1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/eventhandler.h> 43 #include <sys/callout.h> 44 #include <sys/lock.h> 45 #include <sys/malloc.h> 46 #include <sys/mbuf.h> 47 #include <sys/mutex.h> 48 #include <sys/socket.h> 49 #include <sys/sockio.h> 50 #include <sys/time.h> 51 #include <sys/kernel.h> 52 #include <sys/protosw.h> 53 #include <sys/errno.h> 54 #include <sys/syslog.h> 55 #include <sys/rwlock.h> 56 #include <sys/queue.h> 57 #include <sys/sdt.h> 58 #include <sys/sysctl.h> 59 60 #include <net/if.h> 61 #include <net/if_var.h> 62 #include <net/if_dl.h> 63 #include <net/if_types.h> 64 #include <net/route.h> 65 #include <net/vnet.h> 66 67 #include <netinet/in.h> 68 #include <netinet/in_kdtrace.h> 69 #include <net/if_llatbl.h> 70 #include <netinet/if_ether.h> 71 #include <netinet6/in6_var.h> 72 #include <netinet/ip6.h> 73 #include <netinet6/ip6_var.h> 74 #include <netinet6/scope6_var.h> 75 #include <netinet6/nd6.h> 76 #include <netinet6/in6_ifattach.h> 77 #include <netinet/icmp6.h> 78 #include <netinet6/send.h> 79 80 #include <sys/limits.h> 81 82 #include <security/mac/mac_framework.h> 83 84 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 85 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 86 87 #define SIN6(s) ((const struct sockaddr_in6 *)(s)) 88 89 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 90 91 /* timer values */ 92 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 93 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 94 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 95 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 96 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 97 * local traffic */ 98 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 99 * collection timer */ 100 101 /* preventing too many loops in ND option parsing */ 102 VNET_DEFINE_STATIC(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 103 104 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 105 * layer hints */ 106 VNET_DEFINE_STATIC(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved 107 * ND entries */ 108 #define V_nd6_maxndopt VNET(nd6_maxndopt) 109 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 110 111 #ifdef ND6_DEBUG 112 VNET_DEFINE(int, nd6_debug) = 1; 113 #else 114 VNET_DEFINE(int, nd6_debug) = 0; 115 #endif 116 117 static eventhandler_tag lle_event_eh, iflladdr_event_eh, ifnet_link_event_eh; 118 119 VNET_DEFINE(struct nd_drhead, nd_defrouter); 120 VNET_DEFINE(struct nd_prhead, nd_prefix); 121 VNET_DEFINE(struct rwlock, nd6_lock); 122 VNET_DEFINE(uint64_t, nd6_list_genid); 123 VNET_DEFINE(struct mtx, nd6_onlink_mtx); 124 125 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 126 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 127 128 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 129 130 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *, 131 struct ifnet *); 132 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 133 static void nd6_slowtimo(void *); 134 static int regen_tmpaddr(struct in6_ifaddr *); 135 static void nd6_free(struct llentry **, int); 136 static void nd6_free_redirect(const struct llentry *); 137 static void nd6_llinfo_timer(void *); 138 static void nd6_llinfo_settimer_locked(struct llentry *, long); 139 static void clear_llinfo_pqueue(struct llentry *); 140 static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 141 static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *, 142 const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **); 143 static int nd6_need_cache(struct ifnet *); 144 145 146 VNET_DEFINE_STATIC(struct callout, nd6_slowtimo_ch); 147 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 148 149 VNET_DEFINE(struct callout, nd6_timer_ch); 150 #define V_nd6_timer_ch VNET(nd6_timer_ch) 151 152 static void 153 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt) 154 { 155 struct rt_addrinfo rtinfo; 156 struct sockaddr_in6 dst; 157 struct sockaddr_dl gw; 158 struct ifnet *ifp; 159 int type; 160 int fibnum; 161 162 LLE_WLOCK_ASSERT(lle); 163 164 if (lltable_get_af(lle->lle_tbl) != AF_INET6) 165 return; 166 167 switch (evt) { 168 case LLENTRY_RESOLVED: 169 type = RTM_ADD; 170 KASSERT(lle->la_flags & LLE_VALID, 171 ("%s: %p resolved but not valid?", __func__, lle)); 172 break; 173 case LLENTRY_EXPIRED: 174 type = RTM_DELETE; 175 break; 176 default: 177 return; 178 } 179 180 ifp = lltable_get_ifp(lle->lle_tbl); 181 182 bzero(&dst, sizeof(dst)); 183 bzero(&gw, sizeof(gw)); 184 bzero(&rtinfo, sizeof(rtinfo)); 185 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst); 186 dst.sin6_scope_id = in6_getscopezone(ifp, 187 in6_addrscope(&dst.sin6_addr)); 188 gw.sdl_len = sizeof(struct sockaddr_dl); 189 gw.sdl_family = AF_LINK; 190 gw.sdl_alen = ifp->if_addrlen; 191 gw.sdl_index = ifp->if_index; 192 gw.sdl_type = ifp->if_type; 193 if (evt == LLENTRY_RESOLVED) 194 bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen); 195 rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst; 196 rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw; 197 rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY; 198 fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib; 199 rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | ( 200 type == RTM_ADD ? RTF_UP: 0), 0, fibnum); 201 } 202 203 /* 204 * A handler for interface link layer address change event. 205 */ 206 static void 207 nd6_iflladdr(void *arg __unused, struct ifnet *ifp) 208 { 209 210 lltable_update_ifaddr(LLTABLE6(ifp)); 211 } 212 213 void 214 nd6_init(void) 215 { 216 217 mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF); 218 rw_init(&V_nd6_lock, "nd6 list"); 219 220 LIST_INIT(&V_nd_prefix); 221 TAILQ_INIT(&V_nd_defrouter); 222 223 /* Start timers. */ 224 callout_init(&V_nd6_slowtimo_ch, 0); 225 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 226 nd6_slowtimo, curvnet); 227 228 callout_init(&V_nd6_timer_ch, 0); 229 callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet); 230 231 nd6_dad_init(); 232 if (IS_DEFAULT_VNET(curvnet)) { 233 lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event, 234 NULL, EVENTHANDLER_PRI_ANY); 235 iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event, 236 nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 237 ifnet_link_event_eh = EVENTHANDLER_REGISTER(ifnet_link_event, 238 nd6_ifnet_link_event, NULL, EVENTHANDLER_PRI_ANY); 239 } 240 } 241 242 #ifdef VIMAGE 243 void 244 nd6_destroy() 245 { 246 247 callout_drain(&V_nd6_slowtimo_ch); 248 callout_drain(&V_nd6_timer_ch); 249 if (IS_DEFAULT_VNET(curvnet)) { 250 EVENTHANDLER_DEREGISTER(ifnet_link_event, ifnet_link_event_eh); 251 EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); 252 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh); 253 } 254 rw_destroy(&V_nd6_lock); 255 mtx_destroy(&V_nd6_onlink_mtx); 256 } 257 #endif 258 259 struct nd_ifinfo * 260 nd6_ifattach(struct ifnet *ifp) 261 { 262 struct nd_ifinfo *nd; 263 264 nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO); 265 nd->initialized = 1; 266 267 nd->chlim = IPV6_DEFHLIM; 268 nd->basereachable = REACHABLE_TIME; 269 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 270 nd->retrans = RETRANS_TIMER; 271 272 nd->flags = ND6_IFF_PERFORMNUD; 273 274 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 275 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 276 * default regardless of the V_ip6_auto_linklocal configuration to 277 * give a reasonable default behavior. 278 */ 279 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 280 (ifp->if_flags & IFF_LOOPBACK)) 281 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 282 /* 283 * A loopback interface does not need to accept RTADV. 284 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 285 * default regardless of the V_ip6_accept_rtadv configuration to 286 * prevent the interface from accepting RA messages arrived 287 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 288 */ 289 if (V_ip6_accept_rtadv && 290 !(ifp->if_flags & IFF_LOOPBACK) && 291 (ifp->if_type != IFT_BRIDGE)) 292 nd->flags |= ND6_IFF_ACCEPT_RTADV; 293 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 294 nd->flags |= ND6_IFF_NO_RADR; 295 296 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 297 nd6_setmtu0(ifp, nd); 298 299 return nd; 300 } 301 302 void 303 nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd) 304 { 305 struct epoch_tracker et; 306 struct ifaddr *ifa, *next; 307 308 NET_EPOCH_ENTER(et); 309 CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { 310 if (ifa->ifa_addr->sa_family != AF_INET6) 311 continue; 312 313 /* stop DAD processing */ 314 nd6_dad_stop(ifa); 315 } 316 NET_EPOCH_EXIT(et); 317 318 free(nd, M_IP6NDP); 319 } 320 321 /* 322 * Reset ND level link MTU. This function is called when the physical MTU 323 * changes, which means we might have to adjust the ND level MTU. 324 */ 325 void 326 nd6_setmtu(struct ifnet *ifp) 327 { 328 if (ifp->if_afdata[AF_INET6] == NULL) 329 return; 330 331 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 332 } 333 334 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 335 void 336 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 337 { 338 u_int32_t omaxmtu; 339 340 omaxmtu = ndi->maxmtu; 341 ndi->maxmtu = ifp->if_mtu; 342 343 /* 344 * Decreasing the interface MTU under IPV6 minimum MTU may cause 345 * undesirable situation. We thus notify the operator of the change 346 * explicitly. The check for omaxmtu is necessary to restrict the 347 * log to the case of changing the MTU, not initializing it. 348 */ 349 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 350 log(LOG_NOTICE, "nd6_setmtu0: " 351 "new link MTU on %s (%lu) is too small for IPv6\n", 352 if_name(ifp), (unsigned long)ndi->maxmtu); 353 } 354 355 if (ndi->maxmtu > V_in6_maxmtu) 356 in6_setmaxmtu(); /* check all interfaces just in case */ 357 358 } 359 360 void 361 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 362 { 363 364 bzero(ndopts, sizeof(*ndopts)); 365 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 366 ndopts->nd_opts_last 367 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 368 369 if (icmp6len == 0) { 370 ndopts->nd_opts_done = 1; 371 ndopts->nd_opts_search = NULL; 372 } 373 } 374 375 /* 376 * Take one ND option. 377 */ 378 struct nd_opt_hdr * 379 nd6_option(union nd_opts *ndopts) 380 { 381 struct nd_opt_hdr *nd_opt; 382 int olen; 383 384 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 385 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 386 __func__)); 387 if (ndopts->nd_opts_search == NULL) 388 return NULL; 389 if (ndopts->nd_opts_done) 390 return NULL; 391 392 nd_opt = ndopts->nd_opts_search; 393 394 /* make sure nd_opt_len is inside the buffer */ 395 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 396 bzero(ndopts, sizeof(*ndopts)); 397 return NULL; 398 } 399 400 olen = nd_opt->nd_opt_len << 3; 401 if (olen == 0) { 402 /* 403 * Message validation requires that all included 404 * options have a length that is greater than zero. 405 */ 406 bzero(ndopts, sizeof(*ndopts)); 407 return NULL; 408 } 409 410 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 411 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 412 /* option overruns the end of buffer, invalid */ 413 bzero(ndopts, sizeof(*ndopts)); 414 return NULL; 415 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 416 /* reached the end of options chain */ 417 ndopts->nd_opts_done = 1; 418 ndopts->nd_opts_search = NULL; 419 } 420 return nd_opt; 421 } 422 423 /* 424 * Parse multiple ND options. 425 * This function is much easier to use, for ND routines that do not need 426 * multiple options of the same type. 427 */ 428 int 429 nd6_options(union nd_opts *ndopts) 430 { 431 struct nd_opt_hdr *nd_opt; 432 int i = 0; 433 434 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 435 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 436 __func__)); 437 if (ndopts->nd_opts_search == NULL) 438 return 0; 439 440 while (1) { 441 nd_opt = nd6_option(ndopts); 442 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 443 /* 444 * Message validation requires that all included 445 * options have a length that is greater than zero. 446 */ 447 ICMP6STAT_INC(icp6s_nd_badopt); 448 bzero(ndopts, sizeof(*ndopts)); 449 return -1; 450 } 451 452 if (nd_opt == NULL) 453 goto skip1; 454 455 switch (nd_opt->nd_opt_type) { 456 case ND_OPT_SOURCE_LINKADDR: 457 case ND_OPT_TARGET_LINKADDR: 458 case ND_OPT_MTU: 459 case ND_OPT_REDIRECTED_HEADER: 460 case ND_OPT_NONCE: 461 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 462 nd6log((LOG_INFO, 463 "duplicated ND6 option found (type=%d)\n", 464 nd_opt->nd_opt_type)); 465 /* XXX bark? */ 466 } else { 467 ndopts->nd_opt_array[nd_opt->nd_opt_type] 468 = nd_opt; 469 } 470 break; 471 case ND_OPT_PREFIX_INFORMATION: 472 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 473 ndopts->nd_opt_array[nd_opt->nd_opt_type] 474 = nd_opt; 475 } 476 ndopts->nd_opts_pi_end = 477 (struct nd_opt_prefix_info *)nd_opt; 478 break; 479 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 480 case ND_OPT_RDNSS: /* RFC 6106 */ 481 case ND_OPT_DNSSL: /* RFC 6106 */ 482 /* 483 * Silently ignore options we know and do not care about 484 * in the kernel. 485 */ 486 break; 487 default: 488 /* 489 * Unknown options must be silently ignored, 490 * to accommodate future extension to the protocol. 491 */ 492 nd6log((LOG_DEBUG, 493 "nd6_options: unsupported option %d - " 494 "option ignored\n", nd_opt->nd_opt_type)); 495 } 496 497 skip1: 498 i++; 499 if (i > V_nd6_maxndopt) { 500 ICMP6STAT_INC(icp6s_nd_toomanyopt); 501 nd6log((LOG_INFO, "too many loop in nd opt\n")); 502 break; 503 } 504 505 if (ndopts->nd_opts_done) 506 break; 507 } 508 509 return 0; 510 } 511 512 /* 513 * ND6 timer routine to handle ND6 entries 514 */ 515 static void 516 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 517 { 518 int canceled; 519 520 LLE_WLOCK_ASSERT(ln); 521 522 if (tick < 0) { 523 ln->la_expire = 0; 524 ln->ln_ntick = 0; 525 canceled = callout_stop(&ln->lle_timer); 526 } else { 527 ln->la_expire = time_uptime + tick / hz; 528 LLE_ADDREF(ln); 529 if (tick > INT_MAX) { 530 ln->ln_ntick = tick - INT_MAX; 531 canceled = callout_reset(&ln->lle_timer, INT_MAX, 532 nd6_llinfo_timer, ln); 533 } else { 534 ln->ln_ntick = 0; 535 canceled = callout_reset(&ln->lle_timer, tick, 536 nd6_llinfo_timer, ln); 537 } 538 } 539 if (canceled > 0) 540 LLE_REMREF(ln); 541 } 542 543 /* 544 * Gets source address of the first packet in hold queue 545 * and stores it in @src. 546 * Returns pointer to @src (if hold queue is not empty) or NULL. 547 * 548 * Set noinline to be dtrace-friendly 549 */ 550 static __noinline struct in6_addr * 551 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 552 { 553 struct ip6_hdr hdr; 554 struct mbuf *m; 555 556 if (ln->la_hold == NULL) 557 return (NULL); 558 559 /* 560 * assume every packet in la_hold has the same IP header 561 */ 562 m = ln->la_hold; 563 if (sizeof(hdr) > m->m_len) 564 return (NULL); 565 566 m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr); 567 *src = hdr.ip6_src; 568 569 return (src); 570 } 571 572 /* 573 * Checks if we need to switch from STALE state. 574 * 575 * RFC 4861 requires switching from STALE to DELAY state 576 * on first packet matching entry, waiting V_nd6_delay and 577 * transition to PROBE state (if upper layer confirmation was 578 * not received). 579 * 580 * This code performs a bit differently: 581 * On packet hit we don't change state (but desired state 582 * can be guessed by control plane). However, after V_nd6_delay 583 * seconds code will transition to PROBE state (so DELAY state 584 * is kinda skipped in most situations). 585 * 586 * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so 587 * we perform the following upon entering STALE state: 588 * 589 * 1) Arm timer to run each V_nd6_delay seconds to make sure that 590 * if packet was transmitted at the start of given interval, we 591 * would be able to switch to PROBE state in V_nd6_delay seconds 592 * as user expects. 593 * 594 * 2) Reschedule timer until original V_nd6_gctimer expires keeping 595 * lle in STALE state (remaining timer value stored in lle_remtime). 596 * 597 * 3) Reschedule timer if packet was transmitted less that V_nd6_delay 598 * seconds ago. 599 * 600 * Returns non-zero value if the entry is still STALE (storing 601 * the next timer interval in @pdelay). 602 * 603 * Returns zero value if original timer expired or we need to switch to 604 * PROBE (store that in @do_switch variable). 605 */ 606 static int 607 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch) 608 { 609 int nd_delay, nd_gctimer, r_skip_req; 610 time_t lle_hittime; 611 long delay; 612 613 *do_switch = 0; 614 nd_gctimer = V_nd6_gctimer; 615 nd_delay = V_nd6_delay; 616 617 LLE_REQ_LOCK(lle); 618 r_skip_req = lle->r_skip_req; 619 lle_hittime = lle->lle_hittime; 620 LLE_REQ_UNLOCK(lle); 621 622 if (r_skip_req > 0) { 623 624 /* 625 * Nonzero r_skip_req value was set upon entering 626 * STALE state. Since value was not changed, no 627 * packets were passed using this lle. Ask for 628 * timer reschedule and keep STALE state. 629 */ 630 delay = (long)(MIN(nd_gctimer, nd_delay)); 631 delay *= hz; 632 if (lle->lle_remtime > delay) 633 lle->lle_remtime -= delay; 634 else { 635 delay = lle->lle_remtime; 636 lle->lle_remtime = 0; 637 } 638 639 if (delay == 0) { 640 641 /* 642 * The original ng6_gctime timeout ended, 643 * no more rescheduling. 644 */ 645 return (0); 646 } 647 648 *pdelay = delay; 649 return (1); 650 } 651 652 /* 653 * Packet received. Verify timestamp 654 */ 655 delay = (long)(time_uptime - lle_hittime); 656 if (delay < nd_delay) { 657 658 /* 659 * V_nd6_delay still not passed since the first 660 * hit in STALE state. 661 * Reshedule timer and return. 662 */ 663 *pdelay = (long)(nd_delay - delay) * hz; 664 return (1); 665 } 666 667 /* Request switching to probe */ 668 *do_switch = 1; 669 return (0); 670 } 671 672 673 /* 674 * Switch @lle state to new state optionally arming timers. 675 * 676 * Set noinline to be dtrace-friendly 677 */ 678 __noinline void 679 nd6_llinfo_setstate(struct llentry *lle, int newstate) 680 { 681 struct ifnet *ifp; 682 int nd_gctimer, nd_delay; 683 long delay, remtime; 684 685 delay = 0; 686 remtime = 0; 687 688 switch (newstate) { 689 case ND6_LLINFO_INCOMPLETE: 690 ifp = lle->lle_tbl->llt_ifp; 691 delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000; 692 break; 693 case ND6_LLINFO_REACHABLE: 694 if (!ND6_LLINFO_PERMANENT(lle)) { 695 ifp = lle->lle_tbl->llt_ifp; 696 delay = (long)ND_IFINFO(ifp)->reachable * hz; 697 } 698 break; 699 case ND6_LLINFO_STALE: 700 701 /* 702 * Notify fast path that we want to know if any packet 703 * is transmitted by setting r_skip_req. 704 */ 705 LLE_REQ_LOCK(lle); 706 lle->r_skip_req = 1; 707 LLE_REQ_UNLOCK(lle); 708 nd_delay = V_nd6_delay; 709 nd_gctimer = V_nd6_gctimer; 710 711 delay = (long)(MIN(nd_gctimer, nd_delay)) * hz; 712 remtime = (long)nd_gctimer * hz - delay; 713 break; 714 case ND6_LLINFO_DELAY: 715 lle->la_asked = 0; 716 delay = (long)V_nd6_delay * hz; 717 break; 718 } 719 720 if (delay > 0) 721 nd6_llinfo_settimer_locked(lle, delay); 722 723 lle->lle_remtime = remtime; 724 lle->ln_state = newstate; 725 } 726 727 /* 728 * Timer-dependent part of nd state machine. 729 * 730 * Set noinline to be dtrace-friendly 731 */ 732 static __noinline void 733 nd6_llinfo_timer(void *arg) 734 { 735 struct llentry *ln; 736 struct in6_addr *dst, *pdst, *psrc, src; 737 struct ifnet *ifp; 738 struct nd_ifinfo *ndi; 739 int do_switch, send_ns; 740 long delay; 741 742 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 743 ln = (struct llentry *)arg; 744 ifp = lltable_get_ifp(ln->lle_tbl); 745 CURVNET_SET(ifp->if_vnet); 746 747 ND6_RLOCK(); 748 LLE_WLOCK(ln); 749 if (callout_pending(&ln->lle_timer)) { 750 /* 751 * Here we are a bit odd here in the treatment of 752 * active/pending. If the pending bit is set, it got 753 * rescheduled before I ran. The active 754 * bit we ignore, since if it was stopped 755 * in ll_tablefree() and was currently running 756 * it would have return 0 so the code would 757 * not have deleted it since the callout could 758 * not be stopped so we want to go through 759 * with the delete here now. If the callout 760 * was restarted, the pending bit will be back on and 761 * we just want to bail since the callout_reset would 762 * return 1 and our reference would have been removed 763 * by nd6_llinfo_settimer_locked above since canceled 764 * would have been 1. 765 */ 766 LLE_WUNLOCK(ln); 767 ND6_RUNLOCK(); 768 CURVNET_RESTORE(); 769 return; 770 } 771 ndi = ND_IFINFO(ifp); 772 send_ns = 0; 773 dst = &ln->r_l3addr.addr6; 774 pdst = dst; 775 776 if (ln->ln_ntick > 0) { 777 if (ln->ln_ntick > INT_MAX) { 778 ln->ln_ntick -= INT_MAX; 779 nd6_llinfo_settimer_locked(ln, INT_MAX); 780 } else { 781 ln->ln_ntick = 0; 782 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 783 } 784 goto done; 785 } 786 787 if (ln->la_flags & LLE_STATIC) { 788 goto done; 789 } 790 791 if (ln->la_flags & LLE_DELETED) { 792 nd6_free(&ln, 0); 793 goto done; 794 } 795 796 switch (ln->ln_state) { 797 case ND6_LLINFO_INCOMPLETE: 798 if (ln->la_asked < V_nd6_mmaxtries) { 799 ln->la_asked++; 800 send_ns = 1; 801 /* Send NS to multicast address */ 802 pdst = NULL; 803 } else { 804 struct mbuf *m = ln->la_hold; 805 if (m) { 806 struct mbuf *m0; 807 808 /* 809 * assuming every packet in la_hold has the 810 * same IP header. Send error after unlock. 811 */ 812 m0 = m->m_nextpkt; 813 m->m_nextpkt = NULL; 814 ln->la_hold = m0; 815 clear_llinfo_pqueue(ln); 816 } 817 nd6_free(&ln, 0); 818 if (m != NULL) 819 icmp6_error2(m, ICMP6_DST_UNREACH, 820 ICMP6_DST_UNREACH_ADDR, 0, ifp); 821 } 822 break; 823 case ND6_LLINFO_REACHABLE: 824 if (!ND6_LLINFO_PERMANENT(ln)) 825 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 826 break; 827 828 case ND6_LLINFO_STALE: 829 if (nd6_is_stale(ln, &delay, &do_switch) != 0) { 830 831 /* 832 * No packet has used this entry and GC timeout 833 * has not been passed. Reshedule timer and 834 * return. 835 */ 836 nd6_llinfo_settimer_locked(ln, delay); 837 break; 838 } 839 840 if (do_switch == 0) { 841 842 /* 843 * GC timer has ended and entry hasn't been used. 844 * Run Garbage collector (RFC 4861, 5.3) 845 */ 846 if (!ND6_LLINFO_PERMANENT(ln)) 847 nd6_free(&ln, 1); 848 break; 849 } 850 851 /* Entry has been used AND delay timer has ended. */ 852 853 /* FALLTHROUGH */ 854 855 case ND6_LLINFO_DELAY: 856 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 857 /* We need NUD */ 858 ln->la_asked = 1; 859 nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE); 860 send_ns = 1; 861 } else 862 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */ 863 break; 864 case ND6_LLINFO_PROBE: 865 if (ln->la_asked < V_nd6_umaxtries) { 866 ln->la_asked++; 867 send_ns = 1; 868 } else { 869 nd6_free(&ln, 0); 870 } 871 break; 872 default: 873 panic("%s: paths in a dark night can be confusing: %d", 874 __func__, ln->ln_state); 875 } 876 done: 877 if (ln != NULL) 878 ND6_RUNLOCK(); 879 if (send_ns != 0) { 880 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 881 psrc = nd6_llinfo_get_holdsrc(ln, &src); 882 LLE_FREE_LOCKED(ln); 883 ln = NULL; 884 nd6_ns_output(ifp, psrc, pdst, dst, NULL); 885 } 886 887 if (ln != NULL) 888 LLE_FREE_LOCKED(ln); 889 CURVNET_RESTORE(); 890 } 891 892 893 /* 894 * ND6 timer routine to expire default route list and prefix list 895 */ 896 void 897 nd6_timer(void *arg) 898 { 899 CURVNET_SET((struct vnet *) arg); 900 struct nd_drhead drq; 901 struct nd_prhead prl; 902 struct nd_defrouter *dr, *ndr; 903 struct nd_prefix *pr, *npr; 904 struct ifnet *ifp; 905 struct in6_ifaddr *ia6, *nia6; 906 uint64_t genid; 907 908 TAILQ_INIT(&drq); 909 LIST_INIT(&prl); 910 911 ND6_WLOCK(); 912 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) 913 if (dr->expire && dr->expire < time_uptime) 914 defrouter_unlink(dr, &drq); 915 ND6_WUNLOCK(); 916 917 while ((dr = TAILQ_FIRST(&drq)) != NULL) { 918 TAILQ_REMOVE(&drq, dr, dr_entry); 919 defrouter_del(dr); 920 } 921 922 /* 923 * expire interface addresses. 924 * in the past the loop was inside prefix expiry processing. 925 * However, from a stricter speci-confrmance standpoint, we should 926 * rather separate address lifetimes and prefix lifetimes. 927 * 928 * XXXRW: in6_ifaddrhead locking. 929 */ 930 addrloop: 931 CK_STAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 932 /* check address lifetime */ 933 if (IFA6_IS_INVALID(ia6)) { 934 int regen = 0; 935 936 /* 937 * If the expiring address is temporary, try 938 * regenerating a new one. This would be useful when 939 * we suspended a laptop PC, then turned it on after a 940 * period that could invalidate all temporary 941 * addresses. Although we may have to restart the 942 * loop (see below), it must be after purging the 943 * address. Otherwise, we'd see an infinite loop of 944 * regeneration. 945 */ 946 if (V_ip6_use_tempaddr && 947 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 948 if (regen_tmpaddr(ia6) == 0) 949 regen = 1; 950 } 951 952 in6_purgeaddr(&ia6->ia_ifa); 953 954 if (regen) 955 goto addrloop; /* XXX: see below */ 956 } else if (IFA6_IS_DEPRECATED(ia6)) { 957 int oldflags = ia6->ia6_flags; 958 959 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 960 961 /* 962 * If a temporary address has just become deprecated, 963 * regenerate a new one if possible. 964 */ 965 if (V_ip6_use_tempaddr && 966 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 967 (oldflags & IN6_IFF_DEPRECATED) == 0) { 968 969 if (regen_tmpaddr(ia6) == 0) { 970 /* 971 * A new temporary address is 972 * generated. 973 * XXX: this means the address chain 974 * has changed while we are still in 975 * the loop. Although the change 976 * would not cause disaster (because 977 * it's not a deletion, but an 978 * addition,) we'd rather restart the 979 * loop just for safety. Or does this 980 * significantly reduce performance?? 981 */ 982 goto addrloop; 983 } 984 } 985 } else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) { 986 /* 987 * Schedule DAD for a tentative address. This happens 988 * if the interface was down or not running 989 * when the address was configured. 990 */ 991 int delay; 992 993 delay = arc4random() % 994 (MAX_RTR_SOLICITATION_DELAY * hz); 995 nd6_dad_start((struct ifaddr *)ia6, delay); 996 } else { 997 /* 998 * Check status of the interface. If it is down, 999 * mark the address as tentative for future DAD. 1000 */ 1001 ifp = ia6->ia_ifp; 1002 if ((ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0 && 1003 ((ifp->if_flags & IFF_UP) == 0 || 1004 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 1005 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)){ 1006 ia6->ia6_flags &= ~IN6_IFF_DUPLICATED; 1007 ia6->ia6_flags |= IN6_IFF_TENTATIVE; 1008 } 1009 1010 /* 1011 * A new RA might have made a deprecated address 1012 * preferred. 1013 */ 1014 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 1015 } 1016 } 1017 1018 ND6_WLOCK(); 1019 restart: 1020 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1021 /* 1022 * Expire prefixes. Since the pltime is only used for 1023 * autoconfigured addresses, pltime processing for prefixes is 1024 * not necessary. 1025 * 1026 * Only unlink after all derived addresses have expired. This 1027 * may not occur until two hours after the prefix has expired 1028 * per RFC 4862. If the prefix expires before its derived 1029 * addresses, mark it off-link. This will be done automatically 1030 * after unlinking if no address references remain. 1031 */ 1032 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME || 1033 time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime) 1034 continue; 1035 1036 if (pr->ndpr_addrcnt == 0) { 1037 nd6_prefix_unlink(pr, &prl); 1038 continue; 1039 } 1040 if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) { 1041 genid = V_nd6_list_genid; 1042 nd6_prefix_ref(pr); 1043 ND6_WUNLOCK(); 1044 ND6_ONLINK_LOCK(); 1045 (void)nd6_prefix_offlink(pr); 1046 ND6_ONLINK_UNLOCK(); 1047 ND6_WLOCK(); 1048 nd6_prefix_rele(pr); 1049 if (genid != V_nd6_list_genid) 1050 goto restart; 1051 } 1052 } 1053 ND6_WUNLOCK(); 1054 1055 while ((pr = LIST_FIRST(&prl)) != NULL) { 1056 LIST_REMOVE(pr, ndpr_entry); 1057 nd6_prefix_del(pr); 1058 } 1059 1060 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 1061 nd6_timer, curvnet); 1062 1063 CURVNET_RESTORE(); 1064 } 1065 1066 /* 1067 * ia6 - deprecated/invalidated temporary address 1068 */ 1069 static int 1070 regen_tmpaddr(struct in6_ifaddr *ia6) 1071 { 1072 struct epoch_tracker et; 1073 struct ifaddr *ifa; 1074 struct ifnet *ifp; 1075 struct in6_ifaddr *public_ifa6 = NULL; 1076 1077 ifp = ia6->ia_ifa.ifa_ifp; 1078 NET_EPOCH_ENTER(et); 1079 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1080 struct in6_ifaddr *it6; 1081 1082 if (ifa->ifa_addr->sa_family != AF_INET6) 1083 continue; 1084 1085 it6 = (struct in6_ifaddr *)ifa; 1086 1087 /* ignore no autoconf addresses. */ 1088 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1089 continue; 1090 1091 /* ignore autoconf addresses with different prefixes. */ 1092 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 1093 continue; 1094 1095 /* 1096 * Now we are looking at an autoconf address with the same 1097 * prefix as ours. If the address is temporary and is still 1098 * preferred, do not create another one. It would be rare, but 1099 * could happen, for example, when we resume a laptop PC after 1100 * a long period. 1101 */ 1102 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 1103 !IFA6_IS_DEPRECATED(it6)) { 1104 public_ifa6 = NULL; 1105 break; 1106 } 1107 1108 /* 1109 * This is a public autoconf address that has the same prefix 1110 * as ours. If it is preferred, keep it. We can't break the 1111 * loop here, because there may be a still-preferred temporary 1112 * address with the prefix. 1113 */ 1114 if (!IFA6_IS_DEPRECATED(it6)) 1115 public_ifa6 = it6; 1116 } 1117 if (public_ifa6 != NULL) 1118 ifa_ref(&public_ifa6->ia_ifa); 1119 NET_EPOCH_EXIT(et); 1120 1121 if (public_ifa6 != NULL) { 1122 int e; 1123 1124 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 1125 ifa_free(&public_ifa6->ia_ifa); 1126 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 1127 " tmp addr,errno=%d\n", e); 1128 return (-1); 1129 } 1130 ifa_free(&public_ifa6->ia_ifa); 1131 return (0); 1132 } 1133 1134 return (-1); 1135 } 1136 1137 /* 1138 * Remove prefix and default router list entries corresponding to ifp. Neighbor 1139 * cache entries are freed in in6_domifdetach(). 1140 */ 1141 void 1142 nd6_purge(struct ifnet *ifp) 1143 { 1144 struct nd_drhead drq; 1145 struct nd_prhead prl; 1146 struct nd_defrouter *dr, *ndr; 1147 struct nd_prefix *pr, *npr; 1148 1149 TAILQ_INIT(&drq); 1150 LIST_INIT(&prl); 1151 1152 /* 1153 * Nuke default router list entries toward ifp. 1154 * We defer removal of default router list entries that is installed 1155 * in the routing table, in order to keep additional side effects as 1156 * small as possible. 1157 */ 1158 ND6_WLOCK(); 1159 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 1160 if (dr->installed) 1161 continue; 1162 if (dr->ifp == ifp) 1163 defrouter_unlink(dr, &drq); 1164 } 1165 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 1166 if (!dr->installed) 1167 continue; 1168 if (dr->ifp == ifp) 1169 defrouter_unlink(dr, &drq); 1170 } 1171 1172 /* 1173 * Remove prefixes on ifp. We should have already removed addresses on 1174 * this interface, so no addresses should be referencing these prefixes. 1175 */ 1176 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1177 if (pr->ndpr_ifp == ifp) 1178 nd6_prefix_unlink(pr, &prl); 1179 } 1180 ND6_WUNLOCK(); 1181 1182 /* Delete the unlinked router and prefix objects. */ 1183 while ((dr = TAILQ_FIRST(&drq)) != NULL) { 1184 TAILQ_REMOVE(&drq, dr, dr_entry); 1185 defrouter_del(dr); 1186 } 1187 while ((pr = LIST_FIRST(&prl)) != NULL) { 1188 LIST_REMOVE(pr, ndpr_entry); 1189 nd6_prefix_del(pr); 1190 } 1191 1192 /* cancel default outgoing interface setting */ 1193 if (V_nd6_defifindex == ifp->if_index) 1194 nd6_setdefaultiface(0); 1195 1196 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1197 /* Refresh default router list. */ 1198 defrouter_select_fib(ifp->if_fib); 1199 } 1200 } 1201 1202 /* 1203 * the caller acquires and releases the lock on the lltbls 1204 * Returns the llentry locked 1205 */ 1206 struct llentry * 1207 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1208 { 1209 struct sockaddr_in6 sin6; 1210 struct llentry *ln; 1211 1212 bzero(&sin6, sizeof(sin6)); 1213 sin6.sin6_len = sizeof(struct sockaddr_in6); 1214 sin6.sin6_family = AF_INET6; 1215 sin6.sin6_addr = *addr6; 1216 1217 IF_AFDATA_LOCK_ASSERT(ifp); 1218 1219 ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6); 1220 1221 return (ln); 1222 } 1223 1224 struct llentry * 1225 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1226 { 1227 struct sockaddr_in6 sin6; 1228 struct llentry *ln; 1229 1230 bzero(&sin6, sizeof(sin6)); 1231 sin6.sin6_len = sizeof(struct sockaddr_in6); 1232 sin6.sin6_family = AF_INET6; 1233 sin6.sin6_addr = *addr6; 1234 1235 ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6); 1236 if (ln != NULL) 1237 ln->ln_state = ND6_LLINFO_NOSTATE; 1238 1239 return (ln); 1240 } 1241 1242 /* 1243 * Test whether a given IPv6 address is a neighbor or not, ignoring 1244 * the actual neighbor cache. The neighbor cache is ignored in order 1245 * to not reenter the routing code from within itself. 1246 */ 1247 static int 1248 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1249 { 1250 struct nd_prefix *pr; 1251 struct ifaddr *ifa; 1252 struct rt_addrinfo info; 1253 struct sockaddr_in6 rt_key; 1254 const struct sockaddr *dst6; 1255 uint64_t genid; 1256 int error, fibnum; 1257 1258 /* 1259 * A link-local address is always a neighbor. 1260 * XXX: a link does not necessarily specify a single interface. 1261 */ 1262 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1263 struct sockaddr_in6 sin6_copy; 1264 u_int32_t zone; 1265 1266 /* 1267 * We need sin6_copy since sa6_recoverscope() may modify the 1268 * content (XXX). 1269 */ 1270 sin6_copy = *addr; 1271 if (sa6_recoverscope(&sin6_copy)) 1272 return (0); /* XXX: should be impossible */ 1273 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1274 return (0); 1275 if (sin6_copy.sin6_scope_id == zone) 1276 return (1); 1277 else 1278 return (0); 1279 } 1280 1281 bzero(&rt_key, sizeof(rt_key)); 1282 bzero(&info, sizeof(info)); 1283 info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key; 1284 1285 /* 1286 * If the address matches one of our addresses, 1287 * it should be a neighbor. 1288 * If the address matches one of our on-link prefixes, it should be a 1289 * neighbor. 1290 */ 1291 ND6_RLOCK(); 1292 restart: 1293 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1294 if (pr->ndpr_ifp != ifp) 1295 continue; 1296 1297 if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) { 1298 dst6 = (const struct sockaddr *)&pr->ndpr_prefix; 1299 1300 /* 1301 * We only need to check all FIBs if add_addr_allfibs 1302 * is unset. If set, checking any FIB will suffice. 1303 */ 1304 fibnum = V_rt_add_addr_allfibs ? rt_numfibs - 1 : 0; 1305 for (; fibnum < rt_numfibs; fibnum++) { 1306 genid = V_nd6_list_genid; 1307 ND6_RUNLOCK(); 1308 1309 /* 1310 * Restore length field before 1311 * retrying lookup 1312 */ 1313 rt_key.sin6_len = sizeof(rt_key); 1314 error = rib_lookup_info(fibnum, dst6, 0, 0, 1315 &info); 1316 1317 ND6_RLOCK(); 1318 if (genid != V_nd6_list_genid) 1319 goto restart; 1320 if (error == 0) 1321 break; 1322 } 1323 if (error != 0) 1324 continue; 1325 1326 /* 1327 * This is the case where multiple interfaces 1328 * have the same prefix, but only one is installed 1329 * into the routing table and that prefix entry 1330 * is not the one being examined here. In the case 1331 * where RADIX_MPATH is enabled, multiple route 1332 * entries (of the same rt_key value) will be 1333 * installed because the interface addresses all 1334 * differ. 1335 */ 1336 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1337 &rt_key.sin6_addr)) 1338 continue; 1339 } 1340 1341 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1342 &addr->sin6_addr, &pr->ndpr_mask)) { 1343 ND6_RUNLOCK(); 1344 return (1); 1345 } 1346 } 1347 ND6_RUNLOCK(); 1348 1349 /* 1350 * If the address is assigned on the node of the other side of 1351 * a p2p interface, the address should be a neighbor. 1352 */ 1353 if (ifp->if_flags & IFF_POINTOPOINT) { 1354 struct epoch_tracker et; 1355 1356 NET_EPOCH_ENTER(et); 1357 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1358 if (ifa->ifa_addr->sa_family != addr->sin6_family) 1359 continue; 1360 if (ifa->ifa_dstaddr != NULL && 1361 sa_equal(addr, ifa->ifa_dstaddr)) { 1362 NET_EPOCH_EXIT(et); 1363 return 1; 1364 } 1365 } 1366 NET_EPOCH_EXIT(et); 1367 } 1368 1369 /* 1370 * If the default router list is empty, all addresses are regarded 1371 * as on-link, and thus, as a neighbor. 1372 */ 1373 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1374 TAILQ_EMPTY(&V_nd_defrouter) && 1375 V_nd6_defifindex == ifp->if_index) { 1376 return (1); 1377 } 1378 1379 return (0); 1380 } 1381 1382 1383 /* 1384 * Detect if a given IPv6 address identifies a neighbor on a given link. 1385 * XXX: should take care of the destination of a p2p link? 1386 */ 1387 int 1388 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1389 { 1390 struct epoch_tracker et; 1391 struct llentry *lle; 1392 int rc = 0; 1393 1394 IF_AFDATA_UNLOCK_ASSERT(ifp); 1395 if (nd6_is_new_addr_neighbor(addr, ifp)) 1396 return (1); 1397 1398 /* 1399 * Even if the address matches none of our addresses, it might be 1400 * in the neighbor cache. 1401 */ 1402 NET_EPOCH_ENTER(et); 1403 if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { 1404 LLE_RUNLOCK(lle); 1405 rc = 1; 1406 } 1407 NET_EPOCH_EXIT(et); 1408 return (rc); 1409 } 1410 1411 /* 1412 * Free an nd6 llinfo entry. 1413 * Since the function would cause significant changes in the kernel, DO NOT 1414 * make it global, unless you have a strong reason for the change, and are sure 1415 * that the change is safe. 1416 * 1417 * Set noinline to be dtrace-friendly 1418 */ 1419 static __noinline void 1420 nd6_free(struct llentry **lnp, int gc) 1421 { 1422 struct ifnet *ifp; 1423 struct llentry *ln; 1424 struct nd_defrouter *dr; 1425 1426 ln = *lnp; 1427 *lnp = NULL; 1428 1429 LLE_WLOCK_ASSERT(ln); 1430 ND6_RLOCK_ASSERT(); 1431 1432 ifp = lltable_get_ifp(ln->lle_tbl); 1433 if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0) 1434 dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp); 1435 else 1436 dr = NULL; 1437 ND6_RUNLOCK(); 1438 1439 if ((ln->la_flags & LLE_DELETED) == 0) 1440 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 1441 1442 /* 1443 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1444 * even though it is not harmful, it was not really necessary. 1445 */ 1446 1447 /* cancel timer */ 1448 nd6_llinfo_settimer_locked(ln, -1); 1449 1450 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1451 if (dr != NULL && dr->expire && 1452 ln->ln_state == ND6_LLINFO_STALE && gc) { 1453 /* 1454 * If the reason for the deletion is just garbage 1455 * collection, and the neighbor is an active default 1456 * router, do not delete it. Instead, reset the GC 1457 * timer using the router's lifetime. 1458 * Simply deleting the entry would affect default 1459 * router selection, which is not necessarily a good 1460 * thing, especially when we're using router preference 1461 * values. 1462 * XXX: the check for ln_state would be redundant, 1463 * but we intentionally keep it just in case. 1464 */ 1465 if (dr->expire > time_uptime) 1466 nd6_llinfo_settimer_locked(ln, 1467 (dr->expire - time_uptime) * hz); 1468 else 1469 nd6_llinfo_settimer_locked(ln, 1470 (long)V_nd6_gctimer * hz); 1471 1472 LLE_REMREF(ln); 1473 LLE_WUNLOCK(ln); 1474 defrouter_rele(dr); 1475 return; 1476 } 1477 1478 if (dr) { 1479 /* 1480 * Unreachablity of a router might affect the default 1481 * router selection and on-link detection of advertised 1482 * prefixes. 1483 */ 1484 1485 /* 1486 * Temporarily fake the state to choose a new default 1487 * router and to perform on-link determination of 1488 * prefixes correctly. 1489 * Below the state will be set correctly, 1490 * or the entry itself will be deleted. 1491 */ 1492 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1493 } 1494 1495 if (ln->ln_router || dr) { 1496 1497 /* 1498 * We need to unlock to avoid a LOR with rt6_flush() with the 1499 * rnh and for the calls to pfxlist_onlink_check() and 1500 * defrouter_select_fib() in the block further down for calls 1501 * into nd6_lookup(). We still hold a ref. 1502 */ 1503 LLE_WUNLOCK(ln); 1504 1505 /* 1506 * rt6_flush must be called whether or not the neighbor 1507 * is in the Default Router List. 1508 * See a corresponding comment in nd6_na_input(). 1509 */ 1510 rt6_flush(&ln->r_l3addr.addr6, ifp); 1511 } 1512 1513 if (dr) { 1514 /* 1515 * Since defrouter_select_fib() does not affect the 1516 * on-link determination and MIP6 needs the check 1517 * before the default router selection, we perform 1518 * the check now. 1519 */ 1520 pfxlist_onlink_check(); 1521 1522 /* 1523 * Refresh default router list. 1524 */ 1525 defrouter_select_fib(dr->ifp->if_fib); 1526 } 1527 1528 /* 1529 * If this entry was added by an on-link redirect, remove the 1530 * corresponding host route. 1531 */ 1532 if (ln->la_flags & LLE_REDIRECT) 1533 nd6_free_redirect(ln); 1534 1535 if (ln->ln_router || dr) 1536 LLE_WLOCK(ln); 1537 } 1538 1539 /* 1540 * Save to unlock. We still hold an extra reference and will not 1541 * free(9) in llentry_free() if someone else holds one as well. 1542 */ 1543 LLE_WUNLOCK(ln); 1544 IF_AFDATA_LOCK(ifp); 1545 LLE_WLOCK(ln); 1546 /* Guard against race with other llentry_free(). */ 1547 if (ln->la_flags & LLE_LINKED) { 1548 /* Remove callout reference */ 1549 LLE_REMREF(ln); 1550 lltable_unlink_entry(ln->lle_tbl, ln); 1551 } 1552 IF_AFDATA_UNLOCK(ifp); 1553 1554 llentry_free(ln); 1555 if (dr != NULL) 1556 defrouter_rele(dr); 1557 } 1558 1559 static int 1560 nd6_isdynrte(const struct rtentry *rt, void *xap) 1561 { 1562 1563 if (rt->rt_flags == (RTF_UP | RTF_HOST | RTF_DYNAMIC)) 1564 return (1); 1565 1566 return (0); 1567 } 1568 /* 1569 * Remove the rtentry for the given llentry, 1570 * both of which were installed by a redirect. 1571 */ 1572 static void 1573 nd6_free_redirect(const struct llentry *ln) 1574 { 1575 int fibnum; 1576 struct sockaddr_in6 sin6; 1577 struct rt_addrinfo info; 1578 1579 lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6); 1580 memset(&info, 0, sizeof(info)); 1581 info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6; 1582 info.rti_filter = nd6_isdynrte; 1583 1584 for (fibnum = 0; fibnum < rt_numfibs; fibnum++) 1585 rtrequest1_fib(RTM_DELETE, &info, NULL, fibnum); 1586 } 1587 1588 /* 1589 * Rejuvenate this function for routing operations related 1590 * processing. 1591 */ 1592 void 1593 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info) 1594 { 1595 struct sockaddr_in6 *gateway; 1596 struct nd_defrouter *dr; 1597 struct ifnet *ifp; 1598 1599 gateway = (struct sockaddr_in6 *)rt->rt_gateway; 1600 ifp = rt->rt_ifp; 1601 1602 switch (req) { 1603 case RTM_ADD: 1604 break; 1605 1606 case RTM_DELETE: 1607 if (!ifp) 1608 return; 1609 /* 1610 * Only indirect routes are interesting. 1611 */ 1612 if ((rt->rt_flags & RTF_GATEWAY) == 0) 1613 return; 1614 /* 1615 * check for default route 1616 */ 1617 if (IN6_ARE_ADDR_EQUAL(&in6addr_any, 1618 &SIN6(rt_key(rt))->sin6_addr)) { 1619 dr = defrouter_lookup(&gateway->sin6_addr, ifp); 1620 if (dr != NULL) { 1621 dr->installed = 0; 1622 defrouter_rele(dr); 1623 } 1624 } 1625 break; 1626 } 1627 } 1628 1629 1630 int 1631 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1632 { 1633 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1634 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1635 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1636 struct epoch_tracker et; 1637 int error = 0; 1638 1639 if (ifp->if_afdata[AF_INET6] == NULL) 1640 return (EPFNOSUPPORT); 1641 switch (cmd) { 1642 case OSIOCGIFINFO_IN6: 1643 #define ND ndi->ndi 1644 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1645 bzero(&ND, sizeof(ND)); 1646 ND.linkmtu = IN6_LINKMTU(ifp); 1647 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1648 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1649 ND.reachable = ND_IFINFO(ifp)->reachable; 1650 ND.retrans = ND_IFINFO(ifp)->retrans; 1651 ND.flags = ND_IFINFO(ifp)->flags; 1652 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1653 ND.chlim = ND_IFINFO(ifp)->chlim; 1654 break; 1655 case SIOCGIFINFO_IN6: 1656 ND = *ND_IFINFO(ifp); 1657 break; 1658 case SIOCSIFINFO_IN6: 1659 /* 1660 * used to change host variables from userland. 1661 * intended for a use on router to reflect RA configurations. 1662 */ 1663 /* 0 means 'unspecified' */ 1664 if (ND.linkmtu != 0) { 1665 if (ND.linkmtu < IPV6_MMTU || 1666 ND.linkmtu > IN6_LINKMTU(ifp)) { 1667 error = EINVAL; 1668 break; 1669 } 1670 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1671 } 1672 1673 if (ND.basereachable != 0) { 1674 int obasereachable = ND_IFINFO(ifp)->basereachable; 1675 1676 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1677 if (ND.basereachable != obasereachable) 1678 ND_IFINFO(ifp)->reachable = 1679 ND_COMPUTE_RTIME(ND.basereachable); 1680 } 1681 if (ND.retrans != 0) 1682 ND_IFINFO(ifp)->retrans = ND.retrans; 1683 if (ND.chlim != 0) 1684 ND_IFINFO(ifp)->chlim = ND.chlim; 1685 /* FALLTHROUGH */ 1686 case SIOCSIFINFO_FLAGS: 1687 { 1688 struct ifaddr *ifa; 1689 struct in6_ifaddr *ia; 1690 1691 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1692 !(ND.flags & ND6_IFF_IFDISABLED)) { 1693 /* ifdisabled 1->0 transision */ 1694 1695 /* 1696 * If the interface is marked as ND6_IFF_IFDISABLED and 1697 * has an link-local address with IN6_IFF_DUPLICATED, 1698 * do not clear ND6_IFF_IFDISABLED. 1699 * See RFC 4862, Section 5.4.5. 1700 */ 1701 NET_EPOCH_ENTER(et); 1702 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1703 if (ifa->ifa_addr->sa_family != AF_INET6) 1704 continue; 1705 ia = (struct in6_ifaddr *)ifa; 1706 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1707 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1708 break; 1709 } 1710 NET_EPOCH_EXIT(et); 1711 1712 if (ifa != NULL) { 1713 /* LLA is duplicated. */ 1714 ND.flags |= ND6_IFF_IFDISABLED; 1715 log(LOG_ERR, "Cannot enable an interface" 1716 " with a link-local address marked" 1717 " duplicate.\n"); 1718 } else { 1719 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1720 if (ifp->if_flags & IFF_UP) 1721 in6_if_up(ifp); 1722 } 1723 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1724 (ND.flags & ND6_IFF_IFDISABLED)) { 1725 /* ifdisabled 0->1 transision */ 1726 /* Mark all IPv6 address as tentative. */ 1727 1728 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1729 if (V_ip6_dad_count > 0 && 1730 (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) { 1731 NET_EPOCH_ENTER(et); 1732 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1733 ifa_link) { 1734 if (ifa->ifa_addr->sa_family != 1735 AF_INET6) 1736 continue; 1737 ia = (struct in6_ifaddr *)ifa; 1738 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1739 } 1740 NET_EPOCH_EXIT(et); 1741 } 1742 } 1743 1744 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1745 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1746 /* auto_linklocal 0->1 transision */ 1747 1748 /* If no link-local address on ifp, configure */ 1749 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1750 in6_ifattach(ifp, NULL); 1751 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1752 ifp->if_flags & IFF_UP) { 1753 /* 1754 * When the IF already has 1755 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1756 * address is assigned, and IFF_UP, try to 1757 * assign one. 1758 */ 1759 NET_EPOCH_ENTER(et); 1760 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1761 ifa_link) { 1762 if (ifa->ifa_addr->sa_family != 1763 AF_INET6) 1764 continue; 1765 ia = (struct in6_ifaddr *)ifa; 1766 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1767 break; 1768 } 1769 NET_EPOCH_EXIT(et); 1770 if (ifa != NULL) 1771 /* No LLA is configured. */ 1772 in6_ifattach(ifp, NULL); 1773 } 1774 } 1775 } 1776 ND_IFINFO(ifp)->flags = ND.flags; 1777 break; 1778 #undef ND 1779 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1780 /* sync kernel routing table with the default router list */ 1781 defrouter_reset(); 1782 defrouter_select(); 1783 break; 1784 case SIOCSPFXFLUSH_IN6: 1785 { 1786 /* flush all the prefix advertised by routers */ 1787 struct in6_ifaddr *ia, *ia_next; 1788 struct nd_prefix *pr, *next; 1789 struct nd_prhead prl; 1790 1791 LIST_INIT(&prl); 1792 1793 ND6_WLOCK(); 1794 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1795 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1796 continue; /* XXX */ 1797 nd6_prefix_unlink(pr, &prl); 1798 } 1799 ND6_WUNLOCK(); 1800 1801 while ((pr = LIST_FIRST(&prl)) != NULL) { 1802 LIST_REMOVE(pr, ndpr_entry); 1803 /* XXXRW: in6_ifaddrhead locking. */ 1804 CK_STAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1805 ia_next) { 1806 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1807 continue; 1808 1809 if (ia->ia6_ndpr == pr) 1810 in6_purgeaddr(&ia->ia_ifa); 1811 } 1812 nd6_prefix_del(pr); 1813 } 1814 break; 1815 } 1816 case SIOCSRTRFLUSH_IN6: 1817 { 1818 /* flush all the default routers */ 1819 struct nd_drhead drq; 1820 struct nd_defrouter *dr; 1821 1822 TAILQ_INIT(&drq); 1823 1824 defrouter_reset(); 1825 1826 ND6_WLOCK(); 1827 while ((dr = TAILQ_FIRST(&V_nd_defrouter)) != NULL) 1828 defrouter_unlink(dr, &drq); 1829 ND6_WUNLOCK(); 1830 while ((dr = TAILQ_FIRST(&drq)) != NULL) { 1831 TAILQ_REMOVE(&drq, dr, dr_entry); 1832 defrouter_del(dr); 1833 } 1834 1835 defrouter_select(); 1836 break; 1837 } 1838 case SIOCGNBRINFO_IN6: 1839 { 1840 struct llentry *ln; 1841 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1842 1843 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1844 return (error); 1845 1846 NET_EPOCH_ENTER(et); 1847 ln = nd6_lookup(&nb_addr, 0, ifp); 1848 NET_EPOCH_EXIT(et); 1849 1850 if (ln == NULL) { 1851 error = EINVAL; 1852 break; 1853 } 1854 nbi->state = ln->ln_state; 1855 nbi->asked = ln->la_asked; 1856 nbi->isrouter = ln->ln_router; 1857 if (ln->la_expire == 0) 1858 nbi->expire = 0; 1859 else 1860 nbi->expire = ln->la_expire + ln->lle_remtime / hz + 1861 (time_second - time_uptime); 1862 LLE_RUNLOCK(ln); 1863 break; 1864 } 1865 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1866 ndif->ifindex = V_nd6_defifindex; 1867 break; 1868 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1869 return (nd6_setdefaultiface(ndif->ifindex)); 1870 } 1871 return (error); 1872 } 1873 1874 /* 1875 * Calculates new isRouter value based on provided parameters and 1876 * returns it. 1877 */ 1878 static int 1879 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr, 1880 int ln_router) 1881 { 1882 1883 /* 1884 * ICMP6 type dependent behavior. 1885 * 1886 * NS: clear IsRouter if new entry 1887 * RS: clear IsRouter 1888 * RA: set IsRouter if there's lladdr 1889 * redir: clear IsRouter if new entry 1890 * 1891 * RA case, (1): 1892 * The spec says that we must set IsRouter in the following cases: 1893 * - If lladdr exist, set IsRouter. This means (1-5). 1894 * - If it is old entry (!newentry), set IsRouter. This means (7). 1895 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1896 * A quetion arises for (1) case. (1) case has no lladdr in the 1897 * neighbor cache, this is similar to (6). 1898 * This case is rare but we figured that we MUST NOT set IsRouter. 1899 * 1900 * is_new old_addr new_addr NS RS RA redir 1901 * D R 1902 * 0 n n (1) c ? s 1903 * 0 y n (2) c s s 1904 * 0 n y (3) c s s 1905 * 0 y y (4) c s s 1906 * 0 y y (5) c s s 1907 * 1 -- n (6) c c c s 1908 * 1 -- y (7) c c s c s 1909 * 1910 * (c=clear s=set) 1911 */ 1912 switch (type & 0xff) { 1913 case ND_NEIGHBOR_SOLICIT: 1914 /* 1915 * New entry must have is_router flag cleared. 1916 */ 1917 if (is_new) /* (6-7) */ 1918 ln_router = 0; 1919 break; 1920 case ND_REDIRECT: 1921 /* 1922 * If the icmp is a redirect to a better router, always set the 1923 * is_router flag. Otherwise, if the entry is newly created, 1924 * clear the flag. [RFC 2461, sec 8.3] 1925 */ 1926 if (code == ND_REDIRECT_ROUTER) 1927 ln_router = 1; 1928 else { 1929 if (is_new) /* (6-7) */ 1930 ln_router = 0; 1931 } 1932 break; 1933 case ND_ROUTER_SOLICIT: 1934 /* 1935 * is_router flag must always be cleared. 1936 */ 1937 ln_router = 0; 1938 break; 1939 case ND_ROUTER_ADVERT: 1940 /* 1941 * Mark an entry with lladdr as a router. 1942 */ 1943 if ((!is_new && (old_addr || new_addr)) || /* (2-5) */ 1944 (is_new && new_addr)) { /* (7) */ 1945 ln_router = 1; 1946 } 1947 break; 1948 } 1949 1950 return (ln_router); 1951 } 1952 1953 /* 1954 * Create neighbor cache entry and cache link-layer address, 1955 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1956 * 1957 * type - ICMP6 type 1958 * code - type dependent information 1959 * 1960 */ 1961 void 1962 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1963 int lladdrlen, int type, int code) 1964 { 1965 struct llentry *ln = NULL, *ln_tmp; 1966 int is_newentry; 1967 int do_update; 1968 int olladdr; 1969 int llchange; 1970 int flags; 1971 uint16_t router = 0; 1972 struct sockaddr_in6 sin6; 1973 struct epoch_tracker et; 1974 struct mbuf *chain = NULL; 1975 u_char linkhdr[LLE_MAX_LINKHDR]; 1976 size_t linkhdrsize; 1977 int lladdr_off; 1978 1979 IF_AFDATA_UNLOCK_ASSERT(ifp); 1980 1981 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1982 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1983 1984 /* nothing must be updated for unspecified address */ 1985 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1986 return; 1987 1988 /* 1989 * Validation about ifp->if_addrlen and lladdrlen must be done in 1990 * the caller. 1991 * 1992 * XXX If the link does not have link-layer adderss, what should 1993 * we do? (ifp->if_addrlen == 0) 1994 * Spec says nothing in sections for RA, RS and NA. There's small 1995 * description on it in NS section (RFC 2461 7.2.3). 1996 */ 1997 flags = lladdr ? LLE_EXCLUSIVE : 0; 1998 NET_EPOCH_ENTER(et); 1999 ln = nd6_lookup(from, flags, ifp); 2000 NET_EPOCH_EXIT(et); 2001 is_newentry = 0; 2002 if (ln == NULL) { 2003 flags |= LLE_EXCLUSIVE; 2004 ln = nd6_alloc(from, 0, ifp); 2005 if (ln == NULL) 2006 return; 2007 2008 /* 2009 * Since we already know all the data for the new entry, 2010 * fill it before insertion. 2011 */ 2012 if (lladdr != NULL) { 2013 linkhdrsize = sizeof(linkhdr); 2014 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 2015 linkhdr, &linkhdrsize, &lladdr_off) != 0) 2016 return; 2017 lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 2018 lladdr_off); 2019 } 2020 2021 IF_AFDATA_WLOCK(ifp); 2022 LLE_WLOCK(ln); 2023 /* Prefer any existing lle over newly-created one */ 2024 ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp); 2025 if (ln_tmp == NULL) 2026 lltable_link_entry(LLTABLE6(ifp), ln); 2027 IF_AFDATA_WUNLOCK(ifp); 2028 if (ln_tmp == NULL) { 2029 /* No existing lle, mark as new entry (6,7) */ 2030 is_newentry = 1; 2031 if (lladdr != NULL) { /* (7) */ 2032 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2033 EVENTHANDLER_INVOKE(lle_event, ln, 2034 LLENTRY_RESOLVED); 2035 } 2036 } else { 2037 lltable_free_entry(LLTABLE6(ifp), ln); 2038 ln = ln_tmp; 2039 ln_tmp = NULL; 2040 } 2041 } 2042 /* do nothing if static ndp is set */ 2043 if ((ln->la_flags & LLE_STATIC)) { 2044 if (flags & LLE_EXCLUSIVE) 2045 LLE_WUNLOCK(ln); 2046 else 2047 LLE_RUNLOCK(ln); 2048 return; 2049 } 2050 2051 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 2052 if (olladdr && lladdr) { 2053 llchange = bcmp(lladdr, ln->ll_addr, 2054 ifp->if_addrlen); 2055 } else if (!olladdr && lladdr) 2056 llchange = 1; 2057 else 2058 llchange = 0; 2059 2060 /* 2061 * newentry olladdr lladdr llchange (*=record) 2062 * 0 n n -- (1) 2063 * 0 y n -- (2) 2064 * 0 n y y (3) * STALE 2065 * 0 y y n (4) * 2066 * 0 y y y (5) * STALE 2067 * 1 -- n -- (6) NOSTATE(= PASSIVE) 2068 * 1 -- y -- (7) * STALE 2069 */ 2070 2071 do_update = 0; 2072 if (is_newentry == 0 && llchange != 0) { 2073 do_update = 1; /* (3,5) */ 2074 2075 /* 2076 * Record source link-layer address 2077 * XXX is it dependent to ifp->if_type? 2078 */ 2079 linkhdrsize = sizeof(linkhdr); 2080 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 2081 linkhdr, &linkhdrsize, &lladdr_off) != 0) 2082 return; 2083 2084 if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 2085 lladdr_off) == 0) { 2086 /* Entry was deleted */ 2087 return; 2088 } 2089 2090 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2091 2092 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2093 2094 if (ln->la_hold != NULL) 2095 nd6_grab_holdchain(ln, &chain, &sin6); 2096 } 2097 2098 /* Calculates new router status */ 2099 router = nd6_is_router(type, code, is_newentry, olladdr, 2100 lladdr != NULL ? 1 : 0, ln->ln_router); 2101 2102 ln->ln_router = router; 2103 /* Mark non-router redirects with special flag */ 2104 if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER) 2105 ln->la_flags |= LLE_REDIRECT; 2106 2107 if (flags & LLE_EXCLUSIVE) 2108 LLE_WUNLOCK(ln); 2109 else 2110 LLE_RUNLOCK(ln); 2111 2112 if (chain != NULL) 2113 nd6_flush_holdchain(ifp, chain, &sin6); 2114 2115 /* 2116 * When the link-layer address of a router changes, select the 2117 * best router again. In particular, when the neighbor entry is newly 2118 * created, it might affect the selection policy. 2119 * Question: can we restrict the first condition to the "is_newentry" 2120 * case? 2121 * XXX: when we hear an RA from a new router with the link-layer 2122 * address option, defrouter_select_fib() is called twice, since 2123 * defrtrlist_update called the function as well. However, I believe 2124 * we can compromise the overhead, since it only happens the first 2125 * time. 2126 * XXX: although defrouter_select_fib() should not have a bad effect 2127 * for those are not autoconfigured hosts, we explicitly avoid such 2128 * cases for safety. 2129 */ 2130 if ((do_update || is_newentry) && router && 2131 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 2132 /* 2133 * guaranteed recursion 2134 */ 2135 defrouter_select_fib(ifp->if_fib); 2136 } 2137 } 2138 2139 static void 2140 nd6_slowtimo(void *arg) 2141 { 2142 struct epoch_tracker et; 2143 CURVNET_SET((struct vnet *) arg); 2144 struct nd_ifinfo *nd6if; 2145 struct ifnet *ifp; 2146 2147 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2148 nd6_slowtimo, curvnet); 2149 NET_EPOCH_ENTER(et); 2150 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2151 if (ifp->if_afdata[AF_INET6] == NULL) 2152 continue; 2153 nd6if = ND_IFINFO(ifp); 2154 if (nd6if->basereachable && /* already initialized */ 2155 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2156 /* 2157 * Since reachable time rarely changes by router 2158 * advertisements, we SHOULD insure that a new random 2159 * value gets recomputed at least once every few hours. 2160 * (RFC 2461, 6.3.4) 2161 */ 2162 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 2163 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2164 } 2165 } 2166 NET_EPOCH_EXIT(et); 2167 CURVNET_RESTORE(); 2168 } 2169 2170 void 2171 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain, 2172 struct sockaddr_in6 *sin6) 2173 { 2174 2175 LLE_WLOCK_ASSERT(ln); 2176 2177 *chain = ln->la_hold; 2178 ln->la_hold = NULL; 2179 lltable_fill_sa_entry(ln, (struct sockaddr *)sin6); 2180 2181 if (ln->ln_state == ND6_LLINFO_STALE) { 2182 2183 /* 2184 * The first time we send a packet to a 2185 * neighbor whose entry is STALE, we have 2186 * to change the state to DELAY and a sets 2187 * a timer to expire in DELAY_FIRST_PROBE_TIME 2188 * seconds to ensure do neighbor unreachability 2189 * detection on expiration. 2190 * (RFC 2461 7.3.3) 2191 */ 2192 nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY); 2193 } 2194 } 2195 2196 int 2197 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 2198 struct sockaddr_in6 *dst, struct route *ro) 2199 { 2200 int error; 2201 int ip6len; 2202 struct ip6_hdr *ip6; 2203 struct m_tag *mtag; 2204 2205 #ifdef MAC 2206 mac_netinet6_nd6_send(ifp, m); 2207 #endif 2208 2209 /* 2210 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 2211 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 2212 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 2213 * to be diverted to user space. When re-injected into the kernel, 2214 * send_output() will directly dispatch them to the outgoing interface. 2215 */ 2216 if (send_sendso_input_hook != NULL) { 2217 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 2218 if (mtag != NULL) { 2219 ip6 = mtod(m, struct ip6_hdr *); 2220 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 2221 /* Use the SEND socket */ 2222 error = send_sendso_input_hook(m, ifp, SND_OUT, 2223 ip6len); 2224 /* -1 == no app on SEND socket */ 2225 if (error == 0 || error != -1) 2226 return (error); 2227 } 2228 } 2229 2230 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 2231 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 2232 mtod(m, struct ip6_hdr *)); 2233 2234 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2235 origifp = ifp; 2236 2237 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro); 2238 return (error); 2239 } 2240 2241 /* 2242 * Lookup link headerfor @sa_dst address. Stores found 2243 * data in @desten buffer. Copy of lle ln_flags can be also 2244 * saved in @pflags if @pflags is non-NULL. 2245 * 2246 * If destination LLE does not exists or lle state modification 2247 * is required, call "slow" version. 2248 * 2249 * Return values: 2250 * - 0 on success (address copied to buffer). 2251 * - EWOULDBLOCK (no local error, but address is still unresolved) 2252 * - other errors (alloc failure, etc) 2253 */ 2254 int 2255 nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m, 2256 const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags, 2257 struct llentry **plle) 2258 { 2259 struct epoch_tracker et; 2260 struct llentry *ln = NULL; 2261 const struct sockaddr_in6 *dst6; 2262 2263 if (pflags != NULL) 2264 *pflags = 0; 2265 2266 dst6 = (const struct sockaddr_in6 *)sa_dst; 2267 2268 /* discard the packet if IPv6 operation is disabled on the interface */ 2269 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2270 m_freem(m); 2271 return (ENETDOWN); /* better error? */ 2272 } 2273 2274 if (m != NULL && m->m_flags & M_MCAST) { 2275 switch (ifp->if_type) { 2276 case IFT_ETHER: 2277 case IFT_L2VLAN: 2278 case IFT_BRIDGE: 2279 ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr, 2280 desten); 2281 return (0); 2282 default: 2283 m_freem(m); 2284 return (EAFNOSUPPORT); 2285 } 2286 } 2287 2288 NET_EPOCH_ENTER(et); 2289 ln = nd6_lookup(&dst6->sin6_addr, plle ? LLE_EXCLUSIVE : LLE_UNLOCKED, 2290 ifp); 2291 if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) { 2292 /* Entry found, let's copy lle info */ 2293 bcopy(ln->r_linkdata, desten, ln->r_hdrlen); 2294 if (pflags != NULL) 2295 *pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR); 2296 /* Check if we have feedback request from nd6 timer */ 2297 if (ln->r_skip_req != 0) { 2298 LLE_REQ_LOCK(ln); 2299 ln->r_skip_req = 0; /* Notify that entry was used */ 2300 ln->lle_hittime = time_uptime; 2301 LLE_REQ_UNLOCK(ln); 2302 } 2303 if (plle) { 2304 LLE_ADDREF(ln); 2305 *plle = ln; 2306 LLE_WUNLOCK(ln); 2307 } 2308 NET_EPOCH_EXIT(et); 2309 return (0); 2310 } else if (plle && ln) 2311 LLE_WUNLOCK(ln); 2312 NET_EPOCH_EXIT(et); 2313 2314 return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags, plle)); 2315 } 2316 2317 2318 /* 2319 * Do L2 address resolution for @sa_dst address. Stores found 2320 * address in @desten buffer. Copy of lle ln_flags can be also 2321 * saved in @pflags if @pflags is non-NULL. 2322 * 2323 * Heavy version. 2324 * Function assume that destination LLE does not exist, 2325 * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired. 2326 * 2327 * Set noinline to be dtrace-friendly 2328 */ 2329 static __noinline int 2330 nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m, 2331 const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags, 2332 struct llentry **plle) 2333 { 2334 struct llentry *lle = NULL, *lle_tmp; 2335 struct in6_addr *psrc, src; 2336 int send_ns, ll_len; 2337 char *lladdr; 2338 2339 /* 2340 * Address resolution or Neighbor Unreachability Detection 2341 * for the next hop. 2342 * At this point, the destination of the packet must be a unicast 2343 * or an anycast address(i.e. not a multicast). 2344 */ 2345 if (lle == NULL) { 2346 struct epoch_tracker et; 2347 2348 NET_EPOCH_ENTER(et); 2349 lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2350 NET_EPOCH_EXIT(et); 2351 if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 2352 /* 2353 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2354 * the condition below is not very efficient. But we believe 2355 * it is tolerable, because this should be a rare case. 2356 */ 2357 lle = nd6_alloc(&dst->sin6_addr, 0, ifp); 2358 if (lle == NULL) { 2359 char ip6buf[INET6_ADDRSTRLEN]; 2360 log(LOG_DEBUG, 2361 "nd6_output: can't allocate llinfo for %s " 2362 "(ln=%p)\n", 2363 ip6_sprintf(ip6buf, &dst->sin6_addr), lle); 2364 m_freem(m); 2365 return (ENOBUFS); 2366 } 2367 2368 IF_AFDATA_WLOCK(ifp); 2369 LLE_WLOCK(lle); 2370 /* Prefer any existing entry over newly-created one */ 2371 lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2372 if (lle_tmp == NULL) 2373 lltable_link_entry(LLTABLE6(ifp), lle); 2374 IF_AFDATA_WUNLOCK(ifp); 2375 if (lle_tmp != NULL) { 2376 lltable_free_entry(LLTABLE6(ifp), lle); 2377 lle = lle_tmp; 2378 lle_tmp = NULL; 2379 } 2380 } 2381 } 2382 if (lle == NULL) { 2383 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 2384 m_freem(m); 2385 return (ENOBUFS); 2386 } 2387 2388 if (m != NULL) 2389 m_freem(m); 2390 return (ENOBUFS); 2391 } 2392 2393 LLE_WLOCK_ASSERT(lle); 2394 2395 /* 2396 * The first time we send a packet to a neighbor whose entry is 2397 * STALE, we have to change the state to DELAY and a sets a timer to 2398 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2399 * neighbor unreachability detection on expiration. 2400 * (RFC 2461 7.3.3) 2401 */ 2402 if (lle->ln_state == ND6_LLINFO_STALE) 2403 nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY); 2404 2405 /* 2406 * If the neighbor cache entry has a state other than INCOMPLETE 2407 * (i.e. its link-layer address is already resolved), just 2408 * send the packet. 2409 */ 2410 if (lle->ln_state > ND6_LLINFO_INCOMPLETE) { 2411 if (flags & LLE_ADDRONLY) { 2412 lladdr = lle->ll_addr; 2413 ll_len = ifp->if_addrlen; 2414 } else { 2415 lladdr = lle->r_linkdata; 2416 ll_len = lle->r_hdrlen; 2417 } 2418 bcopy(lladdr, desten, ll_len); 2419 if (pflags != NULL) 2420 *pflags = lle->la_flags; 2421 if (plle) { 2422 LLE_ADDREF(lle); 2423 *plle = lle; 2424 } 2425 LLE_WUNLOCK(lle); 2426 return (0); 2427 } 2428 2429 /* 2430 * There is a neighbor cache entry, but no ethernet address 2431 * response yet. Append this latest packet to the end of the 2432 * packet queue in the mbuf. When it exceeds nd6_maxqueuelen, 2433 * the oldest packet in the queue will be removed. 2434 */ 2435 2436 if (lle->la_hold != NULL) { 2437 struct mbuf *m_hold; 2438 int i; 2439 2440 i = 0; 2441 for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){ 2442 i++; 2443 if (m_hold->m_nextpkt == NULL) { 2444 m_hold->m_nextpkt = m; 2445 break; 2446 } 2447 } 2448 while (i >= V_nd6_maxqueuelen) { 2449 m_hold = lle->la_hold; 2450 lle->la_hold = lle->la_hold->m_nextpkt; 2451 m_freem(m_hold); 2452 i--; 2453 } 2454 } else { 2455 lle->la_hold = m; 2456 } 2457 2458 /* 2459 * If there has been no NS for the neighbor after entering the 2460 * INCOMPLETE state, send the first solicitation. 2461 * Note that for newly-created lle la_asked will be 0, 2462 * so we will transition from ND6_LLINFO_NOSTATE to 2463 * ND6_LLINFO_INCOMPLETE state here. 2464 */ 2465 psrc = NULL; 2466 send_ns = 0; 2467 if (lle->la_asked == 0) { 2468 lle->la_asked++; 2469 send_ns = 1; 2470 psrc = nd6_llinfo_get_holdsrc(lle, &src); 2471 2472 nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE); 2473 } 2474 LLE_WUNLOCK(lle); 2475 if (send_ns != 0) 2476 nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL); 2477 2478 return (EWOULDBLOCK); 2479 } 2480 2481 /* 2482 * Do L2 address resolution for @sa_dst address. Stores found 2483 * address in @desten buffer. Copy of lle ln_flags can be also 2484 * saved in @pflags if @pflags is non-NULL. 2485 * 2486 * Return values: 2487 * - 0 on success (address copied to buffer). 2488 * - EWOULDBLOCK (no local error, but address is still unresolved) 2489 * - other errors (alloc failure, etc) 2490 */ 2491 int 2492 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, 2493 char *desten, uint32_t *pflags) 2494 { 2495 int error; 2496 2497 flags |= LLE_ADDRONLY; 2498 error = nd6_resolve_slow(ifp, flags, NULL, 2499 (const struct sockaddr_in6 *)dst, desten, pflags, NULL); 2500 return (error); 2501 } 2502 2503 int 2504 nd6_flush_holdchain(struct ifnet *ifp, struct mbuf *chain, 2505 struct sockaddr_in6 *dst) 2506 { 2507 struct mbuf *m, *m_head; 2508 int error = 0; 2509 2510 m_head = chain; 2511 2512 while (m_head) { 2513 m = m_head; 2514 m_head = m_head->m_nextpkt; 2515 error = nd6_output_ifp(ifp, ifp, m, dst, NULL); 2516 } 2517 2518 /* 2519 * XXX 2520 * note that intermediate errors are blindly ignored 2521 */ 2522 return (error); 2523 } 2524 2525 static int 2526 nd6_need_cache(struct ifnet *ifp) 2527 { 2528 /* 2529 * XXX: we currently do not make neighbor cache on any interface 2530 * other than Ethernet and GIF. 2531 * 2532 * RFC2893 says: 2533 * - unidirectional tunnels needs no ND 2534 */ 2535 switch (ifp->if_type) { 2536 case IFT_ETHER: 2537 case IFT_IEEE1394: 2538 case IFT_L2VLAN: 2539 case IFT_INFINIBAND: 2540 case IFT_BRIDGE: 2541 case IFT_PROPVIRTUAL: 2542 return (1); 2543 default: 2544 return (0); 2545 } 2546 } 2547 2548 /* 2549 * Add pernament ND6 link-layer record for given 2550 * interface address. 2551 * 2552 * Very similar to IPv4 arp_ifinit(), but: 2553 * 1) IPv6 DAD is performed in different place 2554 * 2) It is called by IPv6 protocol stack in contrast to 2555 * arp_ifinit() which is typically called in SIOCSIFADDR 2556 * driver ioctl handler. 2557 * 2558 */ 2559 int 2560 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2561 { 2562 struct ifnet *ifp; 2563 struct llentry *ln, *ln_tmp; 2564 struct sockaddr *dst; 2565 2566 ifp = ia->ia_ifa.ifa_ifp; 2567 if (nd6_need_cache(ifp) == 0) 2568 return (0); 2569 2570 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 2571 dst = (struct sockaddr *)&ia->ia_addr; 2572 ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst); 2573 if (ln == NULL) 2574 return (ENOBUFS); 2575 2576 IF_AFDATA_WLOCK(ifp); 2577 LLE_WLOCK(ln); 2578 /* Unlink any entry if exists */ 2579 ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst); 2580 if (ln_tmp != NULL) 2581 lltable_unlink_entry(LLTABLE6(ifp), ln_tmp); 2582 lltable_link_entry(LLTABLE6(ifp), ln); 2583 IF_AFDATA_WUNLOCK(ifp); 2584 2585 if (ln_tmp != NULL) 2586 EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED); 2587 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2588 2589 LLE_WUNLOCK(ln); 2590 if (ln_tmp != NULL) 2591 llentry_free(ln_tmp); 2592 2593 return (0); 2594 } 2595 2596 /* 2597 * Removes either all lle entries for given @ia, or lle 2598 * corresponding to @ia address. 2599 */ 2600 void 2601 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all) 2602 { 2603 struct sockaddr_in6 mask, addr; 2604 struct sockaddr *saddr, *smask; 2605 struct ifnet *ifp; 2606 2607 ifp = ia->ia_ifa.ifa_ifp; 2608 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2609 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2610 saddr = (struct sockaddr *)&addr; 2611 smask = (struct sockaddr *)&mask; 2612 2613 if (all != 0) 2614 lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC); 2615 else 2616 lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr); 2617 } 2618 2619 static void 2620 clear_llinfo_pqueue(struct llentry *ln) 2621 { 2622 struct mbuf *m_hold, *m_hold_next; 2623 2624 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { 2625 m_hold_next = m_hold->m_nextpkt; 2626 m_freem(m_hold); 2627 } 2628 2629 ln->la_hold = NULL; 2630 } 2631 2632 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); 2633 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); 2634 2635 SYSCTL_DECL(_net_inet6_icmp6); 2636 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, 2637 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2638 NULL, 0, nd6_sysctl_drlist, "S,in6_defrouter", 2639 "NDP default router list"); 2640 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2641 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2642 NULL, 0, nd6_sysctl_prlist, "S,in6_prefix", 2643 "NDP prefix list"); 2644 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2645 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2646 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, 2647 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); 2648 2649 static int 2650 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) 2651 { 2652 struct in6_defrouter d; 2653 struct nd_defrouter *dr; 2654 int error; 2655 2656 if (req->newptr != NULL) 2657 return (EPERM); 2658 2659 error = sysctl_wire_old_buffer(req, 0); 2660 if (error != 0) 2661 return (error); 2662 2663 bzero(&d, sizeof(d)); 2664 d.rtaddr.sin6_family = AF_INET6; 2665 d.rtaddr.sin6_len = sizeof(d.rtaddr); 2666 2667 ND6_RLOCK(); 2668 TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) { 2669 d.rtaddr.sin6_addr = dr->rtaddr; 2670 error = sa6_recoverscope(&d.rtaddr); 2671 if (error != 0) 2672 break; 2673 d.flags = dr->raflags; 2674 d.rtlifetime = dr->rtlifetime; 2675 d.expire = dr->expire + (time_second - time_uptime); 2676 d.if_index = dr->ifp->if_index; 2677 error = SYSCTL_OUT(req, &d, sizeof(d)); 2678 if (error != 0) 2679 break; 2680 } 2681 ND6_RUNLOCK(); 2682 return (error); 2683 } 2684 2685 static int 2686 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2687 { 2688 struct in6_prefix p; 2689 struct sockaddr_in6 s6; 2690 struct nd_prefix *pr; 2691 struct nd_pfxrouter *pfr; 2692 time_t maxexpire; 2693 int error; 2694 char ip6buf[INET6_ADDRSTRLEN]; 2695 2696 if (req->newptr) 2697 return (EPERM); 2698 2699 error = sysctl_wire_old_buffer(req, 0); 2700 if (error != 0) 2701 return (error); 2702 2703 bzero(&p, sizeof(p)); 2704 p.origin = PR_ORIG_RA; 2705 bzero(&s6, sizeof(s6)); 2706 s6.sin6_family = AF_INET6; 2707 s6.sin6_len = sizeof(s6); 2708 2709 ND6_RLOCK(); 2710 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2711 p.prefix = pr->ndpr_prefix; 2712 if (sa6_recoverscope(&p.prefix)) { 2713 log(LOG_ERR, "scope error in prefix list (%s)\n", 2714 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2715 /* XXX: press on... */ 2716 } 2717 p.raflags = pr->ndpr_raf; 2718 p.prefixlen = pr->ndpr_plen; 2719 p.vltime = pr->ndpr_vltime; 2720 p.pltime = pr->ndpr_pltime; 2721 p.if_index = pr->ndpr_ifp->if_index; 2722 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2723 p.expire = 0; 2724 else { 2725 /* XXX: we assume time_t is signed. */ 2726 maxexpire = (-1) & 2727 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2728 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2729 p.expire = pr->ndpr_lastupdate + 2730 pr->ndpr_vltime + 2731 (time_second - time_uptime); 2732 else 2733 p.expire = maxexpire; 2734 } 2735 p.refcnt = pr->ndpr_addrcnt; 2736 p.flags = pr->ndpr_stateflags; 2737 p.advrtrs = 0; 2738 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2739 p.advrtrs++; 2740 error = SYSCTL_OUT(req, &p, sizeof(p)); 2741 if (error != 0) 2742 break; 2743 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2744 s6.sin6_addr = pfr->router->rtaddr; 2745 if (sa6_recoverscope(&s6)) 2746 log(LOG_ERR, 2747 "scope error in prefix list (%s)\n", 2748 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2749 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2750 if (error != 0) 2751 goto out; 2752 } 2753 } 2754 out: 2755 ND6_RUNLOCK(); 2756 return (error); 2757 } 2758