1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/callout.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/socket.h> 44 #include <sys/sockio.h> 45 #include <sys/time.h> 46 #include <sys/kernel.h> 47 #include <sys/protosw.h> 48 #include <sys/errno.h> 49 #include <sys/syslog.h> 50 #include <sys/lock.h> 51 #include <sys/rwlock.h> 52 #include <sys/queue.h> 53 #include <sys/sdt.h> 54 #include <sys/sysctl.h> 55 56 #include <net/if.h> 57 #include <net/if_var.h> 58 #include <net/if_arc.h> 59 #include <net/if_dl.h> 60 #include <net/if_types.h> 61 #include <net/iso88025.h> 62 #include <net/fddi.h> 63 #include <net/route.h> 64 #include <net/vnet.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_kdtrace.h> 68 #include <net/if_llatbl.h> 69 #include <netinet/if_ether.h> 70 #include <netinet6/in6_var.h> 71 #include <netinet/ip6.h> 72 #include <netinet6/ip6_var.h> 73 #include <netinet6/scope6_var.h> 74 #include <netinet6/nd6.h> 75 #include <netinet6/in6_ifattach.h> 76 #include <netinet/icmp6.h> 77 #include <netinet6/send.h> 78 79 #include <sys/limits.h> 80 81 #include <security/mac/mac_framework.h> 82 83 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 84 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 85 86 #define SIN6(s) ((const struct sockaddr_in6 *)(s)) 87 88 /* timer values */ 89 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 90 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 91 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 92 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 93 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 94 * local traffic */ 95 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 96 * collection timer */ 97 98 /* preventing too many loops in ND option parsing */ 99 static VNET_DEFINE(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 100 101 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 102 * layer hints */ 103 static VNET_DEFINE(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved 104 * ND entries */ 105 #define V_nd6_maxndopt VNET(nd6_maxndopt) 106 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 107 108 #ifdef ND6_DEBUG 109 VNET_DEFINE(int, nd6_debug) = 1; 110 #else 111 VNET_DEFINE(int, nd6_debug) = 0; 112 #endif 113 114 static eventhandler_tag lle_event_eh, iflladdr_event_eh; 115 116 /* for debugging? */ 117 #if 0 118 static int nd6_inuse, nd6_allocated; 119 #endif 120 121 VNET_DEFINE(struct nd_drhead, nd_defrouter); 122 VNET_DEFINE(struct nd_prhead, nd_prefix); 123 124 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 125 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 126 127 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 128 129 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *, 130 struct ifnet *); 131 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 132 static void nd6_slowtimo(void *); 133 static int regen_tmpaddr(struct in6_ifaddr *); 134 static void nd6_free(struct llentry *, int); 135 static void nd6_free_redirect(const struct llentry *); 136 static void nd6_llinfo_timer(void *); 137 static void nd6_llinfo_settimer_locked(struct llentry *, long); 138 static void clear_llinfo_pqueue(struct llentry *); 139 static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 140 static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *, 141 const struct sockaddr_in6 *, u_char *, uint32_t *); 142 static int nd6_need_cache(struct ifnet *); 143 144 145 static VNET_DEFINE(struct callout, nd6_slowtimo_ch); 146 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 147 148 VNET_DEFINE(struct callout, nd6_timer_ch); 149 150 static void 151 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt) 152 { 153 struct rt_addrinfo rtinfo; 154 struct sockaddr_in6 dst; 155 struct sockaddr_dl gw; 156 struct ifnet *ifp; 157 int type; 158 159 LLE_WLOCK_ASSERT(lle); 160 161 if (lltable_get_af(lle->lle_tbl) != AF_INET6) 162 return; 163 164 switch (evt) { 165 case LLENTRY_RESOLVED: 166 type = RTM_ADD; 167 KASSERT(lle->la_flags & LLE_VALID, 168 ("%s: %p resolved but not valid?", __func__, lle)); 169 break; 170 case LLENTRY_EXPIRED: 171 type = RTM_DELETE; 172 break; 173 default: 174 return; 175 } 176 177 ifp = lltable_get_ifp(lle->lle_tbl); 178 179 bzero(&dst, sizeof(dst)); 180 bzero(&gw, sizeof(gw)); 181 bzero(&rtinfo, sizeof(rtinfo)); 182 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst); 183 dst.sin6_scope_id = in6_getscopezone(ifp, 184 in6_addrscope(&dst.sin6_addr)); 185 gw.sdl_len = sizeof(struct sockaddr_dl); 186 gw.sdl_family = AF_LINK; 187 gw.sdl_alen = ifp->if_addrlen; 188 gw.sdl_index = ifp->if_index; 189 gw.sdl_type = ifp->if_type; 190 if (evt == LLENTRY_RESOLVED) 191 bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen); 192 rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst; 193 rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw; 194 rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY; 195 rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | ( 196 type == RTM_ADD ? RTF_UP: 0), 0, RT_DEFAULT_FIB); 197 } 198 199 /* 200 * A handler for interface link layer address change event. 201 */ 202 static void 203 nd6_iflladdr(void *arg __unused, struct ifnet *ifp) 204 { 205 206 lltable_update_ifaddr(LLTABLE6(ifp)); 207 } 208 209 void 210 nd6_init(void) 211 { 212 213 LIST_INIT(&V_nd_prefix); 214 215 /* initialization of the default router list */ 216 TAILQ_INIT(&V_nd_defrouter); 217 218 /* start timer */ 219 callout_init(&V_nd6_slowtimo_ch, 0); 220 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 221 nd6_slowtimo, curvnet); 222 223 nd6_dad_init(); 224 if (IS_DEFAULT_VNET(curvnet)) { 225 lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event, 226 NULL, EVENTHANDLER_PRI_ANY); 227 iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event, 228 nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 229 } 230 } 231 232 #ifdef VIMAGE 233 void 234 nd6_destroy() 235 { 236 237 callout_drain(&V_nd6_slowtimo_ch); 238 callout_drain(&V_nd6_timer_ch); 239 if (IS_DEFAULT_VNET(curvnet)) { 240 EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); 241 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh); 242 } 243 } 244 #endif 245 246 struct nd_ifinfo * 247 nd6_ifattach(struct ifnet *ifp) 248 { 249 struct nd_ifinfo *nd; 250 251 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO); 252 nd->initialized = 1; 253 254 nd->chlim = IPV6_DEFHLIM; 255 nd->basereachable = REACHABLE_TIME; 256 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 257 nd->retrans = RETRANS_TIMER; 258 259 nd->flags = ND6_IFF_PERFORMNUD; 260 261 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 262 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 263 * default regardless of the V_ip6_auto_linklocal configuration to 264 * give a reasonable default behavior. 265 */ 266 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 267 (ifp->if_flags & IFF_LOOPBACK)) 268 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 269 /* 270 * A loopback interface does not need to accept RTADV. 271 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 272 * default regardless of the V_ip6_accept_rtadv configuration to 273 * prevent the interface from accepting RA messages arrived 274 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 275 */ 276 if (V_ip6_accept_rtadv && 277 !(ifp->if_flags & IFF_LOOPBACK) && 278 (ifp->if_type != IFT_BRIDGE)) 279 nd->flags |= ND6_IFF_ACCEPT_RTADV; 280 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 281 nd->flags |= ND6_IFF_NO_RADR; 282 283 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 284 nd6_setmtu0(ifp, nd); 285 286 return nd; 287 } 288 289 void 290 nd6_ifdetach(struct nd_ifinfo *nd) 291 { 292 293 free(nd, M_IP6NDP); 294 } 295 296 /* 297 * Reset ND level link MTU. This function is called when the physical MTU 298 * changes, which means we might have to adjust the ND level MTU. 299 */ 300 void 301 nd6_setmtu(struct ifnet *ifp) 302 { 303 if (ifp->if_afdata[AF_INET6] == NULL) 304 return; 305 306 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 307 } 308 309 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 310 void 311 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 312 { 313 u_int32_t omaxmtu; 314 315 omaxmtu = ndi->maxmtu; 316 317 switch (ifp->if_type) { 318 case IFT_ARCNET: 319 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ 320 break; 321 case IFT_FDDI: 322 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */ 323 break; 324 case IFT_ISO88025: 325 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu); 326 break; 327 default: 328 ndi->maxmtu = ifp->if_mtu; 329 break; 330 } 331 332 /* 333 * Decreasing the interface MTU under IPV6 minimum MTU may cause 334 * undesirable situation. We thus notify the operator of the change 335 * explicitly. The check for omaxmtu is necessary to restrict the 336 * log to the case of changing the MTU, not initializing it. 337 */ 338 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 339 log(LOG_NOTICE, "nd6_setmtu0: " 340 "new link MTU on %s (%lu) is too small for IPv6\n", 341 if_name(ifp), (unsigned long)ndi->maxmtu); 342 } 343 344 if (ndi->maxmtu > V_in6_maxmtu) 345 in6_setmaxmtu(); /* check all interfaces just in case */ 346 347 } 348 349 void 350 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 351 { 352 353 bzero(ndopts, sizeof(*ndopts)); 354 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 355 ndopts->nd_opts_last 356 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 357 358 if (icmp6len == 0) { 359 ndopts->nd_opts_done = 1; 360 ndopts->nd_opts_search = NULL; 361 } 362 } 363 364 /* 365 * Take one ND option. 366 */ 367 struct nd_opt_hdr * 368 nd6_option(union nd_opts *ndopts) 369 { 370 struct nd_opt_hdr *nd_opt; 371 int olen; 372 373 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 374 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 375 __func__)); 376 if (ndopts->nd_opts_search == NULL) 377 return NULL; 378 if (ndopts->nd_opts_done) 379 return NULL; 380 381 nd_opt = ndopts->nd_opts_search; 382 383 /* make sure nd_opt_len is inside the buffer */ 384 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 385 bzero(ndopts, sizeof(*ndopts)); 386 return NULL; 387 } 388 389 olen = nd_opt->nd_opt_len << 3; 390 if (olen == 0) { 391 /* 392 * Message validation requires that all included 393 * options have a length that is greater than zero. 394 */ 395 bzero(ndopts, sizeof(*ndopts)); 396 return NULL; 397 } 398 399 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 400 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 401 /* option overruns the end of buffer, invalid */ 402 bzero(ndopts, sizeof(*ndopts)); 403 return NULL; 404 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 405 /* reached the end of options chain */ 406 ndopts->nd_opts_done = 1; 407 ndopts->nd_opts_search = NULL; 408 } 409 return nd_opt; 410 } 411 412 /* 413 * Parse multiple ND options. 414 * This function is much easier to use, for ND routines that do not need 415 * multiple options of the same type. 416 */ 417 int 418 nd6_options(union nd_opts *ndopts) 419 { 420 struct nd_opt_hdr *nd_opt; 421 int i = 0; 422 423 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 424 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 425 __func__)); 426 if (ndopts->nd_opts_search == NULL) 427 return 0; 428 429 while (1) { 430 nd_opt = nd6_option(ndopts); 431 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 432 /* 433 * Message validation requires that all included 434 * options have a length that is greater than zero. 435 */ 436 ICMP6STAT_INC(icp6s_nd_badopt); 437 bzero(ndopts, sizeof(*ndopts)); 438 return -1; 439 } 440 441 if (nd_opt == NULL) 442 goto skip1; 443 444 switch (nd_opt->nd_opt_type) { 445 case ND_OPT_SOURCE_LINKADDR: 446 case ND_OPT_TARGET_LINKADDR: 447 case ND_OPT_MTU: 448 case ND_OPT_REDIRECTED_HEADER: 449 case ND_OPT_NONCE: 450 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 451 nd6log((LOG_INFO, 452 "duplicated ND6 option found (type=%d)\n", 453 nd_opt->nd_opt_type)); 454 /* XXX bark? */ 455 } else { 456 ndopts->nd_opt_array[nd_opt->nd_opt_type] 457 = nd_opt; 458 } 459 break; 460 case ND_OPT_PREFIX_INFORMATION: 461 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 462 ndopts->nd_opt_array[nd_opt->nd_opt_type] 463 = nd_opt; 464 } 465 ndopts->nd_opts_pi_end = 466 (struct nd_opt_prefix_info *)nd_opt; 467 break; 468 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 469 case ND_OPT_RDNSS: /* RFC 6106 */ 470 case ND_OPT_DNSSL: /* RFC 6106 */ 471 /* 472 * Silently ignore options we know and do not care about 473 * in the kernel. 474 */ 475 break; 476 default: 477 /* 478 * Unknown options must be silently ignored, 479 * to accomodate future extension to the protocol. 480 */ 481 nd6log((LOG_DEBUG, 482 "nd6_options: unsupported option %d - " 483 "option ignored\n", nd_opt->nd_opt_type)); 484 } 485 486 skip1: 487 i++; 488 if (i > V_nd6_maxndopt) { 489 ICMP6STAT_INC(icp6s_nd_toomanyopt); 490 nd6log((LOG_INFO, "too many loop in nd opt\n")); 491 break; 492 } 493 494 if (ndopts->nd_opts_done) 495 break; 496 } 497 498 return 0; 499 } 500 501 /* 502 * ND6 timer routine to handle ND6 entries 503 */ 504 static void 505 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 506 { 507 int canceled; 508 509 LLE_WLOCK_ASSERT(ln); 510 511 if (tick < 0) { 512 ln->la_expire = 0; 513 ln->ln_ntick = 0; 514 canceled = callout_stop(&ln->lle_timer); 515 } else { 516 ln->la_expire = time_uptime + tick / hz; 517 LLE_ADDREF(ln); 518 if (tick > INT_MAX) { 519 ln->ln_ntick = tick - INT_MAX; 520 canceled = callout_reset(&ln->lle_timer, INT_MAX, 521 nd6_llinfo_timer, ln); 522 } else { 523 ln->ln_ntick = 0; 524 canceled = callout_reset(&ln->lle_timer, tick, 525 nd6_llinfo_timer, ln); 526 } 527 } 528 if (canceled > 0) 529 LLE_REMREF(ln); 530 } 531 532 /* 533 * Gets source address of the first packet in hold queue 534 * and stores it in @src. 535 * Returns pointer to @src (if hold queue is not empty) or NULL. 536 * 537 * Set noinline to be dtrace-friendly 538 */ 539 static __noinline struct in6_addr * 540 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 541 { 542 struct ip6_hdr hdr; 543 struct mbuf *m; 544 545 if (ln->la_hold == NULL) 546 return (NULL); 547 548 /* 549 * assume every packet in la_hold has the same IP header 550 */ 551 m = ln->la_hold; 552 if (sizeof(hdr) > m->m_len) 553 return (NULL); 554 555 m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr); 556 *src = hdr.ip6_src; 557 558 return (src); 559 } 560 561 /* 562 * Checks if we need to switch from STALE state. 563 * 564 * RFC 4861 requires switching from STALE to DELAY state 565 * on first packet matching entry, waiting V_nd6_delay and 566 * transition to PROBE state (if upper layer confirmation was 567 * not received). 568 * 569 * This code performs a bit differently: 570 * On packet hit we don't change state (but desired state 571 * can be guessed by control plane). However, after V_nd6_delay 572 * seconds code will transition to PROBE state (so DELAY state 573 * is kinda skipped in most situations). 574 * 575 * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so 576 * we perform the following upon entering STALE state: 577 * 578 * 1) Arm timer to run each V_nd6_delay seconds to make sure that 579 * if packet was transmitted at the start of given interval, we 580 * would be able to switch to PROBE state in V_nd6_delay seconds 581 * as user expects. 582 * 583 * 2) Reschedule timer until original V_nd6_gctimer expires keeping 584 * lle in STALE state (remaining timer value stored in lle_remtime). 585 * 586 * 3) Reschedule timer if packet was transmitted less that V_nd6_delay 587 * seconds ago. 588 * 589 * Returns non-zero value if the entry is still STALE (storing 590 * the next timer interval in @pdelay). 591 * 592 * Returns zero value if original timer expired or we need to switch to 593 * PROBE (store that in @do_switch variable). 594 */ 595 static int 596 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch) 597 { 598 int nd_delay, nd_gctimer, r_skip_req; 599 time_t lle_hittime; 600 long delay; 601 602 *do_switch = 0; 603 nd_gctimer = V_nd6_gctimer; 604 nd_delay = V_nd6_delay; 605 606 LLE_REQ_LOCK(lle); 607 r_skip_req = lle->r_skip_req; 608 lle_hittime = lle->lle_hittime; 609 LLE_REQ_UNLOCK(lle); 610 611 if (r_skip_req > 0) { 612 613 /* 614 * Nonzero r_skip_req value was set upon entering 615 * STALE state. Since value was not changed, no 616 * packets were passed using this lle. Ask for 617 * timer reschedule and keep STALE state. 618 */ 619 delay = (long)(MIN(nd_gctimer, nd_delay)); 620 delay *= hz; 621 if (lle->lle_remtime > delay) 622 lle->lle_remtime -= delay; 623 else { 624 delay = lle->lle_remtime; 625 lle->lle_remtime = 0; 626 } 627 628 if (delay == 0) { 629 630 /* 631 * The original ng6_gctime timeout ended, 632 * no more rescheduling. 633 */ 634 return (0); 635 } 636 637 *pdelay = delay; 638 return (1); 639 } 640 641 /* 642 * Packet received. Verify timestamp 643 */ 644 delay = (long)(time_uptime - lle_hittime); 645 if (delay < nd_delay) { 646 647 /* 648 * V_nd6_delay still not passed since the first 649 * hit in STALE state. 650 * Reshedule timer and return. 651 */ 652 *pdelay = (long)(nd_delay - delay) * hz; 653 return (1); 654 } 655 656 /* Request switching to probe */ 657 *do_switch = 1; 658 return (0); 659 } 660 661 662 /* 663 * Switch @lle state to new state optionally arming timers. 664 * 665 * Set noinline to be dtrace-friendly 666 */ 667 __noinline void 668 nd6_llinfo_setstate(struct llentry *lle, int newstate) 669 { 670 struct ifnet *ifp; 671 int nd_gctimer, nd_delay; 672 long delay, remtime; 673 674 delay = 0; 675 remtime = 0; 676 677 switch (newstate) { 678 case ND6_LLINFO_INCOMPLETE: 679 ifp = lle->lle_tbl->llt_ifp; 680 delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000; 681 break; 682 case ND6_LLINFO_REACHABLE: 683 if (!ND6_LLINFO_PERMANENT(lle)) { 684 ifp = lle->lle_tbl->llt_ifp; 685 delay = (long)ND_IFINFO(ifp)->reachable * hz; 686 } 687 break; 688 case ND6_LLINFO_STALE: 689 690 /* 691 * Notify fast path that we want to know if any packet 692 * is transmitted by setting r_skip_req. 693 */ 694 LLE_REQ_LOCK(lle); 695 lle->r_skip_req = 1; 696 LLE_REQ_UNLOCK(lle); 697 nd_delay = V_nd6_delay; 698 nd_gctimer = V_nd6_gctimer; 699 700 delay = (long)(MIN(nd_gctimer, nd_delay)) * hz; 701 remtime = (long)nd_gctimer * hz - delay; 702 break; 703 case ND6_LLINFO_DELAY: 704 lle->la_asked = 0; 705 delay = (long)V_nd6_delay * hz; 706 break; 707 } 708 709 if (delay > 0) 710 nd6_llinfo_settimer_locked(lle, delay); 711 712 lle->lle_remtime = remtime; 713 lle->ln_state = newstate; 714 } 715 716 /* 717 * Timer-dependent part of nd state machine. 718 * 719 * Set noinline to be dtrace-friendly 720 */ 721 static __noinline void 722 nd6_llinfo_timer(void *arg) 723 { 724 struct llentry *ln; 725 struct in6_addr *dst, *pdst, *psrc, src; 726 struct ifnet *ifp; 727 struct nd_ifinfo *ndi = NULL; 728 int do_switch, send_ns; 729 long delay; 730 731 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 732 ln = (struct llentry *)arg; 733 LLE_WLOCK(ln); 734 if (callout_pending(&ln->lle_timer)) { 735 /* 736 * Here we are a bit odd here in the treatment of 737 * active/pending. If the pending bit is set, it got 738 * rescheduled before I ran. The active 739 * bit we ignore, since if it was stopped 740 * in ll_tablefree() and was currently running 741 * it would have return 0 so the code would 742 * not have deleted it since the callout could 743 * not be stopped so we want to go through 744 * with the delete here now. If the callout 745 * was restarted, the pending bit will be back on and 746 * we just want to bail since the callout_reset would 747 * return 1 and our reference would have been removed 748 * by nd6_llinfo_settimer_locked above since canceled 749 * would have been 1. 750 */ 751 LLE_WUNLOCK(ln); 752 return; 753 } 754 ifp = ln->lle_tbl->llt_ifp; 755 CURVNET_SET(ifp->if_vnet); 756 ndi = ND_IFINFO(ifp); 757 send_ns = 0; 758 dst = &ln->r_l3addr.addr6; 759 pdst = dst; 760 761 if (ln->ln_ntick > 0) { 762 if (ln->ln_ntick > INT_MAX) { 763 ln->ln_ntick -= INT_MAX; 764 nd6_llinfo_settimer_locked(ln, INT_MAX); 765 } else { 766 ln->ln_ntick = 0; 767 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 768 } 769 goto done; 770 } 771 772 if (ln->la_flags & LLE_STATIC) { 773 goto done; 774 } 775 776 if (ln->la_flags & LLE_DELETED) { 777 nd6_free(ln, 0); 778 ln = NULL; 779 goto done; 780 } 781 782 switch (ln->ln_state) { 783 case ND6_LLINFO_INCOMPLETE: 784 if (ln->la_asked < V_nd6_mmaxtries) { 785 ln->la_asked++; 786 send_ns = 1; 787 /* Send NS to multicast address */ 788 pdst = NULL; 789 } else { 790 struct mbuf *m = ln->la_hold; 791 if (m) { 792 struct mbuf *m0; 793 794 /* 795 * assuming every packet in la_hold has the 796 * same IP header. Send error after unlock. 797 */ 798 m0 = m->m_nextpkt; 799 m->m_nextpkt = NULL; 800 ln->la_hold = m0; 801 clear_llinfo_pqueue(ln); 802 } 803 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_TIMEDOUT); 804 nd6_free(ln, 0); 805 ln = NULL; 806 if (m != NULL) 807 icmp6_error2(m, ICMP6_DST_UNREACH, 808 ICMP6_DST_UNREACH_ADDR, 0, ifp); 809 } 810 break; 811 case ND6_LLINFO_REACHABLE: 812 if (!ND6_LLINFO_PERMANENT(ln)) 813 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 814 break; 815 816 case ND6_LLINFO_STALE: 817 if (nd6_is_stale(ln, &delay, &do_switch) != 0) { 818 819 /* 820 * No packet has used this entry and GC timeout 821 * has not been passed. Reshedule timer and 822 * return. 823 */ 824 nd6_llinfo_settimer_locked(ln, delay); 825 break; 826 } 827 828 if (do_switch == 0) { 829 830 /* 831 * GC timer has ended and entry hasn't been used. 832 * Run Garbage collector (RFC 4861, 5.3) 833 */ 834 if (!ND6_LLINFO_PERMANENT(ln)) { 835 EVENTHANDLER_INVOKE(lle_event, ln, 836 LLENTRY_EXPIRED); 837 nd6_free(ln, 1); 838 ln = NULL; 839 } 840 break; 841 } 842 843 /* Entry has been used AND delay timer has ended. */ 844 845 /* FALLTHROUGH */ 846 847 case ND6_LLINFO_DELAY: 848 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 849 /* We need NUD */ 850 ln->la_asked = 1; 851 nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE); 852 send_ns = 1; 853 } else 854 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */ 855 break; 856 case ND6_LLINFO_PROBE: 857 if (ln->la_asked < V_nd6_umaxtries) { 858 ln->la_asked++; 859 send_ns = 1; 860 } else { 861 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 862 nd6_free(ln, 0); 863 ln = NULL; 864 } 865 break; 866 default: 867 panic("%s: paths in a dark night can be confusing: %d", 868 __func__, ln->ln_state); 869 } 870 done: 871 if (send_ns != 0) { 872 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 873 psrc = nd6_llinfo_get_holdsrc(ln, &src); 874 LLE_FREE_LOCKED(ln); 875 ln = NULL; 876 nd6_ns_output(ifp, psrc, pdst, dst, NULL); 877 } 878 879 if (ln != NULL) 880 LLE_FREE_LOCKED(ln); 881 CURVNET_RESTORE(); 882 } 883 884 885 /* 886 * ND6 timer routine to expire default route list and prefix list 887 */ 888 void 889 nd6_timer(void *arg) 890 { 891 CURVNET_SET((struct vnet *) arg); 892 struct nd_defrouter *dr, *ndr; 893 struct nd_prefix *pr, *npr; 894 struct in6_ifaddr *ia6, *nia6; 895 896 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 897 nd6_timer, curvnet); 898 899 /* expire default router list */ 900 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 901 if (dr->expire && dr->expire < time_uptime) 902 defrtrlist_del(dr); 903 } 904 905 /* 906 * expire interface addresses. 907 * in the past the loop was inside prefix expiry processing. 908 * However, from a stricter speci-confrmance standpoint, we should 909 * rather separate address lifetimes and prefix lifetimes. 910 * 911 * XXXRW: in6_ifaddrhead locking. 912 */ 913 addrloop: 914 TAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 915 /* check address lifetime */ 916 if (IFA6_IS_INVALID(ia6)) { 917 int regen = 0; 918 919 /* 920 * If the expiring address is temporary, try 921 * regenerating a new one. This would be useful when 922 * we suspended a laptop PC, then turned it on after a 923 * period that could invalidate all temporary 924 * addresses. Although we may have to restart the 925 * loop (see below), it must be after purging the 926 * address. Otherwise, we'd see an infinite loop of 927 * regeneration. 928 */ 929 if (V_ip6_use_tempaddr && 930 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 931 if (regen_tmpaddr(ia6) == 0) 932 regen = 1; 933 } 934 935 in6_purgeaddr(&ia6->ia_ifa); 936 937 if (regen) 938 goto addrloop; /* XXX: see below */ 939 } else if (IFA6_IS_DEPRECATED(ia6)) { 940 int oldflags = ia6->ia6_flags; 941 942 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 943 944 /* 945 * If a temporary address has just become deprecated, 946 * regenerate a new one if possible. 947 */ 948 if (V_ip6_use_tempaddr && 949 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 950 (oldflags & IN6_IFF_DEPRECATED) == 0) { 951 952 if (regen_tmpaddr(ia6) == 0) { 953 /* 954 * A new temporary address is 955 * generated. 956 * XXX: this means the address chain 957 * has changed while we are still in 958 * the loop. Although the change 959 * would not cause disaster (because 960 * it's not a deletion, but an 961 * addition,) we'd rather restart the 962 * loop just for safety. Or does this 963 * significantly reduce performance?? 964 */ 965 goto addrloop; 966 } 967 } 968 } else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) { 969 /* 970 * Schedule DAD for a tentative address. This happens 971 * if the interface was down or not running 972 * when the address was configured. 973 */ 974 int delay; 975 976 delay = arc4random() % 977 (MAX_RTR_SOLICITATION_DELAY * hz); 978 nd6_dad_start((struct ifaddr *)ia6, delay); 979 } else { 980 /* 981 * Check status of the interface. If it is down, 982 * mark the address as tentative for future DAD. 983 */ 984 if ((ia6->ia_ifp->if_flags & IFF_UP) == 0 || 985 (ia6->ia_ifp->if_drv_flags & IFF_DRV_RUNNING) 986 == 0 || 987 (ND_IFINFO(ia6->ia_ifp)->flags & 988 ND6_IFF_IFDISABLED) != 0) { 989 ia6->ia6_flags &= ~IN6_IFF_DUPLICATED; 990 ia6->ia6_flags |= IN6_IFF_TENTATIVE; 991 } 992 /* 993 * A new RA might have made a deprecated address 994 * preferred. 995 */ 996 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 997 } 998 } 999 1000 /* expire prefix list */ 1001 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1002 /* 1003 * check prefix lifetime. 1004 * since pltime is just for autoconf, pltime processing for 1005 * prefix is not necessary. 1006 */ 1007 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && 1008 time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) { 1009 1010 /* 1011 * address expiration and prefix expiration are 1012 * separate. NEVER perform in6_purgeaddr here. 1013 */ 1014 prelist_remove(pr); 1015 } 1016 } 1017 CURVNET_RESTORE(); 1018 } 1019 1020 /* 1021 * ia6 - deprecated/invalidated temporary address 1022 */ 1023 static int 1024 regen_tmpaddr(struct in6_ifaddr *ia6) 1025 { 1026 struct ifaddr *ifa; 1027 struct ifnet *ifp; 1028 struct in6_ifaddr *public_ifa6 = NULL; 1029 1030 ifp = ia6->ia_ifa.ifa_ifp; 1031 IF_ADDR_RLOCK(ifp); 1032 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1033 struct in6_ifaddr *it6; 1034 1035 if (ifa->ifa_addr->sa_family != AF_INET6) 1036 continue; 1037 1038 it6 = (struct in6_ifaddr *)ifa; 1039 1040 /* ignore no autoconf addresses. */ 1041 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1042 continue; 1043 1044 /* ignore autoconf addresses with different prefixes. */ 1045 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 1046 continue; 1047 1048 /* 1049 * Now we are looking at an autoconf address with the same 1050 * prefix as ours. If the address is temporary and is still 1051 * preferred, do not create another one. It would be rare, but 1052 * could happen, for example, when we resume a laptop PC after 1053 * a long period. 1054 */ 1055 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 1056 !IFA6_IS_DEPRECATED(it6)) { 1057 public_ifa6 = NULL; 1058 break; 1059 } 1060 1061 /* 1062 * This is a public autoconf address that has the same prefix 1063 * as ours. If it is preferred, keep it. We can't break the 1064 * loop here, because there may be a still-preferred temporary 1065 * address with the prefix. 1066 */ 1067 if (!IFA6_IS_DEPRECATED(it6)) 1068 public_ifa6 = it6; 1069 } 1070 if (public_ifa6 != NULL) 1071 ifa_ref(&public_ifa6->ia_ifa); 1072 IF_ADDR_RUNLOCK(ifp); 1073 1074 if (public_ifa6 != NULL) { 1075 int e; 1076 1077 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 1078 ifa_free(&public_ifa6->ia_ifa); 1079 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 1080 " tmp addr,errno=%d\n", e); 1081 return (-1); 1082 } 1083 ifa_free(&public_ifa6->ia_ifa); 1084 return (0); 1085 } 1086 1087 return (-1); 1088 } 1089 1090 /* 1091 * Nuke neighbor cache/prefix/default router management table, right before 1092 * ifp goes away. 1093 */ 1094 void 1095 nd6_purge(struct ifnet *ifp) 1096 { 1097 struct nd_defrouter *dr, *ndr; 1098 struct nd_prefix *pr, *npr; 1099 1100 /* 1101 * Nuke default router list entries toward ifp. 1102 * We defer removal of default router list entries that is installed 1103 * in the routing table, in order to keep additional side effects as 1104 * small as possible. 1105 */ 1106 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 1107 if (dr->installed) 1108 continue; 1109 1110 if (dr->ifp == ifp) 1111 defrtrlist_del(dr); 1112 } 1113 1114 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 1115 if (!dr->installed) 1116 continue; 1117 1118 if (dr->ifp == ifp) 1119 defrtrlist_del(dr); 1120 } 1121 1122 /* Nuke prefix list entries toward ifp */ 1123 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1124 if (pr->ndpr_ifp == ifp) { 1125 /* 1126 * Because if_detach() does *not* release prefixes 1127 * while purging addresses the reference count will 1128 * still be above zero. We therefore reset it to 1129 * make sure that the prefix really gets purged. 1130 */ 1131 pr->ndpr_refcnt = 0; 1132 1133 /* 1134 * Previously, pr->ndpr_addr is removed as well, 1135 * but I strongly believe we don't have to do it. 1136 * nd6_purge() is only called from in6_ifdetach(), 1137 * which removes all the associated interface addresses 1138 * by itself. 1139 * (jinmei@kame.net 20010129) 1140 */ 1141 prelist_remove(pr); 1142 } 1143 } 1144 1145 /* cancel default outgoing interface setting */ 1146 if (V_nd6_defifindex == ifp->if_index) 1147 nd6_setdefaultiface(0); 1148 1149 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1150 /* Refresh default router list. */ 1151 defrouter_select(); 1152 } 1153 1154 /* XXXXX 1155 * We do not nuke the neighbor cache entries here any more 1156 * because the neighbor cache is kept in if_afdata[AF_INET6]. 1157 * nd6_purge() is invoked by in6_ifdetach() which is called 1158 * from if_detach() where everything gets purged. So let 1159 * in6_domifdetach() do the actual L2 table purging work. 1160 */ 1161 } 1162 1163 /* 1164 * the caller acquires and releases the lock on the lltbls 1165 * Returns the llentry locked 1166 */ 1167 struct llentry * 1168 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1169 { 1170 struct sockaddr_in6 sin6; 1171 struct llentry *ln; 1172 1173 bzero(&sin6, sizeof(sin6)); 1174 sin6.sin6_len = sizeof(struct sockaddr_in6); 1175 sin6.sin6_family = AF_INET6; 1176 sin6.sin6_addr = *addr6; 1177 1178 IF_AFDATA_LOCK_ASSERT(ifp); 1179 1180 ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6); 1181 1182 return (ln); 1183 } 1184 1185 struct llentry * 1186 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1187 { 1188 struct sockaddr_in6 sin6; 1189 struct llentry *ln; 1190 1191 bzero(&sin6, sizeof(sin6)); 1192 sin6.sin6_len = sizeof(struct sockaddr_in6); 1193 sin6.sin6_family = AF_INET6; 1194 sin6.sin6_addr = *addr6; 1195 1196 ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6); 1197 if (ln != NULL) 1198 ln->ln_state = ND6_LLINFO_NOSTATE; 1199 1200 return (ln); 1201 } 1202 1203 /* 1204 * Test whether a given IPv6 address is a neighbor or not, ignoring 1205 * the actual neighbor cache. The neighbor cache is ignored in order 1206 * to not reenter the routing code from within itself. 1207 */ 1208 static int 1209 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1210 { 1211 struct nd_prefix *pr; 1212 struct ifaddr *dstaddr; 1213 struct rt_addrinfo info; 1214 struct sockaddr_in6 rt_key; 1215 struct sockaddr *dst6; 1216 int fibnum; 1217 1218 /* 1219 * A link-local address is always a neighbor. 1220 * XXX: a link does not necessarily specify a single interface. 1221 */ 1222 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1223 struct sockaddr_in6 sin6_copy; 1224 u_int32_t zone; 1225 1226 /* 1227 * We need sin6_copy since sa6_recoverscope() may modify the 1228 * content (XXX). 1229 */ 1230 sin6_copy = *addr; 1231 if (sa6_recoverscope(&sin6_copy)) 1232 return (0); /* XXX: should be impossible */ 1233 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1234 return (0); 1235 if (sin6_copy.sin6_scope_id == zone) 1236 return (1); 1237 else 1238 return (0); 1239 } 1240 1241 bzero(&rt_key, sizeof(rt_key)); 1242 bzero(&info, sizeof(info)); 1243 info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key; 1244 1245 /* Always use the default FIB here. XXME - why? */ 1246 fibnum = RT_DEFAULT_FIB; 1247 1248 /* 1249 * If the address matches one of our addresses, 1250 * it should be a neighbor. 1251 * If the address matches one of our on-link prefixes, it should be a 1252 * neighbor. 1253 */ 1254 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1255 if (pr->ndpr_ifp != ifp) 1256 continue; 1257 1258 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) { 1259 1260 /* Always use the default FIB here. */ 1261 dst6 = (struct sockaddr *)&pr->ndpr_prefix; 1262 1263 /* Restore length field before retrying lookup */ 1264 rt_key.sin6_len = sizeof(rt_key); 1265 if (rib_lookup_info(fibnum, dst6, 0, 0, &info) != 0) 1266 continue; 1267 /* 1268 * This is the case where multiple interfaces 1269 * have the same prefix, but only one is installed 1270 * into the routing table and that prefix entry 1271 * is not the one being examined here. In the case 1272 * where RADIX_MPATH is enabled, multiple route 1273 * entries (of the same rt_key value) will be 1274 * installed because the interface addresses all 1275 * differ. 1276 */ 1277 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1278 &rt_key.sin6_addr)) 1279 continue; 1280 } 1281 1282 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1283 &addr->sin6_addr, &pr->ndpr_mask)) 1284 return (1); 1285 } 1286 1287 /* 1288 * If the address is assigned on the node of the other side of 1289 * a p2p interface, the address should be a neighbor. 1290 */ 1291 dstaddr = ifa_ifwithdstaddr((const struct sockaddr *)addr, RT_ALL_FIBS); 1292 if (dstaddr != NULL) { 1293 if (dstaddr->ifa_ifp == ifp) { 1294 ifa_free(dstaddr); 1295 return (1); 1296 } 1297 ifa_free(dstaddr); 1298 } 1299 1300 /* 1301 * If the default router list is empty, all addresses are regarded 1302 * as on-link, and thus, as a neighbor. 1303 */ 1304 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1305 TAILQ_EMPTY(&V_nd_defrouter) && 1306 V_nd6_defifindex == ifp->if_index) { 1307 return (1); 1308 } 1309 1310 return (0); 1311 } 1312 1313 1314 /* 1315 * Detect if a given IPv6 address identifies a neighbor on a given link. 1316 * XXX: should take care of the destination of a p2p link? 1317 */ 1318 int 1319 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1320 { 1321 struct llentry *lle; 1322 int rc = 0; 1323 1324 IF_AFDATA_UNLOCK_ASSERT(ifp); 1325 if (nd6_is_new_addr_neighbor(addr, ifp)) 1326 return (1); 1327 1328 /* 1329 * Even if the address matches none of our addresses, it might be 1330 * in the neighbor cache. 1331 */ 1332 IF_AFDATA_RLOCK(ifp); 1333 if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { 1334 LLE_RUNLOCK(lle); 1335 rc = 1; 1336 } 1337 IF_AFDATA_RUNLOCK(ifp); 1338 return (rc); 1339 } 1340 1341 /* 1342 * Free an nd6 llinfo entry. 1343 * Since the function would cause significant changes in the kernel, DO NOT 1344 * make it global, unless you have a strong reason for the change, and are sure 1345 * that the change is safe. 1346 * 1347 * Set noinline to be dtrace-friendly 1348 */ 1349 static __noinline void 1350 nd6_free(struct llentry *ln, int gc) 1351 { 1352 struct nd_defrouter *dr; 1353 struct ifnet *ifp; 1354 1355 LLE_WLOCK_ASSERT(ln); 1356 1357 /* 1358 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1359 * even though it is not harmful, it was not really necessary. 1360 */ 1361 1362 /* cancel timer */ 1363 nd6_llinfo_settimer_locked(ln, -1); 1364 1365 ifp = ln->lle_tbl->llt_ifp; 1366 1367 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1368 dr = defrouter_lookup(&ln->r_l3addr.addr6, ifp); 1369 1370 if (dr != NULL && dr->expire && 1371 ln->ln_state == ND6_LLINFO_STALE && gc) { 1372 /* 1373 * If the reason for the deletion is just garbage 1374 * collection, and the neighbor is an active default 1375 * router, do not delete it. Instead, reset the GC 1376 * timer using the router's lifetime. 1377 * Simply deleting the entry would affect default 1378 * router selection, which is not necessarily a good 1379 * thing, especially when we're using router preference 1380 * values. 1381 * XXX: the check for ln_state would be redundant, 1382 * but we intentionally keep it just in case. 1383 */ 1384 if (dr->expire > time_uptime) 1385 nd6_llinfo_settimer_locked(ln, 1386 (dr->expire - time_uptime) * hz); 1387 else 1388 nd6_llinfo_settimer_locked(ln, 1389 (long)V_nd6_gctimer * hz); 1390 1391 LLE_REMREF(ln); 1392 LLE_WUNLOCK(ln); 1393 return; 1394 } 1395 1396 if (dr) { 1397 /* 1398 * Unreachablity of a router might affect the default 1399 * router selection and on-link detection of advertised 1400 * prefixes. 1401 */ 1402 1403 /* 1404 * Temporarily fake the state to choose a new default 1405 * router and to perform on-link determination of 1406 * prefixes correctly. 1407 * Below the state will be set correctly, 1408 * or the entry itself will be deleted. 1409 */ 1410 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1411 } 1412 1413 if (ln->ln_router || dr) { 1414 1415 /* 1416 * We need to unlock to avoid a LOR with rt6_flush() with the 1417 * rnh and for the calls to pfxlist_onlink_check() and 1418 * defrouter_select() in the block further down for calls 1419 * into nd6_lookup(). We still hold a ref. 1420 */ 1421 LLE_WUNLOCK(ln); 1422 1423 /* 1424 * rt6_flush must be called whether or not the neighbor 1425 * is in the Default Router List. 1426 * See a corresponding comment in nd6_na_input(). 1427 */ 1428 rt6_flush(&ln->r_l3addr.addr6, ifp); 1429 } 1430 1431 if (dr) { 1432 /* 1433 * Since defrouter_select() does not affect the 1434 * on-link determination and MIP6 needs the check 1435 * before the default router selection, we perform 1436 * the check now. 1437 */ 1438 pfxlist_onlink_check(); 1439 1440 /* 1441 * Refresh default router list. 1442 */ 1443 defrouter_select(); 1444 } 1445 1446 /* 1447 * If this entry was added by an on-link redirect, remove the 1448 * corresponding host route. 1449 */ 1450 if (ln->la_flags & LLE_REDIRECT) 1451 nd6_free_redirect(ln); 1452 1453 if (ln->ln_router || dr) 1454 LLE_WLOCK(ln); 1455 } 1456 1457 /* 1458 * Save to unlock. We still hold an extra reference and will not 1459 * free(9) in llentry_free() if someone else holds one as well. 1460 */ 1461 LLE_WUNLOCK(ln); 1462 IF_AFDATA_LOCK(ifp); 1463 LLE_WLOCK(ln); 1464 /* Guard against race with other llentry_free(). */ 1465 if (ln->la_flags & LLE_LINKED) { 1466 /* Remove callout reference */ 1467 LLE_REMREF(ln); 1468 lltable_unlink_entry(ln->lle_tbl, ln); 1469 } 1470 IF_AFDATA_UNLOCK(ifp); 1471 1472 llentry_free(ln); 1473 } 1474 1475 static int 1476 nd6_isdynrte(const struct rtentry *rt, void *xap) 1477 { 1478 1479 if (rt->rt_flags == (RTF_UP | RTF_HOST | RTF_DYNAMIC)) 1480 return (1); 1481 1482 return (0); 1483 } 1484 /* 1485 * Remove the rtentry for the given llentry, 1486 * both of which were installed by a redirect. 1487 */ 1488 static void 1489 nd6_free_redirect(const struct llentry *ln) 1490 { 1491 int fibnum; 1492 struct sockaddr_in6 sin6; 1493 struct rt_addrinfo info; 1494 1495 lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6); 1496 memset(&info, 0, sizeof(info)); 1497 info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6; 1498 info.rti_filter = nd6_isdynrte; 1499 1500 for (fibnum = 0; fibnum < rt_numfibs; fibnum++) 1501 rtrequest1_fib(RTM_DELETE, &info, NULL, fibnum); 1502 } 1503 1504 /* 1505 * Rejuvenate this function for routing operations related 1506 * processing. 1507 */ 1508 void 1509 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info) 1510 { 1511 struct sockaddr_in6 *gateway; 1512 struct nd_defrouter *dr; 1513 struct ifnet *ifp; 1514 1515 gateway = (struct sockaddr_in6 *)rt->rt_gateway; 1516 ifp = rt->rt_ifp; 1517 1518 switch (req) { 1519 case RTM_ADD: 1520 break; 1521 1522 case RTM_DELETE: 1523 if (!ifp) 1524 return; 1525 /* 1526 * Only indirect routes are interesting. 1527 */ 1528 if ((rt->rt_flags & RTF_GATEWAY) == 0) 1529 return; 1530 /* 1531 * check for default route 1532 */ 1533 if (IN6_ARE_ADDR_EQUAL(&in6addr_any, 1534 &SIN6(rt_key(rt))->sin6_addr)) { 1535 1536 dr = defrouter_lookup(&gateway->sin6_addr, ifp); 1537 if (dr != NULL) 1538 dr->installed = 0; 1539 } 1540 break; 1541 } 1542 } 1543 1544 1545 int 1546 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1547 { 1548 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1549 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1550 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1551 int error = 0; 1552 1553 if (ifp->if_afdata[AF_INET6] == NULL) 1554 return (EPFNOSUPPORT); 1555 switch (cmd) { 1556 case OSIOCGIFINFO_IN6: 1557 #define ND ndi->ndi 1558 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1559 bzero(&ND, sizeof(ND)); 1560 ND.linkmtu = IN6_LINKMTU(ifp); 1561 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1562 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1563 ND.reachable = ND_IFINFO(ifp)->reachable; 1564 ND.retrans = ND_IFINFO(ifp)->retrans; 1565 ND.flags = ND_IFINFO(ifp)->flags; 1566 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1567 ND.chlim = ND_IFINFO(ifp)->chlim; 1568 break; 1569 case SIOCGIFINFO_IN6: 1570 ND = *ND_IFINFO(ifp); 1571 break; 1572 case SIOCSIFINFO_IN6: 1573 /* 1574 * used to change host variables from userland. 1575 * intented for a use on router to reflect RA configurations. 1576 */ 1577 /* 0 means 'unspecified' */ 1578 if (ND.linkmtu != 0) { 1579 if (ND.linkmtu < IPV6_MMTU || 1580 ND.linkmtu > IN6_LINKMTU(ifp)) { 1581 error = EINVAL; 1582 break; 1583 } 1584 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1585 } 1586 1587 if (ND.basereachable != 0) { 1588 int obasereachable = ND_IFINFO(ifp)->basereachable; 1589 1590 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1591 if (ND.basereachable != obasereachable) 1592 ND_IFINFO(ifp)->reachable = 1593 ND_COMPUTE_RTIME(ND.basereachable); 1594 } 1595 if (ND.retrans != 0) 1596 ND_IFINFO(ifp)->retrans = ND.retrans; 1597 if (ND.chlim != 0) 1598 ND_IFINFO(ifp)->chlim = ND.chlim; 1599 /* FALLTHROUGH */ 1600 case SIOCSIFINFO_FLAGS: 1601 { 1602 struct ifaddr *ifa; 1603 struct in6_ifaddr *ia; 1604 1605 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1606 !(ND.flags & ND6_IFF_IFDISABLED)) { 1607 /* ifdisabled 1->0 transision */ 1608 1609 /* 1610 * If the interface is marked as ND6_IFF_IFDISABLED and 1611 * has an link-local address with IN6_IFF_DUPLICATED, 1612 * do not clear ND6_IFF_IFDISABLED. 1613 * See RFC 4862, Section 5.4.5. 1614 */ 1615 IF_ADDR_RLOCK(ifp); 1616 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1617 if (ifa->ifa_addr->sa_family != AF_INET6) 1618 continue; 1619 ia = (struct in6_ifaddr *)ifa; 1620 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1621 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1622 break; 1623 } 1624 IF_ADDR_RUNLOCK(ifp); 1625 1626 if (ifa != NULL) { 1627 /* LLA is duplicated. */ 1628 ND.flags |= ND6_IFF_IFDISABLED; 1629 log(LOG_ERR, "Cannot enable an interface" 1630 " with a link-local address marked" 1631 " duplicate.\n"); 1632 } else { 1633 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1634 if (ifp->if_flags & IFF_UP) 1635 in6_if_up(ifp); 1636 } 1637 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1638 (ND.flags & ND6_IFF_IFDISABLED)) { 1639 /* ifdisabled 0->1 transision */ 1640 /* Mark all IPv6 address as tentative. */ 1641 1642 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1643 if (V_ip6_dad_count > 0 && 1644 (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) { 1645 IF_ADDR_RLOCK(ifp); 1646 TAILQ_FOREACH(ifa, &ifp->if_addrhead, 1647 ifa_link) { 1648 if (ifa->ifa_addr->sa_family != 1649 AF_INET6) 1650 continue; 1651 ia = (struct in6_ifaddr *)ifa; 1652 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1653 } 1654 IF_ADDR_RUNLOCK(ifp); 1655 } 1656 } 1657 1658 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1659 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1660 /* auto_linklocal 0->1 transision */ 1661 1662 /* If no link-local address on ifp, configure */ 1663 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1664 in6_ifattach(ifp, NULL); 1665 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1666 ifp->if_flags & IFF_UP) { 1667 /* 1668 * When the IF already has 1669 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1670 * address is assigned, and IFF_UP, try to 1671 * assign one. 1672 */ 1673 IF_ADDR_RLOCK(ifp); 1674 TAILQ_FOREACH(ifa, &ifp->if_addrhead, 1675 ifa_link) { 1676 if (ifa->ifa_addr->sa_family != 1677 AF_INET6) 1678 continue; 1679 ia = (struct in6_ifaddr *)ifa; 1680 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1681 break; 1682 } 1683 IF_ADDR_RUNLOCK(ifp); 1684 if (ifa != NULL) 1685 /* No LLA is configured. */ 1686 in6_ifattach(ifp, NULL); 1687 } 1688 } 1689 } 1690 ND_IFINFO(ifp)->flags = ND.flags; 1691 break; 1692 #undef ND 1693 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1694 /* sync kernel routing table with the default router list */ 1695 defrouter_reset(); 1696 defrouter_select(); 1697 break; 1698 case SIOCSPFXFLUSH_IN6: 1699 { 1700 /* flush all the prefix advertised by routers */ 1701 struct nd_prefix *pr, *next; 1702 1703 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1704 struct in6_ifaddr *ia, *ia_next; 1705 1706 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1707 continue; /* XXX */ 1708 1709 /* do we really have to remove addresses as well? */ 1710 /* XXXRW: in6_ifaddrhead locking. */ 1711 TAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1712 ia_next) { 1713 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1714 continue; 1715 1716 if (ia->ia6_ndpr == pr) 1717 in6_purgeaddr(&ia->ia_ifa); 1718 } 1719 prelist_remove(pr); 1720 } 1721 break; 1722 } 1723 case SIOCSRTRFLUSH_IN6: 1724 { 1725 /* flush all the default routers */ 1726 struct nd_defrouter *dr, *next; 1727 1728 defrouter_reset(); 1729 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, next) { 1730 defrtrlist_del(dr); 1731 } 1732 defrouter_select(); 1733 break; 1734 } 1735 case SIOCGNBRINFO_IN6: 1736 { 1737 struct llentry *ln; 1738 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1739 1740 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1741 return (error); 1742 1743 IF_AFDATA_RLOCK(ifp); 1744 ln = nd6_lookup(&nb_addr, 0, ifp); 1745 IF_AFDATA_RUNLOCK(ifp); 1746 1747 if (ln == NULL) { 1748 error = EINVAL; 1749 break; 1750 } 1751 nbi->state = ln->ln_state; 1752 nbi->asked = ln->la_asked; 1753 nbi->isrouter = ln->ln_router; 1754 if (ln->la_expire == 0) 1755 nbi->expire = 0; 1756 else 1757 nbi->expire = ln->la_expire + ln->lle_remtime / hz + 1758 (time_second - time_uptime); 1759 LLE_RUNLOCK(ln); 1760 break; 1761 } 1762 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1763 ndif->ifindex = V_nd6_defifindex; 1764 break; 1765 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1766 return (nd6_setdefaultiface(ndif->ifindex)); 1767 } 1768 return (error); 1769 } 1770 1771 /* 1772 * Calculates new isRouter value based on provided parameters and 1773 * returns it. 1774 */ 1775 static int 1776 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr, 1777 int ln_router) 1778 { 1779 1780 /* 1781 * ICMP6 type dependent behavior. 1782 * 1783 * NS: clear IsRouter if new entry 1784 * RS: clear IsRouter 1785 * RA: set IsRouter if there's lladdr 1786 * redir: clear IsRouter if new entry 1787 * 1788 * RA case, (1): 1789 * The spec says that we must set IsRouter in the following cases: 1790 * - If lladdr exist, set IsRouter. This means (1-5). 1791 * - If it is old entry (!newentry), set IsRouter. This means (7). 1792 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1793 * A quetion arises for (1) case. (1) case has no lladdr in the 1794 * neighbor cache, this is similar to (6). 1795 * This case is rare but we figured that we MUST NOT set IsRouter. 1796 * 1797 * is_new old_addr new_addr NS RS RA redir 1798 * D R 1799 * 0 n n (1) c ? s 1800 * 0 y n (2) c s s 1801 * 0 n y (3) c s s 1802 * 0 y y (4) c s s 1803 * 0 y y (5) c s s 1804 * 1 -- n (6) c c c s 1805 * 1 -- y (7) c c s c s 1806 * 1807 * (c=clear s=set) 1808 */ 1809 switch (type & 0xff) { 1810 case ND_NEIGHBOR_SOLICIT: 1811 /* 1812 * New entry must have is_router flag cleared. 1813 */ 1814 if (is_new) /* (6-7) */ 1815 ln_router = 0; 1816 break; 1817 case ND_REDIRECT: 1818 /* 1819 * If the icmp is a redirect to a better router, always set the 1820 * is_router flag. Otherwise, if the entry is newly created, 1821 * clear the flag. [RFC 2461, sec 8.3] 1822 */ 1823 if (code == ND_REDIRECT_ROUTER) 1824 ln_router = 1; 1825 else { 1826 if (is_new) /* (6-7) */ 1827 ln_router = 0; 1828 } 1829 break; 1830 case ND_ROUTER_SOLICIT: 1831 /* 1832 * is_router flag must always be cleared. 1833 */ 1834 ln_router = 0; 1835 break; 1836 case ND_ROUTER_ADVERT: 1837 /* 1838 * Mark an entry with lladdr as a router. 1839 */ 1840 if ((!is_new && (old_addr || new_addr)) || /* (2-5) */ 1841 (is_new && new_addr)) { /* (7) */ 1842 ln_router = 1; 1843 } 1844 break; 1845 } 1846 1847 return (ln_router); 1848 } 1849 1850 /* 1851 * Create neighbor cache entry and cache link-layer address, 1852 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1853 * 1854 * type - ICMP6 type 1855 * code - type dependent information 1856 * 1857 */ 1858 void 1859 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1860 int lladdrlen, int type, int code) 1861 { 1862 struct llentry *ln = NULL, *ln_tmp; 1863 int is_newentry; 1864 int do_update; 1865 int olladdr; 1866 int llchange; 1867 int flags; 1868 uint16_t router = 0; 1869 struct sockaddr_in6 sin6; 1870 struct mbuf *chain = NULL; 1871 u_char linkhdr[LLE_MAX_LINKHDR]; 1872 size_t linkhdrsize; 1873 int lladdr_off; 1874 1875 IF_AFDATA_UNLOCK_ASSERT(ifp); 1876 1877 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1878 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1879 1880 /* nothing must be updated for unspecified address */ 1881 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1882 return; 1883 1884 /* 1885 * Validation about ifp->if_addrlen and lladdrlen must be done in 1886 * the caller. 1887 * 1888 * XXX If the link does not have link-layer adderss, what should 1889 * we do? (ifp->if_addrlen == 0) 1890 * Spec says nothing in sections for RA, RS and NA. There's small 1891 * description on it in NS section (RFC 2461 7.2.3). 1892 */ 1893 flags = lladdr ? LLE_EXCLUSIVE : 0; 1894 IF_AFDATA_RLOCK(ifp); 1895 ln = nd6_lookup(from, flags, ifp); 1896 IF_AFDATA_RUNLOCK(ifp); 1897 is_newentry = 0; 1898 if (ln == NULL) { 1899 flags |= LLE_EXCLUSIVE; 1900 ln = nd6_alloc(from, 0, ifp); 1901 if (ln == NULL) 1902 return; 1903 1904 /* 1905 * Since we already know all the data for the new entry, 1906 * fill it before insertion. 1907 */ 1908 if (lladdr != NULL) { 1909 linkhdrsize = sizeof(linkhdr); 1910 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 1911 linkhdr, &linkhdrsize, &lladdr_off) != 0) 1912 return; 1913 lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 1914 lladdr_off); 1915 } 1916 1917 IF_AFDATA_WLOCK(ifp); 1918 LLE_WLOCK(ln); 1919 /* Prefer any existing lle over newly-created one */ 1920 ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp); 1921 if (ln_tmp == NULL) 1922 lltable_link_entry(LLTABLE6(ifp), ln); 1923 IF_AFDATA_WUNLOCK(ifp); 1924 if (ln_tmp == NULL) { 1925 /* No existing lle, mark as new entry (6,7) */ 1926 is_newentry = 1; 1927 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 1928 if (lladdr != NULL) /* (7) */ 1929 EVENTHANDLER_INVOKE(lle_event, ln, 1930 LLENTRY_RESOLVED); 1931 } else { 1932 lltable_free_entry(LLTABLE6(ifp), ln); 1933 ln = ln_tmp; 1934 ln_tmp = NULL; 1935 } 1936 } 1937 /* do nothing if static ndp is set */ 1938 if ((ln->la_flags & LLE_STATIC)) { 1939 if (flags & LLE_EXCLUSIVE) 1940 LLE_WUNLOCK(ln); 1941 else 1942 LLE_RUNLOCK(ln); 1943 return; 1944 } 1945 1946 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 1947 if (olladdr && lladdr) { 1948 llchange = bcmp(lladdr, ln->ll_addr, 1949 ifp->if_addrlen); 1950 } else if (!olladdr && lladdr) 1951 llchange = 1; 1952 else 1953 llchange = 0; 1954 1955 /* 1956 * newentry olladdr lladdr llchange (*=record) 1957 * 0 n n -- (1) 1958 * 0 y n -- (2) 1959 * 0 n y y (3) * STALE 1960 * 0 y y n (4) * 1961 * 0 y y y (5) * STALE 1962 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1963 * 1 -- y -- (7) * STALE 1964 */ 1965 1966 do_update = 0; 1967 if (is_newentry == 0 && llchange != 0) { 1968 do_update = 1; /* (3,5) */ 1969 1970 /* 1971 * Record source link-layer address 1972 * XXX is it dependent to ifp->if_type? 1973 */ 1974 linkhdrsize = sizeof(linkhdr); 1975 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 1976 linkhdr, &linkhdrsize, &lladdr_off) != 0) 1977 return; 1978 1979 if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 1980 lladdr_off) == 0) { 1981 /* Entry was deleted */ 1982 return; 1983 } 1984 1985 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 1986 1987 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 1988 1989 if (ln->la_hold != NULL) 1990 nd6_grab_holdchain(ln, &chain, &sin6); 1991 } 1992 1993 /* Calculates new router status */ 1994 router = nd6_is_router(type, code, is_newentry, olladdr, 1995 lladdr != NULL ? 1 : 0, ln->ln_router); 1996 1997 ln->ln_router = router; 1998 /* Mark non-router redirects with special flag */ 1999 if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER) 2000 ln->la_flags |= LLE_REDIRECT; 2001 2002 if (flags & LLE_EXCLUSIVE) 2003 LLE_WUNLOCK(ln); 2004 else 2005 LLE_RUNLOCK(ln); 2006 2007 if (chain != NULL) 2008 nd6_flush_holdchain(ifp, ifp, chain, &sin6); 2009 2010 /* 2011 * When the link-layer address of a router changes, select the 2012 * best router again. In particular, when the neighbor entry is newly 2013 * created, it might affect the selection policy. 2014 * Question: can we restrict the first condition to the "is_newentry" 2015 * case? 2016 * XXX: when we hear an RA from a new router with the link-layer 2017 * address option, defrouter_select() is called twice, since 2018 * defrtrlist_update called the function as well. However, I believe 2019 * we can compromise the overhead, since it only happens the first 2020 * time. 2021 * XXX: although defrouter_select() should not have a bad effect 2022 * for those are not autoconfigured hosts, we explicitly avoid such 2023 * cases for safety. 2024 */ 2025 if ((do_update || is_newentry) && router && 2026 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 2027 /* 2028 * guaranteed recursion 2029 */ 2030 defrouter_select(); 2031 } 2032 } 2033 2034 static void 2035 nd6_slowtimo(void *arg) 2036 { 2037 CURVNET_SET((struct vnet *) arg); 2038 struct nd_ifinfo *nd6if; 2039 struct ifnet *ifp; 2040 2041 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2042 nd6_slowtimo, curvnet); 2043 IFNET_RLOCK_NOSLEEP(); 2044 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2045 if (ifp->if_afdata[AF_INET6] == NULL) 2046 continue; 2047 nd6if = ND_IFINFO(ifp); 2048 if (nd6if->basereachable && /* already initialized */ 2049 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2050 /* 2051 * Since reachable time rarely changes by router 2052 * advertisements, we SHOULD insure that a new random 2053 * value gets recomputed at least once every few hours. 2054 * (RFC 2461, 6.3.4) 2055 */ 2056 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 2057 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2058 } 2059 } 2060 IFNET_RUNLOCK_NOSLEEP(); 2061 CURVNET_RESTORE(); 2062 } 2063 2064 void 2065 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain, 2066 struct sockaddr_in6 *sin6) 2067 { 2068 2069 LLE_WLOCK_ASSERT(ln); 2070 2071 *chain = ln->la_hold; 2072 ln->la_hold = NULL; 2073 lltable_fill_sa_entry(ln, (struct sockaddr *)sin6); 2074 2075 if (ln->ln_state == ND6_LLINFO_STALE) { 2076 2077 /* 2078 * The first time we send a packet to a 2079 * neighbor whose entry is STALE, we have 2080 * to change the state to DELAY and a sets 2081 * a timer to expire in DELAY_FIRST_PROBE_TIME 2082 * seconds to ensure do neighbor unreachability 2083 * detection on expiration. 2084 * (RFC 2461 7.3.3) 2085 */ 2086 nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY); 2087 } 2088 } 2089 2090 int 2091 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 2092 struct sockaddr_in6 *dst, struct route *ro) 2093 { 2094 int error; 2095 int ip6len; 2096 struct ip6_hdr *ip6; 2097 struct m_tag *mtag; 2098 2099 #ifdef MAC 2100 mac_netinet6_nd6_send(ifp, m); 2101 #endif 2102 2103 /* 2104 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 2105 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 2106 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 2107 * to be diverted to user space. When re-injected into the kernel, 2108 * send_output() will directly dispatch them to the outgoing interface. 2109 */ 2110 if (send_sendso_input_hook != NULL) { 2111 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 2112 if (mtag != NULL) { 2113 ip6 = mtod(m, struct ip6_hdr *); 2114 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 2115 /* Use the SEND socket */ 2116 error = send_sendso_input_hook(m, ifp, SND_OUT, 2117 ip6len); 2118 /* -1 == no app on SEND socket */ 2119 if (error == 0 || error != -1) 2120 return (error); 2121 } 2122 } 2123 2124 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 2125 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 2126 mtod(m, struct ip6_hdr *)); 2127 2128 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2129 origifp = ifp; 2130 2131 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro); 2132 return (error); 2133 } 2134 2135 /* 2136 * Lookup link headerfor @sa_dst address. Stores found 2137 * data in @desten buffer. Copy of lle ln_flags can be also 2138 * saved in @pflags if @pflags is non-NULL. 2139 * 2140 * If destination LLE does not exists or lle state modification 2141 * is required, call "slow" version. 2142 * 2143 * Return values: 2144 * - 0 on success (address copied to buffer). 2145 * - EWOULDBLOCK (no local error, but address is still unresolved) 2146 * - other errors (alloc failure, etc) 2147 */ 2148 int 2149 nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m, 2150 const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags) 2151 { 2152 struct llentry *ln = NULL; 2153 const struct sockaddr_in6 *dst6; 2154 2155 if (pflags != NULL) 2156 *pflags = 0; 2157 2158 dst6 = (const struct sockaddr_in6 *)sa_dst; 2159 2160 /* discard the packet if IPv6 operation is disabled on the interface */ 2161 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2162 m_freem(m); 2163 return (ENETDOWN); /* better error? */ 2164 } 2165 2166 if (m != NULL && m->m_flags & M_MCAST) { 2167 switch (ifp->if_type) { 2168 case IFT_ETHER: 2169 case IFT_FDDI: 2170 case IFT_L2VLAN: 2171 case IFT_IEEE80211: 2172 case IFT_BRIDGE: 2173 case IFT_ISO88025: 2174 ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr, 2175 desten); 2176 return (0); 2177 default: 2178 m_freem(m); 2179 return (EAFNOSUPPORT); 2180 } 2181 } 2182 2183 IF_AFDATA_RLOCK(ifp); 2184 ln = nd6_lookup(&dst6->sin6_addr, LLE_UNLOCKED, ifp); 2185 if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) { 2186 /* Entry found, let's copy lle info */ 2187 bcopy(ln->r_linkdata, desten, ln->r_hdrlen); 2188 if (pflags != NULL) 2189 *pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR); 2190 /* Check if we have feedback request from nd6 timer */ 2191 if (ln->r_skip_req != 0) { 2192 LLE_REQ_LOCK(ln); 2193 ln->r_skip_req = 0; /* Notify that entry was used */ 2194 ln->lle_hittime = time_uptime; 2195 LLE_REQ_UNLOCK(ln); 2196 } 2197 IF_AFDATA_RUNLOCK(ifp); 2198 return (0); 2199 } 2200 IF_AFDATA_RUNLOCK(ifp); 2201 2202 return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags)); 2203 } 2204 2205 2206 /* 2207 * Do L2 address resolution for @sa_dst address. Stores found 2208 * address in @desten buffer. Copy of lle ln_flags can be also 2209 * saved in @pflags if @pflags is non-NULL. 2210 * 2211 * Heavy version. 2212 * Function assume that destination LLE does not exist, 2213 * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired. 2214 * 2215 * Set noinline to be dtrace-friendly 2216 */ 2217 static __noinline int 2218 nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m, 2219 const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags) 2220 { 2221 struct llentry *lle = NULL, *lle_tmp; 2222 struct in6_addr *psrc, src; 2223 int send_ns, ll_len; 2224 char *lladdr; 2225 2226 /* 2227 * Address resolution or Neighbor Unreachability Detection 2228 * for the next hop. 2229 * At this point, the destination of the packet must be a unicast 2230 * or an anycast address(i.e. not a multicast). 2231 */ 2232 if (lle == NULL) { 2233 IF_AFDATA_RLOCK(ifp); 2234 lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2235 IF_AFDATA_RUNLOCK(ifp); 2236 if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 2237 /* 2238 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2239 * the condition below is not very efficient. But we believe 2240 * it is tolerable, because this should be a rare case. 2241 */ 2242 lle = nd6_alloc(&dst->sin6_addr, 0, ifp); 2243 if (lle == NULL) { 2244 char ip6buf[INET6_ADDRSTRLEN]; 2245 log(LOG_DEBUG, 2246 "nd6_output: can't allocate llinfo for %s " 2247 "(ln=%p)\n", 2248 ip6_sprintf(ip6buf, &dst->sin6_addr), lle); 2249 m_freem(m); 2250 return (ENOBUFS); 2251 } 2252 2253 IF_AFDATA_WLOCK(ifp); 2254 LLE_WLOCK(lle); 2255 /* Prefer any existing entry over newly-created one */ 2256 lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2257 if (lle_tmp == NULL) 2258 lltable_link_entry(LLTABLE6(ifp), lle); 2259 IF_AFDATA_WUNLOCK(ifp); 2260 if (lle_tmp != NULL) { 2261 lltable_free_entry(LLTABLE6(ifp), lle); 2262 lle = lle_tmp; 2263 lle_tmp = NULL; 2264 } 2265 } 2266 } 2267 if (lle == NULL) { 2268 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 2269 m_freem(m); 2270 return (ENOBUFS); 2271 } 2272 2273 if (m != NULL) 2274 m_freem(m); 2275 return (ENOBUFS); 2276 } 2277 2278 LLE_WLOCK_ASSERT(lle); 2279 2280 /* 2281 * The first time we send a packet to a neighbor whose entry is 2282 * STALE, we have to change the state to DELAY and a sets a timer to 2283 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2284 * neighbor unreachability detection on expiration. 2285 * (RFC 2461 7.3.3) 2286 */ 2287 if (lle->ln_state == ND6_LLINFO_STALE) 2288 nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY); 2289 2290 /* 2291 * If the neighbor cache entry has a state other than INCOMPLETE 2292 * (i.e. its link-layer address is already resolved), just 2293 * send the packet. 2294 */ 2295 if (lle->ln_state > ND6_LLINFO_INCOMPLETE) { 2296 if (flags & LLE_ADDRONLY) { 2297 lladdr = lle->ll_addr; 2298 ll_len = ifp->if_addrlen; 2299 } else { 2300 lladdr = lle->r_linkdata; 2301 ll_len = lle->r_hdrlen; 2302 } 2303 bcopy(lladdr, desten, ll_len); 2304 if (pflags != NULL) 2305 *pflags = lle->la_flags; 2306 LLE_WUNLOCK(lle); 2307 return (0); 2308 } 2309 2310 /* 2311 * There is a neighbor cache entry, but no ethernet address 2312 * response yet. Append this latest packet to the end of the 2313 * packet queue in the mbuf, unless the number of the packet 2314 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen, 2315 * the oldest packet in the queue will be removed. 2316 */ 2317 2318 if (lle->la_hold != NULL) { 2319 struct mbuf *m_hold; 2320 int i; 2321 2322 i = 0; 2323 for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){ 2324 i++; 2325 if (m_hold->m_nextpkt == NULL) { 2326 m_hold->m_nextpkt = m; 2327 break; 2328 } 2329 } 2330 while (i >= V_nd6_maxqueuelen) { 2331 m_hold = lle->la_hold; 2332 lle->la_hold = lle->la_hold->m_nextpkt; 2333 m_freem(m_hold); 2334 i--; 2335 } 2336 } else { 2337 lle->la_hold = m; 2338 } 2339 2340 /* 2341 * If there has been no NS for the neighbor after entering the 2342 * INCOMPLETE state, send the first solicitation. 2343 * Note that for newly-created lle la_asked will be 0, 2344 * so we will transition from ND6_LLINFO_NOSTATE to 2345 * ND6_LLINFO_INCOMPLETE state here. 2346 */ 2347 psrc = NULL; 2348 send_ns = 0; 2349 if (lle->la_asked == 0) { 2350 lle->la_asked++; 2351 send_ns = 1; 2352 psrc = nd6_llinfo_get_holdsrc(lle, &src); 2353 2354 nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE); 2355 } 2356 LLE_WUNLOCK(lle); 2357 if (send_ns != 0) 2358 nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL); 2359 2360 return (EWOULDBLOCK); 2361 } 2362 2363 /* 2364 * Do L2 address resolution for @sa_dst address. Stores found 2365 * address in @desten buffer. Copy of lle ln_flags can be also 2366 * saved in @pflags if @pflags is non-NULL. 2367 * 2368 * Return values: 2369 * - 0 on success (address copied to buffer). 2370 * - EWOULDBLOCK (no local error, but address is still unresolved) 2371 * - other errors (alloc failure, etc) 2372 */ 2373 int 2374 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, 2375 char *desten, uint32_t *pflags) 2376 { 2377 int error; 2378 2379 flags |= LLE_ADDRONLY; 2380 error = nd6_resolve_slow(ifp, flags, NULL, 2381 (const struct sockaddr_in6 *)dst, desten, pflags); 2382 return (error); 2383 } 2384 2385 int 2386 nd6_flush_holdchain(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *chain, 2387 struct sockaddr_in6 *dst) 2388 { 2389 struct mbuf *m, *m_head; 2390 struct ifnet *outifp; 2391 int error = 0; 2392 2393 m_head = chain; 2394 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2395 outifp = origifp; 2396 else 2397 outifp = ifp; 2398 2399 while (m_head) { 2400 m = m_head; 2401 m_head = m_head->m_nextpkt; 2402 error = nd6_output_ifp(ifp, origifp, m, dst, NULL); 2403 } 2404 2405 /* 2406 * XXX 2407 * note that intermediate errors are blindly ignored 2408 */ 2409 return (error); 2410 } 2411 2412 static int 2413 nd6_need_cache(struct ifnet *ifp) 2414 { 2415 /* 2416 * XXX: we currently do not make neighbor cache on any interface 2417 * other than ARCnet, Ethernet, FDDI and GIF. 2418 * 2419 * RFC2893 says: 2420 * - unidirectional tunnels needs no ND 2421 */ 2422 switch (ifp->if_type) { 2423 case IFT_ARCNET: 2424 case IFT_ETHER: 2425 case IFT_FDDI: 2426 case IFT_IEEE1394: 2427 case IFT_L2VLAN: 2428 case IFT_IEEE80211: 2429 case IFT_INFINIBAND: 2430 case IFT_BRIDGE: 2431 case IFT_PROPVIRTUAL: 2432 return (1); 2433 default: 2434 return (0); 2435 } 2436 } 2437 2438 /* 2439 * Add pernament ND6 link-layer record for given 2440 * interface address. 2441 * 2442 * Very similar to IPv4 arp_ifinit(), but: 2443 * 1) IPv6 DAD is performed in different place 2444 * 2) It is called by IPv6 protocol stack in contrast to 2445 * arp_ifinit() which is typically called in SIOCSIFADDR 2446 * driver ioctl handler. 2447 * 2448 */ 2449 int 2450 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2451 { 2452 struct ifnet *ifp; 2453 struct llentry *ln, *ln_tmp; 2454 struct sockaddr *dst; 2455 2456 ifp = ia->ia_ifa.ifa_ifp; 2457 if (nd6_need_cache(ifp) == 0) 2458 return (0); 2459 2460 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 2461 dst = (struct sockaddr *)&ia->ia_addr; 2462 ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst); 2463 if (ln == NULL) 2464 return (ENOBUFS); 2465 2466 IF_AFDATA_WLOCK(ifp); 2467 LLE_WLOCK(ln); 2468 /* Unlink any entry if exists */ 2469 ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst); 2470 if (ln_tmp != NULL) 2471 lltable_unlink_entry(LLTABLE6(ifp), ln_tmp); 2472 lltable_link_entry(LLTABLE6(ifp), ln); 2473 IF_AFDATA_WUNLOCK(ifp); 2474 2475 if (ln_tmp != NULL) 2476 EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED); 2477 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2478 2479 LLE_WUNLOCK(ln); 2480 if (ln_tmp != NULL) 2481 llentry_free(ln_tmp); 2482 2483 return (0); 2484 } 2485 2486 /* 2487 * Removes either all lle entries for given @ia, or lle 2488 * corresponding to @ia address. 2489 */ 2490 void 2491 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all) 2492 { 2493 struct sockaddr_in6 mask, addr; 2494 struct sockaddr *saddr, *smask; 2495 struct ifnet *ifp; 2496 2497 ifp = ia->ia_ifa.ifa_ifp; 2498 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2499 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2500 saddr = (struct sockaddr *)&addr; 2501 smask = (struct sockaddr *)&mask; 2502 2503 if (all != 0) 2504 lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC); 2505 else 2506 lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr); 2507 } 2508 2509 static void 2510 clear_llinfo_pqueue(struct llentry *ln) 2511 { 2512 struct mbuf *m_hold, *m_hold_next; 2513 2514 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { 2515 m_hold_next = m_hold->m_nextpkt; 2516 m_freem(m_hold); 2517 } 2518 2519 ln->la_hold = NULL; 2520 return; 2521 } 2522 2523 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); 2524 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); 2525 #ifdef SYSCTL_DECL 2526 SYSCTL_DECL(_net_inet6_icmp6); 2527 #endif 2528 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, 2529 CTLFLAG_RD, nd6_sysctl_drlist, ""); 2530 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2531 CTLFLAG_RD, nd6_sysctl_prlist, ""); 2532 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2533 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2534 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, 2535 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); 2536 2537 static int 2538 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) 2539 { 2540 struct in6_defrouter d; 2541 struct nd_defrouter *dr; 2542 int error; 2543 2544 if (req->newptr) 2545 return (EPERM); 2546 2547 bzero(&d, sizeof(d)); 2548 d.rtaddr.sin6_family = AF_INET6; 2549 d.rtaddr.sin6_len = sizeof(d.rtaddr); 2550 2551 /* 2552 * XXX locking 2553 */ 2554 TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) { 2555 d.rtaddr.sin6_addr = dr->rtaddr; 2556 error = sa6_recoverscope(&d.rtaddr); 2557 if (error != 0) 2558 return (error); 2559 d.flags = dr->flags; 2560 d.rtlifetime = dr->rtlifetime; 2561 d.expire = dr->expire + (time_second - time_uptime); 2562 d.if_index = dr->ifp->if_index; 2563 error = SYSCTL_OUT(req, &d, sizeof(d)); 2564 if (error != 0) 2565 return (error); 2566 } 2567 return (0); 2568 } 2569 2570 static int 2571 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2572 { 2573 struct in6_prefix p; 2574 struct sockaddr_in6 s6; 2575 struct nd_prefix *pr; 2576 struct nd_pfxrouter *pfr; 2577 time_t maxexpire; 2578 int error; 2579 char ip6buf[INET6_ADDRSTRLEN]; 2580 2581 if (req->newptr) 2582 return (EPERM); 2583 2584 bzero(&p, sizeof(p)); 2585 p.origin = PR_ORIG_RA; 2586 bzero(&s6, sizeof(s6)); 2587 s6.sin6_family = AF_INET6; 2588 s6.sin6_len = sizeof(s6); 2589 2590 /* 2591 * XXX locking 2592 */ 2593 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2594 p.prefix = pr->ndpr_prefix; 2595 if (sa6_recoverscope(&p.prefix)) { 2596 log(LOG_ERR, "scope error in prefix list (%s)\n", 2597 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2598 /* XXX: press on... */ 2599 } 2600 p.raflags = pr->ndpr_raf; 2601 p.prefixlen = pr->ndpr_plen; 2602 p.vltime = pr->ndpr_vltime; 2603 p.pltime = pr->ndpr_pltime; 2604 p.if_index = pr->ndpr_ifp->if_index; 2605 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2606 p.expire = 0; 2607 else { 2608 /* XXX: we assume time_t is signed. */ 2609 maxexpire = (-1) & 2610 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2611 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2612 p.expire = pr->ndpr_lastupdate + 2613 pr->ndpr_vltime + 2614 (time_second - time_uptime); 2615 else 2616 p.expire = maxexpire; 2617 } 2618 p.refcnt = pr->ndpr_refcnt; 2619 p.flags = pr->ndpr_stateflags; 2620 p.advrtrs = 0; 2621 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2622 p.advrtrs++; 2623 error = SYSCTL_OUT(req, &p, sizeof(p)); 2624 if (error != 0) 2625 return (error); 2626 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2627 s6.sin6_addr = pfr->router->rtaddr; 2628 if (sa6_recoverscope(&s6)) 2629 log(LOG_ERR, 2630 "scope error in prefix list (%s)\n", 2631 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2632 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2633 if (error != 0) 2634 return (error); 2635 } 2636 } 2637 return (0); 2638 } 2639