xref: /freebsd/sys/netinet6/nd6.c (revision 1f88aa09417f1cfb3929fd37531b1ab51213c2d6)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 #include "opt_route.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/eventhandler.h>
44 #include <sys/callout.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/mutex.h>
49 #include <sys/socket.h>
50 #include <sys/sockio.h>
51 #include <sys/time.h>
52 #include <sys/kernel.h>
53 #include <sys/protosw.h>
54 #include <sys/errno.h>
55 #include <sys/syslog.h>
56 #include <sys/rwlock.h>
57 #include <sys/queue.h>
58 #include <sys/sdt.h>
59 #include <sys/sysctl.h>
60 
61 #include <net/if.h>
62 #include <net/if_var.h>
63 #include <net/if_dl.h>
64 #include <net/if_types.h>
65 #include <net/route.h>
66 #include <net/route/route_ctl.h>
67 #include <net/route/nhop.h>
68 #include <net/vnet.h>
69 
70 #include <netinet/in.h>
71 #include <netinet/in_kdtrace.h>
72 #include <net/if_llatbl.h>
73 #include <netinet/if_ether.h>
74 #include <netinet6/in6_var.h>
75 #include <netinet/ip6.h>
76 #include <netinet6/ip6_var.h>
77 #include <netinet6/scope6_var.h>
78 #include <netinet6/nd6.h>
79 #include <netinet6/in6_ifattach.h>
80 #include <netinet/icmp6.h>
81 #include <netinet6/send.h>
82 
83 #include <sys/limits.h>
84 
85 #include <security/mac/mac_framework.h>
86 
87 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
88 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
89 
90 #define SIN6(s) ((const struct sockaddr_in6 *)(s))
91 
92 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
93 
94 /* timer values */
95 VNET_DEFINE(int, nd6_prune)	= 1;	/* walk list every 1 seconds */
96 VNET_DEFINE(int, nd6_delay)	= 5;	/* delay first probe time 5 second */
97 VNET_DEFINE(int, nd6_umaxtries)	= 3;	/* maximum unicast query */
98 VNET_DEFINE(int, nd6_mmaxtries)	= 3;	/* maximum multicast query */
99 VNET_DEFINE(int, nd6_useloopback) = 1;	/* use loopback interface for
100 					 * local traffic */
101 VNET_DEFINE(int, nd6_gctimer)	= (60 * 60 * 24); /* 1 day: garbage
102 					 * collection timer */
103 
104 /* preventing too many loops in ND option parsing */
105 VNET_DEFINE_STATIC(int, nd6_maxndopt) = 10; /* max # of ND options allowed */
106 
107 VNET_DEFINE(int, nd6_maxnudhint) = 0;	/* max # of subsequent upper
108 					 * layer hints */
109 VNET_DEFINE_STATIC(int, nd6_maxqueuelen) = 16; /* max pkts cached in unresolved
110 					 * ND entries */
111 #define	V_nd6_maxndopt			VNET(nd6_maxndopt)
112 #define	V_nd6_maxqueuelen		VNET(nd6_maxqueuelen)
113 
114 #ifdef ND6_DEBUG
115 VNET_DEFINE(int, nd6_debug) = 1;
116 #else
117 VNET_DEFINE(int, nd6_debug) = 0;
118 #endif
119 
120 static eventhandler_tag lle_event_eh, iflladdr_event_eh, ifnet_link_event_eh;
121 
122 VNET_DEFINE(struct nd_prhead, nd_prefix);
123 VNET_DEFINE(struct rwlock, nd6_lock);
124 VNET_DEFINE(uint64_t, nd6_list_genid);
125 VNET_DEFINE(struct mtx, nd6_onlink_mtx);
126 
127 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL;
128 #define	V_nd6_recalc_reachtm_interval	VNET(nd6_recalc_reachtm_interval)
129 
130 int	(*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int);
131 
132 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *,
133 	struct ifnet *);
134 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
135 static void nd6_slowtimo(void *);
136 static int regen_tmpaddr(struct in6_ifaddr *);
137 static void nd6_free(struct llentry **, int);
138 static void nd6_free_redirect(const struct llentry *);
139 static void nd6_llinfo_timer(void *);
140 static void nd6_llinfo_settimer_locked(struct llentry *, long);
141 static void clear_llinfo_pqueue(struct llentry *);
142 static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *,
143     const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **);
144 static int nd6_need_cache(struct ifnet *);
145 
146 VNET_DEFINE_STATIC(struct callout, nd6_slowtimo_ch);
147 #define	V_nd6_slowtimo_ch		VNET(nd6_slowtimo_ch)
148 
149 VNET_DEFINE_STATIC(struct callout, nd6_timer_ch);
150 #define	V_nd6_timer_ch			VNET(nd6_timer_ch)
151 
152 SYSCTL_DECL(_net_inet6_icmp6);
153 
154 static void
155 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt)
156 {
157 	struct rt_addrinfo rtinfo;
158 	struct sockaddr_in6 dst;
159 	struct sockaddr_dl gw;
160 	struct ifnet *ifp;
161 	int type;
162 	int fibnum;
163 
164 	LLE_WLOCK_ASSERT(lle);
165 
166 	if (lltable_get_af(lle->lle_tbl) != AF_INET6)
167 		return;
168 
169 	switch (evt) {
170 	case LLENTRY_RESOLVED:
171 		type = RTM_ADD;
172 		KASSERT(lle->la_flags & LLE_VALID,
173 		    ("%s: %p resolved but not valid?", __func__, lle));
174 		break;
175 	case LLENTRY_EXPIRED:
176 		type = RTM_DELETE;
177 		break;
178 	default:
179 		return;
180 	}
181 
182 	ifp = lltable_get_ifp(lle->lle_tbl);
183 
184 	bzero(&dst, sizeof(dst));
185 	bzero(&gw, sizeof(gw));
186 	bzero(&rtinfo, sizeof(rtinfo));
187 	lltable_fill_sa_entry(lle, (struct sockaddr *)&dst);
188 	dst.sin6_scope_id = in6_getscopezone(ifp,
189 	    in6_addrscope(&dst.sin6_addr));
190 	gw.sdl_len = sizeof(struct sockaddr_dl);
191 	gw.sdl_family = AF_LINK;
192 	gw.sdl_alen = ifp->if_addrlen;
193 	gw.sdl_index = ifp->if_index;
194 	gw.sdl_type = ifp->if_type;
195 	if (evt == LLENTRY_RESOLVED)
196 		bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen);
197 	rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst;
198 	rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw;
199 	rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY;
200 	fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib;
201 	rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | (
202 	    type == RTM_ADD ? RTF_UP: 0), 0, fibnum);
203 }
204 
205 /*
206  * A handler for interface link layer address change event.
207  */
208 static void
209 nd6_iflladdr(void *arg __unused, struct ifnet *ifp)
210 {
211 	if (ifp->if_afdata[AF_INET6] == NULL)
212 		return;
213 
214 	lltable_update_ifaddr(LLTABLE6(ifp));
215 }
216 
217 void
218 nd6_init(void)
219 {
220 
221 	mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF);
222 	rw_init(&V_nd6_lock, "nd6 list");
223 
224 	LIST_INIT(&V_nd_prefix);
225 	nd6_defrouter_init();
226 
227 	/* Start timers. */
228 	callout_init(&V_nd6_slowtimo_ch, 0);
229 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
230 	    nd6_slowtimo, curvnet);
231 
232 	callout_init(&V_nd6_timer_ch, 0);
233 	callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet);
234 
235 	nd6_dad_init();
236 	if (IS_DEFAULT_VNET(curvnet)) {
237 		lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event,
238 		    NULL, EVENTHANDLER_PRI_ANY);
239 		iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event,
240 		    nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
241 		ifnet_link_event_eh = EVENTHANDLER_REGISTER(ifnet_link_event,
242 		    nd6_ifnet_link_event, NULL, EVENTHANDLER_PRI_ANY);
243 	}
244 }
245 
246 #ifdef VIMAGE
247 void
248 nd6_destroy()
249 {
250 
251 	callout_drain(&V_nd6_slowtimo_ch);
252 	callout_drain(&V_nd6_timer_ch);
253 	if (IS_DEFAULT_VNET(curvnet)) {
254 		EVENTHANDLER_DEREGISTER(ifnet_link_event, ifnet_link_event_eh);
255 		EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh);
256 		EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh);
257 	}
258 	rw_destroy(&V_nd6_lock);
259 	mtx_destroy(&V_nd6_onlink_mtx);
260 }
261 #endif
262 
263 struct nd_ifinfo *
264 nd6_ifattach(struct ifnet *ifp)
265 {
266 	struct nd_ifinfo *nd;
267 
268 	nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO);
269 	nd->initialized = 1;
270 
271 	nd->chlim = IPV6_DEFHLIM;
272 	nd->basereachable = REACHABLE_TIME;
273 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
274 	nd->retrans = RETRANS_TIMER;
275 
276 	nd->flags = ND6_IFF_PERFORMNUD;
277 
278 	/* Set IPv6 disabled on all interfaces but loopback by default. */
279 	if ((ifp->if_flags & IFF_LOOPBACK) == 0)
280 		nd->flags |= ND6_IFF_IFDISABLED;
281 
282 	/* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
283 	 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by
284 	 * default regardless of the V_ip6_auto_linklocal configuration to
285 	 * give a reasonable default behavior.
286 	 */
287 	if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
288 	    (ifp->if_flags & IFF_LOOPBACK))
289 		nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
290 	/*
291 	 * A loopback interface does not need to accept RTADV.
292 	 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by
293 	 * default regardless of the V_ip6_accept_rtadv configuration to
294 	 * prevent the interface from accepting RA messages arrived
295 	 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV.
296 	 */
297 	if (V_ip6_accept_rtadv &&
298 	    !(ifp->if_flags & IFF_LOOPBACK) &&
299 	    (ifp->if_type != IFT_BRIDGE)) {
300 			nd->flags |= ND6_IFF_ACCEPT_RTADV;
301 			/* If we globally accept rtadv, assume IPv6 on. */
302 			nd->flags &= ~ND6_IFF_IFDISABLED;
303 	}
304 	if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK))
305 		nd->flags |= ND6_IFF_NO_RADR;
306 
307 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
308 	nd6_setmtu0(ifp, nd);
309 
310 	return nd;
311 }
312 
313 void
314 nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd)
315 {
316 	struct epoch_tracker et;
317 	struct ifaddr *ifa, *next;
318 
319 	NET_EPOCH_ENTER(et);
320 	CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) {
321 		if (ifa->ifa_addr->sa_family != AF_INET6)
322 			continue;
323 
324 		/* stop DAD processing */
325 		nd6_dad_stop(ifa);
326 	}
327 	NET_EPOCH_EXIT(et);
328 
329 	free(nd, M_IP6NDP);
330 }
331 
332 /*
333  * Reset ND level link MTU. This function is called when the physical MTU
334  * changes, which means we might have to adjust the ND level MTU.
335  */
336 void
337 nd6_setmtu(struct ifnet *ifp)
338 {
339 	if (ifp->if_afdata[AF_INET6] == NULL)
340 		return;
341 
342 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
343 }
344 
345 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
346 void
347 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
348 {
349 	u_int32_t omaxmtu;
350 
351 	omaxmtu = ndi->maxmtu;
352 	ndi->maxmtu = ifp->if_mtu;
353 
354 	/*
355 	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
356 	 * undesirable situation.  We thus notify the operator of the change
357 	 * explicitly.  The check for omaxmtu is necessary to restrict the
358 	 * log to the case of changing the MTU, not initializing it.
359 	 */
360 	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
361 		log(LOG_NOTICE, "nd6_setmtu0: "
362 		    "new link MTU on %s (%lu) is too small for IPv6\n",
363 		    if_name(ifp), (unsigned long)ndi->maxmtu);
364 	}
365 
366 	if (ndi->maxmtu > V_in6_maxmtu)
367 		in6_setmaxmtu(); /* check all interfaces just in case */
368 
369 }
370 
371 void
372 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
373 {
374 
375 	bzero(ndopts, sizeof(*ndopts));
376 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
377 	ndopts->nd_opts_last
378 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
379 
380 	if (icmp6len == 0) {
381 		ndopts->nd_opts_done = 1;
382 		ndopts->nd_opts_search = NULL;
383 	}
384 }
385 
386 /*
387  * Take one ND option.
388  */
389 struct nd_opt_hdr *
390 nd6_option(union nd_opts *ndopts)
391 {
392 	struct nd_opt_hdr *nd_opt;
393 	int olen;
394 
395 	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
396 	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
397 	    __func__));
398 	if (ndopts->nd_opts_search == NULL)
399 		return NULL;
400 	if (ndopts->nd_opts_done)
401 		return NULL;
402 
403 	nd_opt = ndopts->nd_opts_search;
404 
405 	/* make sure nd_opt_len is inside the buffer */
406 	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
407 		bzero(ndopts, sizeof(*ndopts));
408 		return NULL;
409 	}
410 
411 	olen = nd_opt->nd_opt_len << 3;
412 	if (olen == 0) {
413 		/*
414 		 * Message validation requires that all included
415 		 * options have a length that is greater than zero.
416 		 */
417 		bzero(ndopts, sizeof(*ndopts));
418 		return NULL;
419 	}
420 
421 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
422 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
423 		/* option overruns the end of buffer, invalid */
424 		bzero(ndopts, sizeof(*ndopts));
425 		return NULL;
426 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
427 		/* reached the end of options chain */
428 		ndopts->nd_opts_done = 1;
429 		ndopts->nd_opts_search = NULL;
430 	}
431 	return nd_opt;
432 }
433 
434 /*
435  * Parse multiple ND options.
436  * This function is much easier to use, for ND routines that do not need
437  * multiple options of the same type.
438  */
439 int
440 nd6_options(union nd_opts *ndopts)
441 {
442 	struct nd_opt_hdr *nd_opt;
443 	int i = 0;
444 
445 	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
446 	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
447 	    __func__));
448 	if (ndopts->nd_opts_search == NULL)
449 		return 0;
450 
451 	while (1) {
452 		nd_opt = nd6_option(ndopts);
453 		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
454 			/*
455 			 * Message validation requires that all included
456 			 * options have a length that is greater than zero.
457 			 */
458 			ICMP6STAT_INC(icp6s_nd_badopt);
459 			bzero(ndopts, sizeof(*ndopts));
460 			return -1;
461 		}
462 
463 		if (nd_opt == NULL)
464 			goto skip1;
465 
466 		switch (nd_opt->nd_opt_type) {
467 		case ND_OPT_SOURCE_LINKADDR:
468 		case ND_OPT_TARGET_LINKADDR:
469 		case ND_OPT_MTU:
470 		case ND_OPT_REDIRECTED_HEADER:
471 		case ND_OPT_NONCE:
472 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
473 				nd6log((LOG_INFO,
474 				    "duplicated ND6 option found (type=%d)\n",
475 				    nd_opt->nd_opt_type));
476 				/* XXX bark? */
477 			} else {
478 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
479 					= nd_opt;
480 			}
481 			break;
482 		case ND_OPT_PREFIX_INFORMATION:
483 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
484 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
485 					= nd_opt;
486 			}
487 			ndopts->nd_opts_pi_end =
488 				(struct nd_opt_prefix_info *)nd_opt;
489 			break;
490 		/* What about ND_OPT_ROUTE_INFO? RFC 4191 */
491 		case ND_OPT_RDNSS:	/* RFC 6106 */
492 		case ND_OPT_DNSSL:	/* RFC 6106 */
493 			/*
494 			 * Silently ignore options we know and do not care about
495 			 * in the kernel.
496 			 */
497 			break;
498 		default:
499 			/*
500 			 * Unknown options must be silently ignored,
501 			 * to accommodate future extension to the protocol.
502 			 */
503 			nd6log((LOG_DEBUG,
504 			    "nd6_options: unsupported option %d - "
505 			    "option ignored\n", nd_opt->nd_opt_type));
506 		}
507 
508 skip1:
509 		i++;
510 		if (i > V_nd6_maxndopt) {
511 			ICMP6STAT_INC(icp6s_nd_toomanyopt);
512 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
513 			break;
514 		}
515 
516 		if (ndopts->nd_opts_done)
517 			break;
518 	}
519 
520 	return 0;
521 }
522 
523 /*
524  * ND6 timer routine to handle ND6 entries
525  */
526 static void
527 nd6_llinfo_settimer_locked(struct llentry *ln, long tick)
528 {
529 	int canceled;
530 
531 	LLE_WLOCK_ASSERT(ln);
532 
533 	if (tick < 0) {
534 		ln->la_expire = 0;
535 		ln->ln_ntick = 0;
536 		canceled = callout_stop(&ln->lle_timer);
537 	} else {
538 		ln->la_expire = time_uptime + tick / hz;
539 		LLE_ADDREF(ln);
540 		if (tick > INT_MAX) {
541 			ln->ln_ntick = tick - INT_MAX;
542 			canceled = callout_reset(&ln->lle_timer, INT_MAX,
543 			    nd6_llinfo_timer, ln);
544 		} else {
545 			ln->ln_ntick = 0;
546 			canceled = callout_reset(&ln->lle_timer, tick,
547 			    nd6_llinfo_timer, ln);
548 		}
549 	}
550 	if (canceled > 0)
551 		LLE_REMREF(ln);
552 }
553 
554 /*
555  * Gets source address of the first packet in hold queue
556  * and stores it in @src.
557  * Returns pointer to @src (if hold queue is not empty) or NULL.
558  *
559  * Set noinline to be dtrace-friendly
560  */
561 static __noinline struct in6_addr *
562 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src)
563 {
564 	struct ip6_hdr hdr;
565 	struct mbuf *m;
566 
567 	if (ln->la_hold == NULL)
568 		return (NULL);
569 
570 	/*
571 	 * assume every packet in la_hold has the same IP header
572 	 */
573 	m = ln->la_hold;
574 	if (sizeof(hdr) > m->m_len)
575 		return (NULL);
576 
577 	m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr);
578 	*src = hdr.ip6_src;
579 
580 	return (src);
581 }
582 
583 /*
584  * Checks if we need to switch from STALE state.
585  *
586  * RFC 4861 requires switching from STALE to DELAY state
587  * on first packet matching entry, waiting V_nd6_delay and
588  * transition to PROBE state (if upper layer confirmation was
589  * not received).
590  *
591  * This code performs a bit differently:
592  * On packet hit we don't change state (but desired state
593  * can be guessed by control plane). However, after V_nd6_delay
594  * seconds code will transition to PROBE state (so DELAY state
595  * is kinda skipped in most situations).
596  *
597  * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so
598  * we perform the following upon entering STALE state:
599  *
600  * 1) Arm timer to run each V_nd6_delay seconds to make sure that
601  * if packet was transmitted at the start of given interval, we
602  * would be able to switch to PROBE state in V_nd6_delay seconds
603  * as user expects.
604  *
605  * 2) Reschedule timer until original V_nd6_gctimer expires keeping
606  * lle in STALE state (remaining timer value stored in lle_remtime).
607  *
608  * 3) Reschedule timer if packet was transmitted less that V_nd6_delay
609  * seconds ago.
610  *
611  * Returns non-zero value if the entry is still STALE (storing
612  * the next timer interval in @pdelay).
613  *
614  * Returns zero value if original timer expired or we need to switch to
615  * PROBE (store that in @do_switch variable).
616  */
617 static int
618 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch)
619 {
620 	int nd_delay, nd_gctimer;
621 	time_t lle_hittime;
622 	long delay;
623 
624 	*do_switch = 0;
625 	nd_gctimer = V_nd6_gctimer;
626 	nd_delay = V_nd6_delay;
627 
628 	lle_hittime = llentry_get_hittime(lle);
629 
630 	if (lle_hittime == 0) {
631 		/*
632 		 * Datapath feedback has been requested upon entering
633 		 * STALE state. No packets has been passed using this lle.
634 		 * Ask for the timer reschedule and keep STALE state.
635 		 */
636 		delay = (long)(MIN(nd_gctimer, nd_delay));
637 		delay *= hz;
638 		if (lle->lle_remtime > delay)
639 			lle->lle_remtime -= delay;
640 		else {
641 			delay = lle->lle_remtime;
642 			lle->lle_remtime = 0;
643 		}
644 
645 		if (delay == 0) {
646 			/*
647 			 * The original ng6_gctime timeout ended,
648 			 * no more rescheduling.
649 			 */
650 			return (0);
651 		}
652 
653 		*pdelay = delay;
654 		return (1);
655 	}
656 
657 	/*
658 	 * Packet received. Verify timestamp
659 	 */
660 	delay = (long)(time_uptime - lle_hittime);
661 	if (delay < nd_delay) {
662 		/*
663 		 * V_nd6_delay still not passed since the first
664 		 * hit in STALE state.
665 		 * Reshedule timer and return.
666 		 */
667 		*pdelay = (long)(nd_delay - delay) * hz;
668 		return (1);
669 	}
670 
671 	/* Request switching to probe */
672 	*do_switch = 1;
673 	return (0);
674 }
675 
676 /*
677  * Switch @lle state to new state optionally arming timers.
678  *
679  * Set noinline to be dtrace-friendly
680  */
681 __noinline void
682 nd6_llinfo_setstate(struct llentry *lle, int newstate)
683 {
684 	struct ifnet *ifp;
685 	int nd_gctimer, nd_delay;
686 	long delay, remtime;
687 
688 	delay = 0;
689 	remtime = 0;
690 
691 	switch (newstate) {
692 	case ND6_LLINFO_INCOMPLETE:
693 		ifp = lle->lle_tbl->llt_ifp;
694 		delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000;
695 		break;
696 	case ND6_LLINFO_REACHABLE:
697 		if (!ND6_LLINFO_PERMANENT(lle)) {
698 			ifp = lle->lle_tbl->llt_ifp;
699 			delay = (long)ND_IFINFO(ifp)->reachable * hz;
700 		}
701 		break;
702 	case ND6_LLINFO_STALE:
703 
704 		llentry_request_feedback(lle);
705 		nd_delay = V_nd6_delay;
706 		nd_gctimer = V_nd6_gctimer;
707 
708 		delay = (long)(MIN(nd_gctimer, nd_delay)) * hz;
709 		remtime = (long)nd_gctimer * hz - delay;
710 		break;
711 	case ND6_LLINFO_DELAY:
712 		lle->la_asked = 0;
713 		delay = (long)V_nd6_delay * hz;
714 		break;
715 	}
716 
717 	if (delay > 0)
718 		nd6_llinfo_settimer_locked(lle, delay);
719 
720 	lle->lle_remtime = remtime;
721 	lle->ln_state = newstate;
722 }
723 
724 /*
725  * Timer-dependent part of nd state machine.
726  *
727  * Set noinline to be dtrace-friendly
728  */
729 static __noinline void
730 nd6_llinfo_timer(void *arg)
731 {
732 	struct epoch_tracker et;
733 	struct llentry *ln;
734 	struct in6_addr *dst, *pdst, *psrc, src;
735 	struct ifnet *ifp;
736 	struct nd_ifinfo *ndi;
737 	int do_switch, send_ns;
738 	long delay;
739 
740 	KASSERT(arg != NULL, ("%s: arg NULL", __func__));
741 	ln = (struct llentry *)arg;
742 	ifp = lltable_get_ifp(ln->lle_tbl);
743 	CURVNET_SET(ifp->if_vnet);
744 
745 	ND6_RLOCK();
746 	LLE_WLOCK(ln);
747 	if (callout_pending(&ln->lle_timer)) {
748 		/*
749 		 * Here we are a bit odd here in the treatment of
750 		 * active/pending. If the pending bit is set, it got
751 		 * rescheduled before I ran. The active
752 		 * bit we ignore, since if it was stopped
753 		 * in ll_tablefree() and was currently running
754 		 * it would have return 0 so the code would
755 		 * not have deleted it since the callout could
756 		 * not be stopped so we want to go through
757 		 * with the delete here now. If the callout
758 		 * was restarted, the pending bit will be back on and
759 		 * we just want to bail since the callout_reset would
760 		 * return 1 and our reference would have been removed
761 		 * by nd6_llinfo_settimer_locked above since canceled
762 		 * would have been 1.
763 		 */
764 		LLE_WUNLOCK(ln);
765 		ND6_RUNLOCK();
766 		CURVNET_RESTORE();
767 		return;
768 	}
769 	NET_EPOCH_ENTER(et);
770 	ndi = ND_IFINFO(ifp);
771 	send_ns = 0;
772 	dst = &ln->r_l3addr.addr6;
773 	pdst = dst;
774 
775 	if (ln->ln_ntick > 0) {
776 		if (ln->ln_ntick > INT_MAX) {
777 			ln->ln_ntick -= INT_MAX;
778 			nd6_llinfo_settimer_locked(ln, INT_MAX);
779 		} else {
780 			ln->ln_ntick = 0;
781 			nd6_llinfo_settimer_locked(ln, ln->ln_ntick);
782 		}
783 		goto done;
784 	}
785 
786 	if (ln->la_flags & LLE_STATIC) {
787 		goto done;
788 	}
789 
790 	if (ln->la_flags & LLE_DELETED) {
791 		nd6_free(&ln, 0);
792 		goto done;
793 	}
794 
795 	switch (ln->ln_state) {
796 	case ND6_LLINFO_INCOMPLETE:
797 		if (ln->la_asked < V_nd6_mmaxtries) {
798 			ln->la_asked++;
799 			send_ns = 1;
800 			/* Send NS to multicast address */
801 			pdst = NULL;
802 		} else {
803 			struct mbuf *m = ln->la_hold;
804 			if (m) {
805 				struct mbuf *m0;
806 
807 				/*
808 				 * assuming every packet in la_hold has the
809 				 * same IP header.  Send error after unlock.
810 				 */
811 				m0 = m->m_nextpkt;
812 				m->m_nextpkt = NULL;
813 				ln->la_hold = m0;
814 				clear_llinfo_pqueue(ln);
815 			}
816 			nd6_free(&ln, 0);
817 			if (m != NULL) {
818 				struct mbuf *n = m;
819 
820 				/*
821 				 * if there are any ummapped mbufs, we
822 				 * must free them, rather than using
823 				 * them for an ICMP, as they cannot be
824 				 * checksummed.
825 				 */
826 				while ((n = n->m_next) != NULL) {
827 					if (n->m_flags & M_EXTPG)
828 						break;
829 				}
830 				if (n != NULL) {
831 					m_freem(m);
832 					m = NULL;
833 				} else {
834 					icmp6_error2(m, ICMP6_DST_UNREACH,
835 					    ICMP6_DST_UNREACH_ADDR, 0, ifp);
836 				}
837 			}
838 		}
839 		break;
840 	case ND6_LLINFO_REACHABLE:
841 		if (!ND6_LLINFO_PERMANENT(ln))
842 			nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
843 		break;
844 
845 	case ND6_LLINFO_STALE:
846 		if (nd6_is_stale(ln, &delay, &do_switch) != 0) {
847 			/*
848 			 * No packet has used this entry and GC timeout
849 			 * has not been passed. Reshedule timer and
850 			 * return.
851 			 */
852 			nd6_llinfo_settimer_locked(ln, delay);
853 			break;
854 		}
855 
856 		if (do_switch == 0) {
857 			/*
858 			 * GC timer has ended and entry hasn't been used.
859 			 * Run Garbage collector (RFC 4861, 5.3)
860 			 */
861 			if (!ND6_LLINFO_PERMANENT(ln))
862 				nd6_free(&ln, 1);
863 			break;
864 		}
865 
866 		/* Entry has been used AND delay timer has ended. */
867 
868 		/* FALLTHROUGH */
869 
870 	case ND6_LLINFO_DELAY:
871 		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
872 			/* We need NUD */
873 			ln->la_asked = 1;
874 			nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE);
875 			send_ns = 1;
876 		} else
877 			nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */
878 		break;
879 	case ND6_LLINFO_PROBE:
880 		if (ln->la_asked < V_nd6_umaxtries) {
881 			ln->la_asked++;
882 			send_ns = 1;
883 		} else {
884 			nd6_free(&ln, 0);
885 		}
886 		break;
887 	default:
888 		panic("%s: paths in a dark night can be confusing: %d",
889 		    __func__, ln->ln_state);
890 	}
891 done:
892 	if (ln != NULL)
893 		ND6_RUNLOCK();
894 	if (send_ns != 0) {
895 		nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000);
896 		psrc = nd6_llinfo_get_holdsrc(ln, &src);
897 		LLE_FREE_LOCKED(ln);
898 		ln = NULL;
899 		nd6_ns_output(ifp, psrc, pdst, dst, NULL);
900 	}
901 
902 	if (ln != NULL)
903 		LLE_FREE_LOCKED(ln);
904 	NET_EPOCH_EXIT(et);
905 	CURVNET_RESTORE();
906 }
907 
908 /*
909  * ND6 timer routine to expire default route list and prefix list
910  */
911 void
912 nd6_timer(void *arg)
913 {
914 	CURVNET_SET((struct vnet *) arg);
915 	struct epoch_tracker et;
916 	struct nd_prhead prl;
917 	struct nd_prefix *pr, *npr;
918 	struct ifnet *ifp;
919 	struct in6_ifaddr *ia6, *nia6;
920 	uint64_t genid;
921 
922 	LIST_INIT(&prl);
923 
924 	NET_EPOCH_ENTER(et);
925 	nd6_defrouter_timer();
926 
927 	/*
928 	 * expire interface addresses.
929 	 * in the past the loop was inside prefix expiry processing.
930 	 * However, from a stricter speci-confrmance standpoint, we should
931 	 * rather separate address lifetimes and prefix lifetimes.
932 	 *
933 	 * XXXRW: in6_ifaddrhead locking.
934 	 */
935   addrloop:
936 	CK_STAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) {
937 		/* check address lifetime */
938 		if (IFA6_IS_INVALID(ia6)) {
939 			int regen = 0;
940 
941 			/*
942 			 * If the expiring address is temporary, try
943 			 * regenerating a new one.  This would be useful when
944 			 * we suspended a laptop PC, then turned it on after a
945 			 * period that could invalidate all temporary
946 			 * addresses.  Although we may have to restart the
947 			 * loop (see below), it must be after purging the
948 			 * address.  Otherwise, we'd see an infinite loop of
949 			 * regeneration.
950 			 */
951 			if (V_ip6_use_tempaddr &&
952 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
953 				if (regen_tmpaddr(ia6) == 0)
954 					regen = 1;
955 			}
956 
957 			in6_purgeaddr(&ia6->ia_ifa);
958 
959 			if (regen)
960 				goto addrloop; /* XXX: see below */
961 		} else if (IFA6_IS_DEPRECATED(ia6)) {
962 			int oldflags = ia6->ia6_flags;
963 
964 			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
965 
966 			/*
967 			 * If a temporary address has just become deprecated,
968 			 * regenerate a new one if possible.
969 			 */
970 			if (V_ip6_use_tempaddr &&
971 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
972 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
973 				if (regen_tmpaddr(ia6) == 0) {
974 					/*
975 					 * A new temporary address is
976 					 * generated.
977 					 * XXX: this means the address chain
978 					 * has changed while we are still in
979 					 * the loop.  Although the change
980 					 * would not cause disaster (because
981 					 * it's not a deletion, but an
982 					 * addition,) we'd rather restart the
983 					 * loop just for safety.  Or does this
984 					 * significantly reduce performance??
985 					 */
986 					goto addrloop;
987 				}
988 			}
989 		} else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) {
990 			/*
991 			 * Schedule DAD for a tentative address.  This happens
992 			 * if the interface was down or not running
993 			 * when the address was configured.
994 			 */
995 			int delay;
996 
997 			delay = arc4random() %
998 			    (MAX_RTR_SOLICITATION_DELAY * hz);
999 			nd6_dad_start((struct ifaddr *)ia6, delay);
1000 		} else {
1001 			/*
1002 			 * Check status of the interface.  If it is down,
1003 			 * mark the address as tentative for future DAD.
1004 			 */
1005 			ifp = ia6->ia_ifp;
1006 			if ((ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0 &&
1007 			    ((ifp->if_flags & IFF_UP) == 0 ||
1008 			    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1009 			    (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)){
1010 				ia6->ia6_flags &= ~IN6_IFF_DUPLICATED;
1011 				ia6->ia6_flags |= IN6_IFF_TENTATIVE;
1012 			}
1013 
1014 			/*
1015 			 * A new RA might have made a deprecated address
1016 			 * preferred.
1017 			 */
1018 			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
1019 		}
1020 	}
1021 	NET_EPOCH_EXIT(et);
1022 
1023 	ND6_WLOCK();
1024 restart:
1025 	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
1026 		/*
1027 		 * Expire prefixes. Since the pltime is only used for
1028 		 * autoconfigured addresses, pltime processing for prefixes is
1029 		 * not necessary.
1030 		 *
1031 		 * Only unlink after all derived addresses have expired. This
1032 		 * may not occur until two hours after the prefix has expired
1033 		 * per RFC 4862. If the prefix expires before its derived
1034 		 * addresses, mark it off-link. This will be done automatically
1035 		 * after unlinking if no address references remain.
1036 		 */
1037 		if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME ||
1038 		    time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime)
1039 			continue;
1040 
1041 		if (pr->ndpr_addrcnt == 0) {
1042 			nd6_prefix_unlink(pr, &prl);
1043 			continue;
1044 		}
1045 		if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) {
1046 			genid = V_nd6_list_genid;
1047 			nd6_prefix_ref(pr);
1048 			ND6_WUNLOCK();
1049 			ND6_ONLINK_LOCK();
1050 			(void)nd6_prefix_offlink(pr);
1051 			ND6_ONLINK_UNLOCK();
1052 			ND6_WLOCK();
1053 			nd6_prefix_rele(pr);
1054 			if (genid != V_nd6_list_genid)
1055 				goto restart;
1056 		}
1057 	}
1058 	ND6_WUNLOCK();
1059 
1060 	while ((pr = LIST_FIRST(&prl)) != NULL) {
1061 		LIST_REMOVE(pr, ndpr_entry);
1062 		nd6_prefix_del(pr);
1063 	}
1064 
1065 	callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz,
1066 	    nd6_timer, curvnet);
1067 
1068 	CURVNET_RESTORE();
1069 }
1070 
1071 /*
1072  * ia6 - deprecated/invalidated temporary address
1073  */
1074 static int
1075 regen_tmpaddr(struct in6_ifaddr *ia6)
1076 {
1077 	struct ifaddr *ifa;
1078 	struct ifnet *ifp;
1079 	struct in6_ifaddr *public_ifa6 = NULL;
1080 
1081 	NET_EPOCH_ASSERT();
1082 
1083 	ifp = ia6->ia_ifa.ifa_ifp;
1084 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1085 		struct in6_ifaddr *it6;
1086 
1087 		if (ifa->ifa_addr->sa_family != AF_INET6)
1088 			continue;
1089 
1090 		it6 = (struct in6_ifaddr *)ifa;
1091 
1092 		/* ignore no autoconf addresses. */
1093 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1094 			continue;
1095 
1096 		/* ignore autoconf addresses with different prefixes. */
1097 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
1098 			continue;
1099 
1100 		/*
1101 		 * Now we are looking at an autoconf address with the same
1102 		 * prefix as ours.  If the address is temporary and is still
1103 		 * preferred, do not create another one.  It would be rare, but
1104 		 * could happen, for example, when we resume a laptop PC after
1105 		 * a long period.
1106 		 */
1107 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
1108 		    !IFA6_IS_DEPRECATED(it6)) {
1109 			public_ifa6 = NULL;
1110 			break;
1111 		}
1112 
1113 		/*
1114 		 * This is a public autoconf address that has the same prefix
1115 		 * as ours.  If it is preferred, keep it.  We can't break the
1116 		 * loop here, because there may be a still-preferred temporary
1117 		 * address with the prefix.
1118 		 */
1119 		if (!IFA6_IS_DEPRECATED(it6))
1120 			public_ifa6 = it6;
1121 	}
1122 	if (public_ifa6 != NULL)
1123 		ifa_ref(&public_ifa6->ia_ifa);
1124 
1125 	if (public_ifa6 != NULL) {
1126 		int e;
1127 
1128 		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
1129 			ifa_free(&public_ifa6->ia_ifa);
1130 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
1131 			    " tmp addr,errno=%d\n", e);
1132 			return (-1);
1133 		}
1134 		ifa_free(&public_ifa6->ia_ifa);
1135 		return (0);
1136 	}
1137 
1138 	return (-1);
1139 }
1140 
1141 /*
1142  * Remove prefix and default router list entries corresponding to ifp. Neighbor
1143  * cache entries are freed in in6_domifdetach().
1144  */
1145 void
1146 nd6_purge(struct ifnet *ifp)
1147 {
1148 	struct nd_prhead prl;
1149 	struct nd_prefix *pr, *npr;
1150 
1151 	LIST_INIT(&prl);
1152 
1153 	/* Purge default router list entries toward ifp. */
1154 	nd6_defrouter_purge(ifp);
1155 
1156 	ND6_WLOCK();
1157 	/*
1158 	 * Remove prefixes on ifp. We should have already removed addresses on
1159 	 * this interface, so no addresses should be referencing these prefixes.
1160 	 */
1161 	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
1162 		if (pr->ndpr_ifp == ifp)
1163 			nd6_prefix_unlink(pr, &prl);
1164 	}
1165 	ND6_WUNLOCK();
1166 
1167 	/* Delete the unlinked prefix objects. */
1168 	while ((pr = LIST_FIRST(&prl)) != NULL) {
1169 		LIST_REMOVE(pr, ndpr_entry);
1170 		nd6_prefix_del(pr);
1171 	}
1172 
1173 	/* cancel default outgoing interface setting */
1174 	if (V_nd6_defifindex == ifp->if_index)
1175 		nd6_setdefaultiface(0);
1176 
1177 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1178 		/* Refresh default router list. */
1179 		defrouter_select_fib(ifp->if_fib);
1180 	}
1181 }
1182 
1183 /*
1184  * the caller acquires and releases the lock on the lltbls
1185  * Returns the llentry locked
1186  */
1187 struct llentry *
1188 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp)
1189 {
1190 	struct sockaddr_in6 sin6;
1191 	struct llentry *ln;
1192 
1193 	bzero(&sin6, sizeof(sin6));
1194 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1195 	sin6.sin6_family = AF_INET6;
1196 	sin6.sin6_addr = *addr6;
1197 
1198 	IF_AFDATA_LOCK_ASSERT(ifp);
1199 
1200 	ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6);
1201 
1202 	return (ln);
1203 }
1204 
1205 static struct llentry *
1206 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp)
1207 {
1208 	struct sockaddr_in6 sin6;
1209 	struct llentry *ln;
1210 
1211 	bzero(&sin6, sizeof(sin6));
1212 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1213 	sin6.sin6_family = AF_INET6;
1214 	sin6.sin6_addr = *addr6;
1215 
1216 	ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6);
1217 	if (ln != NULL)
1218 		ln->ln_state = ND6_LLINFO_NOSTATE;
1219 
1220 	return (ln);
1221 }
1222 
1223 /*
1224  * Test whether a given IPv6 address is a neighbor or not, ignoring
1225  * the actual neighbor cache.  The neighbor cache is ignored in order
1226  * to not reenter the routing code from within itself.
1227  */
1228 static int
1229 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
1230 {
1231 	struct nd_prefix *pr;
1232 	struct ifaddr *ifa;
1233 	struct rt_addrinfo info;
1234 	struct sockaddr_in6 rt_key;
1235 	const struct sockaddr *dst6;
1236 	uint64_t genid;
1237 	int error, fibnum;
1238 
1239 	/*
1240 	 * A link-local address is always a neighbor.
1241 	 * XXX: a link does not necessarily specify a single interface.
1242 	 */
1243 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
1244 		struct sockaddr_in6 sin6_copy;
1245 		u_int32_t zone;
1246 
1247 		/*
1248 		 * We need sin6_copy since sa6_recoverscope() may modify the
1249 		 * content (XXX).
1250 		 */
1251 		sin6_copy = *addr;
1252 		if (sa6_recoverscope(&sin6_copy))
1253 			return (0); /* XXX: should be impossible */
1254 		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
1255 			return (0);
1256 		if (sin6_copy.sin6_scope_id == zone)
1257 			return (1);
1258 		else
1259 			return (0);
1260 	}
1261 
1262 	bzero(&rt_key, sizeof(rt_key));
1263 	bzero(&info, sizeof(info));
1264 	info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key;
1265 
1266 	/*
1267 	 * If the address matches one of our addresses,
1268 	 * it should be a neighbor.
1269 	 * If the address matches one of our on-link prefixes, it should be a
1270 	 * neighbor.
1271 	 */
1272 	ND6_RLOCK();
1273 restart:
1274 	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
1275 		if (pr->ndpr_ifp != ifp)
1276 			continue;
1277 
1278 		if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) {
1279 			dst6 = (const struct sockaddr *)&pr->ndpr_prefix;
1280 
1281 			/*
1282 			 * We only need to check all FIBs if add_addr_allfibs
1283 			 * is unset. If set, checking any FIB will suffice.
1284 			 */
1285 			fibnum = V_rt_add_addr_allfibs ? rt_numfibs - 1 : 0;
1286 			for (; fibnum < rt_numfibs; fibnum++) {
1287 				genid = V_nd6_list_genid;
1288 				ND6_RUNLOCK();
1289 
1290 				/*
1291 				 * Restore length field before
1292 				 * retrying lookup
1293 				 */
1294 				rt_key.sin6_len = sizeof(rt_key);
1295 				error = rib_lookup_info(fibnum, dst6, 0, 0,
1296 						        &info);
1297 
1298 				ND6_RLOCK();
1299 				if (genid != V_nd6_list_genid)
1300 					goto restart;
1301 				if (error == 0)
1302 					break;
1303 			}
1304 			if (error != 0)
1305 				continue;
1306 
1307 			/*
1308 			 * This is the case where multiple interfaces
1309 			 * have the same prefix, but only one is installed
1310 			 * into the routing table and that prefix entry
1311 			 * is not the one being examined here.
1312 			 */
1313 			if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1314 			    &rt_key.sin6_addr))
1315 				continue;
1316 		}
1317 
1318 		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1319 		    &addr->sin6_addr, &pr->ndpr_mask)) {
1320 			ND6_RUNLOCK();
1321 			return (1);
1322 		}
1323 	}
1324 	ND6_RUNLOCK();
1325 
1326 	/*
1327 	 * If the address is assigned on the node of the other side of
1328 	 * a p2p interface, the address should be a neighbor.
1329 	 */
1330 	if (ifp->if_flags & IFF_POINTOPOINT) {
1331 		struct epoch_tracker et;
1332 
1333 		NET_EPOCH_ENTER(et);
1334 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1335 			if (ifa->ifa_addr->sa_family != addr->sin6_family)
1336 				continue;
1337 			if (ifa->ifa_dstaddr != NULL &&
1338 			    sa_equal(addr, ifa->ifa_dstaddr)) {
1339 				NET_EPOCH_EXIT(et);
1340 				return 1;
1341 			}
1342 		}
1343 		NET_EPOCH_EXIT(et);
1344 	}
1345 
1346 	/*
1347 	 * If the default router list is empty, all addresses are regarded
1348 	 * as on-link, and thus, as a neighbor.
1349 	 */
1350 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV &&
1351 	    nd6_defrouter_list_empty() &&
1352 	    V_nd6_defifindex == ifp->if_index) {
1353 		return (1);
1354 	}
1355 
1356 	return (0);
1357 }
1358 
1359 /*
1360  * Detect if a given IPv6 address identifies a neighbor on a given link.
1361  * XXX: should take care of the destination of a p2p link?
1362  */
1363 int
1364 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
1365 {
1366 	struct llentry *lle;
1367 	int rc = 0;
1368 
1369 	NET_EPOCH_ASSERT();
1370 	IF_AFDATA_UNLOCK_ASSERT(ifp);
1371 	if (nd6_is_new_addr_neighbor(addr, ifp))
1372 		return (1);
1373 
1374 	/*
1375 	 * Even if the address matches none of our addresses, it might be
1376 	 * in the neighbor cache.
1377 	 */
1378 	if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) {
1379 		LLE_RUNLOCK(lle);
1380 		rc = 1;
1381 	}
1382 	return (rc);
1383 }
1384 
1385 /*
1386  * Tries to update @lle address/prepend data with new @lladdr.
1387  *
1388  * Returns true on success.
1389  * In any case, @lle is returned wlocked.
1390  */
1391 bool
1392 nd6_try_set_entry_addr(struct ifnet *ifp, struct llentry *lle, char *lladdr)
1393 {
1394 	u_char linkhdr[LLE_MAX_LINKHDR];
1395 	size_t linkhdrsize;
1396 	int lladdr_off;
1397 
1398 	LLE_WLOCK_ASSERT(lle);
1399 
1400 	linkhdrsize = sizeof(linkhdr);
1401 	if (lltable_calc_llheader(ifp, AF_INET6, lladdr,
1402 	    linkhdr, &linkhdrsize, &lladdr_off) != 0) {
1403 		return (false);
1404 	}
1405 
1406 	if (!lltable_acquire_wlock(ifp, lle))
1407 		return (false);
1408 	lltable_set_entry_addr(ifp, lle, linkhdr, linkhdrsize, lladdr_off);
1409 	IF_AFDATA_WUNLOCK(ifp);
1410 
1411 	return (true);
1412 }
1413 
1414 /*
1415  * Free an nd6 llinfo entry.
1416  * Since the function would cause significant changes in the kernel, DO NOT
1417  * make it global, unless you have a strong reason for the change, and are sure
1418  * that the change is safe.
1419  *
1420  * Set noinline to be dtrace-friendly
1421  */
1422 static __noinline void
1423 nd6_free(struct llentry **lnp, int gc)
1424 {
1425 	struct ifnet *ifp;
1426 	struct llentry *ln;
1427 	struct nd_defrouter *dr;
1428 
1429 	ln = *lnp;
1430 	*lnp = NULL;
1431 
1432 	LLE_WLOCK_ASSERT(ln);
1433 	ND6_RLOCK_ASSERT();
1434 
1435 	ifp = lltable_get_ifp(ln->lle_tbl);
1436 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0)
1437 		dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp);
1438 	else
1439 		dr = NULL;
1440 	ND6_RUNLOCK();
1441 
1442 	if ((ln->la_flags & LLE_DELETED) == 0)
1443 		EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED);
1444 
1445 	/*
1446 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1447 	 * even though it is not harmful, it was not really necessary.
1448 	 */
1449 
1450 	/* cancel timer */
1451 	nd6_llinfo_settimer_locked(ln, -1);
1452 
1453 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1454 		if (dr != NULL && dr->expire &&
1455 		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1456 			/*
1457 			 * If the reason for the deletion is just garbage
1458 			 * collection, and the neighbor is an active default
1459 			 * router, do not delete it.  Instead, reset the GC
1460 			 * timer using the router's lifetime.
1461 			 * Simply deleting the entry would affect default
1462 			 * router selection, which is not necessarily a good
1463 			 * thing, especially when we're using router preference
1464 			 * values.
1465 			 * XXX: the check for ln_state would be redundant,
1466 			 *      but we intentionally keep it just in case.
1467 			 */
1468 			if (dr->expire > time_uptime)
1469 				nd6_llinfo_settimer_locked(ln,
1470 				    (dr->expire - time_uptime) * hz);
1471 			else
1472 				nd6_llinfo_settimer_locked(ln,
1473 				    (long)V_nd6_gctimer * hz);
1474 
1475 			LLE_REMREF(ln);
1476 			LLE_WUNLOCK(ln);
1477 			defrouter_rele(dr);
1478 			return;
1479 		}
1480 
1481 		if (dr) {
1482 			/*
1483 			 * Unreachablity of a router might affect the default
1484 			 * router selection and on-link detection of advertised
1485 			 * prefixes.
1486 			 */
1487 
1488 			/*
1489 			 * Temporarily fake the state to choose a new default
1490 			 * router and to perform on-link determination of
1491 			 * prefixes correctly.
1492 			 * Below the state will be set correctly,
1493 			 * or the entry itself will be deleted.
1494 			 */
1495 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1496 		}
1497 
1498 		if (ln->ln_router || dr) {
1499 			/*
1500 			 * We need to unlock to avoid a LOR with rt6_flush() with the
1501 			 * rnh and for the calls to pfxlist_onlink_check() and
1502 			 * defrouter_select_fib() in the block further down for calls
1503 			 * into nd6_lookup().  We still hold a ref.
1504 			 */
1505 			LLE_WUNLOCK(ln);
1506 
1507 			/*
1508 			 * rt6_flush must be called whether or not the neighbor
1509 			 * is in the Default Router List.
1510 			 * See a corresponding comment in nd6_na_input().
1511 			 */
1512 			rt6_flush(&ln->r_l3addr.addr6, ifp);
1513 		}
1514 
1515 		if (dr) {
1516 			/*
1517 			 * Since defrouter_select_fib() does not affect the
1518 			 * on-link determination and MIP6 needs the check
1519 			 * before the default router selection, we perform
1520 			 * the check now.
1521 			 */
1522 			pfxlist_onlink_check();
1523 
1524 			/*
1525 			 * Refresh default router list.
1526 			 */
1527 			defrouter_select_fib(dr->ifp->if_fib);
1528 		}
1529 
1530 		/*
1531 		 * If this entry was added by an on-link redirect, remove the
1532 		 * corresponding host route.
1533 		 */
1534 		if (ln->la_flags & LLE_REDIRECT)
1535 			nd6_free_redirect(ln);
1536 
1537 		if (ln->ln_router || dr)
1538 			LLE_WLOCK(ln);
1539 	}
1540 
1541 	/*
1542 	 * Save to unlock. We still hold an extra reference and will not
1543 	 * free(9) in llentry_free() if someone else holds one as well.
1544 	 */
1545 	LLE_WUNLOCK(ln);
1546 	IF_AFDATA_LOCK(ifp);
1547 	LLE_WLOCK(ln);
1548 	/* Guard against race with other llentry_free(). */
1549 	if (ln->la_flags & LLE_LINKED) {
1550 		/* Remove callout reference */
1551 		LLE_REMREF(ln);
1552 		lltable_unlink_entry(ln->lle_tbl, ln);
1553 	}
1554 	IF_AFDATA_UNLOCK(ifp);
1555 
1556 	llentry_free(ln);
1557 	if (dr != NULL)
1558 		defrouter_rele(dr);
1559 }
1560 
1561 static int
1562 nd6_isdynrte(const struct rtentry *rt, const struct nhop_object *nh, void *xap)
1563 {
1564 
1565 	if (nh->nh_flags & NHF_REDIRECT)
1566 		return (1);
1567 
1568 	return (0);
1569 }
1570 
1571 /*
1572  * Remove the rtentry for the given llentry,
1573  * both of which were installed by a redirect.
1574  */
1575 static void
1576 nd6_free_redirect(const struct llentry *ln)
1577 {
1578 	int fibnum;
1579 	struct sockaddr_in6 sin6;
1580 	struct rt_addrinfo info;
1581 	struct rib_cmd_info rc;
1582 	struct epoch_tracker et;
1583 
1584 	lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6);
1585 	memset(&info, 0, sizeof(info));
1586 	info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6;
1587 	info.rti_filter = nd6_isdynrte;
1588 
1589 	NET_EPOCH_ENTER(et);
1590 	for (fibnum = 0; fibnum < rt_numfibs; fibnum++)
1591 		rib_action(fibnum, RTM_DELETE, &info, &rc);
1592 	NET_EPOCH_EXIT(et);
1593 }
1594 
1595 /*
1596  * Updates status of the default router route.
1597  */
1598 static void
1599 check_release_defrouter(struct rib_cmd_info *rc, void *_cbdata)
1600 {
1601 	struct nd_defrouter *dr;
1602 	struct nhop_object *nh;
1603 
1604 	nh = rc->rc_nh_old;
1605 
1606 	if ((nh != NULL) && (nh->nh_flags & NHF_DEFAULT)) {
1607 		dr = defrouter_lookup(&nh->gw6_sa.sin6_addr, nh->nh_ifp);
1608 		if (dr != NULL) {
1609 			dr->installed = 0;
1610 			defrouter_rele(dr);
1611 		}
1612 	}
1613 }
1614 
1615 void
1616 nd6_subscription_cb(struct rib_head *rnh, struct rib_cmd_info *rc, void *arg)
1617 {
1618 
1619 #ifdef ROUTE_MPATH
1620 	rib_decompose_notification(rc, check_release_defrouter, NULL);
1621 #else
1622 	check_release_defrouter(rc, NULL);
1623 #endif
1624 }
1625 
1626 int
1627 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp)
1628 {
1629 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1630 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1631 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1632 	struct epoch_tracker et;
1633 	int error = 0;
1634 
1635 	if (ifp->if_afdata[AF_INET6] == NULL)
1636 		return (EPFNOSUPPORT);
1637 	switch (cmd) {
1638 	case OSIOCGIFINFO_IN6:
1639 #define ND	ndi->ndi
1640 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1641 		bzero(&ND, sizeof(ND));
1642 		ND.linkmtu = IN6_LINKMTU(ifp);
1643 		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1644 		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1645 		ND.reachable = ND_IFINFO(ifp)->reachable;
1646 		ND.retrans = ND_IFINFO(ifp)->retrans;
1647 		ND.flags = ND_IFINFO(ifp)->flags;
1648 		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1649 		ND.chlim = ND_IFINFO(ifp)->chlim;
1650 		break;
1651 	case SIOCGIFINFO_IN6:
1652 		ND = *ND_IFINFO(ifp);
1653 		break;
1654 	case SIOCSIFINFO_IN6:
1655 		/*
1656 		 * used to change host variables from userland.
1657 		 * intended for a use on router to reflect RA configurations.
1658 		 */
1659 		/* 0 means 'unspecified' */
1660 		if (ND.linkmtu != 0) {
1661 			if (ND.linkmtu < IPV6_MMTU ||
1662 			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1663 				error = EINVAL;
1664 				break;
1665 			}
1666 			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1667 		}
1668 
1669 		if (ND.basereachable != 0) {
1670 			int obasereachable = ND_IFINFO(ifp)->basereachable;
1671 
1672 			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1673 			if (ND.basereachable != obasereachable)
1674 				ND_IFINFO(ifp)->reachable =
1675 				    ND_COMPUTE_RTIME(ND.basereachable);
1676 		}
1677 		if (ND.retrans != 0)
1678 			ND_IFINFO(ifp)->retrans = ND.retrans;
1679 		if (ND.chlim != 0)
1680 			ND_IFINFO(ifp)->chlim = ND.chlim;
1681 		/* FALLTHROUGH */
1682 	case SIOCSIFINFO_FLAGS:
1683 	{
1684 		struct ifaddr *ifa;
1685 		struct in6_ifaddr *ia;
1686 
1687 		if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1688 		    !(ND.flags & ND6_IFF_IFDISABLED)) {
1689 			/* ifdisabled 1->0 transision */
1690 
1691 			/*
1692 			 * If the interface is marked as ND6_IFF_IFDISABLED and
1693 			 * has an link-local address with IN6_IFF_DUPLICATED,
1694 			 * do not clear ND6_IFF_IFDISABLED.
1695 			 * See RFC 4862, Section 5.4.5.
1696 			 */
1697 			NET_EPOCH_ENTER(et);
1698 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1699 				if (ifa->ifa_addr->sa_family != AF_INET6)
1700 					continue;
1701 				ia = (struct in6_ifaddr *)ifa;
1702 				if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
1703 				    IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1704 					break;
1705 			}
1706 			NET_EPOCH_EXIT(et);
1707 
1708 			if (ifa != NULL) {
1709 				/* LLA is duplicated. */
1710 				ND.flags |= ND6_IFF_IFDISABLED;
1711 				log(LOG_ERR, "Cannot enable an interface"
1712 				    " with a link-local address marked"
1713 				    " duplicate.\n");
1714 			} else {
1715 				ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
1716 				if (ifp->if_flags & IFF_UP)
1717 					in6_if_up(ifp);
1718 			}
1719 		} else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1720 			    (ND.flags & ND6_IFF_IFDISABLED)) {
1721 			/* ifdisabled 0->1 transision */
1722 			/* Mark all IPv6 address as tentative. */
1723 
1724 			ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
1725 			if (V_ip6_dad_count > 0 &&
1726 			    (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) {
1727 				NET_EPOCH_ENTER(et);
1728 				CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead,
1729 				    ifa_link) {
1730 					if (ifa->ifa_addr->sa_family !=
1731 					    AF_INET6)
1732 						continue;
1733 					ia = (struct in6_ifaddr *)ifa;
1734 					ia->ia6_flags |= IN6_IFF_TENTATIVE;
1735 				}
1736 				NET_EPOCH_EXIT(et);
1737 			}
1738 		}
1739 
1740 		if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
1741 			if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
1742 				/* auto_linklocal 0->1 transision */
1743 
1744 				/* If no link-local address on ifp, configure */
1745 				ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
1746 				in6_ifattach(ifp, NULL);
1747 			} else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
1748 			    ifp->if_flags & IFF_UP) {
1749 				/*
1750 				 * When the IF already has
1751 				 * ND6_IFF_AUTO_LINKLOCAL, no link-local
1752 				 * address is assigned, and IFF_UP, try to
1753 				 * assign one.
1754 				 */
1755 				NET_EPOCH_ENTER(et);
1756 				CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead,
1757 				    ifa_link) {
1758 					if (ifa->ifa_addr->sa_family !=
1759 					    AF_INET6)
1760 						continue;
1761 					ia = (struct in6_ifaddr *)ifa;
1762 					if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1763 						break;
1764 				}
1765 				NET_EPOCH_EXIT(et);
1766 				if (ifa != NULL)
1767 					/* No LLA is configured. */
1768 					in6_ifattach(ifp, NULL);
1769 			}
1770 		}
1771 		ND_IFINFO(ifp)->flags = ND.flags;
1772 		break;
1773 	}
1774 #undef ND
1775 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1776 		/* sync kernel routing table with the default router list */
1777 		defrouter_reset();
1778 		defrouter_select_fib(RT_ALL_FIBS);
1779 		break;
1780 	case SIOCSPFXFLUSH_IN6:
1781 	{
1782 		/* flush all the prefix advertised by routers */
1783 		struct in6_ifaddr *ia, *ia_next;
1784 		struct nd_prefix *pr, *next;
1785 		struct nd_prhead prl;
1786 
1787 		LIST_INIT(&prl);
1788 
1789 		ND6_WLOCK();
1790 		LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) {
1791 			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1792 				continue; /* XXX */
1793 			nd6_prefix_unlink(pr, &prl);
1794 		}
1795 		ND6_WUNLOCK();
1796 
1797 		while ((pr = LIST_FIRST(&prl)) != NULL) {
1798 			LIST_REMOVE(pr, ndpr_entry);
1799 			/* XXXRW: in6_ifaddrhead locking. */
1800 			CK_STAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link,
1801 			    ia_next) {
1802 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1803 					continue;
1804 
1805 				if (ia->ia6_ndpr == pr)
1806 					in6_purgeaddr(&ia->ia_ifa);
1807 			}
1808 			nd6_prefix_del(pr);
1809 		}
1810 		break;
1811 	}
1812 	case SIOCSRTRFLUSH_IN6:
1813 	{
1814 		/* flush all the default routers */
1815 
1816 		defrouter_reset();
1817 		nd6_defrouter_flush_all();
1818 		defrouter_select_fib(RT_ALL_FIBS);
1819 		break;
1820 	}
1821 	case SIOCGNBRINFO_IN6:
1822 	{
1823 		struct llentry *ln;
1824 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1825 
1826 		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1827 			return (error);
1828 
1829 		NET_EPOCH_ENTER(et);
1830 		ln = nd6_lookup(&nb_addr, 0, ifp);
1831 		NET_EPOCH_EXIT(et);
1832 
1833 		if (ln == NULL) {
1834 			error = EINVAL;
1835 			break;
1836 		}
1837 		nbi->state = ln->ln_state;
1838 		nbi->asked = ln->la_asked;
1839 		nbi->isrouter = ln->ln_router;
1840 		if (ln->la_expire == 0)
1841 			nbi->expire = 0;
1842 		else
1843 			nbi->expire = ln->la_expire + ln->lle_remtime / hz +
1844 			    (time_second - time_uptime);
1845 		LLE_RUNLOCK(ln);
1846 		break;
1847 	}
1848 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1849 		ndif->ifindex = V_nd6_defifindex;
1850 		break;
1851 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1852 		return (nd6_setdefaultiface(ndif->ifindex));
1853 	}
1854 	return (error);
1855 }
1856 
1857 /*
1858  * Calculates new isRouter value based on provided parameters and
1859  * returns it.
1860  */
1861 static int
1862 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr,
1863     int ln_router)
1864 {
1865 
1866 	/*
1867 	 * ICMP6 type dependent behavior.
1868 	 *
1869 	 * NS: clear IsRouter if new entry
1870 	 * RS: clear IsRouter
1871 	 * RA: set IsRouter if there's lladdr
1872 	 * redir: clear IsRouter if new entry
1873 	 *
1874 	 * RA case, (1):
1875 	 * The spec says that we must set IsRouter in the following cases:
1876 	 * - If lladdr exist, set IsRouter.  This means (1-5).
1877 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1878 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1879 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1880 	 * neighbor cache, this is similar to (6).
1881 	 * This case is rare but we figured that we MUST NOT set IsRouter.
1882 	 *
1883 	 *   is_new  old_addr new_addr 	    NS  RS  RA	redir
1884 	 *							D R
1885 	 *	0	n	n	(1)	c   ?     s
1886 	 *	0	y	n	(2)	c   s     s
1887 	 *	0	n	y	(3)	c   s     s
1888 	 *	0	y	y	(4)	c   s     s
1889 	 *	0	y	y	(5)	c   s     s
1890 	 *	1	--	n	(6) c	c	c s
1891 	 *	1	--	y	(7) c	c   s	c s
1892 	 *
1893 	 *					(c=clear s=set)
1894 	 */
1895 	switch (type & 0xff) {
1896 	case ND_NEIGHBOR_SOLICIT:
1897 		/*
1898 		 * New entry must have is_router flag cleared.
1899 		 */
1900 		if (is_new)					/* (6-7) */
1901 			ln_router = 0;
1902 		break;
1903 	case ND_REDIRECT:
1904 		/*
1905 		 * If the icmp is a redirect to a better router, always set the
1906 		 * is_router flag.  Otherwise, if the entry is newly created,
1907 		 * clear the flag.  [RFC 2461, sec 8.3]
1908 		 */
1909 		if (code == ND_REDIRECT_ROUTER)
1910 			ln_router = 1;
1911 		else {
1912 			if (is_new)				/* (6-7) */
1913 				ln_router = 0;
1914 		}
1915 		break;
1916 	case ND_ROUTER_SOLICIT:
1917 		/*
1918 		 * is_router flag must always be cleared.
1919 		 */
1920 		ln_router = 0;
1921 		break;
1922 	case ND_ROUTER_ADVERT:
1923 		/*
1924 		 * Mark an entry with lladdr as a router.
1925 		 */
1926 		if ((!is_new && (old_addr || new_addr)) ||	/* (2-5) */
1927 		    (is_new && new_addr)) {			/* (7) */
1928 			ln_router = 1;
1929 		}
1930 		break;
1931 	}
1932 
1933 	return (ln_router);
1934 }
1935 
1936 /*
1937  * Create neighbor cache entry and cache link-layer address,
1938  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1939  *
1940  * type - ICMP6 type
1941  * code - type dependent information
1942  *
1943  */
1944 void
1945 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
1946     int lladdrlen, int type, int code)
1947 {
1948 	struct llentry *ln = NULL, *ln_tmp;
1949 	int is_newentry;
1950 	int do_update;
1951 	int olladdr;
1952 	int llchange;
1953 	int flags;
1954 	uint16_t router = 0;
1955 	struct mbuf *chain = NULL;
1956 	u_char linkhdr[LLE_MAX_LINKHDR];
1957 	size_t linkhdrsize;
1958 	int lladdr_off;
1959 
1960 	NET_EPOCH_ASSERT();
1961 	IF_AFDATA_UNLOCK_ASSERT(ifp);
1962 
1963 	KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__));
1964 	KASSERT(from != NULL, ("%s: from == NULL", __func__));
1965 
1966 	/* nothing must be updated for unspecified address */
1967 	if (IN6_IS_ADDR_UNSPECIFIED(from))
1968 		return;
1969 
1970 	/*
1971 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1972 	 * the caller.
1973 	 *
1974 	 * XXX If the link does not have link-layer adderss, what should
1975 	 * we do? (ifp->if_addrlen == 0)
1976 	 * Spec says nothing in sections for RA, RS and NA.  There's small
1977 	 * description on it in NS section (RFC 2461 7.2.3).
1978 	 */
1979 	flags = lladdr ? LLE_EXCLUSIVE : 0;
1980 	ln = nd6_lookup(from, flags, ifp);
1981 	is_newentry = 0;
1982 	if (ln == NULL) {
1983 		flags |= LLE_EXCLUSIVE;
1984 		ln = nd6_alloc(from, 0, ifp);
1985 		if (ln == NULL)
1986 			return;
1987 
1988 		/*
1989 		 * Since we already know all the data for the new entry,
1990 		 * fill it before insertion.
1991 		 */
1992 		if (lladdr != NULL) {
1993 			linkhdrsize = sizeof(linkhdr);
1994 			if (lltable_calc_llheader(ifp, AF_INET6, lladdr,
1995 			    linkhdr, &linkhdrsize, &lladdr_off) != 0)
1996 				return;
1997 			lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize,
1998 			    lladdr_off);
1999 		}
2000 
2001 		IF_AFDATA_WLOCK(ifp);
2002 		LLE_WLOCK(ln);
2003 		/* Prefer any existing lle over newly-created one */
2004 		ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp);
2005 		if (ln_tmp == NULL)
2006 			lltable_link_entry(LLTABLE6(ifp), ln);
2007 		IF_AFDATA_WUNLOCK(ifp);
2008 		if (ln_tmp == NULL) {
2009 			/* No existing lle, mark as new entry (6,7) */
2010 			is_newentry = 1;
2011 			if (lladdr != NULL) {	/* (7) */
2012 				nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
2013 				EVENTHANDLER_INVOKE(lle_event, ln,
2014 				    LLENTRY_RESOLVED);
2015 			}
2016 		} else {
2017 			lltable_free_entry(LLTABLE6(ifp), ln);
2018 			ln = ln_tmp;
2019 			ln_tmp = NULL;
2020 		}
2021 	}
2022 	/* do nothing if static ndp is set */
2023 	if ((ln->la_flags & LLE_STATIC)) {
2024 		if (flags & LLE_EXCLUSIVE)
2025 			LLE_WUNLOCK(ln);
2026 		else
2027 			LLE_RUNLOCK(ln);
2028 		return;
2029 	}
2030 
2031 	olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0;
2032 	if (olladdr && lladdr) {
2033 		llchange = bcmp(lladdr, ln->ll_addr,
2034 		    ifp->if_addrlen);
2035 	} else if (!olladdr && lladdr)
2036 		llchange = 1;
2037 	else
2038 		llchange = 0;
2039 
2040 	/*
2041 	 * newentry olladdr  lladdr  llchange	(*=record)
2042 	 *	0	n	n	--	(1)
2043 	 *	0	y	n	--	(2)
2044 	 *	0	n	y	y	(3) * STALE
2045 	 *	0	y	y	n	(4) *
2046 	 *	0	y	y	y	(5) * STALE
2047 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
2048 	 *	1	--	y	--	(7) * STALE
2049 	 */
2050 
2051 	do_update = 0;
2052 	if (is_newentry == 0 && llchange != 0) {
2053 		do_update = 1;	/* (3,5) */
2054 
2055 		/*
2056 		 * Record source link-layer address
2057 		 * XXX is it dependent to ifp->if_type?
2058 		 */
2059 		if (!nd6_try_set_entry_addr(ifp, ln, lladdr)) {
2060 			/* Entry was deleted */
2061 			LLE_WUNLOCK(ln);
2062 			return;
2063 		}
2064 
2065 		nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
2066 
2067 		EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
2068 
2069 		if (ln->la_hold != NULL)
2070 			chain = nd6_grab_holdchain(ln);
2071 	}
2072 
2073 	/* Calculates new router status */
2074 	router = nd6_is_router(type, code, is_newentry, olladdr,
2075 	    lladdr != NULL ? 1 : 0, ln->ln_router);
2076 
2077 	ln->ln_router = router;
2078 	/* Mark non-router redirects with special flag */
2079 	if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER)
2080 		ln->la_flags |= LLE_REDIRECT;
2081 
2082 	if (flags & LLE_EXCLUSIVE)
2083 		LLE_WUNLOCK(ln);
2084 	else
2085 		LLE_RUNLOCK(ln);
2086 
2087 	if (chain != NULL)
2088 		nd6_flush_holdchain(ifp, ln, chain);
2089 
2090 	/*
2091 	 * When the link-layer address of a router changes, select the
2092 	 * best router again.  In particular, when the neighbor entry is newly
2093 	 * created, it might affect the selection policy.
2094 	 * Question: can we restrict the first condition to the "is_newentry"
2095 	 * case?
2096 	 * XXX: when we hear an RA from a new router with the link-layer
2097 	 * address option, defrouter_select_fib() is called twice, since
2098 	 * defrtrlist_update called the function as well.  However, I believe
2099 	 * we can compromise the overhead, since it only happens the first
2100 	 * time.
2101 	 * XXX: although defrouter_select_fib() should not have a bad effect
2102 	 * for those are not autoconfigured hosts, we explicitly avoid such
2103 	 * cases for safety.
2104 	 */
2105 	if ((do_update || is_newentry) && router &&
2106 	    ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
2107 		/*
2108 		 * guaranteed recursion
2109 		 */
2110 		defrouter_select_fib(ifp->if_fib);
2111 	}
2112 }
2113 
2114 static void
2115 nd6_slowtimo(void *arg)
2116 {
2117 	struct epoch_tracker et;
2118 	CURVNET_SET((struct vnet *) arg);
2119 	struct nd_ifinfo *nd6if;
2120 	struct ifnet *ifp;
2121 
2122 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
2123 	    nd6_slowtimo, curvnet);
2124 	NET_EPOCH_ENTER(et);
2125 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2126 		if (ifp->if_afdata[AF_INET6] == NULL)
2127 			continue;
2128 		nd6if = ND_IFINFO(ifp);
2129 		if (nd6if->basereachable && /* already initialized */
2130 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
2131 			/*
2132 			 * Since reachable time rarely changes by router
2133 			 * advertisements, we SHOULD insure that a new random
2134 			 * value gets recomputed at least once every few hours.
2135 			 * (RFC 2461, 6.3.4)
2136 			 */
2137 			nd6if->recalctm = V_nd6_recalc_reachtm_interval;
2138 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
2139 		}
2140 	}
2141 	NET_EPOCH_EXIT(et);
2142 	CURVNET_RESTORE();
2143 }
2144 
2145 struct mbuf *
2146 nd6_grab_holdchain(struct llentry *ln)
2147 {
2148 	struct mbuf *chain;
2149 
2150 	LLE_WLOCK_ASSERT(ln);
2151 
2152 	chain = ln->la_hold;
2153 	ln->la_hold = NULL;
2154 
2155 	if (ln->ln_state == ND6_LLINFO_STALE) {
2156 		/*
2157 		 * The first time we send a packet to a
2158 		 * neighbor whose entry is STALE, we have
2159 		 * to change the state to DELAY and a sets
2160 		 * a timer to expire in DELAY_FIRST_PROBE_TIME
2161 		 * seconds to ensure do neighbor unreachability
2162 		 * detection on expiration.
2163 		 * (RFC 2461 7.3.3)
2164 		 */
2165 		nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY);
2166 	}
2167 
2168 	return (chain);
2169 }
2170 
2171 int
2172 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
2173     struct sockaddr_in6 *dst, struct route *ro)
2174 {
2175 	int error;
2176 	int ip6len;
2177 	struct ip6_hdr *ip6;
2178 	struct m_tag *mtag;
2179 
2180 #ifdef MAC
2181 	mac_netinet6_nd6_send(ifp, m);
2182 #endif
2183 
2184 	/*
2185 	 * If called from nd6_ns_output() (NS), nd6_na_output() (NA),
2186 	 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA
2187 	 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND
2188 	 * to be diverted to user space.  When re-injected into the kernel,
2189 	 * send_output() will directly dispatch them to the outgoing interface.
2190 	 */
2191 	if (send_sendso_input_hook != NULL) {
2192 		mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL);
2193 		if (mtag != NULL) {
2194 			ip6 = mtod(m, struct ip6_hdr *);
2195 			ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
2196 			/* Use the SEND socket */
2197 			error = send_sendso_input_hook(m, ifp, SND_OUT,
2198 			    ip6len);
2199 			/* -1 == no app on SEND socket */
2200 			if (error == 0 || error != -1)
2201 			    return (error);
2202 		}
2203 	}
2204 
2205 	m_clrprotoflags(m);	/* Avoid confusing lower layers. */
2206 	IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL,
2207 	    mtod(m, struct ip6_hdr *));
2208 
2209 	if ((ifp->if_flags & IFF_LOOPBACK) == 0)
2210 		origifp = ifp;
2211 
2212 	error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro);
2213 	return (error);
2214 }
2215 
2216 /*
2217  * Lookup link headerfor @sa_dst address. Stores found
2218  * data in @desten buffer. Copy of lle ln_flags can be also
2219  * saved in @pflags if @pflags is non-NULL.
2220  *
2221  * If destination LLE does not exists or lle state modification
2222  * is required, call "slow" version.
2223  *
2224  * Return values:
2225  * - 0 on success (address copied to buffer).
2226  * - EWOULDBLOCK (no local error, but address is still unresolved)
2227  * - other errors (alloc failure, etc)
2228  */
2229 int
2230 nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m,
2231     const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags,
2232     struct llentry **plle)
2233 {
2234 	struct llentry *ln = NULL;
2235 	const struct sockaddr_in6 *dst6;
2236 
2237 	NET_EPOCH_ASSERT();
2238 
2239 	if (pflags != NULL)
2240 		*pflags = 0;
2241 
2242 	dst6 = (const struct sockaddr_in6 *)sa_dst;
2243 
2244 	/* discard the packet if IPv6 operation is disabled on the interface */
2245 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2246 		m_freem(m);
2247 		return (ENETDOWN); /* better error? */
2248 	}
2249 
2250 	if (m != NULL && m->m_flags & M_MCAST) {
2251 		switch (ifp->if_type) {
2252 		case IFT_ETHER:
2253 		case IFT_L2VLAN:
2254 		case IFT_BRIDGE:
2255 			ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr,
2256 						 desten);
2257 			return (0);
2258 		default:
2259 			m_freem(m);
2260 			return (EAFNOSUPPORT);
2261 		}
2262 	}
2263 
2264 	ln = nd6_lookup(&dst6->sin6_addr, plle ? LLE_EXCLUSIVE : LLE_UNLOCKED,
2265 	    ifp);
2266 	if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) {
2267 		/* Entry found, let's copy lle info */
2268 		bcopy(ln->r_linkdata, desten, ln->r_hdrlen);
2269 		if (pflags != NULL)
2270 			*pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR);
2271 		llentry_provide_feedback(ln);
2272 		if (plle) {
2273 			LLE_ADDREF(ln);
2274 			*plle = ln;
2275 			LLE_WUNLOCK(ln);
2276 		}
2277 		return (0);
2278 	} else if (plle && ln)
2279 		LLE_WUNLOCK(ln);
2280 
2281 	return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags, plle));
2282 }
2283 
2284 /*
2285  * Finds or creates a new llentry for @addr.
2286  * Returns wlocked llentry or NULL.
2287  */
2288 static __noinline struct llentry *
2289 nd6_get_llentry(struct ifnet *ifp, const struct in6_addr *addr)
2290 {
2291 	struct llentry *lle, *lle_tmp;
2292 
2293 	lle = nd6_alloc(addr, 0, ifp);
2294 	if (lle == NULL) {
2295 		char ip6buf[INET6_ADDRSTRLEN];
2296 		log(LOG_DEBUG,
2297 		    "nd6_get_llentry: can't allocate llinfo for %s "
2298 		    "(ln=%p)\n",
2299 		    ip6_sprintf(ip6buf, addr), lle);
2300 		return (NULL);
2301 	}
2302 
2303 	IF_AFDATA_WLOCK(ifp);
2304 	LLE_WLOCK(lle);
2305 	/* Prefer any existing entry over newly-created one */
2306 	lle_tmp = nd6_lookup(addr, LLE_EXCLUSIVE, ifp);
2307 	if (lle_tmp == NULL)
2308 		lltable_link_entry(LLTABLE6(ifp), lle);
2309 	IF_AFDATA_WUNLOCK(ifp);
2310 	if (lle_tmp != NULL) {
2311 		lltable_free_entry(LLTABLE6(ifp), lle);
2312 		return (lle_tmp);
2313 	} else
2314 		return (lle);
2315 }
2316 
2317 /*
2318  * Do L2 address resolution for @sa_dst address. Stores found
2319  * address in @desten buffer. Copy of lle ln_flags can be also
2320  * saved in @pflags if @pflags is non-NULL.
2321  *
2322  * Heavy version.
2323  * Function assume that destination LLE does not exist,
2324  * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired.
2325  *
2326  * Set noinline to be dtrace-friendly
2327  */
2328 static __noinline int
2329 nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m,
2330     const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags,
2331     struct llentry **plle)
2332 {
2333 	struct llentry *lle = NULL;
2334 	struct in6_addr *psrc, src;
2335 	int send_ns, ll_len;
2336 	char *lladdr;
2337 
2338 	NET_EPOCH_ASSERT();
2339 
2340 	/*
2341 	 * Address resolution or Neighbor Unreachability Detection
2342 	 * for the next hop.
2343 	 * At this point, the destination of the packet must be a unicast
2344 	 * or an anycast address(i.e. not a multicast).
2345 	 */
2346 	lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp);
2347 	if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp))  {
2348 		/*
2349 		 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2350 		 * the condition below is not very efficient.  But we believe
2351 		 * it is tolerable, because this should be a rare case.
2352 		 */
2353 		lle = nd6_get_llentry(ifp, &dst->sin6_addr);
2354 	}
2355 
2356 	if (lle == NULL) {
2357 		m_freem(m);
2358 		return (ENOBUFS);
2359 	}
2360 
2361 	LLE_WLOCK_ASSERT(lle);
2362 
2363 	/*
2364 	 * The first time we send a packet to a neighbor whose entry is
2365 	 * STALE, we have to change the state to DELAY and a sets a timer to
2366 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2367 	 * neighbor unreachability detection on expiration.
2368 	 * (RFC 2461 7.3.3)
2369 	 */
2370 	if (lle->ln_state == ND6_LLINFO_STALE)
2371 		nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY);
2372 
2373 	/*
2374 	 * If the neighbor cache entry has a state other than INCOMPLETE
2375 	 * (i.e. its link-layer address is already resolved), just
2376 	 * send the packet.
2377 	 */
2378 	if (lle->ln_state > ND6_LLINFO_INCOMPLETE) {
2379 		if (flags & LLE_ADDRONLY) {
2380 			lladdr = lle->ll_addr;
2381 			ll_len = ifp->if_addrlen;
2382 		} else {
2383 			lladdr = lle->r_linkdata;
2384 			ll_len = lle->r_hdrlen;
2385 		}
2386 		bcopy(lladdr, desten, ll_len);
2387 		if (pflags != NULL)
2388 			*pflags = lle->la_flags;
2389 		if (plle) {
2390 			LLE_ADDREF(lle);
2391 			*plle = lle;
2392 		}
2393 		LLE_WUNLOCK(lle);
2394 		return (0);
2395 	}
2396 
2397 	/*
2398 	 * There is a neighbor cache entry, but no ethernet address
2399 	 * response yet.  Append this latest packet to the end of the
2400 	 * packet queue in the mbuf.  When it exceeds nd6_maxqueuelen,
2401 	 * the oldest packet in the queue will be removed.
2402 	 */
2403 
2404 	if (lle->la_hold != NULL) {
2405 		struct mbuf *m_hold;
2406 		int i;
2407 
2408 		i = 0;
2409 		for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){
2410 			i++;
2411 			if (m_hold->m_nextpkt == NULL) {
2412 				m_hold->m_nextpkt = m;
2413 				break;
2414 			}
2415 		}
2416 		while (i >= V_nd6_maxqueuelen) {
2417 			m_hold = lle->la_hold;
2418 			lle->la_hold = lle->la_hold->m_nextpkt;
2419 			m_freem(m_hold);
2420 			i--;
2421 		}
2422 	} else {
2423 		lle->la_hold = m;
2424 	}
2425 
2426 	/*
2427 	 * If there has been no NS for the neighbor after entering the
2428 	 * INCOMPLETE state, send the first solicitation.
2429 	 * Note that for newly-created lle la_asked will be 0,
2430 	 * so we will transition from ND6_LLINFO_NOSTATE to
2431 	 * ND6_LLINFO_INCOMPLETE state here.
2432 	 */
2433 	psrc = NULL;
2434 	send_ns = 0;
2435 	if (lle->la_asked == 0) {
2436 		lle->la_asked++;
2437 		send_ns = 1;
2438 		psrc = nd6_llinfo_get_holdsrc(lle, &src);
2439 
2440 		nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE);
2441 	}
2442 	LLE_WUNLOCK(lle);
2443 	if (send_ns != 0)
2444 		nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL);
2445 
2446 	return (EWOULDBLOCK);
2447 }
2448 
2449 /*
2450  * Do L2 address resolution for @sa_dst address. Stores found
2451  * address in @desten buffer. Copy of lle ln_flags can be also
2452  * saved in @pflags if @pflags is non-NULL.
2453  *
2454  * Return values:
2455  * - 0 on success (address copied to buffer).
2456  * - EWOULDBLOCK (no local error, but address is still unresolved)
2457  * - other errors (alloc failure, etc)
2458  */
2459 int
2460 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst,
2461     char *desten, uint32_t *pflags)
2462 {
2463 	int error;
2464 
2465 	flags |= LLE_ADDRONLY;
2466 	error = nd6_resolve_slow(ifp, flags, NULL,
2467 	    (const struct sockaddr_in6 *)dst, desten, pflags, NULL);
2468 	return (error);
2469 }
2470 
2471 int
2472 nd6_flush_holdchain(struct ifnet *ifp, struct llentry *lle, struct mbuf *chain)
2473 {
2474 	struct mbuf *m, *m_head;
2475 	struct sockaddr_in6 dst6;
2476 	int error = 0;
2477 
2478 	NET_EPOCH_ASSERT();
2479 
2480 	struct route_in6 ro = {
2481 		.ro_prepend = lle->r_linkdata,
2482 		.ro_plen = lle->r_hdrlen,
2483 	};
2484 
2485 	lltable_fill_sa_entry(lle, (struct sockaddr *)&dst6);
2486 	m_head = chain;
2487 
2488 	while (m_head) {
2489 		m = m_head;
2490 		m_head = m_head->m_nextpkt;
2491 		m->m_nextpkt = NULL;
2492 		error = nd6_output_ifp(ifp, ifp, m, &dst6, (struct route *)&ro);
2493 	}
2494 
2495 	/*
2496 	 * XXX
2497 	 * note that intermediate errors are blindly ignored
2498 	 */
2499 	return (error);
2500 }
2501 
2502 static int
2503 nd6_need_cache(struct ifnet *ifp)
2504 {
2505 	/*
2506 	 * XXX: we currently do not make neighbor cache on any interface
2507 	 * other than Ethernet and GIF.
2508 	 *
2509 	 * RFC2893 says:
2510 	 * - unidirectional tunnels needs no ND
2511 	 */
2512 	switch (ifp->if_type) {
2513 	case IFT_ETHER:
2514 	case IFT_IEEE1394:
2515 	case IFT_L2VLAN:
2516 	case IFT_INFINIBAND:
2517 	case IFT_BRIDGE:
2518 	case IFT_PROPVIRTUAL:
2519 		return (1);
2520 	default:
2521 		return (0);
2522 	}
2523 }
2524 
2525 /*
2526  * Add pernament ND6 link-layer record for given
2527  * interface address.
2528  *
2529  * Very similar to IPv4 arp_ifinit(), but:
2530  * 1) IPv6 DAD is performed in different place
2531  * 2) It is called by IPv6 protocol stack in contrast to
2532  * arp_ifinit() which is typically called in SIOCSIFADDR
2533  * driver ioctl handler.
2534  *
2535  */
2536 int
2537 nd6_add_ifa_lle(struct in6_ifaddr *ia)
2538 {
2539 	struct ifnet *ifp;
2540 	struct llentry *ln, *ln_tmp;
2541 	struct sockaddr *dst;
2542 
2543 	ifp = ia->ia_ifa.ifa_ifp;
2544 	if (nd6_need_cache(ifp) == 0)
2545 		return (0);
2546 
2547 	dst = (struct sockaddr *)&ia->ia_addr;
2548 	ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst);
2549 	if (ln == NULL)
2550 		return (ENOBUFS);
2551 
2552 	IF_AFDATA_WLOCK(ifp);
2553 	LLE_WLOCK(ln);
2554 	/* Unlink any entry if exists */
2555 	ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst);
2556 	if (ln_tmp != NULL)
2557 		lltable_unlink_entry(LLTABLE6(ifp), ln_tmp);
2558 	lltable_link_entry(LLTABLE6(ifp), ln);
2559 	IF_AFDATA_WUNLOCK(ifp);
2560 
2561 	if (ln_tmp != NULL)
2562 		EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED);
2563 	EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
2564 
2565 	LLE_WUNLOCK(ln);
2566 	if (ln_tmp != NULL)
2567 		llentry_free(ln_tmp);
2568 
2569 	return (0);
2570 }
2571 
2572 /*
2573  * Removes either all lle entries for given @ia, or lle
2574  * corresponding to @ia address.
2575  */
2576 void
2577 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all)
2578 {
2579 	struct sockaddr_in6 mask, addr;
2580 	struct sockaddr *saddr, *smask;
2581 	struct ifnet *ifp;
2582 
2583 	ifp = ia->ia_ifa.ifa_ifp;
2584 	memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr));
2585 	memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask));
2586 	saddr = (struct sockaddr *)&addr;
2587 	smask = (struct sockaddr *)&mask;
2588 
2589 	if (all != 0)
2590 		lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC);
2591 	else
2592 		lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr);
2593 }
2594 
2595 static void
2596 clear_llinfo_pqueue(struct llentry *ln)
2597 {
2598 	struct mbuf *m_hold, *m_hold_next;
2599 
2600 	for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) {
2601 		m_hold_next = m_hold->m_nextpkt;
2602 		m_freem(m_hold);
2603 	}
2604 
2605 	ln->la_hold = NULL;
2606 }
2607 
2608 static int
2609 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2610 {
2611 	struct in6_prefix p;
2612 	struct sockaddr_in6 s6;
2613 	struct nd_prefix *pr;
2614 	struct nd_pfxrouter *pfr;
2615 	time_t maxexpire;
2616 	int error;
2617 	char ip6buf[INET6_ADDRSTRLEN];
2618 
2619 	if (req->newptr)
2620 		return (EPERM);
2621 
2622 	error = sysctl_wire_old_buffer(req, 0);
2623 	if (error != 0)
2624 		return (error);
2625 
2626 	bzero(&p, sizeof(p));
2627 	p.origin = PR_ORIG_RA;
2628 	bzero(&s6, sizeof(s6));
2629 	s6.sin6_family = AF_INET6;
2630 	s6.sin6_len = sizeof(s6);
2631 
2632 	ND6_RLOCK();
2633 	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
2634 		p.prefix = pr->ndpr_prefix;
2635 		if (sa6_recoverscope(&p.prefix)) {
2636 			log(LOG_ERR, "scope error in prefix list (%s)\n",
2637 			    ip6_sprintf(ip6buf, &p.prefix.sin6_addr));
2638 			/* XXX: press on... */
2639 		}
2640 		p.raflags = pr->ndpr_raf;
2641 		p.prefixlen = pr->ndpr_plen;
2642 		p.vltime = pr->ndpr_vltime;
2643 		p.pltime = pr->ndpr_pltime;
2644 		p.if_index = pr->ndpr_ifp->if_index;
2645 		if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2646 			p.expire = 0;
2647 		else {
2648 			/* XXX: we assume time_t is signed. */
2649 			maxexpire = (-1) &
2650 			    ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
2651 			if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate)
2652 				p.expire = pr->ndpr_lastupdate +
2653 				    pr->ndpr_vltime +
2654 				    (time_second - time_uptime);
2655 			else
2656 				p.expire = maxexpire;
2657 		}
2658 		p.refcnt = pr->ndpr_addrcnt;
2659 		p.flags = pr->ndpr_stateflags;
2660 		p.advrtrs = 0;
2661 		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry)
2662 			p.advrtrs++;
2663 		error = SYSCTL_OUT(req, &p, sizeof(p));
2664 		if (error != 0)
2665 			break;
2666 		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2667 			s6.sin6_addr = pfr->router->rtaddr;
2668 			if (sa6_recoverscope(&s6))
2669 				log(LOG_ERR,
2670 				    "scope error in prefix list (%s)\n",
2671 				    ip6_sprintf(ip6buf, &pfr->router->rtaddr));
2672 			error = SYSCTL_OUT(req, &s6, sizeof(s6));
2673 			if (error != 0)
2674 				goto out;
2675 		}
2676 	}
2677 out:
2678 	ND6_RUNLOCK();
2679 	return (error);
2680 }
2681 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2682 	CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2683 	NULL, 0, nd6_sysctl_prlist, "S,in6_prefix",
2684 	"NDP prefix list");
2685 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2686 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, "");
2687 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer,
2688 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), "");
2689