1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/callout.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/socket.h> 44 #include <sys/sockio.h> 45 #include <sys/time.h> 46 #include <sys/kernel.h> 47 #include <sys/protosw.h> 48 #include <sys/errno.h> 49 #include <sys/syslog.h> 50 #include <sys/lock.h> 51 #include <sys/rwlock.h> 52 #include <sys/queue.h> 53 #include <sys/sdt.h> 54 #include <sys/sysctl.h> 55 56 #include <net/if.h> 57 #include <net/if_var.h> 58 #include <net/if_arc.h> 59 #include <net/if_dl.h> 60 #include <net/if_types.h> 61 #include <net/iso88025.h> 62 #include <net/fddi.h> 63 #include <net/route.h> 64 #include <net/vnet.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_kdtrace.h> 68 #include <net/if_llatbl.h> 69 #define L3_ADDR_SIN6(le) ((struct sockaddr_in6 *) L3_ADDR(le)) 70 #include <netinet/if_ether.h> 71 #include <netinet6/in6_var.h> 72 #include <netinet/ip6.h> 73 #include <netinet6/ip6_var.h> 74 #include <netinet6/scope6_var.h> 75 #include <netinet6/nd6.h> 76 #include <netinet6/in6_ifattach.h> 77 #include <netinet/icmp6.h> 78 #include <netinet6/send.h> 79 80 #include <sys/limits.h> 81 82 #include <security/mac/mac_framework.h> 83 84 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 85 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 86 87 #define SIN6(s) ((const struct sockaddr_in6 *)(s)) 88 89 /* timer values */ 90 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 91 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 92 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 93 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 94 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 95 * local traffic */ 96 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 97 * collection timer */ 98 99 /* preventing too many loops in ND option parsing */ 100 static VNET_DEFINE(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 101 102 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 103 * layer hints */ 104 static VNET_DEFINE(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved 105 * ND entries */ 106 #define V_nd6_maxndopt VNET(nd6_maxndopt) 107 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 108 109 #ifdef ND6_DEBUG 110 VNET_DEFINE(int, nd6_debug) = 1; 111 #else 112 VNET_DEFINE(int, nd6_debug) = 0; 113 #endif 114 115 /* for debugging? */ 116 #if 0 117 static int nd6_inuse, nd6_allocated; 118 #endif 119 120 VNET_DEFINE(struct nd_drhead, nd_defrouter); 121 VNET_DEFINE(struct nd_prhead, nd_prefix); 122 123 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 124 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 125 126 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 127 128 static int nd6_is_new_addr_neighbor(struct sockaddr_in6 *, 129 struct ifnet *); 130 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 131 static void nd6_slowtimo(void *); 132 static int regen_tmpaddr(struct in6_ifaddr *); 133 static struct llentry *nd6_free(struct llentry *, int); 134 static void nd6_llinfo_timer(void *); 135 static void clear_llinfo_pqueue(struct llentry *); 136 static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 137 static int nd6_output_lle(struct ifnet *, struct ifnet *, struct mbuf *, 138 struct sockaddr_in6 *); 139 static int nd6_output_ifp(struct ifnet *, struct ifnet *, struct mbuf *, 140 struct sockaddr_in6 *); 141 142 static VNET_DEFINE(struct callout, nd6_slowtimo_ch); 143 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 144 145 VNET_DEFINE(struct callout, nd6_timer_ch); 146 147 void 148 nd6_init(void) 149 { 150 151 LIST_INIT(&V_nd_prefix); 152 153 /* initialization of the default router list */ 154 TAILQ_INIT(&V_nd_defrouter); 155 156 /* start timer */ 157 callout_init(&V_nd6_slowtimo_ch, 0); 158 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 159 nd6_slowtimo, curvnet); 160 161 nd6_dad_init(); 162 } 163 164 #ifdef VIMAGE 165 void 166 nd6_destroy() 167 { 168 169 callout_drain(&V_nd6_slowtimo_ch); 170 callout_drain(&V_nd6_timer_ch); 171 } 172 #endif 173 174 struct nd_ifinfo * 175 nd6_ifattach(struct ifnet *ifp) 176 { 177 struct nd_ifinfo *nd; 178 179 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO); 180 nd->initialized = 1; 181 182 nd->chlim = IPV6_DEFHLIM; 183 nd->basereachable = REACHABLE_TIME; 184 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 185 nd->retrans = RETRANS_TIMER; 186 187 nd->flags = ND6_IFF_PERFORMNUD; 188 189 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 190 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 191 * default regardless of the V_ip6_auto_linklocal configuration to 192 * give a reasonable default behavior. 193 */ 194 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 195 (ifp->if_flags & IFF_LOOPBACK)) 196 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 197 /* 198 * A loopback interface does not need to accept RTADV. 199 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 200 * default regardless of the V_ip6_accept_rtadv configuration to 201 * prevent the interface from accepting RA messages arrived 202 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 203 */ 204 if (V_ip6_accept_rtadv && 205 !(ifp->if_flags & IFF_LOOPBACK) && 206 (ifp->if_type != IFT_BRIDGE)) 207 nd->flags |= ND6_IFF_ACCEPT_RTADV; 208 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 209 nd->flags |= ND6_IFF_NO_RADR; 210 211 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 212 nd6_setmtu0(ifp, nd); 213 214 return nd; 215 } 216 217 void 218 nd6_ifdetach(struct nd_ifinfo *nd) 219 { 220 221 free(nd, M_IP6NDP); 222 } 223 224 /* 225 * Reset ND level link MTU. This function is called when the physical MTU 226 * changes, which means we might have to adjust the ND level MTU. 227 */ 228 void 229 nd6_setmtu(struct ifnet *ifp) 230 { 231 232 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 233 } 234 235 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 236 void 237 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 238 { 239 u_int32_t omaxmtu; 240 241 omaxmtu = ndi->maxmtu; 242 243 switch (ifp->if_type) { 244 case IFT_ARCNET: 245 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ 246 break; 247 case IFT_FDDI: 248 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */ 249 break; 250 case IFT_ISO88025: 251 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu); 252 break; 253 default: 254 ndi->maxmtu = ifp->if_mtu; 255 break; 256 } 257 258 /* 259 * Decreasing the interface MTU under IPV6 minimum MTU may cause 260 * undesirable situation. We thus notify the operator of the change 261 * explicitly. The check for omaxmtu is necessary to restrict the 262 * log to the case of changing the MTU, not initializing it. 263 */ 264 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 265 log(LOG_NOTICE, "nd6_setmtu0: " 266 "new link MTU on %s (%lu) is too small for IPv6\n", 267 if_name(ifp), (unsigned long)ndi->maxmtu); 268 } 269 270 if (ndi->maxmtu > V_in6_maxmtu) 271 in6_setmaxmtu(); /* check all interfaces just in case */ 272 273 } 274 275 void 276 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 277 { 278 279 bzero(ndopts, sizeof(*ndopts)); 280 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 281 ndopts->nd_opts_last 282 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 283 284 if (icmp6len == 0) { 285 ndopts->nd_opts_done = 1; 286 ndopts->nd_opts_search = NULL; 287 } 288 } 289 290 /* 291 * Take one ND option. 292 */ 293 struct nd_opt_hdr * 294 nd6_option(union nd_opts *ndopts) 295 { 296 struct nd_opt_hdr *nd_opt; 297 int olen; 298 299 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 300 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 301 __func__)); 302 if (ndopts->nd_opts_search == NULL) 303 return NULL; 304 if (ndopts->nd_opts_done) 305 return NULL; 306 307 nd_opt = ndopts->nd_opts_search; 308 309 /* make sure nd_opt_len is inside the buffer */ 310 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 311 bzero(ndopts, sizeof(*ndopts)); 312 return NULL; 313 } 314 315 olen = nd_opt->nd_opt_len << 3; 316 if (olen == 0) { 317 /* 318 * Message validation requires that all included 319 * options have a length that is greater than zero. 320 */ 321 bzero(ndopts, sizeof(*ndopts)); 322 return NULL; 323 } 324 325 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 326 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 327 /* option overruns the end of buffer, invalid */ 328 bzero(ndopts, sizeof(*ndopts)); 329 return NULL; 330 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 331 /* reached the end of options chain */ 332 ndopts->nd_opts_done = 1; 333 ndopts->nd_opts_search = NULL; 334 } 335 return nd_opt; 336 } 337 338 /* 339 * Parse multiple ND options. 340 * This function is much easier to use, for ND routines that do not need 341 * multiple options of the same type. 342 */ 343 int 344 nd6_options(union nd_opts *ndopts) 345 { 346 struct nd_opt_hdr *nd_opt; 347 int i = 0; 348 349 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 350 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 351 __func__)); 352 if (ndopts->nd_opts_search == NULL) 353 return 0; 354 355 while (1) { 356 nd_opt = nd6_option(ndopts); 357 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 358 /* 359 * Message validation requires that all included 360 * options have a length that is greater than zero. 361 */ 362 ICMP6STAT_INC(icp6s_nd_badopt); 363 bzero(ndopts, sizeof(*ndopts)); 364 return -1; 365 } 366 367 if (nd_opt == NULL) 368 goto skip1; 369 370 switch (nd_opt->nd_opt_type) { 371 case ND_OPT_SOURCE_LINKADDR: 372 case ND_OPT_TARGET_LINKADDR: 373 case ND_OPT_MTU: 374 case ND_OPT_REDIRECTED_HEADER: 375 case ND_OPT_NONCE: 376 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 377 nd6log((LOG_INFO, 378 "duplicated ND6 option found (type=%d)\n", 379 nd_opt->nd_opt_type)); 380 /* XXX bark? */ 381 } else { 382 ndopts->nd_opt_array[nd_opt->nd_opt_type] 383 = nd_opt; 384 } 385 break; 386 case ND_OPT_PREFIX_INFORMATION: 387 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 388 ndopts->nd_opt_array[nd_opt->nd_opt_type] 389 = nd_opt; 390 } 391 ndopts->nd_opts_pi_end = 392 (struct nd_opt_prefix_info *)nd_opt; 393 break; 394 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 395 case ND_OPT_RDNSS: /* RFC 6106 */ 396 case ND_OPT_DNSSL: /* RFC 6106 */ 397 /* 398 * Silently ignore options we know and do not care about 399 * in the kernel. 400 */ 401 break; 402 default: 403 /* 404 * Unknown options must be silently ignored, 405 * to accomodate future extension to the protocol. 406 */ 407 nd6log((LOG_DEBUG, 408 "nd6_options: unsupported option %d - " 409 "option ignored\n", nd_opt->nd_opt_type)); 410 } 411 412 skip1: 413 i++; 414 if (i > V_nd6_maxndopt) { 415 ICMP6STAT_INC(icp6s_nd_toomanyopt); 416 nd6log((LOG_INFO, "too many loop in nd opt\n")); 417 break; 418 } 419 420 if (ndopts->nd_opts_done) 421 break; 422 } 423 424 return 0; 425 } 426 427 /* 428 * ND6 timer routine to handle ND6 entries 429 */ 430 void 431 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 432 { 433 int canceled; 434 435 LLE_WLOCK_ASSERT(ln); 436 437 if (tick < 0) { 438 ln->la_expire = 0; 439 ln->ln_ntick = 0; 440 canceled = callout_stop(&ln->ln_timer_ch); 441 } else { 442 ln->la_expire = time_uptime + tick / hz; 443 LLE_ADDREF(ln); 444 if (tick > INT_MAX) { 445 ln->ln_ntick = tick - INT_MAX; 446 canceled = callout_reset(&ln->ln_timer_ch, INT_MAX, 447 nd6_llinfo_timer, ln); 448 } else { 449 ln->ln_ntick = 0; 450 canceled = callout_reset(&ln->ln_timer_ch, tick, 451 nd6_llinfo_timer, ln); 452 } 453 } 454 if (canceled) 455 LLE_REMREF(ln); 456 } 457 458 void 459 nd6_llinfo_settimer(struct llentry *ln, long tick) 460 { 461 462 LLE_WLOCK(ln); 463 nd6_llinfo_settimer_locked(ln, tick); 464 LLE_WUNLOCK(ln); 465 } 466 467 static void 468 nd6_llinfo_timer(void *arg) 469 { 470 struct llentry *ln; 471 struct in6_addr *dst; 472 struct ifnet *ifp; 473 struct nd_ifinfo *ndi = NULL; 474 475 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 476 ln = (struct llentry *)arg; 477 LLE_WLOCK(ln); 478 if (callout_pending(&ln->la_timer)) { 479 /* 480 * Here we are a bit odd here in the treatment of 481 * active/pending. If the pending bit is set, it got 482 * rescheduled before I ran. The active 483 * bit we ignore, since if it was stopped 484 * in ll_tablefree() and was currently running 485 * it would have return 0 so the code would 486 * not have deleted it since the callout could 487 * not be stopped so we want to go through 488 * with the delete here now. If the callout 489 * was restarted, the pending bit will be back on and 490 * we just want to bail since the callout_reset would 491 * return 1 and our reference would have been removed 492 * by nd6_llinfo_settimer_locked above since canceled 493 * would have been 1. 494 */ 495 LLE_WUNLOCK(ln); 496 return; 497 } 498 ifp = ln->lle_tbl->llt_ifp; 499 CURVNET_SET(ifp->if_vnet); 500 501 if (ln->ln_ntick > 0) { 502 if (ln->ln_ntick > INT_MAX) { 503 ln->ln_ntick -= INT_MAX; 504 nd6_llinfo_settimer_locked(ln, INT_MAX); 505 } else { 506 ln->ln_ntick = 0; 507 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 508 } 509 goto done; 510 } 511 512 ndi = ND_IFINFO(ifp); 513 dst = &L3_ADDR_SIN6(ln)->sin6_addr; 514 if (ln->la_flags & LLE_STATIC) { 515 goto done; 516 } 517 518 if (ln->la_flags & LLE_DELETED) { 519 (void)nd6_free(ln, 0); 520 ln = NULL; 521 goto done; 522 } 523 524 switch (ln->ln_state) { 525 case ND6_LLINFO_INCOMPLETE: 526 if (ln->la_asked < V_nd6_mmaxtries) { 527 ln->la_asked++; 528 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 529 LLE_WUNLOCK(ln); 530 nd6_ns_output(ifp, NULL, dst, ln, NULL); 531 LLE_WLOCK(ln); 532 } else { 533 struct mbuf *m = ln->la_hold; 534 if (m) { 535 struct mbuf *m0; 536 537 /* 538 * assuming every packet in la_hold has the 539 * same IP header. Send error after unlock. 540 */ 541 m0 = m->m_nextpkt; 542 m->m_nextpkt = NULL; 543 ln->la_hold = m0; 544 clear_llinfo_pqueue(ln); 545 } 546 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_TIMEDOUT); 547 (void)nd6_free(ln, 0); 548 ln = NULL; 549 if (m != NULL) 550 icmp6_error2(m, ICMP6_DST_UNREACH, 551 ICMP6_DST_UNREACH_ADDR, 0, ifp); 552 } 553 break; 554 case ND6_LLINFO_REACHABLE: 555 if (!ND6_LLINFO_PERMANENT(ln)) { 556 ln->ln_state = ND6_LLINFO_STALE; 557 nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz); 558 } 559 break; 560 561 case ND6_LLINFO_STALE: 562 /* Garbage Collection(RFC 2461 5.3) */ 563 if (!ND6_LLINFO_PERMANENT(ln)) { 564 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 565 (void)nd6_free(ln, 1); 566 ln = NULL; 567 } 568 break; 569 570 case ND6_LLINFO_DELAY: 571 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 572 /* We need NUD */ 573 ln->la_asked = 1; 574 ln->ln_state = ND6_LLINFO_PROBE; 575 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 576 LLE_WUNLOCK(ln); 577 nd6_ns_output(ifp, dst, dst, ln, NULL); 578 LLE_WLOCK(ln); 579 } else { 580 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 581 nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz); 582 } 583 break; 584 case ND6_LLINFO_PROBE: 585 if (ln->la_asked < V_nd6_umaxtries) { 586 ln->la_asked++; 587 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 588 LLE_WUNLOCK(ln); 589 nd6_ns_output(ifp, dst, dst, ln, NULL); 590 LLE_WLOCK(ln); 591 } else { 592 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 593 (void)nd6_free(ln, 0); 594 ln = NULL; 595 } 596 break; 597 default: 598 panic("%s: paths in a dark night can be confusing: %d", 599 __func__, ln->ln_state); 600 } 601 done: 602 if (ln != NULL) 603 LLE_FREE_LOCKED(ln); 604 CURVNET_RESTORE(); 605 } 606 607 608 /* 609 * ND6 timer routine to expire default route list and prefix list 610 */ 611 void 612 nd6_timer(void *arg) 613 { 614 CURVNET_SET((struct vnet *) arg); 615 struct nd_defrouter *dr, *ndr; 616 struct nd_prefix *pr, *npr; 617 struct in6_ifaddr *ia6, *nia6; 618 619 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 620 nd6_timer, curvnet); 621 622 /* expire default router list */ 623 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 624 if (dr->expire && dr->expire < time_uptime) 625 defrtrlist_del(dr); 626 } 627 628 /* 629 * expire interface addresses. 630 * in the past the loop was inside prefix expiry processing. 631 * However, from a stricter speci-confrmance standpoint, we should 632 * rather separate address lifetimes and prefix lifetimes. 633 * 634 * XXXRW: in6_ifaddrhead locking. 635 */ 636 addrloop: 637 TAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 638 /* check address lifetime */ 639 if (IFA6_IS_INVALID(ia6)) { 640 int regen = 0; 641 642 /* 643 * If the expiring address is temporary, try 644 * regenerating a new one. This would be useful when 645 * we suspended a laptop PC, then turned it on after a 646 * period that could invalidate all temporary 647 * addresses. Although we may have to restart the 648 * loop (see below), it must be after purging the 649 * address. Otherwise, we'd see an infinite loop of 650 * regeneration. 651 */ 652 if (V_ip6_use_tempaddr && 653 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 654 if (regen_tmpaddr(ia6) == 0) 655 regen = 1; 656 } 657 658 in6_purgeaddr(&ia6->ia_ifa); 659 660 if (regen) 661 goto addrloop; /* XXX: see below */ 662 } else if (IFA6_IS_DEPRECATED(ia6)) { 663 int oldflags = ia6->ia6_flags; 664 665 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 666 667 /* 668 * If a temporary address has just become deprecated, 669 * regenerate a new one if possible. 670 */ 671 if (V_ip6_use_tempaddr && 672 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 673 (oldflags & IN6_IFF_DEPRECATED) == 0) { 674 675 if (regen_tmpaddr(ia6) == 0) { 676 /* 677 * A new temporary address is 678 * generated. 679 * XXX: this means the address chain 680 * has changed while we are still in 681 * the loop. Although the change 682 * would not cause disaster (because 683 * it's not a deletion, but an 684 * addition,) we'd rather restart the 685 * loop just for safety. Or does this 686 * significantly reduce performance?? 687 */ 688 goto addrloop; 689 } 690 } 691 } else { 692 /* 693 * A new RA might have made a deprecated address 694 * preferred. 695 */ 696 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 697 } 698 } 699 700 /* expire prefix list */ 701 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 702 /* 703 * check prefix lifetime. 704 * since pltime is just for autoconf, pltime processing for 705 * prefix is not necessary. 706 */ 707 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && 708 time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) { 709 710 /* 711 * address expiration and prefix expiration are 712 * separate. NEVER perform in6_purgeaddr here. 713 */ 714 prelist_remove(pr); 715 } 716 } 717 CURVNET_RESTORE(); 718 } 719 720 /* 721 * ia6 - deprecated/invalidated temporary address 722 */ 723 static int 724 regen_tmpaddr(struct in6_ifaddr *ia6) 725 { 726 struct ifaddr *ifa; 727 struct ifnet *ifp; 728 struct in6_ifaddr *public_ifa6 = NULL; 729 730 ifp = ia6->ia_ifa.ifa_ifp; 731 IF_ADDR_RLOCK(ifp); 732 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 733 struct in6_ifaddr *it6; 734 735 if (ifa->ifa_addr->sa_family != AF_INET6) 736 continue; 737 738 it6 = (struct in6_ifaddr *)ifa; 739 740 /* ignore no autoconf addresses. */ 741 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 742 continue; 743 744 /* ignore autoconf addresses with different prefixes. */ 745 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 746 continue; 747 748 /* 749 * Now we are looking at an autoconf address with the same 750 * prefix as ours. If the address is temporary and is still 751 * preferred, do not create another one. It would be rare, but 752 * could happen, for example, when we resume a laptop PC after 753 * a long period. 754 */ 755 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 756 !IFA6_IS_DEPRECATED(it6)) { 757 public_ifa6 = NULL; 758 break; 759 } 760 761 /* 762 * This is a public autoconf address that has the same prefix 763 * as ours. If it is preferred, keep it. We can't break the 764 * loop here, because there may be a still-preferred temporary 765 * address with the prefix. 766 */ 767 if (!IFA6_IS_DEPRECATED(it6)) 768 public_ifa6 = it6; 769 770 if (public_ifa6 != NULL) 771 ifa_ref(&public_ifa6->ia_ifa); 772 } 773 IF_ADDR_RUNLOCK(ifp); 774 775 if (public_ifa6 != NULL) { 776 int e; 777 778 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 779 ifa_free(&public_ifa6->ia_ifa); 780 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 781 " tmp addr,errno=%d\n", e); 782 return (-1); 783 } 784 ifa_free(&public_ifa6->ia_ifa); 785 return (0); 786 } 787 788 return (-1); 789 } 790 791 /* 792 * Nuke neighbor cache/prefix/default router management table, right before 793 * ifp goes away. 794 */ 795 void 796 nd6_purge(struct ifnet *ifp) 797 { 798 struct nd_defrouter *dr, *ndr; 799 struct nd_prefix *pr, *npr; 800 801 /* 802 * Nuke default router list entries toward ifp. 803 * We defer removal of default router list entries that is installed 804 * in the routing table, in order to keep additional side effects as 805 * small as possible. 806 */ 807 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 808 if (dr->installed) 809 continue; 810 811 if (dr->ifp == ifp) 812 defrtrlist_del(dr); 813 } 814 815 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 816 if (!dr->installed) 817 continue; 818 819 if (dr->ifp == ifp) 820 defrtrlist_del(dr); 821 } 822 823 /* Nuke prefix list entries toward ifp */ 824 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 825 if (pr->ndpr_ifp == ifp) { 826 /* 827 * Because if_detach() does *not* release prefixes 828 * while purging addresses the reference count will 829 * still be above zero. We therefore reset it to 830 * make sure that the prefix really gets purged. 831 */ 832 pr->ndpr_refcnt = 0; 833 834 /* 835 * Previously, pr->ndpr_addr is removed as well, 836 * but I strongly believe we don't have to do it. 837 * nd6_purge() is only called from in6_ifdetach(), 838 * which removes all the associated interface addresses 839 * by itself. 840 * (jinmei@kame.net 20010129) 841 */ 842 prelist_remove(pr); 843 } 844 } 845 846 /* cancel default outgoing interface setting */ 847 if (V_nd6_defifindex == ifp->if_index) 848 nd6_setdefaultiface(0); 849 850 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 851 /* Refresh default router list. */ 852 defrouter_select(); 853 } 854 855 /* XXXXX 856 * We do not nuke the neighbor cache entries here any more 857 * because the neighbor cache is kept in if_afdata[AF_INET6]. 858 * nd6_purge() is invoked by in6_ifdetach() which is called 859 * from if_detach() where everything gets purged. So let 860 * in6_domifdetach() do the actual L2 table purging work. 861 */ 862 } 863 864 /* 865 * the caller acquires and releases the lock on the lltbls 866 * Returns the llentry locked 867 */ 868 struct llentry * 869 nd6_lookup(struct in6_addr *addr6, int flags, struct ifnet *ifp) 870 { 871 struct sockaddr_in6 sin6; 872 struct llentry *ln; 873 int llflags; 874 875 bzero(&sin6, sizeof(sin6)); 876 sin6.sin6_len = sizeof(struct sockaddr_in6); 877 sin6.sin6_family = AF_INET6; 878 sin6.sin6_addr = *addr6; 879 880 IF_AFDATA_LOCK_ASSERT(ifp); 881 882 llflags = 0; 883 if (flags & ND6_CREATE) 884 llflags |= LLE_CREATE; 885 if (flags & ND6_EXCLUSIVE) 886 llflags |= LLE_EXCLUSIVE; 887 888 ln = lla_lookup(LLTABLE6(ifp), llflags, (struct sockaddr *)&sin6); 889 if ((ln != NULL) && (llflags & LLE_CREATE)) 890 ln->ln_state = ND6_LLINFO_NOSTATE; 891 892 return (ln); 893 } 894 895 /* 896 * Test whether a given IPv6 address is a neighbor or not, ignoring 897 * the actual neighbor cache. The neighbor cache is ignored in order 898 * to not reenter the routing code from within itself. 899 */ 900 static int 901 nd6_is_new_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) 902 { 903 struct nd_prefix *pr; 904 struct ifaddr *dstaddr; 905 906 /* 907 * A link-local address is always a neighbor. 908 * XXX: a link does not necessarily specify a single interface. 909 */ 910 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 911 struct sockaddr_in6 sin6_copy; 912 u_int32_t zone; 913 914 /* 915 * We need sin6_copy since sa6_recoverscope() may modify the 916 * content (XXX). 917 */ 918 sin6_copy = *addr; 919 if (sa6_recoverscope(&sin6_copy)) 920 return (0); /* XXX: should be impossible */ 921 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 922 return (0); 923 if (sin6_copy.sin6_scope_id == zone) 924 return (1); 925 else 926 return (0); 927 } 928 929 /* 930 * If the address matches one of our addresses, 931 * it should be a neighbor. 932 * If the address matches one of our on-link prefixes, it should be a 933 * neighbor. 934 */ 935 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 936 if (pr->ndpr_ifp != ifp) 937 continue; 938 939 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) { 940 struct rtentry *rt; 941 942 /* Always use the default FIB here. */ 943 rt = in6_rtalloc1((struct sockaddr *)&pr->ndpr_prefix, 944 0, 0, RT_DEFAULT_FIB); 945 if (rt == NULL) 946 continue; 947 /* 948 * This is the case where multiple interfaces 949 * have the same prefix, but only one is installed 950 * into the routing table and that prefix entry 951 * is not the one being examined here. In the case 952 * where RADIX_MPATH is enabled, multiple route 953 * entries (of the same rt_key value) will be 954 * installed because the interface addresses all 955 * differ. 956 */ 957 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 958 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr)) { 959 RTFREE_LOCKED(rt); 960 continue; 961 } 962 RTFREE_LOCKED(rt); 963 } 964 965 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 966 &addr->sin6_addr, &pr->ndpr_mask)) 967 return (1); 968 } 969 970 /* 971 * If the address is assigned on the node of the other side of 972 * a p2p interface, the address should be a neighbor. 973 */ 974 dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr, RT_ALL_FIBS); 975 if (dstaddr != NULL) { 976 if (dstaddr->ifa_ifp == ifp) { 977 ifa_free(dstaddr); 978 return (1); 979 } 980 ifa_free(dstaddr); 981 } 982 983 /* 984 * If the default router list is empty, all addresses are regarded 985 * as on-link, and thus, as a neighbor. 986 */ 987 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 988 TAILQ_EMPTY(&V_nd_defrouter) && 989 V_nd6_defifindex == ifp->if_index) { 990 return (1); 991 } 992 993 return (0); 994 } 995 996 997 /* 998 * Detect if a given IPv6 address identifies a neighbor on a given link. 999 * XXX: should take care of the destination of a p2p link? 1000 */ 1001 int 1002 nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) 1003 { 1004 struct llentry *lle; 1005 int rc = 0; 1006 1007 IF_AFDATA_UNLOCK_ASSERT(ifp); 1008 if (nd6_is_new_addr_neighbor(addr, ifp)) 1009 return (1); 1010 1011 /* 1012 * Even if the address matches none of our addresses, it might be 1013 * in the neighbor cache. 1014 */ 1015 IF_AFDATA_RLOCK(ifp); 1016 if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { 1017 LLE_RUNLOCK(lle); 1018 rc = 1; 1019 } 1020 IF_AFDATA_RUNLOCK(ifp); 1021 return (rc); 1022 } 1023 1024 /* 1025 * Free an nd6 llinfo entry. 1026 * Since the function would cause significant changes in the kernel, DO NOT 1027 * make it global, unless you have a strong reason for the change, and are sure 1028 * that the change is safe. 1029 */ 1030 static struct llentry * 1031 nd6_free(struct llentry *ln, int gc) 1032 { 1033 struct llentry *next; 1034 struct nd_defrouter *dr; 1035 struct ifnet *ifp; 1036 1037 LLE_WLOCK_ASSERT(ln); 1038 1039 /* 1040 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1041 * even though it is not harmful, it was not really necessary. 1042 */ 1043 1044 /* cancel timer */ 1045 nd6_llinfo_settimer_locked(ln, -1); 1046 1047 ifp = ln->lle_tbl->llt_ifp; 1048 1049 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1050 dr = defrouter_lookup(&L3_ADDR_SIN6(ln)->sin6_addr, ifp); 1051 1052 if (dr != NULL && dr->expire && 1053 ln->ln_state == ND6_LLINFO_STALE && gc) { 1054 /* 1055 * If the reason for the deletion is just garbage 1056 * collection, and the neighbor is an active default 1057 * router, do not delete it. Instead, reset the GC 1058 * timer using the router's lifetime. 1059 * Simply deleting the entry would affect default 1060 * router selection, which is not necessarily a good 1061 * thing, especially when we're using router preference 1062 * values. 1063 * XXX: the check for ln_state would be redundant, 1064 * but we intentionally keep it just in case. 1065 */ 1066 if (dr->expire > time_uptime) 1067 nd6_llinfo_settimer_locked(ln, 1068 (dr->expire - time_uptime) * hz); 1069 else 1070 nd6_llinfo_settimer_locked(ln, 1071 (long)V_nd6_gctimer * hz); 1072 1073 next = LIST_NEXT(ln, lle_next); 1074 LLE_REMREF(ln); 1075 LLE_WUNLOCK(ln); 1076 return (next); 1077 } 1078 1079 if (dr) { 1080 /* 1081 * Unreachablity of a router might affect the default 1082 * router selection and on-link detection of advertised 1083 * prefixes. 1084 */ 1085 1086 /* 1087 * Temporarily fake the state to choose a new default 1088 * router and to perform on-link determination of 1089 * prefixes correctly. 1090 * Below the state will be set correctly, 1091 * or the entry itself will be deleted. 1092 */ 1093 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1094 } 1095 1096 if (ln->ln_router || dr) { 1097 1098 /* 1099 * We need to unlock to avoid a LOR with rt6_flush() with the 1100 * rnh and for the calls to pfxlist_onlink_check() and 1101 * defrouter_select() in the block further down for calls 1102 * into nd6_lookup(). We still hold a ref. 1103 */ 1104 LLE_WUNLOCK(ln); 1105 1106 /* 1107 * rt6_flush must be called whether or not the neighbor 1108 * is in the Default Router List. 1109 * See a corresponding comment in nd6_na_input(). 1110 */ 1111 rt6_flush(&L3_ADDR_SIN6(ln)->sin6_addr, ifp); 1112 } 1113 1114 if (dr) { 1115 /* 1116 * Since defrouter_select() does not affect the 1117 * on-link determination and MIP6 needs the check 1118 * before the default router selection, we perform 1119 * the check now. 1120 */ 1121 pfxlist_onlink_check(); 1122 1123 /* 1124 * Refresh default router list. 1125 */ 1126 defrouter_select(); 1127 } 1128 1129 if (ln->ln_router || dr) 1130 LLE_WLOCK(ln); 1131 } 1132 1133 /* 1134 * Before deleting the entry, remember the next entry as the 1135 * return value. We need this because pfxlist_onlink_check() above 1136 * might have freed other entries (particularly the old next entry) as 1137 * a side effect (XXX). 1138 */ 1139 next = LIST_NEXT(ln, lle_next); 1140 1141 /* 1142 * Save to unlock. We still hold an extra reference and will not 1143 * free(9) in llentry_free() if someone else holds one as well. 1144 */ 1145 LLE_WUNLOCK(ln); 1146 IF_AFDATA_LOCK(ifp); 1147 LLE_WLOCK(ln); 1148 1149 /* Guard against race with other llentry_free(). */ 1150 if (ln->la_flags & LLE_LINKED) { 1151 LLE_REMREF(ln); 1152 llentry_free(ln); 1153 } else 1154 LLE_FREE_LOCKED(ln); 1155 1156 IF_AFDATA_UNLOCK(ifp); 1157 1158 return (next); 1159 } 1160 1161 /* 1162 * Upper-layer reachability hint for Neighbor Unreachability Detection. 1163 * 1164 * XXX cost-effective methods? 1165 */ 1166 void 1167 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force) 1168 { 1169 struct llentry *ln; 1170 struct ifnet *ifp; 1171 1172 if ((dst6 == NULL) || (rt == NULL)) 1173 return; 1174 1175 ifp = rt->rt_ifp; 1176 IF_AFDATA_RLOCK(ifp); 1177 ln = nd6_lookup(dst6, ND6_EXCLUSIVE, NULL); 1178 IF_AFDATA_RUNLOCK(ifp); 1179 if (ln == NULL) 1180 return; 1181 1182 if (ln->ln_state < ND6_LLINFO_REACHABLE) 1183 goto done; 1184 1185 /* 1186 * if we get upper-layer reachability confirmation many times, 1187 * it is possible we have false information. 1188 */ 1189 if (!force) { 1190 ln->ln_byhint++; 1191 if (ln->ln_byhint > V_nd6_maxnudhint) { 1192 goto done; 1193 } 1194 } 1195 1196 ln->ln_state = ND6_LLINFO_REACHABLE; 1197 if (!ND6_LLINFO_PERMANENT(ln)) { 1198 nd6_llinfo_settimer_locked(ln, 1199 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz); 1200 } 1201 done: 1202 LLE_WUNLOCK(ln); 1203 } 1204 1205 1206 /* 1207 * Rejuvenate this function for routing operations related 1208 * processing. 1209 */ 1210 void 1211 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info) 1212 { 1213 struct sockaddr_in6 *gateway; 1214 struct nd_defrouter *dr; 1215 struct ifnet *ifp; 1216 1217 gateway = (struct sockaddr_in6 *)rt->rt_gateway; 1218 ifp = rt->rt_ifp; 1219 1220 switch (req) { 1221 case RTM_ADD: 1222 break; 1223 1224 case RTM_DELETE: 1225 if (!ifp) 1226 return; 1227 /* 1228 * Only indirect routes are interesting. 1229 */ 1230 if ((rt->rt_flags & RTF_GATEWAY) == 0) 1231 return; 1232 /* 1233 * check for default route 1234 */ 1235 if (IN6_ARE_ADDR_EQUAL(&in6addr_any, 1236 &SIN6(rt_key(rt))->sin6_addr)) { 1237 1238 dr = defrouter_lookup(&gateway->sin6_addr, ifp); 1239 if (dr != NULL) 1240 dr->installed = 0; 1241 } 1242 break; 1243 } 1244 } 1245 1246 1247 int 1248 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1249 { 1250 struct in6_drlist *drl = (struct in6_drlist *)data; 1251 struct in6_oprlist *oprl = (struct in6_oprlist *)data; 1252 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1253 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1254 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1255 struct nd_defrouter *dr; 1256 struct nd_prefix *pr; 1257 int i = 0, error = 0; 1258 1259 if (ifp->if_afdata[AF_INET6] == NULL) 1260 return (EPFNOSUPPORT); 1261 switch (cmd) { 1262 case SIOCGDRLST_IN6: 1263 /* 1264 * obsolete API, use sysctl under net.inet6.icmp6 1265 */ 1266 bzero(drl, sizeof(*drl)); 1267 TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) { 1268 if (i >= DRLSTSIZ) 1269 break; 1270 drl->defrouter[i].rtaddr = dr->rtaddr; 1271 in6_clearscope(&drl->defrouter[i].rtaddr); 1272 1273 drl->defrouter[i].flags = dr->flags; 1274 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1275 drl->defrouter[i].expire = dr->expire + 1276 (time_second - time_uptime); 1277 drl->defrouter[i].if_index = dr->ifp->if_index; 1278 i++; 1279 } 1280 break; 1281 case SIOCGPRLST_IN6: 1282 /* 1283 * obsolete API, use sysctl under net.inet6.icmp6 1284 * 1285 * XXX the structure in6_prlist was changed in backward- 1286 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6, 1287 * in6_prlist is used for nd6_sysctl() - fill_prlist(). 1288 */ 1289 /* 1290 * XXX meaning of fields, especialy "raflags", is very 1291 * differnet between RA prefix list and RR/static prefix list. 1292 * how about separating ioctls into two? 1293 */ 1294 bzero(oprl, sizeof(*oprl)); 1295 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1296 struct nd_pfxrouter *pfr; 1297 int j; 1298 1299 if (i >= PRLSTSIZ) 1300 break; 1301 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr; 1302 oprl->prefix[i].raflags = pr->ndpr_raf; 1303 oprl->prefix[i].prefixlen = pr->ndpr_plen; 1304 oprl->prefix[i].vltime = pr->ndpr_vltime; 1305 oprl->prefix[i].pltime = pr->ndpr_pltime; 1306 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1307 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 1308 oprl->prefix[i].expire = 0; 1309 else { 1310 time_t maxexpire; 1311 1312 /* XXX: we assume time_t is signed. */ 1313 maxexpire = (-1) & 1314 ~((time_t)1 << 1315 ((sizeof(maxexpire) * 8) - 1)); 1316 if (pr->ndpr_vltime < 1317 maxexpire - pr->ndpr_lastupdate) { 1318 oprl->prefix[i].expire = 1319 pr->ndpr_lastupdate + 1320 pr->ndpr_vltime + 1321 (time_second - time_uptime); 1322 } else 1323 oprl->prefix[i].expire = maxexpire; 1324 } 1325 1326 j = 0; 1327 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 1328 if (j < DRLSTSIZ) { 1329 #define RTRADDR oprl->prefix[i].advrtr[j] 1330 RTRADDR = pfr->router->rtaddr; 1331 in6_clearscope(&RTRADDR); 1332 #undef RTRADDR 1333 } 1334 j++; 1335 } 1336 oprl->prefix[i].advrtrs = j; 1337 oprl->prefix[i].origin = PR_ORIG_RA; 1338 1339 i++; 1340 } 1341 1342 break; 1343 case OSIOCGIFINFO_IN6: 1344 #define ND ndi->ndi 1345 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1346 bzero(&ND, sizeof(ND)); 1347 ND.linkmtu = IN6_LINKMTU(ifp); 1348 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1349 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1350 ND.reachable = ND_IFINFO(ifp)->reachable; 1351 ND.retrans = ND_IFINFO(ifp)->retrans; 1352 ND.flags = ND_IFINFO(ifp)->flags; 1353 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1354 ND.chlim = ND_IFINFO(ifp)->chlim; 1355 break; 1356 case SIOCGIFINFO_IN6: 1357 ND = *ND_IFINFO(ifp); 1358 break; 1359 case SIOCSIFINFO_IN6: 1360 /* 1361 * used to change host variables from userland. 1362 * intented for a use on router to reflect RA configurations. 1363 */ 1364 /* 0 means 'unspecified' */ 1365 if (ND.linkmtu != 0) { 1366 if (ND.linkmtu < IPV6_MMTU || 1367 ND.linkmtu > IN6_LINKMTU(ifp)) { 1368 error = EINVAL; 1369 break; 1370 } 1371 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1372 } 1373 1374 if (ND.basereachable != 0) { 1375 int obasereachable = ND_IFINFO(ifp)->basereachable; 1376 1377 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1378 if (ND.basereachable != obasereachable) 1379 ND_IFINFO(ifp)->reachable = 1380 ND_COMPUTE_RTIME(ND.basereachable); 1381 } 1382 if (ND.retrans != 0) 1383 ND_IFINFO(ifp)->retrans = ND.retrans; 1384 if (ND.chlim != 0) 1385 ND_IFINFO(ifp)->chlim = ND.chlim; 1386 /* FALLTHROUGH */ 1387 case SIOCSIFINFO_FLAGS: 1388 { 1389 struct ifaddr *ifa; 1390 struct in6_ifaddr *ia; 1391 1392 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1393 !(ND.flags & ND6_IFF_IFDISABLED)) { 1394 /* ifdisabled 1->0 transision */ 1395 1396 /* 1397 * If the interface is marked as ND6_IFF_IFDISABLED and 1398 * has an link-local address with IN6_IFF_DUPLICATED, 1399 * do not clear ND6_IFF_IFDISABLED. 1400 * See RFC 4862, Section 5.4.5. 1401 */ 1402 int duplicated_linklocal = 0; 1403 1404 IF_ADDR_RLOCK(ifp); 1405 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1406 if (ifa->ifa_addr->sa_family != AF_INET6) 1407 continue; 1408 ia = (struct in6_ifaddr *)ifa; 1409 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1410 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) { 1411 duplicated_linklocal = 1; 1412 break; 1413 } 1414 } 1415 IF_ADDR_RUNLOCK(ifp); 1416 1417 if (duplicated_linklocal) { 1418 ND.flags |= ND6_IFF_IFDISABLED; 1419 log(LOG_ERR, "Cannot enable an interface" 1420 " with a link-local address marked" 1421 " duplicate.\n"); 1422 } else { 1423 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1424 if (ifp->if_flags & IFF_UP) 1425 in6_if_up(ifp); 1426 } 1427 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1428 (ND.flags & ND6_IFF_IFDISABLED)) { 1429 /* ifdisabled 0->1 transision */ 1430 /* Mark all IPv6 address as tentative. */ 1431 1432 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1433 IF_ADDR_RLOCK(ifp); 1434 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1435 if (ifa->ifa_addr->sa_family != AF_INET6) 1436 continue; 1437 ia = (struct in6_ifaddr *)ifa; 1438 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1439 } 1440 IF_ADDR_RUNLOCK(ifp); 1441 } 1442 1443 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1444 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1445 /* auto_linklocal 0->1 transision */ 1446 1447 /* If no link-local address on ifp, configure */ 1448 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1449 in6_ifattach(ifp, NULL); 1450 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1451 ifp->if_flags & IFF_UP) { 1452 /* 1453 * When the IF already has 1454 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1455 * address is assigned, and IFF_UP, try to 1456 * assign one. 1457 */ 1458 int haslinklocal = 0; 1459 1460 IF_ADDR_RLOCK(ifp); 1461 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1462 if (ifa->ifa_addr->sa_family != AF_INET6) 1463 continue; 1464 ia = (struct in6_ifaddr *)ifa; 1465 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) { 1466 haslinklocal = 1; 1467 break; 1468 } 1469 } 1470 IF_ADDR_RUNLOCK(ifp); 1471 if (!haslinklocal) 1472 in6_ifattach(ifp, NULL); 1473 } 1474 } 1475 } 1476 ND_IFINFO(ifp)->flags = ND.flags; 1477 break; 1478 #undef ND 1479 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1480 /* sync kernel routing table with the default router list */ 1481 defrouter_reset(); 1482 defrouter_select(); 1483 break; 1484 case SIOCSPFXFLUSH_IN6: 1485 { 1486 /* flush all the prefix advertised by routers */ 1487 struct nd_prefix *pr, *next; 1488 1489 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1490 struct in6_ifaddr *ia, *ia_next; 1491 1492 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1493 continue; /* XXX */ 1494 1495 /* do we really have to remove addresses as well? */ 1496 /* XXXRW: in6_ifaddrhead locking. */ 1497 TAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1498 ia_next) { 1499 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1500 continue; 1501 1502 if (ia->ia6_ndpr == pr) 1503 in6_purgeaddr(&ia->ia_ifa); 1504 } 1505 prelist_remove(pr); 1506 } 1507 break; 1508 } 1509 case SIOCSRTRFLUSH_IN6: 1510 { 1511 /* flush all the default routers */ 1512 struct nd_defrouter *dr, *next; 1513 1514 defrouter_reset(); 1515 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, next) { 1516 defrtrlist_del(dr); 1517 } 1518 defrouter_select(); 1519 break; 1520 } 1521 case SIOCGNBRINFO_IN6: 1522 { 1523 struct llentry *ln; 1524 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1525 1526 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1527 return (error); 1528 1529 IF_AFDATA_RLOCK(ifp); 1530 ln = nd6_lookup(&nb_addr, 0, ifp); 1531 IF_AFDATA_RUNLOCK(ifp); 1532 1533 if (ln == NULL) { 1534 error = EINVAL; 1535 break; 1536 } 1537 nbi->state = ln->ln_state; 1538 nbi->asked = ln->la_asked; 1539 nbi->isrouter = ln->ln_router; 1540 if (ln->la_expire == 0) 1541 nbi->expire = 0; 1542 else 1543 nbi->expire = ln->la_expire + 1544 (time_second - time_uptime); 1545 LLE_RUNLOCK(ln); 1546 break; 1547 } 1548 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1549 ndif->ifindex = V_nd6_defifindex; 1550 break; 1551 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1552 return (nd6_setdefaultiface(ndif->ifindex)); 1553 } 1554 return (error); 1555 } 1556 1557 /* 1558 * Create neighbor cache entry and cache link-layer address, 1559 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1560 * 1561 * type - ICMP6 type 1562 * code - type dependent information 1563 * 1564 * XXXXX 1565 * The caller of this function already acquired the ndp 1566 * cache table lock because the cache entry is returned. 1567 */ 1568 struct llentry * 1569 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1570 int lladdrlen, int type, int code) 1571 { 1572 struct llentry *ln = NULL; 1573 int is_newentry; 1574 int do_update; 1575 int olladdr; 1576 int llchange; 1577 int flags; 1578 int newstate = 0; 1579 uint16_t router = 0; 1580 struct sockaddr_in6 sin6; 1581 struct mbuf *chain = NULL; 1582 int static_route = 0; 1583 1584 IF_AFDATA_UNLOCK_ASSERT(ifp); 1585 1586 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1587 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1588 1589 /* nothing must be updated for unspecified address */ 1590 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1591 return NULL; 1592 1593 /* 1594 * Validation about ifp->if_addrlen and lladdrlen must be done in 1595 * the caller. 1596 * 1597 * XXX If the link does not have link-layer adderss, what should 1598 * we do? (ifp->if_addrlen == 0) 1599 * Spec says nothing in sections for RA, RS and NA. There's small 1600 * description on it in NS section (RFC 2461 7.2.3). 1601 */ 1602 flags = lladdr ? ND6_EXCLUSIVE : 0; 1603 IF_AFDATA_RLOCK(ifp); 1604 ln = nd6_lookup(from, flags, ifp); 1605 IF_AFDATA_RUNLOCK(ifp); 1606 if (ln == NULL) { 1607 flags |= ND6_EXCLUSIVE; 1608 IF_AFDATA_LOCK(ifp); 1609 ln = nd6_lookup(from, flags | ND6_CREATE, ifp); 1610 IF_AFDATA_UNLOCK(ifp); 1611 is_newentry = 1; 1612 } else { 1613 /* do nothing if static ndp is set */ 1614 if (ln->la_flags & LLE_STATIC) { 1615 static_route = 1; 1616 goto done; 1617 } 1618 is_newentry = 0; 1619 } 1620 if (ln == NULL) 1621 return (NULL); 1622 1623 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 1624 if (olladdr && lladdr) { 1625 llchange = bcmp(lladdr, &ln->ll_addr, 1626 ifp->if_addrlen); 1627 } else 1628 llchange = 0; 1629 1630 /* 1631 * newentry olladdr lladdr llchange (*=record) 1632 * 0 n n -- (1) 1633 * 0 y n -- (2) 1634 * 0 n y -- (3) * STALE 1635 * 0 y y n (4) * 1636 * 0 y y y (5) * STALE 1637 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1638 * 1 -- y -- (7) * STALE 1639 */ 1640 1641 if (lladdr) { /* (3-5) and (7) */ 1642 /* 1643 * Record source link-layer address 1644 * XXX is it dependent to ifp->if_type? 1645 */ 1646 bcopy(lladdr, &ln->ll_addr, ifp->if_addrlen); 1647 ln->la_flags |= LLE_VALID; 1648 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 1649 } 1650 1651 if (!is_newentry) { 1652 if ((!olladdr && lladdr != NULL) || /* (3) */ 1653 (olladdr && lladdr != NULL && llchange)) { /* (5) */ 1654 do_update = 1; 1655 newstate = ND6_LLINFO_STALE; 1656 } else /* (1-2,4) */ 1657 do_update = 0; 1658 } else { 1659 do_update = 1; 1660 if (lladdr == NULL) /* (6) */ 1661 newstate = ND6_LLINFO_NOSTATE; 1662 else /* (7) */ 1663 newstate = ND6_LLINFO_STALE; 1664 } 1665 1666 if (do_update) { 1667 /* 1668 * Update the state of the neighbor cache. 1669 */ 1670 ln->ln_state = newstate; 1671 1672 if (ln->ln_state == ND6_LLINFO_STALE) { 1673 if (ln->la_hold != NULL) 1674 nd6_grab_holdchain(ln, &chain, &sin6); 1675 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 1676 /* probe right away */ 1677 nd6_llinfo_settimer_locked((void *)ln, 0); 1678 } 1679 } 1680 1681 /* 1682 * ICMP6 type dependent behavior. 1683 * 1684 * NS: clear IsRouter if new entry 1685 * RS: clear IsRouter 1686 * RA: set IsRouter if there's lladdr 1687 * redir: clear IsRouter if new entry 1688 * 1689 * RA case, (1): 1690 * The spec says that we must set IsRouter in the following cases: 1691 * - If lladdr exist, set IsRouter. This means (1-5). 1692 * - If it is old entry (!newentry), set IsRouter. This means (7). 1693 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1694 * A quetion arises for (1) case. (1) case has no lladdr in the 1695 * neighbor cache, this is similar to (6). 1696 * This case is rare but we figured that we MUST NOT set IsRouter. 1697 * 1698 * newentry olladdr lladdr llchange NS RS RA redir 1699 * D R 1700 * 0 n n -- (1) c ? s 1701 * 0 y n -- (2) c s s 1702 * 0 n y -- (3) c s s 1703 * 0 y y n (4) c s s 1704 * 0 y y y (5) c s s 1705 * 1 -- n -- (6) c c c s 1706 * 1 -- y -- (7) c c s c s 1707 * 1708 * (c=clear s=set) 1709 */ 1710 switch (type & 0xff) { 1711 case ND_NEIGHBOR_SOLICIT: 1712 /* 1713 * New entry must have is_router flag cleared. 1714 */ 1715 if (is_newentry) /* (6-7) */ 1716 ln->ln_router = 0; 1717 break; 1718 case ND_REDIRECT: 1719 /* 1720 * If the icmp is a redirect to a better router, always set the 1721 * is_router flag. Otherwise, if the entry is newly created, 1722 * clear the flag. [RFC 2461, sec 8.3] 1723 */ 1724 if (code == ND_REDIRECT_ROUTER) 1725 ln->ln_router = 1; 1726 else if (is_newentry) /* (6-7) */ 1727 ln->ln_router = 0; 1728 break; 1729 case ND_ROUTER_SOLICIT: 1730 /* 1731 * is_router flag must always be cleared. 1732 */ 1733 ln->ln_router = 0; 1734 break; 1735 case ND_ROUTER_ADVERT: 1736 /* 1737 * Mark an entry with lladdr as a router. 1738 */ 1739 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ 1740 (is_newentry && lladdr)) { /* (7) */ 1741 ln->ln_router = 1; 1742 } 1743 break; 1744 } 1745 1746 if (ln != NULL) { 1747 static_route = (ln->la_flags & LLE_STATIC); 1748 router = ln->ln_router; 1749 1750 if (flags & ND6_EXCLUSIVE) 1751 LLE_WUNLOCK(ln); 1752 else 1753 LLE_RUNLOCK(ln); 1754 if (static_route) 1755 ln = NULL; 1756 } 1757 if (chain != NULL) 1758 nd6_flush_holdchain(ifp, ifp, chain, &sin6); 1759 1760 /* 1761 * When the link-layer address of a router changes, select the 1762 * best router again. In particular, when the neighbor entry is newly 1763 * created, it might affect the selection policy. 1764 * Question: can we restrict the first condition to the "is_newentry" 1765 * case? 1766 * XXX: when we hear an RA from a new router with the link-layer 1767 * address option, defrouter_select() is called twice, since 1768 * defrtrlist_update called the function as well. However, I believe 1769 * we can compromise the overhead, since it only happens the first 1770 * time. 1771 * XXX: although defrouter_select() should not have a bad effect 1772 * for those are not autoconfigured hosts, we explicitly avoid such 1773 * cases for safety. 1774 */ 1775 if (do_update && router && 1776 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1777 /* 1778 * guaranteed recursion 1779 */ 1780 defrouter_select(); 1781 } 1782 1783 return (ln); 1784 done: 1785 if (ln != NULL) { 1786 if (flags & ND6_EXCLUSIVE) 1787 LLE_WUNLOCK(ln); 1788 else 1789 LLE_RUNLOCK(ln); 1790 if (static_route) 1791 ln = NULL; 1792 } 1793 return (ln); 1794 } 1795 1796 static void 1797 nd6_slowtimo(void *arg) 1798 { 1799 CURVNET_SET((struct vnet *) arg); 1800 struct nd_ifinfo *nd6if; 1801 struct ifnet *ifp; 1802 1803 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 1804 nd6_slowtimo, curvnet); 1805 IFNET_RLOCK_NOSLEEP(); 1806 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1807 if (ifp->if_afdata[AF_INET6] == NULL) 1808 continue; 1809 nd6if = ND_IFINFO(ifp); 1810 if (nd6if->basereachable && /* already initialized */ 1811 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 1812 /* 1813 * Since reachable time rarely changes by router 1814 * advertisements, we SHOULD insure that a new random 1815 * value gets recomputed at least once every few hours. 1816 * (RFC 2461, 6.3.4) 1817 */ 1818 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 1819 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 1820 } 1821 } 1822 IFNET_RUNLOCK_NOSLEEP(); 1823 CURVNET_RESTORE(); 1824 } 1825 1826 void 1827 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain, 1828 struct sockaddr_in6 *sin6) 1829 { 1830 1831 LLE_WLOCK_ASSERT(ln); 1832 1833 *chain = ln->la_hold; 1834 ln->la_hold = NULL; 1835 memcpy(sin6, L3_ADDR_SIN6(ln), sizeof(*sin6)); 1836 1837 if (ln->ln_state == ND6_LLINFO_STALE) { 1838 1839 /* 1840 * The first time we send a packet to a 1841 * neighbor whose entry is STALE, we have 1842 * to change the state to DELAY and a sets 1843 * a timer to expire in DELAY_FIRST_PROBE_TIME 1844 * seconds to ensure do neighbor unreachability 1845 * detection on expiration. 1846 * (RFC 2461 7.3.3) 1847 */ 1848 ln->la_asked = 0; 1849 ln->ln_state = ND6_LLINFO_DELAY; 1850 nd6_llinfo_settimer_locked(ln, (long)V_nd6_delay * hz); 1851 } 1852 } 1853 1854 static int 1855 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 1856 struct sockaddr_in6 *dst) 1857 { 1858 int error; 1859 int ip6len; 1860 struct ip6_hdr *ip6; 1861 struct m_tag *mtag; 1862 1863 #ifdef MAC 1864 mac_netinet6_nd6_send(ifp, m); 1865 #endif 1866 1867 /* 1868 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 1869 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 1870 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 1871 * to be diverted to user space. When re-injected into the kernel, 1872 * send_output() will directly dispatch them to the outgoing interface. 1873 */ 1874 if (send_sendso_input_hook != NULL) { 1875 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 1876 if (mtag != NULL) { 1877 ip6 = mtod(m, struct ip6_hdr *); 1878 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 1879 /* Use the SEND socket */ 1880 error = send_sendso_input_hook(m, ifp, SND_OUT, 1881 ip6len); 1882 /* -1 == no app on SEND socket */ 1883 if (error == 0 || error != -1) 1884 return (error); 1885 } 1886 } 1887 1888 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 1889 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 1890 mtod(m, struct ip6_hdr *)); 1891 1892 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 1893 origifp = ifp; 1894 1895 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, NULL); 1896 return (error); 1897 } 1898 1899 /* 1900 * IPv6 packet output - light version. 1901 * Checks if destination LLE exists and is in proper state 1902 * (e.g no modification required). If not true, fall back to 1903 * "heavy" version. 1904 */ 1905 int 1906 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 1907 struct sockaddr_in6 *dst, struct rtentry *rt0) 1908 { 1909 struct llentry *ln = NULL; 1910 1911 /* discard the packet if IPv6 operation is disabled on the interface */ 1912 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 1913 m_freem(m); 1914 return (ENETDOWN); /* better error? */ 1915 } 1916 1917 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 1918 goto sendpkt; 1919 1920 if (nd6_need_cache(ifp) == 0) 1921 goto sendpkt; 1922 1923 IF_AFDATA_RLOCK(ifp); 1924 ln = nd6_lookup(&dst->sin6_addr, 0, ifp); 1925 IF_AFDATA_RUNLOCK(ifp); 1926 1927 /* 1928 * Perform fast path for the following cases: 1929 * 1) lle state is REACHABLE 1930 * 2) lle state is DELAY (NS message sentNS message sent) 1931 * 1932 * Every other case involves lle modification, so we handle 1933 * them separately. 1934 */ 1935 if (ln == NULL || (ln->ln_state != ND6_LLINFO_REACHABLE && 1936 ln->ln_state != ND6_LLINFO_DELAY)) { 1937 /* Fall back to slow processing path */ 1938 if (ln != NULL) 1939 LLE_RUNLOCK(ln); 1940 return (nd6_output_lle(ifp, origifp, m, dst)); 1941 } 1942 1943 sendpkt: 1944 if (ln != NULL) 1945 LLE_RUNLOCK(ln); 1946 1947 return (nd6_output_ifp(ifp, origifp, m, dst)); 1948 } 1949 1950 1951 /* 1952 * Output IPv6 packet - heavy version. 1953 * Function assume that either 1954 * 1) destination LLE does not exist, is invalid or stale, so 1955 * ND6_EXCLUSIVE lock needs to be acquired 1956 * 2) destination lle is provided (with ND6_EXCLUSIVE lock), 1957 * in that case packets are queued in &chain. 1958 * 1959 */ 1960 static int 1961 nd6_output_lle(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 1962 struct sockaddr_in6 *dst) 1963 { 1964 struct llentry *lle = NULL; 1965 int flags = 0; 1966 1967 KASSERT(m != NULL, ("NULL mbuf, nothing to send")); 1968 /* discard the packet if IPv6 operation is disabled on the interface */ 1969 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 1970 m_freem(m); 1971 return (ENETDOWN); /* better error? */ 1972 } 1973 1974 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 1975 goto sendpkt; 1976 1977 if (nd6_need_cache(ifp) == 0) 1978 goto sendpkt; 1979 1980 /* 1981 * Address resolution or Neighbor Unreachability Detection 1982 * for the next hop. 1983 * At this point, the destination of the packet must be a unicast 1984 * or an anycast address(i.e. not a multicast). 1985 */ 1986 if (lle == NULL) { 1987 IF_AFDATA_RLOCK(ifp); 1988 lle = nd6_lookup(&dst->sin6_addr, ND6_EXCLUSIVE, ifp); 1989 IF_AFDATA_RUNLOCK(ifp); 1990 if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 1991 /* 1992 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 1993 * the condition below is not very efficient. But we believe 1994 * it is tolerable, because this should be a rare case. 1995 */ 1996 flags = ND6_CREATE | ND6_EXCLUSIVE; 1997 IF_AFDATA_LOCK(ifp); 1998 lle = nd6_lookup(&dst->sin6_addr, flags, ifp); 1999 IF_AFDATA_UNLOCK(ifp); 2000 } 2001 } 2002 if (lle == NULL) { 2003 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && 2004 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 2005 char ip6buf[INET6_ADDRSTRLEN]; 2006 log(LOG_DEBUG, 2007 "nd6_output: can't allocate llinfo for %s " 2008 "(ln=%p)\n", 2009 ip6_sprintf(ip6buf, &dst->sin6_addr), lle); 2010 m_freem(m); 2011 return (ENOBUFS); 2012 } 2013 goto sendpkt; /* send anyway */ 2014 } 2015 2016 LLE_WLOCK_ASSERT(lle); 2017 2018 /* We don't have to do link-layer address resolution on a p2p link. */ 2019 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 2020 lle->ln_state < ND6_LLINFO_REACHABLE) { 2021 lle->ln_state = ND6_LLINFO_STALE; 2022 nd6_llinfo_settimer_locked(lle, (long)V_nd6_gctimer * hz); 2023 } 2024 2025 /* 2026 * The first time we send a packet to a neighbor whose entry is 2027 * STALE, we have to change the state to DELAY and a sets a timer to 2028 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2029 * neighbor unreachability detection on expiration. 2030 * (RFC 2461 7.3.3) 2031 */ 2032 if (lle->ln_state == ND6_LLINFO_STALE) { 2033 lle->la_asked = 0; 2034 lle->ln_state = ND6_LLINFO_DELAY; 2035 nd6_llinfo_settimer_locked(lle, (long)V_nd6_delay * hz); 2036 } 2037 2038 /* 2039 * If the neighbor cache entry has a state other than INCOMPLETE 2040 * (i.e. its link-layer address is already resolved), just 2041 * send the packet. 2042 */ 2043 if (lle->ln_state > ND6_LLINFO_INCOMPLETE) 2044 goto sendpkt; 2045 2046 /* 2047 * There is a neighbor cache entry, but no ethernet address 2048 * response yet. Append this latest packet to the end of the 2049 * packet queue in the mbuf, unless the number of the packet 2050 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen, 2051 * the oldest packet in the queue will be removed. 2052 */ 2053 if (lle->ln_state == ND6_LLINFO_NOSTATE) 2054 lle->ln_state = ND6_LLINFO_INCOMPLETE; 2055 2056 if (lle->la_hold != NULL) { 2057 struct mbuf *m_hold; 2058 int i; 2059 2060 i = 0; 2061 for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){ 2062 i++; 2063 if (m_hold->m_nextpkt == NULL) { 2064 m_hold->m_nextpkt = m; 2065 break; 2066 } 2067 } 2068 while (i >= V_nd6_maxqueuelen) { 2069 m_hold = lle->la_hold; 2070 lle->la_hold = lle->la_hold->m_nextpkt; 2071 m_freem(m_hold); 2072 i--; 2073 } 2074 } else { 2075 lle->la_hold = m; 2076 } 2077 2078 /* 2079 * If there has been no NS for the neighbor after entering the 2080 * INCOMPLETE state, send the first solicitation. 2081 */ 2082 if (!ND6_LLINFO_PERMANENT(lle) && lle->la_asked == 0) { 2083 lle->la_asked++; 2084 2085 nd6_llinfo_settimer_locked(lle, 2086 (long)ND_IFINFO(ifp)->retrans * hz / 1000); 2087 LLE_WUNLOCK(lle); 2088 nd6_ns_output(ifp, NULL, &dst->sin6_addr, lle, NULL); 2089 } else { 2090 /* We did the lookup so we need to do the unlock here. */ 2091 LLE_WUNLOCK(lle); 2092 } 2093 2094 return (0); 2095 2096 sendpkt: 2097 if (lle != NULL) 2098 LLE_WUNLOCK(lle); 2099 2100 return (nd6_output_ifp(ifp, origifp, m, dst)); 2101 } 2102 2103 2104 int 2105 nd6_flush_holdchain(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *chain, 2106 struct sockaddr_in6 *dst) 2107 { 2108 struct mbuf *m, *m_head; 2109 struct ifnet *outifp; 2110 int error = 0; 2111 2112 m_head = chain; 2113 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2114 outifp = origifp; 2115 else 2116 outifp = ifp; 2117 2118 while (m_head) { 2119 m = m_head; 2120 m_head = m_head->m_nextpkt; 2121 error = nd6_output_ifp(ifp, origifp, m, dst); 2122 } 2123 2124 /* 2125 * XXX 2126 * note that intermediate errors are blindly ignored - but this is 2127 * the same convention as used with nd6_output when called by 2128 * nd6_cache_lladdr 2129 */ 2130 return (error); 2131 } 2132 2133 2134 int 2135 nd6_need_cache(struct ifnet *ifp) 2136 { 2137 /* 2138 * XXX: we currently do not make neighbor cache on any interface 2139 * other than ARCnet, Ethernet, FDDI and GIF. 2140 * 2141 * RFC2893 says: 2142 * - unidirectional tunnels needs no ND 2143 */ 2144 switch (ifp->if_type) { 2145 case IFT_ARCNET: 2146 case IFT_ETHER: 2147 case IFT_FDDI: 2148 case IFT_IEEE1394: 2149 #ifdef IFT_L2VLAN 2150 case IFT_L2VLAN: 2151 #endif 2152 #ifdef IFT_IEEE80211 2153 case IFT_IEEE80211: 2154 #endif 2155 case IFT_INFINIBAND: 2156 case IFT_BRIDGE: 2157 case IFT_PROPVIRTUAL: 2158 return (1); 2159 default: 2160 return (0); 2161 } 2162 } 2163 2164 /* 2165 * Add pernament ND6 link-layer record for given 2166 * interface address. 2167 * 2168 * Very similar to IPv4 arp_ifinit(), but: 2169 * 1) IPv6 DAD is performed in different place 2170 * 2) It is called by IPv6 protocol stack in contrast to 2171 * arp_ifinit() which is typically called in SIOCSIFADDR 2172 * driver ioctl handler. 2173 * 2174 */ 2175 int 2176 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2177 { 2178 struct ifnet *ifp; 2179 struct llentry *ln; 2180 2181 ifp = ia->ia_ifa.ifa_ifp; 2182 if (nd6_need_cache(ifp) == 0) 2183 return (0); 2184 IF_AFDATA_LOCK(ifp); 2185 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 2186 ln = lla_lookup(LLTABLE6(ifp), (LLE_CREATE | LLE_IFADDR | 2187 LLE_EXCLUSIVE), (struct sockaddr *)&ia->ia_addr); 2188 IF_AFDATA_UNLOCK(ifp); 2189 if (ln != NULL) { 2190 ln->la_expire = 0; /* for IPv6 this means permanent */ 2191 ln->ln_state = ND6_LLINFO_REACHABLE; 2192 LLE_WUNLOCK(ln); 2193 in6_newaddrmsg(ia, RTM_ADD); 2194 return (0); 2195 } 2196 2197 return (ENOBUFS); 2198 } 2199 2200 /* 2201 * Removes ALL lle records for interface address prefix. 2202 * XXXME: That's probably not we really want to do, we need 2203 * to remove address record only and keep other records 2204 * until we determine if given prefix is really going 2205 * to be removed. 2206 */ 2207 void 2208 nd6_rem_ifa_lle(struct in6_ifaddr *ia) 2209 { 2210 struct sockaddr_in6 mask, addr; 2211 struct ifnet *ifp; 2212 2213 in6_newaddrmsg(ia, RTM_DELETE); 2214 2215 ifp = ia->ia_ifa.ifa_ifp; 2216 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2217 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2218 lltable_prefix_free(AF_INET6, (struct sockaddr *)&addr, 2219 (struct sockaddr *)&mask, LLE_STATIC); 2220 } 2221 2222 /* 2223 * the callers of this function need to be re-worked to drop 2224 * the lle lock, drop here for now 2225 */ 2226 int 2227 nd6_storelladdr(struct ifnet *ifp, struct mbuf *m, 2228 const struct sockaddr *dst, u_char *desten, uint32_t *pflags) 2229 { 2230 struct llentry *ln; 2231 2232 if (pflags != NULL) 2233 *pflags = 0; 2234 IF_AFDATA_UNLOCK_ASSERT(ifp); 2235 if (m != NULL && m->m_flags & M_MCAST) { 2236 switch (ifp->if_type) { 2237 case IFT_ETHER: 2238 case IFT_FDDI: 2239 #ifdef IFT_L2VLAN 2240 case IFT_L2VLAN: 2241 #endif 2242 #ifdef IFT_IEEE80211 2243 case IFT_IEEE80211: 2244 #endif 2245 case IFT_BRIDGE: 2246 case IFT_ISO88025: 2247 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, 2248 desten); 2249 return (0); 2250 default: 2251 m_freem(m); 2252 return (EAFNOSUPPORT); 2253 } 2254 } 2255 2256 2257 /* 2258 * the entry should have been created in nd6_store_lladdr 2259 */ 2260 IF_AFDATA_RLOCK(ifp); 2261 ln = lla_lookup(LLTABLE6(ifp), 0, dst); 2262 IF_AFDATA_RUNLOCK(ifp); 2263 if ((ln == NULL) || !(ln->la_flags & LLE_VALID)) { 2264 if (ln != NULL) 2265 LLE_RUNLOCK(ln); 2266 /* this could happen, if we could not allocate memory */ 2267 m_freem(m); 2268 return (1); 2269 } 2270 2271 bcopy(&ln->ll_addr, desten, ifp->if_addrlen); 2272 if (pflags != NULL) 2273 *pflags = ln->la_flags; 2274 LLE_RUNLOCK(ln); 2275 /* 2276 * A *small* use after free race exists here 2277 */ 2278 return (0); 2279 } 2280 2281 static void 2282 clear_llinfo_pqueue(struct llentry *ln) 2283 { 2284 struct mbuf *m_hold, *m_hold_next; 2285 2286 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { 2287 m_hold_next = m_hold->m_nextpkt; 2288 m_freem(m_hold); 2289 } 2290 2291 ln->la_hold = NULL; 2292 return; 2293 } 2294 2295 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); 2296 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); 2297 #ifdef SYSCTL_DECL 2298 SYSCTL_DECL(_net_inet6_icmp6); 2299 #endif 2300 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, 2301 CTLFLAG_RD, nd6_sysctl_drlist, ""); 2302 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2303 CTLFLAG_RD, nd6_sysctl_prlist, ""); 2304 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2305 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2306 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, 2307 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); 2308 2309 static int 2310 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) 2311 { 2312 struct in6_defrouter d; 2313 struct nd_defrouter *dr; 2314 int error; 2315 2316 if (req->newptr) 2317 return (EPERM); 2318 2319 bzero(&d, sizeof(d)); 2320 d.rtaddr.sin6_family = AF_INET6; 2321 d.rtaddr.sin6_len = sizeof(d.rtaddr); 2322 2323 /* 2324 * XXX locking 2325 */ 2326 TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) { 2327 d.rtaddr.sin6_addr = dr->rtaddr; 2328 error = sa6_recoverscope(&d.rtaddr); 2329 if (error != 0) 2330 return (error); 2331 d.flags = dr->flags; 2332 d.rtlifetime = dr->rtlifetime; 2333 d.expire = dr->expire + (time_second - time_uptime); 2334 d.if_index = dr->ifp->if_index; 2335 error = SYSCTL_OUT(req, &d, sizeof(d)); 2336 if (error != 0) 2337 return (error); 2338 } 2339 return (0); 2340 } 2341 2342 static int 2343 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2344 { 2345 struct in6_prefix p; 2346 struct sockaddr_in6 s6; 2347 struct nd_prefix *pr; 2348 struct nd_pfxrouter *pfr; 2349 time_t maxexpire; 2350 int error; 2351 char ip6buf[INET6_ADDRSTRLEN]; 2352 2353 if (req->newptr) 2354 return (EPERM); 2355 2356 bzero(&p, sizeof(p)); 2357 p.origin = PR_ORIG_RA; 2358 bzero(&s6, sizeof(s6)); 2359 s6.sin6_family = AF_INET6; 2360 s6.sin6_len = sizeof(s6); 2361 2362 /* 2363 * XXX locking 2364 */ 2365 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2366 p.prefix = pr->ndpr_prefix; 2367 if (sa6_recoverscope(&p.prefix)) { 2368 log(LOG_ERR, "scope error in prefix list (%s)\n", 2369 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2370 /* XXX: press on... */ 2371 } 2372 p.raflags = pr->ndpr_raf; 2373 p.prefixlen = pr->ndpr_plen; 2374 p.vltime = pr->ndpr_vltime; 2375 p.pltime = pr->ndpr_pltime; 2376 p.if_index = pr->ndpr_ifp->if_index; 2377 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2378 p.expire = 0; 2379 else { 2380 /* XXX: we assume time_t is signed. */ 2381 maxexpire = (-1) & 2382 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2383 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2384 p.expire = pr->ndpr_lastupdate + 2385 pr->ndpr_vltime + 2386 (time_second - time_uptime); 2387 else 2388 p.expire = maxexpire; 2389 } 2390 p.refcnt = pr->ndpr_refcnt; 2391 p.flags = pr->ndpr_stateflags; 2392 p.advrtrs = 0; 2393 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2394 p.advrtrs++; 2395 error = SYSCTL_OUT(req, &p, sizeof(p)); 2396 if (error != 0) 2397 return (error); 2398 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2399 s6.sin6_addr = pfr->router->rtaddr; 2400 if (sa6_recoverscope(&s6)) 2401 log(LOG_ERR, 2402 "scope error in prefix list (%s)\n", 2403 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2404 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2405 if (error != 0) 2406 return (error); 2407 } 2408 } 2409 return (0); 2410 } 2411