}
355 			ndopts->nd_opts_pi_end =
356 				(struct nd_opt_prefix_info *)nd_opt;
357 			break;
358 		default:
359 			/*
360 			 * Unknown options must be silently ignored,
361 			 * to accomodate future extension to the protocol.
362 			 */
363 			nd6log((LOG_DEBUG,
364 			    "nd6_options: unsupported option %d - "
365 			    "option ignored\n", nd_opt->nd_opt_type));
366 		}
367 
368 skip1:
369 		i++;
370 		if (i > V_nd6_maxndopt) {
371 			V_icmp6stat.icp6s_nd_toomanyopt++;
372 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
373 			break;
374 		}
375 
376 		if (ndopts->nd_opts_done)
377 			break;
378 	}
379 
380 	return 0;
381 }
382 
383 /*
384  * ND6 timer routine to handle ND6 entries
385  */
386 void
387 nd6_llinfo_settimer(struct llinfo_nd6 *ln, long tick)
388 {
389 	if (tick < 0) {
390 		ln->ln_expire = 0;
391 		ln->ln_ntick = 0;
392 		callout_stop(&ln->ln_timer_ch);
393 	} else {
394 		ln->ln_expire = time_second + tick / hz;
395 		if (tick > INT_MAX) {
396 			ln->ln_ntick = tick - INT_MAX;
397 			callout_reset(&ln->ln_timer_ch, INT_MAX,
398 			    nd6_llinfo_timer, ln);
399 		} else {
400 			ln->ln_ntick = 0;
401 			callout_reset(&ln->ln_timer_ch, tick,
402 			    nd6_llinfo_timer, ln);
403 		}
404 	}
405 }
406 
407 static void
408 nd6_llinfo_timer(void *arg)
409 {
410 	struct llinfo_nd6 *ln;
411 	struct rtentry *rt;
412 	struct in6_addr *dst;
413 	struct ifnet *ifp;
414 	struct nd_ifinfo *ndi = NULL;
415 
416 	ln = (struct llinfo_nd6 *)arg;
417 
418 	if (ln->ln_ntick > 0) {
419 		if (ln->ln_ntick > INT_MAX) {
420 			ln->ln_ntick -= INT_MAX;
421 			nd6_llinfo_settimer(ln, INT_MAX);
422 		} else {
423 			ln->ln_ntick = 0;
424 			nd6_llinfo_settimer(ln, ln->ln_ntick);
425 		}
426 		return;
427 	}
428 
429 	if ((rt = ln->ln_rt) == NULL)
430 		panic("ln->ln_rt == NULL");
431 	if ((ifp = rt->rt_ifp) == NULL)
432 		panic("ln->ln_rt->rt_ifp == NULL");
433 	ndi = ND_IFINFO(ifp);
434 
435 	/* sanity check */
436 	if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
437 		panic("rt_llinfo(%p) is not equal to ln(%p)",
438 		      rt->rt_llinfo, ln);
439 	if (rt_key(rt) == NULL)
440 		panic("rt key is NULL in nd6_timer(ln=%p)", ln);
441 
442 	dst = &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
443 
444 	switch (ln->ln_state) {
445 	case ND6_LLINFO_INCOMPLETE:
446 		if (ln->ln_asked < V_nd6_mmaxtries) {
447 			ln->ln_asked++;
448 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
449 			nd6_ns_output(ifp, NULL, dst, ln, 0);
450 		} else {
451 			struct mbuf *m = ln->ln_hold;
452 			if (m) {
453 				struct mbuf *m0;
454 
455 				/*
456 				 * assuming every packet in ln_hold has the
457 				 * same IP header
458 				 */
459 				m0 = m->m_nextpkt;
460 				m->m_nextpkt = NULL;
461 				icmp6_error2(m, ICMP6_DST_UNREACH,
462 				    ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
463 
464 				ln->ln_hold = m0;
465 				clear_llinfo_pqueue(ln);
466 			}
467 			if (rt && rt->rt_llinfo)
468 				(void)nd6_free(rt, 0);
469 			ln = NULL;
470 		}
471 		break;
472 	case ND6_LLINFO_REACHABLE:
473 		if (!ND6_LLINFO_PERMANENT(ln)) {
474 			ln->ln_state = ND6_LLINFO_STALE;
475 			nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz);
476 		}
477 		break;
478 
479 	case ND6_LLINFO_STALE:
480 		/* Garbage Collection(RFC 2461 5.3) */
481 		if (!ND6_LLINFO_PERMANENT(ln)) {
482 			if (rt && rt->rt_llinfo)
483 				(void)nd6_free(rt, 1);
484 			ln = NULL;
485 		}
486 		break;
487 
488 	case ND6_LLINFO_DELAY:
489 		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
490 			/* We need NUD */
491 			ln->ln_asked = 1;
492 			ln->ln_state = ND6_LLINFO_PROBE;
493 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
494 			nd6_ns_output(ifp, dst, dst, ln, 0);
495 		} else {
496 			ln->ln_state = ND6_LLINFO_STALE; /* XXX */
497 			nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz);
498 		}
499 		break;
500 	case ND6_LLINFO_PROBE:
501 		if (ln->ln_asked < V_nd6_umaxtries) {
502 			ln->ln_asked++;
503 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
504 			nd6_ns_output(ifp, dst, dst, ln, 0);
505 		} else if (rt->rt_ifa != NULL &&
506 		    rt->rt_ifa->ifa_addr->sa_family == AF_INET6 &&
507 		    (((struct in6_ifaddr *)rt->rt_ifa)->ia_flags & IFA_ROUTE)) {
508 			/*
509 			 * This is an unreachable neighbor whose address is
510 			 * specified as the destination of a p2p interface
511 			 * (see in6_ifinit()).  We should not free the entry
512 			 * since this is sort of a "static" entry generated
513 			 * via interface address configuration.
514 			 */
515 			ln->ln_asked = 0;
516 			ln->ln_expire = 0; /* make it permanent */
517 			ln->ln_state = ND6_LLINFO_STALE;
518 		} else {
519 			if (rt && rt->rt_llinfo)
520 				(void)nd6_free(rt, 0);
521 			ln = NULL;
522 		}
523 		break;
524 	}
525 }
526 
527 
528 /*
529  * ND6 timer routine to expire default route list and prefix list
530  */
531 void
532 nd6_timer(void *ignored_arg)
533 {
534 	int s;
535 	struct nd_defrouter *dr;
536 	struct nd_prefix *pr;
537 	struct in6_ifaddr *ia6, *nia6;
538 	struct in6_addrlifetime *lt6;
539 
540 	callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz,
541 	    nd6_timer, NULL);
542 
543 	/* expire default router list */
544 	s = splnet();
545 	dr = TAILQ_FIRST(&V_nd_defrouter);
546 	while (dr) {
547 		if (dr->expire && dr->expire < time_second) {
548 			struct nd_defrouter *t;
549 			t = TAILQ_NEXT(dr, dr_entry);
550 			defrtrlist_del(dr);
551 			dr = t;
552 		} else {
553 			dr = TAILQ_NEXT(dr, dr_entry);
554 		}
555 	}
556 
557 	/*
558 	 * expire interface addresses.
559 	 * in the past the loop was inside prefix expiry processing.
560 	 * However, from a stricter speci-confrmance standpoint, we should
561 	 * rather separate address lifetimes and prefix lifetimes.
562 	 */
563   addrloop:
564 	for (ia6 = V_in6_ifaddr; ia6; ia6 = nia6) {
565 		nia6 = ia6->ia_next;
566 		/* check address lifetime */
567 		lt6 = &ia6->ia6_lifetime;
568 		if (IFA6_IS_INVALID(ia6)) {
569 			int regen = 0;
570 
571 			/*
572 			 * If the expiring address is temporary, try
573 			 * regenerating a new one.  This would be useful when
574 			 * we suspended a laptop PC, then turned it on after a
575 			 * period that could invalidate all temporary
576 			 * addresses.  Although we may have to restart the
577 			 * loop (see below), it must be after purging the
578 			 * address.  Otherwise, we'd see an infinite loop of
579 			 * regeneration.
580 			 */
581 			if (V_ip6_use_tempaddr &&
582 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
583 				if (regen_tmpaddr(ia6) == 0)
584 					regen = 1;
585 			}
586 
587 			in6_purgeaddr(&ia6->ia_ifa);
588 
589 			if (regen)
590 				goto addrloop; /* XXX: see below */
591 		} else if (IFA6_IS_DEPRECATED(ia6)) {
592 			int oldflags = ia6->ia6_flags;
593 
594 			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
595 
596 			/*
597 			 * If a temporary address has just become deprecated,
598 			 * regenerate a new one if possible.
599 			 */
600 			if (V_ip6_use_tempaddr &&
601 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
602 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
603 
604 				if (regen_tmpaddr(ia6) == 0) {
605 					/*
606 					 * A new temporary address is
607 					 * generated.
608 					 * XXX: this means the address chain
609 					 * has changed while we are still in
610 					 * the loop.  Although the change
611 					 * would not cause disaster (because
612 					 * it's not a deletion, but an
613 					 * addition,) we'd rather restart the
614 					 * loop just for safety.  Or does this
615 					 * significantly reduce performance??
616 					 */
617 					goto addrloop;
618 				}
619 			}
620 		} else {
621 			/*
622 			 * A new RA might have made a deprecated address
623 			 * preferred.
624 			 */
625 			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
626 		}
627 	}
628 
629 	/* expire prefix list */
630 	pr = V_nd_prefix.lh_first;
631 	while (pr) {
632 		/*
633 		 * check prefix lifetime.
634 		 * since pltime is just for autoconf, pltime processing for
635 		 * prefix is not necessary.
636 		 */
637 		if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
638 		    time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
639 			struct nd_prefix *t;
640 			t = pr->ndpr_next;
641 
642 			/*
643 			 * address expiration and prefix expiration are
644 			 * separate.  NEVER perform in6_purgeaddr here.
645 			 */
646 
647 			prelist_remove(pr);
648 			pr = t;
649 		} else
650 			pr = pr->ndpr_next;
651 	}
652 	splx(s);
653 }
654 
655 /*
656  * ia6 - deprecated/invalidated temporary address
657  */
658 static int
659 regen_tmpaddr(struct in6_ifaddr *ia6)
660 {
661 	struct ifaddr *ifa;
662 	struct ifnet *ifp;
663 	struct in6_ifaddr *public_ifa6 = NULL;
664 
665 	ifp = ia6->ia_ifa.ifa_ifp;
666 	for (ifa = ifp->if_addrlist.tqh_first; ifa;
667 	     ifa = ifa->ifa_list.tqe_next) {
668 		struct in6_ifaddr *it6;
669 
670 		if (ifa->ifa_addr->sa_family != AF_INET6)
671 			continue;
672 
673 		it6 = (struct in6_ifaddr *)ifa;
674 
675 		/* ignore no autoconf addresses. */
676 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
677 			continue;
678 
679 		/* ignore autoconf addresses with different prefixes. */
680 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
681 			continue;
682 
683 		/*
684 		 * Now we are looking at an autoconf address with the same
685 		 * prefix as ours.  If the address is temporary and is still
686 		 * preferred, do not create another one.  It would be rare, but
687 		 * could happen, for example, when we resume a laptop PC after
688 		 * a long period.
689 		 */
690 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
691 		    !IFA6_IS_DEPRECATED(it6)) {
692 			public_ifa6 = NULL;
693 			break;
694 		}
695 
696 		/*
697 		 * This is a public autoconf address that has the same prefix
698 		 * as ours.  If it is preferred, keep it.  We can't break the
699 		 * loop here, because there may be a still-preferred temporary
700 		 * address with the prefix.
701 		 */
702 		if (!IFA6_IS_DEPRECATED(it6))
703 		    public_ifa6 = it6;
704 	}
705 
706 	if (public_ifa6 != NULL) {
707 		int e;
708 
709 		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
710 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
711 			    " tmp addr,errno=%d\n", e);
712 			return (-1);
713 		}
714 		return (0);
715 	}
716 
717 	return (-1);
718 }
719 
720 /*
721  * Nuke neighbor cache/prefix/default router management table, right before
722  * ifp goes away.
723  */
724 void
725 nd6_purge(struct ifnet *ifp)
726 {
727 	struct llinfo_nd6 *ln, *nln;
728 	struct nd_defrouter *dr, *ndr;
729 	struct nd_prefix *pr, *npr;
730 
731 	/*
732 	 * Nuke default router list entries toward ifp.
733 	 * We defer removal of default router list entries that is installed
734 	 * in the routing table, in order to keep additional side effects as
735 	 * small as possible.
736 	 */
737 	for (dr = TAILQ_FIRST(&V_nd_defrouter); dr; dr = ndr) {
738 		ndr = TAILQ_NEXT(dr, dr_entry);
739 		if (dr->installed)
740 			continue;
741 
742 		if (dr->ifp == ifp)
743 			defrtrlist_del(dr);
744 	}
745 
746 	for (dr = TAILQ_FIRST(&V_nd_defrouter); dr; dr = ndr) {
747 		ndr = TAILQ_NEXT(dr, dr_entry);
748 		if (!dr->installed)
749 			continue;
750 
751 		if (dr->ifp == ifp)
752 			defrtrlist_del(dr);
753 	}
754 
755 	/* Nuke prefix list entries toward ifp */
756 	for (pr = V_nd_prefix.lh_first; pr; pr = npr) {
757 		npr = pr->ndpr_next;
758 		if (pr->ndpr_ifp == ifp) {
759 			/*
760 			 * Because if_detach() does *not* release prefixes
761 			 * while purging addresses the reference count will
762 			 * still be above zero. We therefore reset it to
763 			 * make sure that the prefix really gets purged.
764 			 */
765 			pr->ndpr_refcnt = 0;
766 
767 			/*
768 			 * Previously, pr->ndpr_addr is removed as well,
769 			 * but I strongly believe we don't have to do it.
770 			 * nd6_purge() is only called from in6_ifdetach(),
771 			 * which removes all the associated interface addresses
772 			 * by itself.
773 			 * (jinmei@kame.net 20010129)
774 			 */
775 			prelist_remove(pr);
776 		}
777 	}
778 
779 	/* cancel default outgoing interface setting */
780 	if (V_nd6_defifindex == ifp->if_index)
781 		nd6_setdefaultiface(0);
782 
783 	if (!V_ip6_forwarding && V_ip6_accept_rtadv) { /* XXX: too restrictive? */
784 		/* refresh default router list */
785 		defrouter_select();
786 	}
787 
788 	/*
789 	 * Nuke neighbor cache entries for the ifp.
790 	 * Note that rt->rt_ifp may not be the same as ifp,
791 	 * due to KAME goto ours hack.  See RTM_RESOLVE case in
792 	 * nd6_rtrequest(), and ip6_input().
793 	 */
794 	ln = V_llinfo_nd6.ln_next;
795 	while (ln && ln != &V_llinfo_nd6) {
796 		struct rtentry *rt;
797 		struct sockaddr_dl *sdl;
798 
799 		nln = ln->ln_next;
800 		rt = ln->ln_rt;
801 		if (rt && rt->rt_gateway &&
802 		    rt->rt_gateway->sa_family == AF_LINK) {
803 			sdl = (struct sockaddr_dl *)rt->rt_gateway;
804 			if (sdl->sdl_index == ifp->if_index)
805 				nln = nd6_free(rt, 0);
806 		}
807 		ln = nln;
808 	}
809 }
810 
811 struct rtentry *
812 nd6_lookup(struct in6_addr *addr6, int create, struct ifnet *ifp)
813 {
814 	struct rtentry *rt;
815 	struct sockaddr_in6 sin6;
816 	char ip6buf[INET6_ADDRSTRLEN];
817 
818 	bzero(&sin6, sizeof(sin6));
819 	sin6.sin6_len = sizeof(struct sockaddr_in6);
820 	sin6.sin6_family = AF_INET6;
821 	sin6.sin6_addr = *addr6;
822 	rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL);
823 	if (rt) {
824 		if ((rt->rt_flags & RTF_LLINFO) == 0 && create) {
825 			/*
826 			 * This is the case for the default route.
827 			 * If we want to create a neighbor cache for the
828 			 * address, we should free the route for the
829 			 * destination and allocate an interface route.
830 			 */
831 			RTFREE_LOCKED(rt);
832 			rt = NULL;
833 		}
834 	}
835 	if (rt == NULL) {
836 		if (create && ifp) {
837 			int e;
838 
839 			/*
840 			 * If no route is available and create is set,
841 			 * we allocate a host route for the destination
842 			 * and treat it like an interface route.
843 			 * This hack is necessary for a neighbor which can't
844 			 * be covered by our own prefix.
845 			 */
846 			struct ifaddr *ifa =
847 			    ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
848 			if (ifa == NULL)
849 				return (NULL);
850 
851 			/*
852 			 * Create a new route.  RTF_LLINFO is necessary
853 			 * to create a Neighbor Cache entry for the
854 			 * destination in nd6_rtrequest which will be
855 			 * called in rtrequest via ifa->ifa_rtrequest.
856 			 */
857 			if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
858 			    ifa->ifa_addr, (struct sockaddr *)&all1_sa,
859 			    (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
860 			    ~RTF_CLONING, &rt)) != 0) {
861 				log(LOG_ERR,
862 				    "nd6_lookup: failed to add route for a "
863 				    "neighbor(%s), errno=%d\n",
864 				    ip6_sprintf(ip6buf, addr6), e);
865 			}
866 			if (rt == NULL)
867 				return (NULL);
868 			RT_LOCK(rt);
869 			if (rt->rt_llinfo) {
870 				struct llinfo_nd6 *ln =
871 				    (struct llinfo_nd6 *)rt->rt_llinfo;
872 				ln->ln_state = ND6_LLINFO_NOSTATE;
873 			}
874 		} else
875 			return (NULL);
876 	}
877 	RT_LOCK_ASSERT(rt);
878 	RT_REMREF(rt);
879 	/*
880 	 * Validation for the entry.
881 	 * Note that the check for rt_llinfo is necessary because a cloned
882 	 * route from a parent route that has the L flag (e.g. the default
883 	 * route to a p2p interface) may have the flag, too, while the
884 	 * destination is not actually a neighbor.
885 	 * XXX: we can't use rt->rt_ifp to check for the interface, since
886 	 *      it might be the loopback interface if the entry is for our
887 	 *      own address on a non-loopback interface. Instead, we should
888 	 *      use rt->rt_ifa->ifa_ifp, which would specify the REAL
889 	 *	interface.
890 	 * Note also that ifa_ifp and ifp may differ when we connect two
891 	 * interfaces to a same link, install a link prefix to an interface,
892 	 * and try to install a neighbor cache on an interface that does not
893 	 * have a route to the prefix.
894 	 */
895 	if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
896 	    rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
897 	    (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
898 		if (create) {
899 			nd6log((LOG_DEBUG,
900 			    "nd6_lookup: failed to lookup %s (if = %s)\n",
901 			    ip6_sprintf(ip6buf, addr6),
902 			    ifp ? if_name(ifp) : "unspec"));
903 		}
904 		RT_UNLOCK(rt);
905 		return (NULL);
906 	}
907 	RT_UNLOCK(rt);		/* XXX not ready to return rt locked */
908 	return (rt);
909 }
910 
911 /*
912  * Test whether a given IPv6 address is a neighbor or not, ignoring
913  * the actual neighbor cache.  The neighbor cache is ignored in order
914  * to not reenter the routing code from within itself.
915  */
916 static int
917 nd6_is_new_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
918 {
919 	struct nd_prefix *pr;
920 	struct ifaddr *dstaddr;
921 
922 	/*
923 	 * A link-local address is always a neighbor.
924 	 * XXX: a link does not necessarily specify a single interface.
925 	 */
926 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
927 		struct sockaddr_in6 sin6_copy;
928 		u_int32_t zone;
929 
930 		/*
931 		 * We need sin6_copy since sa6_recoverscope() may modify the
932 		 * content (XXX).
933 		 */
934 		sin6_copy = *addr;
935 		if (sa6_recoverscope(&sin6_copy))
936 			return (0); /* XXX: should be impossible */
937 		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
938 			return (0);
939 		if (sin6_copy.sin6_scope_id == zone)
940 			return (1);
941 		else
942 			return (0);
943 	}
944 
945 	/*
946 	 * If the address matches one of our addresses,
947 	 * it should be a neighbor.
948 	 * If the address matches one of our on-link prefixes, it should be a
949 	 * neighbor.
950 	 */
951 	for (pr = V_nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
952 		if (pr->ndpr_ifp != ifp)
953 			continue;
954 
955 		if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
956 			continue;
957 
958 		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
959 		    &addr->sin6_addr, &pr->ndpr_mask))
960 			return (1);
961 	}
962 
963 	/*
964 	 * If the address is assigned on the node of the other side of
965 	 * a p2p interface, the address should be a neighbor.
966 	 */
967 	dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr);
968 	if ((dstaddr != NULL) && (dstaddr->ifa_ifp == ifp))
969 		return (1);
970 
971 	/*
972 	 * If the default router list is empty, all addresses are regarded
973 	 * as on-link, and thus, as a neighbor.
974 	 * XXX: we restrict the condition to hosts, because routers usually do
975 	 * not have the "default router list".
976 	 */
977 	if (!V_ip6_forwarding && TAILQ_FIRST(&V_nd_defrouter) == NULL &&
978 	    V_nd6_defifindex == ifp->if_index) {
979 		return (1);
980 	}
981 
982 	return (0);
983 }
984 
985 
986 /*
987  * Detect if a given IPv6 address identifies a neighbor on a given link.
988  * XXX: should take care of the destination of a p2p link?
989  */
990 int
991 nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
992 {
993 
994 	if (nd6_is_new_addr_neighbor(addr, ifp))
995 		return (1);
996 
997 	/*
998 	 * Even if the address matches none of our addresses, it might be
999 	 * in the neighbor cache.
1000 	 */
1001 	if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
1002 		return (1);
1003 
1004 	return (0);
1005 }
1006 
1007 /*
1008  * Free an nd6 llinfo entry.
1009  * Since the function would cause significant changes in the kernel, DO NOT
1010  * make it global, unless you have a strong reason for the change, and are sure
1011  * that the change is safe.
1012  */
1013 static struct llinfo_nd6 *
1014 nd6_free(struct rtentry *rt, int gc)
1015 {
1016 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
1017 	struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
1018 	struct nd_defrouter *dr;
1019 
1020 	/*
1021 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1022 	 * even though it is not harmful, it was not really necessary.
1023 	 */
1024 
1025 	/* cancel timer */
1026 	nd6_llinfo_settimer(ln, -1);
1027 
1028 	if (!V_ip6_forwarding) {
1029 		int s;
1030 		s = splnet();
1031 		dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1032 		    rt->rt_ifp);
1033 
1034 		if (dr != NULL && dr->expire &&
1035 		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1036 			/*
1037 			 * If the reason for the deletion is just garbage
1038 			 * collection, and the neighbor is an active default
1039 			 * router, do not delete it.  Instead, reset the GC
1040 			 * timer using the router's lifetime.
1041 			 * Simply deleting the entry would affect default
1042 			 * router selection, which is not necessarily a good
1043 			 * thing, especially when we're using router preference
1044 			 * values.
1045 			 * XXX: the check for ln_state would be redundant,
1046 			 *      but we intentionally keep it just in case.
1047 			 */
1048 			if (dr->expire > time_second)
1049 				nd6_llinfo_settimer(ln,
1050 				    (dr->expire - time_second) * hz);
1051 			else
1052 				nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz);
1053 			splx(s);
1054 			return (ln->ln_next);
1055 		}
1056 
1057 		if (ln->ln_router || dr) {
1058 			/*
1059 			 * rt6_flush must be called whether or not the neighbor
1060 			 * is in the Default Router List.
1061 			 * See a corresponding comment in nd6_na_input().
1062 			 */
1063 			rt6_flush(&in6, rt->rt_ifp);
1064 		}
1065 
1066 		if (dr) {
1067 			/*
1068 			 * Unreachablity of a router might affect the default
1069 			 * router selection and on-link detection of advertised
1070 			 * prefixes.
1071 			 */
1072 
1073 			/*
1074 			 * Temporarily fake the state to choose a new default
1075 			 * router and to perform on-link determination of
1076 			 * prefixes correctly.
1077 			 * Below the state will be set correctly,
1078 			 * or the entry itself will be deleted.
1079 			 */
1080 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1081 
1082 			/*
1083 			 * Since defrouter_select() does not affect the
1084 			 * on-link determination and MIP6 needs the check
1085 			 * before the default router selection, we perform
1086 			 * the check now.
1087 			 */
1088 			pfxlist_onlink_check();
1089 
1090 			/*
1091 			 * refresh default router list
1092 			 */
1093 			defrouter_select();
1094 		}
1095 		splx(s);
1096 	}
1097 
1098 	/*
1099 	 * Before deleting the entry, remember the next entry as the
1100 	 * return value.  We need this because pfxlist_onlink_check() above
1101 	 * might have freed other entries (particularly the old next entry) as
1102 	 * a side effect (XXX).
1103 	 */
1104 	next = ln->ln_next;
1105 
1106 	/*
1107 	 * Detach the route from the routing tree and the list of neighbor
1108 	 * caches, and disable the route entry not to be used in already
1109 	 * cached routes.
1110 	 */
1111 	rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
1112 	    rt_mask(rt), 0, (struct rtentry **)0);
1113 
1114 	return (next);
1115 }
1116 
1117 /*
1118  * Upper-layer reachability hint for Neighbor Unreachability Detection.
1119  *
1120  * XXX cost-effective methods?
1121  */
1122 void
1123 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force)
1124 {
1125 	struct llinfo_nd6 *ln;
1126 
1127 	/*
1128 	 * If the caller specified "rt", use that.  Otherwise, resolve the
1129 	 * routing table by supplied "dst6".
1130 	 */
1131 	if (rt == NULL) {
1132 		if (dst6 == NULL)
1133 			return;
1134 		if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL)
1135 			return;
1136 	}
1137 
1138 	if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1139 	    (rt->rt_flags & RTF_LLINFO) == 0 ||
1140 	    rt->rt_llinfo == NULL || rt->rt_gateway == NULL ||
1141 	    rt->rt_gateway->sa_family != AF_LINK) {
1142 		/* This is not a host route. */
1143 		return;
1144 	}
1145 
1146 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1147 	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1148 		return;
1149 
1150 	/*
1151 	 * if we get upper-layer reachability confirmation many times,
1152 	 * it is possible we have false information.
1153 	 */
1154 	if (!force) {
1155 		ln->ln_byhint++;
1156 		if (ln->ln_byhint > V_nd6_maxnudhint)
1157 			return;
1158 	}
1159 
1160 	ln->ln_state = ND6_LLINFO_REACHABLE;
1161 	if (!ND6_LLINFO_PERMANENT(ln)) {
1162 		nd6_llinfo_settimer(ln,
1163 		    (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1164 	}
1165 }
1166 
1167 /*
1168  * info - XXX unused
1169  */
1170 void
1171 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info)
1172 {
1173 	struct sockaddr *gate = rt->rt_gateway;
1174 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1175 	static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1176 	struct ifnet *ifp = rt->rt_ifp;
1177 	struct ifaddr *ifa;
1178 
1179 	RT_LOCK_ASSERT(rt);
1180 
1181 	if ((rt->rt_flags & RTF_GATEWAY) != 0)
1182 		return;
1183 
1184 	if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1185 		/*
1186 		 * This is probably an interface direct route for a link
1187 		 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1188 		 * We do not need special treatment below for such a route.
1189 		 * Moreover, the RTF_LLINFO flag which would be set below
1190 		 * would annoy the ndp(8) command.
1191 		 */
1192 		return;
1193 	}
1194 
1195 	if (req == RTM_RESOLVE &&
1196 	    (nd6_need_cache(ifp) == 0 || /* stf case */
1197 	     !nd6_is_new_addr_neighbor((struct sockaddr_in6 *)rt_key(rt),
1198 	     ifp))) {
1199 		/*
1200 		 * FreeBSD and BSD/OS often make a cloned host route based
1201 		 * on a less-specific route (e.g. the default route).
1202 		 * If the less specific route does not have a "gateway"
1203 		 * (this is the case when the route just goes to a p2p or an
1204 		 * stf interface), we'll mistakenly make a neighbor cache for
1205 		 * the host route, and will see strange neighbor solicitation
1206 		 * for the corresponding destination.  In order to avoid the
1207 		 * confusion, we check if the destination of the route is
1208 		 * a neighbor in terms of neighbor discovery, and stop the
1209 		 * process if not.  Additionally, we remove the LLINFO flag
1210 		 * so that ndp(8) will not try to get the neighbor information
1211 		 * of the destination.
1212 		 */
1213 		rt->rt_flags &= ~RTF_LLINFO;
1214 		return;
1215 	}
1216 
1217 	switch (req) {
1218 	case RTM_ADD:
1219 		/*
1220 		 * There is no backward compatibility :)
1221 		 *
1222 		 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1223 		 *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1224 		 *	   rt->rt_flags |= RTF_CLONING;
1225 		 */
1226 		if ((rt->rt_flags & RTF_CLONING) ||
1227 		    ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) {
1228 			/*
1229 			 * Case 1: This route should come from a route to
1230 			 * interface (RTF_CLONING case) or the route should be
1231 			 * treated as on-link but is currently not
1232 			 * (RTF_LLINFO && ln == NULL case).
1233 			 */
1234 			rt_setgate(rt, rt_key(rt),
1235 				   (struct sockaddr *)&null_sdl);
1236 			gate = rt->rt_gateway;
1237 			SDL(gate)->sdl_type = ifp->if_type;
1238 			SDL(gate)->sdl_index = ifp->if_index;
1239 			if (ln)
1240 				nd6_llinfo_settimer(ln, 0);
1241 			if ((rt->rt_flags & RTF_CLONING) != 0)
1242 				break;
1243 		}
1244 		/*
1245 		 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1246 		 * We don't do that here since llinfo is not ready yet.
1247 		 *
1248 		 * There are also couple of other things to be discussed:
1249 		 * - unsolicited NA code needs improvement beforehand
1250 		 * - RFC2461 says we MAY send multicast unsolicited NA
1251 		 *   (7.2.6 paragraph 4), however, it also says that we
1252 		 *   SHOULD provide a mechanism to prevent multicast NA storm.
1253 		 *   we don't have anything like it right now.
1254 		 *   note that the mechanism needs a mutual agreement
1255 		 *   between proxies, which means that we need to implement
1256 		 *   a new protocol, or a new kludge.
1257 		 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1258 		 *   we need to check ip6forwarding before sending it.
1259 		 *   (or should we allow proxy ND configuration only for
1260 		 *   routers?  there's no mention about proxy ND from hosts)
1261 		 */
1262 		/* FALLTHROUGH */
1263 	case RTM_RESOLVE:
1264 		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1265 			/*
1266 			 * Address resolution isn't necessary for a point to
1267 			 * point link, so we can skip this test for a p2p link.
1268 			 */
1269 			if (gate->sa_family != AF_LINK ||
1270 			    gate->sa_len < sizeof(null_sdl)) {
1271 				log(LOG_DEBUG,
1272 				    "nd6_rtrequest: bad gateway value: %s\n",
1273 				    if_name(ifp));
1274 				break;
1275 			}
1276 			SDL(gate)->sdl_type = ifp->if_type;
1277 			SDL(gate)->sdl_index = ifp->if_index;
1278 		}
1279 		if (ln != NULL)
1280 			break;	/* This happens on a route change */
1281 		/*
1282 		 * Case 2: This route may come from cloning, or a manual route
1283 		 * add with a LL address.
1284 		 */
1285 		R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1286 		rt->rt_llinfo = (caddr_t)ln;
1287 		if (ln == NULL) {
1288 			log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1289 			break;
1290 		}
1291 		V_nd6_inuse++;
1292 		V_nd6_allocated++;
1293 		bzero(ln, sizeof(*ln));
1294 		RT_ADDREF(rt);
1295 		ln->ln_rt = rt;
1296 		callout_init(&ln->ln_timer_ch, 0);
1297 
1298 		/* this is required for "ndp" command. - shin */
1299 		if (req == RTM_ADD) {
1300 		        /*
1301 			 * gate should have some valid AF_LINK entry,
1302 			 * and ln->ln_expire should have some lifetime
1303 			 * which is specified by ndp command.
1304 			 */
1305 			ln->ln_state = ND6_LLINFO_REACHABLE;
1306 			ln->ln_byhint = 0;
1307 		} else {
1308 		        /*
1309 			 * When req == RTM_RESOLVE, rt is created and
1310 			 * initialized in rtrequest(), so rt_expire is 0.
1311 			 */
1312 			ln->ln_state = ND6_LLINFO_NOSTATE;
1313 			nd6_llinfo_settimer(ln, 0);
1314 		}
1315 		rt->rt_flags |= RTF_LLINFO;
1316 		ln->ln_next = V_llinfo_nd6.ln_next;
1317 		V_llinfo_nd6.ln_next = ln;
1318 		ln->ln_prev = &V_llinfo_nd6;
1319 		ln->ln_next->ln_prev = ln;
1320 
1321 		/*
1322 		 * check if rt_key(rt) is one of my address assigned
1323 		 * to the interface.
1324 		 */
1325 		ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1326 		    &SIN6(rt_key(rt))->sin6_addr);
1327 		if (ifa) {
1328 			caddr_t macp = nd6_ifptomac(ifp);
1329 			nd6_llinfo_settimer(ln, -1);
1330 			ln->ln_state = ND6_LLINFO_REACHABLE;
1331 			ln->ln_byhint = 0;
1332 			if (macp) {
1333 				bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1334 				SDL(gate)->sdl_alen = ifp->if_addrlen;
1335 			}
1336 			if (V_nd6_useloopback) {
1337 				rt->rt_ifp = &V_loif[0];	/* XXX */
1338 				/*
1339 				 * Make sure rt_ifa be equal to the ifaddr
1340 				 * corresponding to the address.
1341 				 * We need this because when we refer
1342 				 * rt_ifa->ia6_flags in ip6_input, we assume
1343 				 * that the rt_ifa points to the address instead
1344 				 * of the loopback address.
1345 				 */
1346 				if (ifa != rt->rt_ifa) {
1347 					IFAFREE(rt->rt_ifa);
1348 					IFAREF(ifa);
1349 					rt->rt_ifa = ifa;
1350 				}
1351 			}
1352 		} else if (rt->rt_flags & RTF_ANNOUNCE) {
1353 			nd6_llinfo_settimer(ln, -1);
1354 			ln->ln_state = ND6_LLINFO_REACHABLE;
1355 			ln->ln_byhint = 0;
1356 
1357 			/* join solicited node multicast for proxy ND */
1358 			if (ifp->if_flags & IFF_MULTICAST) {
1359 				struct in6_addr llsol;
1360 				int error;
1361 
1362 				llsol = SIN6(rt_key(rt))->sin6_addr;
1363 				llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1364 				llsol.s6_addr32[1] = 0;
1365 				llsol.s6_addr32[2] = htonl(1);
1366 				llsol.s6_addr8[12] = 0xff;
1367 				if (in6_setscope(&llsol, ifp, NULL))
1368 					break;
1369 				if (in6_addmulti(&llsol, ifp,
1370 				    &error, 0) == NULL) {
1371 					char ip6buf[INET6_ADDRSTRLEN];
1372 					nd6log((LOG_ERR, "%s: failed to join "
1373 					    "%s (errno=%d)\n", if_name(ifp),
1374 					    ip6_sprintf(ip6buf, &llsol),
1375 					    error));
1376 				}
1377 			}
1378 		}
1379 		break;
1380 
1381 	case RTM_DELETE:
1382 		if (ln == NULL)
1383 			break;
1384 		/* leave from solicited node multicast for proxy ND */
1385 		if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1386 		    (ifp->if_flags & IFF_MULTICAST) != 0) {
1387 			struct in6_addr llsol;
1388 			struct in6_multi *in6m;
1389 
1390 			llsol = SIN6(rt_key(rt))->sin6_addr;
1391 			llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1392 			llsol.s6_addr32[1] = 0;
1393 			llsol.s6_addr32[2] = htonl(1);
1394 			llsol.s6_addr8[12] = 0xff;
1395 			if (in6_setscope(&llsol, ifp, NULL) == 0) {
1396 				IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1397 				if (in6m)
1398 					in6_delmulti(in6m);
1399 			} else
1400 				; /* XXX: should not happen. bark here? */
1401 		}
1402 		V_nd6_inuse--;
1403 		ln->ln_next->ln_prev = ln->ln_prev;
1404 		ln->ln_prev->ln_next = ln->ln_next;
1405 		ln->ln_prev = NULL;
1406 		nd6_llinfo_settimer(ln, -1);
1407 		RT_REMREF(rt);
1408 		rt->rt_llinfo = 0;
1409 		rt->rt_flags &= ~RTF_LLINFO;
1410 		clear_llinfo_pqueue(ln);
1411 		Free((caddr_t)ln);
1412 	}
1413 }
1414 
1415 int
1416 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp)
1417 {
1418 	struct in6_drlist *drl = (struct in6_drlist *)data;
1419 	struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1420 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1421 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1422 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1423 	struct nd_defrouter *dr;
1424 	struct nd_prefix *pr;
1425 	struct rtentry *rt;
1426 	int i = 0, error = 0;
1427 	int s;
1428 
1429 	switch (cmd) {
1430 	case SIOCGDRLST_IN6:
1431 		/*
1432 		 * obsolete API, use sysctl under net.inet6.icmp6
1433 		 */
1434 		bzero(drl, sizeof(*drl));
1435 		s = splnet();
1436 		dr = TAILQ_FIRST(&V_nd_defrouter);
1437 		while (dr && i < DRLSTSIZ) {
1438 			drl->defrouter[i].rtaddr = dr->rtaddr;
1439 			in6_clearscope(&drl->defrouter[i].rtaddr);
1440 
1441 			drl->defrouter[i].flags = dr->flags;
1442 			drl->defrouter[i].rtlifetime = dr->rtlifetime;
1443 			drl->defrouter[i].expire = dr->expire;
1444 			drl->defrouter[i].if_index = dr->ifp->if_index;
1445 			i++;
1446 			dr = TAILQ_NEXT(dr, dr_entry);
1447 		}
1448 		splx(s);
1449 		break;
1450 	case SIOCGPRLST_IN6:
1451 		/*
1452 		 * obsolete API, use sysctl under net.inet6.icmp6
1453 		 *
1454 		 * XXX the structure in6_prlist was changed in backward-
1455 		 * incompatible manner.  in6_oprlist is used for SIOCGPRLST_IN6,
1456 		 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1457 		 */
1458 		/*
1459 		 * XXX meaning of fields, especialy "raflags", is very
1460 		 * differnet between RA prefix list and RR/static prefix list.
1461 		 * how about separating ioctls into two?
1462 		 */
1463 		bzero(oprl, sizeof(*oprl));
1464 		s = splnet();
1465 		pr = V_nd_prefix.lh_first;
1466 		while (pr && i < PRLSTSIZ) {
1467 			struct nd_pfxrouter *pfr;
1468 			int j;
1469 
1470 			oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1471 			oprl->prefix[i].raflags = pr->ndpr_raf;
1472 			oprl->prefix[i].prefixlen = pr->ndpr_plen;
1473 			oprl->prefix[i].vltime = pr->ndpr_vltime;
1474 			oprl->prefix[i].pltime = pr->ndpr_pltime;
1475 			oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1476 			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1477 				oprl->prefix[i].expire = 0;
1478 			else {
1479 				time_t maxexpire;
1480 
1481 				/* XXX: we assume time_t is signed. */
1482 				maxexpire = (-1) &
1483 				    ~((time_t)1 <<
1484 				    ((sizeof(maxexpire) * 8) - 1));
1485 				if (pr->ndpr_vltime <
1486 				    maxexpire - pr->ndpr_lastupdate) {
1487 					oprl->prefix[i].expire =
1488 					    pr->ndpr_lastupdate +
1489 					    pr->ndpr_vltime;
1490 				} else
1491 					oprl->prefix[i].expire = maxexpire;
1492 			}
1493 
1494 			pfr = pr->ndpr_advrtrs.lh_first;
1495 			j = 0;
1496 			while (pfr) {
1497 				if (j < DRLSTSIZ) {
1498 #define RTRADDR oprl->prefix[i].advrtr[j]
1499 					RTRADDR = pfr->router->rtaddr;
1500 					in6_clearscope(&RTRADDR);
1501 #undef RTRADDR
1502 				}
1503 				j++;
1504 				pfr = pfr->pfr_next;
1505 			}
1506 			oprl->prefix[i].advrtrs = j;
1507 			oprl->prefix[i].origin = PR_ORIG_RA;
1508 
1509 			i++;
1510 			pr = pr->ndpr_next;
1511 		}
1512 		splx(s);
1513 
1514 		break;
1515 	case OSIOCGIFINFO_IN6:
1516 #define ND	ndi->ndi
1517 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1518 		bzero(&ND, sizeof(ND));
1519 		ND.linkmtu = IN6_LINKMTU(ifp);
1520 		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1521 		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1522 		ND.reachable = ND_IFINFO(ifp)->reachable;
1523 		ND.retrans = ND_IFINFO(ifp)->retrans;
1524 		ND.flags = ND_IFINFO(ifp)->flags;
1525 		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1526 		ND.chlim = ND_IFINFO(ifp)->chlim;
1527 		break;
1528 	case SIOCGIFINFO_IN6:
1529 		ND = *ND_IFINFO(ifp);
1530 		break;
1531 	case SIOCSIFINFO_IN6:
1532 		/*
1533 		 * used to change host variables from userland.
1534 		 * intented for a use on router to reflect RA configurations.
1535 		 */
1536 		/* 0 means 'unspecified' */
1537 		if (ND.linkmtu != 0) {
1538 			if (ND.linkmtu < IPV6_MMTU ||
1539 			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1540 				error = EINVAL;
1541 				break;
1542 			}
1543 			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1544 		}
1545 
1546 		if (ND.basereachable != 0) {
1547 			int obasereachable = ND_IFINFO(ifp)->basereachable;
1548 
1549 			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1550 			if (ND.basereachable != obasereachable)
1551 				ND_IFINFO(ifp)->reachable =
1552 				    ND_COMPUTE_RTIME(ND.basereachable);
1553 		}
1554 		if (ND.retrans != 0)
1555 			ND_IFINFO(ifp)->retrans = ND.retrans;
1556 		if (ND.chlim != 0)
1557 			ND_IFINFO(ifp)->chlim = ND.chlim;
1558 		/* FALLTHROUGH */
1559 	case SIOCSIFINFO_FLAGS:
1560 		ND_IFINFO(ifp)->flags = ND.flags;
1561 		break;
1562 #undef ND
1563 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1564 		/* sync kernel routing table with the default router list */
1565 		defrouter_reset();
1566 		defrouter_select();
1567 		break;
1568 	case SIOCSPFXFLUSH_IN6:
1569 	{
1570 		/* flush all the prefix advertised by routers */
1571 		struct nd_prefix *pr, *next;
1572 
1573 		s = splnet();
1574 		for (pr = V_nd_prefix.lh_first; pr; pr = next) {
1575 			struct in6_ifaddr *ia, *ia_next;
1576 
1577 			next = pr->ndpr_next;
1578 
1579 			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1580 				continue; /* XXX */
1581 
1582 			/* do we really have to remove addresses as well? */
1583 			for (ia = V_in6_ifaddr; ia; ia = ia_next) {
1584 				/* ia might be removed.  keep the next ptr. */
1585 				ia_next = ia->ia_next;
1586 
1587 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1588 					continue;
1589 
1590 				if (ia->ia6_ndpr == pr)
1591 					in6_purgeaddr(&ia->ia_ifa);
1592 			}
1593 			prelist_remove(pr);
1594 		}
1595 		splx(s);
1596 		break;
1597 	}
1598 	case SIOCSRTRFLUSH_IN6:
1599 	{
1600 		/* flush all the default routers */
1601 		struct nd_defrouter *dr, *next;
1602 
1603 		s = splnet();
1604 		defrouter_reset();
1605 		for (dr = TAILQ_FIRST(&V_nd_defrouter); dr; dr = next) {
1606 			next = TAILQ_NEXT(dr, dr_entry);
1607 			defrtrlist_del(dr);
1608 		}
1609 		defrouter_select();
1610 		splx(s);
1611 		break;
1612 	}
1613 	case SIOCGNBRINFO_IN6:
1614 	{
1615 		struct llinfo_nd6 *ln;
1616 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1617 
1618 		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1619 			return (error);
1620 
1621 		s = splnet();
1622 		if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
1623 			error = EINVAL;
1624 			splx(s);
1625 			break;
1626 		}
1627 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1628 		nbi->state = ln->ln_state;
1629 		nbi->asked = ln->ln_asked;
1630 		nbi->isrouter = ln->ln_router;
1631 		nbi->expire = ln->ln_expire;
1632 		splx(s);
1633 
1634 		break;
1635 	}
1636 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1637 		ndif->ifindex = V_nd6_defifindex;
1638 		break;
1639 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1640 		return (nd6_setdefaultiface(ndif->ifindex));
1641 	}
1642 	return (error);
1643 }
1644 
1645 /*
1646  * Create neighbor cache entry and cache link-layer address,
1647  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1648  *
1649  * type - ICMP6 type
1650  * code - type dependent information
1651  */
1652 struct rtentry *
1653 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
1654     int lladdrlen, int type, int code)
1655 {
1656 	struct rtentry *rt = NULL;
1657 	struct llinfo_nd6 *ln = NULL;
1658 	int is_newentry;
1659 	struct sockaddr_dl *sdl = NULL;
1660 	int do_update;
1661 	int olladdr;
1662 	int llchange;
1663 	int newstate = 0;
1664 
1665 	if (ifp == NULL)
1666 		panic("ifp == NULL in nd6_cache_lladdr");
1667 	if (from == NULL)
1668 		panic("from == NULL in nd6_cache_lladdr");
1669 
1670 	/* nothing must be updated for unspecified address */
1671 	if (IN6_IS_ADDR_UNSPECIFIED(from))
1672 		return NULL;
1673 
1674 	/*
1675 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1676 	 * the caller.
1677 	 *
1678 	 * XXX If the link does not have link-layer adderss, what should
1679 	 * we do? (ifp->if_addrlen == 0)
1680 	 * Spec says nothing in sections for RA, RS and NA.  There's small
1681 	 * description on it in NS section (RFC 2461 7.2.3).
1682 	 */
1683 
1684 	rt = nd6_lookup(from, 0, ifp);
1685 	if (rt == NULL) {
1686 		rt = nd6_lookup(from, 1, ifp);
1687 		is_newentry = 1;
1688 	} else {
1689 		/* do nothing if static ndp is set */
1690 		if (rt->rt_flags & RTF_STATIC)
1691 			return NULL;
1692 		is_newentry = 0;
1693 	}
1694 
1695 	if (rt == NULL)
1696 		return NULL;
1697 	if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1698 fail:
1699 		(void)nd6_free(rt, 0);
1700 		return NULL;
1701 	}
1702 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1703 	if (ln == NULL)
1704 		goto fail;
1705 	if (rt->rt_gateway == NULL)
1706 		goto fail;
1707 	if (rt->rt_gateway->sa_family != AF_LINK)
1708 		goto fail;
1709 	sdl = SDL(rt->rt_gateway);
1710 
1711 	olladdr = (sdl->sdl_alen) ? 1 : 0;
1712 	if (olladdr && lladdr) {
1713 		if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1714 			llchange = 1;
1715 		else
1716 			llchange = 0;
1717 	} else
1718 		llchange = 0;
1719 
1720 	/*
1721 	 * newentry olladdr  lladdr  llchange	(*=record)
1722 	 *	0	n	n	--	(1)
1723 	 *	0	y	n	--	(2)
1724 	 *	0	n	y	--	(3) * STALE
1725 	 *	0	y	y	n	(4) *
1726 	 *	0	y	y	y	(5) * STALE
1727 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1728 	 *	1	--	y	--	(7) * STALE
1729 	 */
1730 
1731 	if (lladdr) {		/* (3-5) and (7) */
1732 		/*
1733 		 * Record source link-layer address
1734 		 * XXX is it dependent to ifp->if_type?
1735 		 */
1736 		sdl->sdl_alen = ifp->if_addrlen;
1737 		bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1738 	}
1739 
1740 	if (!is_newentry) {
1741 		if ((!olladdr && lladdr != NULL) ||	/* (3) */
1742 		    (olladdr && lladdr != NULL && llchange)) {	/* (5) */
1743 			do_update = 1;
1744 			newstate = ND6_LLINFO_STALE;
1745 		} else					/* (1-2,4) */
1746 			do_update = 0;
1747 	} else {
1748 		do_update = 1;
1749 		if (lladdr == NULL)			/* (6) */
1750 			newstate = ND6_LLINFO_NOSTATE;
1751 		else					/* (7) */
1752 			newstate = ND6_LLINFO_STALE;
1753 	}
1754 
1755 	if (do_update) {
1756 		/*
1757 		 * Update the state of the neighbor cache.
1758 		 */
1759 		ln->ln_state = newstate;
1760 
1761 		if (ln->ln_state == ND6_LLINFO_STALE) {
1762 			/*
1763 			 * XXX: since nd6_output() below will cause
1764 			 * state tansition to DELAY and reset the timer,
1765 			 * we must set the timer now, although it is actually
1766 			 * meaningless.
1767 			 */
1768 			nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz);
1769 
1770 			if (ln->ln_hold) {
1771 				struct mbuf *m_hold, *m_hold_next;
1772 
1773 				/*
1774 				 * reset the ln_hold in advance, to explicitly
1775 				 * prevent a ln_hold lookup in nd6_output()
1776 				 * (wouldn't happen, though...)
1777 				 */
1778 				for (m_hold = ln->ln_hold, ln->ln_hold = NULL;
1779 				    m_hold; m_hold = m_hold_next) {
1780 					m_hold_next = m_hold->m_nextpkt;
1781 					m_hold->m_nextpkt = NULL;
1782 
1783 					/*
1784 					 * we assume ifp is not a p2p here, so
1785 					 * just set the 2nd argument as the
1786 					 * 1st one.
1787 					 */
1788 					nd6_output(ifp, ifp, m_hold,
1789 					     (struct sockaddr_in6 *)rt_key(rt),
1790 					     rt);
1791 				}
1792 			}
1793 		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1794 			/* probe right away */
1795 			nd6_llinfo_settimer((void *)ln, 0);
1796 		}
1797 	}
1798 
1799 	/*
1800 	 * ICMP6 type dependent behavior.
1801 	 *
1802 	 * NS: clear IsRouter if new entry
1803 	 * RS: clear IsRouter
1804 	 * RA: set IsRouter if there's lladdr
1805 	 * redir: clear IsRouter if new entry
1806 	 *
1807 	 * RA case, (1):
1808 	 * The spec says that we must set IsRouter in the following cases:
1809 	 * - If lladdr exist, set IsRouter.  This means (1-5).
1810 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1811 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1812 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1813 	 * neighbor cache, this is similar to (6).
1814 	 * This case is rare but we figured that we MUST NOT set IsRouter.
1815 	 *
1816 	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
1817 	 *							D R
1818 	 *	0	n	n	--	(1)	c   ?     s
1819 	 *	0	y	n	--	(2)	c   s     s
1820 	 *	0	n	y	--	(3)	c   s     s
1821 	 *	0	y	y	n	(4)	c   s     s
1822 	 *	0	y	y	y	(5)	c   s     s
1823 	 *	1	--	n	--	(6) c	c	c s
1824 	 *	1	--	y	--	(7) c	c   s	c s
1825 	 *
1826 	 *					(c=clear s=set)
1827 	 */
1828 	switch (type & 0xff) {
1829 	case ND_NEIGHBOR_SOLICIT:
1830 		/*
1831 		 * New entry must have is_router flag cleared.
1832 		 */
1833 		if (is_newentry)	/* (6-7) */
1834 			ln->ln_router = 0;
1835 		break;
1836 	case ND_REDIRECT:
1837 		/*
1838 		 * If the icmp is a redirect to a better router, always set the
1839 		 * is_router flag.  Otherwise, if the entry is newly created,
1840 		 * clear the flag.  [RFC 2461, sec 8.3]
1841 		 */
1842 		if (code == ND_REDIRECT_ROUTER)
1843 			ln->ln_router = 1;
1844 		else if (is_newentry) /* (6-7) */
1845 			ln->ln_router = 0;
1846 		break;
1847 	case ND_ROUTER_SOLICIT:
1848 		/*
1849 		 * is_router flag must always be cleared.
1850 		 */
1851 		ln->ln_router = 0;
1852 		break;
1853 	case ND_ROUTER_ADVERT:
1854 		/*
1855 		 * Mark an entry with lladdr as a router.
1856 		 */
1857 		if ((!is_newentry && (olladdr || lladdr)) ||	/* (2-5) */
1858 		    (is_newentry && lladdr)) {			/* (7) */
1859 			ln->ln_router = 1;
1860 		}
1861 		break;
1862 	}
1863 
1864 	/*
1865 	 * When the link-layer address of a router changes, select the
1866 	 * best router again.  In particular, when the neighbor entry is newly
1867 	 * created, it might affect the selection policy.
1868 	 * Question: can we restrict the first condition to the "is_newentry"
1869 	 * case?
1870 	 * XXX: when we hear an RA from a new router with the link-layer
1871 	 * address option, defrouter_select() is called twice, since
1872 	 * defrtrlist_update called the function as well.  However, I believe
1873 	 * we can compromise the overhead, since it only happens the first
1874 	 * time.
1875 	 * XXX: although defrouter_select() should not have a bad effect
1876 	 * for those are not autoconfigured hosts, we explicitly avoid such
1877 	 * cases for safety.
1878 	 */
1879 	if (do_update && ln->ln_router && !V_ip6_forwarding && V_ip6_accept_rtadv)
1880 		defrouter_select();
1881 
1882 	return rt;
1883 }
1884 
1885 static void
1886 nd6_slowtimo(void *ignored_arg)
1887 {
1888 	struct nd_ifinfo *nd6if;
1889 	struct ifnet *ifp;
1890 
1891 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1892 	    nd6_slowtimo, NULL);
1893 	IFNET_RLOCK();
1894 	for (ifp = TAILQ_FIRST(&V_ifnet); ifp;
1895 	    ifp = TAILQ_NEXT(ifp, if_list)) {
1896 		nd6if = ND_IFINFO(ifp);
1897 		if (nd6if->basereachable && /* already initialized */
1898 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1899 			/*
1900 			 * Since reachable time rarely changes by router
1901 			 * advertisements, we SHOULD insure that a new random
1902 			 * value gets recomputed at least once every few hours.
1903 			 * (RFC 2461, 6.3.4)
1904 			 */
1905 			nd6if->recalctm = V_nd6_recalc_reachtm_interval;
1906 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1907 		}
1908 	}
1909 	IFNET_RUNLOCK();
1910 }
1911 
1912 #define senderr(e) { error = (e); goto bad;}
1913 int
1914 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0,
1915     struct sockaddr_in6 *dst, struct rtentry *rt0)
1916 {
1917 	struct mbuf *m = m0;
1918 	struct rtentry *rt = rt0;
1919 	struct sockaddr_in6 *gw6 = NULL;
1920 	struct llinfo_nd6 *ln = NULL;
1921 	int error = 0;
1922 
1923 	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1924 		goto sendpkt;
1925 
1926 	if (nd6_need_cache(ifp) == 0)
1927 		goto sendpkt;
1928 
1929 	/*
1930 	 * next hop determination.  This routine is derived from ether_output.
1931 	 */
1932 	/* NB: the locking here is tortuous... */
1933 	if (rt != NULL)
1934 		RT_LOCK(rt);
1935 again:
1936 	if (rt != NULL) {
1937 		if ((rt->rt_flags & RTF_UP) == 0) {
1938 			RT_UNLOCK(rt);
1939 			rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL);
1940 			if (rt != NULL) {
1941 				RT_REMREF(rt);
1942 				if (rt->rt_ifp != ifp)
1943 					/*
1944 					 * XXX maybe we should update ifp too,
1945 					 * but the original code didn't and I
1946 					 * don't know what is correct here.
1947 					 */
1948 					goto again;
1949 			} else
1950 				senderr(EHOSTUNREACH);
1951 		}
1952 
1953 		if (rt->rt_flags & RTF_GATEWAY) {
1954 			gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1955 
1956 			/*
1957 			 * We skip link-layer address resolution and NUD
1958 			 * if the gateway is not a neighbor from ND point
1959 			 * of view, regardless of the value of nd_ifinfo.flags.
1960 			 * The second condition is a bit tricky; we skip
1961 			 * if the gateway is our own address, which is
1962 			 * sometimes used to install a route to a p2p link.
1963 			 */
1964 			if (!nd6_is_addr_neighbor(gw6, ifp) ||
1965 			    in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1966 				RT_UNLOCK(rt);
1967 				/*
1968 				 * We allow this kind of tricky route only
1969 				 * when the outgoing interface is p2p.
1970 				 * XXX: we may need a more generic rule here.
1971 				 */
1972 				if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1973 					senderr(EHOSTUNREACH);
1974 
1975 				goto sendpkt;
1976 			}
1977 
1978 			if (rt->rt_gwroute == NULL)
1979 				goto lookup;
1980 			rt = rt->rt_gwroute;
1981 			RT_LOCK(rt);		/* NB: gwroute */
1982 			if ((rt->rt_flags & RTF_UP) == 0) {
1983 				RTFREE_LOCKED(rt);	/* unlock gwroute */
1984 				rt = rt0;
1985 				rt0->rt_gwroute = NULL;
1986 			lookup:
1987 				RT_UNLOCK(rt0);
1988 				rt = rtalloc1(rt->rt_gateway, 1, 0UL);
1989 				if (rt == rt0) {
1990 					RT_REMREF(rt0);
1991 					RT_UNLOCK(rt0);
1992 					senderr(EHOSTUNREACH);
1993 				}
1994 				RT_LOCK(rt0);
1995 				if (rt0->rt_gwroute != NULL)
1996 					RTFREE(rt0->rt_gwroute);
1997 				rt0->rt_gwroute = rt;
1998 				if (rt == NULL) {
1999 					RT_UNLOCK(rt0);
2000 					senderr(EHOSTUNREACH);
2001 				}
2002 			}
2003 			RT_UNLOCK(rt0);
2004 		}
2005 		RT_UNLOCK(rt);
2006 	}
2007 
2008 	/*
2009 	 * Address resolution or Neighbor Unreachability Detection
2010 	 * for the next hop.
2011 	 * At this point, the destination of the packet must be a unicast
2012 	 * or an anycast address(i.e. not a multicast).
2013 	 */
2014 
2015 	/* Look up the neighbor cache for the nexthop */
2016 	if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
2017 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2018 	else {
2019 		/*
2020 		 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2021 		 * the condition below is not very efficient.  But we believe
2022 		 * it is tolerable, because this should be a rare case.
2023 		 */
2024 		if (nd6_is_addr_neighbor(dst, ifp) &&
2025 		    (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
2026 			ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2027 	}
2028 	if (ln == NULL || rt == NULL) {
2029 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2030 		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2031 			char ip6buf[INET6_ADDRSTRLEN];
2032 			log(LOG_DEBUG,
2033 			    "nd6_output: can't allocate llinfo for %s "
2034 			    "(ln=%p, rt=%p)\n",
2035 			    ip6_sprintf(ip6buf, &dst->sin6_addr), ln, rt);
2036 			senderr(EIO);	/* XXX: good error? */
2037 		}
2038 
2039 		goto sendpkt;	/* send anyway */
2040 	}
2041 
2042 	/* We don't have to do link-layer address resolution on a p2p link. */
2043 	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2044 	    ln->ln_state < ND6_LLINFO_REACHABLE) {
2045 		ln->ln_state = ND6_LLINFO_STALE;
2046 		nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz);
2047 	}
2048 
2049 	/*
2050 	 * The first time we send a packet to a neighbor whose entry is
2051 	 * STALE, we have to change the state to DELAY and a sets a timer to
2052 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2053 	 * neighbor unreachability detection on expiration.
2054 	 * (RFC 2461 7.3.3)
2055 	 */
2056 	if (ln->ln_state == ND6_LLINFO_STALE) {
2057 		ln->ln_asked = 0;
2058 		ln->ln_state = ND6_LLINFO_DELAY;
2059 		nd6_llinfo_settimer(ln, (long)V_nd6_delay * hz);
2060 	}
2061 
2062 	/*
2063 	 * If the neighbor cache entry has a state other than INCOMPLETE
2064 	 * (i.e. its link-layer address is already resolved), just
2065 	 * send the packet.
2066 	 */
2067 	if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2068 		goto sendpkt;
2069 
2070 	/*
2071 	 * There is a neighbor cache entry, but no ethernet address
2072 	 * response yet.  Append this latest packet to the end of the
2073 	 * packet queue in the mbuf, unless the number of the packet
2074 	 * does not exceed nd6_maxqueuelen.  When it exceeds nd6_maxqueuelen,
2075 	 * the oldest packet in the queue will be removed.
2076 	 */
2077 	if (ln->ln_state == ND6_LLINFO_NOSTATE)
2078 		ln->ln_state = ND6_LLINFO_INCOMPLETE;
2079 	if (ln->ln_hold) {
2080 		struct mbuf *m_hold;
2081 		int i;
2082 
2083 		i = 0;
2084 		for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2085 			i++;
2086 			if (m_hold->m_nextpkt == NULL) {
2087 				m_hold->m_nextpkt = m;
2088 				break;
2089 			}
2090 		}
2091 		while (i >= V_nd6_maxqueuelen) {
2092 			m_hold = ln->ln_hold;
2093 			ln->ln_hold = ln->ln_hold->m_nextpkt;
2094 			m_freem(m_hold);
2095 			i--;
2096 		}
2097 	} else {
2098 		ln->ln_hold = m;
2099 	}
2100 
2101 	/*
2102 	 * If there has been no NS for the neighbor after entering the
2103 	 * INCOMPLETE state, send the first solicitation.
2104 	 */
2105 	if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2106 		ln->ln_asked++;
2107 		nd6_llinfo_settimer(ln,
2108 		    (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2109 		nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2110 	}
2111 	return (0);
2112 
2113   sendpkt:
2114 	/* discard the packet if IPv6 operation is disabled on the interface */
2115 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2116 		error = ENETDOWN; /* better error? */
2117 		goto bad;
2118 	}
2119 
2120 #ifdef MAC
2121 	mac_netinet6_nd6_send(ifp, m);
2122 #endif
2123 	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
2124 		return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
2125 		    rt));
2126 	}
2127 	return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
2128 
2129   bad:
2130 	if (m)
2131 		m_freem(m);
2132 	return (error);
2133 }
2134 #undef senderr
2135 
2136 int
2137 nd6_need_cache(struct ifnet *ifp)
2138 {
2139 	/*
2140 	 * XXX: we currently do not make neighbor cache on any interface
2141 	 * other than ARCnet, Ethernet, FDDI and GIF.
2142 	 *
2143 	 * RFC2893 says:
2144 	 * - unidirectional tunnels needs no ND
2145 	 */
2146 	switch (ifp->if_type) {
2147 	case IFT_ARCNET:
2148 	case IFT_ETHER:
2149 	case IFT_FDDI:
2150 	case IFT_IEEE1394:
2151 #ifdef IFT_L2VLAN
2152 	case IFT_L2VLAN:
2153 #endif
2154 #ifdef IFT_IEEE80211
2155 	case IFT_IEEE80211:
2156 #endif
2157 #ifdef IFT_CARP
2158 	case IFT_CARP:
2159 #endif
2160 	case IFT_GIF:		/* XXX need more cases? */
2161 	case IFT_PPP:
2162 	case IFT_TUNNEL:
2163 	case IFT_BRIDGE:
2164 	case IFT_PROPVIRTUAL:
2165 		return (1);
2166 	default:
2167 		return (0);
2168 	}
2169 }
2170 
2171 int
2172 nd6_storelladdr(struct ifnet *ifp, struct rtentry *rt0, struct mbuf *m,
2173     struct sockaddr *dst, u_char *desten)
2174 {
2175 	struct sockaddr_dl *sdl;
2176 	struct rtentry *rt;
2177 	int error;
2178 
2179 	if (m->m_flags & M_MCAST) {
2180 		int i;
2181 
2182 		switch (ifp->if_type) {
2183 		case IFT_ETHER:
2184 		case IFT_FDDI:
2185 #ifdef IFT_L2VLAN
2186 		case IFT_L2VLAN:
2187 #endif
2188 #ifdef IFT_IEEE80211
2189 		case IFT_IEEE80211:
2190 #endif
2191 		case IFT_BRIDGE:
2192 		case IFT_ISO88025:
2193 			ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2194 						 desten);
2195 			return (0);
2196 		case IFT_IEEE1394:
2197 			/*
2198 			 * netbsd can use if_broadcastaddr, but we don't do so
2199 			 * to reduce # of ifdef.
2200 			 */
2201 			for (i = 0; i < ifp->if_addrlen; i++)
2202 				desten[i] = ~0;
2203 			return (0);
2204 		case IFT_ARCNET:
2205 			*desten = 0;
2206 			return (0);
2207 		default:
2208 			m_freem(m);
2209 			return (EAFNOSUPPORT);
2210 		}
2211 	}
2212 
2213 	if (rt0 == NULL) {
2214 		/* this could happen, if we could not allocate memory */
2215 		m_freem(m);
2216 		return (ENOMEM);
2217 	}
2218 
2219 	error = rt_check(&rt, &rt0, dst);
2220 	if (error) {
2221 		m_freem(m);
2222 		return (error);
2223 	}
2224 	RT_UNLOCK(rt);
2225 
2226 	if (rt->rt_gateway->sa_family != AF_LINK) {
2227 		printf("nd6_storelladdr: something odd happens\n");
2228 		m_freem(m);
2229 		return (EINVAL);
2230 	}
2231 	sdl = SDL(rt->rt_gateway);
2232 	if (sdl->sdl_alen == 0) {
2233 		/* this should be impossible, but we bark here for debugging */
2234 		printf("nd6_storelladdr: sdl_alen == 0\n");
2235 		m_freem(m);
2236 		return (EINVAL);
2237 	}
2238 
2239 	bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
2240 	return (0);
2241 }
2242 
2243 static void
2244 clear_llinfo_pqueue(struct llinfo_nd6 *ln)
2245 {
2246 	struct mbuf *m_hold, *m_hold_next;
2247 
2248 	for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2249 		m_hold_next = m_hold->m_nextpkt;
2250 		m_hold->m_nextpkt = NULL;
2251 		m_freem(m_hold);
2252 	}
2253 
2254 	ln->ln_hold = NULL;
2255 	return;
2256 }
2257 
2258 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2259 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2260 #ifdef SYSCTL_DECL
2261 SYSCTL_DECL(_net_inet6_icmp6);
2262 #endif
2263 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2264 	CTLFLAG_RD, nd6_sysctl_drlist, "");
2265 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2266 	CTLFLAG_RD, nd6_sysctl_prlist, "");
2267 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2268 	CTLFLAG_RW, &nd6_maxqueuelen, 1, "");
2269 
2270 static int
2271 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2272 {
2273 	int error;
2274 	char buf[1024] __aligned(4);
2275 	struct in6_defrouter *d, *de;
2276 	struct nd_defrouter *dr;
2277 
2278 	if (req->newptr)
2279 		return EPERM;
2280 	error = 0;
2281 
2282 	for (dr = TAILQ_FIRST(&V_nd_defrouter); dr;
2283 	     dr = TAILQ_NEXT(dr, dr_entry)) {
2284 		d = (struct in6_defrouter *)buf;
2285 		de = (struct in6_defrouter *)(buf + sizeof(buf));
2286 
2287 		if (d + 1 <= de) {
2288 			bzero(d, sizeof(*d));
2289 			d->rtaddr.sin6_family = AF_INET6;
2290 			d->rtaddr.sin6_len = sizeof(d->rtaddr);
2291 			d->rtaddr.sin6_addr = dr->rtaddr;
2292 			error = sa6_recoverscope(&d->rtaddr);
2293 			if (error != 0)
2294 				return (error);
2295 			d->flags = dr->flags;
2296 			d->rtlifetime = dr->rtlifetime;
2297 			d->expire = dr->expire;
2298 			d->if_index = dr->ifp->if_index;
2299 		} else
2300 			panic("buffer too short");
2301 
2302 		error = SYSCTL_OUT(req, buf, sizeof(*d));
2303 		if (error)
2304 			break;
2305 	}
2306 
2307 	return (error);
2308 }
2309 
2310 static int
2311 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2312 {
2313 	int error;
2314 	char buf[1024] __aligned(4);
2315 	struct in6_prefix *p, *pe;
2316 	struct nd_prefix *pr;
2317 	char ip6buf[INET6_ADDRSTRLEN];
2318 
2319 	if (req->newptr)
2320 		return EPERM;
2321 	error = 0;
2322 
2323 	for (pr = V_nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2324 		u_short advrtrs;
2325 		size_t advance;
2326 		struct sockaddr_in6 *sin6, *s6;
2327 		struct nd_pfxrouter *pfr;
2328 
2329 		p = (struct in6_prefix *)buf;
2330 		pe = (struct in6_prefix *)(buf + sizeof(buf));
2331 
2332 		if (p + 1 <= pe) {
2333 			bzero(p, sizeof(*p));
2334 			sin6 = (struct sockaddr_in6 *)(p + 1);
2335 
2336 			p->prefix = pr->ndpr_prefix;
2337 			if (sa6_recoverscope(&p->prefix)) {
2338 				log(LOG_ERR,
2339 				    "scope error in prefix list (%s)\n",
2340 				    ip6_sprintf(ip6buf, &p->prefix.sin6_addr));
2341 				/* XXX: press on... */
2342 			}
2343 			p->raflags = pr->ndpr_raf;
2344 			p->prefixlen = pr->ndpr_plen;
2345 			p->vltime = pr->ndpr_vltime;
2346 			p->pltime = pr->ndpr_pltime;
2347 			p->if_index = pr->ndpr_ifp->if_index;
2348 			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2349 				p->expire = 0;
2350 			else {
2351 				time_t maxexpire;
2352 
2353 				/* XXX: we assume time_t is signed. */
2354 				maxexpire = (-1) &
2355 				    ~((time_t)1 <<
2356 				    ((sizeof(maxexpire) * 8) - 1));
2357 				if (pr->ndpr_vltime <
2358 				    maxexpire - pr->ndpr_lastupdate) {
2359 				    p->expire = pr->ndpr_lastupdate +
2360 				        pr->ndpr_vltime;
2361 				} else
2362 					p->expire = maxexpire;
2363 			}
2364 			p->refcnt = pr->ndpr_refcnt;
2365 			p->flags = pr->ndpr_stateflags;
2366 			p->origin = PR_ORIG_RA;
2367 			advrtrs = 0;
2368 			for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2369 			     pfr = pfr->pfr_next) {
2370 				if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2371 					advrtrs++;
2372 					continue;
2373 				}
2374 				s6 = &sin6[advrtrs];
2375 				bzero(s6, sizeof(*s6));
2376 				s6->sin6_family = AF_INET6;
2377 				s6->sin6_len = sizeof(*sin6);
2378 				s6->sin6_addr = pfr->router->rtaddr;
2379 				if (sa6_recoverscope(s6)) {
2380 					log(LOG_ERR,
2381 					    "scope error in "
2382 					    "prefix list (%s)\n",
2383 					    ip6_sprintf(ip6buf,
2384 						    &pfr->router->rtaddr));
2385 				}
2386 				advrtrs++;
2387 			}
2388 			p->advrtrs = advrtrs;
2389 		} else
2390 			panic("buffer too short");
2391 
2392 		advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2393 		error = SYSCTL_OUT(req, buf, advance);
2394 		if (error)
2395 			break;
2396 	}
2397 
2398 	return (error);
2399 }
2400