1 /*- 2 * Copyright (c) 2009 Bruce Simpson. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 3. The name of the author may not be used to endorse or promote 13 * products derived from this software without specific prior written 14 * permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $KAME: mld6.c,v 1.27 2001/04/04 05:17:30 itojun Exp $ 29 */ 30 31 /*- 32 * Copyright (c) 1988 Stephen Deering. 33 * Copyright (c) 1992, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * This code is derived from software contributed to Berkeley by 37 * Stephen Deering of Stanford University. 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 1. Redistributions of source code must retain the above copyright 43 * notice, this list of conditions and the following disclaimer. 44 * 2. Redistributions in binary form must reproduce the above copyright 45 * notice, this list of conditions and the following disclaimer in the 46 * documentation and/or other materials provided with the distribution. 47 * 4. Neither the name of the University nor the names of its contributors 48 * may be used to endorse or promote products derived from this software 49 * without specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 61 * SUCH DAMAGE. 62 * 63 * @(#)igmp.c 8.1 (Berkeley) 7/19/93 64 */ 65 66 #include <sys/cdefs.h> 67 __FBSDID("$FreeBSD$"); 68 69 #include "opt_inet.h" 70 #include "opt_inet6.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/mbuf.h> 75 #include <sys/socket.h> 76 #include <sys/protosw.h> 77 #include <sys/sysctl.h> 78 #include <sys/kernel.h> 79 #include <sys/callout.h> 80 #include <sys/malloc.h> 81 #include <sys/module.h> 82 #include <sys/ktr.h> 83 84 #include <net/if.h> 85 #include <net/route.h> 86 #include <net/vnet.h> 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet6/in6_var.h> 91 #include <netinet/ip6.h> 92 #include <netinet6/ip6_var.h> 93 #include <netinet6/scope6_var.h> 94 #include <netinet/icmp6.h> 95 #include <netinet6/mld6.h> 96 #include <netinet6/mld6_var.h> 97 98 #include <security/mac/mac_framework.h> 99 100 #ifndef KTR_MLD 101 #define KTR_MLD KTR_INET6 102 #endif 103 104 static struct mld_ifinfo * 105 mli_alloc_locked(struct ifnet *); 106 static void mli_delete_locked(const struct ifnet *); 107 static void mld_dispatch_packet(struct mbuf *); 108 static void mld_dispatch_queue(struct ifqueue *, int); 109 static void mld_final_leave(struct in6_multi *, struct mld_ifinfo *); 110 static void mld_fasttimo_vnet(void); 111 static int mld_handle_state_change(struct in6_multi *, 112 struct mld_ifinfo *); 113 static int mld_initial_join(struct in6_multi *, struct mld_ifinfo *, 114 const int); 115 #ifdef KTR 116 static char * mld_rec_type_to_str(const int); 117 #endif 118 static void mld_set_version(struct mld_ifinfo *, const int); 119 static void mld_slowtimo_vnet(void); 120 static int mld_v1_input_query(struct ifnet *, const struct ip6_hdr *, 121 /*const*/ struct mld_hdr *); 122 static int mld_v1_input_report(struct ifnet *, const struct ip6_hdr *, 123 /*const*/ struct mld_hdr *); 124 static void mld_v1_process_group_timer(struct in6_multi *, const int); 125 static void mld_v1_process_querier_timers(struct mld_ifinfo *); 126 static int mld_v1_transmit_report(struct in6_multi *, const int); 127 static void mld_v1_update_group(struct in6_multi *, const int); 128 static void mld_v2_cancel_link_timers(struct mld_ifinfo *); 129 static void mld_v2_dispatch_general_query(struct mld_ifinfo *); 130 static struct mbuf * 131 mld_v2_encap_report(struct ifnet *, struct mbuf *); 132 static int mld_v2_enqueue_filter_change(struct ifqueue *, 133 struct in6_multi *); 134 static int mld_v2_enqueue_group_record(struct ifqueue *, 135 struct in6_multi *, const int, const int, const int); 136 static int mld_v2_input_query(struct ifnet *, const struct ip6_hdr *, 137 struct mbuf *, const int, const int); 138 static int mld_v2_merge_state_changes(struct in6_multi *, 139 struct ifqueue *); 140 static void mld_v2_process_group_timers(struct mld_ifinfo *, 141 struct ifqueue *, struct ifqueue *, 142 struct in6_multi *, const int); 143 static int mld_v2_process_group_query(struct in6_multi *, 144 struct mld_ifinfo *mli, int, struct mbuf *, const int); 145 static int sysctl_mld_gsr(SYSCTL_HANDLER_ARGS); 146 static int sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS); 147 148 /* 149 * Normative references: RFC 2710, RFC 3590, RFC 3810. 150 * 151 * Locking: 152 * * The MLD subsystem lock ends up being system-wide for the moment, 153 * but could be per-VIMAGE later on. 154 * * The permitted lock order is: IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK. 155 * Any may be taken independently; if any are held at the same 156 * time, the above lock order must be followed. 157 * * IN6_MULTI_LOCK covers in_multi. 158 * * MLD_LOCK covers per-link state and any global variables in this file. 159 * * IF_ADDR_LOCK covers if_multiaddrs, which is used for a variety of 160 * per-link state iterators. 161 * 162 * XXX LOR PREVENTION 163 * A special case for IPv6 is the in6_setscope() routine. ip6_output() 164 * will not accept an ifp; it wants an embedded scope ID, unlike 165 * ip_output(), which happily takes the ifp given to it. The embedded 166 * scope ID is only used by MLD to select the outgoing interface. 167 * 168 * During interface attach and detach, MLD will take MLD_LOCK *after* 169 * the IF_AFDATA_LOCK. 170 * As in6_setscope() takes IF_AFDATA_LOCK then SCOPE_LOCK, we can't call 171 * it with MLD_LOCK held without triggering an LOR. A netisr with indirect 172 * dispatch could work around this, but we'd rather not do that, as it 173 * can introduce other races. 174 * 175 * As such, we exploit the fact that the scope ID is just the interface 176 * index, and embed it in the IPv6 destination address accordingly. 177 * This is potentially NOT VALID for MLDv1 reports, as they 178 * are always sent to the multicast group itself; as MLDv2 179 * reports are always sent to ff02::16, this is not an issue 180 * when MLDv2 is in use. 181 * 182 * This does not however eliminate the LOR when ip6_output() itself 183 * calls in6_setscope() internally whilst MLD_LOCK is held. This will 184 * trigger a LOR warning in WITNESS when the ifnet is detached. 185 * 186 * The right answer is probably to make IF_AFDATA_LOCK an rwlock, given 187 * how it's used across the network stack. Here we're simply exploiting 188 * the fact that MLD runs at a similar layer in the stack to scope6.c. 189 * 190 * VIMAGE: 191 * * Each in6_multi corresponds to an ifp, and each ifp corresponds 192 * to a vnet in ifp->if_vnet. 193 */ 194 static struct mtx mld_mtx; 195 MALLOC_DEFINE(M_MLD, "mld", "mld state"); 196 197 #define MLD_EMBEDSCOPE(pin6, zoneid) \ 198 (pin6)->s6_addr16[1] = htons((zoneid) & 0xFFFF) 199 200 /* 201 * VIMAGE-wide globals. 202 */ 203 static VNET_DEFINE(struct timeval, mld_gsrdelay) = {10, 0}; 204 static VNET_DEFINE(LIST_HEAD(, mld_ifinfo), mli_head); 205 static VNET_DEFINE(int, interface_timers_running6); 206 static VNET_DEFINE(int, state_change_timers_running6); 207 static VNET_DEFINE(int, current_state_timers_running6); 208 209 #define V_mld_gsrdelay VNET(mld_gsrdelay) 210 #define V_mli_head VNET(mli_head) 211 #define V_interface_timers_running6 VNET(interface_timers_running6) 212 #define V_state_change_timers_running6 VNET(state_change_timers_running6) 213 #define V_current_state_timers_running6 VNET(current_state_timers_running6) 214 215 SYSCTL_DECL(_net_inet6); /* Note: Not in any common header. */ 216 217 SYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW, 0, 218 "IPv6 Multicast Listener Discovery"); 219 220 /* 221 * Virtualized sysctls. 222 */ 223 SYSCTL_VNET_PROC(_net_inet6_mld, OID_AUTO, gsrdelay, 224 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 225 &VNET_NAME(mld_gsrdelay.tv_sec), 0, sysctl_mld_gsr, "I", 226 "Rate limit for MLDv2 Group-and-Source queries in seconds"); 227 228 /* 229 * Non-virtualized sysctls. 230 */ 231 SYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo, CTLFLAG_RD | CTLFLAG_MPSAFE, 232 sysctl_mld_ifinfo, "Per-interface MLDv2 state"); 233 234 static int mld_v1enable = 1; 235 SYSCTL_INT(_net_inet6_mld, OID_AUTO, v1enable, CTLFLAG_RW, 236 &mld_v1enable, 0, "Enable fallback to MLDv1"); 237 TUNABLE_INT("net.inet6.mld.v1enable", &mld_v1enable); 238 239 /* 240 * Packed Router Alert option structure declaration. 241 */ 242 struct mld_raopt { 243 struct ip6_hbh hbh; 244 struct ip6_opt pad; 245 struct ip6_opt_router ra; 246 } __packed; 247 248 /* 249 * Router Alert hop-by-hop option header. 250 */ 251 static struct mld_raopt mld_ra = { 252 .hbh = { 0, 0 }, 253 .pad = { .ip6o_type = IP6OPT_PADN, 0 }, 254 .ra = { 255 .ip6or_type = IP6OPT_ROUTER_ALERT, 256 .ip6or_len = IP6OPT_RTALERT_LEN - 2, 257 .ip6or_value[0] = ((IP6OPT_RTALERT_MLD >> 8) & 0xFF), 258 .ip6or_value[1] = (IP6OPT_RTALERT_MLD & 0xFF) 259 } 260 }; 261 static struct ip6_pktopts mld_po; 262 263 static __inline void 264 mld_save_context(struct mbuf *m, struct ifnet *ifp) 265 { 266 267 #ifdef VIMAGE 268 m->m_pkthdr.header = ifp->if_vnet; 269 #endif /* VIMAGE */ 270 m->m_pkthdr.flowid = ifp->if_index; 271 } 272 273 static __inline void 274 mld_scrub_context(struct mbuf *m) 275 { 276 277 m->m_pkthdr.header = NULL; 278 m->m_pkthdr.flowid = 0; 279 } 280 281 /* 282 * Restore context from a queued output chain. 283 * Return saved ifindex. 284 * 285 * VIMAGE: The assertion is there to make sure that we 286 * actually called CURVNET_SET() with what's in the mbuf chain. 287 */ 288 static __inline uint32_t 289 mld_restore_context(struct mbuf *m) 290 { 291 292 #if defined(VIMAGE) && defined(INVARIANTS) 293 KASSERT(curvnet == m->m_pkthdr.header, 294 ("%s: called when curvnet was not restored", __func__)); 295 #endif 296 return (m->m_pkthdr.flowid); 297 } 298 299 /* 300 * Retrieve or set threshold between group-source queries in seconds. 301 * 302 * VIMAGE: Assume curvnet set by caller. 303 * SMPng: NOTE: Serialized by MLD lock. 304 */ 305 static int 306 sysctl_mld_gsr(SYSCTL_HANDLER_ARGS) 307 { 308 int error; 309 int i; 310 311 error = sysctl_wire_old_buffer(req, sizeof(int)); 312 if (error) 313 return (error); 314 315 MLD_LOCK(); 316 317 i = V_mld_gsrdelay.tv_sec; 318 319 error = sysctl_handle_int(oidp, &i, 0, req); 320 if (error || !req->newptr) 321 goto out_locked; 322 323 if (i < -1 || i >= 60) { 324 error = EINVAL; 325 goto out_locked; 326 } 327 328 CTR2(KTR_MLD, "change mld_gsrdelay from %d to %d", 329 V_mld_gsrdelay.tv_sec, i); 330 V_mld_gsrdelay.tv_sec = i; 331 332 out_locked: 333 MLD_UNLOCK(); 334 return (error); 335 } 336 337 /* 338 * Expose struct mld_ifinfo to userland, keyed by ifindex. 339 * For use by ifmcstat(8). 340 * 341 * SMPng: NOTE: Does an unlocked ifindex space read. 342 * VIMAGE: Assume curvnet set by caller. The node handler itself 343 * is not directly virtualized. 344 */ 345 static int 346 sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS) 347 { 348 int *name; 349 int error; 350 u_int namelen; 351 struct ifnet *ifp; 352 struct mld_ifinfo *mli; 353 354 name = (int *)arg1; 355 namelen = arg2; 356 357 if (req->newptr != NULL) 358 return (EPERM); 359 360 if (namelen != 1) 361 return (EINVAL); 362 363 error = sysctl_wire_old_buffer(req, sizeof(struct mld_ifinfo)); 364 if (error) 365 return (error); 366 367 IN6_MULTI_LOCK(); 368 MLD_LOCK(); 369 370 if (name[0] <= 0 || name[0] > V_if_index) { 371 error = ENOENT; 372 goto out_locked; 373 } 374 375 error = ENOENT; 376 377 ifp = ifnet_byindex(name[0]); 378 if (ifp == NULL) 379 goto out_locked; 380 381 LIST_FOREACH(mli, &V_mli_head, mli_link) { 382 if (ifp == mli->mli_ifp) { 383 error = SYSCTL_OUT(req, mli, 384 sizeof(struct mld_ifinfo)); 385 break; 386 } 387 } 388 389 out_locked: 390 MLD_UNLOCK(); 391 IN6_MULTI_UNLOCK(); 392 return (error); 393 } 394 395 /* 396 * Dispatch an entire queue of pending packet chains. 397 * VIMAGE: Assumes the vnet pointer has been set. 398 */ 399 static void 400 mld_dispatch_queue(struct ifqueue *ifq, int limit) 401 { 402 struct mbuf *m; 403 404 for (;;) { 405 _IF_DEQUEUE(ifq, m); 406 if (m == NULL) 407 break; 408 CTR3(KTR_MLD, "%s: dispatch %p from %p", __func__, ifq, m); 409 mld_dispatch_packet(m); 410 if (--limit == 0) 411 break; 412 } 413 } 414 415 /* 416 * Filter outgoing MLD report state by group. 417 * 418 * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1) 419 * and node-local addresses. However, kernel and socket consumers 420 * always embed the KAME scope ID in the address provided, so strip it 421 * when performing comparison. 422 * Note: This is not the same as the *multicast* scope. 423 * 424 * Return zero if the given group is one for which MLD reports 425 * should be suppressed, or non-zero if reports should be issued. 426 */ 427 static __inline int 428 mld_is_addr_reported(const struct in6_addr *addr) 429 { 430 431 KASSERT(IN6_IS_ADDR_MULTICAST(addr), ("%s: not multicast", __func__)); 432 433 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL) 434 return (0); 435 436 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL) { 437 struct in6_addr tmp = *addr; 438 in6_clearscope(&tmp); 439 if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes)) 440 return (0); 441 } 442 443 return (1); 444 } 445 446 /* 447 * Attach MLD when PF_INET6 is attached to an interface. 448 * 449 * SMPng: Normally called with IF_AFDATA_LOCK held. 450 */ 451 struct mld_ifinfo * 452 mld_domifattach(struct ifnet *ifp) 453 { 454 struct mld_ifinfo *mli; 455 456 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 457 __func__, ifp, ifp->if_xname); 458 459 MLD_LOCK(); 460 461 mli = mli_alloc_locked(ifp); 462 if (!(ifp->if_flags & IFF_MULTICAST)) 463 mli->mli_flags |= MLIF_SILENT; 464 465 MLD_UNLOCK(); 466 467 return (mli); 468 } 469 470 /* 471 * VIMAGE: assume curvnet set by caller. 472 */ 473 static struct mld_ifinfo * 474 mli_alloc_locked(/*const*/ struct ifnet *ifp) 475 { 476 struct mld_ifinfo *mli; 477 478 MLD_LOCK_ASSERT(); 479 480 mli = malloc(sizeof(struct mld_ifinfo), M_MLD, M_NOWAIT|M_ZERO); 481 if (mli == NULL) 482 goto out; 483 484 mli->mli_ifp = ifp; 485 mli->mli_version = MLD_VERSION_2; 486 mli->mli_flags = 0; 487 mli->mli_rv = MLD_RV_INIT; 488 mli->mli_qi = MLD_QI_INIT; 489 mli->mli_qri = MLD_QRI_INIT; 490 mli->mli_uri = MLD_URI_INIT; 491 492 SLIST_INIT(&mli->mli_relinmhead); 493 494 /* 495 * Responses to general queries are subject to bounds. 496 */ 497 IFQ_SET_MAXLEN(&mli->mli_gq, MLD_MAX_RESPONSE_PACKETS); 498 499 LIST_INSERT_HEAD(&V_mli_head, mli, mli_link); 500 501 CTR2(KTR_MLD, "allocate mld_ifinfo for ifp %p(%s)", 502 ifp, ifp->if_xname); 503 504 out: 505 return (mli); 506 } 507 508 /* 509 * Hook for ifdetach. 510 * 511 * NOTE: Some finalization tasks need to run before the protocol domain 512 * is detached, but also before the link layer does its cleanup. 513 * Run before link-layer cleanup; cleanup groups, but do not free MLD state. 514 * 515 * SMPng: Caller must hold IN6_MULTI_LOCK(). 516 * Must take IF_ADDR_LOCK() to cover if_multiaddrs iterator. 517 * XXX This routine is also bitten by unlocked ifma_protospec access. 518 */ 519 void 520 mld_ifdetach(struct ifnet *ifp) 521 { 522 struct mld_ifinfo *mli; 523 struct ifmultiaddr *ifma; 524 struct in6_multi *inm, *tinm; 525 526 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", __func__, ifp, 527 ifp->if_xname); 528 529 IN6_MULTI_LOCK_ASSERT(); 530 MLD_LOCK(); 531 532 mli = MLD_IFINFO(ifp); 533 if (mli->mli_version == MLD_VERSION_2) { 534 IF_ADDR_LOCK(ifp); 535 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 536 if (ifma->ifma_addr->sa_family != AF_INET6 || 537 ifma->ifma_protospec == NULL) 538 continue; 539 inm = (struct in6_multi *)ifma->ifma_protospec; 540 if (inm->in6m_state == MLD_LEAVING_MEMBER) { 541 SLIST_INSERT_HEAD(&mli->mli_relinmhead, 542 inm, in6m_nrele); 543 } 544 in6m_clear_recorded(inm); 545 } 546 IF_ADDR_UNLOCK(ifp); 547 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele, 548 tinm) { 549 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele); 550 in6m_release_locked(inm); 551 } 552 } 553 554 MLD_UNLOCK(); 555 } 556 557 /* 558 * Hook for domifdetach. 559 * Runs after link-layer cleanup; free MLD state. 560 * 561 * SMPng: Normally called with IF_AFDATA_LOCK held. 562 */ 563 void 564 mld_domifdetach(struct ifnet *ifp) 565 { 566 567 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 568 __func__, ifp, ifp->if_xname); 569 570 MLD_LOCK(); 571 mli_delete_locked(ifp); 572 MLD_UNLOCK(); 573 } 574 575 static void 576 mli_delete_locked(const struct ifnet *ifp) 577 { 578 struct mld_ifinfo *mli, *tmli; 579 580 CTR3(KTR_MLD, "%s: freeing mld_ifinfo for ifp %p(%s)", 581 __func__, ifp, ifp->if_xname); 582 583 MLD_LOCK_ASSERT(); 584 585 LIST_FOREACH_SAFE(mli, &V_mli_head, mli_link, tmli) { 586 if (mli->mli_ifp == ifp) { 587 /* 588 * Free deferred General Query responses. 589 */ 590 _IF_DRAIN(&mli->mli_gq); 591 592 LIST_REMOVE(mli, mli_link); 593 594 KASSERT(SLIST_EMPTY(&mli->mli_relinmhead), 595 ("%s: there are dangling in_multi references", 596 __func__)); 597 598 free(mli, M_MLD); 599 return; 600 } 601 } 602 #ifdef INVARIANTS 603 panic("%s: mld_ifinfo not found for ifp %p\n", __func__, ifp); 604 #endif 605 } 606 607 /* 608 * Process a received MLDv1 general or address-specific query. 609 * Assumes that the query header has been pulled up to sizeof(mld_hdr). 610 * 611 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 612 * mld_addr. This is OK as we own the mbuf chain. 613 */ 614 static int 615 mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 616 /*const*/ struct mld_hdr *mld) 617 { 618 struct ifmultiaddr *ifma; 619 struct mld_ifinfo *mli; 620 struct in6_multi *inm; 621 int is_general_query; 622 uint16_t timer; 623 #ifdef KTR 624 char ip6tbuf[INET6_ADDRSTRLEN]; 625 #endif 626 627 is_general_query = 0; 628 629 if (!mld_v1enable) { 630 CTR3(KTR_MLD, "ignore v1 query %s on ifp %p(%s)", 631 ip6_sprintf(ip6tbuf, &mld->mld_addr), 632 ifp, ifp->if_xname); 633 return (0); 634 } 635 636 /* 637 * RFC3810 Section 6.2: MLD queries must originate from 638 * a router's link-local address. 639 */ 640 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 641 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 642 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 643 ifp, ifp->if_xname); 644 return (0); 645 } 646 647 /* 648 * Do address field validation upfront before we accept 649 * the query. 650 */ 651 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 652 /* 653 * MLDv1 General Query. 654 * If this was not sent to the all-nodes group, ignore it. 655 */ 656 struct in6_addr dst; 657 658 dst = ip6->ip6_dst; 659 in6_clearscope(&dst); 660 if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes)) 661 return (EINVAL); 662 is_general_query = 1; 663 } else { 664 /* 665 * Embed scope ID of receiving interface in MLD query for 666 * lookup whilst we don't hold other locks. 667 */ 668 in6_setscope(&mld->mld_addr, ifp, NULL); 669 } 670 671 IN6_MULTI_LOCK(); 672 MLD_LOCK(); 673 IF_ADDR_LOCK(ifp); 674 675 /* 676 * Switch to MLDv1 host compatibility mode. 677 */ 678 mli = MLD_IFINFO(ifp); 679 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 680 mld_set_version(mli, MLD_VERSION_1); 681 682 timer = (ntohs(mld->mld_maxdelay) * PR_FASTHZ) / MLD_TIMER_SCALE; 683 if (timer == 0) 684 timer = 1; 685 686 if (is_general_query) { 687 /* 688 * For each reporting group joined on this 689 * interface, kick the report timer. 690 */ 691 CTR2(KTR_MLD, "process v1 general query on ifp %p(%s)", 692 ifp, ifp->if_xname); 693 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 694 if (ifma->ifma_addr->sa_family != AF_INET6 || 695 ifma->ifma_protospec == NULL) 696 continue; 697 inm = (struct in6_multi *)ifma->ifma_protospec; 698 mld_v1_update_group(inm, timer); 699 } 700 } else { 701 /* 702 * MLDv1 Group-Specific Query. 703 * If this is a group-specific MLDv1 query, we need only 704 * look up the single group to process it. 705 */ 706 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 707 if (inm != NULL) { 708 CTR3(KTR_MLD, "process v1 query %s on ifp %p(%s)", 709 ip6_sprintf(ip6tbuf, &mld->mld_addr), 710 ifp, ifp->if_xname); 711 mld_v1_update_group(inm, timer); 712 } 713 /* XXX Clear embedded scope ID as userland won't expect it. */ 714 in6_clearscope(&mld->mld_addr); 715 } 716 717 IF_ADDR_UNLOCK(ifp); 718 MLD_UNLOCK(); 719 IN6_MULTI_UNLOCK(); 720 721 return (0); 722 } 723 724 /* 725 * Update the report timer on a group in response to an MLDv1 query. 726 * 727 * If we are becoming the reporting member for this group, start the timer. 728 * If we already are the reporting member for this group, and timer is 729 * below the threshold, reset it. 730 * 731 * We may be updating the group for the first time since we switched 732 * to MLDv2. If we are, then we must clear any recorded source lists, 733 * and transition to REPORTING state; the group timer is overloaded 734 * for group and group-source query responses. 735 * 736 * Unlike MLDv2, the delay per group should be jittered 737 * to avoid bursts of MLDv1 reports. 738 */ 739 static void 740 mld_v1_update_group(struct in6_multi *inm, const int timer) 741 { 742 #ifdef KTR 743 char ip6tbuf[INET6_ADDRSTRLEN]; 744 #endif 745 746 CTR4(KTR_MLD, "%s: %s/%s timer=%d", __func__, 747 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 748 inm->in6m_ifp->if_xname, timer); 749 750 IN6_MULTI_LOCK_ASSERT(); 751 752 switch (inm->in6m_state) { 753 case MLD_NOT_MEMBER: 754 case MLD_SILENT_MEMBER: 755 break; 756 case MLD_REPORTING_MEMBER: 757 if (inm->in6m_timer != 0 && 758 inm->in6m_timer <= timer) { 759 CTR1(KTR_MLD, "%s: REPORTING and timer running, " 760 "skipping.", __func__); 761 break; 762 } 763 /* FALLTHROUGH */ 764 case MLD_SG_QUERY_PENDING_MEMBER: 765 case MLD_G_QUERY_PENDING_MEMBER: 766 case MLD_IDLE_MEMBER: 767 case MLD_LAZY_MEMBER: 768 case MLD_AWAKENING_MEMBER: 769 CTR1(KTR_MLD, "%s: ->REPORTING", __func__); 770 inm->in6m_state = MLD_REPORTING_MEMBER; 771 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 772 V_current_state_timers_running6 = 1; 773 break; 774 case MLD_SLEEPING_MEMBER: 775 CTR1(KTR_MLD, "%s: ->AWAKENING", __func__); 776 inm->in6m_state = MLD_AWAKENING_MEMBER; 777 break; 778 case MLD_LEAVING_MEMBER: 779 break; 780 } 781 } 782 783 /* 784 * Process a received MLDv2 general, group-specific or 785 * group-and-source-specific query. 786 * 787 * Assumes that the query header has been pulled up to sizeof(mldv2_query). 788 * 789 * Return 0 if successful, otherwise an appropriate error code is returned. 790 */ 791 static int 792 mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 793 struct mbuf *m, const int off, const int icmp6len) 794 { 795 struct mld_ifinfo *mli; 796 struct mldv2_query *mld; 797 struct in6_multi *inm; 798 uint32_t maxdelay, nsrc, qqi; 799 int is_general_query; 800 uint16_t timer; 801 uint8_t qrv; 802 #ifdef KTR 803 char ip6tbuf[INET6_ADDRSTRLEN]; 804 #endif 805 806 is_general_query = 0; 807 808 /* 809 * RFC3810 Section 6.2: MLD queries must originate from 810 * a router's link-local address. 811 */ 812 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 813 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 814 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 815 ifp, ifp->if_xname); 816 return (0); 817 } 818 819 CTR2(KTR_MLD, "input v2 query on ifp %p(%s)", ifp, ifp->if_xname); 820 821 mld = (struct mldv2_query *)(mtod(m, uint8_t *) + off); 822 823 maxdelay = ntohs(mld->mld_maxdelay); /* in 1/10ths of a second */ 824 if (maxdelay >= 32678) { 825 maxdelay = (MLD_MRC_MANT(maxdelay) | 0x1000) << 826 (MLD_MRC_EXP(maxdelay) + 3); 827 } 828 timer = (maxdelay * PR_FASTHZ) / MLD_TIMER_SCALE; 829 if (timer == 0) 830 timer = 1; 831 832 qrv = MLD_QRV(mld->mld_misc); 833 if (qrv < 2) { 834 CTR3(KTR_MLD, "%s: clamping qrv %d to %d", __func__, 835 qrv, MLD_RV_INIT); 836 qrv = MLD_RV_INIT; 837 } 838 839 qqi = mld->mld_qqi; 840 if (qqi >= 128) { 841 qqi = MLD_QQIC_MANT(mld->mld_qqi) << 842 (MLD_QQIC_EXP(mld->mld_qqi) + 3); 843 } 844 845 nsrc = ntohs(mld->mld_numsrc); 846 if (nsrc > MLD_MAX_GS_SOURCES) 847 return (EMSGSIZE); 848 if (icmp6len < sizeof(struct mldv2_query) + 849 (nsrc * sizeof(struct in6_addr))) 850 return (EMSGSIZE); 851 852 /* 853 * Do further input validation upfront to avoid resetting timers 854 * should we need to discard this query. 855 */ 856 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 857 /* 858 * General Queries SHOULD be directed to ff02::1. 859 * A general query with a source list has undefined 860 * behaviour; discard it. 861 */ 862 struct in6_addr dst; 863 864 dst = ip6->ip6_dst; 865 in6_clearscope(&dst); 866 if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes) || 867 nsrc > 0) 868 return (EINVAL); 869 is_general_query = 1; 870 } else { 871 /* 872 * Embed scope ID of receiving interface in MLD query for 873 * lookup whilst we don't hold other locks (due to KAME 874 * locking lameness). We own this mbuf chain just now. 875 */ 876 in6_setscope(&mld->mld_addr, ifp, NULL); 877 } 878 879 IN6_MULTI_LOCK(); 880 MLD_LOCK(); 881 IF_ADDR_LOCK(ifp); 882 883 mli = MLD_IFINFO(ifp); 884 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 885 886 /* 887 * Discard the v2 query if we're in Compatibility Mode. 888 * The RFC is pretty clear that hosts need to stay in MLDv1 mode 889 * until the Old Version Querier Present timer expires. 890 */ 891 if (mli->mli_version != MLD_VERSION_2) 892 goto out_locked; 893 894 mld_set_version(mli, MLD_VERSION_2); 895 mli->mli_rv = qrv; 896 mli->mli_qi = qqi; 897 mli->mli_qri = maxdelay; 898 899 CTR4(KTR_MLD, "%s: qrv %d qi %d maxdelay %d", __func__, qrv, qqi, 900 maxdelay); 901 902 if (is_general_query) { 903 /* 904 * MLDv2 General Query. 905 * 906 * Schedule a current-state report on this ifp for 907 * all groups, possibly containing source lists. 908 * 909 * If there is a pending General Query response 910 * scheduled earlier than the selected delay, do 911 * not schedule any other reports. 912 * Otherwise, reset the interface timer. 913 */ 914 CTR2(KTR_MLD, "process v2 general query on ifp %p(%s)", 915 ifp, ifp->if_xname); 916 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) { 917 mli->mli_v2_timer = MLD_RANDOM_DELAY(timer); 918 V_interface_timers_running6 = 1; 919 } 920 } else { 921 /* 922 * MLDv2 Group-specific or Group-and-source-specific Query. 923 * 924 * Group-source-specific queries are throttled on 925 * a per-group basis to defeat denial-of-service attempts. 926 * Queries for groups we are not a member of on this 927 * link are simply ignored. 928 */ 929 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 930 if (inm == NULL) 931 goto out_locked; 932 if (nsrc > 0) { 933 if (!ratecheck(&inm->in6m_lastgsrtv, 934 &V_mld_gsrdelay)) { 935 CTR1(KTR_MLD, "%s: GS query throttled.", 936 __func__); 937 goto out_locked; 938 } 939 } 940 CTR2(KTR_MLD, "process v2 group query on ifp %p(%s)", 941 ifp, ifp->if_xname); 942 /* 943 * If there is a pending General Query response 944 * scheduled sooner than the selected delay, no 945 * further report need be scheduled. 946 * Otherwise, prepare to respond to the 947 * group-specific or group-and-source query. 948 */ 949 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) 950 mld_v2_process_group_query(inm, mli, timer, m, off); 951 952 /* XXX Clear embedded scope ID as userland won't expect it. */ 953 in6_clearscope(&mld->mld_addr); 954 } 955 956 out_locked: 957 IF_ADDR_UNLOCK(ifp); 958 MLD_UNLOCK(); 959 IN6_MULTI_UNLOCK(); 960 961 return (0); 962 } 963 964 /* 965 * Process a recieved MLDv2 group-specific or group-and-source-specific 966 * query. 967 * Return <0 if any error occured. Currently this is ignored. 968 */ 969 static int 970 mld_v2_process_group_query(struct in6_multi *inm, struct mld_ifinfo *mli, 971 int timer, struct mbuf *m0, const int off) 972 { 973 struct mldv2_query *mld; 974 int retval; 975 uint16_t nsrc; 976 977 IN6_MULTI_LOCK_ASSERT(); 978 MLD_LOCK_ASSERT(); 979 980 retval = 0; 981 mld = (struct mldv2_query *)(mtod(m0, uint8_t *) + off); 982 983 switch (inm->in6m_state) { 984 case MLD_NOT_MEMBER: 985 case MLD_SILENT_MEMBER: 986 case MLD_SLEEPING_MEMBER: 987 case MLD_LAZY_MEMBER: 988 case MLD_AWAKENING_MEMBER: 989 case MLD_IDLE_MEMBER: 990 case MLD_LEAVING_MEMBER: 991 return (retval); 992 break; 993 case MLD_REPORTING_MEMBER: 994 case MLD_G_QUERY_PENDING_MEMBER: 995 case MLD_SG_QUERY_PENDING_MEMBER: 996 break; 997 } 998 999 nsrc = ntohs(mld->mld_numsrc); 1000 1001 /* 1002 * Deal with group-specific queries upfront. 1003 * If any group query is already pending, purge any recorded 1004 * source-list state if it exists, and schedule a query response 1005 * for this group-specific query. 1006 */ 1007 if (nsrc == 0) { 1008 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 1009 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) { 1010 in6m_clear_recorded(inm); 1011 timer = min(inm->in6m_timer, timer); 1012 } 1013 inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER; 1014 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1015 V_current_state_timers_running6 = 1; 1016 return (retval); 1017 } 1018 1019 /* 1020 * Deal with the case where a group-and-source-specific query has 1021 * been received but a group-specific query is already pending. 1022 */ 1023 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) { 1024 timer = min(inm->in6m_timer, timer); 1025 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1026 V_current_state_timers_running6 = 1; 1027 return (retval); 1028 } 1029 1030 /* 1031 * Finally, deal with the case where a group-and-source-specific 1032 * query has been received, where a response to a previous g-s-r 1033 * query exists, or none exists. 1034 * In this case, we need to parse the source-list which the Querier 1035 * has provided us with and check if we have any source list filter 1036 * entries at T1 for these sources. If we do not, there is no need 1037 * schedule a report and the query may be dropped. 1038 * If we do, we must record them and schedule a current-state 1039 * report for those sources. 1040 */ 1041 if (inm->in6m_nsrc > 0) { 1042 struct mbuf *m; 1043 uint8_t *sp; 1044 int i, nrecorded; 1045 int soff; 1046 1047 m = m0; 1048 soff = off + sizeof(struct mldv2_query); 1049 nrecorded = 0; 1050 for (i = 0; i < nsrc; i++) { 1051 sp = mtod(m, uint8_t *) + soff; 1052 retval = in6m_record_source(inm, 1053 (const struct in6_addr *)sp); 1054 if (retval < 0) 1055 break; 1056 nrecorded += retval; 1057 soff += sizeof(struct in6_addr); 1058 if (soff >= m->m_len) { 1059 soff = soff - m->m_len; 1060 m = m->m_next; 1061 if (m == NULL) 1062 break; 1063 } 1064 } 1065 if (nrecorded > 0) { 1066 CTR1(KTR_MLD, 1067 "%s: schedule response to SG query", __func__); 1068 inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER; 1069 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1070 V_current_state_timers_running6 = 1; 1071 } 1072 } 1073 1074 return (retval); 1075 } 1076 1077 /* 1078 * Process a received MLDv1 host membership report. 1079 * Assumes mld points to mld_hdr in pulled up mbuf chain. 1080 * 1081 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 1082 * mld_addr. This is OK as we own the mbuf chain. 1083 */ 1084 static int 1085 mld_v1_input_report(struct ifnet *ifp, const struct ip6_hdr *ip6, 1086 /*const*/ struct mld_hdr *mld) 1087 { 1088 struct in6_addr src, dst; 1089 struct in6_ifaddr *ia; 1090 struct in6_multi *inm; 1091 #ifdef KTR 1092 char ip6tbuf[INET6_ADDRSTRLEN]; 1093 #endif 1094 1095 if (!mld_v1enable) { 1096 CTR3(KTR_MLD, "ignore v1 report %s on ifp %p(%s)", 1097 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1098 ifp, ifp->if_xname); 1099 return (0); 1100 } 1101 1102 if (ifp->if_flags & IFF_LOOPBACK) 1103 return (0); 1104 1105 /* 1106 * MLDv1 reports must originate from a host's link-local address, 1107 * or the unspecified address (when booting). 1108 */ 1109 src = ip6->ip6_src; 1110 in6_clearscope(&src); 1111 if (!IN6_IS_SCOPE_LINKLOCAL(&src) && !IN6_IS_ADDR_UNSPECIFIED(&src)) { 1112 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 1113 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 1114 ifp, ifp->if_xname); 1115 return (EINVAL); 1116 } 1117 1118 /* 1119 * RFC2710 Section 4: MLDv1 reports must pertain to a multicast 1120 * group, and must be directed to the group itself. 1121 */ 1122 dst = ip6->ip6_dst; 1123 in6_clearscope(&dst); 1124 if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) || 1125 !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &dst)) { 1126 CTR3(KTR_MLD, "ignore v1 query dst %s on ifp %p(%s)", 1127 ip6_sprintf(ip6tbuf, &ip6->ip6_dst), 1128 ifp, ifp->if_xname); 1129 return (EINVAL); 1130 } 1131 1132 /* 1133 * Make sure we don't hear our own membership report, as fast 1134 * leave requires knowing that we are the only member of a 1135 * group. Assume we used the link-local address if available, 1136 * otherwise look for ::. 1137 * 1138 * XXX Note that scope ID comparison is needed for the address 1139 * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be 1140 * performed for the on-wire address. 1141 */ 1142 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1143 if ((ia && IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia))) || 1144 (ia == NULL && IN6_IS_ADDR_UNSPECIFIED(&src))) { 1145 if (ia != NULL) 1146 ifa_free(&ia->ia_ifa); 1147 return (0); 1148 } 1149 if (ia != NULL) 1150 ifa_free(&ia->ia_ifa); 1151 1152 CTR3(KTR_MLD, "process v1 report %s on ifp %p(%s)", 1153 ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, ifp->if_xname); 1154 1155 /* 1156 * Embed scope ID of receiving interface in MLD query for lookup 1157 * whilst we don't hold other locks (due to KAME locking lameness). 1158 */ 1159 if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) 1160 in6_setscope(&mld->mld_addr, ifp, NULL); 1161 1162 IN6_MULTI_LOCK(); 1163 MLD_LOCK(); 1164 IF_ADDR_LOCK(ifp); 1165 1166 /* 1167 * MLDv1 report suppression. 1168 * If we are a member of this group, and our membership should be 1169 * reported, and our group timer is pending or about to be reset, 1170 * stop our group timer by transitioning to the 'lazy' state. 1171 */ 1172 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 1173 if (inm != NULL) { 1174 struct mld_ifinfo *mli; 1175 1176 mli = inm->in6m_mli; 1177 KASSERT(mli != NULL, 1178 ("%s: no mli for ifp %p", __func__, ifp)); 1179 1180 /* 1181 * If we are in MLDv2 host mode, do not allow the 1182 * other host's MLDv1 report to suppress our reports. 1183 */ 1184 if (mli->mli_version == MLD_VERSION_2) 1185 goto out_locked; 1186 1187 inm->in6m_timer = 0; 1188 1189 switch (inm->in6m_state) { 1190 case MLD_NOT_MEMBER: 1191 case MLD_SILENT_MEMBER: 1192 case MLD_SLEEPING_MEMBER: 1193 break; 1194 case MLD_REPORTING_MEMBER: 1195 case MLD_IDLE_MEMBER: 1196 case MLD_AWAKENING_MEMBER: 1197 CTR3(KTR_MLD, 1198 "report suppressed for %s on ifp %p(%s)", 1199 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1200 ifp, ifp->if_xname); 1201 case MLD_LAZY_MEMBER: 1202 inm->in6m_state = MLD_LAZY_MEMBER; 1203 break; 1204 case MLD_G_QUERY_PENDING_MEMBER: 1205 case MLD_SG_QUERY_PENDING_MEMBER: 1206 case MLD_LEAVING_MEMBER: 1207 break; 1208 } 1209 } 1210 1211 out_locked: 1212 MLD_UNLOCK(); 1213 IF_ADDR_UNLOCK(ifp); 1214 IN6_MULTI_UNLOCK(); 1215 1216 /* XXX Clear embedded scope ID as userland won't expect it. */ 1217 in6_clearscope(&mld->mld_addr); 1218 1219 return (0); 1220 } 1221 1222 /* 1223 * MLD input path. 1224 * 1225 * Assume query messages which fit in a single ICMPv6 message header 1226 * have been pulled up. 1227 * Assume that userland will want to see the message, even if it 1228 * otherwise fails kernel input validation; do not free it. 1229 * Pullup may however free the mbuf chain m if it fails. 1230 * 1231 * Return IPPROTO_DONE if we freed m. Otherwise, return 0. 1232 */ 1233 int 1234 mld_input(struct mbuf *m, int off, int icmp6len) 1235 { 1236 struct ifnet *ifp; 1237 struct ip6_hdr *ip6; 1238 struct mld_hdr *mld; 1239 int mldlen; 1240 1241 CTR3(KTR_MLD, "%s: called w/mbuf (%p,%d)", __func__, m, off); 1242 1243 ifp = m->m_pkthdr.rcvif; 1244 1245 ip6 = mtod(m, struct ip6_hdr *); 1246 1247 /* Pullup to appropriate size. */ 1248 mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off); 1249 if (mld->mld_type == MLD_LISTENER_QUERY && 1250 icmp6len >= sizeof(struct mldv2_query)) { 1251 mldlen = sizeof(struct mldv2_query); 1252 } else { 1253 mldlen = sizeof(struct mld_hdr); 1254 } 1255 IP6_EXTHDR_GET(mld, struct mld_hdr *, m, off, mldlen); 1256 if (mld == NULL) { 1257 ICMP6STAT_INC(icp6s_badlen); 1258 return (IPPROTO_DONE); 1259 } 1260 1261 /* 1262 * Userland needs to see all of this traffic for implementing 1263 * the endpoint discovery portion of multicast routing. 1264 */ 1265 switch (mld->mld_type) { 1266 case MLD_LISTENER_QUERY: 1267 icmp6_ifstat_inc(ifp, ifs6_in_mldquery); 1268 if (icmp6len == sizeof(struct mld_hdr)) { 1269 if (mld_v1_input_query(ifp, ip6, mld) != 0) 1270 return (0); 1271 } else if (icmp6len >= sizeof(struct mldv2_query)) { 1272 if (mld_v2_input_query(ifp, ip6, m, off, 1273 icmp6len) != 0) 1274 return (0); 1275 } 1276 break; 1277 case MLD_LISTENER_REPORT: 1278 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1279 if (mld_v1_input_report(ifp, ip6, mld) != 0) 1280 return (0); 1281 break; 1282 case MLDV2_LISTENER_REPORT: 1283 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1284 break; 1285 case MLD_LISTENER_DONE: 1286 icmp6_ifstat_inc(ifp, ifs6_in_mlddone); 1287 break; 1288 default: 1289 break; 1290 } 1291 1292 return (0); 1293 } 1294 1295 /* 1296 * Fast timeout handler (global). 1297 * VIMAGE: Timeout handlers are expected to service all vimages. 1298 */ 1299 void 1300 mld_fasttimo(void) 1301 { 1302 VNET_ITERATOR_DECL(vnet_iter); 1303 1304 VNET_LIST_RLOCK_NOSLEEP(); 1305 VNET_FOREACH(vnet_iter) { 1306 CURVNET_SET(vnet_iter); 1307 mld_fasttimo_vnet(); 1308 CURVNET_RESTORE(); 1309 } 1310 VNET_LIST_RUNLOCK_NOSLEEP(); 1311 } 1312 1313 /* 1314 * Fast timeout handler (per-vnet). 1315 * 1316 * VIMAGE: Assume caller has set up our curvnet. 1317 */ 1318 static void 1319 mld_fasttimo_vnet(void) 1320 { 1321 struct ifqueue scq; /* State-change packets */ 1322 struct ifqueue qrq; /* Query response packets */ 1323 struct ifnet *ifp; 1324 struct mld_ifinfo *mli; 1325 struct ifmultiaddr *ifma, *tifma; 1326 struct in6_multi *inm; 1327 int uri_fasthz; 1328 1329 uri_fasthz = 0; 1330 1331 /* 1332 * Quick check to see if any work needs to be done, in order to 1333 * minimize the overhead of fasttimo processing. 1334 * SMPng: XXX Unlocked reads. 1335 */ 1336 if (!V_current_state_timers_running6 && 1337 !V_interface_timers_running6 && 1338 !V_state_change_timers_running6) 1339 return; 1340 1341 IN6_MULTI_LOCK(); 1342 MLD_LOCK(); 1343 1344 /* 1345 * MLDv2 General Query response timer processing. 1346 */ 1347 if (V_interface_timers_running6) { 1348 CTR1(KTR_MLD, "%s: interface timers running", __func__); 1349 1350 V_interface_timers_running6 = 0; 1351 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1352 if (mli->mli_v2_timer == 0) { 1353 /* Do nothing. */ 1354 } else if (--mli->mli_v2_timer == 0) { 1355 mld_v2_dispatch_general_query(mli); 1356 } else { 1357 V_interface_timers_running6 = 1; 1358 } 1359 } 1360 } 1361 1362 if (!V_current_state_timers_running6 && 1363 !V_state_change_timers_running6) 1364 goto out_locked; 1365 1366 V_current_state_timers_running6 = 0; 1367 V_state_change_timers_running6 = 0; 1368 1369 CTR1(KTR_MLD, "%s: state change timers running", __func__); 1370 1371 /* 1372 * MLD host report and state-change timer processing. 1373 * Note: Processing a v2 group timer may remove a node. 1374 */ 1375 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1376 ifp = mli->mli_ifp; 1377 1378 if (mli->mli_version == MLD_VERSION_2) { 1379 uri_fasthz = MLD_RANDOM_DELAY(mli->mli_uri * 1380 PR_FASTHZ); 1381 1382 memset(&qrq, 0, sizeof(struct ifqueue)); 1383 IFQ_SET_MAXLEN(&qrq, MLD_MAX_G_GS_PACKETS); 1384 1385 memset(&scq, 0, sizeof(struct ifqueue)); 1386 IFQ_SET_MAXLEN(&scq, MLD_MAX_STATE_CHANGE_PACKETS); 1387 } 1388 1389 IF_ADDR_LOCK(ifp); 1390 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, 1391 tifma) { 1392 if (ifma->ifma_addr->sa_family != AF_INET6 || 1393 ifma->ifma_protospec == NULL) 1394 continue; 1395 inm = (struct in6_multi *)ifma->ifma_protospec; 1396 switch (mli->mli_version) { 1397 case MLD_VERSION_1: 1398 /* 1399 * XXX Drop IF_ADDR lock temporarily to 1400 * avoid recursion caused by a potential 1401 * call by in6ifa_ifpforlinklocal(). 1402 * rwlock candidate? 1403 */ 1404 IF_ADDR_UNLOCK(ifp); 1405 mld_v1_process_group_timer(inm, 1406 mli->mli_version); 1407 IF_ADDR_LOCK(ifp); 1408 break; 1409 case MLD_VERSION_2: 1410 mld_v2_process_group_timers(mli, &qrq, 1411 &scq, inm, uri_fasthz); 1412 break; 1413 } 1414 } 1415 IF_ADDR_UNLOCK(ifp); 1416 1417 if (mli->mli_version == MLD_VERSION_2) { 1418 struct in6_multi *tinm; 1419 1420 mld_dispatch_queue(&qrq, 0); 1421 mld_dispatch_queue(&scq, 0); 1422 1423 /* 1424 * Free the in_multi reference(s) for 1425 * this lifecycle. 1426 */ 1427 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, 1428 in6m_nrele, tinm) { 1429 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, 1430 in6m_nrele); 1431 in6m_release_locked(inm); 1432 } 1433 } 1434 } 1435 1436 out_locked: 1437 MLD_UNLOCK(); 1438 IN6_MULTI_UNLOCK(); 1439 } 1440 1441 /* 1442 * Update host report group timer. 1443 * Will update the global pending timer flags. 1444 */ 1445 static void 1446 mld_v1_process_group_timer(struct in6_multi *inm, const int version) 1447 { 1448 int report_timer_expired; 1449 1450 IN6_MULTI_LOCK_ASSERT(); 1451 MLD_LOCK_ASSERT(); 1452 1453 if (inm->in6m_timer == 0) { 1454 report_timer_expired = 0; 1455 } else if (--inm->in6m_timer == 0) { 1456 report_timer_expired = 1; 1457 } else { 1458 V_current_state_timers_running6 = 1; 1459 return; 1460 } 1461 1462 switch (inm->in6m_state) { 1463 case MLD_NOT_MEMBER: 1464 case MLD_SILENT_MEMBER: 1465 case MLD_IDLE_MEMBER: 1466 case MLD_LAZY_MEMBER: 1467 case MLD_SLEEPING_MEMBER: 1468 case MLD_AWAKENING_MEMBER: 1469 break; 1470 case MLD_REPORTING_MEMBER: 1471 if (report_timer_expired) { 1472 inm->in6m_state = MLD_IDLE_MEMBER; 1473 (void)mld_v1_transmit_report(inm, 1474 MLD_LISTENER_REPORT); 1475 } 1476 break; 1477 case MLD_G_QUERY_PENDING_MEMBER: 1478 case MLD_SG_QUERY_PENDING_MEMBER: 1479 case MLD_LEAVING_MEMBER: 1480 break; 1481 } 1482 } 1483 1484 /* 1485 * Update a group's timers for MLDv2. 1486 * Will update the global pending timer flags. 1487 * Note: Unlocked read from mli. 1488 */ 1489 static void 1490 mld_v2_process_group_timers(struct mld_ifinfo *mli, 1491 struct ifqueue *qrq, struct ifqueue *scq, 1492 struct in6_multi *inm, const int uri_fasthz) 1493 { 1494 int query_response_timer_expired; 1495 int state_change_retransmit_timer_expired; 1496 #ifdef KTR 1497 char ip6tbuf[INET6_ADDRSTRLEN]; 1498 #endif 1499 1500 IN6_MULTI_LOCK_ASSERT(); 1501 MLD_LOCK_ASSERT(); 1502 1503 query_response_timer_expired = 0; 1504 state_change_retransmit_timer_expired = 0; 1505 1506 /* 1507 * During a transition from compatibility mode back to MLDv2, 1508 * a group record in REPORTING state may still have its group 1509 * timer active. This is a no-op in this function; it is easier 1510 * to deal with it here than to complicate the slow-timeout path. 1511 */ 1512 if (inm->in6m_timer == 0) { 1513 query_response_timer_expired = 0; 1514 } else if (--inm->in6m_timer == 0) { 1515 query_response_timer_expired = 1; 1516 } else { 1517 V_current_state_timers_running6 = 1; 1518 } 1519 1520 if (inm->in6m_sctimer == 0) { 1521 state_change_retransmit_timer_expired = 0; 1522 } else if (--inm->in6m_sctimer == 0) { 1523 state_change_retransmit_timer_expired = 1; 1524 } else { 1525 V_state_change_timers_running6 = 1; 1526 } 1527 1528 /* We are in fasttimo, so be quick about it. */ 1529 if (!state_change_retransmit_timer_expired && 1530 !query_response_timer_expired) 1531 return; 1532 1533 switch (inm->in6m_state) { 1534 case MLD_NOT_MEMBER: 1535 case MLD_SILENT_MEMBER: 1536 case MLD_SLEEPING_MEMBER: 1537 case MLD_LAZY_MEMBER: 1538 case MLD_AWAKENING_MEMBER: 1539 case MLD_IDLE_MEMBER: 1540 break; 1541 case MLD_G_QUERY_PENDING_MEMBER: 1542 case MLD_SG_QUERY_PENDING_MEMBER: 1543 /* 1544 * Respond to a previously pending Group-Specific 1545 * or Group-and-Source-Specific query by enqueueing 1546 * the appropriate Current-State report for 1547 * immediate transmission. 1548 */ 1549 if (query_response_timer_expired) { 1550 int retval; 1551 1552 retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1, 1553 (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER)); 1554 CTR2(KTR_MLD, "%s: enqueue record = %d", 1555 __func__, retval); 1556 inm->in6m_state = MLD_REPORTING_MEMBER; 1557 in6m_clear_recorded(inm); 1558 } 1559 /* FALLTHROUGH */ 1560 case MLD_REPORTING_MEMBER: 1561 case MLD_LEAVING_MEMBER: 1562 if (state_change_retransmit_timer_expired) { 1563 /* 1564 * State-change retransmission timer fired. 1565 * If there are any further pending retransmissions, 1566 * set the global pending state-change flag, and 1567 * reset the timer. 1568 */ 1569 if (--inm->in6m_scrv > 0) { 1570 inm->in6m_sctimer = uri_fasthz; 1571 V_state_change_timers_running6 = 1; 1572 } 1573 /* 1574 * Retransmit the previously computed state-change 1575 * report. If there are no further pending 1576 * retransmissions, the mbuf queue will be consumed. 1577 * Update T0 state to T1 as we have now sent 1578 * a state-change. 1579 */ 1580 (void)mld_v2_merge_state_changes(inm, scq); 1581 1582 in6m_commit(inm); 1583 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 1584 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1585 inm->in6m_ifp->if_xname); 1586 1587 /* 1588 * If we are leaving the group for good, make sure 1589 * we release MLD's reference to it. 1590 * This release must be deferred using a SLIST, 1591 * as we are called from a loop which traverses 1592 * the in_ifmultiaddr TAILQ. 1593 */ 1594 if (inm->in6m_state == MLD_LEAVING_MEMBER && 1595 inm->in6m_scrv == 0) { 1596 inm->in6m_state = MLD_NOT_MEMBER; 1597 SLIST_INSERT_HEAD(&mli->mli_relinmhead, 1598 inm, in6m_nrele); 1599 } 1600 } 1601 break; 1602 } 1603 } 1604 1605 /* 1606 * Switch to a different version on the given interface, 1607 * as per Section 9.12. 1608 */ 1609 static void 1610 mld_set_version(struct mld_ifinfo *mli, const int version) 1611 { 1612 int old_version_timer; 1613 1614 MLD_LOCK_ASSERT(); 1615 1616 CTR4(KTR_MLD, "%s: switching to v%d on ifp %p(%s)", __func__, 1617 version, mli->mli_ifp, mli->mli_ifp->if_xname); 1618 1619 if (version == MLD_VERSION_1) { 1620 /* 1621 * Compute the "Older Version Querier Present" timer as per 1622 * Section 9.12. 1623 */ 1624 old_version_timer = (mli->mli_rv * mli->mli_qi) + mli->mli_qri; 1625 old_version_timer *= PR_SLOWHZ; 1626 mli->mli_v1_timer = old_version_timer; 1627 } 1628 1629 if (mli->mli_v1_timer > 0 && mli->mli_version != MLD_VERSION_1) { 1630 mli->mli_version = MLD_VERSION_1; 1631 mld_v2_cancel_link_timers(mli); 1632 } 1633 } 1634 1635 /* 1636 * Cancel pending MLDv2 timers for the given link and all groups 1637 * joined on it; state-change, general-query, and group-query timers. 1638 */ 1639 static void 1640 mld_v2_cancel_link_timers(struct mld_ifinfo *mli) 1641 { 1642 struct ifmultiaddr *ifma; 1643 struct ifnet *ifp; 1644 struct in6_multi *inm; 1645 1646 CTR3(KTR_MLD, "%s: cancel v2 timers on ifp %p(%s)", __func__, 1647 mli->mli_ifp, mli->mli_ifp->if_xname); 1648 1649 IN6_MULTI_LOCK_ASSERT(); 1650 MLD_LOCK_ASSERT(); 1651 1652 /* 1653 * Fast-track this potentially expensive operation 1654 * by checking all the global 'timer pending' flags. 1655 */ 1656 if (!V_interface_timers_running6 && 1657 !V_state_change_timers_running6 && 1658 !V_current_state_timers_running6) 1659 return; 1660 1661 mli->mli_v2_timer = 0; 1662 1663 ifp = mli->mli_ifp; 1664 1665 IF_ADDR_LOCK(ifp); 1666 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1667 if (ifma->ifma_addr->sa_family != AF_INET6) 1668 continue; 1669 inm = (struct in6_multi *)ifma->ifma_protospec; 1670 switch (inm->in6m_state) { 1671 case MLD_NOT_MEMBER: 1672 case MLD_SILENT_MEMBER: 1673 case MLD_IDLE_MEMBER: 1674 case MLD_LAZY_MEMBER: 1675 case MLD_SLEEPING_MEMBER: 1676 case MLD_AWAKENING_MEMBER: 1677 break; 1678 case MLD_LEAVING_MEMBER: 1679 /* 1680 * If we are leaving the group and switching 1681 * version, we need to release the final 1682 * reference held for issuing the INCLUDE {}. 1683 * 1684 * SMPNG: Must drop and re-acquire IF_ADDR_LOCK 1685 * around in6m_release_locked(), as it is not 1686 * a recursive mutex. 1687 */ 1688 IF_ADDR_UNLOCK(ifp); 1689 in6m_release_locked(inm); 1690 IF_ADDR_LOCK(ifp); 1691 /* FALLTHROUGH */ 1692 case MLD_G_QUERY_PENDING_MEMBER: 1693 case MLD_SG_QUERY_PENDING_MEMBER: 1694 in6m_clear_recorded(inm); 1695 /* FALLTHROUGH */ 1696 case MLD_REPORTING_MEMBER: 1697 inm->in6m_sctimer = 0; 1698 inm->in6m_timer = 0; 1699 inm->in6m_state = MLD_REPORTING_MEMBER; 1700 /* 1701 * Free any pending MLDv2 state-change records. 1702 */ 1703 _IF_DRAIN(&inm->in6m_scq); 1704 break; 1705 } 1706 } 1707 IF_ADDR_UNLOCK(ifp); 1708 } 1709 1710 /* 1711 * Global slowtimo handler. 1712 * VIMAGE: Timeout handlers are expected to service all vimages. 1713 */ 1714 void 1715 mld_slowtimo(void) 1716 { 1717 VNET_ITERATOR_DECL(vnet_iter); 1718 1719 VNET_LIST_RLOCK_NOSLEEP(); 1720 VNET_FOREACH(vnet_iter) { 1721 CURVNET_SET(vnet_iter); 1722 mld_slowtimo_vnet(); 1723 CURVNET_RESTORE(); 1724 } 1725 VNET_LIST_RUNLOCK_NOSLEEP(); 1726 } 1727 1728 /* 1729 * Per-vnet slowtimo handler. 1730 */ 1731 static void 1732 mld_slowtimo_vnet(void) 1733 { 1734 struct mld_ifinfo *mli; 1735 1736 MLD_LOCK(); 1737 1738 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1739 mld_v1_process_querier_timers(mli); 1740 } 1741 1742 MLD_UNLOCK(); 1743 } 1744 1745 /* 1746 * Update the Older Version Querier Present timers for a link. 1747 * See Section 9.12 of RFC 3810. 1748 */ 1749 static void 1750 mld_v1_process_querier_timers(struct mld_ifinfo *mli) 1751 { 1752 1753 MLD_LOCK_ASSERT(); 1754 1755 if (mli->mli_version != MLD_VERSION_2 && --mli->mli_v1_timer == 0) { 1756 /* 1757 * MLDv1 Querier Present timer expired; revert to MLDv2. 1758 */ 1759 CTR5(KTR_MLD, 1760 "%s: transition from v%d -> v%d on %p(%s)", 1761 __func__, mli->mli_version, MLD_VERSION_2, 1762 mli->mli_ifp, mli->mli_ifp->if_xname); 1763 mli->mli_version = MLD_VERSION_2; 1764 } 1765 } 1766 1767 /* 1768 * Transmit an MLDv1 report immediately. 1769 */ 1770 static int 1771 mld_v1_transmit_report(struct in6_multi *in6m, const int type) 1772 { 1773 struct ifnet *ifp; 1774 struct in6_ifaddr *ia; 1775 struct ip6_hdr *ip6; 1776 struct mbuf *mh, *md; 1777 struct mld_hdr *mld; 1778 1779 IN6_MULTI_LOCK_ASSERT(); 1780 MLD_LOCK_ASSERT(); 1781 1782 ifp = in6m->in6m_ifp; 1783 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1784 /* ia may be NULL if link-local address is tentative. */ 1785 1786 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 1787 if (mh == NULL) { 1788 if (ia != NULL) 1789 ifa_free(&ia->ia_ifa); 1790 return (ENOMEM); 1791 } 1792 MGET(md, M_DONTWAIT, MT_DATA); 1793 if (md == NULL) { 1794 m_free(mh); 1795 if (ia != NULL) 1796 ifa_free(&ia->ia_ifa); 1797 return (ENOMEM); 1798 } 1799 mh->m_next = md; 1800 1801 /* 1802 * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so 1803 * that ether_output() does not need to allocate another mbuf 1804 * for the header in the most common case. 1805 */ 1806 MH_ALIGN(mh, sizeof(struct ip6_hdr)); 1807 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr); 1808 mh->m_len = sizeof(struct ip6_hdr); 1809 1810 ip6 = mtod(mh, struct ip6_hdr *); 1811 ip6->ip6_flow = 0; 1812 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 1813 ip6->ip6_vfc |= IPV6_VERSION; 1814 ip6->ip6_nxt = IPPROTO_ICMPV6; 1815 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 1816 ip6->ip6_dst = in6m->in6m_addr; 1817 1818 md->m_len = sizeof(struct mld_hdr); 1819 mld = mtod(md, struct mld_hdr *); 1820 mld->mld_type = type; 1821 mld->mld_code = 0; 1822 mld->mld_cksum = 0; 1823 mld->mld_maxdelay = 0; 1824 mld->mld_reserved = 0; 1825 mld->mld_addr = in6m->in6m_addr; 1826 in6_clearscope(&mld->mld_addr); 1827 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 1828 sizeof(struct ip6_hdr), sizeof(struct mld_hdr)); 1829 1830 mld_save_context(mh, ifp); 1831 mh->m_flags |= M_MLDV1; 1832 1833 mld_dispatch_packet(mh); 1834 1835 if (ia != NULL) 1836 ifa_free(&ia->ia_ifa); 1837 return (0); 1838 } 1839 1840 /* 1841 * Process a state change from the upper layer for the given IPv6 group. 1842 * 1843 * Each socket holds a reference on the in_multi in its own ip_moptions. 1844 * The socket layer will have made the necessary updates to.the group 1845 * state, it is now up to MLD to issue a state change report if there 1846 * has been any change between T0 (when the last state-change was issued) 1847 * and T1 (now). 1848 * 1849 * We use the MLDv2 state machine at group level. The MLd module 1850 * however makes the decision as to which MLD protocol version to speak. 1851 * A state change *from* INCLUDE {} always means an initial join. 1852 * A state change *to* INCLUDE {} always means a final leave. 1853 * 1854 * If delay is non-zero, and the state change is an initial multicast 1855 * join, the state change report will be delayed by 'delay' ticks 1856 * in units of PR_FASTHZ if MLDv1 is active on the link; otherwise 1857 * the initial MLDv2 state change report will be delayed by whichever 1858 * is sooner, a pending state-change timer or delay itself. 1859 * 1860 * VIMAGE: curvnet should have been set by caller, as this routine 1861 * is called from the socket option handlers. 1862 */ 1863 int 1864 mld_change_state(struct in6_multi *inm, const int delay) 1865 { 1866 struct mld_ifinfo *mli; 1867 struct ifnet *ifp; 1868 int error; 1869 1870 IN6_MULTI_LOCK_ASSERT(); 1871 1872 error = 0; 1873 1874 /* 1875 * Try to detect if the upper layer just asked us to change state 1876 * for an interface which has now gone away. 1877 */ 1878 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); 1879 ifp = inm->in6m_ifma->ifma_ifp; 1880 if (ifp != NULL) { 1881 /* 1882 * Sanity check that netinet6's notion of ifp is the 1883 * same as net's. 1884 */ 1885 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); 1886 } 1887 1888 MLD_LOCK(); 1889 1890 mli = MLD_IFINFO(ifp); 1891 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 1892 1893 /* 1894 * If we detect a state transition to or from MCAST_UNDEFINED 1895 * for this group, then we are starting or finishing an MLD 1896 * life cycle for this group. 1897 */ 1898 if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) { 1899 CTR3(KTR_MLD, "%s: inm transition %d -> %d", __func__, 1900 inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode); 1901 if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) { 1902 CTR1(KTR_MLD, "%s: initial join", __func__); 1903 error = mld_initial_join(inm, mli, delay); 1904 goto out_locked; 1905 } else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) { 1906 CTR1(KTR_MLD, "%s: final leave", __func__); 1907 mld_final_leave(inm, mli); 1908 goto out_locked; 1909 } 1910 } else { 1911 CTR1(KTR_MLD, "%s: filter set change", __func__); 1912 } 1913 1914 error = mld_handle_state_change(inm, mli); 1915 1916 out_locked: 1917 MLD_UNLOCK(); 1918 return (error); 1919 } 1920 1921 /* 1922 * Perform the initial join for an MLD group. 1923 * 1924 * When joining a group: 1925 * If the group should have its MLD traffic suppressed, do nothing. 1926 * MLDv1 starts sending MLDv1 host membership reports. 1927 * MLDv2 will schedule an MLDv2 state-change report containing the 1928 * initial state of the membership. 1929 * 1930 * If the delay argument is non-zero, then we must delay sending the 1931 * initial state change for delay ticks (in units of PR_FASTHZ). 1932 */ 1933 static int 1934 mld_initial_join(struct in6_multi *inm, struct mld_ifinfo *mli, 1935 const int delay) 1936 { 1937 struct ifnet *ifp; 1938 struct ifqueue *ifq; 1939 int error, retval, syncstates; 1940 int odelay; 1941 #ifdef KTR 1942 char ip6tbuf[INET6_ADDRSTRLEN]; 1943 #endif 1944 1945 CTR4(KTR_MLD, "%s: initial join %s on ifp %p(%s)", 1946 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1947 inm->in6m_ifp, inm->in6m_ifp->if_xname); 1948 1949 error = 0; 1950 syncstates = 1; 1951 1952 ifp = inm->in6m_ifp; 1953 1954 IN6_MULTI_LOCK_ASSERT(); 1955 MLD_LOCK_ASSERT(); 1956 1957 KASSERT(mli && mli->mli_ifp == ifp, ("%s: inconsistent ifp", __func__)); 1958 1959 /* 1960 * Groups joined on loopback or marked as 'not reported', 1961 * enter the MLD_SILENT_MEMBER state and 1962 * are never reported in any protocol exchanges. 1963 * All other groups enter the appropriate state machine 1964 * for the version in use on this link. 1965 * A link marked as MLIF_SILENT causes MLD to be completely 1966 * disabled for the link. 1967 */ 1968 if ((ifp->if_flags & IFF_LOOPBACK) || 1969 (mli->mli_flags & MLIF_SILENT) || 1970 !mld_is_addr_reported(&inm->in6m_addr)) { 1971 CTR1(KTR_MLD, 1972 "%s: not kicking state machine for silent group", __func__); 1973 inm->in6m_state = MLD_SILENT_MEMBER; 1974 inm->in6m_timer = 0; 1975 } else { 1976 /* 1977 * Deal with overlapping in_multi lifecycle. 1978 * If this group was LEAVING, then make sure 1979 * we drop the reference we picked up to keep the 1980 * group around for the final INCLUDE {} enqueue. 1981 */ 1982 if (mli->mli_version == MLD_VERSION_2 && 1983 inm->in6m_state == MLD_LEAVING_MEMBER) 1984 in6m_release_locked(inm); 1985 1986 inm->in6m_state = MLD_REPORTING_MEMBER; 1987 1988 switch (mli->mli_version) { 1989 case MLD_VERSION_1: 1990 /* 1991 * If a delay was provided, only use it if 1992 * it is greater than the delay normally 1993 * used for an MLDv1 state change report, 1994 * and delay sending the initial MLDv1 report 1995 * by not transitioning to the IDLE state. 1996 */ 1997 odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI * PR_FASTHZ); 1998 if (delay) { 1999 inm->in6m_timer = max(delay, odelay); 2000 V_current_state_timers_running6 = 1; 2001 } else { 2002 inm->in6m_state = MLD_IDLE_MEMBER; 2003 error = mld_v1_transmit_report(inm, 2004 MLD_LISTENER_REPORT); 2005 if (error == 0) { 2006 inm->in6m_timer = odelay; 2007 V_current_state_timers_running6 = 1; 2008 } 2009 } 2010 break; 2011 2012 case MLD_VERSION_2: 2013 /* 2014 * Defer update of T0 to T1, until the first copy 2015 * of the state change has been transmitted. 2016 */ 2017 syncstates = 0; 2018 2019 /* 2020 * Immediately enqueue a State-Change Report for 2021 * this interface, freeing any previous reports. 2022 * Don't kick the timers if there is nothing to do, 2023 * or if an error occurred. 2024 */ 2025 ifq = &inm->in6m_scq; 2026 _IF_DRAIN(ifq); 2027 retval = mld_v2_enqueue_group_record(ifq, inm, 1, 2028 0, 0); 2029 CTR2(KTR_MLD, "%s: enqueue record = %d", 2030 __func__, retval); 2031 if (retval <= 0) { 2032 error = retval * -1; 2033 break; 2034 } 2035 2036 /* 2037 * Schedule transmission of pending state-change 2038 * report up to RV times for this link. The timer 2039 * will fire at the next mld_fasttimo (~200ms), 2040 * giving us an opportunity to merge the reports. 2041 * 2042 * If a delay was provided to this function, only 2043 * use this delay if sooner than the existing one. 2044 */ 2045 KASSERT(mli->mli_rv > 1, 2046 ("%s: invalid robustness %d", __func__, 2047 mli->mli_rv)); 2048 inm->in6m_scrv = mli->mli_rv; 2049 if (delay) { 2050 if (inm->in6m_sctimer > 1) { 2051 inm->in6m_sctimer = 2052 min(inm->in6m_sctimer, delay); 2053 } else 2054 inm->in6m_sctimer = delay; 2055 } else 2056 inm->in6m_sctimer = 1; 2057 V_state_change_timers_running6 = 1; 2058 2059 error = 0; 2060 break; 2061 } 2062 } 2063 2064 /* 2065 * Only update the T0 state if state change is atomic, 2066 * i.e. we don't need to wait for a timer to fire before we 2067 * can consider the state change to have been communicated. 2068 */ 2069 if (syncstates) { 2070 in6m_commit(inm); 2071 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2072 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2073 inm->in6m_ifp->if_xname); 2074 } 2075 2076 return (error); 2077 } 2078 2079 /* 2080 * Issue an intermediate state change during the life-cycle. 2081 */ 2082 static int 2083 mld_handle_state_change(struct in6_multi *inm, struct mld_ifinfo *mli) 2084 { 2085 struct ifnet *ifp; 2086 int retval; 2087 #ifdef KTR 2088 char ip6tbuf[INET6_ADDRSTRLEN]; 2089 #endif 2090 2091 CTR4(KTR_MLD, "%s: state change for %s on ifp %p(%s)", 2092 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2093 inm->in6m_ifp, inm->in6m_ifp->if_xname); 2094 2095 ifp = inm->in6m_ifp; 2096 2097 IN6_MULTI_LOCK_ASSERT(); 2098 MLD_LOCK_ASSERT(); 2099 2100 KASSERT(mli && mli->mli_ifp == ifp, 2101 ("%s: inconsistent ifp", __func__)); 2102 2103 if ((ifp->if_flags & IFF_LOOPBACK) || 2104 (mli->mli_flags & MLIF_SILENT) || 2105 !mld_is_addr_reported(&inm->in6m_addr) || 2106 (mli->mli_version != MLD_VERSION_2)) { 2107 if (!mld_is_addr_reported(&inm->in6m_addr)) { 2108 CTR1(KTR_MLD, 2109 "%s: not kicking state machine for silent group", __func__); 2110 } 2111 CTR1(KTR_MLD, "%s: nothing to do", __func__); 2112 in6m_commit(inm); 2113 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2114 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2115 inm->in6m_ifp->if_xname); 2116 return (0); 2117 } 2118 2119 _IF_DRAIN(&inm->in6m_scq); 2120 2121 retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0); 2122 CTR2(KTR_MLD, "%s: enqueue record = %d", __func__, retval); 2123 if (retval <= 0) 2124 return (-retval); 2125 2126 /* 2127 * If record(s) were enqueued, start the state-change 2128 * report timer for this group. 2129 */ 2130 inm->in6m_scrv = mli->mli_rv; 2131 inm->in6m_sctimer = 1; 2132 V_state_change_timers_running6 = 1; 2133 2134 return (0); 2135 } 2136 2137 /* 2138 * Perform the final leave for a multicast address. 2139 * 2140 * When leaving a group: 2141 * MLDv1 sends a DONE message, if and only if we are the reporter. 2142 * MLDv2 enqueues a state-change report containing a transition 2143 * to INCLUDE {} for immediate transmission. 2144 */ 2145 static void 2146 mld_final_leave(struct in6_multi *inm, struct mld_ifinfo *mli) 2147 { 2148 int syncstates; 2149 #ifdef KTR 2150 char ip6tbuf[INET6_ADDRSTRLEN]; 2151 #endif 2152 2153 syncstates = 1; 2154 2155 CTR4(KTR_MLD, "%s: final leave %s on ifp %p(%s)", 2156 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2157 inm->in6m_ifp, inm->in6m_ifp->if_xname); 2158 2159 IN6_MULTI_LOCK_ASSERT(); 2160 MLD_LOCK_ASSERT(); 2161 2162 switch (inm->in6m_state) { 2163 case MLD_NOT_MEMBER: 2164 case MLD_SILENT_MEMBER: 2165 case MLD_LEAVING_MEMBER: 2166 /* Already leaving or left; do nothing. */ 2167 CTR1(KTR_MLD, 2168 "%s: not kicking state machine for silent group", __func__); 2169 break; 2170 case MLD_REPORTING_MEMBER: 2171 case MLD_IDLE_MEMBER: 2172 case MLD_G_QUERY_PENDING_MEMBER: 2173 case MLD_SG_QUERY_PENDING_MEMBER: 2174 if (mli->mli_version == MLD_VERSION_1) { 2175 #ifdef INVARIANTS 2176 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 2177 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) 2178 panic("%s: MLDv2 state reached, not MLDv2 mode", 2179 __func__); 2180 #endif 2181 mld_v1_transmit_report(inm, MLD_LISTENER_DONE); 2182 inm->in6m_state = MLD_NOT_MEMBER; 2183 } else if (mli->mli_version == MLD_VERSION_2) { 2184 /* 2185 * Stop group timer and all pending reports. 2186 * Immediately enqueue a state-change report 2187 * TO_IN {} to be sent on the next fast timeout, 2188 * giving us an opportunity to merge reports. 2189 */ 2190 _IF_DRAIN(&inm->in6m_scq); 2191 inm->in6m_timer = 0; 2192 inm->in6m_scrv = mli->mli_rv; 2193 CTR4(KTR_MLD, "%s: Leaving %s/%s with %d " 2194 "pending retransmissions.", __func__, 2195 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2196 inm->in6m_ifp->if_xname, inm->in6m_scrv); 2197 if (inm->in6m_scrv == 0) { 2198 inm->in6m_state = MLD_NOT_MEMBER; 2199 inm->in6m_sctimer = 0; 2200 } else { 2201 int retval; 2202 2203 in6m_acquire_locked(inm); 2204 2205 retval = mld_v2_enqueue_group_record( 2206 &inm->in6m_scq, inm, 1, 0, 0); 2207 KASSERT(retval != 0, 2208 ("%s: enqueue record = %d", __func__, 2209 retval)); 2210 2211 inm->in6m_state = MLD_LEAVING_MEMBER; 2212 inm->in6m_sctimer = 1; 2213 V_state_change_timers_running6 = 1; 2214 syncstates = 0; 2215 } 2216 break; 2217 } 2218 break; 2219 case MLD_LAZY_MEMBER: 2220 case MLD_SLEEPING_MEMBER: 2221 case MLD_AWAKENING_MEMBER: 2222 /* Our reports are suppressed; do nothing. */ 2223 break; 2224 } 2225 2226 if (syncstates) { 2227 in6m_commit(inm); 2228 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2229 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2230 inm->in6m_ifp->if_xname); 2231 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 2232 CTR3(KTR_MLD, "%s: T1 now MCAST_UNDEFINED for %p/%s", 2233 __func__, &inm->in6m_addr, inm->in6m_ifp->if_xname); 2234 } 2235 } 2236 2237 /* 2238 * Enqueue an MLDv2 group record to the given output queue. 2239 * 2240 * If is_state_change is zero, a current-state record is appended. 2241 * If is_state_change is non-zero, a state-change report is appended. 2242 * 2243 * If is_group_query is non-zero, an mbuf packet chain is allocated. 2244 * If is_group_query is zero, and if there is a packet with free space 2245 * at the tail of the queue, it will be appended to providing there 2246 * is enough free space. 2247 * Otherwise a new mbuf packet chain is allocated. 2248 * 2249 * If is_source_query is non-zero, each source is checked to see if 2250 * it was recorded for a Group-Source query, and will be omitted if 2251 * it is not both in-mode and recorded. 2252 * 2253 * The function will attempt to allocate leading space in the packet 2254 * for the IPv6+ICMP headers to be prepended without fragmenting the chain. 2255 * 2256 * If successful the size of all data appended to the queue is returned, 2257 * otherwise an error code less than zero is returned, or zero if 2258 * no record(s) were appended. 2259 */ 2260 static int 2261 mld_v2_enqueue_group_record(struct ifqueue *ifq, struct in6_multi *inm, 2262 const int is_state_change, const int is_group_query, 2263 const int is_source_query) 2264 { 2265 struct mldv2_record mr; 2266 struct mldv2_record *pmr; 2267 struct ifnet *ifp; 2268 struct ip6_msource *ims, *nims; 2269 struct mbuf *m0, *m, *md; 2270 int error, is_filter_list_change; 2271 int minrec0len, m0srcs, msrcs, nbytes, off; 2272 int record_has_sources; 2273 int now; 2274 int type; 2275 uint8_t mode; 2276 #ifdef KTR 2277 char ip6tbuf[INET6_ADDRSTRLEN]; 2278 #endif 2279 2280 IN6_MULTI_LOCK_ASSERT(); 2281 2282 error = 0; 2283 ifp = inm->in6m_ifp; 2284 is_filter_list_change = 0; 2285 m = NULL; 2286 m0 = NULL; 2287 m0srcs = 0; 2288 msrcs = 0; 2289 nbytes = 0; 2290 nims = NULL; 2291 record_has_sources = 1; 2292 pmr = NULL; 2293 type = MLD_DO_NOTHING; 2294 mode = inm->in6m_st[1].iss_fmode; 2295 2296 /* 2297 * If we did not transition out of ASM mode during t0->t1, 2298 * and there are no source nodes to process, we can skip 2299 * the generation of source records. 2300 */ 2301 if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 && 2302 inm->in6m_nsrc == 0) 2303 record_has_sources = 0; 2304 2305 if (is_state_change) { 2306 /* 2307 * Queue a state change record. 2308 * If the mode did not change, and there are non-ASM 2309 * listeners or source filters present, 2310 * we potentially need to issue two records for the group. 2311 * If we are transitioning to MCAST_UNDEFINED, we need 2312 * not send any sources. 2313 * If there are ASM listeners, and there was no filter 2314 * mode transition of any kind, do nothing. 2315 */ 2316 if (mode != inm->in6m_st[0].iss_fmode) { 2317 if (mode == MCAST_EXCLUDE) { 2318 CTR1(KTR_MLD, "%s: change to EXCLUDE", 2319 __func__); 2320 type = MLD_CHANGE_TO_EXCLUDE_MODE; 2321 } else { 2322 CTR1(KTR_MLD, "%s: change to INCLUDE", 2323 __func__); 2324 type = MLD_CHANGE_TO_INCLUDE_MODE; 2325 if (mode == MCAST_UNDEFINED) 2326 record_has_sources = 0; 2327 } 2328 } else { 2329 if (record_has_sources) { 2330 is_filter_list_change = 1; 2331 } else { 2332 type = MLD_DO_NOTHING; 2333 } 2334 } 2335 } else { 2336 /* 2337 * Queue a current state record. 2338 */ 2339 if (mode == MCAST_EXCLUDE) { 2340 type = MLD_MODE_IS_EXCLUDE; 2341 } else if (mode == MCAST_INCLUDE) { 2342 type = MLD_MODE_IS_INCLUDE; 2343 KASSERT(inm->in6m_st[1].iss_asm == 0, 2344 ("%s: inm %p is INCLUDE but ASM count is %d", 2345 __func__, inm, inm->in6m_st[1].iss_asm)); 2346 } 2347 } 2348 2349 /* 2350 * Generate the filter list changes using a separate function. 2351 */ 2352 if (is_filter_list_change) 2353 return (mld_v2_enqueue_filter_change(ifq, inm)); 2354 2355 if (type == MLD_DO_NOTHING) { 2356 CTR3(KTR_MLD, "%s: nothing to do for %s/%s", 2357 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2358 inm->in6m_ifp->if_xname); 2359 return (0); 2360 } 2361 2362 /* 2363 * If any sources are present, we must be able to fit at least 2364 * one in the trailing space of the tail packet's mbuf, 2365 * ideally more. 2366 */ 2367 minrec0len = sizeof(struct mldv2_record); 2368 if (record_has_sources) 2369 minrec0len += sizeof(struct in6_addr); 2370 2371 CTR4(KTR_MLD, "%s: queueing %s for %s/%s", __func__, 2372 mld_rec_type_to_str(type), 2373 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2374 inm->in6m_ifp->if_xname); 2375 2376 /* 2377 * Check if we have a packet in the tail of the queue for this 2378 * group into which the first group record for this group will fit. 2379 * Otherwise allocate a new packet. 2380 * Always allocate leading space for IP6+RA+ICMPV6+REPORT. 2381 * Note: Group records for G/GSR query responses MUST be sent 2382 * in their own packet. 2383 */ 2384 m0 = ifq->ifq_tail; 2385 if (!is_group_query && 2386 m0 != NULL && 2387 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) && 2388 (m0->m_pkthdr.len + minrec0len) < 2389 (ifp->if_mtu - MLD_MTUSPACE)) { 2390 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2391 sizeof(struct mldv2_record)) / 2392 sizeof(struct in6_addr); 2393 m = m0; 2394 CTR1(KTR_MLD, "%s: use existing packet", __func__); 2395 } else { 2396 if (_IF_QFULL(ifq)) { 2397 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2398 return (-ENOMEM); 2399 } 2400 m = NULL; 2401 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2402 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2403 if (!is_state_change && !is_group_query) 2404 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2405 if (m == NULL) 2406 m = m_gethdr(M_DONTWAIT, MT_DATA); 2407 if (m == NULL) 2408 return (-ENOMEM); 2409 2410 mld_save_context(m, ifp); 2411 2412 CTR1(KTR_MLD, "%s: allocated first packet", __func__); 2413 } 2414 2415 /* 2416 * Append group record. 2417 * If we have sources, we don't know how many yet. 2418 */ 2419 mr.mr_type = type; 2420 mr.mr_datalen = 0; 2421 mr.mr_numsrc = 0; 2422 mr.mr_addr = inm->in6m_addr; 2423 in6_clearscope(&mr.mr_addr); 2424 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2425 if (m != m0) 2426 m_freem(m); 2427 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2428 return (-ENOMEM); 2429 } 2430 nbytes += sizeof(struct mldv2_record); 2431 2432 /* 2433 * Append as many sources as will fit in the first packet. 2434 * If we are appending to a new packet, the chain allocation 2435 * may potentially use clusters; use m_getptr() in this case. 2436 * If we are appending to an existing packet, we need to obtain 2437 * a pointer to the group record after m_append(), in case a new 2438 * mbuf was allocated. 2439 * Only append sources which are in-mode at t1. If we are 2440 * transitioning to MCAST_UNDEFINED state on the group, do not 2441 * include source entries. 2442 * Only report recorded sources in our filter set when responding 2443 * to a group-source query. 2444 */ 2445 if (record_has_sources) { 2446 if (m == m0) { 2447 md = m_last(m); 2448 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2449 md->m_len - nbytes); 2450 } else { 2451 md = m_getptr(m, 0, &off); 2452 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2453 off); 2454 } 2455 msrcs = 0; 2456 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, 2457 nims) { 2458 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2459 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2460 now = im6s_get_mode(inm, ims, 1); 2461 CTR2(KTR_MLD, "%s: node is %d", __func__, now); 2462 if ((now != mode) || 2463 (now == mode && mode == MCAST_UNDEFINED)) { 2464 CTR1(KTR_MLD, "%s: skip node", __func__); 2465 continue; 2466 } 2467 if (is_source_query && ims->im6s_stp == 0) { 2468 CTR1(KTR_MLD, "%s: skip unrecorded node", 2469 __func__); 2470 continue; 2471 } 2472 CTR1(KTR_MLD, "%s: append node", __func__); 2473 if (!m_append(m, sizeof(struct in6_addr), 2474 (void *)&ims->im6s_addr)) { 2475 if (m != m0) 2476 m_freem(m); 2477 CTR1(KTR_MLD, "%s: m_append() failed.", 2478 __func__); 2479 return (-ENOMEM); 2480 } 2481 nbytes += sizeof(struct in6_addr); 2482 ++msrcs; 2483 if (msrcs == m0srcs) 2484 break; 2485 } 2486 CTR2(KTR_MLD, "%s: msrcs is %d this packet", __func__, 2487 msrcs); 2488 pmr->mr_numsrc = htons(msrcs); 2489 nbytes += (msrcs * sizeof(struct in6_addr)); 2490 } 2491 2492 if (is_source_query && msrcs == 0) { 2493 CTR1(KTR_MLD, "%s: no recorded sources to report", __func__); 2494 if (m != m0) 2495 m_freem(m); 2496 return (0); 2497 } 2498 2499 /* 2500 * We are good to go with first packet. 2501 */ 2502 if (m != m0) { 2503 CTR1(KTR_MLD, "%s: enqueueing first packet", __func__); 2504 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2505 _IF_ENQUEUE(ifq, m); 2506 } else 2507 m->m_pkthdr.PH_vt.vt_nrecs++; 2508 2509 /* 2510 * No further work needed if no source list in packet(s). 2511 */ 2512 if (!record_has_sources) 2513 return (nbytes); 2514 2515 /* 2516 * Whilst sources remain to be announced, we need to allocate 2517 * a new packet and fill out as many sources as will fit. 2518 * Always try for a cluster first. 2519 */ 2520 while (nims != NULL) { 2521 if (_IF_QFULL(ifq)) { 2522 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2523 return (-ENOMEM); 2524 } 2525 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2526 if (m == NULL) 2527 m = m_gethdr(M_DONTWAIT, MT_DATA); 2528 if (m == NULL) 2529 return (-ENOMEM); 2530 mld_save_context(m, ifp); 2531 md = m_getptr(m, 0, &off); 2532 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off); 2533 CTR1(KTR_MLD, "%s: allocated next packet", __func__); 2534 2535 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2536 if (m != m0) 2537 m_freem(m); 2538 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2539 return (-ENOMEM); 2540 } 2541 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2542 nbytes += sizeof(struct mldv2_record); 2543 2544 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2545 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2546 2547 msrcs = 0; 2548 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2549 CTR2(KTR_MLD, "%s: visit node %s", 2550 __func__, ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2551 now = im6s_get_mode(inm, ims, 1); 2552 if ((now != mode) || 2553 (now == mode && mode == MCAST_UNDEFINED)) { 2554 CTR1(KTR_MLD, "%s: skip node", __func__); 2555 continue; 2556 } 2557 if (is_source_query && ims->im6s_stp == 0) { 2558 CTR1(KTR_MLD, "%s: skip unrecorded node", 2559 __func__); 2560 continue; 2561 } 2562 CTR1(KTR_MLD, "%s: append node", __func__); 2563 if (!m_append(m, sizeof(struct in6_addr), 2564 (void *)&ims->im6s_addr)) { 2565 if (m != m0) 2566 m_freem(m); 2567 CTR1(KTR_MLD, "%s: m_append() failed.", 2568 __func__); 2569 return (-ENOMEM); 2570 } 2571 ++msrcs; 2572 if (msrcs == m0srcs) 2573 break; 2574 } 2575 pmr->mr_numsrc = htons(msrcs); 2576 nbytes += (msrcs * sizeof(struct in6_addr)); 2577 2578 CTR1(KTR_MLD, "%s: enqueueing next packet", __func__); 2579 _IF_ENQUEUE(ifq, m); 2580 } 2581 2582 return (nbytes); 2583 } 2584 2585 /* 2586 * Type used to mark record pass completion. 2587 * We exploit the fact we can cast to this easily from the 2588 * current filter modes on each ip_msource node. 2589 */ 2590 typedef enum { 2591 REC_NONE = 0x00, /* MCAST_UNDEFINED */ 2592 REC_ALLOW = 0x01, /* MCAST_INCLUDE */ 2593 REC_BLOCK = 0x02, /* MCAST_EXCLUDE */ 2594 REC_FULL = REC_ALLOW | REC_BLOCK 2595 } rectype_t; 2596 2597 /* 2598 * Enqueue an MLDv2 filter list change to the given output queue. 2599 * 2600 * Source list filter state is held in an RB-tree. When the filter list 2601 * for a group is changed without changing its mode, we need to compute 2602 * the deltas between T0 and T1 for each source in the filter set, 2603 * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records. 2604 * 2605 * As we may potentially queue two record types, and the entire R-B tree 2606 * needs to be walked at once, we break this out into its own function 2607 * so we can generate a tightly packed queue of packets. 2608 * 2609 * XXX This could be written to only use one tree walk, although that makes 2610 * serializing into the mbuf chains a bit harder. For now we do two walks 2611 * which makes things easier on us, and it may or may not be harder on 2612 * the L2 cache. 2613 * 2614 * If successful the size of all data appended to the queue is returned, 2615 * otherwise an error code less than zero is returned, or zero if 2616 * no record(s) were appended. 2617 */ 2618 static int 2619 mld_v2_enqueue_filter_change(struct ifqueue *ifq, struct in6_multi *inm) 2620 { 2621 static const int MINRECLEN = 2622 sizeof(struct mldv2_record) + sizeof(struct in6_addr); 2623 struct ifnet *ifp; 2624 struct mldv2_record mr; 2625 struct mldv2_record *pmr; 2626 struct ip6_msource *ims, *nims; 2627 struct mbuf *m, *m0, *md; 2628 int m0srcs, nbytes, npbytes, off, rsrcs, schanged; 2629 int nallow, nblock; 2630 uint8_t mode, now, then; 2631 rectype_t crt, drt, nrt; 2632 #ifdef KTR 2633 char ip6tbuf[INET6_ADDRSTRLEN]; 2634 #endif 2635 2636 IN6_MULTI_LOCK_ASSERT(); 2637 2638 if (inm->in6m_nsrc == 0 || 2639 (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0)) 2640 return (0); 2641 2642 ifp = inm->in6m_ifp; /* interface */ 2643 mode = inm->in6m_st[1].iss_fmode; /* filter mode at t1 */ 2644 crt = REC_NONE; /* current group record type */ 2645 drt = REC_NONE; /* mask of completed group record types */ 2646 nrt = REC_NONE; /* record type for current node */ 2647 m0srcs = 0; /* # source which will fit in current mbuf chain */ 2648 npbytes = 0; /* # of bytes appended this packet */ 2649 nbytes = 0; /* # of bytes appended to group's state-change queue */ 2650 rsrcs = 0; /* # sources encoded in current record */ 2651 schanged = 0; /* # nodes encoded in overall filter change */ 2652 nallow = 0; /* # of source entries in ALLOW_NEW */ 2653 nblock = 0; /* # of source entries in BLOCK_OLD */ 2654 nims = NULL; /* next tree node pointer */ 2655 2656 /* 2657 * For each possible filter record mode. 2658 * The first kind of source we encounter tells us which 2659 * is the first kind of record we start appending. 2660 * If a node transitioned to UNDEFINED at t1, its mode is treated 2661 * as the inverse of the group's filter mode. 2662 */ 2663 while (drt != REC_FULL) { 2664 do { 2665 m0 = ifq->ifq_tail; 2666 if (m0 != NULL && 2667 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= 2668 MLD_V2_REPORT_MAXRECS) && 2669 (m0->m_pkthdr.len + MINRECLEN) < 2670 (ifp->if_mtu - MLD_MTUSPACE)) { 2671 m = m0; 2672 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2673 sizeof(struct mldv2_record)) / 2674 sizeof(struct in6_addr); 2675 CTR1(KTR_MLD, 2676 "%s: use previous packet", __func__); 2677 } else { 2678 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2679 if (m == NULL) 2680 m = m_gethdr(M_DONTWAIT, MT_DATA); 2681 if (m == NULL) { 2682 CTR1(KTR_MLD, 2683 "%s: m_get*() failed", __func__); 2684 return (-ENOMEM); 2685 } 2686 m->m_pkthdr.PH_vt.vt_nrecs = 0; 2687 mld_save_context(m, ifp); 2688 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2689 sizeof(struct mldv2_record)) / 2690 sizeof(struct in6_addr); 2691 npbytes = 0; 2692 CTR1(KTR_MLD, 2693 "%s: allocated new packet", __func__); 2694 } 2695 /* 2696 * Append the MLD group record header to the 2697 * current packet's data area. 2698 * Recalculate pointer to free space for next 2699 * group record, in case m_append() allocated 2700 * a new mbuf or cluster. 2701 */ 2702 memset(&mr, 0, sizeof(mr)); 2703 mr.mr_addr = inm->in6m_addr; 2704 in6_clearscope(&mr.mr_addr); 2705 if (!m_append(m, sizeof(mr), (void *)&mr)) { 2706 if (m != m0) 2707 m_freem(m); 2708 CTR1(KTR_MLD, 2709 "%s: m_append() failed", __func__); 2710 return (-ENOMEM); 2711 } 2712 npbytes += sizeof(struct mldv2_record); 2713 if (m != m0) { 2714 /* new packet; offset in chain */ 2715 md = m_getptr(m, npbytes - 2716 sizeof(struct mldv2_record), &off); 2717 pmr = (struct mldv2_record *)(mtod(md, 2718 uint8_t *) + off); 2719 } else { 2720 /* current packet; offset from last append */ 2721 md = m_last(m); 2722 pmr = (struct mldv2_record *)(mtod(md, 2723 uint8_t *) + md->m_len - 2724 sizeof(struct mldv2_record)); 2725 } 2726 /* 2727 * Begin walking the tree for this record type 2728 * pass, or continue from where we left off 2729 * previously if we had to allocate a new packet. 2730 * Only report deltas in-mode at t1. 2731 * We need not report included sources as allowed 2732 * if we are in inclusive mode on the group, 2733 * however the converse is not true. 2734 */ 2735 rsrcs = 0; 2736 if (nims == NULL) { 2737 nims = RB_MIN(ip6_msource_tree, 2738 &inm->in6m_srcs); 2739 } 2740 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2741 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2742 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2743 now = im6s_get_mode(inm, ims, 1); 2744 then = im6s_get_mode(inm, ims, 0); 2745 CTR3(KTR_MLD, "%s: mode: t0 %d, t1 %d", 2746 __func__, then, now); 2747 if (now == then) { 2748 CTR1(KTR_MLD, 2749 "%s: skip unchanged", __func__); 2750 continue; 2751 } 2752 if (mode == MCAST_EXCLUDE && 2753 now == MCAST_INCLUDE) { 2754 CTR1(KTR_MLD, 2755 "%s: skip IN src on EX group", 2756 __func__); 2757 continue; 2758 } 2759 nrt = (rectype_t)now; 2760 if (nrt == REC_NONE) 2761 nrt = (rectype_t)(~mode & REC_FULL); 2762 if (schanged++ == 0) { 2763 crt = nrt; 2764 } else if (crt != nrt) 2765 continue; 2766 if (!m_append(m, sizeof(struct in6_addr), 2767 (void *)&ims->im6s_addr)) { 2768 if (m != m0) 2769 m_freem(m); 2770 CTR1(KTR_MLD, 2771 "%s: m_append() failed", __func__); 2772 return (-ENOMEM); 2773 } 2774 nallow += !!(crt == REC_ALLOW); 2775 nblock += !!(crt == REC_BLOCK); 2776 if (++rsrcs == m0srcs) 2777 break; 2778 } 2779 /* 2780 * If we did not append any tree nodes on this 2781 * pass, back out of allocations. 2782 */ 2783 if (rsrcs == 0) { 2784 npbytes -= sizeof(struct mldv2_record); 2785 if (m != m0) { 2786 CTR1(KTR_MLD, 2787 "%s: m_free(m)", __func__); 2788 m_freem(m); 2789 } else { 2790 CTR1(KTR_MLD, 2791 "%s: m_adj(m, -mr)", __func__); 2792 m_adj(m, -((int)sizeof( 2793 struct mldv2_record))); 2794 } 2795 continue; 2796 } 2797 npbytes += (rsrcs * sizeof(struct in6_addr)); 2798 if (crt == REC_ALLOW) 2799 pmr->mr_type = MLD_ALLOW_NEW_SOURCES; 2800 else if (crt == REC_BLOCK) 2801 pmr->mr_type = MLD_BLOCK_OLD_SOURCES; 2802 pmr->mr_numsrc = htons(rsrcs); 2803 /* 2804 * Count the new group record, and enqueue this 2805 * packet if it wasn't already queued. 2806 */ 2807 m->m_pkthdr.PH_vt.vt_nrecs++; 2808 if (m != m0) 2809 _IF_ENQUEUE(ifq, m); 2810 nbytes += npbytes; 2811 } while (nims != NULL); 2812 drt |= crt; 2813 crt = (~crt & REC_FULL); 2814 } 2815 2816 CTR3(KTR_MLD, "%s: queued %d ALLOW_NEW, %d BLOCK_OLD", __func__, 2817 nallow, nblock); 2818 2819 return (nbytes); 2820 } 2821 2822 static int 2823 mld_v2_merge_state_changes(struct in6_multi *inm, struct ifqueue *ifscq) 2824 { 2825 struct ifqueue *gq; 2826 struct mbuf *m; /* pending state-change */ 2827 struct mbuf *m0; /* copy of pending state-change */ 2828 struct mbuf *mt; /* last state-change in packet */ 2829 int docopy, domerge; 2830 u_int recslen; 2831 2832 docopy = 0; 2833 domerge = 0; 2834 recslen = 0; 2835 2836 IN6_MULTI_LOCK_ASSERT(); 2837 MLD_LOCK_ASSERT(); 2838 2839 /* 2840 * If there are further pending retransmissions, make a writable 2841 * copy of each queued state-change message before merging. 2842 */ 2843 if (inm->in6m_scrv > 0) 2844 docopy = 1; 2845 2846 gq = &inm->in6m_scq; 2847 #ifdef KTR 2848 if (gq->ifq_head == NULL) { 2849 CTR2(KTR_MLD, "%s: WARNING: queue for inm %p is empty", 2850 __func__, inm); 2851 } 2852 #endif 2853 2854 m = gq->ifq_head; 2855 while (m != NULL) { 2856 /* 2857 * Only merge the report into the current packet if 2858 * there is sufficient space to do so; an MLDv2 report 2859 * packet may only contain 65,535 group records. 2860 * Always use a simple mbuf chain concatentation to do this, 2861 * as large state changes for single groups may have 2862 * allocated clusters. 2863 */ 2864 domerge = 0; 2865 mt = ifscq->ifq_tail; 2866 if (mt != NULL) { 2867 recslen = m_length(m, NULL); 2868 2869 if ((mt->m_pkthdr.PH_vt.vt_nrecs + 2870 m->m_pkthdr.PH_vt.vt_nrecs <= 2871 MLD_V2_REPORT_MAXRECS) && 2872 (mt->m_pkthdr.len + recslen <= 2873 (inm->in6m_ifp->if_mtu - MLD_MTUSPACE))) 2874 domerge = 1; 2875 } 2876 2877 if (!domerge && _IF_QFULL(gq)) { 2878 CTR2(KTR_MLD, 2879 "%s: outbound queue full, skipping whole packet %p", 2880 __func__, m); 2881 mt = m->m_nextpkt; 2882 if (!docopy) 2883 m_freem(m); 2884 m = mt; 2885 continue; 2886 } 2887 2888 if (!docopy) { 2889 CTR2(KTR_MLD, "%s: dequeueing %p", __func__, m); 2890 _IF_DEQUEUE(gq, m0); 2891 m = m0->m_nextpkt; 2892 } else { 2893 CTR2(KTR_MLD, "%s: copying %p", __func__, m); 2894 m0 = m_dup(m, M_NOWAIT); 2895 if (m0 == NULL) 2896 return (ENOMEM); 2897 m0->m_nextpkt = NULL; 2898 m = m->m_nextpkt; 2899 } 2900 2901 if (!domerge) { 2902 CTR3(KTR_MLD, "%s: queueing %p to ifscq %p)", 2903 __func__, m0, ifscq); 2904 _IF_ENQUEUE(ifscq, m0); 2905 } else { 2906 struct mbuf *mtl; /* last mbuf of packet mt */ 2907 2908 CTR3(KTR_MLD, "%s: merging %p with ifscq tail %p)", 2909 __func__, m0, mt); 2910 2911 mtl = m_last(mt); 2912 m0->m_flags &= ~M_PKTHDR; 2913 mt->m_pkthdr.len += recslen; 2914 mt->m_pkthdr.PH_vt.vt_nrecs += 2915 m0->m_pkthdr.PH_vt.vt_nrecs; 2916 2917 mtl->m_next = m0; 2918 } 2919 } 2920 2921 return (0); 2922 } 2923 2924 /* 2925 * Respond to a pending MLDv2 General Query. 2926 */ 2927 static void 2928 mld_v2_dispatch_general_query(struct mld_ifinfo *mli) 2929 { 2930 struct ifmultiaddr *ifma, *tifma; 2931 struct ifnet *ifp; 2932 struct in6_multi *inm; 2933 int retval; 2934 2935 IN6_MULTI_LOCK_ASSERT(); 2936 MLD_LOCK_ASSERT(); 2937 2938 KASSERT(mli->mli_version == MLD_VERSION_2, 2939 ("%s: called when version %d", __func__, mli->mli_version)); 2940 2941 ifp = mli->mli_ifp; 2942 2943 IF_ADDR_LOCK(ifp); 2944 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, tifma) { 2945 if (ifma->ifma_addr->sa_family != AF_INET6 || 2946 ifma->ifma_protospec == NULL) 2947 continue; 2948 2949 inm = (struct in6_multi *)ifma->ifma_protospec; 2950 KASSERT(ifp == inm->in6m_ifp, 2951 ("%s: inconsistent ifp", __func__)); 2952 2953 switch (inm->in6m_state) { 2954 case MLD_NOT_MEMBER: 2955 case MLD_SILENT_MEMBER: 2956 break; 2957 case MLD_REPORTING_MEMBER: 2958 case MLD_IDLE_MEMBER: 2959 case MLD_LAZY_MEMBER: 2960 case MLD_SLEEPING_MEMBER: 2961 case MLD_AWAKENING_MEMBER: 2962 inm->in6m_state = MLD_REPORTING_MEMBER; 2963 retval = mld_v2_enqueue_group_record(&mli->mli_gq, 2964 inm, 0, 0, 0); 2965 CTR2(KTR_MLD, "%s: enqueue record = %d", 2966 __func__, retval); 2967 break; 2968 case MLD_G_QUERY_PENDING_MEMBER: 2969 case MLD_SG_QUERY_PENDING_MEMBER: 2970 case MLD_LEAVING_MEMBER: 2971 break; 2972 } 2973 } 2974 IF_ADDR_UNLOCK(ifp); 2975 2976 mld_dispatch_queue(&mli->mli_gq, MLD_MAX_RESPONSE_BURST); 2977 2978 /* 2979 * Slew transmission of bursts over 500ms intervals. 2980 */ 2981 if (mli->mli_gq.ifq_head != NULL) { 2982 mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY( 2983 MLD_RESPONSE_BURST_INTERVAL); 2984 V_interface_timers_running6 = 1; 2985 } 2986 } 2987 2988 /* 2989 * Transmit the next pending message in the output queue. 2990 * 2991 * VIMAGE: Needs to store/restore vnet pointer on a per-mbuf-chain basis. 2992 * MRT: Nothing needs to be done, as MLD traffic is always local to 2993 * a link and uses a link-scope multicast address. 2994 */ 2995 static void 2996 mld_dispatch_packet(struct mbuf *m) 2997 { 2998 struct ip6_moptions im6o; 2999 struct ifnet *ifp; 3000 struct ifnet *oifp; 3001 struct mbuf *m0; 3002 struct mbuf *md; 3003 struct ip6_hdr *ip6; 3004 struct mld_hdr *mld; 3005 int error; 3006 int off; 3007 int type; 3008 uint32_t ifindex; 3009 3010 CTR2(KTR_MLD, "%s: transmit %p", __func__, m); 3011 3012 /* 3013 * Set VNET image pointer from enqueued mbuf chain 3014 * before doing anything else. Whilst we use interface 3015 * indexes to guard against interface detach, they are 3016 * unique to each VIMAGE and must be retrieved. 3017 */ 3018 ifindex = mld_restore_context(m); 3019 3020 /* 3021 * Check if the ifnet still exists. This limits the scope of 3022 * any race in the absence of a global ifp lock for low cost 3023 * (an array lookup). 3024 */ 3025 ifp = ifnet_byindex(ifindex); 3026 if (ifp == NULL) { 3027 CTR3(KTR_MLD, "%s: dropped %p as ifindex %u went away.", 3028 __func__, m, ifindex); 3029 m_freem(m); 3030 IP6STAT_INC(ip6s_noroute); 3031 goto out; 3032 } 3033 3034 im6o.im6o_multicast_hlim = 1; 3035 im6o.im6o_multicast_loop = (V_ip6_mrouter != NULL); 3036 im6o.im6o_multicast_ifp = ifp; 3037 3038 if (m->m_flags & M_MLDV1) { 3039 m0 = m; 3040 } else { 3041 m0 = mld_v2_encap_report(ifp, m); 3042 if (m0 == NULL) { 3043 CTR2(KTR_MLD, "%s: dropped %p", __func__, m); 3044 m_freem(m); 3045 IP6STAT_INC(ip6s_odropped); 3046 goto out; 3047 } 3048 } 3049 3050 mld_scrub_context(m0); 3051 m->m_flags &= ~(M_PROTOFLAGS); 3052 m0->m_pkthdr.rcvif = V_loif; 3053 3054 ip6 = mtod(m0, struct ip6_hdr *); 3055 #if 0 3056 (void)in6_setscope(&ip6->ip6_dst, ifp, NULL); /* XXX LOR */ 3057 #else 3058 /* 3059 * XXX XXX Break some KPI rules to prevent an LOR which would 3060 * occur if we called in6_setscope() at transmission. 3061 * See comments at top of file. 3062 */ 3063 MLD_EMBEDSCOPE(&ip6->ip6_dst, ifp->if_index); 3064 #endif 3065 3066 /* 3067 * Retrieve the ICMPv6 type before handoff to ip6_output(), 3068 * so we can bump the stats. 3069 */ 3070 md = m_getptr(m0, sizeof(struct ip6_hdr), &off); 3071 mld = (struct mld_hdr *)(mtod(md, uint8_t *) + off); 3072 type = mld->mld_type; 3073 3074 error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, &im6o, 3075 &oifp, NULL); 3076 if (error) { 3077 CTR3(KTR_MLD, "%s: ip6_output(%p) = %d", __func__, m0, error); 3078 goto out; 3079 } 3080 ICMP6STAT_INC(icp6s_outhist[type]); 3081 if (oifp != NULL) { 3082 icmp6_ifstat_inc(oifp, ifs6_out_msg); 3083 switch (type) { 3084 case MLD_LISTENER_REPORT: 3085 case MLDV2_LISTENER_REPORT: 3086 icmp6_ifstat_inc(oifp, ifs6_out_mldreport); 3087 break; 3088 case MLD_LISTENER_DONE: 3089 icmp6_ifstat_inc(oifp, ifs6_out_mlddone); 3090 break; 3091 } 3092 } 3093 out: 3094 return; 3095 } 3096 3097 /* 3098 * Encapsulate an MLDv2 report. 3099 * 3100 * KAME IPv6 requires that hop-by-hop options be passed separately, 3101 * and that the IPv6 header be prepended in a separate mbuf. 3102 * 3103 * Returns a pointer to the new mbuf chain head, or NULL if the 3104 * allocation failed. 3105 */ 3106 static struct mbuf * 3107 mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m) 3108 { 3109 struct mbuf *mh; 3110 struct mldv2_report *mld; 3111 struct ip6_hdr *ip6; 3112 struct in6_ifaddr *ia; 3113 int mldreclen; 3114 3115 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 3116 KASSERT((m->m_flags & M_PKTHDR), 3117 ("%s: mbuf chain %p is !M_PKTHDR", __func__, m)); 3118 3119 /* 3120 * RFC3590: OK to send as :: or tentative during DAD. 3121 */ 3122 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 3123 if (ia == NULL) 3124 CTR1(KTR_MLD, "%s: warning: ia is NULL", __func__); 3125 3126 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3127 if (mh == NULL) { 3128 if (ia != NULL) 3129 ifa_free(&ia->ia_ifa); 3130 m_freem(m); 3131 return (NULL); 3132 } 3133 MH_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report)); 3134 3135 mldreclen = m_length(m, NULL); 3136 CTR2(KTR_MLD, "%s: mldreclen is %d", __func__, mldreclen); 3137 3138 mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report); 3139 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + 3140 sizeof(struct mldv2_report) + mldreclen; 3141 3142 ip6 = mtod(mh, struct ip6_hdr *); 3143 ip6->ip6_flow = 0; 3144 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 3145 ip6->ip6_vfc |= IPV6_VERSION; 3146 ip6->ip6_nxt = IPPROTO_ICMPV6; 3147 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 3148 if (ia != NULL) 3149 ifa_free(&ia->ia_ifa); 3150 ip6->ip6_dst = in6addr_linklocal_allv2routers; 3151 /* scope ID will be set in netisr */ 3152 3153 mld = (struct mldv2_report *)(ip6 + 1); 3154 mld->mld_type = MLDV2_LISTENER_REPORT; 3155 mld->mld_code = 0; 3156 mld->mld_cksum = 0; 3157 mld->mld_v2_reserved = 0; 3158 mld->mld_v2_numrecs = htons(m->m_pkthdr.PH_vt.vt_nrecs); 3159 m->m_pkthdr.PH_vt.vt_nrecs = 0; 3160 3161 mh->m_next = m; 3162 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 3163 sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen); 3164 return (mh); 3165 } 3166 3167 #ifdef KTR 3168 static char * 3169 mld_rec_type_to_str(const int type) 3170 { 3171 3172 switch (type) { 3173 case MLD_CHANGE_TO_EXCLUDE_MODE: 3174 return "TO_EX"; 3175 break; 3176 case MLD_CHANGE_TO_INCLUDE_MODE: 3177 return "TO_IN"; 3178 break; 3179 case MLD_MODE_IS_EXCLUDE: 3180 return "MODE_EX"; 3181 break; 3182 case MLD_MODE_IS_INCLUDE: 3183 return "MODE_IN"; 3184 break; 3185 case MLD_ALLOW_NEW_SOURCES: 3186 return "ALLOW_NEW"; 3187 break; 3188 case MLD_BLOCK_OLD_SOURCES: 3189 return "BLOCK_OLD"; 3190 break; 3191 default: 3192 break; 3193 } 3194 return "unknown"; 3195 } 3196 #endif 3197 3198 static void 3199 mld_init(void *unused __unused) 3200 { 3201 3202 CTR1(KTR_MLD, "%s: initializing", __func__); 3203 MLD_LOCK_INIT(); 3204 3205 ip6_initpktopts(&mld_po); 3206 mld_po.ip6po_hlim = 1; 3207 mld_po.ip6po_hbh = &mld_ra.hbh; 3208 mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER; 3209 mld_po.ip6po_flags = IP6PO_DONTFRAG; 3210 } 3211 SYSINIT(mld_init, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, mld_init, NULL); 3212 3213 static void 3214 mld_uninit(void *unused __unused) 3215 { 3216 3217 CTR1(KTR_MLD, "%s: tearing down", __func__); 3218 MLD_LOCK_DESTROY(); 3219 } 3220 SYSUNINIT(mld_uninit, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, mld_uninit, NULL); 3221 3222 static void 3223 vnet_mld_init(const void *unused __unused) 3224 { 3225 3226 CTR1(KTR_MLD, "%s: initializing", __func__); 3227 3228 LIST_INIT(&V_mli_head); 3229 } 3230 VNET_SYSINIT(vnet_mld_init, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mld_init, 3231 NULL); 3232 3233 static void 3234 vnet_mld_uninit(const void *unused __unused) 3235 { 3236 3237 CTR1(KTR_MLD, "%s: tearing down", __func__); 3238 3239 KASSERT(LIST_EMPTY(&V_mli_head), 3240 ("%s: mli list not empty; ifnets not detached?", __func__)); 3241 } 3242 VNET_SYSUNINIT(vnet_mld_uninit, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mld_uninit, 3243 NULL); 3244 3245 static int 3246 mld_modevent(module_t mod, int type, void *unused __unused) 3247 { 3248 3249 switch (type) { 3250 case MOD_LOAD: 3251 case MOD_UNLOAD: 3252 break; 3253 default: 3254 return (EOPNOTSUPP); 3255 } 3256 return (0); 3257 } 3258 3259 static moduledata_t mld_mod = { 3260 "mld", 3261 mld_modevent, 3262 0 3263 }; 3264 DECLARE_MODULE(mld, mld_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); 3265