1 /*- 2 * Copyright (c) 2009 Bruce Simpson. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 3. The name of the author may not be used to endorse or promote 13 * products derived from this software without specific prior written 14 * permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $KAME: mld6.c,v 1.27 2001/04/04 05:17:30 itojun Exp $ 29 */ 30 31 /*- 32 * Copyright (c) 1988 Stephen Deering. 33 * Copyright (c) 1992, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * This code is derived from software contributed to Berkeley by 37 * Stephen Deering of Stanford University. 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 1. Redistributions of source code must retain the above copyright 43 * notice, this list of conditions and the following disclaimer. 44 * 2. Redistributions in binary form must reproduce the above copyright 45 * notice, this list of conditions and the following disclaimer in the 46 * documentation and/or other materials provided with the distribution. 47 * 4. Neither the name of the University nor the names of its contributors 48 * may be used to endorse or promote products derived from this software 49 * without specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 61 * SUCH DAMAGE. 62 * 63 * @(#)igmp.c 8.1 (Berkeley) 7/19/93 64 */ 65 66 #include <sys/cdefs.h> 67 __FBSDID("$FreeBSD$"); 68 69 #include "opt_inet.h" 70 #include "opt_inet6.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/mbuf.h> 75 #include <sys/socket.h> 76 #include <sys/protosw.h> 77 #include <sys/sysctl.h> 78 #include <sys/kernel.h> 79 #include <sys/callout.h> 80 #include <sys/malloc.h> 81 #include <sys/module.h> 82 #include <sys/ktr.h> 83 84 #include <net/if.h> 85 #include <net/route.h> 86 #include <net/vnet.h> 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet6/in6_var.h> 91 #include <netinet/ip6.h> 92 #include <netinet6/ip6_var.h> 93 #include <netinet6/scope6_var.h> 94 #include <netinet/icmp6.h> 95 #include <netinet6/mld6.h> 96 #include <netinet6/mld6_var.h> 97 98 #include <security/mac/mac_framework.h> 99 100 #ifndef KTR_MLD 101 #define KTR_MLD KTR_INET6 102 #endif 103 104 static struct mld_ifinfo * 105 mli_alloc_locked(struct ifnet *); 106 static void mli_delete_locked(const struct ifnet *); 107 static void mld_dispatch_packet(struct mbuf *); 108 static void mld_dispatch_queue(struct ifqueue *, int); 109 static void mld_final_leave(struct in6_multi *, struct mld_ifinfo *); 110 static void mld_fasttimo_vnet(void); 111 static int mld_handle_state_change(struct in6_multi *, 112 struct mld_ifinfo *); 113 static int mld_initial_join(struct in6_multi *, struct mld_ifinfo *, 114 const int); 115 #ifdef KTR 116 static char * mld_rec_type_to_str(const int); 117 #endif 118 static void mld_set_version(struct mld_ifinfo *, const int); 119 static void mld_slowtimo_vnet(void); 120 static int mld_v1_input_query(struct ifnet *, const struct ip6_hdr *, 121 /*const*/ struct mld_hdr *); 122 static int mld_v1_input_report(struct ifnet *, const struct ip6_hdr *, 123 /*const*/ struct mld_hdr *); 124 static void mld_v1_process_group_timer(struct mld_ifinfo *, 125 struct in6_multi *); 126 static void mld_v1_process_querier_timers(struct mld_ifinfo *); 127 static int mld_v1_transmit_report(struct in6_multi *, const int); 128 static void mld_v1_update_group(struct in6_multi *, const int); 129 static void mld_v2_cancel_link_timers(struct mld_ifinfo *); 130 static void mld_v2_dispatch_general_query(struct mld_ifinfo *); 131 static struct mbuf * 132 mld_v2_encap_report(struct ifnet *, struct mbuf *); 133 static int mld_v2_enqueue_filter_change(struct ifqueue *, 134 struct in6_multi *); 135 static int mld_v2_enqueue_group_record(struct ifqueue *, 136 struct in6_multi *, const int, const int, const int, 137 const int); 138 static int mld_v2_input_query(struct ifnet *, const struct ip6_hdr *, 139 struct mbuf *, const int, const int); 140 static int mld_v2_merge_state_changes(struct in6_multi *, 141 struct ifqueue *); 142 static void mld_v2_process_group_timers(struct mld_ifinfo *, 143 struct ifqueue *, struct ifqueue *, 144 struct in6_multi *, const int); 145 static int mld_v2_process_group_query(struct in6_multi *, 146 struct mld_ifinfo *mli, int, struct mbuf *, const int); 147 static int sysctl_mld_gsr(SYSCTL_HANDLER_ARGS); 148 static int sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS); 149 150 /* 151 * Normative references: RFC 2710, RFC 3590, RFC 3810. 152 * 153 * Locking: 154 * * The MLD subsystem lock ends up being system-wide for the moment, 155 * but could be per-VIMAGE later on. 156 * * The permitted lock order is: IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK. 157 * Any may be taken independently; if any are held at the same 158 * time, the above lock order must be followed. 159 * * IN6_MULTI_LOCK covers in_multi. 160 * * MLD_LOCK covers per-link state and any global variables in this file. 161 * * IF_ADDR_LOCK covers if_multiaddrs, which is used for a variety of 162 * per-link state iterators. 163 * 164 * XXX LOR PREVENTION 165 * A special case for IPv6 is the in6_setscope() routine. ip6_output() 166 * will not accept an ifp; it wants an embedded scope ID, unlike 167 * ip_output(), which happily takes the ifp given to it. The embedded 168 * scope ID is only used by MLD to select the outgoing interface. 169 * 170 * During interface attach and detach, MLD will take MLD_LOCK *after* 171 * the IF_AFDATA_LOCK. 172 * As in6_setscope() takes IF_AFDATA_LOCK then SCOPE_LOCK, we can't call 173 * it with MLD_LOCK held without triggering an LOR. A netisr with indirect 174 * dispatch could work around this, but we'd rather not do that, as it 175 * can introduce other races. 176 * 177 * As such, we exploit the fact that the scope ID is just the interface 178 * index, and embed it in the IPv6 destination address accordingly. 179 * This is potentially NOT VALID for MLDv1 reports, as they 180 * are always sent to the multicast group itself; as MLDv2 181 * reports are always sent to ff02::16, this is not an issue 182 * when MLDv2 is in use. 183 * 184 * This does not however eliminate the LOR when ip6_output() itself 185 * calls in6_setscope() internally whilst MLD_LOCK is held. This will 186 * trigger a LOR warning in WITNESS when the ifnet is detached. 187 * 188 * The right answer is probably to make IF_AFDATA_LOCK an rwlock, given 189 * how it's used across the network stack. Here we're simply exploiting 190 * the fact that MLD runs at a similar layer in the stack to scope6.c. 191 * 192 * VIMAGE: 193 * * Each in6_multi corresponds to an ifp, and each ifp corresponds 194 * to a vnet in ifp->if_vnet. 195 */ 196 static struct mtx mld_mtx; 197 static MALLOC_DEFINE(M_MLD, "mld", "mld state"); 198 199 #define MLD_EMBEDSCOPE(pin6, zoneid) \ 200 if (IN6_IS_SCOPE_LINKLOCAL(pin6) || \ 201 IN6_IS_ADDR_MC_INTFACELOCAL(pin6)) \ 202 (pin6)->s6_addr16[1] = htons((zoneid) & 0xFFFF) \ 203 204 /* 205 * VIMAGE-wide globals. 206 */ 207 static VNET_DEFINE(struct timeval, mld_gsrdelay) = {10, 0}; 208 static VNET_DEFINE(LIST_HEAD(, mld_ifinfo), mli_head); 209 static VNET_DEFINE(int, interface_timers_running6); 210 static VNET_DEFINE(int, state_change_timers_running6); 211 static VNET_DEFINE(int, current_state_timers_running6); 212 213 #define V_mld_gsrdelay VNET(mld_gsrdelay) 214 #define V_mli_head VNET(mli_head) 215 #define V_interface_timers_running6 VNET(interface_timers_running6) 216 #define V_state_change_timers_running6 VNET(state_change_timers_running6) 217 #define V_current_state_timers_running6 VNET(current_state_timers_running6) 218 219 SYSCTL_DECL(_net_inet6); /* Note: Not in any common header. */ 220 221 SYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW, 0, 222 "IPv6 Multicast Listener Discovery"); 223 224 /* 225 * Virtualized sysctls. 226 */ 227 SYSCTL_VNET_PROC(_net_inet6_mld, OID_AUTO, gsrdelay, 228 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 229 &VNET_NAME(mld_gsrdelay.tv_sec), 0, sysctl_mld_gsr, "I", 230 "Rate limit for MLDv2 Group-and-Source queries in seconds"); 231 232 /* 233 * Non-virtualized sysctls. 234 */ 235 static SYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo, 236 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mld_ifinfo, 237 "Per-interface MLDv2 state"); 238 239 static int mld_v1enable = 1; 240 SYSCTL_INT(_net_inet6_mld, OID_AUTO, v1enable, CTLFLAG_RW, 241 &mld_v1enable, 0, "Enable fallback to MLDv1"); 242 TUNABLE_INT("net.inet6.mld.v1enable", &mld_v1enable); 243 244 static int mld_use_allow = 1; 245 SYSCTL_INT(_net_inet6_mld, OID_AUTO, use_allow, CTLFLAG_RW, 246 &mld_use_allow, 0, "Use ALLOW/BLOCK for RFC 4604 SSM joins/leaves"); 247 TUNABLE_INT("net.inet6.mld.use_allow", &mld_use_allow); 248 249 /* 250 * Packed Router Alert option structure declaration. 251 */ 252 struct mld_raopt { 253 struct ip6_hbh hbh; 254 struct ip6_opt pad; 255 struct ip6_opt_router ra; 256 } __packed; 257 258 /* 259 * Router Alert hop-by-hop option header. 260 */ 261 static struct mld_raopt mld_ra = { 262 .hbh = { 0, 0 }, 263 .pad = { .ip6o_type = IP6OPT_PADN, 0 }, 264 .ra = { 265 .ip6or_type = IP6OPT_ROUTER_ALERT, 266 .ip6or_len = IP6OPT_RTALERT_LEN - 2, 267 .ip6or_value[0] = ((IP6OPT_RTALERT_MLD >> 8) & 0xFF), 268 .ip6or_value[1] = (IP6OPT_RTALERT_MLD & 0xFF) 269 } 270 }; 271 static struct ip6_pktopts mld_po; 272 273 static __inline void 274 mld_save_context(struct mbuf *m, struct ifnet *ifp) 275 { 276 277 #ifdef VIMAGE 278 m->m_pkthdr.PH_loc.ptr = ifp->if_vnet; 279 #endif /* VIMAGE */ 280 m->m_pkthdr.flowid = ifp->if_index; 281 } 282 283 static __inline void 284 mld_scrub_context(struct mbuf *m) 285 { 286 287 m->m_pkthdr.PH_loc.ptr = NULL; 288 m->m_pkthdr.flowid = 0; 289 } 290 291 /* 292 * Restore context from a queued output chain. 293 * Return saved ifindex. 294 * 295 * VIMAGE: The assertion is there to make sure that we 296 * actually called CURVNET_SET() with what's in the mbuf chain. 297 */ 298 static __inline uint32_t 299 mld_restore_context(struct mbuf *m) 300 { 301 302 #if defined(VIMAGE) && defined(INVARIANTS) 303 KASSERT(curvnet == m->m_pkthdr.PH_loc.ptr, 304 ("%s: called when curvnet was not restored", __func__)); 305 #endif 306 return (m->m_pkthdr.flowid); 307 } 308 309 /* 310 * Retrieve or set threshold between group-source queries in seconds. 311 * 312 * VIMAGE: Assume curvnet set by caller. 313 * SMPng: NOTE: Serialized by MLD lock. 314 */ 315 static int 316 sysctl_mld_gsr(SYSCTL_HANDLER_ARGS) 317 { 318 int error; 319 int i; 320 321 error = sysctl_wire_old_buffer(req, sizeof(int)); 322 if (error) 323 return (error); 324 325 MLD_LOCK(); 326 327 i = V_mld_gsrdelay.tv_sec; 328 329 error = sysctl_handle_int(oidp, &i, 0, req); 330 if (error || !req->newptr) 331 goto out_locked; 332 333 if (i < -1 || i >= 60) { 334 error = EINVAL; 335 goto out_locked; 336 } 337 338 CTR2(KTR_MLD, "change mld_gsrdelay from %d to %d", 339 V_mld_gsrdelay.tv_sec, i); 340 V_mld_gsrdelay.tv_sec = i; 341 342 out_locked: 343 MLD_UNLOCK(); 344 return (error); 345 } 346 347 /* 348 * Expose struct mld_ifinfo to userland, keyed by ifindex. 349 * For use by ifmcstat(8). 350 * 351 * SMPng: NOTE: Does an unlocked ifindex space read. 352 * VIMAGE: Assume curvnet set by caller. The node handler itself 353 * is not directly virtualized. 354 */ 355 static int 356 sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS) 357 { 358 int *name; 359 int error; 360 u_int namelen; 361 struct ifnet *ifp; 362 struct mld_ifinfo *mli; 363 364 name = (int *)arg1; 365 namelen = arg2; 366 367 if (req->newptr != NULL) 368 return (EPERM); 369 370 if (namelen != 1) 371 return (EINVAL); 372 373 error = sysctl_wire_old_buffer(req, sizeof(struct mld_ifinfo)); 374 if (error) 375 return (error); 376 377 IN6_MULTI_LOCK(); 378 MLD_LOCK(); 379 380 if (name[0] <= 0 || name[0] > V_if_index) { 381 error = ENOENT; 382 goto out_locked; 383 } 384 385 error = ENOENT; 386 387 ifp = ifnet_byindex(name[0]); 388 if (ifp == NULL) 389 goto out_locked; 390 391 LIST_FOREACH(mli, &V_mli_head, mli_link) { 392 if (ifp == mli->mli_ifp) { 393 error = SYSCTL_OUT(req, mli, 394 sizeof(struct mld_ifinfo)); 395 break; 396 } 397 } 398 399 out_locked: 400 MLD_UNLOCK(); 401 IN6_MULTI_UNLOCK(); 402 return (error); 403 } 404 405 /* 406 * Dispatch an entire queue of pending packet chains. 407 * VIMAGE: Assumes the vnet pointer has been set. 408 */ 409 static void 410 mld_dispatch_queue(struct ifqueue *ifq, int limit) 411 { 412 struct mbuf *m; 413 414 for (;;) { 415 _IF_DEQUEUE(ifq, m); 416 if (m == NULL) 417 break; 418 CTR3(KTR_MLD, "%s: dispatch %p from %p", __func__, ifq, m); 419 mld_dispatch_packet(m); 420 if (--limit == 0) 421 break; 422 } 423 } 424 425 /* 426 * Filter outgoing MLD report state by group. 427 * 428 * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1) 429 * and node-local addresses. However, kernel and socket consumers 430 * always embed the KAME scope ID in the address provided, so strip it 431 * when performing comparison. 432 * Note: This is not the same as the *multicast* scope. 433 * 434 * Return zero if the given group is one for which MLD reports 435 * should be suppressed, or non-zero if reports should be issued. 436 */ 437 static __inline int 438 mld_is_addr_reported(const struct in6_addr *addr) 439 { 440 441 KASSERT(IN6_IS_ADDR_MULTICAST(addr), ("%s: not multicast", __func__)); 442 443 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL) 444 return (0); 445 446 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL) { 447 struct in6_addr tmp = *addr; 448 in6_clearscope(&tmp); 449 if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes)) 450 return (0); 451 } 452 453 return (1); 454 } 455 456 /* 457 * Attach MLD when PF_INET6 is attached to an interface. 458 * 459 * SMPng: Normally called with IF_AFDATA_LOCK held. 460 */ 461 struct mld_ifinfo * 462 mld_domifattach(struct ifnet *ifp) 463 { 464 struct mld_ifinfo *mli; 465 466 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 467 __func__, ifp, ifp->if_xname); 468 469 MLD_LOCK(); 470 471 mli = mli_alloc_locked(ifp); 472 if (!(ifp->if_flags & IFF_MULTICAST)) 473 mli->mli_flags |= MLIF_SILENT; 474 if (mld_use_allow) 475 mli->mli_flags |= MLIF_USEALLOW; 476 477 MLD_UNLOCK(); 478 479 return (mli); 480 } 481 482 /* 483 * VIMAGE: assume curvnet set by caller. 484 */ 485 static struct mld_ifinfo * 486 mli_alloc_locked(/*const*/ struct ifnet *ifp) 487 { 488 struct mld_ifinfo *mli; 489 490 MLD_LOCK_ASSERT(); 491 492 mli = malloc(sizeof(struct mld_ifinfo), M_MLD, M_NOWAIT|M_ZERO); 493 if (mli == NULL) 494 goto out; 495 496 mli->mli_ifp = ifp; 497 mli->mli_version = MLD_VERSION_2; 498 mli->mli_flags = 0; 499 mli->mli_rv = MLD_RV_INIT; 500 mli->mli_qi = MLD_QI_INIT; 501 mli->mli_qri = MLD_QRI_INIT; 502 mli->mli_uri = MLD_URI_INIT; 503 504 SLIST_INIT(&mli->mli_relinmhead); 505 506 /* 507 * Responses to general queries are subject to bounds. 508 */ 509 IFQ_SET_MAXLEN(&mli->mli_gq, MLD_MAX_RESPONSE_PACKETS); 510 511 LIST_INSERT_HEAD(&V_mli_head, mli, mli_link); 512 513 CTR2(KTR_MLD, "allocate mld_ifinfo for ifp %p(%s)", 514 ifp, ifp->if_xname); 515 516 out: 517 return (mli); 518 } 519 520 /* 521 * Hook for ifdetach. 522 * 523 * NOTE: Some finalization tasks need to run before the protocol domain 524 * is detached, but also before the link layer does its cleanup. 525 * Run before link-layer cleanup; cleanup groups, but do not free MLD state. 526 * 527 * SMPng: Caller must hold IN6_MULTI_LOCK(). 528 * Must take IF_ADDR_LOCK() to cover if_multiaddrs iterator. 529 * XXX This routine is also bitten by unlocked ifma_protospec access. 530 */ 531 void 532 mld_ifdetach(struct ifnet *ifp) 533 { 534 struct mld_ifinfo *mli; 535 struct ifmultiaddr *ifma; 536 struct in6_multi *inm, *tinm; 537 538 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", __func__, ifp, 539 ifp->if_xname); 540 541 IN6_MULTI_LOCK_ASSERT(); 542 MLD_LOCK(); 543 544 mli = MLD_IFINFO(ifp); 545 if (mli->mli_version == MLD_VERSION_2) { 546 IF_ADDR_RLOCK(ifp); 547 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 548 if (ifma->ifma_addr->sa_family != AF_INET6 || 549 ifma->ifma_protospec == NULL) 550 continue; 551 inm = (struct in6_multi *)ifma->ifma_protospec; 552 if (inm->in6m_state == MLD_LEAVING_MEMBER) { 553 SLIST_INSERT_HEAD(&mli->mli_relinmhead, 554 inm, in6m_nrele); 555 } 556 in6m_clear_recorded(inm); 557 } 558 IF_ADDR_RUNLOCK(ifp); 559 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele, 560 tinm) { 561 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele); 562 in6m_release_locked(inm); 563 } 564 } 565 566 MLD_UNLOCK(); 567 } 568 569 /* 570 * Hook for domifdetach. 571 * Runs after link-layer cleanup; free MLD state. 572 * 573 * SMPng: Normally called with IF_AFDATA_LOCK held. 574 */ 575 void 576 mld_domifdetach(struct ifnet *ifp) 577 { 578 579 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 580 __func__, ifp, ifp->if_xname); 581 582 MLD_LOCK(); 583 mli_delete_locked(ifp); 584 MLD_UNLOCK(); 585 } 586 587 static void 588 mli_delete_locked(const struct ifnet *ifp) 589 { 590 struct mld_ifinfo *mli, *tmli; 591 592 CTR3(KTR_MLD, "%s: freeing mld_ifinfo for ifp %p(%s)", 593 __func__, ifp, ifp->if_xname); 594 595 MLD_LOCK_ASSERT(); 596 597 LIST_FOREACH_SAFE(mli, &V_mli_head, mli_link, tmli) { 598 if (mli->mli_ifp == ifp) { 599 /* 600 * Free deferred General Query responses. 601 */ 602 _IF_DRAIN(&mli->mli_gq); 603 604 LIST_REMOVE(mli, mli_link); 605 606 KASSERT(SLIST_EMPTY(&mli->mli_relinmhead), 607 ("%s: there are dangling in_multi references", 608 __func__)); 609 610 free(mli, M_MLD); 611 return; 612 } 613 } 614 #ifdef INVARIANTS 615 panic("%s: mld_ifinfo not found for ifp %p\n", __func__, ifp); 616 #endif 617 } 618 619 /* 620 * Process a received MLDv1 general or address-specific query. 621 * Assumes that the query header has been pulled up to sizeof(mld_hdr). 622 * 623 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 624 * mld_addr. This is OK as we own the mbuf chain. 625 */ 626 static int 627 mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 628 /*const*/ struct mld_hdr *mld) 629 { 630 struct ifmultiaddr *ifma; 631 struct mld_ifinfo *mli; 632 struct in6_multi *inm; 633 int is_general_query; 634 uint16_t timer; 635 #ifdef KTR 636 char ip6tbuf[INET6_ADDRSTRLEN]; 637 #endif 638 639 is_general_query = 0; 640 641 if (!mld_v1enable) { 642 CTR3(KTR_MLD, "ignore v1 query %s on ifp %p(%s)", 643 ip6_sprintf(ip6tbuf, &mld->mld_addr), 644 ifp, ifp->if_xname); 645 return (0); 646 } 647 648 /* 649 * RFC3810 Section 6.2: MLD queries must originate from 650 * a router's link-local address. 651 */ 652 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 653 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 654 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 655 ifp, ifp->if_xname); 656 return (0); 657 } 658 659 /* 660 * Do address field validation upfront before we accept 661 * the query. 662 */ 663 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 664 /* 665 * MLDv1 General Query. 666 * If this was not sent to the all-nodes group, ignore it. 667 */ 668 struct in6_addr dst; 669 670 dst = ip6->ip6_dst; 671 in6_clearscope(&dst); 672 if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes)) 673 return (EINVAL); 674 is_general_query = 1; 675 } else { 676 /* 677 * Embed scope ID of receiving interface in MLD query for 678 * lookup whilst we don't hold other locks. 679 */ 680 in6_setscope(&mld->mld_addr, ifp, NULL); 681 } 682 683 IN6_MULTI_LOCK(); 684 MLD_LOCK(); 685 686 /* 687 * Switch to MLDv1 host compatibility mode. 688 */ 689 mli = MLD_IFINFO(ifp); 690 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 691 mld_set_version(mli, MLD_VERSION_1); 692 693 timer = (ntohs(mld->mld_maxdelay) * PR_FASTHZ) / MLD_TIMER_SCALE; 694 if (timer == 0) 695 timer = 1; 696 697 IF_ADDR_RLOCK(ifp); 698 if (is_general_query) { 699 /* 700 * For each reporting group joined on this 701 * interface, kick the report timer. 702 */ 703 CTR2(KTR_MLD, "process v1 general query on ifp %p(%s)", 704 ifp, ifp->if_xname); 705 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 706 if (ifma->ifma_addr->sa_family != AF_INET6 || 707 ifma->ifma_protospec == NULL) 708 continue; 709 inm = (struct in6_multi *)ifma->ifma_protospec; 710 mld_v1_update_group(inm, timer); 711 } 712 } else { 713 /* 714 * MLDv1 Group-Specific Query. 715 * If this is a group-specific MLDv1 query, we need only 716 * look up the single group to process it. 717 */ 718 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 719 if (inm != NULL) { 720 CTR3(KTR_MLD, "process v1 query %s on ifp %p(%s)", 721 ip6_sprintf(ip6tbuf, &mld->mld_addr), 722 ifp, ifp->if_xname); 723 mld_v1_update_group(inm, timer); 724 } 725 /* XXX Clear embedded scope ID as userland won't expect it. */ 726 in6_clearscope(&mld->mld_addr); 727 } 728 729 IF_ADDR_RUNLOCK(ifp); 730 MLD_UNLOCK(); 731 IN6_MULTI_UNLOCK(); 732 733 return (0); 734 } 735 736 /* 737 * Update the report timer on a group in response to an MLDv1 query. 738 * 739 * If we are becoming the reporting member for this group, start the timer. 740 * If we already are the reporting member for this group, and timer is 741 * below the threshold, reset it. 742 * 743 * We may be updating the group for the first time since we switched 744 * to MLDv2. If we are, then we must clear any recorded source lists, 745 * and transition to REPORTING state; the group timer is overloaded 746 * for group and group-source query responses. 747 * 748 * Unlike MLDv2, the delay per group should be jittered 749 * to avoid bursts of MLDv1 reports. 750 */ 751 static void 752 mld_v1_update_group(struct in6_multi *inm, const int timer) 753 { 754 #ifdef KTR 755 char ip6tbuf[INET6_ADDRSTRLEN]; 756 #endif 757 758 CTR4(KTR_MLD, "%s: %s/%s timer=%d", __func__, 759 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 760 inm->in6m_ifp->if_xname, timer); 761 762 IN6_MULTI_LOCK_ASSERT(); 763 764 switch (inm->in6m_state) { 765 case MLD_NOT_MEMBER: 766 case MLD_SILENT_MEMBER: 767 break; 768 case MLD_REPORTING_MEMBER: 769 if (inm->in6m_timer != 0 && 770 inm->in6m_timer <= timer) { 771 CTR1(KTR_MLD, "%s: REPORTING and timer running, " 772 "skipping.", __func__); 773 break; 774 } 775 /* FALLTHROUGH */ 776 case MLD_SG_QUERY_PENDING_MEMBER: 777 case MLD_G_QUERY_PENDING_MEMBER: 778 case MLD_IDLE_MEMBER: 779 case MLD_LAZY_MEMBER: 780 case MLD_AWAKENING_MEMBER: 781 CTR1(KTR_MLD, "%s: ->REPORTING", __func__); 782 inm->in6m_state = MLD_REPORTING_MEMBER; 783 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 784 V_current_state_timers_running6 = 1; 785 break; 786 case MLD_SLEEPING_MEMBER: 787 CTR1(KTR_MLD, "%s: ->AWAKENING", __func__); 788 inm->in6m_state = MLD_AWAKENING_MEMBER; 789 break; 790 case MLD_LEAVING_MEMBER: 791 break; 792 } 793 } 794 795 /* 796 * Process a received MLDv2 general, group-specific or 797 * group-and-source-specific query. 798 * 799 * Assumes that the query header has been pulled up to sizeof(mldv2_query). 800 * 801 * Return 0 if successful, otherwise an appropriate error code is returned. 802 */ 803 static int 804 mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 805 struct mbuf *m, const int off, const int icmp6len) 806 { 807 struct mld_ifinfo *mli; 808 struct mldv2_query *mld; 809 struct in6_multi *inm; 810 uint32_t maxdelay, nsrc, qqi; 811 int is_general_query; 812 uint16_t timer; 813 uint8_t qrv; 814 #ifdef KTR 815 char ip6tbuf[INET6_ADDRSTRLEN]; 816 #endif 817 818 is_general_query = 0; 819 820 /* 821 * RFC3810 Section 6.2: MLD queries must originate from 822 * a router's link-local address. 823 */ 824 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 825 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 826 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 827 ifp, ifp->if_xname); 828 return (0); 829 } 830 831 CTR2(KTR_MLD, "input v2 query on ifp %p(%s)", ifp, ifp->if_xname); 832 833 mld = (struct mldv2_query *)(mtod(m, uint8_t *) + off); 834 835 maxdelay = ntohs(mld->mld_maxdelay); /* in 1/10ths of a second */ 836 if (maxdelay >= 32768) { 837 maxdelay = (MLD_MRC_MANT(maxdelay) | 0x1000) << 838 (MLD_MRC_EXP(maxdelay) + 3); 839 } 840 timer = (maxdelay * PR_FASTHZ) / MLD_TIMER_SCALE; 841 if (timer == 0) 842 timer = 1; 843 844 qrv = MLD_QRV(mld->mld_misc); 845 if (qrv < 2) { 846 CTR3(KTR_MLD, "%s: clamping qrv %d to %d", __func__, 847 qrv, MLD_RV_INIT); 848 qrv = MLD_RV_INIT; 849 } 850 851 qqi = mld->mld_qqi; 852 if (qqi >= 128) { 853 qqi = MLD_QQIC_MANT(mld->mld_qqi) << 854 (MLD_QQIC_EXP(mld->mld_qqi) + 3); 855 } 856 857 nsrc = ntohs(mld->mld_numsrc); 858 if (nsrc > MLD_MAX_GS_SOURCES) 859 return (EMSGSIZE); 860 if (icmp6len < sizeof(struct mldv2_query) + 861 (nsrc * sizeof(struct in6_addr))) 862 return (EMSGSIZE); 863 864 /* 865 * Do further input validation upfront to avoid resetting timers 866 * should we need to discard this query. 867 */ 868 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 869 /* 870 * A general query with a source list has undefined 871 * behaviour; discard it. 872 */ 873 if (nsrc > 0) 874 return (EINVAL); 875 is_general_query = 1; 876 } else { 877 /* 878 * Embed scope ID of receiving interface in MLD query for 879 * lookup whilst we don't hold other locks (due to KAME 880 * locking lameness). We own this mbuf chain just now. 881 */ 882 in6_setscope(&mld->mld_addr, ifp, NULL); 883 } 884 885 IN6_MULTI_LOCK(); 886 MLD_LOCK(); 887 888 mli = MLD_IFINFO(ifp); 889 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 890 891 /* 892 * Discard the v2 query if we're in Compatibility Mode. 893 * The RFC is pretty clear that hosts need to stay in MLDv1 mode 894 * until the Old Version Querier Present timer expires. 895 */ 896 if (mli->mli_version != MLD_VERSION_2) 897 goto out_locked; 898 899 mld_set_version(mli, MLD_VERSION_2); 900 mli->mli_rv = qrv; 901 mli->mli_qi = qqi; 902 mli->mli_qri = maxdelay; 903 904 CTR4(KTR_MLD, "%s: qrv %d qi %d maxdelay %d", __func__, qrv, qqi, 905 maxdelay); 906 907 if (is_general_query) { 908 /* 909 * MLDv2 General Query. 910 * 911 * Schedule a current-state report on this ifp for 912 * all groups, possibly containing source lists. 913 * 914 * If there is a pending General Query response 915 * scheduled earlier than the selected delay, do 916 * not schedule any other reports. 917 * Otherwise, reset the interface timer. 918 */ 919 CTR2(KTR_MLD, "process v2 general query on ifp %p(%s)", 920 ifp, ifp->if_xname); 921 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) { 922 mli->mli_v2_timer = MLD_RANDOM_DELAY(timer); 923 V_interface_timers_running6 = 1; 924 } 925 } else { 926 /* 927 * MLDv2 Group-specific or Group-and-source-specific Query. 928 * 929 * Group-source-specific queries are throttled on 930 * a per-group basis to defeat denial-of-service attempts. 931 * Queries for groups we are not a member of on this 932 * link are simply ignored. 933 */ 934 IF_ADDR_RLOCK(ifp); 935 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 936 if (inm == NULL) { 937 IF_ADDR_RUNLOCK(ifp); 938 goto out_locked; 939 } 940 if (nsrc > 0) { 941 if (!ratecheck(&inm->in6m_lastgsrtv, 942 &V_mld_gsrdelay)) { 943 CTR1(KTR_MLD, "%s: GS query throttled.", 944 __func__); 945 IF_ADDR_RUNLOCK(ifp); 946 goto out_locked; 947 } 948 } 949 CTR2(KTR_MLD, "process v2 group query on ifp %p(%s)", 950 ifp, ifp->if_xname); 951 /* 952 * If there is a pending General Query response 953 * scheduled sooner than the selected delay, no 954 * further report need be scheduled. 955 * Otherwise, prepare to respond to the 956 * group-specific or group-and-source query. 957 */ 958 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) 959 mld_v2_process_group_query(inm, mli, timer, m, off); 960 961 /* XXX Clear embedded scope ID as userland won't expect it. */ 962 in6_clearscope(&mld->mld_addr); 963 IF_ADDR_RUNLOCK(ifp); 964 } 965 966 out_locked: 967 MLD_UNLOCK(); 968 IN6_MULTI_UNLOCK(); 969 970 return (0); 971 } 972 973 /* 974 * Process a recieved MLDv2 group-specific or group-and-source-specific 975 * query. 976 * Return <0 if any error occured. Currently this is ignored. 977 */ 978 static int 979 mld_v2_process_group_query(struct in6_multi *inm, struct mld_ifinfo *mli, 980 int timer, struct mbuf *m0, const int off) 981 { 982 struct mldv2_query *mld; 983 int retval; 984 uint16_t nsrc; 985 986 IN6_MULTI_LOCK_ASSERT(); 987 MLD_LOCK_ASSERT(); 988 989 retval = 0; 990 mld = (struct mldv2_query *)(mtod(m0, uint8_t *) + off); 991 992 switch (inm->in6m_state) { 993 case MLD_NOT_MEMBER: 994 case MLD_SILENT_MEMBER: 995 case MLD_SLEEPING_MEMBER: 996 case MLD_LAZY_MEMBER: 997 case MLD_AWAKENING_MEMBER: 998 case MLD_IDLE_MEMBER: 999 case MLD_LEAVING_MEMBER: 1000 return (retval); 1001 break; 1002 case MLD_REPORTING_MEMBER: 1003 case MLD_G_QUERY_PENDING_MEMBER: 1004 case MLD_SG_QUERY_PENDING_MEMBER: 1005 break; 1006 } 1007 1008 nsrc = ntohs(mld->mld_numsrc); 1009 1010 /* 1011 * Deal with group-specific queries upfront. 1012 * If any group query is already pending, purge any recorded 1013 * source-list state if it exists, and schedule a query response 1014 * for this group-specific query. 1015 */ 1016 if (nsrc == 0) { 1017 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 1018 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) { 1019 in6m_clear_recorded(inm); 1020 timer = min(inm->in6m_timer, timer); 1021 } 1022 inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER; 1023 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1024 V_current_state_timers_running6 = 1; 1025 return (retval); 1026 } 1027 1028 /* 1029 * Deal with the case where a group-and-source-specific query has 1030 * been received but a group-specific query is already pending. 1031 */ 1032 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) { 1033 timer = min(inm->in6m_timer, timer); 1034 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1035 V_current_state_timers_running6 = 1; 1036 return (retval); 1037 } 1038 1039 /* 1040 * Finally, deal with the case where a group-and-source-specific 1041 * query has been received, where a response to a previous g-s-r 1042 * query exists, or none exists. 1043 * In this case, we need to parse the source-list which the Querier 1044 * has provided us with and check if we have any source list filter 1045 * entries at T1 for these sources. If we do not, there is no need 1046 * schedule a report and the query may be dropped. 1047 * If we do, we must record them and schedule a current-state 1048 * report for those sources. 1049 */ 1050 if (inm->in6m_nsrc > 0) { 1051 struct mbuf *m; 1052 uint8_t *sp; 1053 int i, nrecorded; 1054 int soff; 1055 1056 m = m0; 1057 soff = off + sizeof(struct mldv2_query); 1058 nrecorded = 0; 1059 for (i = 0; i < nsrc; i++) { 1060 sp = mtod(m, uint8_t *) + soff; 1061 retval = in6m_record_source(inm, 1062 (const struct in6_addr *)sp); 1063 if (retval < 0) 1064 break; 1065 nrecorded += retval; 1066 soff += sizeof(struct in6_addr); 1067 if (soff >= m->m_len) { 1068 soff = soff - m->m_len; 1069 m = m->m_next; 1070 if (m == NULL) 1071 break; 1072 } 1073 } 1074 if (nrecorded > 0) { 1075 CTR1(KTR_MLD, 1076 "%s: schedule response to SG query", __func__); 1077 inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER; 1078 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1079 V_current_state_timers_running6 = 1; 1080 } 1081 } 1082 1083 return (retval); 1084 } 1085 1086 /* 1087 * Process a received MLDv1 host membership report. 1088 * Assumes mld points to mld_hdr in pulled up mbuf chain. 1089 * 1090 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 1091 * mld_addr. This is OK as we own the mbuf chain. 1092 */ 1093 static int 1094 mld_v1_input_report(struct ifnet *ifp, const struct ip6_hdr *ip6, 1095 /*const*/ struct mld_hdr *mld) 1096 { 1097 struct in6_addr src, dst; 1098 struct in6_ifaddr *ia; 1099 struct in6_multi *inm; 1100 #ifdef KTR 1101 char ip6tbuf[INET6_ADDRSTRLEN]; 1102 #endif 1103 1104 if (!mld_v1enable) { 1105 CTR3(KTR_MLD, "ignore v1 report %s on ifp %p(%s)", 1106 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1107 ifp, ifp->if_xname); 1108 return (0); 1109 } 1110 1111 if (ifp->if_flags & IFF_LOOPBACK) 1112 return (0); 1113 1114 /* 1115 * MLDv1 reports must originate from a host's link-local address, 1116 * or the unspecified address (when booting). 1117 */ 1118 src = ip6->ip6_src; 1119 in6_clearscope(&src); 1120 if (!IN6_IS_SCOPE_LINKLOCAL(&src) && !IN6_IS_ADDR_UNSPECIFIED(&src)) { 1121 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 1122 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 1123 ifp, ifp->if_xname); 1124 return (EINVAL); 1125 } 1126 1127 /* 1128 * RFC2710 Section 4: MLDv1 reports must pertain to a multicast 1129 * group, and must be directed to the group itself. 1130 */ 1131 dst = ip6->ip6_dst; 1132 in6_clearscope(&dst); 1133 if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) || 1134 !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &dst)) { 1135 CTR3(KTR_MLD, "ignore v1 query dst %s on ifp %p(%s)", 1136 ip6_sprintf(ip6tbuf, &ip6->ip6_dst), 1137 ifp, ifp->if_xname); 1138 return (EINVAL); 1139 } 1140 1141 /* 1142 * Make sure we don't hear our own membership report, as fast 1143 * leave requires knowing that we are the only member of a 1144 * group. Assume we used the link-local address if available, 1145 * otherwise look for ::. 1146 * 1147 * XXX Note that scope ID comparison is needed for the address 1148 * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be 1149 * performed for the on-wire address. 1150 */ 1151 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1152 if ((ia && IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia))) || 1153 (ia == NULL && IN6_IS_ADDR_UNSPECIFIED(&src))) { 1154 if (ia != NULL) 1155 ifa_free(&ia->ia_ifa); 1156 return (0); 1157 } 1158 if (ia != NULL) 1159 ifa_free(&ia->ia_ifa); 1160 1161 CTR3(KTR_MLD, "process v1 report %s on ifp %p(%s)", 1162 ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, ifp->if_xname); 1163 1164 /* 1165 * Embed scope ID of receiving interface in MLD query for lookup 1166 * whilst we don't hold other locks (due to KAME locking lameness). 1167 */ 1168 if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) 1169 in6_setscope(&mld->mld_addr, ifp, NULL); 1170 1171 IN6_MULTI_LOCK(); 1172 MLD_LOCK(); 1173 IF_ADDR_RLOCK(ifp); 1174 1175 /* 1176 * MLDv1 report suppression. 1177 * If we are a member of this group, and our membership should be 1178 * reported, and our group timer is pending or about to be reset, 1179 * stop our group timer by transitioning to the 'lazy' state. 1180 */ 1181 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 1182 if (inm != NULL) { 1183 struct mld_ifinfo *mli; 1184 1185 mli = inm->in6m_mli; 1186 KASSERT(mli != NULL, 1187 ("%s: no mli for ifp %p", __func__, ifp)); 1188 1189 /* 1190 * If we are in MLDv2 host mode, do not allow the 1191 * other host's MLDv1 report to suppress our reports. 1192 */ 1193 if (mli->mli_version == MLD_VERSION_2) 1194 goto out_locked; 1195 1196 inm->in6m_timer = 0; 1197 1198 switch (inm->in6m_state) { 1199 case MLD_NOT_MEMBER: 1200 case MLD_SILENT_MEMBER: 1201 case MLD_SLEEPING_MEMBER: 1202 break; 1203 case MLD_REPORTING_MEMBER: 1204 case MLD_IDLE_MEMBER: 1205 case MLD_AWAKENING_MEMBER: 1206 CTR3(KTR_MLD, 1207 "report suppressed for %s on ifp %p(%s)", 1208 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1209 ifp, ifp->if_xname); 1210 case MLD_LAZY_MEMBER: 1211 inm->in6m_state = MLD_LAZY_MEMBER; 1212 break; 1213 case MLD_G_QUERY_PENDING_MEMBER: 1214 case MLD_SG_QUERY_PENDING_MEMBER: 1215 case MLD_LEAVING_MEMBER: 1216 break; 1217 } 1218 } 1219 1220 out_locked: 1221 IF_ADDR_RUNLOCK(ifp); 1222 MLD_UNLOCK(); 1223 IN6_MULTI_UNLOCK(); 1224 1225 /* XXX Clear embedded scope ID as userland won't expect it. */ 1226 in6_clearscope(&mld->mld_addr); 1227 1228 return (0); 1229 } 1230 1231 /* 1232 * MLD input path. 1233 * 1234 * Assume query messages which fit in a single ICMPv6 message header 1235 * have been pulled up. 1236 * Assume that userland will want to see the message, even if it 1237 * otherwise fails kernel input validation; do not free it. 1238 * Pullup may however free the mbuf chain m if it fails. 1239 * 1240 * Return IPPROTO_DONE if we freed m. Otherwise, return 0. 1241 */ 1242 int 1243 mld_input(struct mbuf *m, int off, int icmp6len) 1244 { 1245 struct ifnet *ifp; 1246 struct ip6_hdr *ip6; 1247 struct mld_hdr *mld; 1248 int mldlen; 1249 1250 CTR3(KTR_MLD, "%s: called w/mbuf (%p,%d)", __func__, m, off); 1251 1252 ifp = m->m_pkthdr.rcvif; 1253 1254 ip6 = mtod(m, struct ip6_hdr *); 1255 1256 /* Pullup to appropriate size. */ 1257 mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off); 1258 if (mld->mld_type == MLD_LISTENER_QUERY && 1259 icmp6len >= sizeof(struct mldv2_query)) { 1260 mldlen = sizeof(struct mldv2_query); 1261 } else { 1262 mldlen = sizeof(struct mld_hdr); 1263 } 1264 IP6_EXTHDR_GET(mld, struct mld_hdr *, m, off, mldlen); 1265 if (mld == NULL) { 1266 ICMP6STAT_INC(icp6s_badlen); 1267 return (IPPROTO_DONE); 1268 } 1269 1270 /* 1271 * Userland needs to see all of this traffic for implementing 1272 * the endpoint discovery portion of multicast routing. 1273 */ 1274 switch (mld->mld_type) { 1275 case MLD_LISTENER_QUERY: 1276 icmp6_ifstat_inc(ifp, ifs6_in_mldquery); 1277 if (icmp6len == sizeof(struct mld_hdr)) { 1278 if (mld_v1_input_query(ifp, ip6, mld) != 0) 1279 return (0); 1280 } else if (icmp6len >= sizeof(struct mldv2_query)) { 1281 if (mld_v2_input_query(ifp, ip6, m, off, 1282 icmp6len) != 0) 1283 return (0); 1284 } 1285 break; 1286 case MLD_LISTENER_REPORT: 1287 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1288 if (mld_v1_input_report(ifp, ip6, mld) != 0) 1289 return (0); 1290 break; 1291 case MLDV2_LISTENER_REPORT: 1292 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1293 break; 1294 case MLD_LISTENER_DONE: 1295 icmp6_ifstat_inc(ifp, ifs6_in_mlddone); 1296 break; 1297 default: 1298 break; 1299 } 1300 1301 return (0); 1302 } 1303 1304 /* 1305 * Fast timeout handler (global). 1306 * VIMAGE: Timeout handlers are expected to service all vimages. 1307 */ 1308 void 1309 mld_fasttimo(void) 1310 { 1311 VNET_ITERATOR_DECL(vnet_iter); 1312 1313 VNET_LIST_RLOCK_NOSLEEP(); 1314 VNET_FOREACH(vnet_iter) { 1315 CURVNET_SET(vnet_iter); 1316 mld_fasttimo_vnet(); 1317 CURVNET_RESTORE(); 1318 } 1319 VNET_LIST_RUNLOCK_NOSLEEP(); 1320 } 1321 1322 /* 1323 * Fast timeout handler (per-vnet). 1324 * 1325 * VIMAGE: Assume caller has set up our curvnet. 1326 */ 1327 static void 1328 mld_fasttimo_vnet(void) 1329 { 1330 struct ifqueue scq; /* State-change packets */ 1331 struct ifqueue qrq; /* Query response packets */ 1332 struct ifnet *ifp; 1333 struct mld_ifinfo *mli; 1334 struct ifmultiaddr *ifma; 1335 struct in6_multi *inm, *tinm; 1336 int uri_fasthz; 1337 1338 uri_fasthz = 0; 1339 1340 /* 1341 * Quick check to see if any work needs to be done, in order to 1342 * minimize the overhead of fasttimo processing. 1343 * SMPng: XXX Unlocked reads. 1344 */ 1345 if (!V_current_state_timers_running6 && 1346 !V_interface_timers_running6 && 1347 !V_state_change_timers_running6) 1348 return; 1349 1350 IN6_MULTI_LOCK(); 1351 MLD_LOCK(); 1352 1353 /* 1354 * MLDv2 General Query response timer processing. 1355 */ 1356 if (V_interface_timers_running6) { 1357 CTR1(KTR_MLD, "%s: interface timers running", __func__); 1358 1359 V_interface_timers_running6 = 0; 1360 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1361 if (mli->mli_v2_timer == 0) { 1362 /* Do nothing. */ 1363 } else if (--mli->mli_v2_timer == 0) { 1364 mld_v2_dispatch_general_query(mli); 1365 } else { 1366 V_interface_timers_running6 = 1; 1367 } 1368 } 1369 } 1370 1371 if (!V_current_state_timers_running6 && 1372 !V_state_change_timers_running6) 1373 goto out_locked; 1374 1375 V_current_state_timers_running6 = 0; 1376 V_state_change_timers_running6 = 0; 1377 1378 CTR1(KTR_MLD, "%s: state change timers running", __func__); 1379 1380 /* 1381 * MLD host report and state-change timer processing. 1382 * Note: Processing a v2 group timer may remove a node. 1383 */ 1384 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1385 ifp = mli->mli_ifp; 1386 1387 if (mli->mli_version == MLD_VERSION_2) { 1388 uri_fasthz = MLD_RANDOM_DELAY(mli->mli_uri * 1389 PR_FASTHZ); 1390 1391 memset(&qrq, 0, sizeof(struct ifqueue)); 1392 IFQ_SET_MAXLEN(&qrq, MLD_MAX_G_GS_PACKETS); 1393 1394 memset(&scq, 0, sizeof(struct ifqueue)); 1395 IFQ_SET_MAXLEN(&scq, MLD_MAX_STATE_CHANGE_PACKETS); 1396 } 1397 1398 IF_ADDR_RLOCK(ifp); 1399 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1400 if (ifma->ifma_addr->sa_family != AF_INET6 || 1401 ifma->ifma_protospec == NULL) 1402 continue; 1403 inm = (struct in6_multi *)ifma->ifma_protospec; 1404 switch (mli->mli_version) { 1405 case MLD_VERSION_1: 1406 mld_v1_process_group_timer(mli, inm); 1407 break; 1408 case MLD_VERSION_2: 1409 mld_v2_process_group_timers(mli, &qrq, 1410 &scq, inm, uri_fasthz); 1411 break; 1412 } 1413 } 1414 IF_ADDR_RUNLOCK(ifp); 1415 1416 switch (mli->mli_version) { 1417 case MLD_VERSION_1: 1418 /* 1419 * Transmit reports for this lifecycle. This 1420 * is done while not holding IF_ADDR_LOCK 1421 * since this can call 1422 * in6ifa_ifpforlinklocal() which locks 1423 * IF_ADDR_LOCK internally as well as 1424 * ip6_output() to transmit a packet. 1425 */ 1426 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, 1427 in6m_nrele, tinm) { 1428 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, 1429 in6m_nrele); 1430 (void)mld_v1_transmit_report(inm, 1431 MLD_LISTENER_REPORT); 1432 } 1433 break; 1434 case MLD_VERSION_2: 1435 mld_dispatch_queue(&qrq, 0); 1436 mld_dispatch_queue(&scq, 0); 1437 1438 /* 1439 * Free the in_multi reference(s) for 1440 * this lifecycle. 1441 */ 1442 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, 1443 in6m_nrele, tinm) { 1444 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, 1445 in6m_nrele); 1446 in6m_release_locked(inm); 1447 } 1448 break; 1449 } 1450 } 1451 1452 out_locked: 1453 MLD_UNLOCK(); 1454 IN6_MULTI_UNLOCK(); 1455 } 1456 1457 /* 1458 * Update host report group timer. 1459 * Will update the global pending timer flags. 1460 */ 1461 static void 1462 mld_v1_process_group_timer(struct mld_ifinfo *mli, struct in6_multi *inm) 1463 { 1464 int report_timer_expired; 1465 1466 IN6_MULTI_LOCK_ASSERT(); 1467 MLD_LOCK_ASSERT(); 1468 1469 if (inm->in6m_timer == 0) { 1470 report_timer_expired = 0; 1471 } else if (--inm->in6m_timer == 0) { 1472 report_timer_expired = 1; 1473 } else { 1474 V_current_state_timers_running6 = 1; 1475 return; 1476 } 1477 1478 switch (inm->in6m_state) { 1479 case MLD_NOT_MEMBER: 1480 case MLD_SILENT_MEMBER: 1481 case MLD_IDLE_MEMBER: 1482 case MLD_LAZY_MEMBER: 1483 case MLD_SLEEPING_MEMBER: 1484 case MLD_AWAKENING_MEMBER: 1485 break; 1486 case MLD_REPORTING_MEMBER: 1487 if (report_timer_expired) { 1488 inm->in6m_state = MLD_IDLE_MEMBER; 1489 SLIST_INSERT_HEAD(&mli->mli_relinmhead, inm, 1490 in6m_nrele); 1491 } 1492 break; 1493 case MLD_G_QUERY_PENDING_MEMBER: 1494 case MLD_SG_QUERY_PENDING_MEMBER: 1495 case MLD_LEAVING_MEMBER: 1496 break; 1497 } 1498 } 1499 1500 /* 1501 * Update a group's timers for MLDv2. 1502 * Will update the global pending timer flags. 1503 * Note: Unlocked read from mli. 1504 */ 1505 static void 1506 mld_v2_process_group_timers(struct mld_ifinfo *mli, 1507 struct ifqueue *qrq, struct ifqueue *scq, 1508 struct in6_multi *inm, const int uri_fasthz) 1509 { 1510 int query_response_timer_expired; 1511 int state_change_retransmit_timer_expired; 1512 #ifdef KTR 1513 char ip6tbuf[INET6_ADDRSTRLEN]; 1514 #endif 1515 1516 IN6_MULTI_LOCK_ASSERT(); 1517 MLD_LOCK_ASSERT(); 1518 1519 query_response_timer_expired = 0; 1520 state_change_retransmit_timer_expired = 0; 1521 1522 /* 1523 * During a transition from compatibility mode back to MLDv2, 1524 * a group record in REPORTING state may still have its group 1525 * timer active. This is a no-op in this function; it is easier 1526 * to deal with it here than to complicate the slow-timeout path. 1527 */ 1528 if (inm->in6m_timer == 0) { 1529 query_response_timer_expired = 0; 1530 } else if (--inm->in6m_timer == 0) { 1531 query_response_timer_expired = 1; 1532 } else { 1533 V_current_state_timers_running6 = 1; 1534 } 1535 1536 if (inm->in6m_sctimer == 0) { 1537 state_change_retransmit_timer_expired = 0; 1538 } else if (--inm->in6m_sctimer == 0) { 1539 state_change_retransmit_timer_expired = 1; 1540 } else { 1541 V_state_change_timers_running6 = 1; 1542 } 1543 1544 /* We are in fasttimo, so be quick about it. */ 1545 if (!state_change_retransmit_timer_expired && 1546 !query_response_timer_expired) 1547 return; 1548 1549 switch (inm->in6m_state) { 1550 case MLD_NOT_MEMBER: 1551 case MLD_SILENT_MEMBER: 1552 case MLD_SLEEPING_MEMBER: 1553 case MLD_LAZY_MEMBER: 1554 case MLD_AWAKENING_MEMBER: 1555 case MLD_IDLE_MEMBER: 1556 break; 1557 case MLD_G_QUERY_PENDING_MEMBER: 1558 case MLD_SG_QUERY_PENDING_MEMBER: 1559 /* 1560 * Respond to a previously pending Group-Specific 1561 * or Group-and-Source-Specific query by enqueueing 1562 * the appropriate Current-State report for 1563 * immediate transmission. 1564 */ 1565 if (query_response_timer_expired) { 1566 int retval; 1567 1568 retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1, 1569 (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER), 1570 0); 1571 CTR2(KTR_MLD, "%s: enqueue record = %d", 1572 __func__, retval); 1573 inm->in6m_state = MLD_REPORTING_MEMBER; 1574 in6m_clear_recorded(inm); 1575 } 1576 /* FALLTHROUGH */ 1577 case MLD_REPORTING_MEMBER: 1578 case MLD_LEAVING_MEMBER: 1579 if (state_change_retransmit_timer_expired) { 1580 /* 1581 * State-change retransmission timer fired. 1582 * If there are any further pending retransmissions, 1583 * set the global pending state-change flag, and 1584 * reset the timer. 1585 */ 1586 if (--inm->in6m_scrv > 0) { 1587 inm->in6m_sctimer = uri_fasthz; 1588 V_state_change_timers_running6 = 1; 1589 } 1590 /* 1591 * Retransmit the previously computed state-change 1592 * report. If there are no further pending 1593 * retransmissions, the mbuf queue will be consumed. 1594 * Update T0 state to T1 as we have now sent 1595 * a state-change. 1596 */ 1597 (void)mld_v2_merge_state_changes(inm, scq); 1598 1599 in6m_commit(inm); 1600 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 1601 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1602 inm->in6m_ifp->if_xname); 1603 1604 /* 1605 * If we are leaving the group for good, make sure 1606 * we release MLD's reference to it. 1607 * This release must be deferred using a SLIST, 1608 * as we are called from a loop which traverses 1609 * the in_ifmultiaddr TAILQ. 1610 */ 1611 if (inm->in6m_state == MLD_LEAVING_MEMBER && 1612 inm->in6m_scrv == 0) { 1613 inm->in6m_state = MLD_NOT_MEMBER; 1614 SLIST_INSERT_HEAD(&mli->mli_relinmhead, 1615 inm, in6m_nrele); 1616 } 1617 } 1618 break; 1619 } 1620 } 1621 1622 /* 1623 * Switch to a different version on the given interface, 1624 * as per Section 9.12. 1625 */ 1626 static void 1627 mld_set_version(struct mld_ifinfo *mli, const int version) 1628 { 1629 int old_version_timer; 1630 1631 MLD_LOCK_ASSERT(); 1632 1633 CTR4(KTR_MLD, "%s: switching to v%d on ifp %p(%s)", __func__, 1634 version, mli->mli_ifp, mli->mli_ifp->if_xname); 1635 1636 if (version == MLD_VERSION_1) { 1637 /* 1638 * Compute the "Older Version Querier Present" timer as per 1639 * Section 9.12. 1640 */ 1641 old_version_timer = (mli->mli_rv * mli->mli_qi) + mli->mli_qri; 1642 old_version_timer *= PR_SLOWHZ; 1643 mli->mli_v1_timer = old_version_timer; 1644 } 1645 1646 if (mli->mli_v1_timer > 0 && mli->mli_version != MLD_VERSION_1) { 1647 mli->mli_version = MLD_VERSION_1; 1648 mld_v2_cancel_link_timers(mli); 1649 } 1650 } 1651 1652 /* 1653 * Cancel pending MLDv2 timers for the given link and all groups 1654 * joined on it; state-change, general-query, and group-query timers. 1655 */ 1656 static void 1657 mld_v2_cancel_link_timers(struct mld_ifinfo *mli) 1658 { 1659 struct ifmultiaddr *ifma; 1660 struct ifnet *ifp; 1661 struct in6_multi *inm, *tinm; 1662 1663 CTR3(KTR_MLD, "%s: cancel v2 timers on ifp %p(%s)", __func__, 1664 mli->mli_ifp, mli->mli_ifp->if_xname); 1665 1666 IN6_MULTI_LOCK_ASSERT(); 1667 MLD_LOCK_ASSERT(); 1668 1669 /* 1670 * Fast-track this potentially expensive operation 1671 * by checking all the global 'timer pending' flags. 1672 */ 1673 if (!V_interface_timers_running6 && 1674 !V_state_change_timers_running6 && 1675 !V_current_state_timers_running6) 1676 return; 1677 1678 mli->mli_v2_timer = 0; 1679 1680 ifp = mli->mli_ifp; 1681 1682 IF_ADDR_RLOCK(ifp); 1683 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1684 if (ifma->ifma_addr->sa_family != AF_INET6) 1685 continue; 1686 inm = (struct in6_multi *)ifma->ifma_protospec; 1687 switch (inm->in6m_state) { 1688 case MLD_NOT_MEMBER: 1689 case MLD_SILENT_MEMBER: 1690 case MLD_IDLE_MEMBER: 1691 case MLD_LAZY_MEMBER: 1692 case MLD_SLEEPING_MEMBER: 1693 case MLD_AWAKENING_MEMBER: 1694 break; 1695 case MLD_LEAVING_MEMBER: 1696 /* 1697 * If we are leaving the group and switching 1698 * version, we need to release the final 1699 * reference held for issuing the INCLUDE {}. 1700 */ 1701 SLIST_INSERT_HEAD(&mli->mli_relinmhead, inm, 1702 in6m_nrele); 1703 /* FALLTHROUGH */ 1704 case MLD_G_QUERY_PENDING_MEMBER: 1705 case MLD_SG_QUERY_PENDING_MEMBER: 1706 in6m_clear_recorded(inm); 1707 /* FALLTHROUGH */ 1708 case MLD_REPORTING_MEMBER: 1709 inm->in6m_sctimer = 0; 1710 inm->in6m_timer = 0; 1711 inm->in6m_state = MLD_REPORTING_MEMBER; 1712 /* 1713 * Free any pending MLDv2 state-change records. 1714 */ 1715 _IF_DRAIN(&inm->in6m_scq); 1716 break; 1717 } 1718 } 1719 IF_ADDR_RUNLOCK(ifp); 1720 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele, tinm) { 1721 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele); 1722 in6m_release_locked(inm); 1723 } 1724 } 1725 1726 /* 1727 * Global slowtimo handler. 1728 * VIMAGE: Timeout handlers are expected to service all vimages. 1729 */ 1730 void 1731 mld_slowtimo(void) 1732 { 1733 VNET_ITERATOR_DECL(vnet_iter); 1734 1735 VNET_LIST_RLOCK_NOSLEEP(); 1736 VNET_FOREACH(vnet_iter) { 1737 CURVNET_SET(vnet_iter); 1738 mld_slowtimo_vnet(); 1739 CURVNET_RESTORE(); 1740 } 1741 VNET_LIST_RUNLOCK_NOSLEEP(); 1742 } 1743 1744 /* 1745 * Per-vnet slowtimo handler. 1746 */ 1747 static void 1748 mld_slowtimo_vnet(void) 1749 { 1750 struct mld_ifinfo *mli; 1751 1752 MLD_LOCK(); 1753 1754 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1755 mld_v1_process_querier_timers(mli); 1756 } 1757 1758 MLD_UNLOCK(); 1759 } 1760 1761 /* 1762 * Update the Older Version Querier Present timers for a link. 1763 * See Section 9.12 of RFC 3810. 1764 */ 1765 static void 1766 mld_v1_process_querier_timers(struct mld_ifinfo *mli) 1767 { 1768 1769 MLD_LOCK_ASSERT(); 1770 1771 if (mli->mli_version != MLD_VERSION_2 && --mli->mli_v1_timer == 0) { 1772 /* 1773 * MLDv1 Querier Present timer expired; revert to MLDv2. 1774 */ 1775 CTR5(KTR_MLD, 1776 "%s: transition from v%d -> v%d on %p(%s)", 1777 __func__, mli->mli_version, MLD_VERSION_2, 1778 mli->mli_ifp, mli->mli_ifp->if_xname); 1779 mli->mli_version = MLD_VERSION_2; 1780 } 1781 } 1782 1783 /* 1784 * Transmit an MLDv1 report immediately. 1785 */ 1786 static int 1787 mld_v1_transmit_report(struct in6_multi *in6m, const int type) 1788 { 1789 struct ifnet *ifp; 1790 struct in6_ifaddr *ia; 1791 struct ip6_hdr *ip6; 1792 struct mbuf *mh, *md; 1793 struct mld_hdr *mld; 1794 1795 IN6_MULTI_LOCK_ASSERT(); 1796 MLD_LOCK_ASSERT(); 1797 1798 ifp = in6m->in6m_ifp; 1799 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1800 /* ia may be NULL if link-local address is tentative. */ 1801 1802 mh = m_gethdr(M_NOWAIT, MT_DATA); 1803 if (mh == NULL) { 1804 if (ia != NULL) 1805 ifa_free(&ia->ia_ifa); 1806 return (ENOMEM); 1807 } 1808 md = m_get(M_NOWAIT, MT_DATA); 1809 if (md == NULL) { 1810 m_free(mh); 1811 if (ia != NULL) 1812 ifa_free(&ia->ia_ifa); 1813 return (ENOMEM); 1814 } 1815 mh->m_next = md; 1816 1817 /* 1818 * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so 1819 * that ether_output() does not need to allocate another mbuf 1820 * for the header in the most common case. 1821 */ 1822 MH_ALIGN(mh, sizeof(struct ip6_hdr)); 1823 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr); 1824 mh->m_len = sizeof(struct ip6_hdr); 1825 1826 ip6 = mtod(mh, struct ip6_hdr *); 1827 ip6->ip6_flow = 0; 1828 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 1829 ip6->ip6_vfc |= IPV6_VERSION; 1830 ip6->ip6_nxt = IPPROTO_ICMPV6; 1831 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 1832 ip6->ip6_dst = in6m->in6m_addr; 1833 1834 md->m_len = sizeof(struct mld_hdr); 1835 mld = mtod(md, struct mld_hdr *); 1836 mld->mld_type = type; 1837 mld->mld_code = 0; 1838 mld->mld_cksum = 0; 1839 mld->mld_maxdelay = 0; 1840 mld->mld_reserved = 0; 1841 mld->mld_addr = in6m->in6m_addr; 1842 in6_clearscope(&mld->mld_addr); 1843 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 1844 sizeof(struct ip6_hdr), sizeof(struct mld_hdr)); 1845 1846 mld_save_context(mh, ifp); 1847 mh->m_flags |= M_MLDV1; 1848 1849 mld_dispatch_packet(mh); 1850 1851 if (ia != NULL) 1852 ifa_free(&ia->ia_ifa); 1853 return (0); 1854 } 1855 1856 /* 1857 * Process a state change from the upper layer for the given IPv6 group. 1858 * 1859 * Each socket holds a reference on the in_multi in its own ip_moptions. 1860 * The socket layer will have made the necessary updates to.the group 1861 * state, it is now up to MLD to issue a state change report if there 1862 * has been any change between T0 (when the last state-change was issued) 1863 * and T1 (now). 1864 * 1865 * We use the MLDv2 state machine at group level. The MLd module 1866 * however makes the decision as to which MLD protocol version to speak. 1867 * A state change *from* INCLUDE {} always means an initial join. 1868 * A state change *to* INCLUDE {} always means a final leave. 1869 * 1870 * If delay is non-zero, and the state change is an initial multicast 1871 * join, the state change report will be delayed by 'delay' ticks 1872 * in units of PR_FASTHZ if MLDv1 is active on the link; otherwise 1873 * the initial MLDv2 state change report will be delayed by whichever 1874 * is sooner, a pending state-change timer or delay itself. 1875 * 1876 * VIMAGE: curvnet should have been set by caller, as this routine 1877 * is called from the socket option handlers. 1878 */ 1879 int 1880 mld_change_state(struct in6_multi *inm, const int delay) 1881 { 1882 struct mld_ifinfo *mli; 1883 struct ifnet *ifp; 1884 int error; 1885 1886 IN6_MULTI_LOCK_ASSERT(); 1887 1888 error = 0; 1889 1890 /* 1891 * Try to detect if the upper layer just asked us to change state 1892 * for an interface which has now gone away. 1893 */ 1894 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); 1895 ifp = inm->in6m_ifma->ifma_ifp; 1896 if (ifp != NULL) { 1897 /* 1898 * Sanity check that netinet6's notion of ifp is the 1899 * same as net's. 1900 */ 1901 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); 1902 } 1903 1904 MLD_LOCK(); 1905 1906 mli = MLD_IFINFO(ifp); 1907 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 1908 1909 /* 1910 * If we detect a state transition to or from MCAST_UNDEFINED 1911 * for this group, then we are starting or finishing an MLD 1912 * life cycle for this group. 1913 */ 1914 if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) { 1915 CTR3(KTR_MLD, "%s: inm transition %d -> %d", __func__, 1916 inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode); 1917 if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) { 1918 CTR1(KTR_MLD, "%s: initial join", __func__); 1919 error = mld_initial_join(inm, mli, delay); 1920 goto out_locked; 1921 } else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) { 1922 CTR1(KTR_MLD, "%s: final leave", __func__); 1923 mld_final_leave(inm, mli); 1924 goto out_locked; 1925 } 1926 } else { 1927 CTR1(KTR_MLD, "%s: filter set change", __func__); 1928 } 1929 1930 error = mld_handle_state_change(inm, mli); 1931 1932 out_locked: 1933 MLD_UNLOCK(); 1934 return (error); 1935 } 1936 1937 /* 1938 * Perform the initial join for an MLD group. 1939 * 1940 * When joining a group: 1941 * If the group should have its MLD traffic suppressed, do nothing. 1942 * MLDv1 starts sending MLDv1 host membership reports. 1943 * MLDv2 will schedule an MLDv2 state-change report containing the 1944 * initial state of the membership. 1945 * 1946 * If the delay argument is non-zero, then we must delay sending the 1947 * initial state change for delay ticks (in units of PR_FASTHZ). 1948 */ 1949 static int 1950 mld_initial_join(struct in6_multi *inm, struct mld_ifinfo *mli, 1951 const int delay) 1952 { 1953 struct ifnet *ifp; 1954 struct ifqueue *ifq; 1955 int error, retval, syncstates; 1956 int odelay; 1957 #ifdef KTR 1958 char ip6tbuf[INET6_ADDRSTRLEN]; 1959 #endif 1960 1961 CTR4(KTR_MLD, "%s: initial join %s on ifp %p(%s)", 1962 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1963 inm->in6m_ifp, inm->in6m_ifp->if_xname); 1964 1965 error = 0; 1966 syncstates = 1; 1967 1968 ifp = inm->in6m_ifp; 1969 1970 IN6_MULTI_LOCK_ASSERT(); 1971 MLD_LOCK_ASSERT(); 1972 1973 KASSERT(mli && mli->mli_ifp == ifp, ("%s: inconsistent ifp", __func__)); 1974 1975 /* 1976 * Groups joined on loopback or marked as 'not reported', 1977 * enter the MLD_SILENT_MEMBER state and 1978 * are never reported in any protocol exchanges. 1979 * All other groups enter the appropriate state machine 1980 * for the version in use on this link. 1981 * A link marked as MLIF_SILENT causes MLD to be completely 1982 * disabled for the link. 1983 */ 1984 if ((ifp->if_flags & IFF_LOOPBACK) || 1985 (mli->mli_flags & MLIF_SILENT) || 1986 !mld_is_addr_reported(&inm->in6m_addr)) { 1987 CTR1(KTR_MLD, 1988 "%s: not kicking state machine for silent group", __func__); 1989 inm->in6m_state = MLD_SILENT_MEMBER; 1990 inm->in6m_timer = 0; 1991 } else { 1992 /* 1993 * Deal with overlapping in_multi lifecycle. 1994 * If this group was LEAVING, then make sure 1995 * we drop the reference we picked up to keep the 1996 * group around for the final INCLUDE {} enqueue. 1997 */ 1998 if (mli->mli_version == MLD_VERSION_2 && 1999 inm->in6m_state == MLD_LEAVING_MEMBER) 2000 in6m_release_locked(inm); 2001 2002 inm->in6m_state = MLD_REPORTING_MEMBER; 2003 2004 switch (mli->mli_version) { 2005 case MLD_VERSION_1: 2006 /* 2007 * If a delay was provided, only use it if 2008 * it is greater than the delay normally 2009 * used for an MLDv1 state change report, 2010 * and delay sending the initial MLDv1 report 2011 * by not transitioning to the IDLE state. 2012 */ 2013 odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI * PR_FASTHZ); 2014 if (delay) { 2015 inm->in6m_timer = max(delay, odelay); 2016 V_current_state_timers_running6 = 1; 2017 } else { 2018 inm->in6m_state = MLD_IDLE_MEMBER; 2019 error = mld_v1_transmit_report(inm, 2020 MLD_LISTENER_REPORT); 2021 if (error == 0) { 2022 inm->in6m_timer = odelay; 2023 V_current_state_timers_running6 = 1; 2024 } 2025 } 2026 break; 2027 2028 case MLD_VERSION_2: 2029 /* 2030 * Defer update of T0 to T1, until the first copy 2031 * of the state change has been transmitted. 2032 */ 2033 syncstates = 0; 2034 2035 /* 2036 * Immediately enqueue a State-Change Report for 2037 * this interface, freeing any previous reports. 2038 * Don't kick the timers if there is nothing to do, 2039 * or if an error occurred. 2040 */ 2041 ifq = &inm->in6m_scq; 2042 _IF_DRAIN(ifq); 2043 retval = mld_v2_enqueue_group_record(ifq, inm, 1, 2044 0, 0, (mli->mli_flags & MLIF_USEALLOW)); 2045 CTR2(KTR_MLD, "%s: enqueue record = %d", 2046 __func__, retval); 2047 if (retval <= 0) { 2048 error = retval * -1; 2049 break; 2050 } 2051 2052 /* 2053 * Schedule transmission of pending state-change 2054 * report up to RV times for this link. The timer 2055 * will fire at the next mld_fasttimo (~200ms), 2056 * giving us an opportunity to merge the reports. 2057 * 2058 * If a delay was provided to this function, only 2059 * use this delay if sooner than the existing one. 2060 */ 2061 KASSERT(mli->mli_rv > 1, 2062 ("%s: invalid robustness %d", __func__, 2063 mli->mli_rv)); 2064 inm->in6m_scrv = mli->mli_rv; 2065 if (delay) { 2066 if (inm->in6m_sctimer > 1) { 2067 inm->in6m_sctimer = 2068 min(inm->in6m_sctimer, delay); 2069 } else 2070 inm->in6m_sctimer = delay; 2071 } else 2072 inm->in6m_sctimer = 1; 2073 V_state_change_timers_running6 = 1; 2074 2075 error = 0; 2076 break; 2077 } 2078 } 2079 2080 /* 2081 * Only update the T0 state if state change is atomic, 2082 * i.e. we don't need to wait for a timer to fire before we 2083 * can consider the state change to have been communicated. 2084 */ 2085 if (syncstates) { 2086 in6m_commit(inm); 2087 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2088 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2089 inm->in6m_ifp->if_xname); 2090 } 2091 2092 return (error); 2093 } 2094 2095 /* 2096 * Issue an intermediate state change during the life-cycle. 2097 */ 2098 static int 2099 mld_handle_state_change(struct in6_multi *inm, struct mld_ifinfo *mli) 2100 { 2101 struct ifnet *ifp; 2102 int retval; 2103 #ifdef KTR 2104 char ip6tbuf[INET6_ADDRSTRLEN]; 2105 #endif 2106 2107 CTR4(KTR_MLD, "%s: state change for %s on ifp %p(%s)", 2108 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2109 inm->in6m_ifp, inm->in6m_ifp->if_xname); 2110 2111 ifp = inm->in6m_ifp; 2112 2113 IN6_MULTI_LOCK_ASSERT(); 2114 MLD_LOCK_ASSERT(); 2115 2116 KASSERT(mli && mli->mli_ifp == ifp, 2117 ("%s: inconsistent ifp", __func__)); 2118 2119 if ((ifp->if_flags & IFF_LOOPBACK) || 2120 (mli->mli_flags & MLIF_SILENT) || 2121 !mld_is_addr_reported(&inm->in6m_addr) || 2122 (mli->mli_version != MLD_VERSION_2)) { 2123 if (!mld_is_addr_reported(&inm->in6m_addr)) { 2124 CTR1(KTR_MLD, 2125 "%s: not kicking state machine for silent group", __func__); 2126 } 2127 CTR1(KTR_MLD, "%s: nothing to do", __func__); 2128 in6m_commit(inm); 2129 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2130 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2131 inm->in6m_ifp->if_xname); 2132 return (0); 2133 } 2134 2135 _IF_DRAIN(&inm->in6m_scq); 2136 2137 retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0, 2138 (mli->mli_flags & MLIF_USEALLOW)); 2139 CTR2(KTR_MLD, "%s: enqueue record = %d", __func__, retval); 2140 if (retval <= 0) 2141 return (-retval); 2142 2143 /* 2144 * If record(s) were enqueued, start the state-change 2145 * report timer for this group. 2146 */ 2147 inm->in6m_scrv = mli->mli_rv; 2148 inm->in6m_sctimer = 1; 2149 V_state_change_timers_running6 = 1; 2150 2151 return (0); 2152 } 2153 2154 /* 2155 * Perform the final leave for a multicast address. 2156 * 2157 * When leaving a group: 2158 * MLDv1 sends a DONE message, if and only if we are the reporter. 2159 * MLDv2 enqueues a state-change report containing a transition 2160 * to INCLUDE {} for immediate transmission. 2161 */ 2162 static void 2163 mld_final_leave(struct in6_multi *inm, struct mld_ifinfo *mli) 2164 { 2165 int syncstates; 2166 #ifdef KTR 2167 char ip6tbuf[INET6_ADDRSTRLEN]; 2168 #endif 2169 2170 syncstates = 1; 2171 2172 CTR4(KTR_MLD, "%s: final leave %s on ifp %p(%s)", 2173 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2174 inm->in6m_ifp, inm->in6m_ifp->if_xname); 2175 2176 IN6_MULTI_LOCK_ASSERT(); 2177 MLD_LOCK_ASSERT(); 2178 2179 switch (inm->in6m_state) { 2180 case MLD_NOT_MEMBER: 2181 case MLD_SILENT_MEMBER: 2182 case MLD_LEAVING_MEMBER: 2183 /* Already leaving or left; do nothing. */ 2184 CTR1(KTR_MLD, 2185 "%s: not kicking state machine for silent group", __func__); 2186 break; 2187 case MLD_REPORTING_MEMBER: 2188 case MLD_IDLE_MEMBER: 2189 case MLD_G_QUERY_PENDING_MEMBER: 2190 case MLD_SG_QUERY_PENDING_MEMBER: 2191 if (mli->mli_version == MLD_VERSION_1) { 2192 #ifdef INVARIANTS 2193 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 2194 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) 2195 panic("%s: MLDv2 state reached, not MLDv2 mode", 2196 __func__); 2197 #endif 2198 mld_v1_transmit_report(inm, MLD_LISTENER_DONE); 2199 inm->in6m_state = MLD_NOT_MEMBER; 2200 V_current_state_timers_running6 = 1; 2201 } else if (mli->mli_version == MLD_VERSION_2) { 2202 /* 2203 * Stop group timer and all pending reports. 2204 * Immediately enqueue a state-change report 2205 * TO_IN {} to be sent on the next fast timeout, 2206 * giving us an opportunity to merge reports. 2207 */ 2208 _IF_DRAIN(&inm->in6m_scq); 2209 inm->in6m_timer = 0; 2210 inm->in6m_scrv = mli->mli_rv; 2211 CTR4(KTR_MLD, "%s: Leaving %s/%s with %d " 2212 "pending retransmissions.", __func__, 2213 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2214 inm->in6m_ifp->if_xname, inm->in6m_scrv); 2215 if (inm->in6m_scrv == 0) { 2216 inm->in6m_state = MLD_NOT_MEMBER; 2217 inm->in6m_sctimer = 0; 2218 } else { 2219 int retval; 2220 2221 in6m_acquire_locked(inm); 2222 2223 retval = mld_v2_enqueue_group_record( 2224 &inm->in6m_scq, inm, 1, 0, 0, 2225 (mli->mli_flags & MLIF_USEALLOW)); 2226 KASSERT(retval != 0, 2227 ("%s: enqueue record = %d", __func__, 2228 retval)); 2229 2230 inm->in6m_state = MLD_LEAVING_MEMBER; 2231 inm->in6m_sctimer = 1; 2232 V_state_change_timers_running6 = 1; 2233 syncstates = 0; 2234 } 2235 break; 2236 } 2237 break; 2238 case MLD_LAZY_MEMBER: 2239 case MLD_SLEEPING_MEMBER: 2240 case MLD_AWAKENING_MEMBER: 2241 /* Our reports are suppressed; do nothing. */ 2242 break; 2243 } 2244 2245 if (syncstates) { 2246 in6m_commit(inm); 2247 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2248 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2249 inm->in6m_ifp->if_xname); 2250 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 2251 CTR3(KTR_MLD, "%s: T1 now MCAST_UNDEFINED for %p/%s", 2252 __func__, &inm->in6m_addr, inm->in6m_ifp->if_xname); 2253 } 2254 } 2255 2256 /* 2257 * Enqueue an MLDv2 group record to the given output queue. 2258 * 2259 * If is_state_change is zero, a current-state record is appended. 2260 * If is_state_change is non-zero, a state-change report is appended. 2261 * 2262 * If is_group_query is non-zero, an mbuf packet chain is allocated. 2263 * If is_group_query is zero, and if there is a packet with free space 2264 * at the tail of the queue, it will be appended to providing there 2265 * is enough free space. 2266 * Otherwise a new mbuf packet chain is allocated. 2267 * 2268 * If is_source_query is non-zero, each source is checked to see if 2269 * it was recorded for a Group-Source query, and will be omitted if 2270 * it is not both in-mode and recorded. 2271 * 2272 * If use_block_allow is non-zero, state change reports for initial join 2273 * and final leave, on an inclusive mode group with a source list, will be 2274 * rewritten to use the ALLOW_NEW and BLOCK_OLD record types, respectively. 2275 * 2276 * The function will attempt to allocate leading space in the packet 2277 * for the IPv6+ICMP headers to be prepended without fragmenting the chain. 2278 * 2279 * If successful the size of all data appended to the queue is returned, 2280 * otherwise an error code less than zero is returned, or zero if 2281 * no record(s) were appended. 2282 */ 2283 static int 2284 mld_v2_enqueue_group_record(struct ifqueue *ifq, struct in6_multi *inm, 2285 const int is_state_change, const int is_group_query, 2286 const int is_source_query, const int use_block_allow) 2287 { 2288 struct mldv2_record mr; 2289 struct mldv2_record *pmr; 2290 struct ifnet *ifp; 2291 struct ip6_msource *ims, *nims; 2292 struct mbuf *m0, *m, *md; 2293 int error, is_filter_list_change; 2294 int minrec0len, m0srcs, msrcs, nbytes, off; 2295 int record_has_sources; 2296 int now; 2297 int type; 2298 uint8_t mode; 2299 #ifdef KTR 2300 char ip6tbuf[INET6_ADDRSTRLEN]; 2301 #endif 2302 2303 IN6_MULTI_LOCK_ASSERT(); 2304 2305 error = 0; 2306 ifp = inm->in6m_ifp; 2307 is_filter_list_change = 0; 2308 m = NULL; 2309 m0 = NULL; 2310 m0srcs = 0; 2311 msrcs = 0; 2312 nbytes = 0; 2313 nims = NULL; 2314 record_has_sources = 1; 2315 pmr = NULL; 2316 type = MLD_DO_NOTHING; 2317 mode = inm->in6m_st[1].iss_fmode; 2318 2319 /* 2320 * If we did not transition out of ASM mode during t0->t1, 2321 * and there are no source nodes to process, we can skip 2322 * the generation of source records. 2323 */ 2324 if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 && 2325 inm->in6m_nsrc == 0) 2326 record_has_sources = 0; 2327 2328 if (is_state_change) { 2329 /* 2330 * Queue a state change record. 2331 * If the mode did not change, and there are non-ASM 2332 * listeners or source filters present, 2333 * we potentially need to issue two records for the group. 2334 * If there are ASM listeners, and there was no filter 2335 * mode transition of any kind, do nothing. 2336 * 2337 * If we are transitioning to MCAST_UNDEFINED, we need 2338 * not send any sources. A transition to/from this state is 2339 * considered inclusive with some special treatment. 2340 * 2341 * If we are rewriting initial joins/leaves to use 2342 * ALLOW/BLOCK, and the group's membership is inclusive, 2343 * we need to send sources in all cases. 2344 */ 2345 if (mode != inm->in6m_st[0].iss_fmode) { 2346 if (mode == MCAST_EXCLUDE) { 2347 CTR1(KTR_MLD, "%s: change to EXCLUDE", 2348 __func__); 2349 type = MLD_CHANGE_TO_EXCLUDE_MODE; 2350 } else { 2351 CTR1(KTR_MLD, "%s: change to INCLUDE", 2352 __func__); 2353 if (use_block_allow) { 2354 /* 2355 * XXX 2356 * Here we're interested in state 2357 * edges either direction between 2358 * MCAST_UNDEFINED and MCAST_INCLUDE. 2359 * Perhaps we should just check 2360 * the group state, rather than 2361 * the filter mode. 2362 */ 2363 if (mode == MCAST_UNDEFINED) { 2364 type = MLD_BLOCK_OLD_SOURCES; 2365 } else { 2366 type = MLD_ALLOW_NEW_SOURCES; 2367 } 2368 } else { 2369 type = MLD_CHANGE_TO_INCLUDE_MODE; 2370 if (mode == MCAST_UNDEFINED) 2371 record_has_sources = 0; 2372 } 2373 } 2374 } else { 2375 if (record_has_sources) { 2376 is_filter_list_change = 1; 2377 } else { 2378 type = MLD_DO_NOTHING; 2379 } 2380 } 2381 } else { 2382 /* 2383 * Queue a current state record. 2384 */ 2385 if (mode == MCAST_EXCLUDE) { 2386 type = MLD_MODE_IS_EXCLUDE; 2387 } else if (mode == MCAST_INCLUDE) { 2388 type = MLD_MODE_IS_INCLUDE; 2389 KASSERT(inm->in6m_st[1].iss_asm == 0, 2390 ("%s: inm %p is INCLUDE but ASM count is %d", 2391 __func__, inm, inm->in6m_st[1].iss_asm)); 2392 } 2393 } 2394 2395 /* 2396 * Generate the filter list changes using a separate function. 2397 */ 2398 if (is_filter_list_change) 2399 return (mld_v2_enqueue_filter_change(ifq, inm)); 2400 2401 if (type == MLD_DO_NOTHING) { 2402 CTR3(KTR_MLD, "%s: nothing to do for %s/%s", 2403 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2404 inm->in6m_ifp->if_xname); 2405 return (0); 2406 } 2407 2408 /* 2409 * If any sources are present, we must be able to fit at least 2410 * one in the trailing space of the tail packet's mbuf, 2411 * ideally more. 2412 */ 2413 minrec0len = sizeof(struct mldv2_record); 2414 if (record_has_sources) 2415 minrec0len += sizeof(struct in6_addr); 2416 2417 CTR4(KTR_MLD, "%s: queueing %s for %s/%s", __func__, 2418 mld_rec_type_to_str(type), 2419 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2420 inm->in6m_ifp->if_xname); 2421 2422 /* 2423 * Check if we have a packet in the tail of the queue for this 2424 * group into which the first group record for this group will fit. 2425 * Otherwise allocate a new packet. 2426 * Always allocate leading space for IP6+RA+ICMPV6+REPORT. 2427 * Note: Group records for G/GSR query responses MUST be sent 2428 * in their own packet. 2429 */ 2430 m0 = ifq->ifq_tail; 2431 if (!is_group_query && 2432 m0 != NULL && 2433 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) && 2434 (m0->m_pkthdr.len + minrec0len) < 2435 (ifp->if_mtu - MLD_MTUSPACE)) { 2436 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2437 sizeof(struct mldv2_record)) / 2438 sizeof(struct in6_addr); 2439 m = m0; 2440 CTR1(KTR_MLD, "%s: use existing packet", __func__); 2441 } else { 2442 if (_IF_QFULL(ifq)) { 2443 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2444 return (-ENOMEM); 2445 } 2446 m = NULL; 2447 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2448 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2449 if (!is_state_change && !is_group_query) 2450 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2451 if (m == NULL) 2452 m = m_gethdr(M_NOWAIT, MT_DATA); 2453 if (m == NULL) 2454 return (-ENOMEM); 2455 2456 mld_save_context(m, ifp); 2457 2458 CTR1(KTR_MLD, "%s: allocated first packet", __func__); 2459 } 2460 2461 /* 2462 * Append group record. 2463 * If we have sources, we don't know how many yet. 2464 */ 2465 mr.mr_type = type; 2466 mr.mr_datalen = 0; 2467 mr.mr_numsrc = 0; 2468 mr.mr_addr = inm->in6m_addr; 2469 in6_clearscope(&mr.mr_addr); 2470 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2471 if (m != m0) 2472 m_freem(m); 2473 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2474 return (-ENOMEM); 2475 } 2476 nbytes += sizeof(struct mldv2_record); 2477 2478 /* 2479 * Append as many sources as will fit in the first packet. 2480 * If we are appending to a new packet, the chain allocation 2481 * may potentially use clusters; use m_getptr() in this case. 2482 * If we are appending to an existing packet, we need to obtain 2483 * a pointer to the group record after m_append(), in case a new 2484 * mbuf was allocated. 2485 * 2486 * Only append sources which are in-mode at t1. If we are 2487 * transitioning to MCAST_UNDEFINED state on the group, and 2488 * use_block_allow is zero, do not include source entries. 2489 * Otherwise, we need to include this source in the report. 2490 * 2491 * Only report recorded sources in our filter set when responding 2492 * to a group-source query. 2493 */ 2494 if (record_has_sources) { 2495 if (m == m0) { 2496 md = m_last(m); 2497 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2498 md->m_len - nbytes); 2499 } else { 2500 md = m_getptr(m, 0, &off); 2501 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2502 off); 2503 } 2504 msrcs = 0; 2505 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, 2506 nims) { 2507 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2508 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2509 now = im6s_get_mode(inm, ims, 1); 2510 CTR2(KTR_MLD, "%s: node is %d", __func__, now); 2511 if ((now != mode) || 2512 (now == mode && 2513 (!use_block_allow && mode == MCAST_UNDEFINED))) { 2514 CTR1(KTR_MLD, "%s: skip node", __func__); 2515 continue; 2516 } 2517 if (is_source_query && ims->im6s_stp == 0) { 2518 CTR1(KTR_MLD, "%s: skip unrecorded node", 2519 __func__); 2520 continue; 2521 } 2522 CTR1(KTR_MLD, "%s: append node", __func__); 2523 if (!m_append(m, sizeof(struct in6_addr), 2524 (void *)&ims->im6s_addr)) { 2525 if (m != m0) 2526 m_freem(m); 2527 CTR1(KTR_MLD, "%s: m_append() failed.", 2528 __func__); 2529 return (-ENOMEM); 2530 } 2531 nbytes += sizeof(struct in6_addr); 2532 ++msrcs; 2533 if (msrcs == m0srcs) 2534 break; 2535 } 2536 CTR2(KTR_MLD, "%s: msrcs is %d this packet", __func__, 2537 msrcs); 2538 pmr->mr_numsrc = htons(msrcs); 2539 nbytes += (msrcs * sizeof(struct in6_addr)); 2540 } 2541 2542 if (is_source_query && msrcs == 0) { 2543 CTR1(KTR_MLD, "%s: no recorded sources to report", __func__); 2544 if (m != m0) 2545 m_freem(m); 2546 return (0); 2547 } 2548 2549 /* 2550 * We are good to go with first packet. 2551 */ 2552 if (m != m0) { 2553 CTR1(KTR_MLD, "%s: enqueueing first packet", __func__); 2554 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2555 _IF_ENQUEUE(ifq, m); 2556 } else 2557 m->m_pkthdr.PH_vt.vt_nrecs++; 2558 2559 /* 2560 * No further work needed if no source list in packet(s). 2561 */ 2562 if (!record_has_sources) 2563 return (nbytes); 2564 2565 /* 2566 * Whilst sources remain to be announced, we need to allocate 2567 * a new packet and fill out as many sources as will fit. 2568 * Always try for a cluster first. 2569 */ 2570 while (nims != NULL) { 2571 if (_IF_QFULL(ifq)) { 2572 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2573 return (-ENOMEM); 2574 } 2575 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2576 if (m == NULL) 2577 m = m_gethdr(M_NOWAIT, MT_DATA); 2578 if (m == NULL) 2579 return (-ENOMEM); 2580 mld_save_context(m, ifp); 2581 md = m_getptr(m, 0, &off); 2582 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off); 2583 CTR1(KTR_MLD, "%s: allocated next packet", __func__); 2584 2585 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2586 if (m != m0) 2587 m_freem(m); 2588 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2589 return (-ENOMEM); 2590 } 2591 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2592 nbytes += sizeof(struct mldv2_record); 2593 2594 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2595 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2596 2597 msrcs = 0; 2598 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2599 CTR2(KTR_MLD, "%s: visit node %s", 2600 __func__, ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2601 now = im6s_get_mode(inm, ims, 1); 2602 if ((now != mode) || 2603 (now == mode && 2604 (!use_block_allow && mode == MCAST_UNDEFINED))) { 2605 CTR1(KTR_MLD, "%s: skip node", __func__); 2606 continue; 2607 } 2608 if (is_source_query && ims->im6s_stp == 0) { 2609 CTR1(KTR_MLD, "%s: skip unrecorded node", 2610 __func__); 2611 continue; 2612 } 2613 CTR1(KTR_MLD, "%s: append node", __func__); 2614 if (!m_append(m, sizeof(struct in6_addr), 2615 (void *)&ims->im6s_addr)) { 2616 if (m != m0) 2617 m_freem(m); 2618 CTR1(KTR_MLD, "%s: m_append() failed.", 2619 __func__); 2620 return (-ENOMEM); 2621 } 2622 ++msrcs; 2623 if (msrcs == m0srcs) 2624 break; 2625 } 2626 pmr->mr_numsrc = htons(msrcs); 2627 nbytes += (msrcs * sizeof(struct in6_addr)); 2628 2629 CTR1(KTR_MLD, "%s: enqueueing next packet", __func__); 2630 _IF_ENQUEUE(ifq, m); 2631 } 2632 2633 return (nbytes); 2634 } 2635 2636 /* 2637 * Type used to mark record pass completion. 2638 * We exploit the fact we can cast to this easily from the 2639 * current filter modes on each ip_msource node. 2640 */ 2641 typedef enum { 2642 REC_NONE = 0x00, /* MCAST_UNDEFINED */ 2643 REC_ALLOW = 0x01, /* MCAST_INCLUDE */ 2644 REC_BLOCK = 0x02, /* MCAST_EXCLUDE */ 2645 REC_FULL = REC_ALLOW | REC_BLOCK 2646 } rectype_t; 2647 2648 /* 2649 * Enqueue an MLDv2 filter list change to the given output queue. 2650 * 2651 * Source list filter state is held in an RB-tree. When the filter list 2652 * for a group is changed without changing its mode, we need to compute 2653 * the deltas between T0 and T1 for each source in the filter set, 2654 * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records. 2655 * 2656 * As we may potentially queue two record types, and the entire R-B tree 2657 * needs to be walked at once, we break this out into its own function 2658 * so we can generate a tightly packed queue of packets. 2659 * 2660 * XXX This could be written to only use one tree walk, although that makes 2661 * serializing into the mbuf chains a bit harder. For now we do two walks 2662 * which makes things easier on us, and it may or may not be harder on 2663 * the L2 cache. 2664 * 2665 * If successful the size of all data appended to the queue is returned, 2666 * otherwise an error code less than zero is returned, or zero if 2667 * no record(s) were appended. 2668 */ 2669 static int 2670 mld_v2_enqueue_filter_change(struct ifqueue *ifq, struct in6_multi *inm) 2671 { 2672 static const int MINRECLEN = 2673 sizeof(struct mldv2_record) + sizeof(struct in6_addr); 2674 struct ifnet *ifp; 2675 struct mldv2_record mr; 2676 struct mldv2_record *pmr; 2677 struct ip6_msource *ims, *nims; 2678 struct mbuf *m, *m0, *md; 2679 int m0srcs, nbytes, npbytes, off, rsrcs, schanged; 2680 int nallow, nblock; 2681 uint8_t mode, now, then; 2682 rectype_t crt, drt, nrt; 2683 #ifdef KTR 2684 char ip6tbuf[INET6_ADDRSTRLEN]; 2685 #endif 2686 2687 IN6_MULTI_LOCK_ASSERT(); 2688 2689 if (inm->in6m_nsrc == 0 || 2690 (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0)) 2691 return (0); 2692 2693 ifp = inm->in6m_ifp; /* interface */ 2694 mode = inm->in6m_st[1].iss_fmode; /* filter mode at t1 */ 2695 crt = REC_NONE; /* current group record type */ 2696 drt = REC_NONE; /* mask of completed group record types */ 2697 nrt = REC_NONE; /* record type for current node */ 2698 m0srcs = 0; /* # source which will fit in current mbuf chain */ 2699 npbytes = 0; /* # of bytes appended this packet */ 2700 nbytes = 0; /* # of bytes appended to group's state-change queue */ 2701 rsrcs = 0; /* # sources encoded in current record */ 2702 schanged = 0; /* # nodes encoded in overall filter change */ 2703 nallow = 0; /* # of source entries in ALLOW_NEW */ 2704 nblock = 0; /* # of source entries in BLOCK_OLD */ 2705 nims = NULL; /* next tree node pointer */ 2706 2707 /* 2708 * For each possible filter record mode. 2709 * The first kind of source we encounter tells us which 2710 * is the first kind of record we start appending. 2711 * If a node transitioned to UNDEFINED at t1, its mode is treated 2712 * as the inverse of the group's filter mode. 2713 */ 2714 while (drt != REC_FULL) { 2715 do { 2716 m0 = ifq->ifq_tail; 2717 if (m0 != NULL && 2718 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= 2719 MLD_V2_REPORT_MAXRECS) && 2720 (m0->m_pkthdr.len + MINRECLEN) < 2721 (ifp->if_mtu - MLD_MTUSPACE)) { 2722 m = m0; 2723 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2724 sizeof(struct mldv2_record)) / 2725 sizeof(struct in6_addr); 2726 CTR1(KTR_MLD, 2727 "%s: use previous packet", __func__); 2728 } else { 2729 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2730 if (m == NULL) 2731 m = m_gethdr(M_NOWAIT, MT_DATA); 2732 if (m == NULL) { 2733 CTR1(KTR_MLD, 2734 "%s: m_get*() failed", __func__); 2735 return (-ENOMEM); 2736 } 2737 m->m_pkthdr.PH_vt.vt_nrecs = 0; 2738 mld_save_context(m, ifp); 2739 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2740 sizeof(struct mldv2_record)) / 2741 sizeof(struct in6_addr); 2742 npbytes = 0; 2743 CTR1(KTR_MLD, 2744 "%s: allocated new packet", __func__); 2745 } 2746 /* 2747 * Append the MLD group record header to the 2748 * current packet's data area. 2749 * Recalculate pointer to free space for next 2750 * group record, in case m_append() allocated 2751 * a new mbuf or cluster. 2752 */ 2753 memset(&mr, 0, sizeof(mr)); 2754 mr.mr_addr = inm->in6m_addr; 2755 in6_clearscope(&mr.mr_addr); 2756 if (!m_append(m, sizeof(mr), (void *)&mr)) { 2757 if (m != m0) 2758 m_freem(m); 2759 CTR1(KTR_MLD, 2760 "%s: m_append() failed", __func__); 2761 return (-ENOMEM); 2762 } 2763 npbytes += sizeof(struct mldv2_record); 2764 if (m != m0) { 2765 /* new packet; offset in chain */ 2766 md = m_getptr(m, npbytes - 2767 sizeof(struct mldv2_record), &off); 2768 pmr = (struct mldv2_record *)(mtod(md, 2769 uint8_t *) + off); 2770 } else { 2771 /* current packet; offset from last append */ 2772 md = m_last(m); 2773 pmr = (struct mldv2_record *)(mtod(md, 2774 uint8_t *) + md->m_len - 2775 sizeof(struct mldv2_record)); 2776 } 2777 /* 2778 * Begin walking the tree for this record type 2779 * pass, or continue from where we left off 2780 * previously if we had to allocate a new packet. 2781 * Only report deltas in-mode at t1. 2782 * We need not report included sources as allowed 2783 * if we are in inclusive mode on the group, 2784 * however the converse is not true. 2785 */ 2786 rsrcs = 0; 2787 if (nims == NULL) { 2788 nims = RB_MIN(ip6_msource_tree, 2789 &inm->in6m_srcs); 2790 } 2791 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2792 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2793 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2794 now = im6s_get_mode(inm, ims, 1); 2795 then = im6s_get_mode(inm, ims, 0); 2796 CTR3(KTR_MLD, "%s: mode: t0 %d, t1 %d", 2797 __func__, then, now); 2798 if (now == then) { 2799 CTR1(KTR_MLD, 2800 "%s: skip unchanged", __func__); 2801 continue; 2802 } 2803 if (mode == MCAST_EXCLUDE && 2804 now == MCAST_INCLUDE) { 2805 CTR1(KTR_MLD, 2806 "%s: skip IN src on EX group", 2807 __func__); 2808 continue; 2809 } 2810 nrt = (rectype_t)now; 2811 if (nrt == REC_NONE) 2812 nrt = (rectype_t)(~mode & REC_FULL); 2813 if (schanged++ == 0) { 2814 crt = nrt; 2815 } else if (crt != nrt) 2816 continue; 2817 if (!m_append(m, sizeof(struct in6_addr), 2818 (void *)&ims->im6s_addr)) { 2819 if (m != m0) 2820 m_freem(m); 2821 CTR1(KTR_MLD, 2822 "%s: m_append() failed", __func__); 2823 return (-ENOMEM); 2824 } 2825 nallow += !!(crt == REC_ALLOW); 2826 nblock += !!(crt == REC_BLOCK); 2827 if (++rsrcs == m0srcs) 2828 break; 2829 } 2830 /* 2831 * If we did not append any tree nodes on this 2832 * pass, back out of allocations. 2833 */ 2834 if (rsrcs == 0) { 2835 npbytes -= sizeof(struct mldv2_record); 2836 if (m != m0) { 2837 CTR1(KTR_MLD, 2838 "%s: m_free(m)", __func__); 2839 m_freem(m); 2840 } else { 2841 CTR1(KTR_MLD, 2842 "%s: m_adj(m, -mr)", __func__); 2843 m_adj(m, -((int)sizeof( 2844 struct mldv2_record))); 2845 } 2846 continue; 2847 } 2848 npbytes += (rsrcs * sizeof(struct in6_addr)); 2849 if (crt == REC_ALLOW) 2850 pmr->mr_type = MLD_ALLOW_NEW_SOURCES; 2851 else if (crt == REC_BLOCK) 2852 pmr->mr_type = MLD_BLOCK_OLD_SOURCES; 2853 pmr->mr_numsrc = htons(rsrcs); 2854 /* 2855 * Count the new group record, and enqueue this 2856 * packet if it wasn't already queued. 2857 */ 2858 m->m_pkthdr.PH_vt.vt_nrecs++; 2859 if (m != m0) 2860 _IF_ENQUEUE(ifq, m); 2861 nbytes += npbytes; 2862 } while (nims != NULL); 2863 drt |= crt; 2864 crt = (~crt & REC_FULL); 2865 } 2866 2867 CTR3(KTR_MLD, "%s: queued %d ALLOW_NEW, %d BLOCK_OLD", __func__, 2868 nallow, nblock); 2869 2870 return (nbytes); 2871 } 2872 2873 static int 2874 mld_v2_merge_state_changes(struct in6_multi *inm, struct ifqueue *ifscq) 2875 { 2876 struct ifqueue *gq; 2877 struct mbuf *m; /* pending state-change */ 2878 struct mbuf *m0; /* copy of pending state-change */ 2879 struct mbuf *mt; /* last state-change in packet */ 2880 int docopy, domerge; 2881 u_int recslen; 2882 2883 docopy = 0; 2884 domerge = 0; 2885 recslen = 0; 2886 2887 IN6_MULTI_LOCK_ASSERT(); 2888 MLD_LOCK_ASSERT(); 2889 2890 /* 2891 * If there are further pending retransmissions, make a writable 2892 * copy of each queued state-change message before merging. 2893 */ 2894 if (inm->in6m_scrv > 0) 2895 docopy = 1; 2896 2897 gq = &inm->in6m_scq; 2898 #ifdef KTR 2899 if (gq->ifq_head == NULL) { 2900 CTR2(KTR_MLD, "%s: WARNING: queue for inm %p is empty", 2901 __func__, inm); 2902 } 2903 #endif 2904 2905 m = gq->ifq_head; 2906 while (m != NULL) { 2907 /* 2908 * Only merge the report into the current packet if 2909 * there is sufficient space to do so; an MLDv2 report 2910 * packet may only contain 65,535 group records. 2911 * Always use a simple mbuf chain concatentation to do this, 2912 * as large state changes for single groups may have 2913 * allocated clusters. 2914 */ 2915 domerge = 0; 2916 mt = ifscq->ifq_tail; 2917 if (mt != NULL) { 2918 recslen = m_length(m, NULL); 2919 2920 if ((mt->m_pkthdr.PH_vt.vt_nrecs + 2921 m->m_pkthdr.PH_vt.vt_nrecs <= 2922 MLD_V2_REPORT_MAXRECS) && 2923 (mt->m_pkthdr.len + recslen <= 2924 (inm->in6m_ifp->if_mtu - MLD_MTUSPACE))) 2925 domerge = 1; 2926 } 2927 2928 if (!domerge && _IF_QFULL(gq)) { 2929 CTR2(KTR_MLD, 2930 "%s: outbound queue full, skipping whole packet %p", 2931 __func__, m); 2932 mt = m->m_nextpkt; 2933 if (!docopy) 2934 m_freem(m); 2935 m = mt; 2936 continue; 2937 } 2938 2939 if (!docopy) { 2940 CTR2(KTR_MLD, "%s: dequeueing %p", __func__, m); 2941 _IF_DEQUEUE(gq, m0); 2942 m = m0->m_nextpkt; 2943 } else { 2944 CTR2(KTR_MLD, "%s: copying %p", __func__, m); 2945 m0 = m_dup(m, M_NOWAIT); 2946 if (m0 == NULL) 2947 return (ENOMEM); 2948 m0->m_nextpkt = NULL; 2949 m = m->m_nextpkt; 2950 } 2951 2952 if (!domerge) { 2953 CTR3(KTR_MLD, "%s: queueing %p to ifscq %p)", 2954 __func__, m0, ifscq); 2955 _IF_ENQUEUE(ifscq, m0); 2956 } else { 2957 struct mbuf *mtl; /* last mbuf of packet mt */ 2958 2959 CTR3(KTR_MLD, "%s: merging %p with ifscq tail %p)", 2960 __func__, m0, mt); 2961 2962 mtl = m_last(mt); 2963 m0->m_flags &= ~M_PKTHDR; 2964 mt->m_pkthdr.len += recslen; 2965 mt->m_pkthdr.PH_vt.vt_nrecs += 2966 m0->m_pkthdr.PH_vt.vt_nrecs; 2967 2968 mtl->m_next = m0; 2969 } 2970 } 2971 2972 return (0); 2973 } 2974 2975 /* 2976 * Respond to a pending MLDv2 General Query. 2977 */ 2978 static void 2979 mld_v2_dispatch_general_query(struct mld_ifinfo *mli) 2980 { 2981 struct ifmultiaddr *ifma; 2982 struct ifnet *ifp; 2983 struct in6_multi *inm; 2984 int retval; 2985 2986 IN6_MULTI_LOCK_ASSERT(); 2987 MLD_LOCK_ASSERT(); 2988 2989 KASSERT(mli->mli_version == MLD_VERSION_2, 2990 ("%s: called when version %d", __func__, mli->mli_version)); 2991 2992 ifp = mli->mli_ifp; 2993 2994 IF_ADDR_RLOCK(ifp); 2995 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2996 if (ifma->ifma_addr->sa_family != AF_INET6 || 2997 ifma->ifma_protospec == NULL) 2998 continue; 2999 3000 inm = (struct in6_multi *)ifma->ifma_protospec; 3001 KASSERT(ifp == inm->in6m_ifp, 3002 ("%s: inconsistent ifp", __func__)); 3003 3004 switch (inm->in6m_state) { 3005 case MLD_NOT_MEMBER: 3006 case MLD_SILENT_MEMBER: 3007 break; 3008 case MLD_REPORTING_MEMBER: 3009 case MLD_IDLE_MEMBER: 3010 case MLD_LAZY_MEMBER: 3011 case MLD_SLEEPING_MEMBER: 3012 case MLD_AWAKENING_MEMBER: 3013 inm->in6m_state = MLD_REPORTING_MEMBER; 3014 retval = mld_v2_enqueue_group_record(&mli->mli_gq, 3015 inm, 0, 0, 0, 0); 3016 CTR2(KTR_MLD, "%s: enqueue record = %d", 3017 __func__, retval); 3018 break; 3019 case MLD_G_QUERY_PENDING_MEMBER: 3020 case MLD_SG_QUERY_PENDING_MEMBER: 3021 case MLD_LEAVING_MEMBER: 3022 break; 3023 } 3024 } 3025 IF_ADDR_RUNLOCK(ifp); 3026 3027 mld_dispatch_queue(&mli->mli_gq, MLD_MAX_RESPONSE_BURST); 3028 3029 /* 3030 * Slew transmission of bursts over 500ms intervals. 3031 */ 3032 if (mli->mli_gq.ifq_head != NULL) { 3033 mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY( 3034 MLD_RESPONSE_BURST_INTERVAL); 3035 V_interface_timers_running6 = 1; 3036 } 3037 } 3038 3039 /* 3040 * Transmit the next pending message in the output queue. 3041 * 3042 * VIMAGE: Needs to store/restore vnet pointer on a per-mbuf-chain basis. 3043 * MRT: Nothing needs to be done, as MLD traffic is always local to 3044 * a link and uses a link-scope multicast address. 3045 */ 3046 static void 3047 mld_dispatch_packet(struct mbuf *m) 3048 { 3049 struct ip6_moptions im6o; 3050 struct ifnet *ifp; 3051 struct ifnet *oifp; 3052 struct mbuf *m0; 3053 struct mbuf *md; 3054 struct ip6_hdr *ip6; 3055 struct mld_hdr *mld; 3056 int error; 3057 int off; 3058 int type; 3059 uint32_t ifindex; 3060 3061 CTR2(KTR_MLD, "%s: transmit %p", __func__, m); 3062 3063 /* 3064 * Set VNET image pointer from enqueued mbuf chain 3065 * before doing anything else. Whilst we use interface 3066 * indexes to guard against interface detach, they are 3067 * unique to each VIMAGE and must be retrieved. 3068 */ 3069 ifindex = mld_restore_context(m); 3070 3071 /* 3072 * Check if the ifnet still exists. This limits the scope of 3073 * any race in the absence of a global ifp lock for low cost 3074 * (an array lookup). 3075 */ 3076 ifp = ifnet_byindex(ifindex); 3077 if (ifp == NULL) { 3078 CTR3(KTR_MLD, "%s: dropped %p as ifindex %u went away.", 3079 __func__, m, ifindex); 3080 m_freem(m); 3081 IP6STAT_INC(ip6s_noroute); 3082 goto out; 3083 } 3084 3085 im6o.im6o_multicast_hlim = 1; 3086 im6o.im6o_multicast_loop = (V_ip6_mrouter != NULL); 3087 im6o.im6o_multicast_ifp = ifp; 3088 3089 if (m->m_flags & M_MLDV1) { 3090 m0 = m; 3091 } else { 3092 m0 = mld_v2_encap_report(ifp, m); 3093 if (m0 == NULL) { 3094 CTR2(KTR_MLD, "%s: dropped %p", __func__, m); 3095 IP6STAT_INC(ip6s_odropped); 3096 goto out; 3097 } 3098 } 3099 3100 mld_scrub_context(m0); 3101 m_clrprotoflags(m); 3102 m0->m_pkthdr.rcvif = V_loif; 3103 3104 ip6 = mtod(m0, struct ip6_hdr *); 3105 #if 0 3106 (void)in6_setscope(&ip6->ip6_dst, ifp, NULL); /* XXX LOR */ 3107 #else 3108 /* 3109 * XXX XXX Break some KPI rules to prevent an LOR which would 3110 * occur if we called in6_setscope() at transmission. 3111 * See comments at top of file. 3112 */ 3113 MLD_EMBEDSCOPE(&ip6->ip6_dst, ifp->if_index); 3114 #endif 3115 3116 /* 3117 * Retrieve the ICMPv6 type before handoff to ip6_output(), 3118 * so we can bump the stats. 3119 */ 3120 md = m_getptr(m0, sizeof(struct ip6_hdr), &off); 3121 mld = (struct mld_hdr *)(mtod(md, uint8_t *) + off); 3122 type = mld->mld_type; 3123 3124 error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, &im6o, 3125 &oifp, NULL); 3126 if (error) { 3127 CTR3(KTR_MLD, "%s: ip6_output(%p) = %d", __func__, m0, error); 3128 goto out; 3129 } 3130 ICMP6STAT_INC(icp6s_outhist[type]); 3131 if (oifp != NULL) { 3132 icmp6_ifstat_inc(oifp, ifs6_out_msg); 3133 switch (type) { 3134 case MLD_LISTENER_REPORT: 3135 case MLDV2_LISTENER_REPORT: 3136 icmp6_ifstat_inc(oifp, ifs6_out_mldreport); 3137 break; 3138 case MLD_LISTENER_DONE: 3139 icmp6_ifstat_inc(oifp, ifs6_out_mlddone); 3140 break; 3141 } 3142 } 3143 out: 3144 return; 3145 } 3146 3147 /* 3148 * Encapsulate an MLDv2 report. 3149 * 3150 * KAME IPv6 requires that hop-by-hop options be passed separately, 3151 * and that the IPv6 header be prepended in a separate mbuf. 3152 * 3153 * Returns a pointer to the new mbuf chain head, or NULL if the 3154 * allocation failed. 3155 */ 3156 static struct mbuf * 3157 mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m) 3158 { 3159 struct mbuf *mh; 3160 struct mldv2_report *mld; 3161 struct ip6_hdr *ip6; 3162 struct in6_ifaddr *ia; 3163 int mldreclen; 3164 3165 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 3166 KASSERT((m->m_flags & M_PKTHDR), 3167 ("%s: mbuf chain %p is !M_PKTHDR", __func__, m)); 3168 3169 /* 3170 * RFC3590: OK to send as :: or tentative during DAD. 3171 */ 3172 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 3173 if (ia == NULL) 3174 CTR1(KTR_MLD, "%s: warning: ia is NULL", __func__); 3175 3176 mh = m_gethdr(M_NOWAIT, MT_DATA); 3177 if (mh == NULL) { 3178 if (ia != NULL) 3179 ifa_free(&ia->ia_ifa); 3180 m_freem(m); 3181 return (NULL); 3182 } 3183 MH_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report)); 3184 3185 mldreclen = m_length(m, NULL); 3186 CTR2(KTR_MLD, "%s: mldreclen is %d", __func__, mldreclen); 3187 3188 mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report); 3189 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + 3190 sizeof(struct mldv2_report) + mldreclen; 3191 3192 ip6 = mtod(mh, struct ip6_hdr *); 3193 ip6->ip6_flow = 0; 3194 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 3195 ip6->ip6_vfc |= IPV6_VERSION; 3196 ip6->ip6_nxt = IPPROTO_ICMPV6; 3197 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 3198 if (ia != NULL) 3199 ifa_free(&ia->ia_ifa); 3200 ip6->ip6_dst = in6addr_linklocal_allv2routers; 3201 /* scope ID will be set in netisr */ 3202 3203 mld = (struct mldv2_report *)(ip6 + 1); 3204 mld->mld_type = MLDV2_LISTENER_REPORT; 3205 mld->mld_code = 0; 3206 mld->mld_cksum = 0; 3207 mld->mld_v2_reserved = 0; 3208 mld->mld_v2_numrecs = htons(m->m_pkthdr.PH_vt.vt_nrecs); 3209 m->m_pkthdr.PH_vt.vt_nrecs = 0; 3210 3211 mh->m_next = m; 3212 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 3213 sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen); 3214 return (mh); 3215 } 3216 3217 #ifdef KTR 3218 static char * 3219 mld_rec_type_to_str(const int type) 3220 { 3221 3222 switch (type) { 3223 case MLD_CHANGE_TO_EXCLUDE_MODE: 3224 return "TO_EX"; 3225 break; 3226 case MLD_CHANGE_TO_INCLUDE_MODE: 3227 return "TO_IN"; 3228 break; 3229 case MLD_MODE_IS_EXCLUDE: 3230 return "MODE_EX"; 3231 break; 3232 case MLD_MODE_IS_INCLUDE: 3233 return "MODE_IN"; 3234 break; 3235 case MLD_ALLOW_NEW_SOURCES: 3236 return "ALLOW_NEW"; 3237 break; 3238 case MLD_BLOCK_OLD_SOURCES: 3239 return "BLOCK_OLD"; 3240 break; 3241 default: 3242 break; 3243 } 3244 return "unknown"; 3245 } 3246 #endif 3247 3248 static void 3249 mld_init(void *unused __unused) 3250 { 3251 3252 CTR1(KTR_MLD, "%s: initializing", __func__); 3253 MLD_LOCK_INIT(); 3254 3255 ip6_initpktopts(&mld_po); 3256 mld_po.ip6po_hlim = 1; 3257 mld_po.ip6po_hbh = &mld_ra.hbh; 3258 mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER; 3259 mld_po.ip6po_flags = IP6PO_DONTFRAG; 3260 } 3261 SYSINIT(mld_init, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, mld_init, NULL); 3262 3263 static void 3264 mld_uninit(void *unused __unused) 3265 { 3266 3267 CTR1(KTR_MLD, "%s: tearing down", __func__); 3268 MLD_LOCK_DESTROY(); 3269 } 3270 SYSUNINIT(mld_uninit, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, mld_uninit, NULL); 3271 3272 static void 3273 vnet_mld_init(const void *unused __unused) 3274 { 3275 3276 CTR1(KTR_MLD, "%s: initializing", __func__); 3277 3278 LIST_INIT(&V_mli_head); 3279 } 3280 VNET_SYSINIT(vnet_mld_init, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mld_init, 3281 NULL); 3282 3283 static void 3284 vnet_mld_uninit(const void *unused __unused) 3285 { 3286 3287 CTR1(KTR_MLD, "%s: tearing down", __func__); 3288 3289 KASSERT(LIST_EMPTY(&V_mli_head), 3290 ("%s: mli list not empty; ifnets not detached?", __func__)); 3291 } 3292 VNET_SYSUNINIT(vnet_mld_uninit, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mld_uninit, 3293 NULL); 3294 3295 static int 3296 mld_modevent(module_t mod, int type, void *unused __unused) 3297 { 3298 3299 switch (type) { 3300 case MOD_LOAD: 3301 case MOD_UNLOAD: 3302 break; 3303 default: 3304 return (EOPNOTSUPP); 3305 } 3306 return (0); 3307 } 3308 3309 static moduledata_t mld_mod = { 3310 "mld", 3311 mld_modevent, 3312 0 3313 }; 3314 DECLARE_MODULE(mld, mld_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); 3315