1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/callout.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/socket.h> 44 #include <sys/sockio.h> 45 #include <sys/time.h> 46 #include <sys/kernel.h> 47 #include <sys/protosw.h> 48 #include <sys/errno.h> 49 #include <sys/syslog.h> 50 #include <sys/lock.h> 51 #include <sys/rwlock.h> 52 #include <sys/queue.h> 53 #include <sys/sdt.h> 54 #include <sys/sysctl.h> 55 56 #include <net/if.h> 57 #include <net/if_var.h> 58 #include <net/if_arc.h> 59 #include <net/if_dl.h> 60 #include <net/if_types.h> 61 #include <net/iso88025.h> 62 #include <net/fddi.h> 63 #include <net/route.h> 64 #include <net/vnet.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_kdtrace.h> 68 #include <net/if_llatbl.h> 69 #include <netinet/if_ether.h> 70 #include <netinet6/in6_var.h> 71 #include <netinet/ip6.h> 72 #include <netinet6/ip6_var.h> 73 #include <netinet6/scope6_var.h> 74 #include <netinet6/nd6.h> 75 #include <netinet6/in6_ifattach.h> 76 #include <netinet/icmp6.h> 77 #include <netinet6/send.h> 78 79 #include <sys/limits.h> 80 81 #include <security/mac/mac_framework.h> 82 83 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 84 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 85 86 #define SIN6(s) ((const struct sockaddr_in6 *)(s)) 87 88 /* timer values */ 89 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 90 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 91 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 92 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 93 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 94 * local traffic */ 95 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 96 * collection timer */ 97 98 /* preventing too many loops in ND option parsing */ 99 static VNET_DEFINE(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 100 101 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 102 * layer hints */ 103 static VNET_DEFINE(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved 104 * ND entries */ 105 #define V_nd6_maxndopt VNET(nd6_maxndopt) 106 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 107 108 #ifdef ND6_DEBUG 109 VNET_DEFINE(int, nd6_debug) = 1; 110 #else 111 VNET_DEFINE(int, nd6_debug) = 0; 112 #endif 113 114 static eventhandler_tag lle_event_eh, iflladdr_event_eh; 115 116 VNET_DEFINE(struct nd_drhead, nd_defrouter); 117 VNET_DEFINE(struct nd_prhead, nd_prefix); 118 VNET_DEFINE(struct rwlock, nd6_lock); 119 120 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 121 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 122 123 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 124 125 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *, 126 struct ifnet *); 127 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 128 static void nd6_slowtimo(void *); 129 static int regen_tmpaddr(struct in6_ifaddr *); 130 static void nd6_free(struct llentry **, int); 131 static void nd6_free_redirect(const struct llentry *); 132 static void nd6_llinfo_timer(void *); 133 static void nd6_llinfo_settimer_locked(struct llentry *, long); 134 static void clear_llinfo_pqueue(struct llentry *); 135 static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 136 static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *, 137 const struct sockaddr_in6 *, u_char *, uint32_t *); 138 static int nd6_need_cache(struct ifnet *); 139 140 141 static VNET_DEFINE(struct callout, nd6_slowtimo_ch); 142 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 143 144 VNET_DEFINE(struct callout, nd6_timer_ch); 145 #define V_nd6_timer_ch VNET(nd6_timer_ch) 146 147 static void 148 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt) 149 { 150 struct rt_addrinfo rtinfo; 151 struct sockaddr_in6 dst; 152 struct sockaddr_dl gw; 153 struct ifnet *ifp; 154 int type; 155 156 LLE_WLOCK_ASSERT(lle); 157 158 if (lltable_get_af(lle->lle_tbl) != AF_INET6) 159 return; 160 161 switch (evt) { 162 case LLENTRY_RESOLVED: 163 type = RTM_ADD; 164 KASSERT(lle->la_flags & LLE_VALID, 165 ("%s: %p resolved but not valid?", __func__, lle)); 166 break; 167 case LLENTRY_EXPIRED: 168 type = RTM_DELETE; 169 break; 170 default: 171 return; 172 } 173 174 ifp = lltable_get_ifp(lle->lle_tbl); 175 176 bzero(&dst, sizeof(dst)); 177 bzero(&gw, sizeof(gw)); 178 bzero(&rtinfo, sizeof(rtinfo)); 179 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst); 180 dst.sin6_scope_id = in6_getscopezone(ifp, 181 in6_addrscope(&dst.sin6_addr)); 182 gw.sdl_len = sizeof(struct sockaddr_dl); 183 gw.sdl_family = AF_LINK; 184 gw.sdl_alen = ifp->if_addrlen; 185 gw.sdl_index = ifp->if_index; 186 gw.sdl_type = ifp->if_type; 187 if (evt == LLENTRY_RESOLVED) 188 bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen); 189 rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst; 190 rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw; 191 rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY; 192 rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | ( 193 type == RTM_ADD ? RTF_UP: 0), 0, RT_DEFAULT_FIB); 194 } 195 196 /* 197 * A handler for interface link layer address change event. 198 */ 199 static void 200 nd6_iflladdr(void *arg __unused, struct ifnet *ifp) 201 { 202 203 lltable_update_ifaddr(LLTABLE6(ifp)); 204 } 205 206 void 207 nd6_init(void) 208 { 209 210 rw_init(&V_nd6_lock, "nd6"); 211 212 LIST_INIT(&V_nd_prefix); 213 214 /* initialization of the default router list */ 215 TAILQ_INIT(&V_nd_defrouter); 216 217 /* Start timers. */ 218 callout_init(&V_nd6_slowtimo_ch, 0); 219 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 220 nd6_slowtimo, curvnet); 221 222 callout_init(&V_nd6_timer_ch, 0); 223 callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet); 224 225 nd6_dad_init(); 226 if (IS_DEFAULT_VNET(curvnet)) { 227 lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event, 228 NULL, EVENTHANDLER_PRI_ANY); 229 iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event, 230 nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 231 } 232 } 233 234 #ifdef VIMAGE 235 void 236 nd6_destroy() 237 { 238 239 callout_drain(&V_nd6_slowtimo_ch); 240 callout_drain(&V_nd6_timer_ch); 241 if (IS_DEFAULT_VNET(curvnet)) { 242 EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); 243 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh); 244 } 245 rw_destroy(&V_nd6_lock); 246 } 247 #endif 248 249 struct nd_ifinfo * 250 nd6_ifattach(struct ifnet *ifp) 251 { 252 struct nd_ifinfo *nd; 253 254 nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO); 255 nd->initialized = 1; 256 257 nd->chlim = IPV6_DEFHLIM; 258 nd->basereachable = REACHABLE_TIME; 259 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 260 nd->retrans = RETRANS_TIMER; 261 262 nd->flags = ND6_IFF_PERFORMNUD; 263 264 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 265 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 266 * default regardless of the V_ip6_auto_linklocal configuration to 267 * give a reasonable default behavior. 268 */ 269 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 270 (ifp->if_flags & IFF_LOOPBACK)) 271 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 272 /* 273 * A loopback interface does not need to accept RTADV. 274 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 275 * default regardless of the V_ip6_accept_rtadv configuration to 276 * prevent the interface from accepting RA messages arrived 277 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 278 */ 279 if (V_ip6_accept_rtadv && 280 !(ifp->if_flags & IFF_LOOPBACK) && 281 (ifp->if_type != IFT_BRIDGE)) 282 nd->flags |= ND6_IFF_ACCEPT_RTADV; 283 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 284 nd->flags |= ND6_IFF_NO_RADR; 285 286 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 287 nd6_setmtu0(ifp, nd); 288 289 return nd; 290 } 291 292 void 293 nd6_ifdetach(struct nd_ifinfo *nd) 294 { 295 296 free(nd, M_IP6NDP); 297 } 298 299 /* 300 * Reset ND level link MTU. This function is called when the physical MTU 301 * changes, which means we might have to adjust the ND level MTU. 302 */ 303 void 304 nd6_setmtu(struct ifnet *ifp) 305 { 306 if (ifp->if_afdata[AF_INET6] == NULL) 307 return; 308 309 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 310 } 311 312 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 313 void 314 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 315 { 316 u_int32_t omaxmtu; 317 318 omaxmtu = ndi->maxmtu; 319 320 switch (ifp->if_type) { 321 case IFT_ARCNET: 322 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ 323 break; 324 case IFT_FDDI: 325 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */ 326 break; 327 case IFT_ISO88025: 328 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu); 329 break; 330 default: 331 ndi->maxmtu = ifp->if_mtu; 332 break; 333 } 334 335 /* 336 * Decreasing the interface MTU under IPV6 minimum MTU may cause 337 * undesirable situation. We thus notify the operator of the change 338 * explicitly. The check for omaxmtu is necessary to restrict the 339 * log to the case of changing the MTU, not initializing it. 340 */ 341 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 342 log(LOG_NOTICE, "nd6_setmtu0: " 343 "new link MTU on %s (%lu) is too small for IPv6\n", 344 if_name(ifp), (unsigned long)ndi->maxmtu); 345 } 346 347 if (ndi->maxmtu > V_in6_maxmtu) 348 in6_setmaxmtu(); /* check all interfaces just in case */ 349 350 } 351 352 void 353 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 354 { 355 356 bzero(ndopts, sizeof(*ndopts)); 357 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 358 ndopts->nd_opts_last 359 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 360 361 if (icmp6len == 0) { 362 ndopts->nd_opts_done = 1; 363 ndopts->nd_opts_search = NULL; 364 } 365 } 366 367 /* 368 * Take one ND option. 369 */ 370 struct nd_opt_hdr * 371 nd6_option(union nd_opts *ndopts) 372 { 373 struct nd_opt_hdr *nd_opt; 374 int olen; 375 376 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 377 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 378 __func__)); 379 if (ndopts->nd_opts_search == NULL) 380 return NULL; 381 if (ndopts->nd_opts_done) 382 return NULL; 383 384 nd_opt = ndopts->nd_opts_search; 385 386 /* make sure nd_opt_len is inside the buffer */ 387 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 388 bzero(ndopts, sizeof(*ndopts)); 389 return NULL; 390 } 391 392 olen = nd_opt->nd_opt_len << 3; 393 if (olen == 0) { 394 /* 395 * Message validation requires that all included 396 * options have a length that is greater than zero. 397 */ 398 bzero(ndopts, sizeof(*ndopts)); 399 return NULL; 400 } 401 402 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 403 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 404 /* option overruns the end of buffer, invalid */ 405 bzero(ndopts, sizeof(*ndopts)); 406 return NULL; 407 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 408 /* reached the end of options chain */ 409 ndopts->nd_opts_done = 1; 410 ndopts->nd_opts_search = NULL; 411 } 412 return nd_opt; 413 } 414 415 /* 416 * Parse multiple ND options. 417 * This function is much easier to use, for ND routines that do not need 418 * multiple options of the same type. 419 */ 420 int 421 nd6_options(union nd_opts *ndopts) 422 { 423 struct nd_opt_hdr *nd_opt; 424 int i = 0; 425 426 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 427 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 428 __func__)); 429 if (ndopts->nd_opts_search == NULL) 430 return 0; 431 432 while (1) { 433 nd_opt = nd6_option(ndopts); 434 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 435 /* 436 * Message validation requires that all included 437 * options have a length that is greater than zero. 438 */ 439 ICMP6STAT_INC(icp6s_nd_badopt); 440 bzero(ndopts, sizeof(*ndopts)); 441 return -1; 442 } 443 444 if (nd_opt == NULL) 445 goto skip1; 446 447 switch (nd_opt->nd_opt_type) { 448 case ND_OPT_SOURCE_LINKADDR: 449 case ND_OPT_TARGET_LINKADDR: 450 case ND_OPT_MTU: 451 case ND_OPT_REDIRECTED_HEADER: 452 case ND_OPT_NONCE: 453 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 454 nd6log((LOG_INFO, 455 "duplicated ND6 option found (type=%d)\n", 456 nd_opt->nd_opt_type)); 457 /* XXX bark? */ 458 } else { 459 ndopts->nd_opt_array[nd_opt->nd_opt_type] 460 = nd_opt; 461 } 462 break; 463 case ND_OPT_PREFIX_INFORMATION: 464 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 465 ndopts->nd_opt_array[nd_opt->nd_opt_type] 466 = nd_opt; 467 } 468 ndopts->nd_opts_pi_end = 469 (struct nd_opt_prefix_info *)nd_opt; 470 break; 471 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 472 case ND_OPT_RDNSS: /* RFC 6106 */ 473 case ND_OPT_DNSSL: /* RFC 6106 */ 474 /* 475 * Silently ignore options we know and do not care about 476 * in the kernel. 477 */ 478 break; 479 default: 480 /* 481 * Unknown options must be silently ignored, 482 * to accommodate future extension to the protocol. 483 */ 484 nd6log((LOG_DEBUG, 485 "nd6_options: unsupported option %d - " 486 "option ignored\n", nd_opt->nd_opt_type)); 487 } 488 489 skip1: 490 i++; 491 if (i > V_nd6_maxndopt) { 492 ICMP6STAT_INC(icp6s_nd_toomanyopt); 493 nd6log((LOG_INFO, "too many loop in nd opt\n")); 494 break; 495 } 496 497 if (ndopts->nd_opts_done) 498 break; 499 } 500 501 return 0; 502 } 503 504 /* 505 * ND6 timer routine to handle ND6 entries 506 */ 507 static void 508 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 509 { 510 int canceled; 511 512 LLE_WLOCK_ASSERT(ln); 513 514 if (tick < 0) { 515 ln->la_expire = 0; 516 ln->ln_ntick = 0; 517 canceled = callout_stop(&ln->lle_timer); 518 } else { 519 ln->la_expire = time_uptime + tick / hz; 520 LLE_ADDREF(ln); 521 if (tick > INT_MAX) { 522 ln->ln_ntick = tick - INT_MAX; 523 canceled = callout_reset(&ln->lle_timer, INT_MAX, 524 nd6_llinfo_timer, ln); 525 } else { 526 ln->ln_ntick = 0; 527 canceled = callout_reset(&ln->lle_timer, tick, 528 nd6_llinfo_timer, ln); 529 } 530 } 531 if (canceled > 0) 532 LLE_REMREF(ln); 533 } 534 535 /* 536 * Gets source address of the first packet in hold queue 537 * and stores it in @src. 538 * Returns pointer to @src (if hold queue is not empty) or NULL. 539 * 540 * Set noinline to be dtrace-friendly 541 */ 542 static __noinline struct in6_addr * 543 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 544 { 545 struct ip6_hdr hdr; 546 struct mbuf *m; 547 548 if (ln->la_hold == NULL) 549 return (NULL); 550 551 /* 552 * assume every packet in la_hold has the same IP header 553 */ 554 m = ln->la_hold; 555 if (sizeof(hdr) > m->m_len) 556 return (NULL); 557 558 m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr); 559 *src = hdr.ip6_src; 560 561 return (src); 562 } 563 564 /* 565 * Checks if we need to switch from STALE state. 566 * 567 * RFC 4861 requires switching from STALE to DELAY state 568 * on first packet matching entry, waiting V_nd6_delay and 569 * transition to PROBE state (if upper layer confirmation was 570 * not received). 571 * 572 * This code performs a bit differently: 573 * On packet hit we don't change state (but desired state 574 * can be guessed by control plane). However, after V_nd6_delay 575 * seconds code will transition to PROBE state (so DELAY state 576 * is kinda skipped in most situations). 577 * 578 * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so 579 * we perform the following upon entering STALE state: 580 * 581 * 1) Arm timer to run each V_nd6_delay seconds to make sure that 582 * if packet was transmitted at the start of given interval, we 583 * would be able to switch to PROBE state in V_nd6_delay seconds 584 * as user expects. 585 * 586 * 2) Reschedule timer until original V_nd6_gctimer expires keeping 587 * lle in STALE state (remaining timer value stored in lle_remtime). 588 * 589 * 3) Reschedule timer if packet was transmitted less that V_nd6_delay 590 * seconds ago. 591 * 592 * Returns non-zero value if the entry is still STALE (storing 593 * the next timer interval in @pdelay). 594 * 595 * Returns zero value if original timer expired or we need to switch to 596 * PROBE (store that in @do_switch variable). 597 */ 598 static int 599 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch) 600 { 601 int nd_delay, nd_gctimer, r_skip_req; 602 time_t lle_hittime; 603 long delay; 604 605 *do_switch = 0; 606 nd_gctimer = V_nd6_gctimer; 607 nd_delay = V_nd6_delay; 608 609 LLE_REQ_LOCK(lle); 610 r_skip_req = lle->r_skip_req; 611 lle_hittime = lle->lle_hittime; 612 LLE_REQ_UNLOCK(lle); 613 614 if (r_skip_req > 0) { 615 616 /* 617 * Nonzero r_skip_req value was set upon entering 618 * STALE state. Since value was not changed, no 619 * packets were passed using this lle. Ask for 620 * timer reschedule and keep STALE state. 621 */ 622 delay = (long)(MIN(nd_gctimer, nd_delay)); 623 delay *= hz; 624 if (lle->lle_remtime > delay) 625 lle->lle_remtime -= delay; 626 else { 627 delay = lle->lle_remtime; 628 lle->lle_remtime = 0; 629 } 630 631 if (delay == 0) { 632 633 /* 634 * The original ng6_gctime timeout ended, 635 * no more rescheduling. 636 */ 637 return (0); 638 } 639 640 *pdelay = delay; 641 return (1); 642 } 643 644 /* 645 * Packet received. Verify timestamp 646 */ 647 delay = (long)(time_uptime - lle_hittime); 648 if (delay < nd_delay) { 649 650 /* 651 * V_nd6_delay still not passed since the first 652 * hit in STALE state. 653 * Reshedule timer and return. 654 */ 655 *pdelay = (long)(nd_delay - delay) * hz; 656 return (1); 657 } 658 659 /* Request switching to probe */ 660 *do_switch = 1; 661 return (0); 662 } 663 664 665 /* 666 * Switch @lle state to new state optionally arming timers. 667 * 668 * Set noinline to be dtrace-friendly 669 */ 670 __noinline void 671 nd6_llinfo_setstate(struct llentry *lle, int newstate) 672 { 673 struct ifnet *ifp; 674 int nd_gctimer, nd_delay; 675 long delay, remtime; 676 677 delay = 0; 678 remtime = 0; 679 680 switch (newstate) { 681 case ND6_LLINFO_INCOMPLETE: 682 ifp = lle->lle_tbl->llt_ifp; 683 delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000; 684 break; 685 case ND6_LLINFO_REACHABLE: 686 if (!ND6_LLINFO_PERMANENT(lle)) { 687 ifp = lle->lle_tbl->llt_ifp; 688 delay = (long)ND_IFINFO(ifp)->reachable * hz; 689 } 690 break; 691 case ND6_LLINFO_STALE: 692 693 /* 694 * Notify fast path that we want to know if any packet 695 * is transmitted by setting r_skip_req. 696 */ 697 LLE_REQ_LOCK(lle); 698 lle->r_skip_req = 1; 699 LLE_REQ_UNLOCK(lle); 700 nd_delay = V_nd6_delay; 701 nd_gctimer = V_nd6_gctimer; 702 703 delay = (long)(MIN(nd_gctimer, nd_delay)) * hz; 704 remtime = (long)nd_gctimer * hz - delay; 705 break; 706 case ND6_LLINFO_DELAY: 707 lle->la_asked = 0; 708 delay = (long)V_nd6_delay * hz; 709 break; 710 } 711 712 if (delay > 0) 713 nd6_llinfo_settimer_locked(lle, delay); 714 715 lle->lle_remtime = remtime; 716 lle->ln_state = newstate; 717 } 718 719 /* 720 * Timer-dependent part of nd state machine. 721 * 722 * Set noinline to be dtrace-friendly 723 */ 724 static __noinline void 725 nd6_llinfo_timer(void *arg) 726 { 727 struct llentry *ln; 728 struct in6_addr *dst, *pdst, *psrc, src; 729 struct ifnet *ifp; 730 struct nd_ifinfo *ndi; 731 int do_switch, send_ns; 732 long delay; 733 734 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 735 ln = (struct llentry *)arg; 736 ifp = lltable_get_ifp(ln->lle_tbl); 737 CURVNET_SET(ifp->if_vnet); 738 739 ND6_RLOCK(); 740 LLE_WLOCK(ln); 741 if (callout_pending(&ln->lle_timer)) { 742 /* 743 * Here we are a bit odd here in the treatment of 744 * active/pending. If the pending bit is set, it got 745 * rescheduled before I ran. The active 746 * bit we ignore, since if it was stopped 747 * in ll_tablefree() and was currently running 748 * it would have return 0 so the code would 749 * not have deleted it since the callout could 750 * not be stopped so we want to go through 751 * with the delete here now. If the callout 752 * was restarted, the pending bit will be back on and 753 * we just want to bail since the callout_reset would 754 * return 1 and our reference would have been removed 755 * by nd6_llinfo_settimer_locked above since canceled 756 * would have been 1. 757 */ 758 LLE_WUNLOCK(ln); 759 ND6_RUNLOCK(); 760 CURVNET_RESTORE(); 761 return; 762 } 763 ndi = ND_IFINFO(ifp); 764 send_ns = 0; 765 dst = &ln->r_l3addr.addr6; 766 pdst = dst; 767 768 if (ln->ln_ntick > 0) { 769 if (ln->ln_ntick > INT_MAX) { 770 ln->ln_ntick -= INT_MAX; 771 nd6_llinfo_settimer_locked(ln, INT_MAX); 772 } else { 773 ln->ln_ntick = 0; 774 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 775 } 776 goto done; 777 } 778 779 if (ln->la_flags & LLE_STATIC) { 780 goto done; 781 } 782 783 if (ln->la_flags & LLE_DELETED) { 784 nd6_free(&ln, 0); 785 goto done; 786 } 787 788 switch (ln->ln_state) { 789 case ND6_LLINFO_INCOMPLETE: 790 if (ln->la_asked < V_nd6_mmaxtries) { 791 ln->la_asked++; 792 send_ns = 1; 793 /* Send NS to multicast address */ 794 pdst = NULL; 795 } else { 796 struct mbuf *m = ln->la_hold; 797 if (m) { 798 struct mbuf *m0; 799 800 /* 801 * assuming every packet in la_hold has the 802 * same IP header. Send error after unlock. 803 */ 804 m0 = m->m_nextpkt; 805 m->m_nextpkt = NULL; 806 ln->la_hold = m0; 807 clear_llinfo_pqueue(ln); 808 } 809 nd6_free(&ln, 0); 810 if (m != NULL) 811 icmp6_error2(m, ICMP6_DST_UNREACH, 812 ICMP6_DST_UNREACH_ADDR, 0, ifp); 813 } 814 break; 815 case ND6_LLINFO_REACHABLE: 816 if (!ND6_LLINFO_PERMANENT(ln)) 817 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 818 break; 819 820 case ND6_LLINFO_STALE: 821 if (nd6_is_stale(ln, &delay, &do_switch) != 0) { 822 823 /* 824 * No packet has used this entry and GC timeout 825 * has not been passed. Reshedule timer and 826 * return. 827 */ 828 nd6_llinfo_settimer_locked(ln, delay); 829 break; 830 } 831 832 if (do_switch == 0) { 833 834 /* 835 * GC timer has ended and entry hasn't been used. 836 * Run Garbage collector (RFC 4861, 5.3) 837 */ 838 if (!ND6_LLINFO_PERMANENT(ln)) 839 nd6_free(&ln, 1); 840 break; 841 } 842 843 /* Entry has been used AND delay timer has ended. */ 844 845 /* FALLTHROUGH */ 846 847 case ND6_LLINFO_DELAY: 848 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 849 /* We need NUD */ 850 ln->la_asked = 1; 851 nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE); 852 send_ns = 1; 853 } else 854 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */ 855 break; 856 case ND6_LLINFO_PROBE: 857 if (ln->la_asked < V_nd6_umaxtries) { 858 ln->la_asked++; 859 send_ns = 1; 860 } else { 861 nd6_free(&ln, 0); 862 } 863 break; 864 default: 865 panic("%s: paths in a dark night can be confusing: %d", 866 __func__, ln->ln_state); 867 } 868 done: 869 if (ln != NULL) 870 ND6_RUNLOCK(); 871 if (send_ns != 0) { 872 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 873 psrc = nd6_llinfo_get_holdsrc(ln, &src); 874 LLE_FREE_LOCKED(ln); 875 ln = NULL; 876 nd6_ns_output(ifp, psrc, pdst, dst, NULL); 877 } 878 879 if (ln != NULL) 880 LLE_FREE_LOCKED(ln); 881 CURVNET_RESTORE(); 882 } 883 884 885 /* 886 * ND6 timer routine to expire default route list and prefix list 887 */ 888 void 889 nd6_timer(void *arg) 890 { 891 CURVNET_SET((struct vnet *) arg); 892 struct nd_drhead drq; 893 struct nd_defrouter *dr, *ndr; 894 struct nd_prefix *pr, *npr; 895 struct in6_ifaddr *ia6, *nia6; 896 897 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 898 nd6_timer, curvnet); 899 900 TAILQ_INIT(&drq); 901 902 /* expire default router list */ 903 ND6_WLOCK(); 904 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) 905 if (dr->expire && dr->expire < time_uptime) 906 defrouter_unlink(dr, &drq); 907 ND6_WUNLOCK(); 908 909 while ((dr = TAILQ_FIRST(&drq)) != NULL) { 910 TAILQ_REMOVE(&drq, dr, dr_entry); 911 defrouter_del(dr); 912 } 913 914 /* 915 * expire interface addresses. 916 * in the past the loop was inside prefix expiry processing. 917 * However, from a stricter speci-confrmance standpoint, we should 918 * rather separate address lifetimes and prefix lifetimes. 919 * 920 * XXXRW: in6_ifaddrhead locking. 921 */ 922 addrloop: 923 TAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 924 /* check address lifetime */ 925 if (IFA6_IS_INVALID(ia6)) { 926 int regen = 0; 927 928 /* 929 * If the expiring address is temporary, try 930 * regenerating a new one. This would be useful when 931 * we suspended a laptop PC, then turned it on after a 932 * period that could invalidate all temporary 933 * addresses. Although we may have to restart the 934 * loop (see below), it must be after purging the 935 * address. Otherwise, we'd see an infinite loop of 936 * regeneration. 937 */ 938 if (V_ip6_use_tempaddr && 939 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 940 if (regen_tmpaddr(ia6) == 0) 941 regen = 1; 942 } 943 944 in6_purgeaddr(&ia6->ia_ifa); 945 946 if (regen) 947 goto addrloop; /* XXX: see below */ 948 } else if (IFA6_IS_DEPRECATED(ia6)) { 949 int oldflags = ia6->ia6_flags; 950 951 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 952 953 /* 954 * If a temporary address has just become deprecated, 955 * regenerate a new one if possible. 956 */ 957 if (V_ip6_use_tempaddr && 958 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 959 (oldflags & IN6_IFF_DEPRECATED) == 0) { 960 961 if (regen_tmpaddr(ia6) == 0) { 962 /* 963 * A new temporary address is 964 * generated. 965 * XXX: this means the address chain 966 * has changed while we are still in 967 * the loop. Although the change 968 * would not cause disaster (because 969 * it's not a deletion, but an 970 * addition,) we'd rather restart the 971 * loop just for safety. Or does this 972 * significantly reduce performance?? 973 */ 974 goto addrloop; 975 } 976 } 977 } else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) { 978 /* 979 * Schedule DAD for a tentative address. This happens 980 * if the interface was down or not running 981 * when the address was configured. 982 */ 983 int delay; 984 985 delay = arc4random() % 986 (MAX_RTR_SOLICITATION_DELAY * hz); 987 nd6_dad_start((struct ifaddr *)ia6, delay); 988 } else { 989 /* 990 * Check status of the interface. If it is down, 991 * mark the address as tentative for future DAD. 992 */ 993 if ((ia6->ia_ifp->if_flags & IFF_UP) == 0 || 994 (ia6->ia_ifp->if_drv_flags & IFF_DRV_RUNNING) 995 == 0 || 996 (ND_IFINFO(ia6->ia_ifp)->flags & 997 ND6_IFF_IFDISABLED) != 0) { 998 ia6->ia6_flags &= ~IN6_IFF_DUPLICATED; 999 ia6->ia6_flags |= IN6_IFF_TENTATIVE; 1000 } 1001 /* 1002 * A new RA might have made a deprecated address 1003 * preferred. 1004 */ 1005 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 1006 } 1007 } 1008 1009 /* expire prefix list */ 1010 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1011 /* 1012 * check prefix lifetime. 1013 * since pltime is just for autoconf, pltime processing for 1014 * prefix is not necessary. 1015 */ 1016 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && 1017 time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) { 1018 1019 /* 1020 * address expiration and prefix expiration are 1021 * separate. NEVER perform in6_purgeaddr here. 1022 */ 1023 prelist_remove(pr); 1024 } 1025 } 1026 CURVNET_RESTORE(); 1027 } 1028 1029 /* 1030 * ia6 - deprecated/invalidated temporary address 1031 */ 1032 static int 1033 regen_tmpaddr(struct in6_ifaddr *ia6) 1034 { 1035 struct ifaddr *ifa; 1036 struct ifnet *ifp; 1037 struct in6_ifaddr *public_ifa6 = NULL; 1038 1039 ifp = ia6->ia_ifa.ifa_ifp; 1040 IF_ADDR_RLOCK(ifp); 1041 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1042 struct in6_ifaddr *it6; 1043 1044 if (ifa->ifa_addr->sa_family != AF_INET6) 1045 continue; 1046 1047 it6 = (struct in6_ifaddr *)ifa; 1048 1049 /* ignore no autoconf addresses. */ 1050 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1051 continue; 1052 1053 /* ignore autoconf addresses with different prefixes. */ 1054 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 1055 continue; 1056 1057 /* 1058 * Now we are looking at an autoconf address with the same 1059 * prefix as ours. If the address is temporary and is still 1060 * preferred, do not create another one. It would be rare, but 1061 * could happen, for example, when we resume a laptop PC after 1062 * a long period. 1063 */ 1064 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 1065 !IFA6_IS_DEPRECATED(it6)) { 1066 public_ifa6 = NULL; 1067 break; 1068 } 1069 1070 /* 1071 * This is a public autoconf address that has the same prefix 1072 * as ours. If it is preferred, keep it. We can't break the 1073 * loop here, because there may be a still-preferred temporary 1074 * address with the prefix. 1075 */ 1076 if (!IFA6_IS_DEPRECATED(it6)) 1077 public_ifa6 = it6; 1078 } 1079 if (public_ifa6 != NULL) 1080 ifa_ref(&public_ifa6->ia_ifa); 1081 IF_ADDR_RUNLOCK(ifp); 1082 1083 if (public_ifa6 != NULL) { 1084 int e; 1085 1086 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 1087 ifa_free(&public_ifa6->ia_ifa); 1088 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 1089 " tmp addr,errno=%d\n", e); 1090 return (-1); 1091 } 1092 ifa_free(&public_ifa6->ia_ifa); 1093 return (0); 1094 } 1095 1096 return (-1); 1097 } 1098 1099 /* 1100 * Remove prefix and default router list entries corresponding to ifp. Neighbor 1101 * cache entries are freed in in6_domifdetach(). 1102 */ 1103 void 1104 nd6_purge(struct ifnet *ifp) 1105 { 1106 struct nd_drhead drq; 1107 struct nd_defrouter *dr, *ndr; 1108 struct nd_prefix *pr, *npr; 1109 1110 TAILQ_INIT(&drq); 1111 1112 /* 1113 * Nuke default router list entries toward ifp. 1114 * We defer removal of default router list entries that is installed 1115 * in the routing table, in order to keep additional side effects as 1116 * small as possible. 1117 */ 1118 ND6_WLOCK(); 1119 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 1120 if (dr->installed) 1121 continue; 1122 if (dr->ifp == ifp) 1123 defrouter_unlink(dr, &drq); 1124 } 1125 1126 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 1127 if (!dr->installed) 1128 continue; 1129 if (dr->ifp == ifp) 1130 defrouter_unlink(dr, &drq); 1131 } 1132 ND6_WUNLOCK(); 1133 1134 while ((dr = TAILQ_FIRST(&drq)) != NULL) { 1135 TAILQ_REMOVE(&drq, dr, dr_entry); 1136 defrouter_del(dr); 1137 } 1138 1139 /* Nuke prefix list entries toward ifp */ 1140 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1141 if (pr->ndpr_ifp == ifp) { 1142 /* 1143 * Because if_detach() does *not* release prefixes 1144 * while purging addresses the reference count will 1145 * still be above zero. We therefore reset it to 1146 * make sure that the prefix really gets purged. 1147 */ 1148 pr->ndpr_refcnt = 0; 1149 1150 prelist_remove(pr); 1151 } 1152 } 1153 1154 /* cancel default outgoing interface setting */ 1155 if (V_nd6_defifindex == ifp->if_index) 1156 nd6_setdefaultiface(0); 1157 1158 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1159 /* Refresh default router list. */ 1160 defrouter_select(); 1161 } 1162 } 1163 1164 /* 1165 * the caller acquires and releases the lock on the lltbls 1166 * Returns the llentry locked 1167 */ 1168 struct llentry * 1169 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1170 { 1171 struct sockaddr_in6 sin6; 1172 struct llentry *ln; 1173 1174 bzero(&sin6, sizeof(sin6)); 1175 sin6.sin6_len = sizeof(struct sockaddr_in6); 1176 sin6.sin6_family = AF_INET6; 1177 sin6.sin6_addr = *addr6; 1178 1179 IF_AFDATA_LOCK_ASSERT(ifp); 1180 1181 ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6); 1182 1183 return (ln); 1184 } 1185 1186 struct llentry * 1187 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1188 { 1189 struct sockaddr_in6 sin6; 1190 struct llentry *ln; 1191 1192 bzero(&sin6, sizeof(sin6)); 1193 sin6.sin6_len = sizeof(struct sockaddr_in6); 1194 sin6.sin6_family = AF_INET6; 1195 sin6.sin6_addr = *addr6; 1196 1197 ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6); 1198 if (ln != NULL) 1199 ln->ln_state = ND6_LLINFO_NOSTATE; 1200 1201 return (ln); 1202 } 1203 1204 /* 1205 * Test whether a given IPv6 address is a neighbor or not, ignoring 1206 * the actual neighbor cache. The neighbor cache is ignored in order 1207 * to not reenter the routing code from within itself. 1208 */ 1209 static int 1210 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1211 { 1212 struct nd_prefix *pr; 1213 struct ifaddr *dstaddr; 1214 struct rt_addrinfo info; 1215 struct sockaddr_in6 rt_key; 1216 struct sockaddr *dst6; 1217 int fibnum; 1218 1219 /* 1220 * A link-local address is always a neighbor. 1221 * XXX: a link does not necessarily specify a single interface. 1222 */ 1223 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1224 struct sockaddr_in6 sin6_copy; 1225 u_int32_t zone; 1226 1227 /* 1228 * We need sin6_copy since sa6_recoverscope() may modify the 1229 * content (XXX). 1230 */ 1231 sin6_copy = *addr; 1232 if (sa6_recoverscope(&sin6_copy)) 1233 return (0); /* XXX: should be impossible */ 1234 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1235 return (0); 1236 if (sin6_copy.sin6_scope_id == zone) 1237 return (1); 1238 else 1239 return (0); 1240 } 1241 1242 bzero(&rt_key, sizeof(rt_key)); 1243 bzero(&info, sizeof(info)); 1244 info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key; 1245 1246 /* Always use the default FIB here. XXME - why? */ 1247 fibnum = RT_DEFAULT_FIB; 1248 1249 /* 1250 * If the address matches one of our addresses, 1251 * it should be a neighbor. 1252 * If the address matches one of our on-link prefixes, it should be a 1253 * neighbor. 1254 */ 1255 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1256 if (pr->ndpr_ifp != ifp) 1257 continue; 1258 1259 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) { 1260 1261 /* Always use the default FIB here. */ 1262 dst6 = (struct sockaddr *)&pr->ndpr_prefix; 1263 1264 /* Restore length field before retrying lookup */ 1265 rt_key.sin6_len = sizeof(rt_key); 1266 if (rib_lookup_info(fibnum, dst6, 0, 0, &info) != 0) 1267 continue; 1268 /* 1269 * This is the case where multiple interfaces 1270 * have the same prefix, but only one is installed 1271 * into the routing table and that prefix entry 1272 * is not the one being examined here. In the case 1273 * where RADIX_MPATH is enabled, multiple route 1274 * entries (of the same rt_key value) will be 1275 * installed because the interface addresses all 1276 * differ. 1277 */ 1278 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1279 &rt_key.sin6_addr)) 1280 continue; 1281 } 1282 1283 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1284 &addr->sin6_addr, &pr->ndpr_mask)) 1285 return (1); 1286 } 1287 1288 /* 1289 * If the address is assigned on the node of the other side of 1290 * a p2p interface, the address should be a neighbor. 1291 */ 1292 dstaddr = ifa_ifwithdstaddr((const struct sockaddr *)addr, RT_ALL_FIBS); 1293 if (dstaddr != NULL) { 1294 if (dstaddr->ifa_ifp == ifp) { 1295 ifa_free(dstaddr); 1296 return (1); 1297 } 1298 ifa_free(dstaddr); 1299 } 1300 1301 /* 1302 * If the default router list is empty, all addresses are regarded 1303 * as on-link, and thus, as a neighbor. 1304 */ 1305 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1306 TAILQ_EMPTY(&V_nd_defrouter) && 1307 V_nd6_defifindex == ifp->if_index) { 1308 return (1); 1309 } 1310 1311 return (0); 1312 } 1313 1314 1315 /* 1316 * Detect if a given IPv6 address identifies a neighbor on a given link. 1317 * XXX: should take care of the destination of a p2p link? 1318 */ 1319 int 1320 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1321 { 1322 struct llentry *lle; 1323 int rc = 0; 1324 1325 IF_AFDATA_UNLOCK_ASSERT(ifp); 1326 if (nd6_is_new_addr_neighbor(addr, ifp)) 1327 return (1); 1328 1329 /* 1330 * Even if the address matches none of our addresses, it might be 1331 * in the neighbor cache. 1332 */ 1333 IF_AFDATA_RLOCK(ifp); 1334 if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { 1335 LLE_RUNLOCK(lle); 1336 rc = 1; 1337 } 1338 IF_AFDATA_RUNLOCK(ifp); 1339 return (rc); 1340 } 1341 1342 /* 1343 * Free an nd6 llinfo entry. 1344 * Since the function would cause significant changes in the kernel, DO NOT 1345 * make it global, unless you have a strong reason for the change, and are sure 1346 * that the change is safe. 1347 * 1348 * Set noinline to be dtrace-friendly 1349 */ 1350 static __noinline void 1351 nd6_free(struct llentry **lnp, int gc) 1352 { 1353 struct ifnet *ifp; 1354 struct llentry *ln; 1355 struct nd_defrouter *dr; 1356 1357 ln = *lnp; 1358 *lnp = NULL; 1359 1360 LLE_WLOCK_ASSERT(ln); 1361 ND6_RLOCK_ASSERT(); 1362 1363 ifp = lltable_get_ifp(ln->lle_tbl); 1364 if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0) 1365 dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp); 1366 else 1367 dr = NULL; 1368 ND6_RUNLOCK(); 1369 1370 if ((ln->la_flags & LLE_DELETED) == 0) 1371 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 1372 1373 /* 1374 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1375 * even though it is not harmful, it was not really necessary. 1376 */ 1377 1378 /* cancel timer */ 1379 nd6_llinfo_settimer_locked(ln, -1); 1380 1381 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1382 if (dr != NULL && dr->expire && 1383 ln->ln_state == ND6_LLINFO_STALE && gc) { 1384 /* 1385 * If the reason for the deletion is just garbage 1386 * collection, and the neighbor is an active default 1387 * router, do not delete it. Instead, reset the GC 1388 * timer using the router's lifetime. 1389 * Simply deleting the entry would affect default 1390 * router selection, which is not necessarily a good 1391 * thing, especially when we're using router preference 1392 * values. 1393 * XXX: the check for ln_state would be redundant, 1394 * but we intentionally keep it just in case. 1395 */ 1396 if (dr->expire > time_uptime) 1397 nd6_llinfo_settimer_locked(ln, 1398 (dr->expire - time_uptime) * hz); 1399 else 1400 nd6_llinfo_settimer_locked(ln, 1401 (long)V_nd6_gctimer * hz); 1402 1403 LLE_REMREF(ln); 1404 LLE_WUNLOCK(ln); 1405 defrouter_rele(dr); 1406 return; 1407 } 1408 1409 if (dr) { 1410 /* 1411 * Unreachablity of a router might affect the default 1412 * router selection and on-link detection of advertised 1413 * prefixes. 1414 */ 1415 1416 /* 1417 * Temporarily fake the state to choose a new default 1418 * router and to perform on-link determination of 1419 * prefixes correctly. 1420 * Below the state will be set correctly, 1421 * or the entry itself will be deleted. 1422 */ 1423 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1424 } 1425 1426 if (ln->ln_router || dr) { 1427 1428 /* 1429 * We need to unlock to avoid a LOR with rt6_flush() with the 1430 * rnh and for the calls to pfxlist_onlink_check() and 1431 * defrouter_select() in the block further down for calls 1432 * into nd6_lookup(). We still hold a ref. 1433 */ 1434 LLE_WUNLOCK(ln); 1435 1436 /* 1437 * rt6_flush must be called whether or not the neighbor 1438 * is in the Default Router List. 1439 * See a corresponding comment in nd6_na_input(). 1440 */ 1441 rt6_flush(&ln->r_l3addr.addr6, ifp); 1442 } 1443 1444 if (dr) { 1445 /* 1446 * Since defrouter_select() does not affect the 1447 * on-link determination and MIP6 needs the check 1448 * before the default router selection, we perform 1449 * the check now. 1450 */ 1451 pfxlist_onlink_check(); 1452 1453 /* 1454 * Refresh default router list. 1455 */ 1456 defrouter_select(); 1457 } 1458 1459 /* 1460 * If this entry was added by an on-link redirect, remove the 1461 * corresponding host route. 1462 */ 1463 if (ln->la_flags & LLE_REDIRECT) 1464 nd6_free_redirect(ln); 1465 1466 if (ln->ln_router || dr) 1467 LLE_WLOCK(ln); 1468 } 1469 1470 /* 1471 * Save to unlock. We still hold an extra reference and will not 1472 * free(9) in llentry_free() if someone else holds one as well. 1473 */ 1474 LLE_WUNLOCK(ln); 1475 IF_AFDATA_LOCK(ifp); 1476 LLE_WLOCK(ln); 1477 /* Guard against race with other llentry_free(). */ 1478 if (ln->la_flags & LLE_LINKED) { 1479 /* Remove callout reference */ 1480 LLE_REMREF(ln); 1481 lltable_unlink_entry(ln->lle_tbl, ln); 1482 } 1483 IF_AFDATA_UNLOCK(ifp); 1484 1485 llentry_free(ln); 1486 if (dr != NULL) 1487 defrouter_rele(dr); 1488 } 1489 1490 static int 1491 nd6_isdynrte(const struct rtentry *rt, void *xap) 1492 { 1493 1494 if (rt->rt_flags == (RTF_UP | RTF_HOST | RTF_DYNAMIC)) 1495 return (1); 1496 1497 return (0); 1498 } 1499 /* 1500 * Remove the rtentry for the given llentry, 1501 * both of which were installed by a redirect. 1502 */ 1503 static void 1504 nd6_free_redirect(const struct llentry *ln) 1505 { 1506 int fibnum; 1507 struct sockaddr_in6 sin6; 1508 struct rt_addrinfo info; 1509 1510 lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6); 1511 memset(&info, 0, sizeof(info)); 1512 info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6; 1513 info.rti_filter = nd6_isdynrte; 1514 1515 for (fibnum = 0; fibnum < rt_numfibs; fibnum++) 1516 rtrequest1_fib(RTM_DELETE, &info, NULL, fibnum); 1517 } 1518 1519 /* 1520 * Rejuvenate this function for routing operations related 1521 * processing. 1522 */ 1523 void 1524 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info) 1525 { 1526 struct sockaddr_in6 *gateway; 1527 struct nd_defrouter *dr; 1528 struct ifnet *ifp; 1529 1530 gateway = (struct sockaddr_in6 *)rt->rt_gateway; 1531 ifp = rt->rt_ifp; 1532 1533 switch (req) { 1534 case RTM_ADD: 1535 break; 1536 1537 case RTM_DELETE: 1538 if (!ifp) 1539 return; 1540 /* 1541 * Only indirect routes are interesting. 1542 */ 1543 if ((rt->rt_flags & RTF_GATEWAY) == 0) 1544 return; 1545 /* 1546 * check for default route 1547 */ 1548 if (IN6_ARE_ADDR_EQUAL(&in6addr_any, 1549 &SIN6(rt_key(rt))->sin6_addr)) { 1550 dr = defrouter_lookup(&gateway->sin6_addr, ifp); 1551 if (dr != NULL) { 1552 dr->installed = 0; 1553 defrouter_rele(dr); 1554 } 1555 } 1556 break; 1557 } 1558 } 1559 1560 1561 int 1562 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1563 { 1564 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1565 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1566 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1567 int error = 0; 1568 1569 if (ifp->if_afdata[AF_INET6] == NULL) 1570 return (EPFNOSUPPORT); 1571 switch (cmd) { 1572 case OSIOCGIFINFO_IN6: 1573 #define ND ndi->ndi 1574 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1575 bzero(&ND, sizeof(ND)); 1576 ND.linkmtu = IN6_LINKMTU(ifp); 1577 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1578 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1579 ND.reachable = ND_IFINFO(ifp)->reachable; 1580 ND.retrans = ND_IFINFO(ifp)->retrans; 1581 ND.flags = ND_IFINFO(ifp)->flags; 1582 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1583 ND.chlim = ND_IFINFO(ifp)->chlim; 1584 break; 1585 case SIOCGIFINFO_IN6: 1586 ND = *ND_IFINFO(ifp); 1587 break; 1588 case SIOCSIFINFO_IN6: 1589 /* 1590 * used to change host variables from userland. 1591 * intended for a use on router to reflect RA configurations. 1592 */ 1593 /* 0 means 'unspecified' */ 1594 if (ND.linkmtu != 0) { 1595 if (ND.linkmtu < IPV6_MMTU || 1596 ND.linkmtu > IN6_LINKMTU(ifp)) { 1597 error = EINVAL; 1598 break; 1599 } 1600 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1601 } 1602 1603 if (ND.basereachable != 0) { 1604 int obasereachable = ND_IFINFO(ifp)->basereachable; 1605 1606 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1607 if (ND.basereachable != obasereachable) 1608 ND_IFINFO(ifp)->reachable = 1609 ND_COMPUTE_RTIME(ND.basereachable); 1610 } 1611 if (ND.retrans != 0) 1612 ND_IFINFO(ifp)->retrans = ND.retrans; 1613 if (ND.chlim != 0) 1614 ND_IFINFO(ifp)->chlim = ND.chlim; 1615 /* FALLTHROUGH */ 1616 case SIOCSIFINFO_FLAGS: 1617 { 1618 struct ifaddr *ifa; 1619 struct in6_ifaddr *ia; 1620 1621 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1622 !(ND.flags & ND6_IFF_IFDISABLED)) { 1623 /* ifdisabled 1->0 transision */ 1624 1625 /* 1626 * If the interface is marked as ND6_IFF_IFDISABLED and 1627 * has an link-local address with IN6_IFF_DUPLICATED, 1628 * do not clear ND6_IFF_IFDISABLED. 1629 * See RFC 4862, Section 5.4.5. 1630 */ 1631 IF_ADDR_RLOCK(ifp); 1632 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1633 if (ifa->ifa_addr->sa_family != AF_INET6) 1634 continue; 1635 ia = (struct in6_ifaddr *)ifa; 1636 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1637 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1638 break; 1639 } 1640 IF_ADDR_RUNLOCK(ifp); 1641 1642 if (ifa != NULL) { 1643 /* LLA is duplicated. */ 1644 ND.flags |= ND6_IFF_IFDISABLED; 1645 log(LOG_ERR, "Cannot enable an interface" 1646 " with a link-local address marked" 1647 " duplicate.\n"); 1648 } else { 1649 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1650 if (ifp->if_flags & IFF_UP) 1651 in6_if_up(ifp); 1652 } 1653 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1654 (ND.flags & ND6_IFF_IFDISABLED)) { 1655 /* ifdisabled 0->1 transision */ 1656 /* Mark all IPv6 address as tentative. */ 1657 1658 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1659 if (V_ip6_dad_count > 0 && 1660 (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) { 1661 IF_ADDR_RLOCK(ifp); 1662 TAILQ_FOREACH(ifa, &ifp->if_addrhead, 1663 ifa_link) { 1664 if (ifa->ifa_addr->sa_family != 1665 AF_INET6) 1666 continue; 1667 ia = (struct in6_ifaddr *)ifa; 1668 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1669 } 1670 IF_ADDR_RUNLOCK(ifp); 1671 } 1672 } 1673 1674 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1675 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1676 /* auto_linklocal 0->1 transision */ 1677 1678 /* If no link-local address on ifp, configure */ 1679 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1680 in6_ifattach(ifp, NULL); 1681 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1682 ifp->if_flags & IFF_UP) { 1683 /* 1684 * When the IF already has 1685 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1686 * address is assigned, and IFF_UP, try to 1687 * assign one. 1688 */ 1689 IF_ADDR_RLOCK(ifp); 1690 TAILQ_FOREACH(ifa, &ifp->if_addrhead, 1691 ifa_link) { 1692 if (ifa->ifa_addr->sa_family != 1693 AF_INET6) 1694 continue; 1695 ia = (struct in6_ifaddr *)ifa; 1696 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1697 break; 1698 } 1699 IF_ADDR_RUNLOCK(ifp); 1700 if (ifa != NULL) 1701 /* No LLA is configured. */ 1702 in6_ifattach(ifp, NULL); 1703 } 1704 } 1705 } 1706 ND_IFINFO(ifp)->flags = ND.flags; 1707 break; 1708 #undef ND 1709 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1710 /* sync kernel routing table with the default router list */ 1711 defrouter_reset(); 1712 defrouter_select(); 1713 break; 1714 case SIOCSPFXFLUSH_IN6: 1715 { 1716 /* flush all the prefix advertised by routers */ 1717 struct nd_prefix *pr, *next; 1718 1719 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1720 struct in6_ifaddr *ia, *ia_next; 1721 1722 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1723 continue; /* XXX */ 1724 1725 /* do we really have to remove addresses as well? */ 1726 /* XXXRW: in6_ifaddrhead locking. */ 1727 TAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1728 ia_next) { 1729 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1730 continue; 1731 1732 if (ia->ia6_ndpr == pr) 1733 in6_purgeaddr(&ia->ia_ifa); 1734 } 1735 prelist_remove(pr); 1736 } 1737 break; 1738 } 1739 case SIOCSRTRFLUSH_IN6: 1740 { 1741 /* flush all the default routers */ 1742 struct nd_drhead drq; 1743 struct nd_defrouter *dr; 1744 1745 TAILQ_INIT(&drq); 1746 1747 defrouter_reset(); 1748 1749 ND6_WLOCK(); 1750 while ((dr = TAILQ_FIRST(&V_nd_defrouter)) != NULL) 1751 defrouter_unlink(dr, &drq); 1752 ND6_WUNLOCK(); 1753 while ((dr = TAILQ_FIRST(&drq)) != NULL) { 1754 TAILQ_REMOVE(&drq, dr, dr_entry); 1755 defrouter_del(dr); 1756 } 1757 1758 defrouter_select(); 1759 break; 1760 } 1761 case SIOCGNBRINFO_IN6: 1762 { 1763 struct llentry *ln; 1764 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1765 1766 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1767 return (error); 1768 1769 IF_AFDATA_RLOCK(ifp); 1770 ln = nd6_lookup(&nb_addr, 0, ifp); 1771 IF_AFDATA_RUNLOCK(ifp); 1772 1773 if (ln == NULL) { 1774 error = EINVAL; 1775 break; 1776 } 1777 nbi->state = ln->ln_state; 1778 nbi->asked = ln->la_asked; 1779 nbi->isrouter = ln->ln_router; 1780 if (ln->la_expire == 0) 1781 nbi->expire = 0; 1782 else 1783 nbi->expire = ln->la_expire + ln->lle_remtime / hz + 1784 (time_second - time_uptime); 1785 LLE_RUNLOCK(ln); 1786 break; 1787 } 1788 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1789 ndif->ifindex = V_nd6_defifindex; 1790 break; 1791 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1792 return (nd6_setdefaultiface(ndif->ifindex)); 1793 } 1794 return (error); 1795 } 1796 1797 /* 1798 * Calculates new isRouter value based on provided parameters and 1799 * returns it. 1800 */ 1801 static int 1802 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr, 1803 int ln_router) 1804 { 1805 1806 /* 1807 * ICMP6 type dependent behavior. 1808 * 1809 * NS: clear IsRouter if new entry 1810 * RS: clear IsRouter 1811 * RA: set IsRouter if there's lladdr 1812 * redir: clear IsRouter if new entry 1813 * 1814 * RA case, (1): 1815 * The spec says that we must set IsRouter in the following cases: 1816 * - If lladdr exist, set IsRouter. This means (1-5). 1817 * - If it is old entry (!newentry), set IsRouter. This means (7). 1818 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1819 * A quetion arises for (1) case. (1) case has no lladdr in the 1820 * neighbor cache, this is similar to (6). 1821 * This case is rare but we figured that we MUST NOT set IsRouter. 1822 * 1823 * is_new old_addr new_addr NS RS RA redir 1824 * D R 1825 * 0 n n (1) c ? s 1826 * 0 y n (2) c s s 1827 * 0 n y (3) c s s 1828 * 0 y y (4) c s s 1829 * 0 y y (5) c s s 1830 * 1 -- n (6) c c c s 1831 * 1 -- y (7) c c s c s 1832 * 1833 * (c=clear s=set) 1834 */ 1835 switch (type & 0xff) { 1836 case ND_NEIGHBOR_SOLICIT: 1837 /* 1838 * New entry must have is_router flag cleared. 1839 */ 1840 if (is_new) /* (6-7) */ 1841 ln_router = 0; 1842 break; 1843 case ND_REDIRECT: 1844 /* 1845 * If the icmp is a redirect to a better router, always set the 1846 * is_router flag. Otherwise, if the entry is newly created, 1847 * clear the flag. [RFC 2461, sec 8.3] 1848 */ 1849 if (code == ND_REDIRECT_ROUTER) 1850 ln_router = 1; 1851 else { 1852 if (is_new) /* (6-7) */ 1853 ln_router = 0; 1854 } 1855 break; 1856 case ND_ROUTER_SOLICIT: 1857 /* 1858 * is_router flag must always be cleared. 1859 */ 1860 ln_router = 0; 1861 break; 1862 case ND_ROUTER_ADVERT: 1863 /* 1864 * Mark an entry with lladdr as a router. 1865 */ 1866 if ((!is_new && (old_addr || new_addr)) || /* (2-5) */ 1867 (is_new && new_addr)) { /* (7) */ 1868 ln_router = 1; 1869 } 1870 break; 1871 } 1872 1873 return (ln_router); 1874 } 1875 1876 /* 1877 * Create neighbor cache entry and cache link-layer address, 1878 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1879 * 1880 * type - ICMP6 type 1881 * code - type dependent information 1882 * 1883 */ 1884 void 1885 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1886 int lladdrlen, int type, int code) 1887 { 1888 struct llentry *ln = NULL, *ln_tmp; 1889 int is_newentry; 1890 int do_update; 1891 int olladdr; 1892 int llchange; 1893 int flags; 1894 uint16_t router = 0; 1895 struct sockaddr_in6 sin6; 1896 struct mbuf *chain = NULL; 1897 u_char linkhdr[LLE_MAX_LINKHDR]; 1898 size_t linkhdrsize; 1899 int lladdr_off; 1900 1901 IF_AFDATA_UNLOCK_ASSERT(ifp); 1902 1903 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1904 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1905 1906 /* nothing must be updated for unspecified address */ 1907 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1908 return; 1909 1910 /* 1911 * Validation about ifp->if_addrlen and lladdrlen must be done in 1912 * the caller. 1913 * 1914 * XXX If the link does not have link-layer adderss, what should 1915 * we do? (ifp->if_addrlen == 0) 1916 * Spec says nothing in sections for RA, RS and NA. There's small 1917 * description on it in NS section (RFC 2461 7.2.3). 1918 */ 1919 flags = lladdr ? LLE_EXCLUSIVE : 0; 1920 IF_AFDATA_RLOCK(ifp); 1921 ln = nd6_lookup(from, flags, ifp); 1922 IF_AFDATA_RUNLOCK(ifp); 1923 is_newentry = 0; 1924 if (ln == NULL) { 1925 flags |= LLE_EXCLUSIVE; 1926 ln = nd6_alloc(from, 0, ifp); 1927 if (ln == NULL) 1928 return; 1929 1930 /* 1931 * Since we already know all the data for the new entry, 1932 * fill it before insertion. 1933 */ 1934 if (lladdr != NULL) { 1935 linkhdrsize = sizeof(linkhdr); 1936 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 1937 linkhdr, &linkhdrsize, &lladdr_off) != 0) 1938 return; 1939 lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 1940 lladdr_off); 1941 } 1942 1943 IF_AFDATA_WLOCK(ifp); 1944 LLE_WLOCK(ln); 1945 /* Prefer any existing lle over newly-created one */ 1946 ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp); 1947 if (ln_tmp == NULL) 1948 lltable_link_entry(LLTABLE6(ifp), ln); 1949 IF_AFDATA_WUNLOCK(ifp); 1950 if (ln_tmp == NULL) { 1951 /* No existing lle, mark as new entry (6,7) */ 1952 is_newentry = 1; 1953 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 1954 if (lladdr != NULL) /* (7) */ 1955 EVENTHANDLER_INVOKE(lle_event, ln, 1956 LLENTRY_RESOLVED); 1957 } else { 1958 lltable_free_entry(LLTABLE6(ifp), ln); 1959 ln = ln_tmp; 1960 ln_tmp = NULL; 1961 } 1962 } 1963 /* do nothing if static ndp is set */ 1964 if ((ln->la_flags & LLE_STATIC)) { 1965 if (flags & LLE_EXCLUSIVE) 1966 LLE_WUNLOCK(ln); 1967 else 1968 LLE_RUNLOCK(ln); 1969 return; 1970 } 1971 1972 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 1973 if (olladdr && lladdr) { 1974 llchange = bcmp(lladdr, ln->ll_addr, 1975 ifp->if_addrlen); 1976 } else if (!olladdr && lladdr) 1977 llchange = 1; 1978 else 1979 llchange = 0; 1980 1981 /* 1982 * newentry olladdr lladdr llchange (*=record) 1983 * 0 n n -- (1) 1984 * 0 y n -- (2) 1985 * 0 n y y (3) * STALE 1986 * 0 y y n (4) * 1987 * 0 y y y (5) * STALE 1988 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1989 * 1 -- y -- (7) * STALE 1990 */ 1991 1992 do_update = 0; 1993 if (is_newentry == 0 && llchange != 0) { 1994 do_update = 1; /* (3,5) */ 1995 1996 /* 1997 * Record source link-layer address 1998 * XXX is it dependent to ifp->if_type? 1999 */ 2000 linkhdrsize = sizeof(linkhdr); 2001 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 2002 linkhdr, &linkhdrsize, &lladdr_off) != 0) 2003 return; 2004 2005 if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 2006 lladdr_off) == 0) { 2007 /* Entry was deleted */ 2008 return; 2009 } 2010 2011 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2012 2013 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2014 2015 if (ln->la_hold != NULL) 2016 nd6_grab_holdchain(ln, &chain, &sin6); 2017 } 2018 2019 /* Calculates new router status */ 2020 router = nd6_is_router(type, code, is_newentry, olladdr, 2021 lladdr != NULL ? 1 : 0, ln->ln_router); 2022 2023 ln->ln_router = router; 2024 /* Mark non-router redirects with special flag */ 2025 if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER) 2026 ln->la_flags |= LLE_REDIRECT; 2027 2028 if (flags & LLE_EXCLUSIVE) 2029 LLE_WUNLOCK(ln); 2030 else 2031 LLE_RUNLOCK(ln); 2032 2033 if (chain != NULL) 2034 nd6_flush_holdchain(ifp, ifp, chain, &sin6); 2035 2036 /* 2037 * When the link-layer address of a router changes, select the 2038 * best router again. In particular, when the neighbor entry is newly 2039 * created, it might affect the selection policy. 2040 * Question: can we restrict the first condition to the "is_newentry" 2041 * case? 2042 * XXX: when we hear an RA from a new router with the link-layer 2043 * address option, defrouter_select() is called twice, since 2044 * defrtrlist_update called the function as well. However, I believe 2045 * we can compromise the overhead, since it only happens the first 2046 * time. 2047 * XXX: although defrouter_select() should not have a bad effect 2048 * for those are not autoconfigured hosts, we explicitly avoid such 2049 * cases for safety. 2050 */ 2051 if ((do_update || is_newentry) && router && 2052 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 2053 /* 2054 * guaranteed recursion 2055 */ 2056 defrouter_select(); 2057 } 2058 } 2059 2060 static void 2061 nd6_slowtimo(void *arg) 2062 { 2063 CURVNET_SET((struct vnet *) arg); 2064 struct nd_ifinfo *nd6if; 2065 struct ifnet *ifp; 2066 2067 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2068 nd6_slowtimo, curvnet); 2069 IFNET_RLOCK_NOSLEEP(); 2070 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2071 if (ifp->if_afdata[AF_INET6] == NULL) 2072 continue; 2073 nd6if = ND_IFINFO(ifp); 2074 if (nd6if->basereachable && /* already initialized */ 2075 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2076 /* 2077 * Since reachable time rarely changes by router 2078 * advertisements, we SHOULD insure that a new random 2079 * value gets recomputed at least once every few hours. 2080 * (RFC 2461, 6.3.4) 2081 */ 2082 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 2083 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2084 } 2085 } 2086 IFNET_RUNLOCK_NOSLEEP(); 2087 CURVNET_RESTORE(); 2088 } 2089 2090 void 2091 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain, 2092 struct sockaddr_in6 *sin6) 2093 { 2094 2095 LLE_WLOCK_ASSERT(ln); 2096 2097 *chain = ln->la_hold; 2098 ln->la_hold = NULL; 2099 lltable_fill_sa_entry(ln, (struct sockaddr *)sin6); 2100 2101 if (ln->ln_state == ND6_LLINFO_STALE) { 2102 2103 /* 2104 * The first time we send a packet to a 2105 * neighbor whose entry is STALE, we have 2106 * to change the state to DELAY and a sets 2107 * a timer to expire in DELAY_FIRST_PROBE_TIME 2108 * seconds to ensure do neighbor unreachability 2109 * detection on expiration. 2110 * (RFC 2461 7.3.3) 2111 */ 2112 nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY); 2113 } 2114 } 2115 2116 int 2117 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 2118 struct sockaddr_in6 *dst, struct route *ro) 2119 { 2120 int error; 2121 int ip6len; 2122 struct ip6_hdr *ip6; 2123 struct m_tag *mtag; 2124 2125 #ifdef MAC 2126 mac_netinet6_nd6_send(ifp, m); 2127 #endif 2128 2129 /* 2130 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 2131 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 2132 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 2133 * to be diverted to user space. When re-injected into the kernel, 2134 * send_output() will directly dispatch them to the outgoing interface. 2135 */ 2136 if (send_sendso_input_hook != NULL) { 2137 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 2138 if (mtag != NULL) { 2139 ip6 = mtod(m, struct ip6_hdr *); 2140 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 2141 /* Use the SEND socket */ 2142 error = send_sendso_input_hook(m, ifp, SND_OUT, 2143 ip6len); 2144 /* -1 == no app on SEND socket */ 2145 if (error == 0 || error != -1) 2146 return (error); 2147 } 2148 } 2149 2150 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 2151 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 2152 mtod(m, struct ip6_hdr *)); 2153 2154 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2155 origifp = ifp; 2156 2157 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro); 2158 return (error); 2159 } 2160 2161 /* 2162 * Lookup link headerfor @sa_dst address. Stores found 2163 * data in @desten buffer. Copy of lle ln_flags can be also 2164 * saved in @pflags if @pflags is non-NULL. 2165 * 2166 * If destination LLE does not exists or lle state modification 2167 * is required, call "slow" version. 2168 * 2169 * Return values: 2170 * - 0 on success (address copied to buffer). 2171 * - EWOULDBLOCK (no local error, but address is still unresolved) 2172 * - other errors (alloc failure, etc) 2173 */ 2174 int 2175 nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m, 2176 const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags) 2177 { 2178 struct llentry *ln = NULL; 2179 const struct sockaddr_in6 *dst6; 2180 2181 if (pflags != NULL) 2182 *pflags = 0; 2183 2184 dst6 = (const struct sockaddr_in6 *)sa_dst; 2185 2186 /* discard the packet if IPv6 operation is disabled on the interface */ 2187 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2188 m_freem(m); 2189 return (ENETDOWN); /* better error? */ 2190 } 2191 2192 if (m != NULL && m->m_flags & M_MCAST) { 2193 switch (ifp->if_type) { 2194 case IFT_ETHER: 2195 case IFT_FDDI: 2196 case IFT_L2VLAN: 2197 case IFT_IEEE80211: 2198 case IFT_BRIDGE: 2199 case IFT_ISO88025: 2200 ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr, 2201 desten); 2202 return (0); 2203 default: 2204 m_freem(m); 2205 return (EAFNOSUPPORT); 2206 } 2207 } 2208 2209 IF_AFDATA_RLOCK(ifp); 2210 ln = nd6_lookup(&dst6->sin6_addr, LLE_UNLOCKED, ifp); 2211 if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) { 2212 /* Entry found, let's copy lle info */ 2213 bcopy(ln->r_linkdata, desten, ln->r_hdrlen); 2214 if (pflags != NULL) 2215 *pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR); 2216 /* Check if we have feedback request from nd6 timer */ 2217 if (ln->r_skip_req != 0) { 2218 LLE_REQ_LOCK(ln); 2219 ln->r_skip_req = 0; /* Notify that entry was used */ 2220 ln->lle_hittime = time_uptime; 2221 LLE_REQ_UNLOCK(ln); 2222 } 2223 IF_AFDATA_RUNLOCK(ifp); 2224 return (0); 2225 } 2226 IF_AFDATA_RUNLOCK(ifp); 2227 2228 return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags)); 2229 } 2230 2231 2232 /* 2233 * Do L2 address resolution for @sa_dst address. Stores found 2234 * address in @desten buffer. Copy of lle ln_flags can be also 2235 * saved in @pflags if @pflags is non-NULL. 2236 * 2237 * Heavy version. 2238 * Function assume that destination LLE does not exist, 2239 * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired. 2240 * 2241 * Set noinline to be dtrace-friendly 2242 */ 2243 static __noinline int 2244 nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m, 2245 const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags) 2246 { 2247 struct llentry *lle = NULL, *lle_tmp; 2248 struct in6_addr *psrc, src; 2249 int send_ns, ll_len; 2250 char *lladdr; 2251 2252 /* 2253 * Address resolution or Neighbor Unreachability Detection 2254 * for the next hop. 2255 * At this point, the destination of the packet must be a unicast 2256 * or an anycast address(i.e. not a multicast). 2257 */ 2258 if (lle == NULL) { 2259 IF_AFDATA_RLOCK(ifp); 2260 lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2261 IF_AFDATA_RUNLOCK(ifp); 2262 if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 2263 /* 2264 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2265 * the condition below is not very efficient. But we believe 2266 * it is tolerable, because this should be a rare case. 2267 */ 2268 lle = nd6_alloc(&dst->sin6_addr, 0, ifp); 2269 if (lle == NULL) { 2270 char ip6buf[INET6_ADDRSTRLEN]; 2271 log(LOG_DEBUG, 2272 "nd6_output: can't allocate llinfo for %s " 2273 "(ln=%p)\n", 2274 ip6_sprintf(ip6buf, &dst->sin6_addr), lle); 2275 m_freem(m); 2276 return (ENOBUFS); 2277 } 2278 2279 IF_AFDATA_WLOCK(ifp); 2280 LLE_WLOCK(lle); 2281 /* Prefer any existing entry over newly-created one */ 2282 lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2283 if (lle_tmp == NULL) 2284 lltable_link_entry(LLTABLE6(ifp), lle); 2285 IF_AFDATA_WUNLOCK(ifp); 2286 if (lle_tmp != NULL) { 2287 lltable_free_entry(LLTABLE6(ifp), lle); 2288 lle = lle_tmp; 2289 lle_tmp = NULL; 2290 } 2291 } 2292 } 2293 if (lle == NULL) { 2294 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 2295 m_freem(m); 2296 return (ENOBUFS); 2297 } 2298 2299 if (m != NULL) 2300 m_freem(m); 2301 return (ENOBUFS); 2302 } 2303 2304 LLE_WLOCK_ASSERT(lle); 2305 2306 /* 2307 * The first time we send a packet to a neighbor whose entry is 2308 * STALE, we have to change the state to DELAY and a sets a timer to 2309 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2310 * neighbor unreachability detection on expiration. 2311 * (RFC 2461 7.3.3) 2312 */ 2313 if (lle->ln_state == ND6_LLINFO_STALE) 2314 nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY); 2315 2316 /* 2317 * If the neighbor cache entry has a state other than INCOMPLETE 2318 * (i.e. its link-layer address is already resolved), just 2319 * send the packet. 2320 */ 2321 if (lle->ln_state > ND6_LLINFO_INCOMPLETE) { 2322 if (flags & LLE_ADDRONLY) { 2323 lladdr = lle->ll_addr; 2324 ll_len = ifp->if_addrlen; 2325 } else { 2326 lladdr = lle->r_linkdata; 2327 ll_len = lle->r_hdrlen; 2328 } 2329 bcopy(lladdr, desten, ll_len); 2330 if (pflags != NULL) 2331 *pflags = lle->la_flags; 2332 LLE_WUNLOCK(lle); 2333 return (0); 2334 } 2335 2336 /* 2337 * There is a neighbor cache entry, but no ethernet address 2338 * response yet. Append this latest packet to the end of the 2339 * packet queue in the mbuf. When it exceeds nd6_maxqueuelen, 2340 * the oldest packet in the queue will be removed. 2341 */ 2342 2343 if (lle->la_hold != NULL) { 2344 struct mbuf *m_hold; 2345 int i; 2346 2347 i = 0; 2348 for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){ 2349 i++; 2350 if (m_hold->m_nextpkt == NULL) { 2351 m_hold->m_nextpkt = m; 2352 break; 2353 } 2354 } 2355 while (i >= V_nd6_maxqueuelen) { 2356 m_hold = lle->la_hold; 2357 lle->la_hold = lle->la_hold->m_nextpkt; 2358 m_freem(m_hold); 2359 i--; 2360 } 2361 } else { 2362 lle->la_hold = m; 2363 } 2364 2365 /* 2366 * If there has been no NS for the neighbor after entering the 2367 * INCOMPLETE state, send the first solicitation. 2368 * Note that for newly-created lle la_asked will be 0, 2369 * so we will transition from ND6_LLINFO_NOSTATE to 2370 * ND6_LLINFO_INCOMPLETE state here. 2371 */ 2372 psrc = NULL; 2373 send_ns = 0; 2374 if (lle->la_asked == 0) { 2375 lle->la_asked++; 2376 send_ns = 1; 2377 psrc = nd6_llinfo_get_holdsrc(lle, &src); 2378 2379 nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE); 2380 } 2381 LLE_WUNLOCK(lle); 2382 if (send_ns != 0) 2383 nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL); 2384 2385 return (EWOULDBLOCK); 2386 } 2387 2388 /* 2389 * Do L2 address resolution for @sa_dst address. Stores found 2390 * address in @desten buffer. Copy of lle ln_flags can be also 2391 * saved in @pflags if @pflags is non-NULL. 2392 * 2393 * Return values: 2394 * - 0 on success (address copied to buffer). 2395 * - EWOULDBLOCK (no local error, but address is still unresolved) 2396 * - other errors (alloc failure, etc) 2397 */ 2398 int 2399 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, 2400 char *desten, uint32_t *pflags) 2401 { 2402 int error; 2403 2404 flags |= LLE_ADDRONLY; 2405 error = nd6_resolve_slow(ifp, flags, NULL, 2406 (const struct sockaddr_in6 *)dst, desten, pflags); 2407 return (error); 2408 } 2409 2410 int 2411 nd6_flush_holdchain(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *chain, 2412 struct sockaddr_in6 *dst) 2413 { 2414 struct mbuf *m, *m_head; 2415 struct ifnet *outifp; 2416 int error = 0; 2417 2418 m_head = chain; 2419 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2420 outifp = origifp; 2421 else 2422 outifp = ifp; 2423 2424 while (m_head) { 2425 m = m_head; 2426 m_head = m_head->m_nextpkt; 2427 error = nd6_output_ifp(ifp, origifp, m, dst, NULL); 2428 } 2429 2430 /* 2431 * XXX 2432 * note that intermediate errors are blindly ignored 2433 */ 2434 return (error); 2435 } 2436 2437 static int 2438 nd6_need_cache(struct ifnet *ifp) 2439 { 2440 /* 2441 * XXX: we currently do not make neighbor cache on any interface 2442 * other than ARCnet, Ethernet, FDDI and GIF. 2443 * 2444 * RFC2893 says: 2445 * - unidirectional tunnels needs no ND 2446 */ 2447 switch (ifp->if_type) { 2448 case IFT_ARCNET: 2449 case IFT_ETHER: 2450 case IFT_FDDI: 2451 case IFT_IEEE1394: 2452 case IFT_L2VLAN: 2453 case IFT_IEEE80211: 2454 case IFT_INFINIBAND: 2455 case IFT_BRIDGE: 2456 case IFT_PROPVIRTUAL: 2457 return (1); 2458 default: 2459 return (0); 2460 } 2461 } 2462 2463 /* 2464 * Add pernament ND6 link-layer record for given 2465 * interface address. 2466 * 2467 * Very similar to IPv4 arp_ifinit(), but: 2468 * 1) IPv6 DAD is performed in different place 2469 * 2) It is called by IPv6 protocol stack in contrast to 2470 * arp_ifinit() which is typically called in SIOCSIFADDR 2471 * driver ioctl handler. 2472 * 2473 */ 2474 int 2475 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2476 { 2477 struct ifnet *ifp; 2478 struct llentry *ln, *ln_tmp; 2479 struct sockaddr *dst; 2480 2481 ifp = ia->ia_ifa.ifa_ifp; 2482 if (nd6_need_cache(ifp) == 0) 2483 return (0); 2484 2485 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 2486 dst = (struct sockaddr *)&ia->ia_addr; 2487 ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst); 2488 if (ln == NULL) 2489 return (ENOBUFS); 2490 2491 IF_AFDATA_WLOCK(ifp); 2492 LLE_WLOCK(ln); 2493 /* Unlink any entry if exists */ 2494 ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst); 2495 if (ln_tmp != NULL) 2496 lltable_unlink_entry(LLTABLE6(ifp), ln_tmp); 2497 lltable_link_entry(LLTABLE6(ifp), ln); 2498 IF_AFDATA_WUNLOCK(ifp); 2499 2500 if (ln_tmp != NULL) 2501 EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED); 2502 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2503 2504 LLE_WUNLOCK(ln); 2505 if (ln_tmp != NULL) 2506 llentry_free(ln_tmp); 2507 2508 return (0); 2509 } 2510 2511 /* 2512 * Removes either all lle entries for given @ia, or lle 2513 * corresponding to @ia address. 2514 */ 2515 void 2516 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all) 2517 { 2518 struct sockaddr_in6 mask, addr; 2519 struct sockaddr *saddr, *smask; 2520 struct ifnet *ifp; 2521 2522 ifp = ia->ia_ifa.ifa_ifp; 2523 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2524 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2525 saddr = (struct sockaddr *)&addr; 2526 smask = (struct sockaddr *)&mask; 2527 2528 if (all != 0) 2529 lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC); 2530 else 2531 lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr); 2532 } 2533 2534 static void 2535 clear_llinfo_pqueue(struct llentry *ln) 2536 { 2537 struct mbuf *m_hold, *m_hold_next; 2538 2539 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { 2540 m_hold_next = m_hold->m_nextpkt; 2541 m_freem(m_hold); 2542 } 2543 2544 ln->la_hold = NULL; 2545 } 2546 2547 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); 2548 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); 2549 #ifdef SYSCTL_DECL 2550 SYSCTL_DECL(_net_inet6_icmp6); 2551 #endif 2552 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, 2553 CTLFLAG_RD, nd6_sysctl_drlist, ""); 2554 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2555 CTLFLAG_RD, nd6_sysctl_prlist, ""); 2556 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2557 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2558 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, 2559 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); 2560 2561 static int 2562 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) 2563 { 2564 struct in6_defrouter d; 2565 struct nd_defrouter *dr; 2566 int error; 2567 2568 if (req->newptr != NULL) 2569 return (EPERM); 2570 2571 error = sysctl_wire_old_buffer(req, 0); 2572 if (error != 0) 2573 return (error); 2574 2575 bzero(&d, sizeof(d)); 2576 d.rtaddr.sin6_family = AF_INET6; 2577 d.rtaddr.sin6_len = sizeof(d.rtaddr); 2578 2579 ND6_RLOCK(); 2580 TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) { 2581 d.rtaddr.sin6_addr = dr->rtaddr; 2582 error = sa6_recoverscope(&d.rtaddr); 2583 if (error != 0) 2584 break; 2585 d.flags = dr->raflags; 2586 d.rtlifetime = dr->rtlifetime; 2587 d.expire = dr->expire + (time_second - time_uptime); 2588 d.if_index = dr->ifp->if_index; 2589 error = SYSCTL_OUT(req, &d, sizeof(d)); 2590 if (error != 0) 2591 break; 2592 } 2593 ND6_RUNLOCK(); 2594 return (error); 2595 } 2596 2597 static int 2598 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2599 { 2600 struct in6_prefix p; 2601 struct sockaddr_in6 s6; 2602 struct nd_prefix *pr; 2603 struct nd_pfxrouter *pfr; 2604 time_t maxexpire; 2605 int error; 2606 char ip6buf[INET6_ADDRSTRLEN]; 2607 2608 if (req->newptr) 2609 return (EPERM); 2610 2611 bzero(&p, sizeof(p)); 2612 p.origin = PR_ORIG_RA; 2613 bzero(&s6, sizeof(s6)); 2614 s6.sin6_family = AF_INET6; 2615 s6.sin6_len = sizeof(s6); 2616 2617 /* 2618 * XXX locking 2619 */ 2620 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2621 p.prefix = pr->ndpr_prefix; 2622 if (sa6_recoverscope(&p.prefix)) { 2623 log(LOG_ERR, "scope error in prefix list (%s)\n", 2624 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2625 /* XXX: press on... */ 2626 } 2627 p.raflags = pr->ndpr_raf; 2628 p.prefixlen = pr->ndpr_plen; 2629 p.vltime = pr->ndpr_vltime; 2630 p.pltime = pr->ndpr_pltime; 2631 p.if_index = pr->ndpr_ifp->if_index; 2632 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2633 p.expire = 0; 2634 else { 2635 /* XXX: we assume time_t is signed. */ 2636 maxexpire = (-1) & 2637 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2638 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2639 p.expire = pr->ndpr_lastupdate + 2640 pr->ndpr_vltime + 2641 (time_second - time_uptime); 2642 else 2643 p.expire = maxexpire; 2644 } 2645 p.refcnt = pr->ndpr_refcnt; 2646 p.flags = pr->ndpr_stateflags; 2647 p.advrtrs = 0; 2648 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2649 p.advrtrs++; 2650 error = SYSCTL_OUT(req, &p, sizeof(p)); 2651 if (error != 0) 2652 return (error); 2653 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2654 s6.sin6_addr = pfr->router->rtaddr; 2655 if (sa6_recoverscope(&s6)) 2656 log(LOG_ERR, 2657 "scope error in prefix list (%s)\n", 2658 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2659 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2660 if (error != 0) 2661 return (error); 2662 } 2663 } 2664 return (0); 2665 } 2666