1 /*- 2 * Copyright (c) 2009 Bruce Simpson. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 3. The name of the author may not be used to endorse or promote 13 * products derived from this software without specific prior written 14 * permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $KAME: mld6.c,v 1.27 2001/04/04 05:17:30 itojun Exp $ 29 */ 30 31 /*- 32 * Copyright (c) 1988 Stephen Deering. 33 * Copyright (c) 1992, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * This code is derived from software contributed to Berkeley by 37 * Stephen Deering of Stanford University. 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 1. Redistributions of source code must retain the above copyright 43 * notice, this list of conditions and the following disclaimer. 44 * 2. Redistributions in binary form must reproduce the above copyright 45 * notice, this list of conditions and the following disclaimer in the 46 * documentation and/or other materials provided with the distribution. 47 * 4. Neither the name of the University nor the names of its contributors 48 * may be used to endorse or promote products derived from this software 49 * without specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 61 * SUCH DAMAGE. 62 * 63 * @(#)igmp.c 8.1 (Berkeley) 7/19/93 64 */ 65 66 #include <sys/cdefs.h> 67 __FBSDID("$FreeBSD$"); 68 69 #include "opt_inet.h" 70 #include "opt_inet6.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/mbuf.h> 75 #include <sys/socket.h> 76 #include <sys/protosw.h> 77 #include <sys/sysctl.h> 78 #include <sys/kernel.h> 79 #include <sys/callout.h> 80 #include <sys/malloc.h> 81 #include <sys/module.h> 82 #include <sys/ktr.h> 83 84 #include <net/if.h> 85 #include <net/if_var.h> 86 #include <net/route.h> 87 #include <net/vnet.h> 88 89 #include <netinet/in.h> 90 #include <netinet/in_var.h> 91 #include <netinet6/in6_var.h> 92 #include <netinet/ip6.h> 93 #include <netinet6/ip6_var.h> 94 #include <netinet6/scope6_var.h> 95 #include <netinet/icmp6.h> 96 #include <netinet6/mld6.h> 97 #include <netinet6/mld6_var.h> 98 99 #include <security/mac/mac_framework.h> 100 101 #ifndef KTR_MLD 102 #define KTR_MLD KTR_INET6 103 #endif 104 105 static struct mld_ifinfo * 106 mli_alloc_locked(struct ifnet *); 107 static void mli_delete_locked(const struct ifnet *); 108 static void mld_dispatch_packet(struct mbuf *); 109 static void mld_dispatch_queue(struct ifqueue *, int); 110 static void mld_final_leave(struct in6_multi *, struct mld_ifinfo *); 111 static void mld_fasttimo_vnet(void); 112 static int mld_handle_state_change(struct in6_multi *, 113 struct mld_ifinfo *); 114 static int mld_initial_join(struct in6_multi *, struct mld_ifinfo *, 115 const int); 116 #ifdef KTR 117 static char * mld_rec_type_to_str(const int); 118 #endif 119 static void mld_set_version(struct mld_ifinfo *, const int); 120 static void mld_slowtimo_vnet(void); 121 static int mld_v1_input_query(struct ifnet *, const struct ip6_hdr *, 122 /*const*/ struct mld_hdr *); 123 static int mld_v1_input_report(struct ifnet *, const struct ip6_hdr *, 124 /*const*/ struct mld_hdr *); 125 static void mld_v1_process_group_timer(struct mld_ifinfo *, 126 struct in6_multi *); 127 static void mld_v1_process_querier_timers(struct mld_ifinfo *); 128 static int mld_v1_transmit_report(struct in6_multi *, const int); 129 static void mld_v1_update_group(struct in6_multi *, const int); 130 static void mld_v2_cancel_link_timers(struct mld_ifinfo *); 131 static void mld_v2_dispatch_general_query(struct mld_ifinfo *); 132 static struct mbuf * 133 mld_v2_encap_report(struct ifnet *, struct mbuf *); 134 static int mld_v2_enqueue_filter_change(struct ifqueue *, 135 struct in6_multi *); 136 static int mld_v2_enqueue_group_record(struct ifqueue *, 137 struct in6_multi *, const int, const int, const int, 138 const int); 139 static int mld_v2_input_query(struct ifnet *, const struct ip6_hdr *, 140 struct mbuf *, const int, const int); 141 static int mld_v2_merge_state_changes(struct in6_multi *, 142 struct ifqueue *); 143 static void mld_v2_process_group_timers(struct mld_ifinfo *, 144 struct ifqueue *, struct ifqueue *, 145 struct in6_multi *, const int); 146 static int mld_v2_process_group_query(struct in6_multi *, 147 struct mld_ifinfo *mli, int, struct mbuf *, const int); 148 static int sysctl_mld_gsr(SYSCTL_HANDLER_ARGS); 149 static int sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS); 150 151 /* 152 * Normative references: RFC 2710, RFC 3590, RFC 3810. 153 * 154 * Locking: 155 * * The MLD subsystem lock ends up being system-wide for the moment, 156 * but could be per-VIMAGE later on. 157 * * The permitted lock order is: IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK. 158 * Any may be taken independently; if any are held at the same 159 * time, the above lock order must be followed. 160 * * IN6_MULTI_LOCK covers in_multi. 161 * * MLD_LOCK covers per-link state and any global variables in this file. 162 * * IF_ADDR_LOCK covers if_multiaddrs, which is used for a variety of 163 * per-link state iterators. 164 * 165 * XXX LOR PREVENTION 166 * A special case for IPv6 is the in6_setscope() routine. ip6_output() 167 * will not accept an ifp; it wants an embedded scope ID, unlike 168 * ip_output(), which happily takes the ifp given to it. The embedded 169 * scope ID is only used by MLD to select the outgoing interface. 170 * 171 * During interface attach and detach, MLD will take MLD_LOCK *after* 172 * the IF_AFDATA_LOCK. 173 * As in6_setscope() takes IF_AFDATA_LOCK then SCOPE_LOCK, we can't call 174 * it with MLD_LOCK held without triggering an LOR. A netisr with indirect 175 * dispatch could work around this, but we'd rather not do that, as it 176 * can introduce other races. 177 * 178 * As such, we exploit the fact that the scope ID is just the interface 179 * index, and embed it in the IPv6 destination address accordingly. 180 * This is potentially NOT VALID for MLDv1 reports, as they 181 * are always sent to the multicast group itself; as MLDv2 182 * reports are always sent to ff02::16, this is not an issue 183 * when MLDv2 is in use. 184 * 185 * This does not however eliminate the LOR when ip6_output() itself 186 * calls in6_setscope() internally whilst MLD_LOCK is held. This will 187 * trigger a LOR warning in WITNESS when the ifnet is detached. 188 * 189 * The right answer is probably to make IF_AFDATA_LOCK an rwlock, given 190 * how it's used across the network stack. Here we're simply exploiting 191 * the fact that MLD runs at a similar layer in the stack to scope6.c. 192 * 193 * VIMAGE: 194 * * Each in6_multi corresponds to an ifp, and each ifp corresponds 195 * to a vnet in ifp->if_vnet. 196 */ 197 static struct mtx mld_mtx; 198 static MALLOC_DEFINE(M_MLD, "mld", "mld state"); 199 200 #define MLD_EMBEDSCOPE(pin6, zoneid) \ 201 if (IN6_IS_SCOPE_LINKLOCAL(pin6) || \ 202 IN6_IS_ADDR_MC_INTFACELOCAL(pin6)) \ 203 (pin6)->s6_addr16[1] = htons((zoneid) & 0xFFFF) \ 204 205 /* 206 * VIMAGE-wide globals. 207 */ 208 static VNET_DEFINE(struct timeval, mld_gsrdelay) = {10, 0}; 209 static VNET_DEFINE(LIST_HEAD(, mld_ifinfo), mli_head); 210 static VNET_DEFINE(int, interface_timers_running6); 211 static VNET_DEFINE(int, state_change_timers_running6); 212 static VNET_DEFINE(int, current_state_timers_running6); 213 214 #define V_mld_gsrdelay VNET(mld_gsrdelay) 215 #define V_mli_head VNET(mli_head) 216 #define V_interface_timers_running6 VNET(interface_timers_running6) 217 #define V_state_change_timers_running6 VNET(state_change_timers_running6) 218 #define V_current_state_timers_running6 VNET(current_state_timers_running6) 219 220 SYSCTL_DECL(_net_inet6); /* Note: Not in any common header. */ 221 222 SYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW, 0, 223 "IPv6 Multicast Listener Discovery"); 224 225 /* 226 * Virtualized sysctls. 227 */ 228 SYSCTL_PROC(_net_inet6_mld, OID_AUTO, gsrdelay, 229 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 230 &VNET_NAME(mld_gsrdelay.tv_sec), 0, sysctl_mld_gsr, "I", 231 "Rate limit for MLDv2 Group-and-Source queries in seconds"); 232 233 /* 234 * Non-virtualized sysctls. 235 */ 236 static SYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo, 237 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mld_ifinfo, 238 "Per-interface MLDv2 state"); 239 240 static int mld_v1enable = 1; 241 SYSCTL_INT(_net_inet6_mld, OID_AUTO, v1enable, CTLFLAG_RWTUN, 242 &mld_v1enable, 0, "Enable fallback to MLDv1"); 243 244 static int mld_use_allow = 1; 245 SYSCTL_INT(_net_inet6_mld, OID_AUTO, use_allow, CTLFLAG_RWTUN, 246 &mld_use_allow, 0, "Use ALLOW/BLOCK for RFC 4604 SSM joins/leaves"); 247 248 /* 249 * Packed Router Alert option structure declaration. 250 */ 251 struct mld_raopt { 252 struct ip6_hbh hbh; 253 struct ip6_opt pad; 254 struct ip6_opt_router ra; 255 } __packed; 256 257 /* 258 * Router Alert hop-by-hop option header. 259 */ 260 static struct mld_raopt mld_ra = { 261 .hbh = { 0, 0 }, 262 .pad = { .ip6o_type = IP6OPT_PADN, 0 }, 263 .ra = { 264 .ip6or_type = IP6OPT_ROUTER_ALERT, 265 .ip6or_len = IP6OPT_RTALERT_LEN - 2, 266 .ip6or_value[0] = ((IP6OPT_RTALERT_MLD >> 8) & 0xFF), 267 .ip6or_value[1] = (IP6OPT_RTALERT_MLD & 0xFF) 268 } 269 }; 270 static struct ip6_pktopts mld_po; 271 272 static __inline void 273 mld_save_context(struct mbuf *m, struct ifnet *ifp) 274 { 275 276 #ifdef VIMAGE 277 m->m_pkthdr.PH_loc.ptr = ifp->if_vnet; 278 #endif /* VIMAGE */ 279 m->m_pkthdr.flowid = ifp->if_index; 280 } 281 282 static __inline void 283 mld_scrub_context(struct mbuf *m) 284 { 285 286 m->m_pkthdr.PH_loc.ptr = NULL; 287 m->m_pkthdr.flowid = 0; 288 } 289 290 /* 291 * Restore context from a queued output chain. 292 * Return saved ifindex. 293 * 294 * VIMAGE: The assertion is there to make sure that we 295 * actually called CURVNET_SET() with what's in the mbuf chain. 296 */ 297 static __inline uint32_t 298 mld_restore_context(struct mbuf *m) 299 { 300 301 #if defined(VIMAGE) && defined(INVARIANTS) 302 KASSERT(curvnet == m->m_pkthdr.PH_loc.ptr, 303 ("%s: called when curvnet was not restored", __func__)); 304 #endif 305 return (m->m_pkthdr.flowid); 306 } 307 308 /* 309 * Retrieve or set threshold between group-source queries in seconds. 310 * 311 * VIMAGE: Assume curvnet set by caller. 312 * SMPng: NOTE: Serialized by MLD lock. 313 */ 314 static int 315 sysctl_mld_gsr(SYSCTL_HANDLER_ARGS) 316 { 317 int error; 318 int i; 319 320 error = sysctl_wire_old_buffer(req, sizeof(int)); 321 if (error) 322 return (error); 323 324 MLD_LOCK(); 325 326 i = V_mld_gsrdelay.tv_sec; 327 328 error = sysctl_handle_int(oidp, &i, 0, req); 329 if (error || !req->newptr) 330 goto out_locked; 331 332 if (i < -1 || i >= 60) { 333 error = EINVAL; 334 goto out_locked; 335 } 336 337 CTR2(KTR_MLD, "change mld_gsrdelay from %d to %d", 338 V_mld_gsrdelay.tv_sec, i); 339 V_mld_gsrdelay.tv_sec = i; 340 341 out_locked: 342 MLD_UNLOCK(); 343 return (error); 344 } 345 346 /* 347 * Expose struct mld_ifinfo to userland, keyed by ifindex. 348 * For use by ifmcstat(8). 349 * 350 * SMPng: NOTE: Does an unlocked ifindex space read. 351 * VIMAGE: Assume curvnet set by caller. The node handler itself 352 * is not directly virtualized. 353 */ 354 static int 355 sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS) 356 { 357 int *name; 358 int error; 359 u_int namelen; 360 struct ifnet *ifp; 361 struct mld_ifinfo *mli; 362 363 name = (int *)arg1; 364 namelen = arg2; 365 366 if (req->newptr != NULL) 367 return (EPERM); 368 369 if (namelen != 1) 370 return (EINVAL); 371 372 error = sysctl_wire_old_buffer(req, sizeof(struct mld_ifinfo)); 373 if (error) 374 return (error); 375 376 IN6_MULTI_LOCK(); 377 MLD_LOCK(); 378 379 if (name[0] <= 0 || name[0] > V_if_index) { 380 error = ENOENT; 381 goto out_locked; 382 } 383 384 error = ENOENT; 385 386 ifp = ifnet_byindex(name[0]); 387 if (ifp == NULL) 388 goto out_locked; 389 390 LIST_FOREACH(mli, &V_mli_head, mli_link) { 391 if (ifp == mli->mli_ifp) { 392 error = SYSCTL_OUT(req, mli, 393 sizeof(struct mld_ifinfo)); 394 break; 395 } 396 } 397 398 out_locked: 399 MLD_UNLOCK(); 400 IN6_MULTI_UNLOCK(); 401 return (error); 402 } 403 404 /* 405 * Dispatch an entire queue of pending packet chains. 406 * VIMAGE: Assumes the vnet pointer has been set. 407 */ 408 static void 409 mld_dispatch_queue(struct ifqueue *ifq, int limit) 410 { 411 struct mbuf *m; 412 413 for (;;) { 414 _IF_DEQUEUE(ifq, m); 415 if (m == NULL) 416 break; 417 CTR3(KTR_MLD, "%s: dispatch %p from %p", __func__, ifq, m); 418 mld_dispatch_packet(m); 419 if (--limit == 0) 420 break; 421 } 422 } 423 424 /* 425 * Filter outgoing MLD report state by group. 426 * 427 * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1) 428 * and node-local addresses. However, kernel and socket consumers 429 * always embed the KAME scope ID in the address provided, so strip it 430 * when performing comparison. 431 * Note: This is not the same as the *multicast* scope. 432 * 433 * Return zero if the given group is one for which MLD reports 434 * should be suppressed, or non-zero if reports should be issued. 435 */ 436 static __inline int 437 mld_is_addr_reported(const struct in6_addr *addr) 438 { 439 440 KASSERT(IN6_IS_ADDR_MULTICAST(addr), ("%s: not multicast", __func__)); 441 442 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL) 443 return (0); 444 445 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL) { 446 struct in6_addr tmp = *addr; 447 in6_clearscope(&tmp); 448 if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes)) 449 return (0); 450 } 451 452 return (1); 453 } 454 455 /* 456 * Attach MLD when PF_INET6 is attached to an interface. 457 * 458 * SMPng: Normally called with IF_AFDATA_LOCK held. 459 */ 460 struct mld_ifinfo * 461 mld_domifattach(struct ifnet *ifp) 462 { 463 struct mld_ifinfo *mli; 464 465 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 466 __func__, ifp, if_name(ifp)); 467 468 MLD_LOCK(); 469 470 mli = mli_alloc_locked(ifp); 471 if (!(ifp->if_flags & IFF_MULTICAST)) 472 mli->mli_flags |= MLIF_SILENT; 473 if (mld_use_allow) 474 mli->mli_flags |= MLIF_USEALLOW; 475 476 MLD_UNLOCK(); 477 478 return (mli); 479 } 480 481 /* 482 * VIMAGE: assume curvnet set by caller. 483 */ 484 static struct mld_ifinfo * 485 mli_alloc_locked(/*const*/ struct ifnet *ifp) 486 { 487 struct mld_ifinfo *mli; 488 489 MLD_LOCK_ASSERT(); 490 491 mli = malloc(sizeof(struct mld_ifinfo), M_MLD, M_NOWAIT|M_ZERO); 492 if (mli == NULL) 493 goto out; 494 495 mli->mli_ifp = ifp; 496 mli->mli_version = MLD_VERSION_2; 497 mli->mli_flags = 0; 498 mli->mli_rv = MLD_RV_INIT; 499 mli->mli_qi = MLD_QI_INIT; 500 mli->mli_qri = MLD_QRI_INIT; 501 mli->mli_uri = MLD_URI_INIT; 502 503 SLIST_INIT(&mli->mli_relinmhead); 504 505 /* 506 * Responses to general queries are subject to bounds. 507 */ 508 IFQ_SET_MAXLEN(&mli->mli_gq, MLD_MAX_RESPONSE_PACKETS); 509 510 LIST_INSERT_HEAD(&V_mli_head, mli, mli_link); 511 512 CTR2(KTR_MLD, "allocate mld_ifinfo for ifp %p(%s)", 513 ifp, if_name(ifp)); 514 515 out: 516 return (mli); 517 } 518 519 /* 520 * Hook for ifdetach. 521 * 522 * NOTE: Some finalization tasks need to run before the protocol domain 523 * is detached, but also before the link layer does its cleanup. 524 * Run before link-layer cleanup; cleanup groups, but do not free MLD state. 525 * 526 * SMPng: Caller must hold IN6_MULTI_LOCK(). 527 * Must take IF_ADDR_LOCK() to cover if_multiaddrs iterator. 528 * XXX This routine is also bitten by unlocked ifma_protospec access. 529 */ 530 void 531 mld_ifdetach(struct ifnet *ifp) 532 { 533 struct mld_ifinfo *mli; 534 struct ifmultiaddr *ifma; 535 struct in6_multi *inm, *tinm; 536 537 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", __func__, ifp, 538 if_name(ifp)); 539 540 IN6_MULTI_LOCK_ASSERT(); 541 MLD_LOCK(); 542 543 mli = MLD_IFINFO(ifp); 544 if (mli->mli_version == MLD_VERSION_2) { 545 IF_ADDR_RLOCK(ifp); 546 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 547 if (ifma->ifma_addr->sa_family != AF_INET6 || 548 ifma->ifma_protospec == NULL) 549 continue; 550 inm = (struct in6_multi *)ifma->ifma_protospec; 551 if (inm->in6m_state == MLD_LEAVING_MEMBER) { 552 SLIST_INSERT_HEAD(&mli->mli_relinmhead, 553 inm, in6m_nrele); 554 } 555 in6m_clear_recorded(inm); 556 } 557 IF_ADDR_RUNLOCK(ifp); 558 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele, 559 tinm) { 560 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele); 561 in6m_release_locked(inm); 562 } 563 } 564 565 MLD_UNLOCK(); 566 } 567 568 /* 569 * Hook for domifdetach. 570 * Runs after link-layer cleanup; free MLD state. 571 * 572 * SMPng: Normally called with IF_AFDATA_LOCK held. 573 */ 574 void 575 mld_domifdetach(struct ifnet *ifp) 576 { 577 578 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 579 __func__, ifp, if_name(ifp)); 580 581 MLD_LOCK(); 582 mli_delete_locked(ifp); 583 MLD_UNLOCK(); 584 } 585 586 static void 587 mli_delete_locked(const struct ifnet *ifp) 588 { 589 struct mld_ifinfo *mli, *tmli; 590 591 CTR3(KTR_MLD, "%s: freeing mld_ifinfo for ifp %p(%s)", 592 __func__, ifp, if_name(ifp)); 593 594 MLD_LOCK_ASSERT(); 595 596 LIST_FOREACH_SAFE(mli, &V_mli_head, mli_link, tmli) { 597 if (mli->mli_ifp == ifp) { 598 /* 599 * Free deferred General Query responses. 600 */ 601 _IF_DRAIN(&mli->mli_gq); 602 603 LIST_REMOVE(mli, mli_link); 604 605 KASSERT(SLIST_EMPTY(&mli->mli_relinmhead), 606 ("%s: there are dangling in_multi references", 607 __func__)); 608 609 free(mli, M_MLD); 610 return; 611 } 612 } 613 #ifdef INVARIANTS 614 panic("%s: mld_ifinfo not found for ifp %p\n", __func__, ifp); 615 #endif 616 } 617 618 /* 619 * Process a received MLDv1 general or address-specific query. 620 * Assumes that the query header has been pulled up to sizeof(mld_hdr). 621 * 622 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 623 * mld_addr. This is OK as we own the mbuf chain. 624 */ 625 static int 626 mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 627 /*const*/ struct mld_hdr *mld) 628 { 629 struct ifmultiaddr *ifma; 630 struct mld_ifinfo *mli; 631 struct in6_multi *inm; 632 int is_general_query; 633 uint16_t timer; 634 #ifdef KTR 635 char ip6tbuf[INET6_ADDRSTRLEN]; 636 #endif 637 638 is_general_query = 0; 639 640 if (!mld_v1enable) { 641 CTR3(KTR_MLD, "ignore v1 query %s on ifp %p(%s)", 642 ip6_sprintf(ip6tbuf, &mld->mld_addr), 643 ifp, if_name(ifp)); 644 return (0); 645 } 646 647 /* 648 * RFC3810 Section 6.2: MLD queries must originate from 649 * a router's link-local address. 650 */ 651 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 652 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 653 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 654 ifp, if_name(ifp)); 655 return (0); 656 } 657 658 /* 659 * Do address field validation upfront before we accept 660 * the query. 661 */ 662 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 663 /* 664 * MLDv1 General Query. 665 * If this was not sent to the all-nodes group, ignore it. 666 */ 667 struct in6_addr dst; 668 669 dst = ip6->ip6_dst; 670 in6_clearscope(&dst); 671 if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes)) 672 return (EINVAL); 673 is_general_query = 1; 674 } else { 675 /* 676 * Embed scope ID of receiving interface in MLD query for 677 * lookup whilst we don't hold other locks. 678 */ 679 in6_setscope(&mld->mld_addr, ifp, NULL); 680 } 681 682 IN6_MULTI_LOCK(); 683 MLD_LOCK(); 684 685 /* 686 * Switch to MLDv1 host compatibility mode. 687 */ 688 mli = MLD_IFINFO(ifp); 689 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 690 mld_set_version(mli, MLD_VERSION_1); 691 692 timer = (ntohs(mld->mld_maxdelay) * PR_FASTHZ) / MLD_TIMER_SCALE; 693 if (timer == 0) 694 timer = 1; 695 696 IF_ADDR_RLOCK(ifp); 697 if (is_general_query) { 698 /* 699 * For each reporting group joined on this 700 * interface, kick the report timer. 701 */ 702 CTR2(KTR_MLD, "process v1 general query on ifp %p(%s)", 703 ifp, if_name(ifp)); 704 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 705 if (ifma->ifma_addr->sa_family != AF_INET6 || 706 ifma->ifma_protospec == NULL) 707 continue; 708 inm = (struct in6_multi *)ifma->ifma_protospec; 709 mld_v1_update_group(inm, timer); 710 } 711 } else { 712 /* 713 * MLDv1 Group-Specific Query. 714 * If this is a group-specific MLDv1 query, we need only 715 * look up the single group to process it. 716 */ 717 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 718 if (inm != NULL) { 719 CTR3(KTR_MLD, "process v1 query %s on ifp %p(%s)", 720 ip6_sprintf(ip6tbuf, &mld->mld_addr), 721 ifp, if_name(ifp)); 722 mld_v1_update_group(inm, timer); 723 } 724 /* XXX Clear embedded scope ID as userland won't expect it. */ 725 in6_clearscope(&mld->mld_addr); 726 } 727 728 IF_ADDR_RUNLOCK(ifp); 729 MLD_UNLOCK(); 730 IN6_MULTI_UNLOCK(); 731 732 return (0); 733 } 734 735 /* 736 * Update the report timer on a group in response to an MLDv1 query. 737 * 738 * If we are becoming the reporting member for this group, start the timer. 739 * If we already are the reporting member for this group, and timer is 740 * below the threshold, reset it. 741 * 742 * We may be updating the group for the first time since we switched 743 * to MLDv2. If we are, then we must clear any recorded source lists, 744 * and transition to REPORTING state; the group timer is overloaded 745 * for group and group-source query responses. 746 * 747 * Unlike MLDv2, the delay per group should be jittered 748 * to avoid bursts of MLDv1 reports. 749 */ 750 static void 751 mld_v1_update_group(struct in6_multi *inm, const int timer) 752 { 753 #ifdef KTR 754 char ip6tbuf[INET6_ADDRSTRLEN]; 755 #endif 756 757 CTR4(KTR_MLD, "%s: %s/%s timer=%d", __func__, 758 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 759 if_name(inm->in6m_ifp), timer); 760 761 IN6_MULTI_LOCK_ASSERT(); 762 763 switch (inm->in6m_state) { 764 case MLD_NOT_MEMBER: 765 case MLD_SILENT_MEMBER: 766 break; 767 case MLD_REPORTING_MEMBER: 768 if (inm->in6m_timer != 0 && 769 inm->in6m_timer <= timer) { 770 CTR1(KTR_MLD, "%s: REPORTING and timer running, " 771 "skipping.", __func__); 772 break; 773 } 774 /* FALLTHROUGH */ 775 case MLD_SG_QUERY_PENDING_MEMBER: 776 case MLD_G_QUERY_PENDING_MEMBER: 777 case MLD_IDLE_MEMBER: 778 case MLD_LAZY_MEMBER: 779 case MLD_AWAKENING_MEMBER: 780 CTR1(KTR_MLD, "%s: ->REPORTING", __func__); 781 inm->in6m_state = MLD_REPORTING_MEMBER; 782 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 783 V_current_state_timers_running6 = 1; 784 break; 785 case MLD_SLEEPING_MEMBER: 786 CTR1(KTR_MLD, "%s: ->AWAKENING", __func__); 787 inm->in6m_state = MLD_AWAKENING_MEMBER; 788 break; 789 case MLD_LEAVING_MEMBER: 790 break; 791 } 792 } 793 794 /* 795 * Process a received MLDv2 general, group-specific or 796 * group-and-source-specific query. 797 * 798 * Assumes that the query header has been pulled up to sizeof(mldv2_query). 799 * 800 * Return 0 if successful, otherwise an appropriate error code is returned. 801 */ 802 static int 803 mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 804 struct mbuf *m, const int off, const int icmp6len) 805 { 806 struct mld_ifinfo *mli; 807 struct mldv2_query *mld; 808 struct in6_multi *inm; 809 uint32_t maxdelay, nsrc, qqi; 810 int is_general_query; 811 uint16_t timer; 812 uint8_t qrv; 813 #ifdef KTR 814 char ip6tbuf[INET6_ADDRSTRLEN]; 815 #endif 816 817 is_general_query = 0; 818 819 /* 820 * RFC3810 Section 6.2: MLD queries must originate from 821 * a router's link-local address. 822 */ 823 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 824 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 825 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 826 ifp, if_name(ifp)); 827 return (0); 828 } 829 830 CTR2(KTR_MLD, "input v2 query on ifp %p(%s)", ifp, if_name(ifp)); 831 832 mld = (struct mldv2_query *)(mtod(m, uint8_t *) + off); 833 834 maxdelay = ntohs(mld->mld_maxdelay); /* in 1/10ths of a second */ 835 if (maxdelay >= 32768) { 836 maxdelay = (MLD_MRC_MANT(maxdelay) | 0x1000) << 837 (MLD_MRC_EXP(maxdelay) + 3); 838 } 839 timer = (maxdelay * PR_FASTHZ) / MLD_TIMER_SCALE; 840 if (timer == 0) 841 timer = 1; 842 843 qrv = MLD_QRV(mld->mld_misc); 844 if (qrv < 2) { 845 CTR3(KTR_MLD, "%s: clamping qrv %d to %d", __func__, 846 qrv, MLD_RV_INIT); 847 qrv = MLD_RV_INIT; 848 } 849 850 qqi = mld->mld_qqi; 851 if (qqi >= 128) { 852 qqi = MLD_QQIC_MANT(mld->mld_qqi) << 853 (MLD_QQIC_EXP(mld->mld_qqi) + 3); 854 } 855 856 nsrc = ntohs(mld->mld_numsrc); 857 if (nsrc > MLD_MAX_GS_SOURCES) 858 return (EMSGSIZE); 859 if (icmp6len < sizeof(struct mldv2_query) + 860 (nsrc * sizeof(struct in6_addr))) 861 return (EMSGSIZE); 862 863 /* 864 * Do further input validation upfront to avoid resetting timers 865 * should we need to discard this query. 866 */ 867 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 868 /* 869 * A general query with a source list has undefined 870 * behaviour; discard it. 871 */ 872 if (nsrc > 0) 873 return (EINVAL); 874 is_general_query = 1; 875 } else { 876 /* 877 * Embed scope ID of receiving interface in MLD query for 878 * lookup whilst we don't hold other locks (due to KAME 879 * locking lameness). We own this mbuf chain just now. 880 */ 881 in6_setscope(&mld->mld_addr, ifp, NULL); 882 } 883 884 IN6_MULTI_LOCK(); 885 MLD_LOCK(); 886 887 mli = MLD_IFINFO(ifp); 888 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 889 890 /* 891 * Discard the v2 query if we're in Compatibility Mode. 892 * The RFC is pretty clear that hosts need to stay in MLDv1 mode 893 * until the Old Version Querier Present timer expires. 894 */ 895 if (mli->mli_version != MLD_VERSION_2) 896 goto out_locked; 897 898 mld_set_version(mli, MLD_VERSION_2); 899 mli->mli_rv = qrv; 900 mli->mli_qi = qqi; 901 mli->mli_qri = maxdelay; 902 903 CTR4(KTR_MLD, "%s: qrv %d qi %d maxdelay %d", __func__, qrv, qqi, 904 maxdelay); 905 906 if (is_general_query) { 907 /* 908 * MLDv2 General Query. 909 * 910 * Schedule a current-state report on this ifp for 911 * all groups, possibly containing source lists. 912 * 913 * If there is a pending General Query response 914 * scheduled earlier than the selected delay, do 915 * not schedule any other reports. 916 * Otherwise, reset the interface timer. 917 */ 918 CTR2(KTR_MLD, "process v2 general query on ifp %p(%s)", 919 ifp, if_name(ifp)); 920 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) { 921 mli->mli_v2_timer = MLD_RANDOM_DELAY(timer); 922 V_interface_timers_running6 = 1; 923 } 924 } else { 925 /* 926 * MLDv2 Group-specific or Group-and-source-specific Query. 927 * 928 * Group-source-specific queries are throttled on 929 * a per-group basis to defeat denial-of-service attempts. 930 * Queries for groups we are not a member of on this 931 * link are simply ignored. 932 */ 933 IF_ADDR_RLOCK(ifp); 934 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 935 if (inm == NULL) { 936 IF_ADDR_RUNLOCK(ifp); 937 goto out_locked; 938 } 939 if (nsrc > 0) { 940 if (!ratecheck(&inm->in6m_lastgsrtv, 941 &V_mld_gsrdelay)) { 942 CTR1(KTR_MLD, "%s: GS query throttled.", 943 __func__); 944 IF_ADDR_RUNLOCK(ifp); 945 goto out_locked; 946 } 947 } 948 CTR2(KTR_MLD, "process v2 group query on ifp %p(%s)", 949 ifp, if_name(ifp)); 950 /* 951 * If there is a pending General Query response 952 * scheduled sooner than the selected delay, no 953 * further report need be scheduled. 954 * Otherwise, prepare to respond to the 955 * group-specific or group-and-source query. 956 */ 957 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) 958 mld_v2_process_group_query(inm, mli, timer, m, off); 959 960 /* XXX Clear embedded scope ID as userland won't expect it. */ 961 in6_clearscope(&mld->mld_addr); 962 IF_ADDR_RUNLOCK(ifp); 963 } 964 965 out_locked: 966 MLD_UNLOCK(); 967 IN6_MULTI_UNLOCK(); 968 969 return (0); 970 } 971 972 /* 973 * Process a recieved MLDv2 group-specific or group-and-source-specific 974 * query. 975 * Return <0 if any error occured. Currently this is ignored. 976 */ 977 static int 978 mld_v2_process_group_query(struct in6_multi *inm, struct mld_ifinfo *mli, 979 int timer, struct mbuf *m0, const int off) 980 { 981 struct mldv2_query *mld; 982 int retval; 983 uint16_t nsrc; 984 985 IN6_MULTI_LOCK_ASSERT(); 986 MLD_LOCK_ASSERT(); 987 988 retval = 0; 989 mld = (struct mldv2_query *)(mtod(m0, uint8_t *) + off); 990 991 switch (inm->in6m_state) { 992 case MLD_NOT_MEMBER: 993 case MLD_SILENT_MEMBER: 994 case MLD_SLEEPING_MEMBER: 995 case MLD_LAZY_MEMBER: 996 case MLD_AWAKENING_MEMBER: 997 case MLD_IDLE_MEMBER: 998 case MLD_LEAVING_MEMBER: 999 return (retval); 1000 break; 1001 case MLD_REPORTING_MEMBER: 1002 case MLD_G_QUERY_PENDING_MEMBER: 1003 case MLD_SG_QUERY_PENDING_MEMBER: 1004 break; 1005 } 1006 1007 nsrc = ntohs(mld->mld_numsrc); 1008 1009 /* 1010 * Deal with group-specific queries upfront. 1011 * If any group query is already pending, purge any recorded 1012 * source-list state if it exists, and schedule a query response 1013 * for this group-specific query. 1014 */ 1015 if (nsrc == 0) { 1016 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 1017 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) { 1018 in6m_clear_recorded(inm); 1019 timer = min(inm->in6m_timer, timer); 1020 } 1021 inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER; 1022 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1023 V_current_state_timers_running6 = 1; 1024 return (retval); 1025 } 1026 1027 /* 1028 * Deal with the case where a group-and-source-specific query has 1029 * been received but a group-specific query is already pending. 1030 */ 1031 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) { 1032 timer = min(inm->in6m_timer, timer); 1033 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1034 V_current_state_timers_running6 = 1; 1035 return (retval); 1036 } 1037 1038 /* 1039 * Finally, deal with the case where a group-and-source-specific 1040 * query has been received, where a response to a previous g-s-r 1041 * query exists, or none exists. 1042 * In this case, we need to parse the source-list which the Querier 1043 * has provided us with and check if we have any source list filter 1044 * entries at T1 for these sources. If we do not, there is no need 1045 * schedule a report and the query may be dropped. 1046 * If we do, we must record them and schedule a current-state 1047 * report for those sources. 1048 */ 1049 if (inm->in6m_nsrc > 0) { 1050 struct mbuf *m; 1051 uint8_t *sp; 1052 int i, nrecorded; 1053 int soff; 1054 1055 m = m0; 1056 soff = off + sizeof(struct mldv2_query); 1057 nrecorded = 0; 1058 for (i = 0; i < nsrc; i++) { 1059 sp = mtod(m, uint8_t *) + soff; 1060 retval = in6m_record_source(inm, 1061 (const struct in6_addr *)sp); 1062 if (retval < 0) 1063 break; 1064 nrecorded += retval; 1065 soff += sizeof(struct in6_addr); 1066 if (soff >= m->m_len) { 1067 soff = soff - m->m_len; 1068 m = m->m_next; 1069 if (m == NULL) 1070 break; 1071 } 1072 } 1073 if (nrecorded > 0) { 1074 CTR1(KTR_MLD, 1075 "%s: schedule response to SG query", __func__); 1076 inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER; 1077 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1078 V_current_state_timers_running6 = 1; 1079 } 1080 } 1081 1082 return (retval); 1083 } 1084 1085 /* 1086 * Process a received MLDv1 host membership report. 1087 * Assumes mld points to mld_hdr in pulled up mbuf chain. 1088 * 1089 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 1090 * mld_addr. This is OK as we own the mbuf chain. 1091 */ 1092 static int 1093 mld_v1_input_report(struct ifnet *ifp, const struct ip6_hdr *ip6, 1094 /*const*/ struct mld_hdr *mld) 1095 { 1096 struct in6_addr src, dst; 1097 struct in6_ifaddr *ia; 1098 struct in6_multi *inm; 1099 #ifdef KTR 1100 char ip6tbuf[INET6_ADDRSTRLEN]; 1101 #endif 1102 1103 if (!mld_v1enable) { 1104 CTR3(KTR_MLD, "ignore v1 report %s on ifp %p(%s)", 1105 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1106 ifp, if_name(ifp)); 1107 return (0); 1108 } 1109 1110 if (ifp->if_flags & IFF_LOOPBACK) 1111 return (0); 1112 1113 /* 1114 * MLDv1 reports must originate from a host's link-local address, 1115 * or the unspecified address (when booting). 1116 */ 1117 src = ip6->ip6_src; 1118 in6_clearscope(&src); 1119 if (!IN6_IS_SCOPE_LINKLOCAL(&src) && !IN6_IS_ADDR_UNSPECIFIED(&src)) { 1120 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 1121 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 1122 ifp, if_name(ifp)); 1123 return (EINVAL); 1124 } 1125 1126 /* 1127 * RFC2710 Section 4: MLDv1 reports must pertain to a multicast 1128 * group, and must be directed to the group itself. 1129 */ 1130 dst = ip6->ip6_dst; 1131 in6_clearscope(&dst); 1132 if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) || 1133 !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &dst)) { 1134 CTR3(KTR_MLD, "ignore v1 query dst %s on ifp %p(%s)", 1135 ip6_sprintf(ip6tbuf, &ip6->ip6_dst), 1136 ifp, if_name(ifp)); 1137 return (EINVAL); 1138 } 1139 1140 /* 1141 * Make sure we don't hear our own membership report, as fast 1142 * leave requires knowing that we are the only member of a 1143 * group. Assume we used the link-local address if available, 1144 * otherwise look for ::. 1145 * 1146 * XXX Note that scope ID comparison is needed for the address 1147 * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be 1148 * performed for the on-wire address. 1149 */ 1150 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1151 if ((ia && IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia))) || 1152 (ia == NULL && IN6_IS_ADDR_UNSPECIFIED(&src))) { 1153 if (ia != NULL) 1154 ifa_free(&ia->ia_ifa); 1155 return (0); 1156 } 1157 if (ia != NULL) 1158 ifa_free(&ia->ia_ifa); 1159 1160 CTR3(KTR_MLD, "process v1 report %s on ifp %p(%s)", 1161 ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, if_name(ifp)); 1162 1163 /* 1164 * Embed scope ID of receiving interface in MLD query for lookup 1165 * whilst we don't hold other locks (due to KAME locking lameness). 1166 */ 1167 if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) 1168 in6_setscope(&mld->mld_addr, ifp, NULL); 1169 1170 IN6_MULTI_LOCK(); 1171 MLD_LOCK(); 1172 IF_ADDR_RLOCK(ifp); 1173 1174 /* 1175 * MLDv1 report suppression. 1176 * If we are a member of this group, and our membership should be 1177 * reported, and our group timer is pending or about to be reset, 1178 * stop our group timer by transitioning to the 'lazy' state. 1179 */ 1180 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 1181 if (inm != NULL) { 1182 struct mld_ifinfo *mli; 1183 1184 mli = inm->in6m_mli; 1185 KASSERT(mli != NULL, 1186 ("%s: no mli for ifp %p", __func__, ifp)); 1187 1188 /* 1189 * If we are in MLDv2 host mode, do not allow the 1190 * other host's MLDv1 report to suppress our reports. 1191 */ 1192 if (mli->mli_version == MLD_VERSION_2) 1193 goto out_locked; 1194 1195 inm->in6m_timer = 0; 1196 1197 switch (inm->in6m_state) { 1198 case MLD_NOT_MEMBER: 1199 case MLD_SILENT_MEMBER: 1200 case MLD_SLEEPING_MEMBER: 1201 break; 1202 case MLD_REPORTING_MEMBER: 1203 case MLD_IDLE_MEMBER: 1204 case MLD_AWAKENING_MEMBER: 1205 CTR3(KTR_MLD, 1206 "report suppressed for %s on ifp %p(%s)", 1207 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1208 ifp, if_name(ifp)); 1209 case MLD_LAZY_MEMBER: 1210 inm->in6m_state = MLD_LAZY_MEMBER; 1211 break; 1212 case MLD_G_QUERY_PENDING_MEMBER: 1213 case MLD_SG_QUERY_PENDING_MEMBER: 1214 case MLD_LEAVING_MEMBER: 1215 break; 1216 } 1217 } 1218 1219 out_locked: 1220 IF_ADDR_RUNLOCK(ifp); 1221 MLD_UNLOCK(); 1222 IN6_MULTI_UNLOCK(); 1223 1224 /* XXX Clear embedded scope ID as userland won't expect it. */ 1225 in6_clearscope(&mld->mld_addr); 1226 1227 return (0); 1228 } 1229 1230 /* 1231 * MLD input path. 1232 * 1233 * Assume query messages which fit in a single ICMPv6 message header 1234 * have been pulled up. 1235 * Assume that userland will want to see the message, even if it 1236 * otherwise fails kernel input validation; do not free it. 1237 * Pullup may however free the mbuf chain m if it fails. 1238 * 1239 * Return IPPROTO_DONE if we freed m. Otherwise, return 0. 1240 */ 1241 int 1242 mld_input(struct mbuf *m, int off, int icmp6len) 1243 { 1244 struct ifnet *ifp; 1245 struct ip6_hdr *ip6; 1246 struct mld_hdr *mld; 1247 int mldlen; 1248 1249 CTR3(KTR_MLD, "%s: called w/mbuf (%p,%d)", __func__, m, off); 1250 1251 ifp = m->m_pkthdr.rcvif; 1252 1253 ip6 = mtod(m, struct ip6_hdr *); 1254 1255 /* Pullup to appropriate size. */ 1256 mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off); 1257 if (mld->mld_type == MLD_LISTENER_QUERY && 1258 icmp6len >= sizeof(struct mldv2_query)) { 1259 mldlen = sizeof(struct mldv2_query); 1260 } else { 1261 mldlen = sizeof(struct mld_hdr); 1262 } 1263 IP6_EXTHDR_GET(mld, struct mld_hdr *, m, off, mldlen); 1264 if (mld == NULL) { 1265 ICMP6STAT_INC(icp6s_badlen); 1266 return (IPPROTO_DONE); 1267 } 1268 1269 /* 1270 * Userland needs to see all of this traffic for implementing 1271 * the endpoint discovery portion of multicast routing. 1272 */ 1273 switch (mld->mld_type) { 1274 case MLD_LISTENER_QUERY: 1275 icmp6_ifstat_inc(ifp, ifs6_in_mldquery); 1276 if (icmp6len == sizeof(struct mld_hdr)) { 1277 if (mld_v1_input_query(ifp, ip6, mld) != 0) 1278 return (0); 1279 } else if (icmp6len >= sizeof(struct mldv2_query)) { 1280 if (mld_v2_input_query(ifp, ip6, m, off, 1281 icmp6len) != 0) 1282 return (0); 1283 } 1284 break; 1285 case MLD_LISTENER_REPORT: 1286 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1287 if (mld_v1_input_report(ifp, ip6, mld) != 0) 1288 return (0); 1289 break; 1290 case MLDV2_LISTENER_REPORT: 1291 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1292 break; 1293 case MLD_LISTENER_DONE: 1294 icmp6_ifstat_inc(ifp, ifs6_in_mlddone); 1295 break; 1296 default: 1297 break; 1298 } 1299 1300 return (0); 1301 } 1302 1303 /* 1304 * Fast timeout handler (global). 1305 * VIMAGE: Timeout handlers are expected to service all vimages. 1306 */ 1307 void 1308 mld_fasttimo(void) 1309 { 1310 VNET_ITERATOR_DECL(vnet_iter); 1311 1312 VNET_LIST_RLOCK_NOSLEEP(); 1313 VNET_FOREACH(vnet_iter) { 1314 CURVNET_SET(vnet_iter); 1315 mld_fasttimo_vnet(); 1316 CURVNET_RESTORE(); 1317 } 1318 VNET_LIST_RUNLOCK_NOSLEEP(); 1319 } 1320 1321 /* 1322 * Fast timeout handler (per-vnet). 1323 * 1324 * VIMAGE: Assume caller has set up our curvnet. 1325 */ 1326 static void 1327 mld_fasttimo_vnet(void) 1328 { 1329 struct ifqueue scq; /* State-change packets */ 1330 struct ifqueue qrq; /* Query response packets */ 1331 struct ifnet *ifp; 1332 struct mld_ifinfo *mli; 1333 struct ifmultiaddr *ifma; 1334 struct in6_multi *inm, *tinm; 1335 int uri_fasthz; 1336 1337 uri_fasthz = 0; 1338 1339 /* 1340 * Quick check to see if any work needs to be done, in order to 1341 * minimize the overhead of fasttimo processing. 1342 * SMPng: XXX Unlocked reads. 1343 */ 1344 if (!V_current_state_timers_running6 && 1345 !V_interface_timers_running6 && 1346 !V_state_change_timers_running6) 1347 return; 1348 1349 IN6_MULTI_LOCK(); 1350 MLD_LOCK(); 1351 1352 /* 1353 * MLDv2 General Query response timer processing. 1354 */ 1355 if (V_interface_timers_running6) { 1356 CTR1(KTR_MLD, "%s: interface timers running", __func__); 1357 1358 V_interface_timers_running6 = 0; 1359 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1360 if (mli->mli_v2_timer == 0) { 1361 /* Do nothing. */ 1362 } else if (--mli->mli_v2_timer == 0) { 1363 mld_v2_dispatch_general_query(mli); 1364 } else { 1365 V_interface_timers_running6 = 1; 1366 } 1367 } 1368 } 1369 1370 if (!V_current_state_timers_running6 && 1371 !V_state_change_timers_running6) 1372 goto out_locked; 1373 1374 V_current_state_timers_running6 = 0; 1375 V_state_change_timers_running6 = 0; 1376 1377 CTR1(KTR_MLD, "%s: state change timers running", __func__); 1378 1379 /* 1380 * MLD host report and state-change timer processing. 1381 * Note: Processing a v2 group timer may remove a node. 1382 */ 1383 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1384 ifp = mli->mli_ifp; 1385 1386 if (mli->mli_version == MLD_VERSION_2) { 1387 uri_fasthz = MLD_RANDOM_DELAY(mli->mli_uri * 1388 PR_FASTHZ); 1389 1390 memset(&qrq, 0, sizeof(struct ifqueue)); 1391 IFQ_SET_MAXLEN(&qrq, MLD_MAX_G_GS_PACKETS); 1392 1393 memset(&scq, 0, sizeof(struct ifqueue)); 1394 IFQ_SET_MAXLEN(&scq, MLD_MAX_STATE_CHANGE_PACKETS); 1395 } 1396 1397 IF_ADDR_RLOCK(ifp); 1398 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1399 if (ifma->ifma_addr->sa_family != AF_INET6 || 1400 ifma->ifma_protospec == NULL) 1401 continue; 1402 inm = (struct in6_multi *)ifma->ifma_protospec; 1403 switch (mli->mli_version) { 1404 case MLD_VERSION_1: 1405 mld_v1_process_group_timer(mli, inm); 1406 break; 1407 case MLD_VERSION_2: 1408 mld_v2_process_group_timers(mli, &qrq, 1409 &scq, inm, uri_fasthz); 1410 break; 1411 } 1412 } 1413 IF_ADDR_RUNLOCK(ifp); 1414 1415 switch (mli->mli_version) { 1416 case MLD_VERSION_1: 1417 /* 1418 * Transmit reports for this lifecycle. This 1419 * is done while not holding IF_ADDR_LOCK 1420 * since this can call 1421 * in6ifa_ifpforlinklocal() which locks 1422 * IF_ADDR_LOCK internally as well as 1423 * ip6_output() to transmit a packet. 1424 */ 1425 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, 1426 in6m_nrele, tinm) { 1427 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, 1428 in6m_nrele); 1429 (void)mld_v1_transmit_report(inm, 1430 MLD_LISTENER_REPORT); 1431 } 1432 break; 1433 case MLD_VERSION_2: 1434 mld_dispatch_queue(&qrq, 0); 1435 mld_dispatch_queue(&scq, 0); 1436 1437 /* 1438 * Free the in_multi reference(s) for 1439 * this lifecycle. 1440 */ 1441 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, 1442 in6m_nrele, tinm) { 1443 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, 1444 in6m_nrele); 1445 in6m_release_locked(inm); 1446 } 1447 break; 1448 } 1449 } 1450 1451 out_locked: 1452 MLD_UNLOCK(); 1453 IN6_MULTI_UNLOCK(); 1454 } 1455 1456 /* 1457 * Update host report group timer. 1458 * Will update the global pending timer flags. 1459 */ 1460 static void 1461 mld_v1_process_group_timer(struct mld_ifinfo *mli, struct in6_multi *inm) 1462 { 1463 int report_timer_expired; 1464 1465 IN6_MULTI_LOCK_ASSERT(); 1466 MLD_LOCK_ASSERT(); 1467 1468 if (inm->in6m_timer == 0) { 1469 report_timer_expired = 0; 1470 } else if (--inm->in6m_timer == 0) { 1471 report_timer_expired = 1; 1472 } else { 1473 V_current_state_timers_running6 = 1; 1474 return; 1475 } 1476 1477 switch (inm->in6m_state) { 1478 case MLD_NOT_MEMBER: 1479 case MLD_SILENT_MEMBER: 1480 case MLD_IDLE_MEMBER: 1481 case MLD_LAZY_MEMBER: 1482 case MLD_SLEEPING_MEMBER: 1483 case MLD_AWAKENING_MEMBER: 1484 break; 1485 case MLD_REPORTING_MEMBER: 1486 if (report_timer_expired) { 1487 inm->in6m_state = MLD_IDLE_MEMBER; 1488 SLIST_INSERT_HEAD(&mli->mli_relinmhead, inm, 1489 in6m_nrele); 1490 } 1491 break; 1492 case MLD_G_QUERY_PENDING_MEMBER: 1493 case MLD_SG_QUERY_PENDING_MEMBER: 1494 case MLD_LEAVING_MEMBER: 1495 break; 1496 } 1497 } 1498 1499 /* 1500 * Update a group's timers for MLDv2. 1501 * Will update the global pending timer flags. 1502 * Note: Unlocked read from mli. 1503 */ 1504 static void 1505 mld_v2_process_group_timers(struct mld_ifinfo *mli, 1506 struct ifqueue *qrq, struct ifqueue *scq, 1507 struct in6_multi *inm, const int uri_fasthz) 1508 { 1509 int query_response_timer_expired; 1510 int state_change_retransmit_timer_expired; 1511 #ifdef KTR 1512 char ip6tbuf[INET6_ADDRSTRLEN]; 1513 #endif 1514 1515 IN6_MULTI_LOCK_ASSERT(); 1516 MLD_LOCK_ASSERT(); 1517 1518 query_response_timer_expired = 0; 1519 state_change_retransmit_timer_expired = 0; 1520 1521 /* 1522 * During a transition from compatibility mode back to MLDv2, 1523 * a group record in REPORTING state may still have its group 1524 * timer active. This is a no-op in this function; it is easier 1525 * to deal with it here than to complicate the slow-timeout path. 1526 */ 1527 if (inm->in6m_timer == 0) { 1528 query_response_timer_expired = 0; 1529 } else if (--inm->in6m_timer == 0) { 1530 query_response_timer_expired = 1; 1531 } else { 1532 V_current_state_timers_running6 = 1; 1533 } 1534 1535 if (inm->in6m_sctimer == 0) { 1536 state_change_retransmit_timer_expired = 0; 1537 } else if (--inm->in6m_sctimer == 0) { 1538 state_change_retransmit_timer_expired = 1; 1539 } else { 1540 V_state_change_timers_running6 = 1; 1541 } 1542 1543 /* We are in fasttimo, so be quick about it. */ 1544 if (!state_change_retransmit_timer_expired && 1545 !query_response_timer_expired) 1546 return; 1547 1548 switch (inm->in6m_state) { 1549 case MLD_NOT_MEMBER: 1550 case MLD_SILENT_MEMBER: 1551 case MLD_SLEEPING_MEMBER: 1552 case MLD_LAZY_MEMBER: 1553 case MLD_AWAKENING_MEMBER: 1554 case MLD_IDLE_MEMBER: 1555 break; 1556 case MLD_G_QUERY_PENDING_MEMBER: 1557 case MLD_SG_QUERY_PENDING_MEMBER: 1558 /* 1559 * Respond to a previously pending Group-Specific 1560 * or Group-and-Source-Specific query by enqueueing 1561 * the appropriate Current-State report for 1562 * immediate transmission. 1563 */ 1564 if (query_response_timer_expired) { 1565 int retval; 1566 1567 retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1, 1568 (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER), 1569 0); 1570 CTR2(KTR_MLD, "%s: enqueue record = %d", 1571 __func__, retval); 1572 inm->in6m_state = MLD_REPORTING_MEMBER; 1573 in6m_clear_recorded(inm); 1574 } 1575 /* FALLTHROUGH */ 1576 case MLD_REPORTING_MEMBER: 1577 case MLD_LEAVING_MEMBER: 1578 if (state_change_retransmit_timer_expired) { 1579 /* 1580 * State-change retransmission timer fired. 1581 * If there are any further pending retransmissions, 1582 * set the global pending state-change flag, and 1583 * reset the timer. 1584 */ 1585 if (--inm->in6m_scrv > 0) { 1586 inm->in6m_sctimer = uri_fasthz; 1587 V_state_change_timers_running6 = 1; 1588 } 1589 /* 1590 * Retransmit the previously computed state-change 1591 * report. If there are no further pending 1592 * retransmissions, the mbuf queue will be consumed. 1593 * Update T0 state to T1 as we have now sent 1594 * a state-change. 1595 */ 1596 (void)mld_v2_merge_state_changes(inm, scq); 1597 1598 in6m_commit(inm); 1599 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 1600 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1601 if_name(inm->in6m_ifp)); 1602 1603 /* 1604 * If we are leaving the group for good, make sure 1605 * we release MLD's reference to it. 1606 * This release must be deferred using a SLIST, 1607 * as we are called from a loop which traverses 1608 * the in_ifmultiaddr TAILQ. 1609 */ 1610 if (inm->in6m_state == MLD_LEAVING_MEMBER && 1611 inm->in6m_scrv == 0) { 1612 inm->in6m_state = MLD_NOT_MEMBER; 1613 SLIST_INSERT_HEAD(&mli->mli_relinmhead, 1614 inm, in6m_nrele); 1615 } 1616 } 1617 break; 1618 } 1619 } 1620 1621 /* 1622 * Switch to a different version on the given interface, 1623 * as per Section 9.12. 1624 */ 1625 static void 1626 mld_set_version(struct mld_ifinfo *mli, const int version) 1627 { 1628 int old_version_timer; 1629 1630 MLD_LOCK_ASSERT(); 1631 1632 CTR4(KTR_MLD, "%s: switching to v%d on ifp %p(%s)", __func__, 1633 version, mli->mli_ifp, if_name(mli->mli_ifp)); 1634 1635 if (version == MLD_VERSION_1) { 1636 /* 1637 * Compute the "Older Version Querier Present" timer as per 1638 * Section 9.12. 1639 */ 1640 old_version_timer = (mli->mli_rv * mli->mli_qi) + mli->mli_qri; 1641 old_version_timer *= PR_SLOWHZ; 1642 mli->mli_v1_timer = old_version_timer; 1643 } 1644 1645 if (mli->mli_v1_timer > 0 && mli->mli_version != MLD_VERSION_1) { 1646 mli->mli_version = MLD_VERSION_1; 1647 mld_v2_cancel_link_timers(mli); 1648 } 1649 } 1650 1651 /* 1652 * Cancel pending MLDv2 timers for the given link and all groups 1653 * joined on it; state-change, general-query, and group-query timers. 1654 */ 1655 static void 1656 mld_v2_cancel_link_timers(struct mld_ifinfo *mli) 1657 { 1658 struct ifmultiaddr *ifma; 1659 struct ifnet *ifp; 1660 struct in6_multi *inm, *tinm; 1661 1662 CTR3(KTR_MLD, "%s: cancel v2 timers on ifp %p(%s)", __func__, 1663 mli->mli_ifp, if_name(mli->mli_ifp)); 1664 1665 IN6_MULTI_LOCK_ASSERT(); 1666 MLD_LOCK_ASSERT(); 1667 1668 /* 1669 * Fast-track this potentially expensive operation 1670 * by checking all the global 'timer pending' flags. 1671 */ 1672 if (!V_interface_timers_running6 && 1673 !V_state_change_timers_running6 && 1674 !V_current_state_timers_running6) 1675 return; 1676 1677 mli->mli_v2_timer = 0; 1678 1679 ifp = mli->mli_ifp; 1680 1681 IF_ADDR_RLOCK(ifp); 1682 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1683 if (ifma->ifma_addr->sa_family != AF_INET6) 1684 continue; 1685 inm = (struct in6_multi *)ifma->ifma_protospec; 1686 switch (inm->in6m_state) { 1687 case MLD_NOT_MEMBER: 1688 case MLD_SILENT_MEMBER: 1689 case MLD_IDLE_MEMBER: 1690 case MLD_LAZY_MEMBER: 1691 case MLD_SLEEPING_MEMBER: 1692 case MLD_AWAKENING_MEMBER: 1693 break; 1694 case MLD_LEAVING_MEMBER: 1695 /* 1696 * If we are leaving the group and switching 1697 * version, we need to release the final 1698 * reference held for issuing the INCLUDE {}. 1699 */ 1700 SLIST_INSERT_HEAD(&mli->mli_relinmhead, inm, 1701 in6m_nrele); 1702 /* FALLTHROUGH */ 1703 case MLD_G_QUERY_PENDING_MEMBER: 1704 case MLD_SG_QUERY_PENDING_MEMBER: 1705 in6m_clear_recorded(inm); 1706 /* FALLTHROUGH */ 1707 case MLD_REPORTING_MEMBER: 1708 inm->in6m_sctimer = 0; 1709 inm->in6m_timer = 0; 1710 inm->in6m_state = MLD_REPORTING_MEMBER; 1711 /* 1712 * Free any pending MLDv2 state-change records. 1713 */ 1714 _IF_DRAIN(&inm->in6m_scq); 1715 break; 1716 } 1717 } 1718 IF_ADDR_RUNLOCK(ifp); 1719 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele, tinm) { 1720 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele); 1721 in6m_release_locked(inm); 1722 } 1723 } 1724 1725 /* 1726 * Global slowtimo handler. 1727 * VIMAGE: Timeout handlers are expected to service all vimages. 1728 */ 1729 void 1730 mld_slowtimo(void) 1731 { 1732 VNET_ITERATOR_DECL(vnet_iter); 1733 1734 VNET_LIST_RLOCK_NOSLEEP(); 1735 VNET_FOREACH(vnet_iter) { 1736 CURVNET_SET(vnet_iter); 1737 mld_slowtimo_vnet(); 1738 CURVNET_RESTORE(); 1739 } 1740 VNET_LIST_RUNLOCK_NOSLEEP(); 1741 } 1742 1743 /* 1744 * Per-vnet slowtimo handler. 1745 */ 1746 static void 1747 mld_slowtimo_vnet(void) 1748 { 1749 struct mld_ifinfo *mli; 1750 1751 MLD_LOCK(); 1752 1753 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1754 mld_v1_process_querier_timers(mli); 1755 } 1756 1757 MLD_UNLOCK(); 1758 } 1759 1760 /* 1761 * Update the Older Version Querier Present timers for a link. 1762 * See Section 9.12 of RFC 3810. 1763 */ 1764 static void 1765 mld_v1_process_querier_timers(struct mld_ifinfo *mli) 1766 { 1767 1768 MLD_LOCK_ASSERT(); 1769 1770 if (mli->mli_version != MLD_VERSION_2 && --mli->mli_v1_timer == 0) { 1771 /* 1772 * MLDv1 Querier Present timer expired; revert to MLDv2. 1773 */ 1774 CTR5(KTR_MLD, 1775 "%s: transition from v%d -> v%d on %p(%s)", 1776 __func__, mli->mli_version, MLD_VERSION_2, 1777 mli->mli_ifp, if_name(mli->mli_ifp)); 1778 mli->mli_version = MLD_VERSION_2; 1779 } 1780 } 1781 1782 /* 1783 * Transmit an MLDv1 report immediately. 1784 */ 1785 static int 1786 mld_v1_transmit_report(struct in6_multi *in6m, const int type) 1787 { 1788 struct ifnet *ifp; 1789 struct in6_ifaddr *ia; 1790 struct ip6_hdr *ip6; 1791 struct mbuf *mh, *md; 1792 struct mld_hdr *mld; 1793 1794 IN6_MULTI_LOCK_ASSERT(); 1795 MLD_LOCK_ASSERT(); 1796 1797 ifp = in6m->in6m_ifp; 1798 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1799 /* ia may be NULL if link-local address is tentative. */ 1800 1801 mh = m_gethdr(M_NOWAIT, MT_DATA); 1802 if (mh == NULL) { 1803 if (ia != NULL) 1804 ifa_free(&ia->ia_ifa); 1805 return (ENOMEM); 1806 } 1807 md = m_get(M_NOWAIT, MT_DATA); 1808 if (md == NULL) { 1809 m_free(mh); 1810 if (ia != NULL) 1811 ifa_free(&ia->ia_ifa); 1812 return (ENOMEM); 1813 } 1814 mh->m_next = md; 1815 1816 /* 1817 * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so 1818 * that ether_output() does not need to allocate another mbuf 1819 * for the header in the most common case. 1820 */ 1821 MH_ALIGN(mh, sizeof(struct ip6_hdr)); 1822 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr); 1823 mh->m_len = sizeof(struct ip6_hdr); 1824 1825 ip6 = mtod(mh, struct ip6_hdr *); 1826 ip6->ip6_flow = 0; 1827 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 1828 ip6->ip6_vfc |= IPV6_VERSION; 1829 ip6->ip6_nxt = IPPROTO_ICMPV6; 1830 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 1831 ip6->ip6_dst = in6m->in6m_addr; 1832 1833 md->m_len = sizeof(struct mld_hdr); 1834 mld = mtod(md, struct mld_hdr *); 1835 mld->mld_type = type; 1836 mld->mld_code = 0; 1837 mld->mld_cksum = 0; 1838 mld->mld_maxdelay = 0; 1839 mld->mld_reserved = 0; 1840 mld->mld_addr = in6m->in6m_addr; 1841 in6_clearscope(&mld->mld_addr); 1842 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 1843 sizeof(struct ip6_hdr), sizeof(struct mld_hdr)); 1844 1845 mld_save_context(mh, ifp); 1846 mh->m_flags |= M_MLDV1; 1847 1848 mld_dispatch_packet(mh); 1849 1850 if (ia != NULL) 1851 ifa_free(&ia->ia_ifa); 1852 return (0); 1853 } 1854 1855 /* 1856 * Process a state change from the upper layer for the given IPv6 group. 1857 * 1858 * Each socket holds a reference on the in_multi in its own ip_moptions. 1859 * The socket layer will have made the necessary updates to.the group 1860 * state, it is now up to MLD to issue a state change report if there 1861 * has been any change between T0 (when the last state-change was issued) 1862 * and T1 (now). 1863 * 1864 * We use the MLDv2 state machine at group level. The MLd module 1865 * however makes the decision as to which MLD protocol version to speak. 1866 * A state change *from* INCLUDE {} always means an initial join. 1867 * A state change *to* INCLUDE {} always means a final leave. 1868 * 1869 * If delay is non-zero, and the state change is an initial multicast 1870 * join, the state change report will be delayed by 'delay' ticks 1871 * in units of PR_FASTHZ if MLDv1 is active on the link; otherwise 1872 * the initial MLDv2 state change report will be delayed by whichever 1873 * is sooner, a pending state-change timer or delay itself. 1874 * 1875 * VIMAGE: curvnet should have been set by caller, as this routine 1876 * is called from the socket option handlers. 1877 */ 1878 int 1879 mld_change_state(struct in6_multi *inm, const int delay) 1880 { 1881 struct mld_ifinfo *mli; 1882 struct ifnet *ifp; 1883 int error; 1884 1885 IN6_MULTI_LOCK_ASSERT(); 1886 1887 error = 0; 1888 1889 /* 1890 * Try to detect if the upper layer just asked us to change state 1891 * for an interface which has now gone away. 1892 */ 1893 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); 1894 ifp = inm->in6m_ifma->ifma_ifp; 1895 if (ifp != NULL) { 1896 /* 1897 * Sanity check that netinet6's notion of ifp is the 1898 * same as net's. 1899 */ 1900 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); 1901 } 1902 1903 MLD_LOCK(); 1904 1905 mli = MLD_IFINFO(ifp); 1906 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 1907 1908 /* 1909 * If we detect a state transition to or from MCAST_UNDEFINED 1910 * for this group, then we are starting or finishing an MLD 1911 * life cycle for this group. 1912 */ 1913 if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) { 1914 CTR3(KTR_MLD, "%s: inm transition %d -> %d", __func__, 1915 inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode); 1916 if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) { 1917 CTR1(KTR_MLD, "%s: initial join", __func__); 1918 error = mld_initial_join(inm, mli, delay); 1919 goto out_locked; 1920 } else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) { 1921 CTR1(KTR_MLD, "%s: final leave", __func__); 1922 mld_final_leave(inm, mli); 1923 goto out_locked; 1924 } 1925 } else { 1926 CTR1(KTR_MLD, "%s: filter set change", __func__); 1927 } 1928 1929 error = mld_handle_state_change(inm, mli); 1930 1931 out_locked: 1932 MLD_UNLOCK(); 1933 return (error); 1934 } 1935 1936 /* 1937 * Perform the initial join for an MLD group. 1938 * 1939 * When joining a group: 1940 * If the group should have its MLD traffic suppressed, do nothing. 1941 * MLDv1 starts sending MLDv1 host membership reports. 1942 * MLDv2 will schedule an MLDv2 state-change report containing the 1943 * initial state of the membership. 1944 * 1945 * If the delay argument is non-zero, then we must delay sending the 1946 * initial state change for delay ticks (in units of PR_FASTHZ). 1947 */ 1948 static int 1949 mld_initial_join(struct in6_multi *inm, struct mld_ifinfo *mli, 1950 const int delay) 1951 { 1952 struct ifnet *ifp; 1953 struct ifqueue *ifq; 1954 int error, retval, syncstates; 1955 int odelay; 1956 #ifdef KTR 1957 char ip6tbuf[INET6_ADDRSTRLEN]; 1958 #endif 1959 1960 CTR4(KTR_MLD, "%s: initial join %s on ifp %p(%s)", 1961 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1962 inm->in6m_ifp, if_name(inm->in6m_ifp)); 1963 1964 error = 0; 1965 syncstates = 1; 1966 1967 ifp = inm->in6m_ifp; 1968 1969 IN6_MULTI_LOCK_ASSERT(); 1970 MLD_LOCK_ASSERT(); 1971 1972 KASSERT(mli && mli->mli_ifp == ifp, ("%s: inconsistent ifp", __func__)); 1973 1974 /* 1975 * Groups joined on loopback or marked as 'not reported', 1976 * enter the MLD_SILENT_MEMBER state and 1977 * are never reported in any protocol exchanges. 1978 * All other groups enter the appropriate state machine 1979 * for the version in use on this link. 1980 * A link marked as MLIF_SILENT causes MLD to be completely 1981 * disabled for the link. 1982 */ 1983 if ((ifp->if_flags & IFF_LOOPBACK) || 1984 (mli->mli_flags & MLIF_SILENT) || 1985 !mld_is_addr_reported(&inm->in6m_addr)) { 1986 CTR1(KTR_MLD, 1987 "%s: not kicking state machine for silent group", __func__); 1988 inm->in6m_state = MLD_SILENT_MEMBER; 1989 inm->in6m_timer = 0; 1990 } else { 1991 /* 1992 * Deal with overlapping in_multi lifecycle. 1993 * If this group was LEAVING, then make sure 1994 * we drop the reference we picked up to keep the 1995 * group around for the final INCLUDE {} enqueue. 1996 */ 1997 if (mli->mli_version == MLD_VERSION_2 && 1998 inm->in6m_state == MLD_LEAVING_MEMBER) 1999 in6m_release_locked(inm); 2000 2001 inm->in6m_state = MLD_REPORTING_MEMBER; 2002 2003 switch (mli->mli_version) { 2004 case MLD_VERSION_1: 2005 /* 2006 * If a delay was provided, only use it if 2007 * it is greater than the delay normally 2008 * used for an MLDv1 state change report, 2009 * and delay sending the initial MLDv1 report 2010 * by not transitioning to the IDLE state. 2011 */ 2012 odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI * PR_FASTHZ); 2013 if (delay) { 2014 inm->in6m_timer = max(delay, odelay); 2015 V_current_state_timers_running6 = 1; 2016 } else { 2017 inm->in6m_state = MLD_IDLE_MEMBER; 2018 error = mld_v1_transmit_report(inm, 2019 MLD_LISTENER_REPORT); 2020 if (error == 0) { 2021 inm->in6m_timer = odelay; 2022 V_current_state_timers_running6 = 1; 2023 } 2024 } 2025 break; 2026 2027 case MLD_VERSION_2: 2028 /* 2029 * Defer update of T0 to T1, until the first copy 2030 * of the state change has been transmitted. 2031 */ 2032 syncstates = 0; 2033 2034 /* 2035 * Immediately enqueue a State-Change Report for 2036 * this interface, freeing any previous reports. 2037 * Don't kick the timers if there is nothing to do, 2038 * or if an error occurred. 2039 */ 2040 ifq = &inm->in6m_scq; 2041 _IF_DRAIN(ifq); 2042 retval = mld_v2_enqueue_group_record(ifq, inm, 1, 2043 0, 0, (mli->mli_flags & MLIF_USEALLOW)); 2044 CTR2(KTR_MLD, "%s: enqueue record = %d", 2045 __func__, retval); 2046 if (retval <= 0) { 2047 error = retval * -1; 2048 break; 2049 } 2050 2051 /* 2052 * Schedule transmission of pending state-change 2053 * report up to RV times for this link. The timer 2054 * will fire at the next mld_fasttimo (~200ms), 2055 * giving us an opportunity to merge the reports. 2056 * 2057 * If a delay was provided to this function, only 2058 * use this delay if sooner than the existing one. 2059 */ 2060 KASSERT(mli->mli_rv > 1, 2061 ("%s: invalid robustness %d", __func__, 2062 mli->mli_rv)); 2063 inm->in6m_scrv = mli->mli_rv; 2064 if (delay) { 2065 if (inm->in6m_sctimer > 1) { 2066 inm->in6m_sctimer = 2067 min(inm->in6m_sctimer, delay); 2068 } else 2069 inm->in6m_sctimer = delay; 2070 } else 2071 inm->in6m_sctimer = 1; 2072 V_state_change_timers_running6 = 1; 2073 2074 error = 0; 2075 break; 2076 } 2077 } 2078 2079 /* 2080 * Only update the T0 state if state change is atomic, 2081 * i.e. we don't need to wait for a timer to fire before we 2082 * can consider the state change to have been communicated. 2083 */ 2084 if (syncstates) { 2085 in6m_commit(inm); 2086 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2087 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2088 if_name(inm->in6m_ifp)); 2089 } 2090 2091 return (error); 2092 } 2093 2094 /* 2095 * Issue an intermediate state change during the life-cycle. 2096 */ 2097 static int 2098 mld_handle_state_change(struct in6_multi *inm, struct mld_ifinfo *mli) 2099 { 2100 struct ifnet *ifp; 2101 int retval; 2102 #ifdef KTR 2103 char ip6tbuf[INET6_ADDRSTRLEN]; 2104 #endif 2105 2106 CTR4(KTR_MLD, "%s: state change for %s on ifp %p(%s)", 2107 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2108 inm->in6m_ifp, if_name(inm->in6m_ifp)); 2109 2110 ifp = inm->in6m_ifp; 2111 2112 IN6_MULTI_LOCK_ASSERT(); 2113 MLD_LOCK_ASSERT(); 2114 2115 KASSERT(mli && mli->mli_ifp == ifp, 2116 ("%s: inconsistent ifp", __func__)); 2117 2118 if ((ifp->if_flags & IFF_LOOPBACK) || 2119 (mli->mli_flags & MLIF_SILENT) || 2120 !mld_is_addr_reported(&inm->in6m_addr) || 2121 (mli->mli_version != MLD_VERSION_2)) { 2122 if (!mld_is_addr_reported(&inm->in6m_addr)) { 2123 CTR1(KTR_MLD, 2124 "%s: not kicking state machine for silent group", __func__); 2125 } 2126 CTR1(KTR_MLD, "%s: nothing to do", __func__); 2127 in6m_commit(inm); 2128 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2129 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2130 if_name(inm->in6m_ifp)); 2131 return (0); 2132 } 2133 2134 _IF_DRAIN(&inm->in6m_scq); 2135 2136 retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0, 2137 (mli->mli_flags & MLIF_USEALLOW)); 2138 CTR2(KTR_MLD, "%s: enqueue record = %d", __func__, retval); 2139 if (retval <= 0) 2140 return (-retval); 2141 2142 /* 2143 * If record(s) were enqueued, start the state-change 2144 * report timer for this group. 2145 */ 2146 inm->in6m_scrv = mli->mli_rv; 2147 inm->in6m_sctimer = 1; 2148 V_state_change_timers_running6 = 1; 2149 2150 return (0); 2151 } 2152 2153 /* 2154 * Perform the final leave for a multicast address. 2155 * 2156 * When leaving a group: 2157 * MLDv1 sends a DONE message, if and only if we are the reporter. 2158 * MLDv2 enqueues a state-change report containing a transition 2159 * to INCLUDE {} for immediate transmission. 2160 */ 2161 static void 2162 mld_final_leave(struct in6_multi *inm, struct mld_ifinfo *mli) 2163 { 2164 int syncstates; 2165 #ifdef KTR 2166 char ip6tbuf[INET6_ADDRSTRLEN]; 2167 #endif 2168 2169 syncstates = 1; 2170 2171 CTR4(KTR_MLD, "%s: final leave %s on ifp %p(%s)", 2172 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2173 inm->in6m_ifp, if_name(inm->in6m_ifp)); 2174 2175 IN6_MULTI_LOCK_ASSERT(); 2176 MLD_LOCK_ASSERT(); 2177 2178 switch (inm->in6m_state) { 2179 case MLD_NOT_MEMBER: 2180 case MLD_SILENT_MEMBER: 2181 case MLD_LEAVING_MEMBER: 2182 /* Already leaving or left; do nothing. */ 2183 CTR1(KTR_MLD, 2184 "%s: not kicking state machine for silent group", __func__); 2185 break; 2186 case MLD_REPORTING_MEMBER: 2187 case MLD_IDLE_MEMBER: 2188 case MLD_G_QUERY_PENDING_MEMBER: 2189 case MLD_SG_QUERY_PENDING_MEMBER: 2190 if (mli->mli_version == MLD_VERSION_1) { 2191 #ifdef INVARIANTS 2192 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 2193 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) 2194 panic("%s: MLDv2 state reached, not MLDv2 mode", 2195 __func__); 2196 #endif 2197 mld_v1_transmit_report(inm, MLD_LISTENER_DONE); 2198 inm->in6m_state = MLD_NOT_MEMBER; 2199 V_current_state_timers_running6 = 1; 2200 } else if (mli->mli_version == MLD_VERSION_2) { 2201 /* 2202 * Stop group timer and all pending reports. 2203 * Immediately enqueue a state-change report 2204 * TO_IN {} to be sent on the next fast timeout, 2205 * giving us an opportunity to merge reports. 2206 */ 2207 _IF_DRAIN(&inm->in6m_scq); 2208 inm->in6m_timer = 0; 2209 inm->in6m_scrv = mli->mli_rv; 2210 CTR4(KTR_MLD, "%s: Leaving %s/%s with %d " 2211 "pending retransmissions.", __func__, 2212 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2213 if_name(inm->in6m_ifp), inm->in6m_scrv); 2214 if (inm->in6m_scrv == 0) { 2215 inm->in6m_state = MLD_NOT_MEMBER; 2216 inm->in6m_sctimer = 0; 2217 } else { 2218 int retval; 2219 2220 in6m_acquire_locked(inm); 2221 2222 retval = mld_v2_enqueue_group_record( 2223 &inm->in6m_scq, inm, 1, 0, 0, 2224 (mli->mli_flags & MLIF_USEALLOW)); 2225 KASSERT(retval != 0, 2226 ("%s: enqueue record = %d", __func__, 2227 retval)); 2228 2229 inm->in6m_state = MLD_LEAVING_MEMBER; 2230 inm->in6m_sctimer = 1; 2231 V_state_change_timers_running6 = 1; 2232 syncstates = 0; 2233 } 2234 break; 2235 } 2236 break; 2237 case MLD_LAZY_MEMBER: 2238 case MLD_SLEEPING_MEMBER: 2239 case MLD_AWAKENING_MEMBER: 2240 /* Our reports are suppressed; do nothing. */ 2241 break; 2242 } 2243 2244 if (syncstates) { 2245 in6m_commit(inm); 2246 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2247 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2248 if_name(inm->in6m_ifp)); 2249 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 2250 CTR3(KTR_MLD, "%s: T1 now MCAST_UNDEFINED for %p/%s", 2251 __func__, &inm->in6m_addr, if_name(inm->in6m_ifp)); 2252 } 2253 } 2254 2255 /* 2256 * Enqueue an MLDv2 group record to the given output queue. 2257 * 2258 * If is_state_change is zero, a current-state record is appended. 2259 * If is_state_change is non-zero, a state-change report is appended. 2260 * 2261 * If is_group_query is non-zero, an mbuf packet chain is allocated. 2262 * If is_group_query is zero, and if there is a packet with free space 2263 * at the tail of the queue, it will be appended to providing there 2264 * is enough free space. 2265 * Otherwise a new mbuf packet chain is allocated. 2266 * 2267 * If is_source_query is non-zero, each source is checked to see if 2268 * it was recorded for a Group-Source query, and will be omitted if 2269 * it is not both in-mode and recorded. 2270 * 2271 * If use_block_allow is non-zero, state change reports for initial join 2272 * and final leave, on an inclusive mode group with a source list, will be 2273 * rewritten to use the ALLOW_NEW and BLOCK_OLD record types, respectively. 2274 * 2275 * The function will attempt to allocate leading space in the packet 2276 * for the IPv6+ICMP headers to be prepended without fragmenting the chain. 2277 * 2278 * If successful the size of all data appended to the queue is returned, 2279 * otherwise an error code less than zero is returned, or zero if 2280 * no record(s) were appended. 2281 */ 2282 static int 2283 mld_v2_enqueue_group_record(struct ifqueue *ifq, struct in6_multi *inm, 2284 const int is_state_change, const int is_group_query, 2285 const int is_source_query, const int use_block_allow) 2286 { 2287 struct mldv2_record mr; 2288 struct mldv2_record *pmr; 2289 struct ifnet *ifp; 2290 struct ip6_msource *ims, *nims; 2291 struct mbuf *m0, *m, *md; 2292 int error, is_filter_list_change; 2293 int minrec0len, m0srcs, msrcs, nbytes, off; 2294 int record_has_sources; 2295 int now; 2296 int type; 2297 uint8_t mode; 2298 #ifdef KTR 2299 char ip6tbuf[INET6_ADDRSTRLEN]; 2300 #endif 2301 2302 IN6_MULTI_LOCK_ASSERT(); 2303 2304 error = 0; 2305 ifp = inm->in6m_ifp; 2306 is_filter_list_change = 0; 2307 m = NULL; 2308 m0 = NULL; 2309 m0srcs = 0; 2310 msrcs = 0; 2311 nbytes = 0; 2312 nims = NULL; 2313 record_has_sources = 1; 2314 pmr = NULL; 2315 type = MLD_DO_NOTHING; 2316 mode = inm->in6m_st[1].iss_fmode; 2317 2318 /* 2319 * If we did not transition out of ASM mode during t0->t1, 2320 * and there are no source nodes to process, we can skip 2321 * the generation of source records. 2322 */ 2323 if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 && 2324 inm->in6m_nsrc == 0) 2325 record_has_sources = 0; 2326 2327 if (is_state_change) { 2328 /* 2329 * Queue a state change record. 2330 * If the mode did not change, and there are non-ASM 2331 * listeners or source filters present, 2332 * we potentially need to issue two records for the group. 2333 * If there are ASM listeners, and there was no filter 2334 * mode transition of any kind, do nothing. 2335 * 2336 * If we are transitioning to MCAST_UNDEFINED, we need 2337 * not send any sources. A transition to/from this state is 2338 * considered inclusive with some special treatment. 2339 * 2340 * If we are rewriting initial joins/leaves to use 2341 * ALLOW/BLOCK, and the group's membership is inclusive, 2342 * we need to send sources in all cases. 2343 */ 2344 if (mode != inm->in6m_st[0].iss_fmode) { 2345 if (mode == MCAST_EXCLUDE) { 2346 CTR1(KTR_MLD, "%s: change to EXCLUDE", 2347 __func__); 2348 type = MLD_CHANGE_TO_EXCLUDE_MODE; 2349 } else { 2350 CTR1(KTR_MLD, "%s: change to INCLUDE", 2351 __func__); 2352 if (use_block_allow) { 2353 /* 2354 * XXX 2355 * Here we're interested in state 2356 * edges either direction between 2357 * MCAST_UNDEFINED and MCAST_INCLUDE. 2358 * Perhaps we should just check 2359 * the group state, rather than 2360 * the filter mode. 2361 */ 2362 if (mode == MCAST_UNDEFINED) { 2363 type = MLD_BLOCK_OLD_SOURCES; 2364 } else { 2365 type = MLD_ALLOW_NEW_SOURCES; 2366 } 2367 } else { 2368 type = MLD_CHANGE_TO_INCLUDE_MODE; 2369 if (mode == MCAST_UNDEFINED) 2370 record_has_sources = 0; 2371 } 2372 } 2373 } else { 2374 if (record_has_sources) { 2375 is_filter_list_change = 1; 2376 } else { 2377 type = MLD_DO_NOTHING; 2378 } 2379 } 2380 } else { 2381 /* 2382 * Queue a current state record. 2383 */ 2384 if (mode == MCAST_EXCLUDE) { 2385 type = MLD_MODE_IS_EXCLUDE; 2386 } else if (mode == MCAST_INCLUDE) { 2387 type = MLD_MODE_IS_INCLUDE; 2388 KASSERT(inm->in6m_st[1].iss_asm == 0, 2389 ("%s: inm %p is INCLUDE but ASM count is %d", 2390 __func__, inm, inm->in6m_st[1].iss_asm)); 2391 } 2392 } 2393 2394 /* 2395 * Generate the filter list changes using a separate function. 2396 */ 2397 if (is_filter_list_change) 2398 return (mld_v2_enqueue_filter_change(ifq, inm)); 2399 2400 if (type == MLD_DO_NOTHING) { 2401 CTR3(KTR_MLD, "%s: nothing to do for %s/%s", 2402 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2403 if_name(inm->in6m_ifp)); 2404 return (0); 2405 } 2406 2407 /* 2408 * If any sources are present, we must be able to fit at least 2409 * one in the trailing space of the tail packet's mbuf, 2410 * ideally more. 2411 */ 2412 minrec0len = sizeof(struct mldv2_record); 2413 if (record_has_sources) 2414 minrec0len += sizeof(struct in6_addr); 2415 2416 CTR4(KTR_MLD, "%s: queueing %s for %s/%s", __func__, 2417 mld_rec_type_to_str(type), 2418 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2419 if_name(inm->in6m_ifp)); 2420 2421 /* 2422 * Check if we have a packet in the tail of the queue for this 2423 * group into which the first group record for this group will fit. 2424 * Otherwise allocate a new packet. 2425 * Always allocate leading space for IP6+RA+ICMPV6+REPORT. 2426 * Note: Group records for G/GSR query responses MUST be sent 2427 * in their own packet. 2428 */ 2429 m0 = ifq->ifq_tail; 2430 if (!is_group_query && 2431 m0 != NULL && 2432 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) && 2433 (m0->m_pkthdr.len + minrec0len) < 2434 (ifp->if_mtu - MLD_MTUSPACE)) { 2435 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2436 sizeof(struct mldv2_record)) / 2437 sizeof(struct in6_addr); 2438 m = m0; 2439 CTR1(KTR_MLD, "%s: use existing packet", __func__); 2440 } else { 2441 if (_IF_QFULL(ifq)) { 2442 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2443 return (-ENOMEM); 2444 } 2445 m = NULL; 2446 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2447 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2448 if (!is_state_change && !is_group_query) 2449 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2450 if (m == NULL) 2451 m = m_gethdr(M_NOWAIT, MT_DATA); 2452 if (m == NULL) 2453 return (-ENOMEM); 2454 2455 mld_save_context(m, ifp); 2456 2457 CTR1(KTR_MLD, "%s: allocated first packet", __func__); 2458 } 2459 2460 /* 2461 * Append group record. 2462 * If we have sources, we don't know how many yet. 2463 */ 2464 mr.mr_type = type; 2465 mr.mr_datalen = 0; 2466 mr.mr_numsrc = 0; 2467 mr.mr_addr = inm->in6m_addr; 2468 in6_clearscope(&mr.mr_addr); 2469 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2470 if (m != m0) 2471 m_freem(m); 2472 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2473 return (-ENOMEM); 2474 } 2475 nbytes += sizeof(struct mldv2_record); 2476 2477 /* 2478 * Append as many sources as will fit in the first packet. 2479 * If we are appending to a new packet, the chain allocation 2480 * may potentially use clusters; use m_getptr() in this case. 2481 * If we are appending to an existing packet, we need to obtain 2482 * a pointer to the group record after m_append(), in case a new 2483 * mbuf was allocated. 2484 * 2485 * Only append sources which are in-mode at t1. If we are 2486 * transitioning to MCAST_UNDEFINED state on the group, and 2487 * use_block_allow is zero, do not include source entries. 2488 * Otherwise, we need to include this source in the report. 2489 * 2490 * Only report recorded sources in our filter set when responding 2491 * to a group-source query. 2492 */ 2493 if (record_has_sources) { 2494 if (m == m0) { 2495 md = m_last(m); 2496 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2497 md->m_len - nbytes); 2498 } else { 2499 md = m_getptr(m, 0, &off); 2500 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2501 off); 2502 } 2503 msrcs = 0; 2504 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, 2505 nims) { 2506 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2507 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2508 now = im6s_get_mode(inm, ims, 1); 2509 CTR2(KTR_MLD, "%s: node is %d", __func__, now); 2510 if ((now != mode) || 2511 (now == mode && 2512 (!use_block_allow && mode == MCAST_UNDEFINED))) { 2513 CTR1(KTR_MLD, "%s: skip node", __func__); 2514 continue; 2515 } 2516 if (is_source_query && ims->im6s_stp == 0) { 2517 CTR1(KTR_MLD, "%s: skip unrecorded node", 2518 __func__); 2519 continue; 2520 } 2521 CTR1(KTR_MLD, "%s: append node", __func__); 2522 if (!m_append(m, sizeof(struct in6_addr), 2523 (void *)&ims->im6s_addr)) { 2524 if (m != m0) 2525 m_freem(m); 2526 CTR1(KTR_MLD, "%s: m_append() failed.", 2527 __func__); 2528 return (-ENOMEM); 2529 } 2530 nbytes += sizeof(struct in6_addr); 2531 ++msrcs; 2532 if (msrcs == m0srcs) 2533 break; 2534 } 2535 CTR2(KTR_MLD, "%s: msrcs is %d this packet", __func__, 2536 msrcs); 2537 pmr->mr_numsrc = htons(msrcs); 2538 nbytes += (msrcs * sizeof(struct in6_addr)); 2539 } 2540 2541 if (is_source_query && msrcs == 0) { 2542 CTR1(KTR_MLD, "%s: no recorded sources to report", __func__); 2543 if (m != m0) 2544 m_freem(m); 2545 return (0); 2546 } 2547 2548 /* 2549 * We are good to go with first packet. 2550 */ 2551 if (m != m0) { 2552 CTR1(KTR_MLD, "%s: enqueueing first packet", __func__); 2553 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2554 _IF_ENQUEUE(ifq, m); 2555 } else 2556 m->m_pkthdr.PH_vt.vt_nrecs++; 2557 2558 /* 2559 * No further work needed if no source list in packet(s). 2560 */ 2561 if (!record_has_sources) 2562 return (nbytes); 2563 2564 /* 2565 * Whilst sources remain to be announced, we need to allocate 2566 * a new packet and fill out as many sources as will fit. 2567 * Always try for a cluster first. 2568 */ 2569 while (nims != NULL) { 2570 if (_IF_QFULL(ifq)) { 2571 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2572 return (-ENOMEM); 2573 } 2574 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2575 if (m == NULL) 2576 m = m_gethdr(M_NOWAIT, MT_DATA); 2577 if (m == NULL) 2578 return (-ENOMEM); 2579 mld_save_context(m, ifp); 2580 md = m_getptr(m, 0, &off); 2581 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off); 2582 CTR1(KTR_MLD, "%s: allocated next packet", __func__); 2583 2584 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2585 if (m != m0) 2586 m_freem(m); 2587 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2588 return (-ENOMEM); 2589 } 2590 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2591 nbytes += sizeof(struct mldv2_record); 2592 2593 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2594 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2595 2596 msrcs = 0; 2597 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2598 CTR2(KTR_MLD, "%s: visit node %s", 2599 __func__, ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2600 now = im6s_get_mode(inm, ims, 1); 2601 if ((now != mode) || 2602 (now == mode && 2603 (!use_block_allow && mode == MCAST_UNDEFINED))) { 2604 CTR1(KTR_MLD, "%s: skip node", __func__); 2605 continue; 2606 } 2607 if (is_source_query && ims->im6s_stp == 0) { 2608 CTR1(KTR_MLD, "%s: skip unrecorded node", 2609 __func__); 2610 continue; 2611 } 2612 CTR1(KTR_MLD, "%s: append node", __func__); 2613 if (!m_append(m, sizeof(struct in6_addr), 2614 (void *)&ims->im6s_addr)) { 2615 if (m != m0) 2616 m_freem(m); 2617 CTR1(KTR_MLD, "%s: m_append() failed.", 2618 __func__); 2619 return (-ENOMEM); 2620 } 2621 ++msrcs; 2622 if (msrcs == m0srcs) 2623 break; 2624 } 2625 pmr->mr_numsrc = htons(msrcs); 2626 nbytes += (msrcs * sizeof(struct in6_addr)); 2627 2628 CTR1(KTR_MLD, "%s: enqueueing next packet", __func__); 2629 _IF_ENQUEUE(ifq, m); 2630 } 2631 2632 return (nbytes); 2633 } 2634 2635 /* 2636 * Type used to mark record pass completion. 2637 * We exploit the fact we can cast to this easily from the 2638 * current filter modes on each ip_msource node. 2639 */ 2640 typedef enum { 2641 REC_NONE = 0x00, /* MCAST_UNDEFINED */ 2642 REC_ALLOW = 0x01, /* MCAST_INCLUDE */ 2643 REC_BLOCK = 0x02, /* MCAST_EXCLUDE */ 2644 REC_FULL = REC_ALLOW | REC_BLOCK 2645 } rectype_t; 2646 2647 /* 2648 * Enqueue an MLDv2 filter list change to the given output queue. 2649 * 2650 * Source list filter state is held in an RB-tree. When the filter list 2651 * for a group is changed without changing its mode, we need to compute 2652 * the deltas between T0 and T1 for each source in the filter set, 2653 * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records. 2654 * 2655 * As we may potentially queue two record types, and the entire R-B tree 2656 * needs to be walked at once, we break this out into its own function 2657 * so we can generate a tightly packed queue of packets. 2658 * 2659 * XXX This could be written to only use one tree walk, although that makes 2660 * serializing into the mbuf chains a bit harder. For now we do two walks 2661 * which makes things easier on us, and it may or may not be harder on 2662 * the L2 cache. 2663 * 2664 * If successful the size of all data appended to the queue is returned, 2665 * otherwise an error code less than zero is returned, or zero if 2666 * no record(s) were appended. 2667 */ 2668 static int 2669 mld_v2_enqueue_filter_change(struct ifqueue *ifq, struct in6_multi *inm) 2670 { 2671 static const int MINRECLEN = 2672 sizeof(struct mldv2_record) + sizeof(struct in6_addr); 2673 struct ifnet *ifp; 2674 struct mldv2_record mr; 2675 struct mldv2_record *pmr; 2676 struct ip6_msource *ims, *nims; 2677 struct mbuf *m, *m0, *md; 2678 int m0srcs, nbytes, npbytes, off, rsrcs, schanged; 2679 int nallow, nblock; 2680 uint8_t mode, now, then; 2681 rectype_t crt, drt, nrt; 2682 #ifdef KTR 2683 char ip6tbuf[INET6_ADDRSTRLEN]; 2684 #endif 2685 2686 IN6_MULTI_LOCK_ASSERT(); 2687 2688 if (inm->in6m_nsrc == 0 || 2689 (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0)) 2690 return (0); 2691 2692 ifp = inm->in6m_ifp; /* interface */ 2693 mode = inm->in6m_st[1].iss_fmode; /* filter mode at t1 */ 2694 crt = REC_NONE; /* current group record type */ 2695 drt = REC_NONE; /* mask of completed group record types */ 2696 nrt = REC_NONE; /* record type for current node */ 2697 m0srcs = 0; /* # source which will fit in current mbuf chain */ 2698 npbytes = 0; /* # of bytes appended this packet */ 2699 nbytes = 0; /* # of bytes appended to group's state-change queue */ 2700 rsrcs = 0; /* # sources encoded in current record */ 2701 schanged = 0; /* # nodes encoded in overall filter change */ 2702 nallow = 0; /* # of source entries in ALLOW_NEW */ 2703 nblock = 0; /* # of source entries in BLOCK_OLD */ 2704 nims = NULL; /* next tree node pointer */ 2705 2706 /* 2707 * For each possible filter record mode. 2708 * The first kind of source we encounter tells us which 2709 * is the first kind of record we start appending. 2710 * If a node transitioned to UNDEFINED at t1, its mode is treated 2711 * as the inverse of the group's filter mode. 2712 */ 2713 while (drt != REC_FULL) { 2714 do { 2715 m0 = ifq->ifq_tail; 2716 if (m0 != NULL && 2717 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= 2718 MLD_V2_REPORT_MAXRECS) && 2719 (m0->m_pkthdr.len + MINRECLEN) < 2720 (ifp->if_mtu - MLD_MTUSPACE)) { 2721 m = m0; 2722 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2723 sizeof(struct mldv2_record)) / 2724 sizeof(struct in6_addr); 2725 CTR1(KTR_MLD, 2726 "%s: use previous packet", __func__); 2727 } else { 2728 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2729 if (m == NULL) 2730 m = m_gethdr(M_NOWAIT, MT_DATA); 2731 if (m == NULL) { 2732 CTR1(KTR_MLD, 2733 "%s: m_get*() failed", __func__); 2734 return (-ENOMEM); 2735 } 2736 m->m_pkthdr.PH_vt.vt_nrecs = 0; 2737 mld_save_context(m, ifp); 2738 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2739 sizeof(struct mldv2_record)) / 2740 sizeof(struct in6_addr); 2741 npbytes = 0; 2742 CTR1(KTR_MLD, 2743 "%s: allocated new packet", __func__); 2744 } 2745 /* 2746 * Append the MLD group record header to the 2747 * current packet's data area. 2748 * Recalculate pointer to free space for next 2749 * group record, in case m_append() allocated 2750 * a new mbuf or cluster. 2751 */ 2752 memset(&mr, 0, sizeof(mr)); 2753 mr.mr_addr = inm->in6m_addr; 2754 in6_clearscope(&mr.mr_addr); 2755 if (!m_append(m, sizeof(mr), (void *)&mr)) { 2756 if (m != m0) 2757 m_freem(m); 2758 CTR1(KTR_MLD, 2759 "%s: m_append() failed", __func__); 2760 return (-ENOMEM); 2761 } 2762 npbytes += sizeof(struct mldv2_record); 2763 if (m != m0) { 2764 /* new packet; offset in chain */ 2765 md = m_getptr(m, npbytes - 2766 sizeof(struct mldv2_record), &off); 2767 pmr = (struct mldv2_record *)(mtod(md, 2768 uint8_t *) + off); 2769 } else { 2770 /* current packet; offset from last append */ 2771 md = m_last(m); 2772 pmr = (struct mldv2_record *)(mtod(md, 2773 uint8_t *) + md->m_len - 2774 sizeof(struct mldv2_record)); 2775 } 2776 /* 2777 * Begin walking the tree for this record type 2778 * pass, or continue from where we left off 2779 * previously if we had to allocate a new packet. 2780 * Only report deltas in-mode at t1. 2781 * We need not report included sources as allowed 2782 * if we are in inclusive mode on the group, 2783 * however the converse is not true. 2784 */ 2785 rsrcs = 0; 2786 if (nims == NULL) { 2787 nims = RB_MIN(ip6_msource_tree, 2788 &inm->in6m_srcs); 2789 } 2790 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2791 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2792 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2793 now = im6s_get_mode(inm, ims, 1); 2794 then = im6s_get_mode(inm, ims, 0); 2795 CTR3(KTR_MLD, "%s: mode: t0 %d, t1 %d", 2796 __func__, then, now); 2797 if (now == then) { 2798 CTR1(KTR_MLD, 2799 "%s: skip unchanged", __func__); 2800 continue; 2801 } 2802 if (mode == MCAST_EXCLUDE && 2803 now == MCAST_INCLUDE) { 2804 CTR1(KTR_MLD, 2805 "%s: skip IN src on EX group", 2806 __func__); 2807 continue; 2808 } 2809 nrt = (rectype_t)now; 2810 if (nrt == REC_NONE) 2811 nrt = (rectype_t)(~mode & REC_FULL); 2812 if (schanged++ == 0) { 2813 crt = nrt; 2814 } else if (crt != nrt) 2815 continue; 2816 if (!m_append(m, sizeof(struct in6_addr), 2817 (void *)&ims->im6s_addr)) { 2818 if (m != m0) 2819 m_freem(m); 2820 CTR1(KTR_MLD, 2821 "%s: m_append() failed", __func__); 2822 return (-ENOMEM); 2823 } 2824 nallow += !!(crt == REC_ALLOW); 2825 nblock += !!(crt == REC_BLOCK); 2826 if (++rsrcs == m0srcs) 2827 break; 2828 } 2829 /* 2830 * If we did not append any tree nodes on this 2831 * pass, back out of allocations. 2832 */ 2833 if (rsrcs == 0) { 2834 npbytes -= sizeof(struct mldv2_record); 2835 if (m != m0) { 2836 CTR1(KTR_MLD, 2837 "%s: m_free(m)", __func__); 2838 m_freem(m); 2839 } else { 2840 CTR1(KTR_MLD, 2841 "%s: m_adj(m, -mr)", __func__); 2842 m_adj(m, -((int)sizeof( 2843 struct mldv2_record))); 2844 } 2845 continue; 2846 } 2847 npbytes += (rsrcs * sizeof(struct in6_addr)); 2848 if (crt == REC_ALLOW) 2849 pmr->mr_type = MLD_ALLOW_NEW_SOURCES; 2850 else if (crt == REC_BLOCK) 2851 pmr->mr_type = MLD_BLOCK_OLD_SOURCES; 2852 pmr->mr_numsrc = htons(rsrcs); 2853 /* 2854 * Count the new group record, and enqueue this 2855 * packet if it wasn't already queued. 2856 */ 2857 m->m_pkthdr.PH_vt.vt_nrecs++; 2858 if (m != m0) 2859 _IF_ENQUEUE(ifq, m); 2860 nbytes += npbytes; 2861 } while (nims != NULL); 2862 drt |= crt; 2863 crt = (~crt & REC_FULL); 2864 } 2865 2866 CTR3(KTR_MLD, "%s: queued %d ALLOW_NEW, %d BLOCK_OLD", __func__, 2867 nallow, nblock); 2868 2869 return (nbytes); 2870 } 2871 2872 static int 2873 mld_v2_merge_state_changes(struct in6_multi *inm, struct ifqueue *ifscq) 2874 { 2875 struct ifqueue *gq; 2876 struct mbuf *m; /* pending state-change */ 2877 struct mbuf *m0; /* copy of pending state-change */ 2878 struct mbuf *mt; /* last state-change in packet */ 2879 int docopy, domerge; 2880 u_int recslen; 2881 2882 docopy = 0; 2883 domerge = 0; 2884 recslen = 0; 2885 2886 IN6_MULTI_LOCK_ASSERT(); 2887 MLD_LOCK_ASSERT(); 2888 2889 /* 2890 * If there are further pending retransmissions, make a writable 2891 * copy of each queued state-change message before merging. 2892 */ 2893 if (inm->in6m_scrv > 0) 2894 docopy = 1; 2895 2896 gq = &inm->in6m_scq; 2897 #ifdef KTR 2898 if (gq->ifq_head == NULL) { 2899 CTR2(KTR_MLD, "%s: WARNING: queue for inm %p is empty", 2900 __func__, inm); 2901 } 2902 #endif 2903 2904 m = gq->ifq_head; 2905 while (m != NULL) { 2906 /* 2907 * Only merge the report into the current packet if 2908 * there is sufficient space to do so; an MLDv2 report 2909 * packet may only contain 65,535 group records. 2910 * Always use a simple mbuf chain concatentation to do this, 2911 * as large state changes for single groups may have 2912 * allocated clusters. 2913 */ 2914 domerge = 0; 2915 mt = ifscq->ifq_tail; 2916 if (mt != NULL) { 2917 recslen = m_length(m, NULL); 2918 2919 if ((mt->m_pkthdr.PH_vt.vt_nrecs + 2920 m->m_pkthdr.PH_vt.vt_nrecs <= 2921 MLD_V2_REPORT_MAXRECS) && 2922 (mt->m_pkthdr.len + recslen <= 2923 (inm->in6m_ifp->if_mtu - MLD_MTUSPACE))) 2924 domerge = 1; 2925 } 2926 2927 if (!domerge && _IF_QFULL(gq)) { 2928 CTR2(KTR_MLD, 2929 "%s: outbound queue full, skipping whole packet %p", 2930 __func__, m); 2931 mt = m->m_nextpkt; 2932 if (!docopy) 2933 m_freem(m); 2934 m = mt; 2935 continue; 2936 } 2937 2938 if (!docopy) { 2939 CTR2(KTR_MLD, "%s: dequeueing %p", __func__, m); 2940 _IF_DEQUEUE(gq, m0); 2941 m = m0->m_nextpkt; 2942 } else { 2943 CTR2(KTR_MLD, "%s: copying %p", __func__, m); 2944 m0 = m_dup(m, M_NOWAIT); 2945 if (m0 == NULL) 2946 return (ENOMEM); 2947 m0->m_nextpkt = NULL; 2948 m = m->m_nextpkt; 2949 } 2950 2951 if (!domerge) { 2952 CTR3(KTR_MLD, "%s: queueing %p to ifscq %p)", 2953 __func__, m0, ifscq); 2954 _IF_ENQUEUE(ifscq, m0); 2955 } else { 2956 struct mbuf *mtl; /* last mbuf of packet mt */ 2957 2958 CTR3(KTR_MLD, "%s: merging %p with ifscq tail %p)", 2959 __func__, m0, mt); 2960 2961 mtl = m_last(mt); 2962 m0->m_flags &= ~M_PKTHDR; 2963 mt->m_pkthdr.len += recslen; 2964 mt->m_pkthdr.PH_vt.vt_nrecs += 2965 m0->m_pkthdr.PH_vt.vt_nrecs; 2966 2967 mtl->m_next = m0; 2968 } 2969 } 2970 2971 return (0); 2972 } 2973 2974 /* 2975 * Respond to a pending MLDv2 General Query. 2976 */ 2977 static void 2978 mld_v2_dispatch_general_query(struct mld_ifinfo *mli) 2979 { 2980 struct ifmultiaddr *ifma; 2981 struct ifnet *ifp; 2982 struct in6_multi *inm; 2983 int retval; 2984 2985 IN6_MULTI_LOCK_ASSERT(); 2986 MLD_LOCK_ASSERT(); 2987 2988 KASSERT(mli->mli_version == MLD_VERSION_2, 2989 ("%s: called when version %d", __func__, mli->mli_version)); 2990 2991 ifp = mli->mli_ifp; 2992 2993 IF_ADDR_RLOCK(ifp); 2994 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2995 if (ifma->ifma_addr->sa_family != AF_INET6 || 2996 ifma->ifma_protospec == NULL) 2997 continue; 2998 2999 inm = (struct in6_multi *)ifma->ifma_protospec; 3000 KASSERT(ifp == inm->in6m_ifp, 3001 ("%s: inconsistent ifp", __func__)); 3002 3003 switch (inm->in6m_state) { 3004 case MLD_NOT_MEMBER: 3005 case MLD_SILENT_MEMBER: 3006 break; 3007 case MLD_REPORTING_MEMBER: 3008 case MLD_IDLE_MEMBER: 3009 case MLD_LAZY_MEMBER: 3010 case MLD_SLEEPING_MEMBER: 3011 case MLD_AWAKENING_MEMBER: 3012 inm->in6m_state = MLD_REPORTING_MEMBER; 3013 retval = mld_v2_enqueue_group_record(&mli->mli_gq, 3014 inm, 0, 0, 0, 0); 3015 CTR2(KTR_MLD, "%s: enqueue record = %d", 3016 __func__, retval); 3017 break; 3018 case MLD_G_QUERY_PENDING_MEMBER: 3019 case MLD_SG_QUERY_PENDING_MEMBER: 3020 case MLD_LEAVING_MEMBER: 3021 break; 3022 } 3023 } 3024 IF_ADDR_RUNLOCK(ifp); 3025 3026 mld_dispatch_queue(&mli->mli_gq, MLD_MAX_RESPONSE_BURST); 3027 3028 /* 3029 * Slew transmission of bursts over 500ms intervals. 3030 */ 3031 if (mli->mli_gq.ifq_head != NULL) { 3032 mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY( 3033 MLD_RESPONSE_BURST_INTERVAL); 3034 V_interface_timers_running6 = 1; 3035 } 3036 } 3037 3038 /* 3039 * Transmit the next pending message in the output queue. 3040 * 3041 * VIMAGE: Needs to store/restore vnet pointer on a per-mbuf-chain basis. 3042 * MRT: Nothing needs to be done, as MLD traffic is always local to 3043 * a link and uses a link-scope multicast address. 3044 */ 3045 static void 3046 mld_dispatch_packet(struct mbuf *m) 3047 { 3048 struct ip6_moptions im6o; 3049 struct ifnet *ifp; 3050 struct ifnet *oifp; 3051 struct mbuf *m0; 3052 struct mbuf *md; 3053 struct ip6_hdr *ip6; 3054 struct mld_hdr *mld; 3055 int error; 3056 int off; 3057 int type; 3058 uint32_t ifindex; 3059 3060 CTR2(KTR_MLD, "%s: transmit %p", __func__, m); 3061 3062 /* 3063 * Set VNET image pointer from enqueued mbuf chain 3064 * before doing anything else. Whilst we use interface 3065 * indexes to guard against interface detach, they are 3066 * unique to each VIMAGE and must be retrieved. 3067 */ 3068 ifindex = mld_restore_context(m); 3069 3070 /* 3071 * Check if the ifnet still exists. This limits the scope of 3072 * any race in the absence of a global ifp lock for low cost 3073 * (an array lookup). 3074 */ 3075 ifp = ifnet_byindex(ifindex); 3076 if (ifp == NULL) { 3077 CTR3(KTR_MLD, "%s: dropped %p as ifindex %u went away.", 3078 __func__, m, ifindex); 3079 m_freem(m); 3080 IP6STAT_INC(ip6s_noroute); 3081 goto out; 3082 } 3083 3084 im6o.im6o_multicast_hlim = 1; 3085 im6o.im6o_multicast_loop = (V_ip6_mrouter != NULL); 3086 im6o.im6o_multicast_ifp = ifp; 3087 3088 if (m->m_flags & M_MLDV1) { 3089 m0 = m; 3090 } else { 3091 m0 = mld_v2_encap_report(ifp, m); 3092 if (m0 == NULL) { 3093 CTR2(KTR_MLD, "%s: dropped %p", __func__, m); 3094 IP6STAT_INC(ip6s_odropped); 3095 goto out; 3096 } 3097 } 3098 3099 mld_scrub_context(m0); 3100 m_clrprotoflags(m); 3101 m0->m_pkthdr.rcvif = V_loif; 3102 3103 ip6 = mtod(m0, struct ip6_hdr *); 3104 #if 0 3105 (void)in6_setscope(&ip6->ip6_dst, ifp, NULL); /* XXX LOR */ 3106 #else 3107 /* 3108 * XXX XXX Break some KPI rules to prevent an LOR which would 3109 * occur if we called in6_setscope() at transmission. 3110 * See comments at top of file. 3111 */ 3112 MLD_EMBEDSCOPE(&ip6->ip6_dst, ifp->if_index); 3113 #endif 3114 3115 /* 3116 * Retrieve the ICMPv6 type before handoff to ip6_output(), 3117 * so we can bump the stats. 3118 */ 3119 md = m_getptr(m0, sizeof(struct ip6_hdr), &off); 3120 mld = (struct mld_hdr *)(mtod(md, uint8_t *) + off); 3121 type = mld->mld_type; 3122 3123 error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, &im6o, 3124 &oifp, NULL); 3125 if (error) { 3126 CTR3(KTR_MLD, "%s: ip6_output(%p) = %d", __func__, m0, error); 3127 goto out; 3128 } 3129 ICMP6STAT_INC(icp6s_outhist[type]); 3130 if (oifp != NULL) { 3131 icmp6_ifstat_inc(oifp, ifs6_out_msg); 3132 switch (type) { 3133 case MLD_LISTENER_REPORT: 3134 case MLDV2_LISTENER_REPORT: 3135 icmp6_ifstat_inc(oifp, ifs6_out_mldreport); 3136 break; 3137 case MLD_LISTENER_DONE: 3138 icmp6_ifstat_inc(oifp, ifs6_out_mlddone); 3139 break; 3140 } 3141 } 3142 out: 3143 return; 3144 } 3145 3146 /* 3147 * Encapsulate an MLDv2 report. 3148 * 3149 * KAME IPv6 requires that hop-by-hop options be passed separately, 3150 * and that the IPv6 header be prepended in a separate mbuf. 3151 * 3152 * Returns a pointer to the new mbuf chain head, or NULL if the 3153 * allocation failed. 3154 */ 3155 static struct mbuf * 3156 mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m) 3157 { 3158 struct mbuf *mh; 3159 struct mldv2_report *mld; 3160 struct ip6_hdr *ip6; 3161 struct in6_ifaddr *ia; 3162 int mldreclen; 3163 3164 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 3165 KASSERT((m->m_flags & M_PKTHDR), 3166 ("%s: mbuf chain %p is !M_PKTHDR", __func__, m)); 3167 3168 /* 3169 * RFC3590: OK to send as :: or tentative during DAD. 3170 */ 3171 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 3172 if (ia == NULL) 3173 CTR1(KTR_MLD, "%s: warning: ia is NULL", __func__); 3174 3175 mh = m_gethdr(M_NOWAIT, MT_DATA); 3176 if (mh == NULL) { 3177 if (ia != NULL) 3178 ifa_free(&ia->ia_ifa); 3179 m_freem(m); 3180 return (NULL); 3181 } 3182 MH_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report)); 3183 3184 mldreclen = m_length(m, NULL); 3185 CTR2(KTR_MLD, "%s: mldreclen is %d", __func__, mldreclen); 3186 3187 mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report); 3188 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + 3189 sizeof(struct mldv2_report) + mldreclen; 3190 3191 ip6 = mtod(mh, struct ip6_hdr *); 3192 ip6->ip6_flow = 0; 3193 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 3194 ip6->ip6_vfc |= IPV6_VERSION; 3195 ip6->ip6_nxt = IPPROTO_ICMPV6; 3196 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 3197 if (ia != NULL) 3198 ifa_free(&ia->ia_ifa); 3199 ip6->ip6_dst = in6addr_linklocal_allv2routers; 3200 /* scope ID will be set in netisr */ 3201 3202 mld = (struct mldv2_report *)(ip6 + 1); 3203 mld->mld_type = MLDV2_LISTENER_REPORT; 3204 mld->mld_code = 0; 3205 mld->mld_cksum = 0; 3206 mld->mld_v2_reserved = 0; 3207 mld->mld_v2_numrecs = htons(m->m_pkthdr.PH_vt.vt_nrecs); 3208 m->m_pkthdr.PH_vt.vt_nrecs = 0; 3209 3210 mh->m_next = m; 3211 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 3212 sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen); 3213 return (mh); 3214 } 3215 3216 #ifdef KTR 3217 static char * 3218 mld_rec_type_to_str(const int type) 3219 { 3220 3221 switch (type) { 3222 case MLD_CHANGE_TO_EXCLUDE_MODE: 3223 return "TO_EX"; 3224 break; 3225 case MLD_CHANGE_TO_INCLUDE_MODE: 3226 return "TO_IN"; 3227 break; 3228 case MLD_MODE_IS_EXCLUDE: 3229 return "MODE_EX"; 3230 break; 3231 case MLD_MODE_IS_INCLUDE: 3232 return "MODE_IN"; 3233 break; 3234 case MLD_ALLOW_NEW_SOURCES: 3235 return "ALLOW_NEW"; 3236 break; 3237 case MLD_BLOCK_OLD_SOURCES: 3238 return "BLOCK_OLD"; 3239 break; 3240 default: 3241 break; 3242 } 3243 return "unknown"; 3244 } 3245 #endif 3246 3247 static void 3248 mld_init(void *unused __unused) 3249 { 3250 3251 CTR1(KTR_MLD, "%s: initializing", __func__); 3252 MLD_LOCK_INIT(); 3253 3254 ip6_initpktopts(&mld_po); 3255 mld_po.ip6po_hlim = 1; 3256 mld_po.ip6po_hbh = &mld_ra.hbh; 3257 mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER; 3258 mld_po.ip6po_flags = IP6PO_DONTFRAG; 3259 } 3260 SYSINIT(mld_init, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, mld_init, NULL); 3261 3262 static void 3263 mld_uninit(void *unused __unused) 3264 { 3265 3266 CTR1(KTR_MLD, "%s: tearing down", __func__); 3267 MLD_LOCK_DESTROY(); 3268 } 3269 SYSUNINIT(mld_uninit, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, mld_uninit, NULL); 3270 3271 static void 3272 vnet_mld_init(const void *unused __unused) 3273 { 3274 3275 CTR1(KTR_MLD, "%s: initializing", __func__); 3276 3277 LIST_INIT(&V_mli_head); 3278 } 3279 VNET_SYSINIT(vnet_mld_init, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mld_init, 3280 NULL); 3281 3282 static void 3283 vnet_mld_uninit(const void *unused __unused) 3284 { 3285 3286 CTR1(KTR_MLD, "%s: tearing down", __func__); 3287 3288 KASSERT(LIST_EMPTY(&V_mli_head), 3289 ("%s: mli list not empty; ifnets not detached?", __func__)); 3290 } 3291 VNET_SYSUNINIT(vnet_mld_uninit, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mld_uninit, 3292 NULL); 3293 3294 static int 3295 mld_modevent(module_t mod, int type, void *unused __unused) 3296 { 3297 3298 switch (type) { 3299 case MOD_LOAD: 3300 case MOD_UNLOAD: 3301 break; 3302 default: 3303 return (EOPNOTSUPP); 3304 } 3305 return (0); 3306 } 3307 3308 static moduledata_t mld_mod = { 3309 "mld", 3310 mld_modevent, 3311 0 3312 }; 3313 DECLARE_MODULE(mld, mld_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); 3314