1 /* $FreeBSD$ */ 2 /* $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ */ 3 4 /*- 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_mac.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/callout.h> 40 #include <sys/mac.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/socket.h> 44 #include <sys/sockio.h> 45 #include <sys/time.h> 46 #include <sys/kernel.h> 47 #include <sys/protosw.h> 48 #include <sys/errno.h> 49 #include <sys/syslog.h> 50 #include <sys/queue.h> 51 #include <sys/sysctl.h> 52 53 #include <net/if.h> 54 #include <net/if_arc.h> 55 #include <net/if_dl.h> 56 #include <net/if_types.h> 57 #include <net/iso88025.h> 58 #include <net/fddi.h> 59 #include <net/route.h> 60 61 #include <netinet/in.h> 62 #include <netinet/if_ether.h> 63 #include <netinet6/in6_var.h> 64 #include <netinet/ip6.h> 65 #include <netinet6/ip6_var.h> 66 #include <netinet6/scope6_var.h> 67 #include <netinet6/nd6.h> 68 #include <netinet/icmp6.h> 69 70 #include <sys/limits.h> 71 72 #include <net/net_osdep.h> 73 74 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 75 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 76 77 #define SIN6(s) ((struct sockaddr_in6 *)s) 78 #define SDL(s) ((struct sockaddr_dl *)s) 79 80 /* timer values */ 81 int nd6_prune = 1; /* walk list every 1 seconds */ 82 int nd6_delay = 5; /* delay first probe time 5 second */ 83 int nd6_umaxtries = 3; /* maximum unicast query */ 84 int nd6_mmaxtries = 3; /* maximum multicast query */ 85 int nd6_useloopback = 1; /* use loopback interface for local traffic */ 86 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ 87 88 /* preventing too many loops in ND option parsing */ 89 int nd6_maxndopt = 10; /* max # of ND options allowed */ 90 91 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */ 92 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */ 93 94 #ifdef ND6_DEBUG 95 int nd6_debug = 1; 96 #else 97 int nd6_debug = 0; 98 #endif 99 100 /* for debugging? */ 101 static int nd6_inuse, nd6_allocated; 102 103 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6}; 104 struct nd_drhead nd_defrouter; 105 struct nd_prhead nd_prefix = { 0 }; 106 107 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; 108 static struct sockaddr_in6 all1_sa; 109 110 static int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *, 111 struct ifnet *)); 112 static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *)); 113 static void nd6_slowtimo __P((void *)); 114 static int regen_tmpaddr __P((struct in6_ifaddr *)); 115 static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int)); 116 static void nd6_llinfo_timer __P((void *)); 117 118 struct callout nd6_slowtimo_ch; 119 struct callout nd6_timer_ch; 120 extern struct callout in6_tmpaddrtimer_ch; 121 122 void 123 nd6_init() 124 { 125 static int nd6_init_done = 0; 126 int i; 127 128 if (nd6_init_done) { 129 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n"); 130 return; 131 } 132 133 all1_sa.sin6_family = AF_INET6; 134 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 135 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++) 136 all1_sa.sin6_addr.s6_addr[i] = 0xff; 137 138 /* initialization of the default router list */ 139 TAILQ_INIT(&nd_defrouter); 140 141 nd6_init_done = 1; 142 143 /* start timer */ 144 callout_init(&nd6_slowtimo_ch, 0); 145 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 146 nd6_slowtimo, NULL); 147 } 148 149 struct nd_ifinfo * 150 nd6_ifattach(ifp) 151 struct ifnet *ifp; 152 { 153 struct nd_ifinfo *nd; 154 155 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK); 156 bzero(nd, sizeof(*nd)); 157 158 nd->initialized = 1; 159 160 nd->chlim = IPV6_DEFHLIM; 161 nd->basereachable = REACHABLE_TIME; 162 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 163 nd->retrans = RETRANS_TIMER; 164 /* 165 * Note that the default value of ip6_accept_rtadv is 0, which means 166 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV 167 * here. 168 */ 169 nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV); 170 171 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 172 nd6_setmtu0(ifp, nd); 173 174 return nd; 175 } 176 177 void 178 nd6_ifdetach(nd) 179 struct nd_ifinfo *nd; 180 { 181 182 free(nd, M_IP6NDP); 183 } 184 185 /* 186 * Reset ND level link MTU. This function is called when the physical MTU 187 * changes, which means we might have to adjust the ND level MTU. 188 */ 189 void 190 nd6_setmtu(ifp) 191 struct ifnet *ifp; 192 { 193 194 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 195 } 196 197 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 198 void 199 nd6_setmtu0(ifp, ndi) 200 struct ifnet *ifp; 201 struct nd_ifinfo *ndi; 202 { 203 u_int32_t omaxmtu; 204 205 omaxmtu = ndi->maxmtu; 206 207 switch (ifp->if_type) { 208 case IFT_ARCNET: 209 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ 210 break; 211 case IFT_FDDI: 212 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */ 213 break; 214 case IFT_ISO88025: 215 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu); 216 break; 217 default: 218 ndi->maxmtu = ifp->if_mtu; 219 break; 220 } 221 222 /* 223 * Decreasing the interface MTU under IPV6 minimum MTU may cause 224 * undesirable situation. We thus notify the operator of the change 225 * explicitly. The check for omaxmtu is necessary to restrict the 226 * log to the case of changing the MTU, not initializing it. 227 */ 228 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 229 log(LOG_NOTICE, "nd6_setmtu0: " 230 "new link MTU on %s (%lu) is too small for IPv6\n", 231 if_name(ifp), (unsigned long)ndi->maxmtu); 232 } 233 234 if (ndi->maxmtu > in6_maxmtu) 235 in6_setmaxmtu(); /* check all interfaces just in case */ 236 237 #undef MIN 238 } 239 240 void 241 nd6_option_init(opt, icmp6len, ndopts) 242 void *opt; 243 int icmp6len; 244 union nd_opts *ndopts; 245 { 246 247 bzero(ndopts, sizeof(*ndopts)); 248 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 249 ndopts->nd_opts_last 250 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 251 252 if (icmp6len == 0) { 253 ndopts->nd_opts_done = 1; 254 ndopts->nd_opts_search = NULL; 255 } 256 } 257 258 /* 259 * Take one ND option. 260 */ 261 struct nd_opt_hdr * 262 nd6_option(ndopts) 263 union nd_opts *ndopts; 264 { 265 struct nd_opt_hdr *nd_opt; 266 int olen; 267 268 if (ndopts == NULL) 269 panic("ndopts == NULL in nd6_option"); 270 if (ndopts->nd_opts_last == NULL) 271 panic("uninitialized ndopts in nd6_option"); 272 if (ndopts->nd_opts_search == NULL) 273 return NULL; 274 if (ndopts->nd_opts_done) 275 return NULL; 276 277 nd_opt = ndopts->nd_opts_search; 278 279 /* make sure nd_opt_len is inside the buffer */ 280 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 281 bzero(ndopts, sizeof(*ndopts)); 282 return NULL; 283 } 284 285 olen = nd_opt->nd_opt_len << 3; 286 if (olen == 0) { 287 /* 288 * Message validation requires that all included 289 * options have a length that is greater than zero. 290 */ 291 bzero(ndopts, sizeof(*ndopts)); 292 return NULL; 293 } 294 295 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 296 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 297 /* option overruns the end of buffer, invalid */ 298 bzero(ndopts, sizeof(*ndopts)); 299 return NULL; 300 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 301 /* reached the end of options chain */ 302 ndopts->nd_opts_done = 1; 303 ndopts->nd_opts_search = NULL; 304 } 305 return nd_opt; 306 } 307 308 /* 309 * Parse multiple ND options. 310 * This function is much easier to use, for ND routines that do not need 311 * multiple options of the same type. 312 */ 313 int 314 nd6_options(ndopts) 315 union nd_opts *ndopts; 316 { 317 struct nd_opt_hdr *nd_opt; 318 int i = 0; 319 320 if (ndopts == NULL) 321 panic("ndopts == NULL in nd6_options"); 322 if (ndopts->nd_opts_last == NULL) 323 panic("uninitialized ndopts in nd6_options"); 324 if (ndopts->nd_opts_search == NULL) 325 return 0; 326 327 while (1) { 328 nd_opt = nd6_option(ndopts); 329 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 330 /* 331 * Message validation requires that all included 332 * options have a length that is greater than zero. 333 */ 334 icmp6stat.icp6s_nd_badopt++; 335 bzero(ndopts, sizeof(*ndopts)); 336 return -1; 337 } 338 339 if (nd_opt == NULL) 340 goto skip1; 341 342 switch (nd_opt->nd_opt_type) { 343 case ND_OPT_SOURCE_LINKADDR: 344 case ND_OPT_TARGET_LINKADDR: 345 case ND_OPT_MTU: 346 case ND_OPT_REDIRECTED_HEADER: 347 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 348 nd6log((LOG_INFO, 349 "duplicated ND6 option found (type=%d)\n", 350 nd_opt->nd_opt_type)); 351 /* XXX bark? */ 352 } else { 353 ndopts->nd_opt_array[nd_opt->nd_opt_type] 354 = nd_opt; 355 } 356 break; 357 case ND_OPT_PREFIX_INFORMATION: 358 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 359 ndopts->nd_opt_array[nd_opt->nd_opt_type] 360 = nd_opt; 361 } 362 ndopts->nd_opts_pi_end = 363 (struct nd_opt_prefix_info *)nd_opt; 364 break; 365 default: 366 /* 367 * Unknown options must be silently ignored, 368 * to accomodate future extension to the protocol. 369 */ 370 nd6log((LOG_DEBUG, 371 "nd6_options: unsupported option %d - " 372 "option ignored\n", nd_opt->nd_opt_type)); 373 } 374 375 skip1: 376 i++; 377 if (i > nd6_maxndopt) { 378 icmp6stat.icp6s_nd_toomanyopt++; 379 nd6log((LOG_INFO, "too many loop in nd opt\n")); 380 break; 381 } 382 383 if (ndopts->nd_opts_done) 384 break; 385 } 386 387 return 0; 388 } 389 390 /* 391 * ND6 timer routine to handle ND6 entries 392 */ 393 void 394 nd6_llinfo_settimer(ln, tick) 395 struct llinfo_nd6 *ln; 396 long tick; 397 { 398 if (tick < 0) { 399 ln->ln_expire = 0; 400 ln->ln_ntick = 0; 401 callout_stop(&ln->ln_timer_ch); 402 } else { 403 ln->ln_expire = time_second + tick / hz; 404 if (tick > INT_MAX) { 405 ln->ln_ntick = tick - INT_MAX; 406 callout_reset(&ln->ln_timer_ch, INT_MAX, 407 nd6_llinfo_timer, ln); 408 } else { 409 ln->ln_ntick = 0; 410 callout_reset(&ln->ln_timer_ch, tick, 411 nd6_llinfo_timer, ln); 412 } 413 } 414 } 415 416 static void 417 nd6_llinfo_timer(arg) 418 void *arg; 419 { 420 struct llinfo_nd6 *ln; 421 struct rtentry *rt; 422 struct in6_addr *dst; 423 struct ifnet *ifp; 424 struct nd_ifinfo *ndi = NULL; 425 426 ln = (struct llinfo_nd6 *)arg; 427 428 if (ln->ln_ntick > 0) { 429 if (ln->ln_ntick > INT_MAX) { 430 ln->ln_ntick -= INT_MAX; 431 nd6_llinfo_settimer(ln, INT_MAX); 432 } else { 433 ln->ln_ntick = 0; 434 nd6_llinfo_settimer(ln, ln->ln_ntick); 435 } 436 return; 437 } 438 439 if ((rt = ln->ln_rt) == NULL) 440 panic("ln->ln_rt == NULL"); 441 if ((ifp = rt->rt_ifp) == NULL) 442 panic("ln->ln_rt->rt_ifp == NULL"); 443 ndi = ND_IFINFO(ifp); 444 445 /* sanity check */ 446 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln) 447 panic("rt_llinfo(%p) is not equal to ln(%p)", 448 rt->rt_llinfo, ln); 449 if (rt_key(rt) == NULL) 450 panic("rt key is NULL in nd6_timer(ln=%p)", ln); 451 452 dst = &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr; 453 454 switch (ln->ln_state) { 455 case ND6_LLINFO_INCOMPLETE: 456 if (ln->ln_asked < nd6_mmaxtries) { 457 ln->ln_asked++; 458 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 459 nd6_ns_output(ifp, NULL, dst, ln, 0); 460 } else { 461 struct mbuf *m = ln->ln_hold; 462 if (m) { 463 /* 464 * assuming every packet in ln_hold has the 465 * same IP header 466 */ 467 ln->ln_hold = NULL; 468 icmp6_error2(m, ICMP6_DST_UNREACH, 469 ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp); 470 } 471 if (rt) 472 (void)nd6_free(rt, 0); 473 ln = NULL; 474 } 475 break; 476 case ND6_LLINFO_REACHABLE: 477 if (!ND6_LLINFO_PERMANENT(ln)) { 478 ln->ln_state = ND6_LLINFO_STALE; 479 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 480 } 481 break; 482 483 case ND6_LLINFO_STALE: 484 /* Garbage Collection(RFC 2461 5.3) */ 485 if (!ND6_LLINFO_PERMANENT(ln)) { 486 (void)nd6_free(rt, 1); 487 ln = NULL; 488 } 489 break; 490 491 case ND6_LLINFO_DELAY: 492 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 493 /* We need NUD */ 494 ln->ln_asked = 1; 495 ln->ln_state = ND6_LLINFO_PROBE; 496 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 497 nd6_ns_output(ifp, dst, dst, ln, 0); 498 } else { 499 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 500 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 501 } 502 break; 503 case ND6_LLINFO_PROBE: 504 if (ln->ln_asked < nd6_umaxtries) { 505 ln->ln_asked++; 506 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 507 nd6_ns_output(ifp, dst, dst, ln, 0); 508 } else { 509 (void)nd6_free(rt, 0); 510 ln = NULL; 511 } 512 break; 513 } 514 } 515 516 517 /* 518 * ND6 timer routine to expire default route list and prefix list 519 */ 520 void 521 nd6_timer(ignored_arg) 522 void *ignored_arg; 523 { 524 int s; 525 struct nd_defrouter *dr; 526 struct nd_prefix *pr; 527 struct in6_ifaddr *ia6, *nia6; 528 struct in6_addrlifetime *lt6; 529 530 callout_reset(&nd6_timer_ch, nd6_prune * hz, 531 nd6_timer, NULL); 532 533 /* expire default router list */ 534 s = splnet(); 535 dr = TAILQ_FIRST(&nd_defrouter); 536 while (dr) { 537 if (dr->expire && dr->expire < time_second) { 538 struct nd_defrouter *t; 539 t = TAILQ_NEXT(dr, dr_entry); 540 defrtrlist_del(dr); 541 dr = t; 542 } else { 543 dr = TAILQ_NEXT(dr, dr_entry); 544 } 545 } 546 547 /* 548 * expire interface addresses. 549 * in the past the loop was inside prefix expiry processing. 550 * However, from a stricter speci-confrmance standpoint, we should 551 * rather separate address lifetimes and prefix lifetimes. 552 */ 553 addrloop: 554 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) { 555 nia6 = ia6->ia_next; 556 /* check address lifetime */ 557 lt6 = &ia6->ia6_lifetime; 558 if (IFA6_IS_INVALID(ia6)) { 559 int regen = 0; 560 561 /* 562 * If the expiring address is temporary, try 563 * regenerating a new one. This would be useful when 564 * we suspended a laptop PC, then turned it on after a 565 * period that could invalidate all temporary 566 * addresses. Although we may have to restart the 567 * loop (see below), it must be after purging the 568 * address. Otherwise, we'd see an infinite loop of 569 * regeneration. 570 */ 571 if (ip6_use_tempaddr && 572 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 573 if (regen_tmpaddr(ia6) == 0) 574 regen = 1; 575 } 576 577 in6_purgeaddr(&ia6->ia_ifa); 578 579 if (regen) 580 goto addrloop; /* XXX: see below */ 581 } 582 if (IFA6_IS_DEPRECATED(ia6)) { 583 int oldflags = ia6->ia6_flags; 584 585 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 586 587 /* 588 * If a temporary address has just become deprecated, 589 * regenerate a new one if possible. 590 */ 591 if (ip6_use_tempaddr && 592 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 593 (oldflags & IN6_IFF_DEPRECATED) == 0) { 594 595 if (regen_tmpaddr(ia6) == 0) { 596 /* 597 * A new temporary address is 598 * generated. 599 * XXX: this means the address chain 600 * has changed while we are still in 601 * the loop. Although the change 602 * would not cause disaster (because 603 * it's not a deletion, but an 604 * addition,) we'd rather restart the 605 * loop just for safety. Or does this 606 * significantly reduce performance?? 607 */ 608 goto addrloop; 609 } 610 } 611 } else { 612 /* 613 * A new RA might have made a deprecated address 614 * preferred. 615 */ 616 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 617 } 618 } 619 620 /* expire prefix list */ 621 pr = nd_prefix.lh_first; 622 while (pr) { 623 /* 624 * check prefix lifetime. 625 * since pltime is just for autoconf, pltime processing for 626 * prefix is not necessary. 627 */ 628 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && 629 time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) { 630 struct nd_prefix *t; 631 t = pr->ndpr_next; 632 633 /* 634 * address expiration and prefix expiration are 635 * separate. NEVER perform in6_purgeaddr here. 636 */ 637 638 prelist_remove(pr); 639 pr = t; 640 } else 641 pr = pr->ndpr_next; 642 } 643 splx(s); 644 } 645 646 static int 647 regen_tmpaddr(ia6) 648 struct in6_ifaddr *ia6; /* deprecated/invalidated temporary address */ 649 { 650 struct ifaddr *ifa; 651 struct ifnet *ifp; 652 struct in6_ifaddr *public_ifa6 = NULL; 653 654 ifp = ia6->ia_ifa.ifa_ifp; 655 for (ifa = ifp->if_addrlist.tqh_first; ifa; 656 ifa = ifa->ifa_list.tqe_next) { 657 struct in6_ifaddr *it6; 658 659 if (ifa->ifa_addr->sa_family != AF_INET6) 660 continue; 661 662 it6 = (struct in6_ifaddr *)ifa; 663 664 /* ignore no autoconf addresses. */ 665 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 666 continue; 667 668 /* ignore autoconf addresses with different prefixes. */ 669 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 670 continue; 671 672 /* 673 * Now we are looking at an autoconf address with the same 674 * prefix as ours. If the address is temporary and is still 675 * preferred, do not create another one. It would be rare, but 676 * could happen, for example, when we resume a laptop PC after 677 * a long period. 678 */ 679 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 680 !IFA6_IS_DEPRECATED(it6)) { 681 public_ifa6 = NULL; 682 break; 683 } 684 685 /* 686 * This is a public autoconf address that has the same prefix 687 * as ours. If it is preferred, keep it. We can't break the 688 * loop here, because there may be a still-preferred temporary 689 * address with the prefix. 690 */ 691 if (!IFA6_IS_DEPRECATED(it6)) 692 public_ifa6 = it6; 693 } 694 695 if (public_ifa6 != NULL) { 696 int e; 697 698 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 699 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 700 " tmp addr,errno=%d\n", e); 701 return (-1); 702 } 703 return (0); 704 } 705 706 return (-1); 707 } 708 709 /* 710 * Nuke neighbor cache/prefix/default router management table, right before 711 * ifp goes away. 712 */ 713 void 714 nd6_purge(ifp) 715 struct ifnet *ifp; 716 { 717 struct llinfo_nd6 *ln, *nln; 718 struct nd_defrouter *dr, *ndr; 719 struct nd_prefix *pr, *npr; 720 721 /* 722 * Nuke default router list entries toward ifp. 723 * We defer removal of default router list entries that is installed 724 * in the routing table, in order to keep additional side effects as 725 * small as possible. 726 */ 727 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) { 728 ndr = TAILQ_NEXT(dr, dr_entry); 729 if (dr->installed) 730 continue; 731 732 if (dr->ifp == ifp) 733 defrtrlist_del(dr); 734 } 735 736 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) { 737 ndr = TAILQ_NEXT(dr, dr_entry); 738 if (!dr->installed) 739 continue; 740 741 if (dr->ifp == ifp) 742 defrtrlist_del(dr); 743 } 744 745 /* Nuke prefix list entries toward ifp */ 746 for (pr = nd_prefix.lh_first; pr; pr = npr) { 747 npr = pr->ndpr_next; 748 if (pr->ndpr_ifp == ifp) { 749 /* 750 * Because if_detach() does *not* release prefixes 751 * while purging addresses the reference count will 752 * still be above zero. We therefore reset it to 753 * make sure that the prefix really gets purged. 754 */ 755 pr->ndpr_refcnt = 0; 756 757 /* 758 * Previously, pr->ndpr_addr is removed as well, 759 * but I strongly believe we don't have to do it. 760 * nd6_purge() is only called from in6_ifdetach(), 761 * which removes all the associated interface addresses 762 * by itself. 763 * (jinmei@kame.net 20010129) 764 */ 765 prelist_remove(pr); 766 } 767 } 768 769 /* cancel default outgoing interface setting */ 770 if (nd6_defifindex == ifp->if_index) 771 nd6_setdefaultiface(0); 772 773 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */ 774 /* refresh default router list */ 775 defrouter_select(); 776 } 777 778 /* 779 * Nuke neighbor cache entries for the ifp. 780 * Note that rt->rt_ifp may not be the same as ifp, 781 * due to KAME goto ours hack. See RTM_RESOLVE case in 782 * nd6_rtrequest(), and ip6_input(). 783 */ 784 ln = llinfo_nd6.ln_next; 785 while (ln && ln != &llinfo_nd6) { 786 struct rtentry *rt; 787 struct sockaddr_dl *sdl; 788 789 nln = ln->ln_next; 790 rt = ln->ln_rt; 791 if (rt && rt->rt_gateway && 792 rt->rt_gateway->sa_family == AF_LINK) { 793 sdl = (struct sockaddr_dl *)rt->rt_gateway; 794 if (sdl->sdl_index == ifp->if_index) 795 nln = nd6_free(rt, 0); 796 } 797 ln = nln; 798 } 799 } 800 801 struct rtentry * 802 nd6_lookup(addr6, create, ifp) 803 struct in6_addr *addr6; 804 int create; 805 struct ifnet *ifp; 806 { 807 struct rtentry *rt; 808 struct sockaddr_in6 sin6; 809 810 bzero(&sin6, sizeof(sin6)); 811 sin6.sin6_len = sizeof(struct sockaddr_in6); 812 sin6.sin6_family = AF_INET6; 813 sin6.sin6_addr = *addr6; 814 rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL); 815 if (rt) { 816 if ((rt->rt_flags & RTF_LLINFO) == 0 && create) { 817 /* 818 * This is the case for the default route. 819 * If we want to create a neighbor cache for the 820 * address, we should free the route for the 821 * destination and allocate an interface route. 822 */ 823 RTFREE_LOCKED(rt); 824 rt = NULL; 825 } 826 } 827 if (rt == NULL) { 828 if (create && ifp) { 829 int e; 830 831 /* 832 * If no route is available and create is set, 833 * we allocate a host route for the destination 834 * and treat it like an interface route. 835 * This hack is necessary for a neighbor which can't 836 * be covered by our own prefix. 837 */ 838 struct ifaddr *ifa = 839 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp); 840 if (ifa == NULL) 841 return (NULL); 842 843 /* 844 * Create a new route. RTF_LLINFO is necessary 845 * to create a Neighbor Cache entry for the 846 * destination in nd6_rtrequest which will be 847 * called in rtrequest via ifa->ifa_rtrequest. 848 */ 849 if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6, 850 ifa->ifa_addr, (struct sockaddr *)&all1_sa, 851 (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) & 852 ~RTF_CLONING, &rt)) != 0) { 853 log(LOG_ERR, 854 "nd6_lookup: failed to add route for a " 855 "neighbor(%s), errno=%d\n", 856 ip6_sprintf(addr6), e); 857 } 858 if (rt == NULL) 859 return (NULL); 860 RT_LOCK(rt); 861 if (rt->rt_llinfo) { 862 struct llinfo_nd6 *ln = 863 (struct llinfo_nd6 *)rt->rt_llinfo; 864 ln->ln_state = ND6_LLINFO_NOSTATE; 865 } 866 } else 867 return (NULL); 868 } 869 RT_LOCK_ASSERT(rt); 870 RT_REMREF(rt); 871 /* 872 * Validation for the entry. 873 * Note that the check for rt_llinfo is necessary because a cloned 874 * route from a parent route that has the L flag (e.g. the default 875 * route to a p2p interface) may have the flag, too, while the 876 * destination is not actually a neighbor. 877 * XXX: we can't use rt->rt_ifp to check for the interface, since 878 * it might be the loopback interface if the entry is for our 879 * own address on a non-loopback interface. Instead, we should 880 * use rt->rt_ifa->ifa_ifp, which would specify the REAL 881 * interface. 882 * Note also that ifa_ifp and ifp may differ when we connect two 883 * interfaces to a same link, install a link prefix to an interface, 884 * and try to install a neighbor cache on an interface that does not 885 * have a route to the prefix. 886 */ 887 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 || 888 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL || 889 (ifp && rt->rt_ifa->ifa_ifp != ifp)) { 890 if (create) { 891 nd6log((LOG_DEBUG, 892 "nd6_lookup: failed to lookup %s (if = %s)\n", 893 ip6_sprintf(addr6), 894 ifp ? if_name(ifp) : "unspec")); 895 } 896 RT_UNLOCK(rt); 897 return (NULL); 898 } 899 RT_UNLOCK(rt); /* XXX not ready to return rt locked */ 900 return (rt); 901 } 902 903 /* 904 * Test whether a given IPv6 address is a neighbor or not, ignoring 905 * the actual neighbor cache. The neighbor cache is ignored in order 906 * to not reenter the routing code from within itself. 907 */ 908 static int 909 nd6_is_new_addr_neighbor(addr, ifp) 910 struct sockaddr_in6 *addr; 911 struct ifnet *ifp; 912 { 913 struct nd_prefix *pr; 914 struct ifaddr *dstaddr; 915 916 /* 917 * A link-local address is always a neighbor. 918 * XXX: a link does not necessarily specify a single interface. 919 */ 920 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 921 struct sockaddr_in6 sin6_copy; 922 u_int32_t zone; 923 924 /* 925 * We need sin6_copy since sa6_recoverscope() may modify the 926 * content (XXX). 927 */ 928 sin6_copy = *addr; 929 if (sa6_recoverscope(&sin6_copy)) 930 return (0); /* XXX: should be impossible */ 931 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 932 return (0); 933 if (sin6_copy.sin6_scope_id == zone) 934 return (1); 935 else 936 return (0); 937 } 938 939 /* 940 * If the address matches one of our addresses, 941 * it should be a neighbor. 942 * If the address matches one of our on-link prefixes, it should be a 943 * neighbor. 944 */ 945 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { 946 if (pr->ndpr_ifp != ifp) 947 continue; 948 949 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) 950 continue; 951 952 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 953 &addr->sin6_addr, &pr->ndpr_mask)) 954 return (1); 955 } 956 957 /* 958 * If the address is assigned on the node of the other side of 959 * a p2p interface, the address should be a neighbor. 960 */ 961 dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr); 962 if ((dstaddr != NULL) && (dstaddr->ifa_ifp == ifp)) 963 return (1); 964 965 /* 966 * If the default router list is empty, all addresses are regarded 967 * as on-link, and thus, as a neighbor. 968 * XXX: we restrict the condition to hosts, because routers usually do 969 * not have the "default router list". 970 */ 971 if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL && 972 nd6_defifindex == ifp->if_index) { 973 return (1); 974 } 975 976 return (0); 977 } 978 979 980 /* 981 * Detect if a given IPv6 address identifies a neighbor on a given link. 982 * XXX: should take care of the destination of a p2p link? 983 */ 984 int 985 nd6_is_addr_neighbor(addr, ifp) 986 struct sockaddr_in6 *addr; 987 struct ifnet *ifp; 988 { 989 990 if (nd6_is_new_addr_neighbor(addr, ifp)) 991 return (1); 992 993 /* 994 * Even if the address matches none of our addresses, it might be 995 * in the neighbor cache. 996 */ 997 if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL) 998 return (1); 999 1000 return (0); 1001 } 1002 1003 /* 1004 * Free an nd6 llinfo entry. 1005 * Since the function would cause significant changes in the kernel, DO NOT 1006 * make it global, unless you have a strong reason for the change, and are sure 1007 * that the change is safe. 1008 */ 1009 static struct llinfo_nd6 * 1010 nd6_free(rt, gc) 1011 struct rtentry *rt; 1012 int gc; 1013 { 1014 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next; 1015 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr; 1016 struct nd_defrouter *dr; 1017 1018 /* 1019 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1020 * even though it is not harmful, it was not really necessary. 1021 */ 1022 1023 /* cancel timer */ 1024 nd6_llinfo_settimer(ln, -1); 1025 1026 if (!ip6_forwarding) { 1027 int s; 1028 s = splnet(); 1029 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 1030 rt->rt_ifp); 1031 1032 if (dr != NULL && dr->expire && 1033 ln->ln_state == ND6_LLINFO_STALE && gc) { 1034 /* 1035 * If the reason for the deletion is just garbage 1036 * collection, and the neighbor is an active default 1037 * router, do not delete it. Instead, reset the GC 1038 * timer using the router's lifetime. 1039 * Simply deleting the entry would affect default 1040 * router selection, which is not necessarily a good 1041 * thing, especially when we're using router preference 1042 * values. 1043 * XXX: the check for ln_state would be redundant, 1044 * but we intentionally keep it just in case. 1045 */ 1046 if (dr->expire > time_second) 1047 nd6_llinfo_settimer(ln, 1048 (dr->expire - time_second) * hz); 1049 else 1050 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 1051 splx(s); 1052 return (ln->ln_next); 1053 } 1054 1055 if (ln->ln_router || dr) { 1056 /* 1057 * rt6_flush must be called whether or not the neighbor 1058 * is in the Default Router List. 1059 * See a corresponding comment in nd6_na_input(). 1060 */ 1061 rt6_flush(&in6, rt->rt_ifp); 1062 } 1063 1064 if (dr) { 1065 /* 1066 * Unreachablity of a router might affect the default 1067 * router selection and on-link detection of advertised 1068 * prefixes. 1069 */ 1070 1071 /* 1072 * Temporarily fake the state to choose a new default 1073 * router and to perform on-link determination of 1074 * prefixes correctly. 1075 * Below the state will be set correctly, 1076 * or the entry itself will be deleted. 1077 */ 1078 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1079 1080 /* 1081 * Since defrouter_select() does not affect the 1082 * on-link determination and MIP6 needs the check 1083 * before the default router selection, we perform 1084 * the check now. 1085 */ 1086 pfxlist_onlink_check(); 1087 1088 /* 1089 * refresh default router list 1090 */ 1091 defrouter_select(); 1092 } 1093 splx(s); 1094 } 1095 1096 /* 1097 * Before deleting the entry, remember the next entry as the 1098 * return value. We need this because pfxlist_onlink_check() above 1099 * might have freed other entries (particularly the old next entry) as 1100 * a side effect (XXX). 1101 */ 1102 next = ln->ln_next; 1103 1104 /* 1105 * Detach the route from the routing tree and the list of neighbor 1106 * caches, and disable the route entry not to be used in already 1107 * cached routes. 1108 */ 1109 rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0, 1110 rt_mask(rt), 0, (struct rtentry **)0); 1111 1112 return (next); 1113 } 1114 1115 /* 1116 * Upper-layer reachability hint for Neighbor Unreachability Detection. 1117 * 1118 * XXX cost-effective methods? 1119 */ 1120 void 1121 nd6_nud_hint(rt, dst6, force) 1122 struct rtentry *rt; 1123 struct in6_addr *dst6; 1124 int force; 1125 { 1126 struct llinfo_nd6 *ln; 1127 1128 /* 1129 * If the caller specified "rt", use that. Otherwise, resolve the 1130 * routing table by supplied "dst6". 1131 */ 1132 if (rt == NULL) { 1133 if (dst6 == NULL) 1134 return; 1135 if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL) 1136 return; 1137 } 1138 1139 if ((rt->rt_flags & RTF_GATEWAY) != 0 || 1140 (rt->rt_flags & RTF_LLINFO) == 0 || 1141 rt->rt_llinfo == NULL || rt->rt_gateway == NULL || 1142 rt->rt_gateway->sa_family != AF_LINK) { 1143 /* This is not a host route. */ 1144 return; 1145 } 1146 1147 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1148 if (ln->ln_state < ND6_LLINFO_REACHABLE) 1149 return; 1150 1151 /* 1152 * if we get upper-layer reachability confirmation many times, 1153 * it is possible we have false information. 1154 */ 1155 if (!force) { 1156 ln->ln_byhint++; 1157 if (ln->ln_byhint > nd6_maxnudhint) 1158 return; 1159 } 1160 1161 ln->ln_state = ND6_LLINFO_REACHABLE; 1162 if (!ND6_LLINFO_PERMANENT(ln)) { 1163 nd6_llinfo_settimer(ln, 1164 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz); 1165 } 1166 } 1167 1168 void 1169 nd6_rtrequest(req, rt, info) 1170 int req; 1171 struct rtentry *rt; 1172 struct rt_addrinfo *info; /* xxx unused */ 1173 { 1174 struct sockaddr *gate = rt->rt_gateway; 1175 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1176 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; 1177 struct ifnet *ifp = rt->rt_ifp; 1178 struct ifaddr *ifa; 1179 1180 RT_LOCK_ASSERT(rt); 1181 1182 if ((rt->rt_flags & RTF_GATEWAY) != 0) 1183 return; 1184 1185 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) { 1186 /* 1187 * This is probably an interface direct route for a link 1188 * which does not need neighbor caches (e.g. fe80::%lo0/64). 1189 * We do not need special treatment below for such a route. 1190 * Moreover, the RTF_LLINFO flag which would be set below 1191 * would annoy the ndp(8) command. 1192 */ 1193 return; 1194 } 1195 1196 if (req == RTM_RESOLVE && 1197 (nd6_need_cache(ifp) == 0 || /* stf case */ 1198 !nd6_is_new_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), 1199 ifp))) { 1200 /* 1201 * FreeBSD and BSD/OS often make a cloned host route based 1202 * on a less-specific route (e.g. the default route). 1203 * If the less specific route does not have a "gateway" 1204 * (this is the case when the route just goes to a p2p or an 1205 * stf interface), we'll mistakenly make a neighbor cache for 1206 * the host route, and will see strange neighbor solicitation 1207 * for the corresponding destination. In order to avoid the 1208 * confusion, we check if the destination of the route is 1209 * a neighbor in terms of neighbor discovery, and stop the 1210 * process if not. Additionally, we remove the LLINFO flag 1211 * so that ndp(8) will not try to get the neighbor information 1212 * of the destination. 1213 */ 1214 rt->rt_flags &= ~RTF_LLINFO; 1215 return; 1216 } 1217 1218 switch (req) { 1219 case RTM_ADD: 1220 /* 1221 * There is no backward compatibility :) 1222 * 1223 * if ((rt->rt_flags & RTF_HOST) == 0 && 1224 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) 1225 * rt->rt_flags |= RTF_CLONING; 1226 */ 1227 if ((rt->rt_flags & RTF_CLONING) || 1228 ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) { 1229 /* 1230 * Case 1: This route should come from a route to 1231 * interface (RTF_CLONING case) or the route should be 1232 * treated as on-link but is currently not 1233 * (RTF_LLINFO && ln == NULL case). 1234 */ 1235 rt_setgate(rt, rt_key(rt), 1236 (struct sockaddr *)&null_sdl); 1237 gate = rt->rt_gateway; 1238 SDL(gate)->sdl_type = ifp->if_type; 1239 SDL(gate)->sdl_index = ifp->if_index; 1240 if (ln) 1241 nd6_llinfo_settimer(ln, 0); 1242 if ((rt->rt_flags & RTF_CLONING) != 0) 1243 break; 1244 } 1245 /* 1246 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here. 1247 * We don't do that here since llinfo is not ready yet. 1248 * 1249 * There are also couple of other things to be discussed: 1250 * - unsolicited NA code needs improvement beforehand 1251 * - RFC2461 says we MAY send multicast unsolicited NA 1252 * (7.2.6 paragraph 4), however, it also says that we 1253 * SHOULD provide a mechanism to prevent multicast NA storm. 1254 * we don't have anything like it right now. 1255 * note that the mechanism needs a mutual agreement 1256 * between proxies, which means that we need to implement 1257 * a new protocol, or a new kludge. 1258 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA. 1259 * we need to check ip6forwarding before sending it. 1260 * (or should we allow proxy ND configuration only for 1261 * routers? there's no mention about proxy ND from hosts) 1262 */ 1263 /* FALLTHROUGH */ 1264 case RTM_RESOLVE: 1265 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) { 1266 /* 1267 * Address resolution isn't necessary for a point to 1268 * point link, so we can skip this test for a p2p link. 1269 */ 1270 if (gate->sa_family != AF_LINK || 1271 gate->sa_len < sizeof(null_sdl)) { 1272 log(LOG_DEBUG, 1273 "nd6_rtrequest: bad gateway value: %s\n", 1274 if_name(ifp)); 1275 break; 1276 } 1277 SDL(gate)->sdl_type = ifp->if_type; 1278 SDL(gate)->sdl_index = ifp->if_index; 1279 } 1280 if (ln != NULL) 1281 break; /* This happens on a route change */ 1282 /* 1283 * Case 2: This route may come from cloning, or a manual route 1284 * add with a LL address. 1285 */ 1286 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln)); 1287 rt->rt_llinfo = (caddr_t)ln; 1288 if (ln == NULL) { 1289 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n"); 1290 break; 1291 } 1292 nd6_inuse++; 1293 nd6_allocated++; 1294 bzero(ln, sizeof(*ln)); 1295 ln->ln_rt = rt; 1296 callout_init(&ln->ln_timer_ch, 0); 1297 1298 /* this is required for "ndp" command. - shin */ 1299 if (req == RTM_ADD) { 1300 /* 1301 * gate should have some valid AF_LINK entry, 1302 * and ln->ln_expire should have some lifetime 1303 * which is specified by ndp command. 1304 */ 1305 ln->ln_state = ND6_LLINFO_REACHABLE; 1306 ln->ln_byhint = 0; 1307 } else { 1308 /* 1309 * When req == RTM_RESOLVE, rt is created and 1310 * initialized in rtrequest(), so rt_expire is 0. 1311 */ 1312 ln->ln_state = ND6_LLINFO_NOSTATE; 1313 nd6_llinfo_settimer(ln, 0); 1314 } 1315 rt->rt_flags |= RTF_LLINFO; 1316 ln->ln_next = llinfo_nd6.ln_next; 1317 llinfo_nd6.ln_next = ln; 1318 ln->ln_prev = &llinfo_nd6; 1319 ln->ln_next->ln_prev = ln; 1320 1321 /* 1322 * check if rt_key(rt) is one of my address assigned 1323 * to the interface. 1324 */ 1325 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp, 1326 &SIN6(rt_key(rt))->sin6_addr); 1327 if (ifa) { 1328 caddr_t macp = nd6_ifptomac(ifp); 1329 nd6_llinfo_settimer(ln, -1); 1330 ln->ln_state = ND6_LLINFO_REACHABLE; 1331 ln->ln_byhint = 0; 1332 if (macp) { 1333 bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen); 1334 SDL(gate)->sdl_alen = ifp->if_addrlen; 1335 } 1336 if (nd6_useloopback) { 1337 rt->rt_ifp = &loif[0]; /* XXX */ 1338 /* 1339 * Make sure rt_ifa be equal to the ifaddr 1340 * corresponding to the address. 1341 * We need this because when we refer 1342 * rt_ifa->ia6_flags in ip6_input, we assume 1343 * that the rt_ifa points to the address instead 1344 * of the loopback address. 1345 */ 1346 if (ifa != rt->rt_ifa) { 1347 IFAFREE(rt->rt_ifa); 1348 IFAREF(ifa); 1349 rt->rt_ifa = ifa; 1350 } 1351 } 1352 } else if (rt->rt_flags & RTF_ANNOUNCE) { 1353 nd6_llinfo_settimer(ln, -1); 1354 ln->ln_state = ND6_LLINFO_REACHABLE; 1355 ln->ln_byhint = 0; 1356 1357 /* join solicited node multicast for proxy ND */ 1358 if (ifp->if_flags & IFF_MULTICAST) { 1359 struct in6_addr llsol; 1360 int error; 1361 1362 llsol = SIN6(rt_key(rt))->sin6_addr; 1363 llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; 1364 llsol.s6_addr32[1] = 0; 1365 llsol.s6_addr32[2] = htonl(1); 1366 llsol.s6_addr8[12] = 0xff; 1367 if (in6_setscope(&llsol, ifp, NULL)) 1368 break; 1369 if (in6_addmulti(&llsol, ifp, 1370 &error, 0) == NULL) { 1371 nd6log((LOG_ERR, "%s: failed to join " 1372 "%s (errno=%d)\n", if_name(ifp), 1373 ip6_sprintf(&llsol), error)); 1374 } 1375 } 1376 } 1377 break; 1378 1379 case RTM_DELETE: 1380 if (ln == NULL) 1381 break; 1382 /* leave from solicited node multicast for proxy ND */ 1383 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 && 1384 (ifp->if_flags & IFF_MULTICAST) != 0) { 1385 struct in6_addr llsol; 1386 struct in6_multi *in6m; 1387 1388 llsol = SIN6(rt_key(rt))->sin6_addr; 1389 llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; 1390 llsol.s6_addr32[1] = 0; 1391 llsol.s6_addr32[2] = htonl(1); 1392 llsol.s6_addr8[12] = 0xff; 1393 if (in6_setscope(&llsol, ifp, NULL) == 0) { 1394 IN6_LOOKUP_MULTI(llsol, ifp, in6m); 1395 if (in6m) 1396 in6_delmulti(in6m); 1397 } else 1398 ; /* XXX: should not happen. bark here? */ 1399 } 1400 nd6_inuse--; 1401 ln->ln_next->ln_prev = ln->ln_prev; 1402 ln->ln_prev->ln_next = ln->ln_next; 1403 ln->ln_prev = NULL; 1404 nd6_llinfo_settimer(ln, -1); 1405 rt->rt_llinfo = 0; 1406 rt->rt_flags &= ~RTF_LLINFO; 1407 if (ln->ln_hold) 1408 m_freem(ln->ln_hold); 1409 Free((caddr_t)ln); 1410 } 1411 } 1412 1413 int 1414 nd6_ioctl(cmd, data, ifp) 1415 u_long cmd; 1416 caddr_t data; 1417 struct ifnet *ifp; 1418 { 1419 struct in6_drlist *drl = (struct in6_drlist *)data; 1420 struct in6_oprlist *oprl = (struct in6_oprlist *)data; 1421 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1422 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1423 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1424 struct nd_defrouter *dr; 1425 struct nd_prefix *pr; 1426 struct rtentry *rt; 1427 int i = 0, error = 0; 1428 int s; 1429 1430 switch (cmd) { 1431 case SIOCGDRLST_IN6: 1432 /* 1433 * obsolete API, use sysctl under net.inet6.icmp6 1434 */ 1435 bzero(drl, sizeof(*drl)); 1436 s = splnet(); 1437 dr = TAILQ_FIRST(&nd_defrouter); 1438 while (dr && i < DRLSTSIZ) { 1439 drl->defrouter[i].rtaddr = dr->rtaddr; 1440 in6_clearscope(&drl->defrouter[i].rtaddr); 1441 1442 drl->defrouter[i].flags = dr->flags; 1443 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1444 drl->defrouter[i].expire = dr->expire; 1445 drl->defrouter[i].if_index = dr->ifp->if_index; 1446 i++; 1447 dr = TAILQ_NEXT(dr, dr_entry); 1448 } 1449 splx(s); 1450 break; 1451 case SIOCGPRLST_IN6: 1452 /* 1453 * obsolete API, use sysctl under net.inet6.icmp6 1454 * 1455 * XXX the structure in6_prlist was changed in backward- 1456 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6, 1457 * in6_prlist is used for nd6_sysctl() - fill_prlist(). 1458 */ 1459 /* 1460 * XXX meaning of fields, especialy "raflags", is very 1461 * differnet between RA prefix list and RR/static prefix list. 1462 * how about separating ioctls into two? 1463 */ 1464 bzero(oprl, sizeof(*oprl)); 1465 s = splnet(); 1466 pr = nd_prefix.lh_first; 1467 while (pr && i < PRLSTSIZ) { 1468 struct nd_pfxrouter *pfr; 1469 int j; 1470 1471 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr; 1472 oprl->prefix[i].raflags = pr->ndpr_raf; 1473 oprl->prefix[i].prefixlen = pr->ndpr_plen; 1474 oprl->prefix[i].vltime = pr->ndpr_vltime; 1475 oprl->prefix[i].pltime = pr->ndpr_pltime; 1476 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1477 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 1478 oprl->prefix[i].expire = 0; 1479 else { 1480 time_t maxexpire; 1481 1482 /* XXX: we assume time_t is signed. */ 1483 maxexpire = (-1) & 1484 ~((time_t)1 << 1485 ((sizeof(maxexpire) * 8) - 1)); 1486 if (pr->ndpr_vltime < 1487 maxexpire - pr->ndpr_lastupdate) { 1488 oprl->prefix[i].expire = 1489 pr->ndpr_lastupdate + 1490 pr->ndpr_vltime; 1491 } else 1492 oprl->prefix[i].expire = maxexpire; 1493 } 1494 1495 pfr = pr->ndpr_advrtrs.lh_first; 1496 j = 0; 1497 while (pfr) { 1498 if (j < DRLSTSIZ) { 1499 #define RTRADDR oprl->prefix[i].advrtr[j] 1500 RTRADDR = pfr->router->rtaddr; 1501 in6_clearscope(&RTRADDR); 1502 #undef RTRADDR 1503 } 1504 j++; 1505 pfr = pfr->pfr_next; 1506 } 1507 oprl->prefix[i].advrtrs = j; 1508 oprl->prefix[i].origin = PR_ORIG_RA; 1509 1510 i++; 1511 pr = pr->ndpr_next; 1512 } 1513 splx(s); 1514 1515 break; 1516 case OSIOCGIFINFO_IN6: 1517 #define ND ndi->ndi 1518 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1519 bzero(&ND, sizeof(ND)); 1520 ND.linkmtu = IN6_LINKMTU(ifp); 1521 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1522 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1523 ND.reachable = ND_IFINFO(ifp)->reachable; 1524 ND.retrans = ND_IFINFO(ifp)->retrans; 1525 ND.flags = ND_IFINFO(ifp)->flags; 1526 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1527 ND.chlim = ND_IFINFO(ifp)->chlim; 1528 break; 1529 case SIOCGIFINFO_IN6: 1530 ND = *ND_IFINFO(ifp); 1531 break; 1532 case SIOCSIFINFO_IN6: 1533 /* 1534 * used to change host variables from userland. 1535 * intented for a use on router to reflect RA configurations. 1536 */ 1537 /* 0 means 'unspecified' */ 1538 if (ND.linkmtu != 0) { 1539 if (ND.linkmtu < IPV6_MMTU || 1540 ND.linkmtu > IN6_LINKMTU(ifp)) { 1541 error = EINVAL; 1542 break; 1543 } 1544 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1545 } 1546 1547 if (ND.basereachable != 0) { 1548 int obasereachable = ND_IFINFO(ifp)->basereachable; 1549 1550 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1551 if (ND.basereachable != obasereachable) 1552 ND_IFINFO(ifp)->reachable = 1553 ND_COMPUTE_RTIME(ND.basereachable); 1554 } 1555 if (ND.retrans != 0) 1556 ND_IFINFO(ifp)->retrans = ND.retrans; 1557 if (ND.chlim != 0) 1558 ND_IFINFO(ifp)->chlim = ND.chlim; 1559 /* FALLTHROUGH */ 1560 case SIOCSIFINFO_FLAGS: 1561 ND_IFINFO(ifp)->flags = ND.flags; 1562 break; 1563 #undef ND 1564 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1565 /* sync kernel routing table with the default router list */ 1566 defrouter_reset(); 1567 defrouter_select(); 1568 break; 1569 case SIOCSPFXFLUSH_IN6: 1570 { 1571 /* flush all the prefix advertised by routers */ 1572 struct nd_prefix *pr, *next; 1573 1574 s = splnet(); 1575 for (pr = nd_prefix.lh_first; pr; pr = next) { 1576 struct in6_ifaddr *ia, *ia_next; 1577 1578 next = pr->ndpr_next; 1579 1580 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1581 continue; /* XXX */ 1582 1583 /* do we really have to remove addresses as well? */ 1584 for (ia = in6_ifaddr; ia; ia = ia_next) { 1585 /* ia might be removed. keep the next ptr. */ 1586 ia_next = ia->ia_next; 1587 1588 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1589 continue; 1590 1591 if (ia->ia6_ndpr == pr) 1592 in6_purgeaddr(&ia->ia_ifa); 1593 } 1594 prelist_remove(pr); 1595 } 1596 splx(s); 1597 break; 1598 } 1599 case SIOCSRTRFLUSH_IN6: 1600 { 1601 /* flush all the default routers */ 1602 struct nd_defrouter *dr, *next; 1603 1604 s = splnet(); 1605 defrouter_reset(); 1606 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = next) { 1607 next = TAILQ_NEXT(dr, dr_entry); 1608 defrtrlist_del(dr); 1609 } 1610 defrouter_select(); 1611 splx(s); 1612 break; 1613 } 1614 case SIOCGNBRINFO_IN6: 1615 { 1616 struct llinfo_nd6 *ln; 1617 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1618 1619 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1620 return (error); 1621 1622 s = splnet(); 1623 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) { 1624 error = EINVAL; 1625 splx(s); 1626 break; 1627 } 1628 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1629 nbi->state = ln->ln_state; 1630 nbi->asked = ln->ln_asked; 1631 nbi->isrouter = ln->ln_router; 1632 nbi->expire = ln->ln_expire; 1633 splx(s); 1634 1635 break; 1636 } 1637 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1638 ndif->ifindex = nd6_defifindex; 1639 break; 1640 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1641 return (nd6_setdefaultiface(ndif->ifindex)); 1642 } 1643 return (error); 1644 } 1645 1646 /* 1647 * Create neighbor cache entry and cache link-layer address, 1648 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1649 */ 1650 struct rtentry * 1651 nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code) 1652 struct ifnet *ifp; 1653 struct in6_addr *from; 1654 char *lladdr; 1655 int lladdrlen; 1656 int type; /* ICMP6 type */ 1657 int code; /* type dependent information */ 1658 { 1659 struct rtentry *rt = NULL; 1660 struct llinfo_nd6 *ln = NULL; 1661 int is_newentry; 1662 struct sockaddr_dl *sdl = NULL; 1663 int do_update; 1664 int olladdr; 1665 int llchange; 1666 int newstate = 0; 1667 1668 if (ifp == NULL) 1669 panic("ifp == NULL in nd6_cache_lladdr"); 1670 if (from == NULL) 1671 panic("from == NULL in nd6_cache_lladdr"); 1672 1673 /* nothing must be updated for unspecified address */ 1674 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1675 return NULL; 1676 1677 /* 1678 * Validation about ifp->if_addrlen and lladdrlen must be done in 1679 * the caller. 1680 * 1681 * XXX If the link does not have link-layer adderss, what should 1682 * we do? (ifp->if_addrlen == 0) 1683 * Spec says nothing in sections for RA, RS and NA. There's small 1684 * description on it in NS section (RFC 2461 7.2.3). 1685 */ 1686 1687 rt = nd6_lookup(from, 0, ifp); 1688 if (rt == NULL) { 1689 rt = nd6_lookup(from, 1, ifp); 1690 is_newentry = 1; 1691 } else { 1692 /* do nothing if static ndp is set */ 1693 if (rt->rt_flags & RTF_STATIC) 1694 return NULL; 1695 is_newentry = 0; 1696 } 1697 1698 if (rt == NULL) 1699 return NULL; 1700 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) { 1701 fail: 1702 (void)nd6_free(rt, 0); 1703 return NULL; 1704 } 1705 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1706 if (ln == NULL) 1707 goto fail; 1708 if (rt->rt_gateway == NULL) 1709 goto fail; 1710 if (rt->rt_gateway->sa_family != AF_LINK) 1711 goto fail; 1712 sdl = SDL(rt->rt_gateway); 1713 1714 olladdr = (sdl->sdl_alen) ? 1 : 0; 1715 if (olladdr && lladdr) { 1716 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen)) 1717 llchange = 1; 1718 else 1719 llchange = 0; 1720 } else 1721 llchange = 0; 1722 1723 /* 1724 * newentry olladdr lladdr llchange (*=record) 1725 * 0 n n -- (1) 1726 * 0 y n -- (2) 1727 * 0 n y -- (3) * STALE 1728 * 0 y y n (4) * 1729 * 0 y y y (5) * STALE 1730 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1731 * 1 -- y -- (7) * STALE 1732 */ 1733 1734 if (lladdr) { /* (3-5) and (7) */ 1735 /* 1736 * Record source link-layer address 1737 * XXX is it dependent to ifp->if_type? 1738 */ 1739 sdl->sdl_alen = ifp->if_addrlen; 1740 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen); 1741 } 1742 1743 if (!is_newentry) { 1744 if ((!olladdr && lladdr != NULL) || /* (3) */ 1745 (olladdr && lladdr != NULL && llchange)) { /* (5) */ 1746 do_update = 1; 1747 newstate = ND6_LLINFO_STALE; 1748 } else /* (1-2,4) */ 1749 do_update = 0; 1750 } else { 1751 do_update = 1; 1752 if (lladdr == NULL) /* (6) */ 1753 newstate = ND6_LLINFO_NOSTATE; 1754 else /* (7) */ 1755 newstate = ND6_LLINFO_STALE; 1756 } 1757 1758 if (do_update) { 1759 /* 1760 * Update the state of the neighbor cache. 1761 */ 1762 ln->ln_state = newstate; 1763 1764 if (ln->ln_state == ND6_LLINFO_STALE) { 1765 /* 1766 * XXX: since nd6_output() below will cause 1767 * state tansition to DELAY and reset the timer, 1768 * we must set the timer now, although it is actually 1769 * meaningless. 1770 */ 1771 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 1772 1773 if (ln->ln_hold) { 1774 struct mbuf *m_hold, *m_hold_next; 1775 for (m_hold = ln->ln_hold; m_hold; 1776 m_hold = m_hold_next) { 1777 struct mbuf *mpkt = NULL; 1778 1779 m_hold_next = m_hold->m_nextpkt; 1780 mpkt = m_copym(m_hold, 0, M_COPYALL, M_DONTWAIT); 1781 if (mpkt == NULL) { 1782 m_freem(m_hold); 1783 break; 1784 } 1785 mpkt->m_nextpkt = NULL; 1786 1787 /* 1788 * we assume ifp is not a p2p here, so 1789 * just set the 2nd argument as the 1790 * 1st one. 1791 */ 1792 nd6_output(ifp, ifp, mpkt, 1793 (struct sockaddr_in6 *)rt_key(rt), 1794 rt); 1795 } 1796 ln->ln_hold = NULL; 1797 } 1798 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 1799 /* probe right away */ 1800 nd6_llinfo_settimer((void *)ln, 0); 1801 } 1802 } 1803 1804 /* 1805 * ICMP6 type dependent behavior. 1806 * 1807 * NS: clear IsRouter if new entry 1808 * RS: clear IsRouter 1809 * RA: set IsRouter if there's lladdr 1810 * redir: clear IsRouter if new entry 1811 * 1812 * RA case, (1): 1813 * The spec says that we must set IsRouter in the following cases: 1814 * - If lladdr exist, set IsRouter. This means (1-5). 1815 * - If it is old entry (!newentry), set IsRouter. This means (7). 1816 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1817 * A quetion arises for (1) case. (1) case has no lladdr in the 1818 * neighbor cache, this is similar to (6). 1819 * This case is rare but we figured that we MUST NOT set IsRouter. 1820 * 1821 * newentry olladdr lladdr llchange NS RS RA redir 1822 * D R 1823 * 0 n n -- (1) c ? s 1824 * 0 y n -- (2) c s s 1825 * 0 n y -- (3) c s s 1826 * 0 y y n (4) c s s 1827 * 0 y y y (5) c s s 1828 * 1 -- n -- (6) c c c s 1829 * 1 -- y -- (7) c c s c s 1830 * 1831 * (c=clear s=set) 1832 */ 1833 switch (type & 0xff) { 1834 case ND_NEIGHBOR_SOLICIT: 1835 /* 1836 * New entry must have is_router flag cleared. 1837 */ 1838 if (is_newentry) /* (6-7) */ 1839 ln->ln_router = 0; 1840 break; 1841 case ND_REDIRECT: 1842 /* 1843 * If the icmp is a redirect to a better router, always set the 1844 * is_router flag. Otherwise, if the entry is newly created, 1845 * clear the flag. [RFC 2461, sec 8.3] 1846 */ 1847 if (code == ND_REDIRECT_ROUTER) 1848 ln->ln_router = 1; 1849 else if (is_newentry) /* (6-7) */ 1850 ln->ln_router = 0; 1851 break; 1852 case ND_ROUTER_SOLICIT: 1853 /* 1854 * is_router flag must always be cleared. 1855 */ 1856 ln->ln_router = 0; 1857 break; 1858 case ND_ROUTER_ADVERT: 1859 /* 1860 * Mark an entry with lladdr as a router. 1861 */ 1862 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ 1863 (is_newentry && lladdr)) { /* (7) */ 1864 ln->ln_router = 1; 1865 } 1866 break; 1867 } 1868 1869 /* 1870 * When the link-layer address of a router changes, select the 1871 * best router again. In particular, when the neighbor entry is newly 1872 * created, it might affect the selection policy. 1873 * Question: can we restrict the first condition to the "is_newentry" 1874 * case? 1875 * XXX: when we hear an RA from a new router with the link-layer 1876 * address option, defrouter_select() is called twice, since 1877 * defrtrlist_update called the function as well. However, I believe 1878 * we can compromise the overhead, since it only happens the first 1879 * time. 1880 * XXX: although defrouter_select() should not have a bad effect 1881 * for those are not autoconfigured hosts, we explicitly avoid such 1882 * cases for safety. 1883 */ 1884 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv) 1885 defrouter_select(); 1886 1887 return rt; 1888 } 1889 1890 static void 1891 nd6_slowtimo(ignored_arg) 1892 void *ignored_arg; 1893 { 1894 struct nd_ifinfo *nd6if; 1895 struct ifnet *ifp; 1896 1897 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 1898 nd6_slowtimo, NULL); 1899 IFNET_RLOCK(); 1900 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) { 1901 nd6if = ND_IFINFO(ifp); 1902 if (nd6if->basereachable && /* already initialized */ 1903 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 1904 /* 1905 * Since reachable time rarely changes by router 1906 * advertisements, we SHOULD insure that a new random 1907 * value gets recomputed at least once every few hours. 1908 * (RFC 2461, 6.3.4) 1909 */ 1910 nd6if->recalctm = nd6_recalc_reachtm_interval; 1911 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 1912 } 1913 } 1914 IFNET_RUNLOCK(); 1915 } 1916 1917 #define senderr(e) { error = (e); goto bad;} 1918 int 1919 nd6_output(ifp, origifp, m0, dst, rt0) 1920 struct ifnet *ifp; 1921 struct ifnet *origifp; 1922 struct mbuf *m0; 1923 struct sockaddr_in6 *dst; 1924 struct rtentry *rt0; 1925 { 1926 struct mbuf *m = m0; 1927 struct rtentry *rt = rt0; 1928 struct sockaddr_in6 *gw6 = NULL; 1929 struct llinfo_nd6 *ln = NULL; 1930 int error = 0; 1931 1932 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 1933 goto sendpkt; 1934 1935 if (nd6_need_cache(ifp) == 0) 1936 goto sendpkt; 1937 1938 /* 1939 * next hop determination. This routine is derived from ether_output. 1940 */ 1941 again: 1942 if (rt) { 1943 if ((rt->rt_flags & RTF_UP) == 0) { 1944 rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL); 1945 if (rt != NULL) { 1946 RT_REMREF(rt); 1947 RT_UNLOCK(rt); 1948 if (rt->rt_ifp != ifp) 1949 /* 1950 * XXX maybe we should update ifp too, 1951 * but the original code didn't and I 1952 * don't know what is correct here. 1953 */ 1954 goto again; 1955 } else 1956 senderr(EHOSTUNREACH); 1957 } 1958 1959 if (rt->rt_flags & RTF_GATEWAY) { 1960 gw6 = (struct sockaddr_in6 *)rt->rt_gateway; 1961 1962 /* 1963 * We skip link-layer address resolution and NUD 1964 * if the gateway is not a neighbor from ND point 1965 * of view, regardless of the value of nd_ifinfo.flags. 1966 * The second condition is a bit tricky; we skip 1967 * if the gateway is our own address, which is 1968 * sometimes used to install a route to a p2p link. 1969 */ 1970 if (!nd6_is_addr_neighbor(gw6, ifp) || 1971 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) { 1972 /* 1973 * We allow this kind of tricky route only 1974 * when the outgoing interface is p2p. 1975 * XXX: we may need a more generic rule here. 1976 */ 1977 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1978 senderr(EHOSTUNREACH); 1979 1980 goto sendpkt; 1981 } 1982 1983 if (rt->rt_gwroute == 0) 1984 goto lookup; 1985 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) { 1986 RT_LOCK(rt); 1987 rtfree(rt); rt = rt0; 1988 lookup: 1989 rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1, 0UL); 1990 if ((rt = rt->rt_gwroute) == 0) 1991 senderr(EHOSTUNREACH); 1992 RT_UNLOCK(rt); 1993 } 1994 } 1995 } 1996 1997 /* 1998 * Address resolution or Neighbor Unreachability Detection 1999 * for the next hop. 2000 * At this point, the destination of the packet must be a unicast 2001 * or an anycast address(i.e. not a multicast). 2002 */ 2003 2004 /* Look up the neighbor cache for the nexthop */ 2005 if (rt && (rt->rt_flags & RTF_LLINFO) != 0) 2006 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 2007 else { 2008 /* 2009 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2010 * the condition below is not very efficient. But we believe 2011 * it is tolerable, because this should be a rare case. 2012 */ 2013 if (nd6_is_addr_neighbor(dst, ifp) && 2014 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL) 2015 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 2016 } 2017 if (ln == NULL || rt == NULL) { 2018 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && 2019 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 2020 log(LOG_DEBUG, 2021 "nd6_output: can't allocate llinfo for %s " 2022 "(ln=%p, rt=%p)\n", 2023 ip6_sprintf(&dst->sin6_addr), ln, rt); 2024 senderr(EIO); /* XXX: good error? */ 2025 } 2026 2027 goto sendpkt; /* send anyway */ 2028 } 2029 2030 /* We don't have to do link-layer address resolution on a p2p link. */ 2031 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 2032 ln->ln_state < ND6_LLINFO_REACHABLE) { 2033 ln->ln_state = ND6_LLINFO_STALE; 2034 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 2035 } 2036 2037 /* 2038 * The first time we send a packet to a neighbor whose entry is 2039 * STALE, we have to change the state to DELAY and a sets a timer to 2040 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2041 * neighbor unreachability detection on expiration. 2042 * (RFC 2461 7.3.3) 2043 */ 2044 if (ln->ln_state == ND6_LLINFO_STALE) { 2045 ln->ln_asked = 0; 2046 ln->ln_state = ND6_LLINFO_DELAY; 2047 nd6_llinfo_settimer(ln, (long)nd6_delay * hz); 2048 } 2049 2050 /* 2051 * If the neighbor cache entry has a state other than INCOMPLETE 2052 * (i.e. its link-layer address is already resolved), just 2053 * send the packet. 2054 */ 2055 if (ln->ln_state > ND6_LLINFO_INCOMPLETE) 2056 goto sendpkt; 2057 2058 /* 2059 * There is a neighbor cache entry, but no ethernet address 2060 * response yet. Append this latest packet to the end of the 2061 * packet queue in the mbuf, unless the number of the packet 2062 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen, 2063 * the oldest packet in the queue will be removed. 2064 */ 2065 if (ln->ln_state == ND6_LLINFO_NOSTATE) 2066 ln->ln_state = ND6_LLINFO_INCOMPLETE; 2067 if (ln->ln_hold) { 2068 struct mbuf *m_hold; 2069 int i; 2070 2071 i = 0; 2072 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) { 2073 i++; 2074 if (m_hold->m_nextpkt == NULL) { 2075 m_hold->m_nextpkt = m; 2076 break; 2077 } 2078 } 2079 while (i >= nd6_maxqueuelen) { 2080 m_hold = ln->ln_hold; 2081 ln->ln_hold = ln->ln_hold->m_nextpkt; 2082 m_free(m_hold); 2083 i--; 2084 } 2085 } else { 2086 ln->ln_hold = m; 2087 } 2088 2089 /* 2090 * If there has been no NS for the neighbor after entering the 2091 * INCOMPLETE state, send the first solicitation. 2092 */ 2093 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) { 2094 ln->ln_asked++; 2095 nd6_llinfo_settimer(ln, 2096 (long)ND_IFINFO(ifp)->retrans * hz / 1000); 2097 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); 2098 } 2099 return (0); 2100 2101 sendpkt: 2102 /* discard the packet if IPv6 operation is disabled on the interface */ 2103 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2104 error = ENETDOWN; /* better error? */ 2105 goto bad; 2106 } 2107 2108 #ifdef IPSEC 2109 /* clean ipsec history once it goes out of the node */ 2110 ipsec_delaux(m); 2111 #endif 2112 2113 #ifdef MAC 2114 mac_create_mbuf_linklayer(ifp, m); 2115 #endif 2116 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 2117 return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst, 2118 rt)); 2119 } 2120 return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt)); 2121 2122 bad: 2123 if (m) 2124 m_freem(m); 2125 return (error); 2126 } 2127 #undef senderr 2128 2129 int 2130 nd6_need_cache(ifp) 2131 struct ifnet *ifp; 2132 { 2133 /* 2134 * XXX: we currently do not make neighbor cache on any interface 2135 * other than ARCnet, Ethernet, FDDI and GIF. 2136 * 2137 * RFC2893 says: 2138 * - unidirectional tunnels needs no ND 2139 */ 2140 switch (ifp->if_type) { 2141 case IFT_ARCNET: 2142 case IFT_ETHER: 2143 case IFT_FDDI: 2144 case IFT_IEEE1394: 2145 #ifdef IFT_L2VLAN 2146 case IFT_L2VLAN: 2147 #endif 2148 #ifdef IFT_IEEE80211 2149 case IFT_IEEE80211: 2150 #endif 2151 #ifdef IFT_CARP 2152 case IFT_CARP: 2153 #endif 2154 case IFT_GIF: /* XXX need more cases? */ 2155 case IFT_PPP: 2156 case IFT_TUNNEL: 2157 case IFT_BRIDGE: 2158 return (1); 2159 default: 2160 return (0); 2161 } 2162 } 2163 2164 int 2165 nd6_storelladdr(ifp, rt0, m, dst, desten) 2166 struct ifnet *ifp; 2167 struct rtentry *rt0; 2168 struct mbuf *m; 2169 struct sockaddr *dst; 2170 u_char *desten; 2171 { 2172 struct sockaddr_dl *sdl; 2173 struct rtentry *rt; 2174 int error; 2175 2176 if (m->m_flags & M_MCAST) { 2177 int i; 2178 2179 switch (ifp->if_type) { 2180 case IFT_ETHER: 2181 case IFT_FDDI: 2182 #ifdef IFT_L2VLAN 2183 case IFT_L2VLAN: 2184 #endif 2185 #ifdef IFT_IEEE80211 2186 case IFT_IEEE80211: 2187 #endif 2188 case IFT_BRIDGE: 2189 case IFT_ISO88025: 2190 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, 2191 desten); 2192 return (0); 2193 case IFT_IEEE1394: 2194 /* 2195 * netbsd can use if_broadcastaddr, but we don't do so 2196 * to reduce # of ifdef. 2197 */ 2198 for (i = 0; i < ifp->if_addrlen; i++) 2199 desten[i] = ~0; 2200 return (0); 2201 case IFT_ARCNET: 2202 *desten = 0; 2203 return (0); 2204 default: 2205 m_freem(m); 2206 return (EAFNOSUPPORT); 2207 } 2208 } 2209 2210 if (rt0 == NULL) { 2211 /* this could happen, if we could not allocate memory */ 2212 m_freem(m); 2213 return (ENOMEM); 2214 } 2215 2216 error = rt_check(&rt, &rt0, dst); 2217 if (error) { 2218 m_freem(m); 2219 return (error); 2220 } 2221 RT_UNLOCK(rt); 2222 2223 if (rt->rt_gateway->sa_family != AF_LINK) { 2224 printf("nd6_storelladdr: something odd happens\n"); 2225 m_freem(m); 2226 return (EINVAL); 2227 } 2228 sdl = SDL(rt->rt_gateway); 2229 if (sdl->sdl_alen == 0) { 2230 /* this should be impossible, but we bark here for debugging */ 2231 printf("nd6_storelladdr: sdl_alen == 0\n"); 2232 m_freem(m); 2233 return (EINVAL); 2234 } 2235 2236 bcopy(LLADDR(sdl), desten, sdl->sdl_alen); 2237 return (0); 2238 } 2239 2240 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); 2241 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); 2242 #ifdef SYSCTL_DECL 2243 SYSCTL_DECL(_net_inet6_icmp6); 2244 #endif 2245 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, 2246 CTLFLAG_RD, nd6_sysctl_drlist, ""); 2247 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2248 CTLFLAG_RD, nd6_sysctl_prlist, ""); 2249 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2250 CTLFLAG_RW, &nd6_maxqueuelen, 1, ""); 2251 2252 static int 2253 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) 2254 { 2255 int error; 2256 char buf[1024]; 2257 struct in6_defrouter *d, *de; 2258 struct nd_defrouter *dr; 2259 2260 if (req->newptr) 2261 return EPERM; 2262 error = 0; 2263 2264 for (dr = TAILQ_FIRST(&nd_defrouter); dr; 2265 dr = TAILQ_NEXT(dr, dr_entry)) { 2266 d = (struct in6_defrouter *)buf; 2267 de = (struct in6_defrouter *)(buf + sizeof(buf)); 2268 2269 if (d + 1 <= de) { 2270 bzero(d, sizeof(*d)); 2271 d->rtaddr.sin6_family = AF_INET6; 2272 d->rtaddr.sin6_len = sizeof(d->rtaddr); 2273 d->rtaddr.sin6_addr = dr->rtaddr; 2274 sa6_recoverscope(&d->rtaddr); 2275 d->flags = dr->flags; 2276 d->rtlifetime = dr->rtlifetime; 2277 d->expire = dr->expire; 2278 d->if_index = dr->ifp->if_index; 2279 } else 2280 panic("buffer too short"); 2281 2282 error = SYSCTL_OUT(req, buf, sizeof(*d)); 2283 if (error) 2284 break; 2285 } 2286 2287 return (error); 2288 } 2289 2290 static int 2291 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2292 { 2293 int error; 2294 char buf[1024]; 2295 struct in6_prefix *p, *pe; 2296 struct nd_prefix *pr; 2297 2298 if (req->newptr) 2299 return EPERM; 2300 error = 0; 2301 2302 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { 2303 u_short advrtrs; 2304 size_t advance; 2305 struct sockaddr_in6 *sin6, *s6; 2306 struct nd_pfxrouter *pfr; 2307 2308 p = (struct in6_prefix *)buf; 2309 pe = (struct in6_prefix *)(buf + sizeof(buf)); 2310 2311 if (p + 1 <= pe) { 2312 bzero(p, sizeof(*p)); 2313 sin6 = (struct sockaddr_in6 *)(p + 1); 2314 2315 p->prefix = pr->ndpr_prefix; 2316 if (sa6_recoverscope(&p->prefix)) { 2317 log(LOG_ERR, 2318 "scope error in prefix list (%s)\n", 2319 ip6_sprintf(&p->prefix.sin6_addr)); 2320 /* XXX: press on... */ 2321 } 2322 p->raflags = pr->ndpr_raf; 2323 p->prefixlen = pr->ndpr_plen; 2324 p->vltime = pr->ndpr_vltime; 2325 p->pltime = pr->ndpr_pltime; 2326 p->if_index = pr->ndpr_ifp->if_index; 2327 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2328 p->expire = 0; 2329 else { 2330 time_t maxexpire; 2331 2332 /* XXX: we assume time_t is signed. */ 2333 maxexpire = (-1) & 2334 ~((time_t)1 << 2335 ((sizeof(maxexpire) * 8) - 1)); 2336 if (pr->ndpr_vltime < 2337 maxexpire - pr->ndpr_lastupdate) { 2338 p->expire = pr->ndpr_lastupdate + 2339 pr->ndpr_vltime; 2340 } else 2341 p->expire = maxexpire; 2342 } 2343 p->refcnt = pr->ndpr_refcnt; 2344 p->flags = pr->ndpr_stateflags; 2345 p->origin = PR_ORIG_RA; 2346 advrtrs = 0; 2347 for (pfr = pr->ndpr_advrtrs.lh_first; pfr; 2348 pfr = pfr->pfr_next) { 2349 if ((void *)&sin6[advrtrs + 1] > (void *)pe) { 2350 advrtrs++; 2351 continue; 2352 } 2353 s6 = &sin6[advrtrs]; 2354 bzero(s6, sizeof(*s6)); 2355 s6->sin6_family = AF_INET6; 2356 s6->sin6_len = sizeof(*sin6); 2357 s6->sin6_addr = pfr->router->rtaddr; 2358 if (sa6_recoverscope(s6)) { 2359 log(LOG_ERR, 2360 "scope error in " 2361 "prefix list (%s)\n", 2362 ip6_sprintf(&pfr->router->rtaddr)); 2363 } 2364 advrtrs++; 2365 } 2366 p->advrtrs = advrtrs; 2367 } else 2368 panic("buffer too short"); 2369 2370 advance = sizeof(*p) + sizeof(*sin6) * advrtrs; 2371 error = SYSCTL_OUT(req, buf, advance); 2372 if (error) 2373 break; 2374 } 2375 2376 return (error); 2377 } 2378