xref: /freebsd/sys/netinet6/nd6.c (revision 13014ca04aad1931d41958b56f71a2c65b9a7a2c)
1 /*-
2  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the project nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_inet.h"
36 #include "opt_inet6.h"
37 #include "opt_mac.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/callout.h>
42 #include <sys/malloc.h>
43 #include <sys/mbuf.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 #include <sys/time.h>
47 #include <sys/kernel.h>
48 #include <sys/protosw.h>
49 #include <sys/errno.h>
50 #include <sys/syslog.h>
51 #include <sys/queue.h>
52 #include <sys/sysctl.h>
53 
54 #include <net/if.h>
55 #include <net/if_arc.h>
56 #include <net/if_dl.h>
57 #include <net/if_types.h>
58 #include <net/iso88025.h>
59 #include <net/fddi.h>
60 #include <net/route.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/if_ether.h>
64 #include <netinet6/in6_var.h>
65 #include <netinet/ip6.h>
66 #include <netinet6/ip6_var.h>
67 #include <netinet6/scope6_var.h>
68 #include <netinet6/nd6.h>
69 #include <netinet/icmp6.h>
70 
71 #include <sys/limits.h>
72 #include <sys/vimage.h>
73 
74 #include <security/mac/mac_framework.h>
75 
76 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
77 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
78 
79 #define SIN6(s) ((struct sockaddr_in6 *)s)
80 #define SDL(s) ((struct sockaddr_dl *)s)
81 
82 /* timer values */
83 int	nd6_prune	= 1;	/* walk list every 1 seconds */
84 int	nd6_delay	= 5;	/* delay first probe time 5 second */
85 int	nd6_umaxtries	= 3;	/* maximum unicast query */
86 int	nd6_mmaxtries	= 3;	/* maximum multicast query */
87 int	nd6_useloopback = 1;	/* use loopback interface for local traffic */
88 int	nd6_gctimer	= (60 * 60 * 24); /* 1 day: garbage collection timer */
89 
90 /* preventing too many loops in ND option parsing */
91 int nd6_maxndopt = 10;	/* max # of ND options allowed */
92 
93 int nd6_maxnudhint = 0;	/* max # of subsequent upper layer hints */
94 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
95 
96 #ifdef ND6_DEBUG
97 int nd6_debug = 1;
98 #else
99 int nd6_debug = 0;
100 #endif
101 
102 /* for debugging? */
103 static int nd6_inuse, nd6_allocated;
104 
105 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
106 struct nd_drhead nd_defrouter;
107 struct nd_prhead nd_prefix = { 0 };
108 
109 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
110 static struct sockaddr_in6 all1_sa;
111 
112 static int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *,
113 	struct ifnet *));
114 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
115 static void nd6_slowtimo(void *);
116 static int regen_tmpaddr(struct in6_ifaddr *);
117 static struct llinfo_nd6 *nd6_free(struct rtentry *, int);
118 static void nd6_llinfo_timer(void *);
119 static void clear_llinfo_pqueue(struct llinfo_nd6 *);
120 
121 struct callout nd6_slowtimo_ch;
122 struct callout nd6_timer_ch;
123 extern struct callout in6_tmpaddrtimer_ch;
124 
125 void
126 nd6_init(void)
127 {
128 	INIT_VNET_INET6(curvnet);
129 	static int nd6_init_done = 0;
130 	int i;
131 
132 	if (nd6_init_done) {
133 		log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
134 		return;
135 	}
136 
137 	all1_sa.sin6_family = AF_INET6;
138 	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
139 	for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
140 		all1_sa.sin6_addr.s6_addr[i] = 0xff;
141 
142 	/* initialization of the default router list */
143 	TAILQ_INIT(&V_nd_defrouter);
144 	/* start timer */
145 	callout_init(&V_nd6_slowtimo_ch, 0);
146 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
147 	    nd6_slowtimo, NULL);
148 
149 	nd6_init_done = 1;
150 
151 }
152 
153 struct nd_ifinfo *
154 nd6_ifattach(struct ifnet *ifp)
155 {
156 	struct nd_ifinfo *nd;
157 
158 	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
159 	bzero(nd, sizeof(*nd));
160 
161 	nd->initialized = 1;
162 
163 	nd->chlim = IPV6_DEFHLIM;
164 	nd->basereachable = REACHABLE_TIME;
165 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
166 	nd->retrans = RETRANS_TIMER;
167 	/*
168 	 * Note that the default value of ip6_accept_rtadv is 0, which means
169 	 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
170 	 * here.
171 	 */
172 	nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
173 
174 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
175 	nd6_setmtu0(ifp, nd);
176 
177 	return nd;
178 }
179 
180 void
181 nd6_ifdetach(struct nd_ifinfo *nd)
182 {
183 
184 	free(nd, M_IP6NDP);
185 }
186 
187 /*
188  * Reset ND level link MTU. This function is called when the physical MTU
189  * changes, which means we might have to adjust the ND level MTU.
190  */
191 void
192 nd6_setmtu(struct ifnet *ifp)
193 {
194 
195 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
196 }
197 
198 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
199 void
200 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
201 {
202 	INIT_VNET_INET6(ifp->if_vnet);
203 	u_int32_t omaxmtu;
204 
205 	omaxmtu = ndi->maxmtu;
206 
207 	switch (ifp->if_type) {
208 	case IFT_ARCNET:
209 		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
210 		break;
211 	case IFT_FDDI:
212 		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
213 		break;
214 	case IFT_ISO88025:
215 		 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
216 		 break;
217 	default:
218 		ndi->maxmtu = ifp->if_mtu;
219 		break;
220 	}
221 
222 	/*
223 	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
224 	 * undesirable situation.  We thus notify the operator of the change
225 	 * explicitly.  The check for omaxmtu is necessary to restrict the
226 	 * log to the case of changing the MTU, not initializing it.
227 	 */
228 	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
229 		log(LOG_NOTICE, "nd6_setmtu0: "
230 		    "new link MTU on %s (%lu) is too small for IPv6\n",
231 		    if_name(ifp), (unsigned long)ndi->maxmtu);
232 	}
233 
234 	if (ndi->maxmtu > V_in6_maxmtu)
235 		in6_setmaxmtu(); /* check all interfaces just in case */
236 
237 #undef MIN
238 }
239 
240 void
241 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
242 {
243 
244 	bzero(ndopts, sizeof(*ndopts));
245 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
246 	ndopts->nd_opts_last
247 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
248 
249 	if (icmp6len == 0) {
250 		ndopts->nd_opts_done = 1;
251 		ndopts->nd_opts_search = NULL;
252 	}
253 }
254 
255 /*
256  * Take one ND option.
257  */
258 struct nd_opt_hdr *
259 nd6_option(union nd_opts *ndopts)
260 {
261 	struct nd_opt_hdr *nd_opt;
262 	int olen;
263 
264 	if (ndopts == NULL)
265 		panic("ndopts == NULL in nd6_option");
266 	if (ndopts->nd_opts_last == NULL)
267 		panic("uninitialized ndopts in nd6_option");
268 	if (ndopts->nd_opts_search == NULL)
269 		return NULL;
270 	if (ndopts->nd_opts_done)
271 		return NULL;
272 
273 	nd_opt = ndopts->nd_opts_search;
274 
275 	/* make sure nd_opt_len is inside the buffer */
276 	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
277 		bzero(ndopts, sizeof(*ndopts));
278 		return NULL;
279 	}
280 
281 	olen = nd_opt->nd_opt_len << 3;
282 	if (olen == 0) {
283 		/*
284 		 * Message validation requires that all included
285 		 * options have a length that is greater than zero.
286 		 */
287 		bzero(ndopts, sizeof(*ndopts));
288 		return NULL;
289 	}
290 
291 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
292 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
293 		/* option overruns the end of buffer, invalid */
294 		bzero(ndopts, sizeof(*ndopts));
295 		return NULL;
296 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
297 		/* reached the end of options chain */
298 		ndopts->nd_opts_done = 1;
299 		ndopts->nd_opts_search = NULL;
300 	}
301 	return nd_opt;
302 }
303 
304 /*
305  * Parse multiple ND options.
306  * This function is much easier to use, for ND routines that do not need
307  * multiple options of the same type.
308  */
309 int
310 nd6_options(union nd_opts *ndopts)
311 {
312 	INIT_VNET_INET6(curvnet);
313 	struct nd_opt_hdr *nd_opt;
314 	int i = 0;
315 
316 	if (ndopts == NULL)
317 		panic("ndopts == NULL in nd6_options");
318 	if (ndopts->nd_opts_last == NULL)
319 		panic("uninitialized ndopts in nd6_options");
320 	if (ndopts->nd_opts_search == NULL)
321 		return 0;
322 
323 	while (1) {
324 		nd_opt = nd6_option(ndopts);
325 		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
326 			/*
327 			 * Message validation requires that all included
328 			 * options have a length that is greater than zero.
329 			 */
330 			V_icmp6stat.icp6s_nd_badopt++;
331 			bzero(ndopts, sizeof(*ndopts));
332 			return -1;
333 		}
334 
335 		if (nd_opt == NULL)
336 			goto skip1;
337 
338 		switch (nd_opt->nd_opt_type) {
339 		case ND_OPT_SOURCE_LINKADDR:
340 		case ND_OPT_TARGET_LINKADDR:
341 		case ND_OPT_MTU:
342 		case ND_OPT_REDIRECTED_HEADER:
343 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
344 				nd6log((LOG_INFO,
345 				    "duplicated ND6 option found (type=%d)\n",
346 				    nd_opt->nd_opt_type));
347 				/* XXX bark? */
348 			} else {
349 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
350 					= nd_opt;
351 			}
352 			break;
353 		case ND_OPT_PREFIX_INFORMATION:
354 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
355 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
356 					= nd_opt;
357 			}
358 			ndopts->nd_opts_pi_end =
359 				(struct nd_opt_prefix_info *)nd_opt;
360 			break;
361 		default:
362 			/*
363 			 * Unknown options must be silently ignored,
364 			 * to accomodate future extension to the protocol.
365 			 */
366 			nd6log((LOG_DEBUG,
367 			    "nd6_options: unsupported option %d - "
368 			    "option ignored\n", nd_opt->nd_opt_type));
369 		}
370 
371 skip1:
372 		i++;
373 		if (i > V_nd6_maxndopt) {
374 			V_icmp6stat.icp6s_nd_toomanyopt++;
375 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
376 			break;
377 		}
378 
379 		if (ndopts->nd_opts_done)
380 			break;
381 	}
382 
383 	return 0;
384 }
385 
386 /*
387  * ND6 timer routine to handle ND6 entries
388  */
389 void
390 nd6_llinfo_settimer(struct llinfo_nd6 *ln, long tick)
391 {
392 	if (tick < 0) {
393 		ln->ln_expire = 0;
394 		ln->ln_ntick = 0;
395 		callout_stop(&ln->ln_timer_ch);
396 	} else {
397 		ln->ln_expire = time_second + tick / hz;
398 		if (tick > INT_MAX) {
399 			ln->ln_ntick = tick - INT_MAX;
400 			callout_reset(&ln->ln_timer_ch, INT_MAX,
401 			    nd6_llinfo_timer, ln);
402 		} else {
403 			ln->ln_ntick = 0;
404 			callout_reset(&ln->ln_timer_ch, tick,
405 			    nd6_llinfo_timer, ln);
406 		}
407 	}
408 }
409 
410 static void
411 nd6_llinfo_timer(void *arg)
412 {
413 	struct llinfo_nd6 *ln;
414 	struct rtentry *rt;
415 	struct in6_addr *dst;
416 	struct ifnet *ifp;
417 	struct nd_ifinfo *ndi = NULL;
418 
419 	ln = (struct llinfo_nd6 *)arg;
420 
421 	if (ln->ln_ntick > 0) {
422 		if (ln->ln_ntick > INT_MAX) {
423 			ln->ln_ntick -= INT_MAX;
424 			nd6_llinfo_settimer(ln, INT_MAX);
425 		} else {
426 			ln->ln_ntick = 0;
427 			nd6_llinfo_settimer(ln, ln->ln_ntick);
428 		}
429 		return;
430 	}
431 
432 	if ((rt = ln->ln_rt) == NULL)
433 		panic("ln->ln_rt == NULL");
434 	if ((ifp = rt->rt_ifp) == NULL)
435 		panic("ln->ln_rt->rt_ifp == NULL");
436 	ndi = ND_IFINFO(ifp);
437 
438 	CURVNET_SET(ifp->if_vnet);
439 	INIT_VNET_INET6(curvnet);
440 
441 	/* sanity check */
442 	if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
443 		panic("rt_llinfo(%p) is not equal to ln(%p)",
444 		      rt->rt_llinfo, ln);
445 	if (rt_key(rt) == NULL)
446 		panic("rt key is NULL in nd6_timer(ln=%p)", ln);
447 
448 	dst = &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
449 
450 	switch (ln->ln_state) {
451 	case ND6_LLINFO_INCOMPLETE:
452 		if (ln->ln_asked < V_nd6_mmaxtries) {
453 			ln->ln_asked++;
454 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
455 			nd6_ns_output(ifp, NULL, dst, ln, 0);
456 		} else {
457 			struct mbuf *m = ln->ln_hold;
458 			if (m) {
459 				struct mbuf *m0;
460 
461 				/*
462 				 * assuming every packet in ln_hold has the
463 				 * same IP header
464 				 */
465 				m0 = m->m_nextpkt;
466 				m->m_nextpkt = NULL;
467 				icmp6_error2(m, ICMP6_DST_UNREACH,
468 				    ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
469 
470 				ln->ln_hold = m0;
471 				clear_llinfo_pqueue(ln);
472 			}
473 			if (rt && rt->rt_llinfo)
474 				(void)nd6_free(rt, 0);
475 			ln = NULL;
476 		}
477 		break;
478 	case ND6_LLINFO_REACHABLE:
479 		if (!ND6_LLINFO_PERMANENT(ln)) {
480 			ln->ln_state = ND6_LLINFO_STALE;
481 			nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz);
482 		}
483 		break;
484 
485 	case ND6_LLINFO_STALE:
486 		/* Garbage Collection(RFC 2461 5.3) */
487 		if (!ND6_LLINFO_PERMANENT(ln)) {
488 			if (rt && rt->rt_llinfo)
489 				(void)nd6_free(rt, 1);
490 			ln = NULL;
491 		}
492 		break;
493 
494 	case ND6_LLINFO_DELAY:
495 		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
496 			/* We need NUD */
497 			ln->ln_asked = 1;
498 			ln->ln_state = ND6_LLINFO_PROBE;
499 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
500 			nd6_ns_output(ifp, dst, dst, ln, 0);
501 		} else {
502 			ln->ln_state = ND6_LLINFO_STALE; /* XXX */
503 			nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz);
504 		}
505 		break;
506 	case ND6_LLINFO_PROBE:
507 		if (ln->ln_asked < V_nd6_umaxtries) {
508 			ln->ln_asked++;
509 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
510 			nd6_ns_output(ifp, dst, dst, ln, 0);
511 		} else if (rt->rt_ifa != NULL &&
512 		    rt->rt_ifa->ifa_addr->sa_family == AF_INET6 &&
513 		    (((struct in6_ifaddr *)rt->rt_ifa)->ia_flags & IFA_ROUTE)) {
514 			/*
515 			 * This is an unreachable neighbor whose address is
516 			 * specified as the destination of a p2p interface
517 			 * (see in6_ifinit()).  We should not free the entry
518 			 * since this is sort of a "static" entry generated
519 			 * via interface address configuration.
520 			 */
521 			ln->ln_asked = 0;
522 			ln->ln_expire = 0; /* make it permanent */
523 			ln->ln_state = ND6_LLINFO_STALE;
524 		} else {
525 			if (rt && rt->rt_llinfo)
526 				(void)nd6_free(rt, 0);
527 			ln = NULL;
528 		}
529 		break;
530 	}
531 	CURVNET_RESTORE();
532 }
533 
534 
535 /*
536  * ND6 timer routine to expire default route list and prefix list
537  */
538 void
539 nd6_timer(void *arg)
540 {
541 	CURVNET_SET_QUIET((struct vnet *) arg);
542 	INIT_VNET_INET6((struct vnet *) arg);
543 	int s;
544 	struct nd_defrouter *dr;
545 	struct nd_prefix *pr;
546 	struct in6_ifaddr *ia6, *nia6;
547 	struct in6_addrlifetime *lt6;
548 
549 	callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz,
550 	    nd6_timer, NULL);
551 
552 	/* expire default router list */
553 	s = splnet();
554 	dr = TAILQ_FIRST(&V_nd_defrouter);
555 	while (dr) {
556 		if (dr->expire && dr->expire < time_second) {
557 			struct nd_defrouter *t;
558 			t = TAILQ_NEXT(dr, dr_entry);
559 			defrtrlist_del(dr);
560 			dr = t;
561 		} else {
562 			dr = TAILQ_NEXT(dr, dr_entry);
563 		}
564 	}
565 
566 	/*
567 	 * expire interface addresses.
568 	 * in the past the loop was inside prefix expiry processing.
569 	 * However, from a stricter speci-confrmance standpoint, we should
570 	 * rather separate address lifetimes and prefix lifetimes.
571 	 */
572   addrloop:
573 	for (ia6 = V_in6_ifaddr; ia6; ia6 = nia6) {
574 		nia6 = ia6->ia_next;
575 		/* check address lifetime */
576 		lt6 = &ia6->ia6_lifetime;
577 		if (IFA6_IS_INVALID(ia6)) {
578 			int regen = 0;
579 
580 			/*
581 			 * If the expiring address is temporary, try
582 			 * regenerating a new one.  This would be useful when
583 			 * we suspended a laptop PC, then turned it on after a
584 			 * period that could invalidate all temporary
585 			 * addresses.  Although we may have to restart the
586 			 * loop (see below), it must be after purging the
587 			 * address.  Otherwise, we'd see an infinite loop of
588 			 * regeneration.
589 			 */
590 			if (V_ip6_use_tempaddr &&
591 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
592 				if (regen_tmpaddr(ia6) == 0)
593 					regen = 1;
594 			}
595 
596 			in6_purgeaddr(&ia6->ia_ifa);
597 
598 			if (regen)
599 				goto addrloop; /* XXX: see below */
600 		} else if (IFA6_IS_DEPRECATED(ia6)) {
601 			int oldflags = ia6->ia6_flags;
602 
603 			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
604 
605 			/*
606 			 * If a temporary address has just become deprecated,
607 			 * regenerate a new one if possible.
608 			 */
609 			if (V_ip6_use_tempaddr &&
610 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
611 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
612 
613 				if (regen_tmpaddr(ia6) == 0) {
614 					/*
615 					 * A new temporary address is
616 					 * generated.
617 					 * XXX: this means the address chain
618 					 * has changed while we are still in
619 					 * the loop.  Although the change
620 					 * would not cause disaster (because
621 					 * it's not a deletion, but an
622 					 * addition,) we'd rather restart the
623 					 * loop just for safety.  Or does this
624 					 * significantly reduce performance??
625 					 */
626 					goto addrloop;
627 				}
628 			}
629 		} else {
630 			/*
631 			 * A new RA might have made a deprecated address
632 			 * preferred.
633 			 */
634 			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
635 		}
636 	}
637 
638 	/* expire prefix list */
639 	pr = V_nd_prefix.lh_first;
640 	while (pr) {
641 		/*
642 		 * check prefix lifetime.
643 		 * since pltime is just for autoconf, pltime processing for
644 		 * prefix is not necessary.
645 		 */
646 		if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
647 		    time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
648 			struct nd_prefix *t;
649 			t = pr->ndpr_next;
650 
651 			/*
652 			 * address expiration and prefix expiration are
653 			 * separate.  NEVER perform in6_purgeaddr here.
654 			 */
655 
656 			prelist_remove(pr);
657 			pr = t;
658 		} else
659 			pr = pr->ndpr_next;
660 	}
661 	splx(s);
662 	CURVNET_RESTORE();
663 }
664 
665 /*
666  * ia6 - deprecated/invalidated temporary address
667  */
668 static int
669 regen_tmpaddr(struct in6_ifaddr *ia6)
670 {
671 	struct ifaddr *ifa;
672 	struct ifnet *ifp;
673 	struct in6_ifaddr *public_ifa6 = NULL;
674 
675 	ifp = ia6->ia_ifa.ifa_ifp;
676 	for (ifa = ifp->if_addrlist.tqh_first; ifa;
677 	     ifa = ifa->ifa_list.tqe_next) {
678 		struct in6_ifaddr *it6;
679 
680 		if (ifa->ifa_addr->sa_family != AF_INET6)
681 			continue;
682 
683 		it6 = (struct in6_ifaddr *)ifa;
684 
685 		/* ignore no autoconf addresses. */
686 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
687 			continue;
688 
689 		/* ignore autoconf addresses with different prefixes. */
690 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
691 			continue;
692 
693 		/*
694 		 * Now we are looking at an autoconf address with the same
695 		 * prefix as ours.  If the address is temporary and is still
696 		 * preferred, do not create another one.  It would be rare, but
697 		 * could happen, for example, when we resume a laptop PC after
698 		 * a long period.
699 		 */
700 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
701 		    !IFA6_IS_DEPRECATED(it6)) {
702 			public_ifa6 = NULL;
703 			break;
704 		}
705 
706 		/*
707 		 * This is a public autoconf address that has the same prefix
708 		 * as ours.  If it is preferred, keep it.  We can't break the
709 		 * loop here, because there may be a still-preferred temporary
710 		 * address with the prefix.
711 		 */
712 		if (!IFA6_IS_DEPRECATED(it6))
713 		    public_ifa6 = it6;
714 	}
715 
716 	if (public_ifa6 != NULL) {
717 		int e;
718 
719 		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
720 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
721 			    " tmp addr,errno=%d\n", e);
722 			return (-1);
723 		}
724 		return (0);
725 	}
726 
727 	return (-1);
728 }
729 
730 /*
731  * Nuke neighbor cache/prefix/default router management table, right before
732  * ifp goes away.
733  */
734 void
735 nd6_purge(struct ifnet *ifp)
736 {
737 	INIT_VNET_INET6(ifp->if_vnet);
738 	struct llinfo_nd6 *ln, *nln;
739 	struct nd_defrouter *dr, *ndr;
740 	struct nd_prefix *pr, *npr;
741 
742 	/*
743 	 * Nuke default router list entries toward ifp.
744 	 * We defer removal of default router list entries that is installed
745 	 * in the routing table, in order to keep additional side effects as
746 	 * small as possible.
747 	 */
748 	for (dr = TAILQ_FIRST(&V_nd_defrouter); dr; dr = ndr) {
749 		ndr = TAILQ_NEXT(dr, dr_entry);
750 		if (dr->installed)
751 			continue;
752 
753 		if (dr->ifp == ifp)
754 			defrtrlist_del(dr);
755 	}
756 
757 	for (dr = TAILQ_FIRST(&V_nd_defrouter); dr; dr = ndr) {
758 		ndr = TAILQ_NEXT(dr, dr_entry);
759 		if (!dr->installed)
760 			continue;
761 
762 		if (dr->ifp == ifp)
763 			defrtrlist_del(dr);
764 	}
765 
766 	/* Nuke prefix list entries toward ifp */
767 	for (pr = V_nd_prefix.lh_first; pr; pr = npr) {
768 		npr = pr->ndpr_next;
769 		if (pr->ndpr_ifp == ifp) {
770 			/*
771 			 * Because if_detach() does *not* release prefixes
772 			 * while purging addresses the reference count will
773 			 * still be above zero. We therefore reset it to
774 			 * make sure that the prefix really gets purged.
775 			 */
776 			pr->ndpr_refcnt = 0;
777 
778 			/*
779 			 * Previously, pr->ndpr_addr is removed as well,
780 			 * but I strongly believe we don't have to do it.
781 			 * nd6_purge() is only called from in6_ifdetach(),
782 			 * which removes all the associated interface addresses
783 			 * by itself.
784 			 * (jinmei@kame.net 20010129)
785 			 */
786 			prelist_remove(pr);
787 		}
788 	}
789 
790 	/* cancel default outgoing interface setting */
791 	if (V_nd6_defifindex == ifp->if_index)
792 		nd6_setdefaultiface(0);
793 
794 	if (!V_ip6_forwarding && V_ip6_accept_rtadv) { /* XXX: too restrictive? */
795 		/* refresh default router list */
796 		defrouter_select();
797 	}
798 
799 	/*
800 	 * Nuke neighbor cache entries for the ifp.
801 	 * Note that rt->rt_ifp may not be the same as ifp,
802 	 * due to KAME goto ours hack.  See RTM_RESOLVE case in
803 	 * nd6_rtrequest(), and ip6_input().
804 	 */
805 	ln = V_llinfo_nd6.ln_next;
806 	while (ln && ln != &V_llinfo_nd6) {
807 		struct rtentry *rt;
808 		struct sockaddr_dl *sdl;
809 
810 		nln = ln->ln_next;
811 		rt = ln->ln_rt;
812 		if (rt && rt->rt_gateway &&
813 		    rt->rt_gateway->sa_family == AF_LINK) {
814 			sdl = (struct sockaddr_dl *)rt->rt_gateway;
815 			if (sdl->sdl_index == ifp->if_index)
816 				nln = nd6_free(rt, 0);
817 		}
818 		ln = nln;
819 	}
820 }
821 
822 struct rtentry *
823 nd6_lookup(struct in6_addr *addr6, int create, struct ifnet *ifp)
824 {
825 	INIT_VNET_INET6(curvnet);
826 	struct rtentry *rt;
827 	struct sockaddr_in6 sin6;
828 	char ip6buf[INET6_ADDRSTRLEN];
829 
830 	bzero(&sin6, sizeof(sin6));
831 	sin6.sin6_len = sizeof(struct sockaddr_in6);
832 	sin6.sin6_family = AF_INET6;
833 	sin6.sin6_addr = *addr6;
834 	rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL);
835 	if (rt) {
836 		if ((rt->rt_flags & RTF_LLINFO) == 0 && create) {
837 			/*
838 			 * This is the case for the default route.
839 			 * If we want to create a neighbor cache for the
840 			 * address, we should free the route for the
841 			 * destination and allocate an interface route.
842 			 */
843 			RTFREE_LOCKED(rt);
844 			rt = NULL;
845 		}
846 	}
847 	if (rt == NULL) {
848 		if (create && ifp) {
849 			int e;
850 
851 			/*
852 			 * If no route is available and create is set,
853 			 * we allocate a host route for the destination
854 			 * and treat it like an interface route.
855 			 * This hack is necessary for a neighbor which can't
856 			 * be covered by our own prefix.
857 			 */
858 			struct ifaddr *ifa =
859 			    ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
860 			if (ifa == NULL)
861 				return (NULL);
862 
863 			/*
864 			 * Create a new route.  RTF_LLINFO is necessary
865 			 * to create a Neighbor Cache entry for the
866 			 * destination in nd6_rtrequest which will be
867 			 * called in rtrequest via ifa->ifa_rtrequest.
868 			 */
869 			if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
870 			    ifa->ifa_addr, (struct sockaddr *)&all1_sa,
871 			    (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
872 			    ~RTF_CLONING, &rt)) != 0) {
873 				log(LOG_ERR,
874 				    "nd6_lookup: failed to add route for a "
875 				    "neighbor(%s), errno=%d\n",
876 				    ip6_sprintf(ip6buf, addr6), e);
877 			}
878 			if (rt == NULL)
879 				return (NULL);
880 			RT_LOCK(rt);
881 			if (rt->rt_llinfo) {
882 				struct llinfo_nd6 *ln =
883 				    (struct llinfo_nd6 *)rt->rt_llinfo;
884 				ln->ln_state = ND6_LLINFO_NOSTATE;
885 			}
886 		} else
887 			return (NULL);
888 	}
889 	RT_LOCK_ASSERT(rt);
890 	RT_REMREF(rt);
891 	/*
892 	 * Validation for the entry.
893 	 * Note that the check for rt_llinfo is necessary because a cloned
894 	 * route from a parent route that has the L flag (e.g. the default
895 	 * route to a p2p interface) may have the flag, too, while the
896 	 * destination is not actually a neighbor.
897 	 * XXX: we can't use rt->rt_ifp to check for the interface, since
898 	 *      it might be the loopback interface if the entry is for our
899 	 *      own address on a non-loopback interface. Instead, we should
900 	 *      use rt->rt_ifa->ifa_ifp, which would specify the REAL
901 	 *	interface.
902 	 * Note also that ifa_ifp and ifp may differ when we connect two
903 	 * interfaces to a same link, install a link prefix to an interface,
904 	 * and try to install a neighbor cache on an interface that does not
905 	 * have a route to the prefix.
906 	 */
907 	if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
908 	    rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
909 	    (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
910 		if (create) {
911 			nd6log((LOG_DEBUG,
912 			    "nd6_lookup: failed to lookup %s (if = %s)\n",
913 			    ip6_sprintf(ip6buf, addr6),
914 			    ifp ? if_name(ifp) : "unspec"));
915 		}
916 		RT_UNLOCK(rt);
917 		return (NULL);
918 	}
919 	RT_UNLOCK(rt);		/* XXX not ready to return rt locked */
920 	return (rt);
921 }
922 
923 /*
924  * Test whether a given IPv6 address is a neighbor or not, ignoring
925  * the actual neighbor cache.  The neighbor cache is ignored in order
926  * to not reenter the routing code from within itself.
927  */
928 static int
929 nd6_is_new_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
930 {
931 	INIT_VNET_INET6(ifp->if_vnet);
932 	struct nd_prefix *pr;
933 	struct ifaddr *dstaddr;
934 
935 	/*
936 	 * A link-local address is always a neighbor.
937 	 * XXX: a link does not necessarily specify a single interface.
938 	 */
939 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
940 		struct sockaddr_in6 sin6_copy;
941 		u_int32_t zone;
942 
943 		/*
944 		 * We need sin6_copy since sa6_recoverscope() may modify the
945 		 * content (XXX).
946 		 */
947 		sin6_copy = *addr;
948 		if (sa6_recoverscope(&sin6_copy))
949 			return (0); /* XXX: should be impossible */
950 		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
951 			return (0);
952 		if (sin6_copy.sin6_scope_id == zone)
953 			return (1);
954 		else
955 			return (0);
956 	}
957 
958 	/*
959 	 * If the address matches one of our addresses,
960 	 * it should be a neighbor.
961 	 * If the address matches one of our on-link prefixes, it should be a
962 	 * neighbor.
963 	 */
964 	for (pr = V_nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
965 		if (pr->ndpr_ifp != ifp)
966 			continue;
967 
968 		if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
969 			continue;
970 
971 		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
972 		    &addr->sin6_addr, &pr->ndpr_mask))
973 			return (1);
974 	}
975 
976 	/*
977 	 * If the address is assigned on the node of the other side of
978 	 * a p2p interface, the address should be a neighbor.
979 	 */
980 	dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr);
981 	if ((dstaddr != NULL) && (dstaddr->ifa_ifp == ifp))
982 		return (1);
983 
984 	/*
985 	 * If the default router list is empty, all addresses are regarded
986 	 * as on-link, and thus, as a neighbor.
987 	 * XXX: we restrict the condition to hosts, because routers usually do
988 	 * not have the "default router list".
989 	 */
990 	if (!V_ip6_forwarding && TAILQ_FIRST(&V_nd_defrouter) == NULL &&
991 	    V_nd6_defifindex == ifp->if_index) {
992 		return (1);
993 	}
994 
995 	return (0);
996 }
997 
998 
999 /*
1000  * Detect if a given IPv6 address identifies a neighbor on a given link.
1001  * XXX: should take care of the destination of a p2p link?
1002  */
1003 int
1004 nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
1005 {
1006 
1007 	if (nd6_is_new_addr_neighbor(addr, ifp))
1008 		return (1);
1009 
1010 	/*
1011 	 * Even if the address matches none of our addresses, it might be
1012 	 * in the neighbor cache.
1013 	 */
1014 	if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
1015 		return (1);
1016 
1017 	return (0);
1018 }
1019 
1020 /*
1021  * Free an nd6 llinfo entry.
1022  * Since the function would cause significant changes in the kernel, DO NOT
1023  * make it global, unless you have a strong reason for the change, and are sure
1024  * that the change is safe.
1025  */
1026 static struct llinfo_nd6 *
1027 nd6_free(struct rtentry *rt, int gc)
1028 {
1029 	INIT_VNET_INET6(curvnet);
1030 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
1031 	struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
1032 	struct nd_defrouter *dr;
1033 
1034 	/*
1035 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1036 	 * even though it is not harmful, it was not really necessary.
1037 	 */
1038 
1039 	/* cancel timer */
1040 	nd6_llinfo_settimer(ln, -1);
1041 
1042 	if (!V_ip6_forwarding) {
1043 		int s;
1044 		s = splnet();
1045 		dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1046 		    rt->rt_ifp);
1047 
1048 		if (dr != NULL && dr->expire &&
1049 		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1050 			/*
1051 			 * If the reason for the deletion is just garbage
1052 			 * collection, and the neighbor is an active default
1053 			 * router, do not delete it.  Instead, reset the GC
1054 			 * timer using the router's lifetime.
1055 			 * Simply deleting the entry would affect default
1056 			 * router selection, which is not necessarily a good
1057 			 * thing, especially when we're using router preference
1058 			 * values.
1059 			 * XXX: the check for ln_state would be redundant,
1060 			 *      but we intentionally keep it just in case.
1061 			 */
1062 			if (dr->expire > time_second)
1063 				nd6_llinfo_settimer(ln,
1064 				    (dr->expire - time_second) * hz);
1065 			else
1066 				nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz);
1067 			splx(s);
1068 			return (ln->ln_next);
1069 		}
1070 
1071 		if (ln->ln_router || dr) {
1072 			/*
1073 			 * rt6_flush must be called whether or not the neighbor
1074 			 * is in the Default Router List.
1075 			 * See a corresponding comment in nd6_na_input().
1076 			 */
1077 			rt6_flush(&in6, rt->rt_ifp);
1078 		}
1079 
1080 		if (dr) {
1081 			/*
1082 			 * Unreachablity of a router might affect the default
1083 			 * router selection and on-link detection of advertised
1084 			 * prefixes.
1085 			 */
1086 
1087 			/*
1088 			 * Temporarily fake the state to choose a new default
1089 			 * router and to perform on-link determination of
1090 			 * prefixes correctly.
1091 			 * Below the state will be set correctly,
1092 			 * or the entry itself will be deleted.
1093 			 */
1094 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1095 
1096 			/*
1097 			 * Since defrouter_select() does not affect the
1098 			 * on-link determination and MIP6 needs the check
1099 			 * before the default router selection, we perform
1100 			 * the check now.
1101 			 */
1102 			pfxlist_onlink_check();
1103 
1104 			/*
1105 			 * refresh default router list
1106 			 */
1107 			defrouter_select();
1108 		}
1109 		splx(s);
1110 	}
1111 
1112 	/*
1113 	 * Before deleting the entry, remember the next entry as the
1114 	 * return value.  We need this because pfxlist_onlink_check() above
1115 	 * might have freed other entries (particularly the old next entry) as
1116 	 * a side effect (XXX).
1117 	 */
1118 	next = ln->ln_next;
1119 
1120 	/*
1121 	 * Detach the route from the routing tree and the list of neighbor
1122 	 * caches, and disable the route entry not to be used in already
1123 	 * cached routes.
1124 	 */
1125 	rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
1126 	    rt_mask(rt), 0, (struct rtentry **)0);
1127 
1128 	return (next);
1129 }
1130 
1131 /*
1132  * Upper-layer reachability hint for Neighbor Unreachability Detection.
1133  *
1134  * XXX cost-effective methods?
1135  */
1136 void
1137 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force)
1138 {
1139 	INIT_VNET_INET6(curvnet);
1140 	struct llinfo_nd6 *ln;
1141 
1142 	/*
1143 	 * If the caller specified "rt", use that.  Otherwise, resolve the
1144 	 * routing table by supplied "dst6".
1145 	 */
1146 	if (rt == NULL) {
1147 		if (dst6 == NULL)
1148 			return;
1149 		if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL)
1150 			return;
1151 	}
1152 
1153 	if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1154 	    (rt->rt_flags & RTF_LLINFO) == 0 ||
1155 	    rt->rt_llinfo == NULL || rt->rt_gateway == NULL ||
1156 	    rt->rt_gateway->sa_family != AF_LINK) {
1157 		/* This is not a host route. */
1158 		return;
1159 	}
1160 
1161 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1162 	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1163 		return;
1164 
1165 	/*
1166 	 * if we get upper-layer reachability confirmation many times,
1167 	 * it is possible we have false information.
1168 	 */
1169 	if (!force) {
1170 		ln->ln_byhint++;
1171 		if (ln->ln_byhint > V_nd6_maxnudhint)
1172 			return;
1173 	}
1174 
1175 	ln->ln_state = ND6_LLINFO_REACHABLE;
1176 	if (!ND6_LLINFO_PERMANENT(ln)) {
1177 		nd6_llinfo_settimer(ln,
1178 		    (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1179 	}
1180 }
1181 
1182 /*
1183  * info - XXX unused
1184  */
1185 void
1186 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info)
1187 {
1188 	struct sockaddr *gate = rt->rt_gateway;
1189 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1190 	static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1191 	struct ifnet *ifp = rt->rt_ifp;
1192 	struct ifaddr *ifa;
1193 	INIT_VNET_NET(ifp->if_vnet);
1194 	INIT_VNET_INET6(ifp->if_vnet);
1195 
1196 	RT_LOCK_ASSERT(rt);
1197 
1198 	if ((rt->rt_flags & RTF_GATEWAY) != 0)
1199 		return;
1200 
1201 	if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1202 		/*
1203 		 * This is probably an interface direct route for a link
1204 		 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1205 		 * We do not need special treatment below for such a route.
1206 		 * Moreover, the RTF_LLINFO flag which would be set below
1207 		 * would annoy the ndp(8) command.
1208 		 */
1209 		return;
1210 	}
1211 
1212 	if (req == RTM_RESOLVE &&
1213 	    (nd6_need_cache(ifp) == 0 || /* stf case */
1214 	     !nd6_is_new_addr_neighbor((struct sockaddr_in6 *)rt_key(rt),
1215 	     ifp))) {
1216 		/*
1217 		 * FreeBSD and BSD/OS often make a cloned host route based
1218 		 * on a less-specific route (e.g. the default route).
1219 		 * If the less specific route does not have a "gateway"
1220 		 * (this is the case when the route just goes to a p2p or an
1221 		 * stf interface), we'll mistakenly make a neighbor cache for
1222 		 * the host route, and will see strange neighbor solicitation
1223 		 * for the corresponding destination.  In order to avoid the
1224 		 * confusion, we check if the destination of the route is
1225 		 * a neighbor in terms of neighbor discovery, and stop the
1226 		 * process if not.  Additionally, we remove the LLINFO flag
1227 		 * so that ndp(8) will not try to get the neighbor information
1228 		 * of the destination.
1229 		 */
1230 		rt->rt_flags &= ~RTF_LLINFO;
1231 		return;
1232 	}
1233 
1234 	switch (req) {
1235 	case RTM_ADD:
1236 		/*
1237 		 * There is no backward compatibility :)
1238 		 *
1239 		 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1240 		 *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1241 		 *	   rt->rt_flags |= RTF_CLONING;
1242 		 */
1243 		if ((rt->rt_flags & RTF_CLONING) ||
1244 		    ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) {
1245 			/*
1246 			 * Case 1: This route should come from a route to
1247 			 * interface (RTF_CLONING case) or the route should be
1248 			 * treated as on-link but is currently not
1249 			 * (RTF_LLINFO && ln == NULL case).
1250 			 */
1251 			rt_setgate(rt, rt_key(rt),
1252 				   (struct sockaddr *)&null_sdl);
1253 			gate = rt->rt_gateway;
1254 			SDL(gate)->sdl_type = ifp->if_type;
1255 			SDL(gate)->sdl_index = ifp->if_index;
1256 			if (ln)
1257 				nd6_llinfo_settimer(ln, 0);
1258 			if ((rt->rt_flags & RTF_CLONING) != 0)
1259 				break;
1260 		}
1261 		/*
1262 		 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1263 		 * We don't do that here since llinfo is not ready yet.
1264 		 *
1265 		 * There are also couple of other things to be discussed:
1266 		 * - unsolicited NA code needs improvement beforehand
1267 		 * - RFC2461 says we MAY send multicast unsolicited NA
1268 		 *   (7.2.6 paragraph 4), however, it also says that we
1269 		 *   SHOULD provide a mechanism to prevent multicast NA storm.
1270 		 *   we don't have anything like it right now.
1271 		 *   note that the mechanism needs a mutual agreement
1272 		 *   between proxies, which means that we need to implement
1273 		 *   a new protocol, or a new kludge.
1274 		 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1275 		 *   we need to check ip6forwarding before sending it.
1276 		 *   (or should we allow proxy ND configuration only for
1277 		 *   routers?  there's no mention about proxy ND from hosts)
1278 		 */
1279 		/* FALLTHROUGH */
1280 	case RTM_RESOLVE:
1281 		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1282 			/*
1283 			 * Address resolution isn't necessary for a point to
1284 			 * point link, so we can skip this test for a p2p link.
1285 			 */
1286 			if (gate->sa_family != AF_LINK ||
1287 			    gate->sa_len < sizeof(null_sdl)) {
1288 				log(LOG_DEBUG,
1289 				    "nd6_rtrequest: bad gateway value: %s\n",
1290 				    if_name(ifp));
1291 				break;
1292 			}
1293 			SDL(gate)->sdl_type = ifp->if_type;
1294 			SDL(gate)->sdl_index = ifp->if_index;
1295 		}
1296 		if (ln != NULL)
1297 			break;	/* This happens on a route change */
1298 		/*
1299 		 * Case 2: This route may come from cloning, or a manual route
1300 		 * add with a LL address.
1301 		 */
1302 		R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1303 		rt->rt_llinfo = (caddr_t)ln;
1304 		if (ln == NULL) {
1305 			log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1306 			break;
1307 		}
1308 		V_nd6_inuse++;
1309 		V_nd6_allocated++;
1310 		bzero(ln, sizeof(*ln));
1311 		RT_ADDREF(rt);
1312 		ln->ln_rt = rt;
1313 		callout_init(&ln->ln_timer_ch, 0);
1314 
1315 		/* this is required for "ndp" command. - shin */
1316 		if (req == RTM_ADD) {
1317 		        /*
1318 			 * gate should have some valid AF_LINK entry,
1319 			 * and ln->ln_expire should have some lifetime
1320 			 * which is specified by ndp command.
1321 			 */
1322 			ln->ln_state = ND6_LLINFO_REACHABLE;
1323 			ln->ln_byhint = 0;
1324 		} else {
1325 		        /*
1326 			 * When req == RTM_RESOLVE, rt is created and
1327 			 * initialized in rtrequest(), so rt_expire is 0.
1328 			 */
1329 			ln->ln_state = ND6_LLINFO_NOSTATE;
1330 			nd6_llinfo_settimer(ln, 0);
1331 		}
1332 		rt->rt_flags |= RTF_LLINFO;
1333 		ln->ln_next = V_llinfo_nd6.ln_next;
1334 		V_llinfo_nd6.ln_next = ln;
1335 		ln->ln_prev = &V_llinfo_nd6;
1336 		ln->ln_next->ln_prev = ln;
1337 
1338 		/*
1339 		 * check if rt_key(rt) is one of my address assigned
1340 		 * to the interface.
1341 		 */
1342 		ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1343 		    &SIN6(rt_key(rt))->sin6_addr);
1344 		if (ifa) {
1345 			caddr_t macp = nd6_ifptomac(ifp);
1346 			nd6_llinfo_settimer(ln, -1);
1347 			ln->ln_state = ND6_LLINFO_REACHABLE;
1348 			ln->ln_byhint = 0;
1349 			if (macp) {
1350 				bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1351 				SDL(gate)->sdl_alen = ifp->if_addrlen;
1352 			}
1353 			if (V_nd6_useloopback) {
1354 				rt->rt_ifp = &V_loif[0];	/* XXX */
1355 				/*
1356 				 * Make sure rt_ifa be equal to the ifaddr
1357 				 * corresponding to the address.
1358 				 * We need this because when we refer
1359 				 * rt_ifa->ia6_flags in ip6_input, we assume
1360 				 * that the rt_ifa points to the address instead
1361 				 * of the loopback address.
1362 				 */
1363 				if (ifa != rt->rt_ifa) {
1364 					IFAFREE(rt->rt_ifa);
1365 					IFAREF(ifa);
1366 					rt->rt_ifa = ifa;
1367 				}
1368 			}
1369 		} else if (rt->rt_flags & RTF_ANNOUNCE) {
1370 			nd6_llinfo_settimer(ln, -1);
1371 			ln->ln_state = ND6_LLINFO_REACHABLE;
1372 			ln->ln_byhint = 0;
1373 
1374 			/* join solicited node multicast for proxy ND */
1375 			if (ifp->if_flags & IFF_MULTICAST) {
1376 				struct in6_addr llsol;
1377 				int error;
1378 
1379 				llsol = SIN6(rt_key(rt))->sin6_addr;
1380 				llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1381 				llsol.s6_addr32[1] = 0;
1382 				llsol.s6_addr32[2] = htonl(1);
1383 				llsol.s6_addr8[12] = 0xff;
1384 				if (in6_setscope(&llsol, ifp, NULL))
1385 					break;
1386 				if (in6_addmulti(&llsol, ifp,
1387 				    &error, 0) == NULL) {
1388 					char ip6buf[INET6_ADDRSTRLEN];
1389 					nd6log((LOG_ERR, "%s: failed to join "
1390 					    "%s (errno=%d)\n", if_name(ifp),
1391 					    ip6_sprintf(ip6buf, &llsol),
1392 					    error));
1393 				}
1394 			}
1395 		}
1396 		break;
1397 
1398 	case RTM_DELETE:
1399 		if (ln == NULL)
1400 			break;
1401 		/* leave from solicited node multicast for proxy ND */
1402 		if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1403 		    (ifp->if_flags & IFF_MULTICAST) != 0) {
1404 			struct in6_addr llsol;
1405 			struct in6_multi *in6m;
1406 
1407 			llsol = SIN6(rt_key(rt))->sin6_addr;
1408 			llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1409 			llsol.s6_addr32[1] = 0;
1410 			llsol.s6_addr32[2] = htonl(1);
1411 			llsol.s6_addr8[12] = 0xff;
1412 			if (in6_setscope(&llsol, ifp, NULL) == 0) {
1413 				IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1414 				if (in6m)
1415 					in6_delmulti(in6m);
1416 			} else
1417 				; /* XXX: should not happen. bark here? */
1418 		}
1419 		V_nd6_inuse--;
1420 		ln->ln_next->ln_prev = ln->ln_prev;
1421 		ln->ln_prev->ln_next = ln->ln_next;
1422 		ln->ln_prev = NULL;
1423 		nd6_llinfo_settimer(ln, -1);
1424 		RT_REMREF(rt);
1425 		rt->rt_llinfo = 0;
1426 		rt->rt_flags &= ~RTF_LLINFO;
1427 		clear_llinfo_pqueue(ln);
1428 		Free((caddr_t)ln);
1429 	}
1430 }
1431 
1432 int
1433 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp)
1434 {
1435 	INIT_VNET_INET6(ifp->if_vnet);
1436 	struct in6_drlist *drl = (struct in6_drlist *)data;
1437 	struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1438 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1439 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1440 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1441 	struct nd_defrouter *dr;
1442 	struct nd_prefix *pr;
1443 	struct rtentry *rt;
1444 	int i = 0, error = 0;
1445 	int s;
1446 
1447 	switch (cmd) {
1448 	case SIOCGDRLST_IN6:
1449 		/*
1450 		 * obsolete API, use sysctl under net.inet6.icmp6
1451 		 */
1452 		bzero(drl, sizeof(*drl));
1453 		s = splnet();
1454 		dr = TAILQ_FIRST(&V_nd_defrouter);
1455 		while (dr && i < DRLSTSIZ) {
1456 			drl->defrouter[i].rtaddr = dr->rtaddr;
1457 			in6_clearscope(&drl->defrouter[i].rtaddr);
1458 
1459 			drl->defrouter[i].flags = dr->flags;
1460 			drl->defrouter[i].rtlifetime = dr->rtlifetime;
1461 			drl->defrouter[i].expire = dr->expire;
1462 			drl->defrouter[i].if_index = dr->ifp->if_index;
1463 			i++;
1464 			dr = TAILQ_NEXT(dr, dr_entry);
1465 		}
1466 		splx(s);
1467 		break;
1468 	case SIOCGPRLST_IN6:
1469 		/*
1470 		 * obsolete API, use sysctl under net.inet6.icmp6
1471 		 *
1472 		 * XXX the structure in6_prlist was changed in backward-
1473 		 * incompatible manner.  in6_oprlist is used for SIOCGPRLST_IN6,
1474 		 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1475 		 */
1476 		/*
1477 		 * XXX meaning of fields, especialy "raflags", is very
1478 		 * differnet between RA prefix list and RR/static prefix list.
1479 		 * how about separating ioctls into two?
1480 		 */
1481 		bzero(oprl, sizeof(*oprl));
1482 		s = splnet();
1483 		pr = V_nd_prefix.lh_first;
1484 		while (pr && i < PRLSTSIZ) {
1485 			struct nd_pfxrouter *pfr;
1486 			int j;
1487 
1488 			oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1489 			oprl->prefix[i].raflags = pr->ndpr_raf;
1490 			oprl->prefix[i].prefixlen = pr->ndpr_plen;
1491 			oprl->prefix[i].vltime = pr->ndpr_vltime;
1492 			oprl->prefix[i].pltime = pr->ndpr_pltime;
1493 			oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1494 			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1495 				oprl->prefix[i].expire = 0;
1496 			else {
1497 				time_t maxexpire;
1498 
1499 				/* XXX: we assume time_t is signed. */
1500 				maxexpire = (-1) &
1501 				    ~((time_t)1 <<
1502 				    ((sizeof(maxexpire) * 8) - 1));
1503 				if (pr->ndpr_vltime <
1504 				    maxexpire - pr->ndpr_lastupdate) {
1505 					oprl->prefix[i].expire =
1506 					    pr->ndpr_lastupdate +
1507 					    pr->ndpr_vltime;
1508 				} else
1509 					oprl->prefix[i].expire = maxexpire;
1510 			}
1511 
1512 			pfr = pr->ndpr_advrtrs.lh_first;
1513 			j = 0;
1514 			while (pfr) {
1515 				if (j < DRLSTSIZ) {
1516 #define RTRADDR oprl->prefix[i].advrtr[j]
1517 					RTRADDR = pfr->router->rtaddr;
1518 					in6_clearscope(&RTRADDR);
1519 #undef RTRADDR
1520 				}
1521 				j++;
1522 				pfr = pfr->pfr_next;
1523 			}
1524 			oprl->prefix[i].advrtrs = j;
1525 			oprl->prefix[i].origin = PR_ORIG_RA;
1526 
1527 			i++;
1528 			pr = pr->ndpr_next;
1529 		}
1530 		splx(s);
1531 
1532 		break;
1533 	case OSIOCGIFINFO_IN6:
1534 #define ND	ndi->ndi
1535 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1536 		bzero(&ND, sizeof(ND));
1537 		ND.linkmtu = IN6_LINKMTU(ifp);
1538 		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1539 		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1540 		ND.reachable = ND_IFINFO(ifp)->reachable;
1541 		ND.retrans = ND_IFINFO(ifp)->retrans;
1542 		ND.flags = ND_IFINFO(ifp)->flags;
1543 		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1544 		ND.chlim = ND_IFINFO(ifp)->chlim;
1545 		break;
1546 	case SIOCGIFINFO_IN6:
1547 		ND = *ND_IFINFO(ifp);
1548 		break;
1549 	case SIOCSIFINFO_IN6:
1550 		/*
1551 		 * used to change host variables from userland.
1552 		 * intented for a use on router to reflect RA configurations.
1553 		 */
1554 		/* 0 means 'unspecified' */
1555 		if (ND.linkmtu != 0) {
1556 			if (ND.linkmtu < IPV6_MMTU ||
1557 			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1558 				error = EINVAL;
1559 				break;
1560 			}
1561 			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1562 		}
1563 
1564 		if (ND.basereachable != 0) {
1565 			int obasereachable = ND_IFINFO(ifp)->basereachable;
1566 
1567 			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1568 			if (ND.basereachable != obasereachable)
1569 				ND_IFINFO(ifp)->reachable =
1570 				    ND_COMPUTE_RTIME(ND.basereachable);
1571 		}
1572 		if (ND.retrans != 0)
1573 			ND_IFINFO(ifp)->retrans = ND.retrans;
1574 		if (ND.chlim != 0)
1575 			ND_IFINFO(ifp)->chlim = ND.chlim;
1576 		/* FALLTHROUGH */
1577 	case SIOCSIFINFO_FLAGS:
1578 		ND_IFINFO(ifp)->flags = ND.flags;
1579 		break;
1580 #undef ND
1581 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1582 		/* sync kernel routing table with the default router list */
1583 		defrouter_reset();
1584 		defrouter_select();
1585 		break;
1586 	case SIOCSPFXFLUSH_IN6:
1587 	{
1588 		/* flush all the prefix advertised by routers */
1589 		struct nd_prefix *pr, *next;
1590 
1591 		s = splnet();
1592 		for (pr = V_nd_prefix.lh_first; pr; pr = next) {
1593 			struct in6_ifaddr *ia, *ia_next;
1594 
1595 			next = pr->ndpr_next;
1596 
1597 			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1598 				continue; /* XXX */
1599 
1600 			/* do we really have to remove addresses as well? */
1601 			for (ia = V_in6_ifaddr; ia; ia = ia_next) {
1602 				/* ia might be removed.  keep the next ptr. */
1603 				ia_next = ia->ia_next;
1604 
1605 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1606 					continue;
1607 
1608 				if (ia->ia6_ndpr == pr)
1609 					in6_purgeaddr(&ia->ia_ifa);
1610 			}
1611 			prelist_remove(pr);
1612 		}
1613 		splx(s);
1614 		break;
1615 	}
1616 	case SIOCSRTRFLUSH_IN6:
1617 	{
1618 		/* flush all the default routers */
1619 		struct nd_defrouter *dr, *next;
1620 
1621 		s = splnet();
1622 		defrouter_reset();
1623 		for (dr = TAILQ_FIRST(&V_nd_defrouter); dr; dr = next) {
1624 			next = TAILQ_NEXT(dr, dr_entry);
1625 			defrtrlist_del(dr);
1626 		}
1627 		defrouter_select();
1628 		splx(s);
1629 		break;
1630 	}
1631 	case SIOCGNBRINFO_IN6:
1632 	{
1633 		struct llinfo_nd6 *ln;
1634 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1635 
1636 		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1637 			return (error);
1638 
1639 		s = splnet();
1640 		if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
1641 			error = EINVAL;
1642 			splx(s);
1643 			break;
1644 		}
1645 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1646 		nbi->state = ln->ln_state;
1647 		nbi->asked = ln->ln_asked;
1648 		nbi->isrouter = ln->ln_router;
1649 		nbi->expire = ln->ln_expire;
1650 		splx(s);
1651 
1652 		break;
1653 	}
1654 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1655 		ndif->ifindex = V_nd6_defifindex;
1656 		break;
1657 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1658 		return (nd6_setdefaultiface(ndif->ifindex));
1659 	}
1660 	return (error);
1661 }
1662 
1663 /*
1664  * Create neighbor cache entry and cache link-layer address,
1665  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1666  *
1667  * type - ICMP6 type
1668  * code - type dependent information
1669  */
1670 struct rtentry *
1671 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
1672     int lladdrlen, int type, int code)
1673 {
1674 	INIT_VNET_INET6(curvnet);
1675 	struct rtentry *rt = NULL;
1676 	struct llinfo_nd6 *ln = NULL;
1677 	int is_newentry;
1678 	struct sockaddr_dl *sdl = NULL;
1679 	int do_update;
1680 	int olladdr;
1681 	int llchange;
1682 	int newstate = 0;
1683 
1684 	if (ifp == NULL)
1685 		panic("ifp == NULL in nd6_cache_lladdr");
1686 	if (from == NULL)
1687 		panic("from == NULL in nd6_cache_lladdr");
1688 
1689 	/* nothing must be updated for unspecified address */
1690 	if (IN6_IS_ADDR_UNSPECIFIED(from))
1691 		return NULL;
1692 
1693 	/*
1694 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1695 	 * the caller.
1696 	 *
1697 	 * XXX If the link does not have link-layer adderss, what should
1698 	 * we do? (ifp->if_addrlen == 0)
1699 	 * Spec says nothing in sections for RA, RS and NA.  There's small
1700 	 * description on it in NS section (RFC 2461 7.2.3).
1701 	 */
1702 
1703 	rt = nd6_lookup(from, 0, ifp);
1704 	if (rt == NULL) {
1705 		rt = nd6_lookup(from, 1, ifp);
1706 		is_newentry = 1;
1707 	} else {
1708 		/* do nothing if static ndp is set */
1709 		if (rt->rt_flags & RTF_STATIC)
1710 			return NULL;
1711 		is_newentry = 0;
1712 	}
1713 
1714 	if (rt == NULL)
1715 		return NULL;
1716 	if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1717 fail:
1718 		(void)nd6_free(rt, 0);
1719 		return NULL;
1720 	}
1721 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1722 	if (ln == NULL)
1723 		goto fail;
1724 	if (rt->rt_gateway == NULL)
1725 		goto fail;
1726 	if (rt->rt_gateway->sa_family != AF_LINK)
1727 		goto fail;
1728 	sdl = SDL(rt->rt_gateway);
1729 
1730 	olladdr = (sdl->sdl_alen) ? 1 : 0;
1731 	if (olladdr && lladdr) {
1732 		if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1733 			llchange = 1;
1734 		else
1735 			llchange = 0;
1736 	} else
1737 		llchange = 0;
1738 
1739 	/*
1740 	 * newentry olladdr  lladdr  llchange	(*=record)
1741 	 *	0	n	n	--	(1)
1742 	 *	0	y	n	--	(2)
1743 	 *	0	n	y	--	(3) * STALE
1744 	 *	0	y	y	n	(4) *
1745 	 *	0	y	y	y	(5) * STALE
1746 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1747 	 *	1	--	y	--	(7) * STALE
1748 	 */
1749 
1750 	if (lladdr) {		/* (3-5) and (7) */
1751 		/*
1752 		 * Record source link-layer address
1753 		 * XXX is it dependent to ifp->if_type?
1754 		 */
1755 		sdl->sdl_alen = ifp->if_addrlen;
1756 		bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1757 	}
1758 
1759 	if (!is_newentry) {
1760 		if ((!olladdr && lladdr != NULL) ||	/* (3) */
1761 		    (olladdr && lladdr != NULL && llchange)) {	/* (5) */
1762 			do_update = 1;
1763 			newstate = ND6_LLINFO_STALE;
1764 		} else					/* (1-2,4) */
1765 			do_update = 0;
1766 	} else {
1767 		do_update = 1;
1768 		if (lladdr == NULL)			/* (6) */
1769 			newstate = ND6_LLINFO_NOSTATE;
1770 		else					/* (7) */
1771 			newstate = ND6_LLINFO_STALE;
1772 	}
1773 
1774 	if (do_update) {
1775 		/*
1776 		 * Update the state of the neighbor cache.
1777 		 */
1778 		ln->ln_state = newstate;
1779 
1780 		if (ln->ln_state == ND6_LLINFO_STALE) {
1781 			/*
1782 			 * XXX: since nd6_output() below will cause
1783 			 * state tansition to DELAY and reset the timer,
1784 			 * we must set the timer now, although it is actually
1785 			 * meaningless.
1786 			 */
1787 			nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz);
1788 
1789 			if (ln->ln_hold) {
1790 				struct mbuf *m_hold, *m_hold_next;
1791 
1792 				/*
1793 				 * reset the ln_hold in advance, to explicitly
1794 				 * prevent a ln_hold lookup in nd6_output()
1795 				 * (wouldn't happen, though...)
1796 				 */
1797 				for (m_hold = ln->ln_hold, ln->ln_hold = NULL;
1798 				    m_hold; m_hold = m_hold_next) {
1799 					m_hold_next = m_hold->m_nextpkt;
1800 					m_hold->m_nextpkt = NULL;
1801 
1802 					/*
1803 					 * we assume ifp is not a p2p here, so
1804 					 * just set the 2nd argument as the
1805 					 * 1st one.
1806 					 */
1807 					nd6_output(ifp, ifp, m_hold,
1808 					     (struct sockaddr_in6 *)rt_key(rt),
1809 					     rt);
1810 				}
1811 			}
1812 		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1813 			/* probe right away */
1814 			nd6_llinfo_settimer((void *)ln, 0);
1815 		}
1816 	}
1817 
1818 	/*
1819 	 * ICMP6 type dependent behavior.
1820 	 *
1821 	 * NS: clear IsRouter if new entry
1822 	 * RS: clear IsRouter
1823 	 * RA: set IsRouter if there's lladdr
1824 	 * redir: clear IsRouter if new entry
1825 	 *
1826 	 * RA case, (1):
1827 	 * The spec says that we must set IsRouter in the following cases:
1828 	 * - If lladdr exist, set IsRouter.  This means (1-5).
1829 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1830 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1831 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1832 	 * neighbor cache, this is similar to (6).
1833 	 * This case is rare but we figured that we MUST NOT set IsRouter.
1834 	 *
1835 	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
1836 	 *							D R
1837 	 *	0	n	n	--	(1)	c   ?     s
1838 	 *	0	y	n	--	(2)	c   s     s
1839 	 *	0	n	y	--	(3)	c   s     s
1840 	 *	0	y	y	n	(4)	c   s     s
1841 	 *	0	y	y	y	(5)	c   s     s
1842 	 *	1	--	n	--	(6) c	c	c s
1843 	 *	1	--	y	--	(7) c	c   s	c s
1844 	 *
1845 	 *					(c=clear s=set)
1846 	 */
1847 	switch (type & 0xff) {
1848 	case ND_NEIGHBOR_SOLICIT:
1849 		/*
1850 		 * New entry must have is_router flag cleared.
1851 		 */
1852 		if (is_newentry)	/* (6-7) */
1853 			ln->ln_router = 0;
1854 		break;
1855 	case ND_REDIRECT:
1856 		/*
1857 		 * If the icmp is a redirect to a better router, always set the
1858 		 * is_router flag.  Otherwise, if the entry is newly created,
1859 		 * clear the flag.  [RFC 2461, sec 8.3]
1860 		 */
1861 		if (code == ND_REDIRECT_ROUTER)
1862 			ln->ln_router = 1;
1863 		else if (is_newentry) /* (6-7) */
1864 			ln->ln_router = 0;
1865 		break;
1866 	case ND_ROUTER_SOLICIT:
1867 		/*
1868 		 * is_router flag must always be cleared.
1869 		 */
1870 		ln->ln_router = 0;
1871 		break;
1872 	case ND_ROUTER_ADVERT:
1873 		/*
1874 		 * Mark an entry with lladdr as a router.
1875 		 */
1876 		if ((!is_newentry && (olladdr || lladdr)) ||	/* (2-5) */
1877 		    (is_newentry && lladdr)) {			/* (7) */
1878 			ln->ln_router = 1;
1879 		}
1880 		break;
1881 	}
1882 
1883 	/*
1884 	 * When the link-layer address of a router changes, select the
1885 	 * best router again.  In particular, when the neighbor entry is newly
1886 	 * created, it might affect the selection policy.
1887 	 * Question: can we restrict the first condition to the "is_newentry"
1888 	 * case?
1889 	 * XXX: when we hear an RA from a new router with the link-layer
1890 	 * address option, defrouter_select() is called twice, since
1891 	 * defrtrlist_update called the function as well.  However, I believe
1892 	 * we can compromise the overhead, since it only happens the first
1893 	 * time.
1894 	 * XXX: although defrouter_select() should not have a bad effect
1895 	 * for those are not autoconfigured hosts, we explicitly avoid such
1896 	 * cases for safety.
1897 	 */
1898 	if (do_update && ln->ln_router && !V_ip6_forwarding && V_ip6_accept_rtadv)
1899 		defrouter_select();
1900 
1901 	return rt;
1902 }
1903 
1904 static void
1905 nd6_slowtimo(void *arg)
1906 {
1907 	CURVNET_SET((struct vnet *) arg);
1908 	INIT_VNET_NET((struct vnet *) arg);
1909 	INIT_VNET_INET6((struct vnet *) arg);
1910 	struct nd_ifinfo *nd6if;
1911 	struct ifnet *ifp;
1912 
1913 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1914 	    nd6_slowtimo, NULL);
1915 	IFNET_RLOCK();
1916 	for (ifp = TAILQ_FIRST(&V_ifnet); ifp;
1917 	    ifp = TAILQ_NEXT(ifp, if_list)) {
1918 		nd6if = ND_IFINFO(ifp);
1919 		if (nd6if->basereachable && /* already initialized */
1920 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1921 			/*
1922 			 * Since reachable time rarely changes by router
1923 			 * advertisements, we SHOULD insure that a new random
1924 			 * value gets recomputed at least once every few hours.
1925 			 * (RFC 2461, 6.3.4)
1926 			 */
1927 			nd6if->recalctm = V_nd6_recalc_reachtm_interval;
1928 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1929 		}
1930 	}
1931 	IFNET_RUNLOCK();
1932 	CURVNET_RESTORE();
1933 }
1934 
1935 #define senderr(e) { error = (e); goto bad;}
1936 int
1937 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0,
1938     struct sockaddr_in6 *dst, struct rtentry *rt0)
1939 {
1940 	INIT_VNET_INET6(curvnet);
1941 	struct mbuf *m = m0;
1942 	struct rtentry *rt = rt0;
1943 	struct sockaddr_in6 *gw6 = NULL;
1944 	struct llinfo_nd6 *ln = NULL;
1945 	int error = 0;
1946 
1947 	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1948 		goto sendpkt;
1949 
1950 	if (nd6_need_cache(ifp) == 0)
1951 		goto sendpkt;
1952 
1953 	/*
1954 	 * next hop determination.  This routine is derived from ether_output.
1955 	 */
1956 	/* NB: the locking here is tortuous... */
1957 	if (rt != NULL)
1958 		RT_LOCK(rt);
1959 again:
1960 	if (rt != NULL) {
1961 		if ((rt->rt_flags & RTF_UP) == 0) {
1962 			RT_UNLOCK(rt);
1963 			rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL);
1964 			if (rt != NULL) {
1965 				RT_REMREF(rt);
1966 				if (rt->rt_ifp != ifp)
1967 					/*
1968 					 * XXX maybe we should update ifp too,
1969 					 * but the original code didn't and I
1970 					 * don't know what is correct here.
1971 					 */
1972 					goto again;
1973 			} else
1974 				senderr(EHOSTUNREACH);
1975 		}
1976 
1977 		if (rt->rt_flags & RTF_GATEWAY) {
1978 			gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1979 
1980 			/*
1981 			 * We skip link-layer address resolution and NUD
1982 			 * if the gateway is not a neighbor from ND point
1983 			 * of view, regardless of the value of nd_ifinfo.flags.
1984 			 * The second condition is a bit tricky; we skip
1985 			 * if the gateway is our own address, which is
1986 			 * sometimes used to install a route to a p2p link.
1987 			 */
1988 			if (!nd6_is_addr_neighbor(gw6, ifp) ||
1989 			    in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1990 				RT_UNLOCK(rt);
1991 				/*
1992 				 * We allow this kind of tricky route only
1993 				 * when the outgoing interface is p2p.
1994 				 * XXX: we may need a more generic rule here.
1995 				 */
1996 				if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1997 					senderr(EHOSTUNREACH);
1998 
1999 				goto sendpkt;
2000 			}
2001 
2002 			if (rt->rt_gwroute == NULL)
2003 				goto lookup;
2004 			rt = rt->rt_gwroute;
2005 			RT_LOCK(rt);		/* NB: gwroute */
2006 			if ((rt->rt_flags & RTF_UP) == 0) {
2007 				RTFREE_LOCKED(rt);	/* unlock gwroute */
2008 				rt = rt0;
2009 				rt0->rt_gwroute = NULL;
2010 			lookup:
2011 				RT_UNLOCK(rt0);
2012 				rt = rtalloc1(rt->rt_gateway, 1, 0UL);
2013 				if (rt == rt0) {
2014 					RT_REMREF(rt0);
2015 					RT_UNLOCK(rt0);
2016 					senderr(EHOSTUNREACH);
2017 				}
2018 				RT_LOCK(rt0);
2019 				if (rt0->rt_gwroute != NULL)
2020 					RTFREE(rt0->rt_gwroute);
2021 				rt0->rt_gwroute = rt;
2022 				if (rt == NULL) {
2023 					RT_UNLOCK(rt0);
2024 					senderr(EHOSTUNREACH);
2025 				}
2026 			}
2027 			RT_UNLOCK(rt0);
2028 		}
2029 		RT_UNLOCK(rt);
2030 	}
2031 
2032 	/*
2033 	 * Address resolution or Neighbor Unreachability Detection
2034 	 * for the next hop.
2035 	 * At this point, the destination of the packet must be a unicast
2036 	 * or an anycast address(i.e. not a multicast).
2037 	 */
2038 
2039 	/* Look up the neighbor cache for the nexthop */
2040 	if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
2041 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2042 	else {
2043 		/*
2044 		 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2045 		 * the condition below is not very efficient.  But we believe
2046 		 * it is tolerable, because this should be a rare case.
2047 		 */
2048 		if (nd6_is_addr_neighbor(dst, ifp) &&
2049 		    (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
2050 			ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2051 	}
2052 	if (ln == NULL || rt == NULL) {
2053 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2054 		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2055 			char ip6buf[INET6_ADDRSTRLEN];
2056 			log(LOG_DEBUG,
2057 			    "nd6_output: can't allocate llinfo for %s "
2058 			    "(ln=%p, rt=%p)\n",
2059 			    ip6_sprintf(ip6buf, &dst->sin6_addr), ln, rt);
2060 			senderr(EIO);	/* XXX: good error? */
2061 		}
2062 
2063 		goto sendpkt;	/* send anyway */
2064 	}
2065 
2066 	/* We don't have to do link-layer address resolution on a p2p link. */
2067 	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2068 	    ln->ln_state < ND6_LLINFO_REACHABLE) {
2069 		ln->ln_state = ND6_LLINFO_STALE;
2070 		nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz);
2071 	}
2072 
2073 	/*
2074 	 * The first time we send a packet to a neighbor whose entry is
2075 	 * STALE, we have to change the state to DELAY and a sets a timer to
2076 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2077 	 * neighbor unreachability detection on expiration.
2078 	 * (RFC 2461 7.3.3)
2079 	 */
2080 	if (ln->ln_state == ND6_LLINFO_STALE) {
2081 		ln->ln_asked = 0;
2082 		ln->ln_state = ND6_LLINFO_DELAY;
2083 		nd6_llinfo_settimer(ln, (long)V_nd6_delay * hz);
2084 	}
2085 
2086 	/*
2087 	 * If the neighbor cache entry has a state other than INCOMPLETE
2088 	 * (i.e. its link-layer address is already resolved), just
2089 	 * send the packet.
2090 	 */
2091 	if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2092 		goto sendpkt;
2093 
2094 	/*
2095 	 * There is a neighbor cache entry, but no ethernet address
2096 	 * response yet.  Append this latest packet to the end of the
2097 	 * packet queue in the mbuf, unless the number of the packet
2098 	 * does not exceed nd6_maxqueuelen.  When it exceeds nd6_maxqueuelen,
2099 	 * the oldest packet in the queue will be removed.
2100 	 */
2101 	if (ln->ln_state == ND6_LLINFO_NOSTATE)
2102 		ln->ln_state = ND6_LLINFO_INCOMPLETE;
2103 	if (ln->ln_hold) {
2104 		struct mbuf *m_hold;
2105 		int i;
2106 
2107 		i = 0;
2108 		for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2109 			i++;
2110 			if (m_hold->m_nextpkt == NULL) {
2111 				m_hold->m_nextpkt = m;
2112 				break;
2113 			}
2114 		}
2115 		while (i >= V_nd6_maxqueuelen) {
2116 			m_hold = ln->ln_hold;
2117 			ln->ln_hold = ln->ln_hold->m_nextpkt;
2118 			m_freem(m_hold);
2119 			i--;
2120 		}
2121 	} else {
2122 		ln->ln_hold = m;
2123 	}
2124 
2125 	/*
2126 	 * If there has been no NS for the neighbor after entering the
2127 	 * INCOMPLETE state, send the first solicitation.
2128 	 */
2129 	if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2130 		ln->ln_asked++;
2131 		nd6_llinfo_settimer(ln,
2132 		    (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2133 		nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2134 	}
2135 	return (0);
2136 
2137   sendpkt:
2138 	/* discard the packet if IPv6 operation is disabled on the interface */
2139 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2140 		error = ENETDOWN; /* better error? */
2141 		goto bad;
2142 	}
2143 
2144 #ifdef MAC
2145 	mac_netinet6_nd6_send(ifp, m);
2146 #endif
2147 	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
2148 		return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
2149 		    rt));
2150 	}
2151 	return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
2152 
2153   bad:
2154 	if (m)
2155 		m_freem(m);
2156 	return (error);
2157 }
2158 #undef senderr
2159 
2160 int
2161 nd6_need_cache(struct ifnet *ifp)
2162 {
2163 	/*
2164 	 * XXX: we currently do not make neighbor cache on any interface
2165 	 * other than ARCnet, Ethernet, FDDI and GIF.
2166 	 *
2167 	 * RFC2893 says:
2168 	 * - unidirectional tunnels needs no ND
2169 	 */
2170 	switch (ifp->if_type) {
2171 	case IFT_ARCNET:
2172 	case IFT_ETHER:
2173 	case IFT_FDDI:
2174 	case IFT_IEEE1394:
2175 #ifdef IFT_L2VLAN
2176 	case IFT_L2VLAN:
2177 #endif
2178 #ifdef IFT_IEEE80211
2179 	case IFT_IEEE80211:
2180 #endif
2181 #ifdef IFT_CARP
2182 	case IFT_CARP:
2183 #endif
2184 	case IFT_GIF:		/* XXX need more cases? */
2185 	case IFT_PPP:
2186 	case IFT_TUNNEL:
2187 	case IFT_BRIDGE:
2188 	case IFT_PROPVIRTUAL:
2189 		return (1);
2190 	default:
2191 		return (0);
2192 	}
2193 }
2194 
2195 int
2196 nd6_storelladdr(struct ifnet *ifp, struct rtentry *rt0, struct mbuf *m,
2197     struct sockaddr *dst, u_char *desten)
2198 {
2199 	struct sockaddr_dl *sdl;
2200 	struct rtentry *rt;
2201 	int error;
2202 
2203 	if (m->m_flags & M_MCAST) {
2204 		int i;
2205 
2206 		switch (ifp->if_type) {
2207 		case IFT_ETHER:
2208 		case IFT_FDDI:
2209 #ifdef IFT_L2VLAN
2210 		case IFT_L2VLAN:
2211 #endif
2212 #ifdef IFT_IEEE80211
2213 		case IFT_IEEE80211:
2214 #endif
2215 		case IFT_BRIDGE:
2216 		case IFT_ISO88025:
2217 			ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2218 						 desten);
2219 			return (0);
2220 		case IFT_IEEE1394:
2221 			/*
2222 			 * netbsd can use if_broadcastaddr, but we don't do so
2223 			 * to reduce # of ifdef.
2224 			 */
2225 			for (i = 0; i < ifp->if_addrlen; i++)
2226 				desten[i] = ~0;
2227 			return (0);
2228 		case IFT_ARCNET:
2229 			*desten = 0;
2230 			return (0);
2231 		default:
2232 			m_freem(m);
2233 			return (EAFNOSUPPORT);
2234 		}
2235 	}
2236 
2237 	if (rt0 == NULL) {
2238 		/* this could happen, if we could not allocate memory */
2239 		m_freem(m);
2240 		return (ENOMEM);
2241 	}
2242 
2243 	error = rt_check(&rt, &rt0, dst);
2244 	if (error) {
2245 		m_freem(m);
2246 		return (error);
2247 	}
2248 	RT_UNLOCK(rt);
2249 
2250 	if (rt->rt_gateway->sa_family != AF_LINK) {
2251 		printf("nd6_storelladdr: something odd happens\n");
2252 		m_freem(m);
2253 		return (EINVAL);
2254 	}
2255 	sdl = SDL(rt->rt_gateway);
2256 	if (sdl->sdl_alen == 0) {
2257 		/* this should be impossible, but we bark here for debugging */
2258 		printf("nd6_storelladdr: sdl_alen == 0\n");
2259 		m_freem(m);
2260 		return (EINVAL);
2261 	}
2262 
2263 	bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
2264 	return (0);
2265 }
2266 
2267 static void
2268 clear_llinfo_pqueue(struct llinfo_nd6 *ln)
2269 {
2270 	struct mbuf *m_hold, *m_hold_next;
2271 
2272 	for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2273 		m_hold_next = m_hold->m_nextpkt;
2274 		m_hold->m_nextpkt = NULL;
2275 		m_freem(m_hold);
2276 	}
2277 
2278 	ln->ln_hold = NULL;
2279 	return;
2280 }
2281 
2282 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2283 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2284 #ifdef SYSCTL_DECL
2285 SYSCTL_DECL(_net_inet6_icmp6);
2286 #endif
2287 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2288 	CTLFLAG_RD, nd6_sysctl_drlist, "");
2289 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2290 	CTLFLAG_RD, nd6_sysctl_prlist, "");
2291 SYSCTL_V_INT(V_NET, vnet_inet6, _net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN,
2292 	nd6_maxqueuelen, CTLFLAG_RW, nd6_maxqueuelen, 1, "");
2293 
2294 static int
2295 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2296 {
2297 	INIT_VNET_INET6(curvnet);
2298 	int error;
2299 	char buf[1024] __aligned(4);
2300 	struct in6_defrouter *d, *de;
2301 	struct nd_defrouter *dr;
2302 
2303 	if (req->newptr)
2304 		return EPERM;
2305 	error = 0;
2306 
2307 	for (dr = TAILQ_FIRST(&V_nd_defrouter); dr;
2308 	     dr = TAILQ_NEXT(dr, dr_entry)) {
2309 		d = (struct in6_defrouter *)buf;
2310 		de = (struct in6_defrouter *)(buf + sizeof(buf));
2311 
2312 		if (d + 1 <= de) {
2313 			bzero(d, sizeof(*d));
2314 			d->rtaddr.sin6_family = AF_INET6;
2315 			d->rtaddr.sin6_len = sizeof(d->rtaddr);
2316 			d->rtaddr.sin6_addr = dr->rtaddr;
2317 			error = sa6_recoverscope(&d->rtaddr);
2318 			if (error != 0)
2319 				return (error);
2320 			d->flags = dr->flags;
2321 			d->rtlifetime = dr->rtlifetime;
2322 			d->expire = dr->expire;
2323 			d->if_index = dr->ifp->if_index;
2324 		} else
2325 			panic("buffer too short");
2326 
2327 		error = SYSCTL_OUT(req, buf, sizeof(*d));
2328 		if (error)
2329 			break;
2330 	}
2331 
2332 	return (error);
2333 }
2334 
2335 static int
2336 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2337 {
2338 	INIT_VNET_INET6(curvnet);
2339 	int error;
2340 	char buf[1024] __aligned(4);
2341 	struct in6_prefix *p, *pe;
2342 	struct nd_prefix *pr;
2343 	char ip6buf[INET6_ADDRSTRLEN];
2344 
2345 	if (req->newptr)
2346 		return EPERM;
2347 	error = 0;
2348 
2349 	for (pr = V_nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2350 		u_short advrtrs;
2351 		size_t advance;
2352 		struct sockaddr_in6 *sin6, *s6;
2353 		struct nd_pfxrouter *pfr;
2354 
2355 		p = (struct in6_prefix *)buf;
2356 		pe = (struct in6_prefix *)(buf + sizeof(buf));
2357 
2358 		if (p + 1 <= pe) {
2359 			bzero(p, sizeof(*p));
2360 			sin6 = (struct sockaddr_in6 *)(p + 1);
2361 
2362 			p->prefix = pr->ndpr_prefix;
2363 			if (sa6_recoverscope(&p->prefix)) {
2364 				log(LOG_ERR,
2365 				    "scope error in prefix list (%s)\n",
2366 				    ip6_sprintf(ip6buf, &p->prefix.sin6_addr));
2367 				/* XXX: press on... */
2368 			}
2369 			p->raflags = pr->ndpr_raf;
2370 			p->prefixlen = pr->ndpr_plen;
2371 			p->vltime = pr->ndpr_vltime;
2372 			p->pltime = pr->ndpr_pltime;
2373 			p->if_index = pr->ndpr_ifp->if_index;
2374 			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2375 				p->expire = 0;
2376 			else {
2377 				time_t maxexpire;
2378 
2379 				/* XXX: we assume time_t is signed. */
2380 				maxexpire = (-1) &
2381 				    ~((time_t)1 <<
2382 				    ((sizeof(maxexpire) * 8) - 1));
2383 				if (pr->ndpr_vltime <
2384 				    maxexpire - pr->ndpr_lastupdate) {
2385 				    p->expire = pr->ndpr_lastupdate +
2386 				        pr->ndpr_vltime;
2387 				} else
2388 					p->expire = maxexpire;
2389 			}
2390 			p->refcnt = pr->ndpr_refcnt;
2391 			p->flags = pr->ndpr_stateflags;
2392 			p->origin = PR_ORIG_RA;
2393 			advrtrs = 0;
2394 			for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2395 			     pfr = pfr->pfr_next) {
2396 				if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2397 					advrtrs++;
2398 					continue;
2399 				}
2400 				s6 = &sin6[advrtrs];
2401 				bzero(s6, sizeof(*s6));
2402 				s6->sin6_family = AF_INET6;
2403 				s6->sin6_len = sizeof(*sin6);
2404 				s6->sin6_addr = pfr->router->rtaddr;
2405 				if (sa6_recoverscope(s6)) {
2406 					log(LOG_ERR,
2407 					    "scope error in "
2408 					    "prefix list (%s)\n",
2409 					    ip6_sprintf(ip6buf,
2410 						    &pfr->router->rtaddr));
2411 				}
2412 				advrtrs++;
2413 			}
2414 			p->advrtrs = advrtrs;
2415 		} else
2416 			panic("buffer too short");
2417 
2418 		advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2419 		error = SYSCTL_OUT(req, buf, advance);
2420 		if (error)
2421 			break;
2422 	}
2423 
2424 	return (error);
2425 }
2426