1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2009 Bruce Simpson. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. The name of the author may not be used to endorse or promote 15 * products derived from this software without specific prior written 16 * permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * $KAME: mld6.c,v 1.27 2001/04/04 05:17:30 itojun Exp $ 31 */ 32 33 /*- 34 * Copyright (c) 1988 Stephen Deering. 35 * Copyright (c) 1992, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * This code is derived from software contributed to Berkeley by 39 * Stephen Deering of Stanford University. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)igmp.c 8.1 (Berkeley) 7/19/93 66 */ 67 68 #include <sys/cdefs.h> 69 __FBSDID("$FreeBSD$"); 70 71 #include "opt_inet.h" 72 #include "opt_inet6.h" 73 74 #include <sys/param.h> 75 #include <sys/systm.h> 76 #include <sys/mbuf.h> 77 #include <sys/socket.h> 78 #include <sys/protosw.h> 79 #include <sys/sysctl.h> 80 #include <sys/kernel.h> 81 #include <sys/callout.h> 82 #include <sys/malloc.h> 83 #include <sys/module.h> 84 #include <sys/ktr.h> 85 86 #include <net/if.h> 87 #include <net/if_var.h> 88 #include <net/route.h> 89 #include <net/vnet.h> 90 91 #include <netinet/in.h> 92 #include <netinet/in_var.h> 93 #include <netinet6/in6_var.h> 94 #include <netinet/ip6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/scope6_var.h> 97 #include <netinet/icmp6.h> 98 #include <netinet6/mld6.h> 99 #include <netinet6/mld6_var.h> 100 101 #include <security/mac/mac_framework.h> 102 103 #ifndef KTR_MLD 104 #define KTR_MLD KTR_INET6 105 #endif 106 107 static struct mld_ifsoftc * 108 mli_alloc_locked(struct ifnet *); 109 static void mli_delete_locked(const struct ifnet *); 110 static void mld_dispatch_packet(struct mbuf *); 111 static void mld_dispatch_queue(struct mbufq *, int); 112 static void mld_final_leave(struct in6_multi *, struct mld_ifsoftc *); 113 static void mld_fasttimo_vnet(struct in6_multi_head *inmh); 114 static int mld_handle_state_change(struct in6_multi *, 115 struct mld_ifsoftc *); 116 static int mld_initial_join(struct in6_multi *, struct mld_ifsoftc *, 117 const int); 118 #ifdef KTR 119 static char * mld_rec_type_to_str(const int); 120 #endif 121 static void mld_set_version(struct mld_ifsoftc *, const int); 122 static void mld_slowtimo_vnet(void); 123 static int mld_v1_input_query(struct ifnet *, const struct ip6_hdr *, 124 /*const*/ struct mld_hdr *); 125 static int mld_v1_input_report(struct ifnet *, const struct ip6_hdr *, 126 /*const*/ struct mld_hdr *); 127 static void mld_v1_process_group_timer(struct in6_multi_head *, 128 struct in6_multi *); 129 static void mld_v1_process_querier_timers(struct mld_ifsoftc *); 130 static int mld_v1_transmit_report(struct in6_multi *, const int); 131 static void mld_v1_update_group(struct in6_multi *, const int); 132 static void mld_v2_cancel_link_timers(struct mld_ifsoftc *); 133 static void mld_v2_dispatch_general_query(struct mld_ifsoftc *); 134 static struct mbuf * 135 mld_v2_encap_report(struct ifnet *, struct mbuf *); 136 static int mld_v2_enqueue_filter_change(struct mbufq *, 137 struct in6_multi *); 138 static int mld_v2_enqueue_group_record(struct mbufq *, 139 struct in6_multi *, const int, const int, const int, 140 const int); 141 static int mld_v2_input_query(struct ifnet *, const struct ip6_hdr *, 142 struct mbuf *, struct mldv2_query *, const int, const int); 143 static int mld_v2_merge_state_changes(struct in6_multi *, 144 struct mbufq *); 145 static void mld_v2_process_group_timers(struct in6_multi_head *, 146 struct mbufq *, struct mbufq *, 147 struct in6_multi *, const int); 148 static int mld_v2_process_group_query(struct in6_multi *, 149 struct mld_ifsoftc *mli, int, struct mbuf *, 150 struct mldv2_query *, const int); 151 static int sysctl_mld_gsr(SYSCTL_HANDLER_ARGS); 152 static int sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS); 153 154 /* 155 * Normative references: RFC 2710, RFC 3590, RFC 3810. 156 * 157 * Locking: 158 * * The MLD subsystem lock ends up being system-wide for the moment, 159 * but could be per-VIMAGE later on. 160 * * The permitted lock order is: IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK. 161 * Any may be taken independently; if any are held at the same 162 * time, the above lock order must be followed. 163 * * IN6_MULTI_LOCK covers in_multi. 164 * * MLD_LOCK covers per-link state and any global variables in this file. 165 * * IF_ADDR_LOCK covers if_multiaddrs, which is used for a variety of 166 * per-link state iterators. 167 * 168 * XXX LOR PREVENTION 169 * A special case for IPv6 is the in6_setscope() routine. ip6_output() 170 * will not accept an ifp; it wants an embedded scope ID, unlike 171 * ip_output(), which happily takes the ifp given to it. The embedded 172 * scope ID is only used by MLD to select the outgoing interface. 173 * 174 * During interface attach and detach, MLD will take MLD_LOCK *after* 175 * the IF_AFDATA_LOCK. 176 * As in6_setscope() takes IF_AFDATA_LOCK then SCOPE_LOCK, we can't call 177 * it with MLD_LOCK held without triggering an LOR. A netisr with indirect 178 * dispatch could work around this, but we'd rather not do that, as it 179 * can introduce other races. 180 * 181 * As such, we exploit the fact that the scope ID is just the interface 182 * index, and embed it in the IPv6 destination address accordingly. 183 * This is potentially NOT VALID for MLDv1 reports, as they 184 * are always sent to the multicast group itself; as MLDv2 185 * reports are always sent to ff02::16, this is not an issue 186 * when MLDv2 is in use. 187 * 188 * This does not however eliminate the LOR when ip6_output() itself 189 * calls in6_setscope() internally whilst MLD_LOCK is held. This will 190 * trigger a LOR warning in WITNESS when the ifnet is detached. 191 * 192 * The right answer is probably to make IF_AFDATA_LOCK an rwlock, given 193 * how it's used across the network stack. Here we're simply exploiting 194 * the fact that MLD runs at a similar layer in the stack to scope6.c. 195 * 196 * VIMAGE: 197 * * Each in6_multi corresponds to an ifp, and each ifp corresponds 198 * to a vnet in ifp->if_vnet. 199 */ 200 static struct mtx mld_mtx; 201 static MALLOC_DEFINE(M_MLD, "mld", "mld state"); 202 203 #define MLD_EMBEDSCOPE(pin6, zoneid) \ 204 if (IN6_IS_SCOPE_LINKLOCAL(pin6) || \ 205 IN6_IS_ADDR_MC_INTFACELOCAL(pin6)) \ 206 (pin6)->s6_addr16[1] = htons((zoneid) & 0xFFFF) \ 207 208 /* 209 * VIMAGE-wide globals. 210 */ 211 VNET_DEFINE_STATIC(struct timeval, mld_gsrdelay) = {10, 0}; 212 VNET_DEFINE_STATIC(LIST_HEAD(, mld_ifsoftc), mli_head); 213 VNET_DEFINE_STATIC(int, interface_timers_running6); 214 VNET_DEFINE_STATIC(int, state_change_timers_running6); 215 VNET_DEFINE_STATIC(int, current_state_timers_running6); 216 217 #define V_mld_gsrdelay VNET(mld_gsrdelay) 218 #define V_mli_head VNET(mli_head) 219 #define V_interface_timers_running6 VNET(interface_timers_running6) 220 #define V_state_change_timers_running6 VNET(state_change_timers_running6) 221 #define V_current_state_timers_running6 VNET(current_state_timers_running6) 222 223 SYSCTL_DECL(_net_inet6); /* Note: Not in any common header. */ 224 225 SYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 226 "IPv6 Multicast Listener Discovery"); 227 228 /* 229 * Virtualized sysctls. 230 */ 231 SYSCTL_PROC(_net_inet6_mld, OID_AUTO, gsrdelay, 232 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 233 &VNET_NAME(mld_gsrdelay.tv_sec), 0, sysctl_mld_gsr, "I", 234 "Rate limit for MLDv2 Group-and-Source queries in seconds"); 235 236 /* 237 * Non-virtualized sysctls. 238 */ 239 static SYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo, 240 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mld_ifinfo, 241 "Per-interface MLDv2 state"); 242 243 static int mld_v1enable = 1; 244 SYSCTL_INT(_net_inet6_mld, OID_AUTO, v1enable, CTLFLAG_RWTUN, 245 &mld_v1enable, 0, "Enable fallback to MLDv1"); 246 247 static int mld_v2enable = 1; 248 SYSCTL_INT(_net_inet6_mld, OID_AUTO, v2enable, CTLFLAG_RWTUN, 249 &mld_v2enable, 0, "Enable MLDv2"); 250 251 static int mld_use_allow = 1; 252 SYSCTL_INT(_net_inet6_mld, OID_AUTO, use_allow, CTLFLAG_RWTUN, 253 &mld_use_allow, 0, "Use ALLOW/BLOCK for RFC 4604 SSM joins/leaves"); 254 255 /* 256 * Packed Router Alert option structure declaration. 257 */ 258 struct mld_raopt { 259 struct ip6_hbh hbh; 260 struct ip6_opt pad; 261 struct ip6_opt_router ra; 262 } __packed; 263 264 /* 265 * Router Alert hop-by-hop option header. 266 */ 267 static struct mld_raopt mld_ra = { 268 .hbh = { 0, 0 }, 269 .pad = { .ip6o_type = IP6OPT_PADN, 0 }, 270 .ra = { 271 .ip6or_type = IP6OPT_ROUTER_ALERT, 272 .ip6or_len = IP6OPT_RTALERT_LEN - 2, 273 .ip6or_value[0] = ((IP6OPT_RTALERT_MLD >> 8) & 0xFF), 274 .ip6or_value[1] = (IP6OPT_RTALERT_MLD & 0xFF) 275 } 276 }; 277 static struct ip6_pktopts mld_po; 278 279 static __inline void 280 mld_save_context(struct mbuf *m, struct ifnet *ifp) 281 { 282 283 #ifdef VIMAGE 284 m->m_pkthdr.PH_loc.ptr = ifp->if_vnet; 285 #endif /* VIMAGE */ 286 m->m_pkthdr.rcvif = ifp; 287 m->m_pkthdr.flowid = ifp->if_index; 288 } 289 290 static __inline void 291 mld_scrub_context(struct mbuf *m) 292 { 293 294 m->m_pkthdr.PH_loc.ptr = NULL; 295 m->m_pkthdr.flowid = 0; 296 } 297 298 /* 299 * Restore context from a queued output chain. 300 * Return saved ifindex. 301 * 302 * VIMAGE: The assertion is there to make sure that we 303 * actually called CURVNET_SET() with what's in the mbuf chain. 304 */ 305 static __inline uint32_t 306 mld_restore_context(struct mbuf *m) 307 { 308 309 #if defined(VIMAGE) && defined(INVARIANTS) 310 KASSERT(curvnet == m->m_pkthdr.PH_loc.ptr, 311 ("%s: called when curvnet was not restored: cuvnet %p m ptr %p", 312 __func__, curvnet, m->m_pkthdr.PH_loc.ptr)); 313 #endif 314 return (m->m_pkthdr.flowid); 315 } 316 317 /* 318 * Retrieve or set threshold between group-source queries in seconds. 319 * 320 * VIMAGE: Assume curvnet set by caller. 321 * SMPng: NOTE: Serialized by MLD lock. 322 */ 323 static int 324 sysctl_mld_gsr(SYSCTL_HANDLER_ARGS) 325 { 326 int error; 327 int i; 328 329 error = sysctl_wire_old_buffer(req, sizeof(int)); 330 if (error) 331 return (error); 332 333 MLD_LOCK(); 334 335 i = V_mld_gsrdelay.tv_sec; 336 337 error = sysctl_handle_int(oidp, &i, 0, req); 338 if (error || !req->newptr) 339 goto out_locked; 340 341 if (i < -1 || i >= 60) { 342 error = EINVAL; 343 goto out_locked; 344 } 345 346 CTR2(KTR_MLD, "change mld_gsrdelay from %d to %d", 347 V_mld_gsrdelay.tv_sec, i); 348 V_mld_gsrdelay.tv_sec = i; 349 350 out_locked: 351 MLD_UNLOCK(); 352 return (error); 353 } 354 355 /* 356 * Expose struct mld_ifsoftc to userland, keyed by ifindex. 357 * For use by ifmcstat(8). 358 * 359 * VIMAGE: Assume curvnet set by caller. The node handler itself 360 * is not directly virtualized. 361 */ 362 static int 363 sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS) 364 { 365 struct epoch_tracker et; 366 int *name; 367 int error; 368 u_int namelen; 369 struct ifnet *ifp; 370 struct mld_ifsoftc *mli; 371 372 name = (int *)arg1; 373 namelen = arg2; 374 375 if (req->newptr != NULL) 376 return (EPERM); 377 378 if (namelen != 1) 379 return (EINVAL); 380 381 error = sysctl_wire_old_buffer(req, sizeof(struct mld_ifinfo)); 382 if (error) 383 return (error); 384 385 IN6_MULTI_LOCK(); 386 IN6_MULTI_LIST_LOCK(); 387 MLD_LOCK(); 388 NET_EPOCH_ENTER(et); 389 390 error = ENOENT; 391 ifp = ifnet_byindex(name[0]); 392 if (ifp == NULL) 393 goto out_locked; 394 395 LIST_FOREACH(mli, &V_mli_head, mli_link) { 396 if (ifp == mli->mli_ifp) { 397 struct mld_ifinfo info; 398 399 info.mli_version = mli->mli_version; 400 info.mli_v1_timer = mli->mli_v1_timer; 401 info.mli_v2_timer = mli->mli_v2_timer; 402 info.mli_flags = mli->mli_flags; 403 info.mli_rv = mli->mli_rv; 404 info.mli_qi = mli->mli_qi; 405 info.mli_qri = mli->mli_qri; 406 info.mli_uri = mli->mli_uri; 407 error = SYSCTL_OUT(req, &info, sizeof(info)); 408 break; 409 } 410 } 411 412 out_locked: 413 NET_EPOCH_EXIT(et); 414 MLD_UNLOCK(); 415 IN6_MULTI_LIST_UNLOCK(); 416 IN6_MULTI_UNLOCK(); 417 return (error); 418 } 419 420 /* 421 * Dispatch an entire queue of pending packet chains. 422 * VIMAGE: Assumes the vnet pointer has been set. 423 */ 424 static void 425 mld_dispatch_queue(struct mbufq *mq, int limit) 426 { 427 struct mbuf *m; 428 429 while ((m = mbufq_dequeue(mq)) != NULL) { 430 CTR3(KTR_MLD, "%s: dispatch %p from %p", __func__, mq, m); 431 mld_dispatch_packet(m); 432 if (--limit == 0) 433 break; 434 } 435 } 436 437 /* 438 * Filter outgoing MLD report state by group. 439 * 440 * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1) 441 * and node-local addresses. However, kernel and socket consumers 442 * always embed the KAME scope ID in the address provided, so strip it 443 * when performing comparison. 444 * Note: This is not the same as the *multicast* scope. 445 * 446 * Return zero if the given group is one for which MLD reports 447 * should be suppressed, or non-zero if reports should be issued. 448 */ 449 static __inline int 450 mld_is_addr_reported(const struct in6_addr *addr) 451 { 452 453 KASSERT(IN6_IS_ADDR_MULTICAST(addr), ("%s: not multicast", __func__)); 454 455 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL) 456 return (0); 457 458 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL) { 459 struct in6_addr tmp = *addr; 460 in6_clearscope(&tmp); 461 if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes)) 462 return (0); 463 } 464 465 return (1); 466 } 467 468 /* 469 * Attach MLD when PF_INET6 is attached to an interface. 470 * 471 * SMPng: Normally called with IF_AFDATA_LOCK held. 472 */ 473 struct mld_ifsoftc * 474 mld_domifattach(struct ifnet *ifp) 475 { 476 struct mld_ifsoftc *mli; 477 478 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 479 __func__, ifp, if_name(ifp)); 480 481 MLD_LOCK(); 482 483 mli = mli_alloc_locked(ifp); 484 if (!(ifp->if_flags & IFF_MULTICAST)) 485 mli->mli_flags |= MLIF_SILENT; 486 if (mld_use_allow) 487 mli->mli_flags |= MLIF_USEALLOW; 488 489 MLD_UNLOCK(); 490 491 return (mli); 492 } 493 494 /* 495 * VIMAGE: assume curvnet set by caller. 496 */ 497 static struct mld_ifsoftc * 498 mli_alloc_locked(/*const*/ struct ifnet *ifp) 499 { 500 struct mld_ifsoftc *mli; 501 502 MLD_LOCK_ASSERT(); 503 504 mli = malloc(sizeof(struct mld_ifsoftc), M_MLD, M_NOWAIT|M_ZERO); 505 if (mli == NULL) 506 goto out; 507 508 mli->mli_ifp = ifp; 509 mli->mli_version = MLD_VERSION_2; 510 mli->mli_flags = 0; 511 mli->mli_rv = MLD_RV_INIT; 512 mli->mli_qi = MLD_QI_INIT; 513 mli->mli_qri = MLD_QRI_INIT; 514 mli->mli_uri = MLD_URI_INIT; 515 mbufq_init(&mli->mli_gq, MLD_MAX_RESPONSE_PACKETS); 516 517 LIST_INSERT_HEAD(&V_mli_head, mli, mli_link); 518 519 CTR2(KTR_MLD, "allocate mld_ifsoftc for ifp %p(%s)", 520 ifp, if_name(ifp)); 521 522 out: 523 return (mli); 524 } 525 526 /* 527 * Hook for ifdetach. 528 * 529 * NOTE: Some finalization tasks need to run before the protocol domain 530 * is detached, but also before the link layer does its cleanup. 531 * Run before link-layer cleanup; cleanup groups, but do not free MLD state. 532 * 533 * SMPng: Caller must hold IN6_MULTI_LOCK(). 534 * Must take IF_ADDR_LOCK() to cover if_multiaddrs iterator. 535 * XXX This routine is also bitten by unlocked ifma_protospec access. 536 */ 537 void 538 mld_ifdetach(struct ifnet *ifp, struct in6_multi_head *inmh) 539 { 540 struct epoch_tracker et; 541 struct mld_ifsoftc *mli; 542 struct ifmultiaddr *ifma; 543 struct in6_multi *inm; 544 545 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", __func__, ifp, 546 if_name(ifp)); 547 548 IN6_MULTI_LIST_LOCK_ASSERT(); 549 MLD_LOCK(); 550 551 mli = MLD_IFINFO(ifp); 552 IF_ADDR_WLOCK(ifp); 553 /* 554 * Extract list of in6_multi associated with the detaching ifp 555 * which the PF_INET6 layer is about to release. 556 */ 557 NET_EPOCH_ENTER(et); 558 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 559 inm = in6m_ifmultiaddr_get_inm(ifma); 560 if (inm == NULL) 561 continue; 562 in6m_disconnect_locked(inmh, inm); 563 564 if (mli->mli_version == MLD_VERSION_2) { 565 in6m_clear_recorded(inm); 566 567 /* 568 * We need to release the final reference held 569 * for issuing the INCLUDE {}. 570 */ 571 if (inm->in6m_state == MLD_LEAVING_MEMBER) { 572 inm->in6m_state = MLD_NOT_MEMBER; 573 in6m_rele_locked(inmh, inm); 574 } 575 } 576 } 577 NET_EPOCH_EXIT(et); 578 IF_ADDR_WUNLOCK(ifp); 579 MLD_UNLOCK(); 580 } 581 582 /* 583 * Hook for domifdetach. 584 * Runs after link-layer cleanup; free MLD state. 585 * 586 * SMPng: Normally called with IF_AFDATA_LOCK held. 587 */ 588 void 589 mld_domifdetach(struct ifnet *ifp) 590 { 591 592 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 593 __func__, ifp, if_name(ifp)); 594 595 MLD_LOCK(); 596 mli_delete_locked(ifp); 597 MLD_UNLOCK(); 598 } 599 600 static void 601 mli_delete_locked(const struct ifnet *ifp) 602 { 603 struct mld_ifsoftc *mli, *tmli; 604 605 CTR3(KTR_MLD, "%s: freeing mld_ifsoftc for ifp %p(%s)", 606 __func__, ifp, if_name(ifp)); 607 608 MLD_LOCK_ASSERT(); 609 610 LIST_FOREACH_SAFE(mli, &V_mli_head, mli_link, tmli) { 611 if (mli->mli_ifp == ifp) { 612 /* 613 * Free deferred General Query responses. 614 */ 615 mbufq_drain(&mli->mli_gq); 616 617 LIST_REMOVE(mli, mli_link); 618 619 free(mli, M_MLD); 620 return; 621 } 622 } 623 } 624 625 /* 626 * Process a received MLDv1 general or address-specific query. 627 * Assumes that the query header has been pulled up to sizeof(mld_hdr). 628 * 629 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 630 * mld_addr. This is OK as we own the mbuf chain. 631 */ 632 static int 633 mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 634 /*const*/ struct mld_hdr *mld) 635 { 636 struct ifmultiaddr *ifma; 637 struct mld_ifsoftc *mli; 638 struct in6_multi *inm; 639 int is_general_query; 640 uint16_t timer; 641 #ifdef KTR 642 char ip6tbuf[INET6_ADDRSTRLEN]; 643 #endif 644 645 NET_EPOCH_ASSERT(); 646 647 is_general_query = 0; 648 649 if (!mld_v1enable) { 650 CTR3(KTR_MLD, "ignore v1 query %s on ifp %p(%s)", 651 ip6_sprintf(ip6tbuf, &mld->mld_addr), 652 ifp, if_name(ifp)); 653 return (0); 654 } 655 656 /* 657 * RFC3810 Section 6.2: MLD queries must originate from 658 * a router's link-local address. 659 */ 660 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 661 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 662 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 663 ifp, if_name(ifp)); 664 return (0); 665 } 666 667 /* 668 * Do address field validation upfront before we accept 669 * the query. 670 */ 671 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 672 /* 673 * MLDv1 General Query. 674 * If this was not sent to the all-nodes group, ignore it. 675 */ 676 struct in6_addr dst; 677 678 dst = ip6->ip6_dst; 679 in6_clearscope(&dst); 680 if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes)) 681 return (EINVAL); 682 is_general_query = 1; 683 } else { 684 /* 685 * Embed scope ID of receiving interface in MLD query for 686 * lookup whilst we don't hold other locks. 687 */ 688 in6_setscope(&mld->mld_addr, ifp, NULL); 689 } 690 691 IN6_MULTI_LIST_LOCK(); 692 MLD_LOCK(); 693 694 /* 695 * Switch to MLDv1 host compatibility mode. 696 */ 697 mli = MLD_IFINFO(ifp); 698 KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp)); 699 mld_set_version(mli, MLD_VERSION_1); 700 701 timer = (ntohs(mld->mld_maxdelay) * PR_FASTHZ) / MLD_TIMER_SCALE; 702 if (timer == 0) 703 timer = 1; 704 705 if (is_general_query) { 706 /* 707 * For each reporting group joined on this 708 * interface, kick the report timer. 709 */ 710 CTR2(KTR_MLD, "process v1 general query on ifp %p(%s)", 711 ifp, if_name(ifp)); 712 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 713 inm = in6m_ifmultiaddr_get_inm(ifma); 714 if (inm == NULL) 715 continue; 716 mld_v1_update_group(inm, timer); 717 } 718 } else { 719 /* 720 * MLDv1 Group-Specific Query. 721 * If this is a group-specific MLDv1 query, we need only 722 * look up the single group to process it. 723 */ 724 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 725 if (inm != NULL) { 726 CTR3(KTR_MLD, "process v1 query %s on ifp %p(%s)", 727 ip6_sprintf(ip6tbuf, &mld->mld_addr), 728 ifp, if_name(ifp)); 729 mld_v1_update_group(inm, timer); 730 } 731 /* XXX Clear embedded scope ID as userland won't expect it. */ 732 in6_clearscope(&mld->mld_addr); 733 } 734 735 MLD_UNLOCK(); 736 IN6_MULTI_LIST_UNLOCK(); 737 738 return (0); 739 } 740 741 /* 742 * Update the report timer on a group in response to an MLDv1 query. 743 * 744 * If we are becoming the reporting member for this group, start the timer. 745 * If we already are the reporting member for this group, and timer is 746 * below the threshold, reset it. 747 * 748 * We may be updating the group for the first time since we switched 749 * to MLDv2. If we are, then we must clear any recorded source lists, 750 * and transition to REPORTING state; the group timer is overloaded 751 * for group and group-source query responses. 752 * 753 * Unlike MLDv2, the delay per group should be jittered 754 * to avoid bursts of MLDv1 reports. 755 */ 756 static void 757 mld_v1_update_group(struct in6_multi *inm, const int timer) 758 { 759 #ifdef KTR 760 char ip6tbuf[INET6_ADDRSTRLEN]; 761 #endif 762 763 CTR4(KTR_MLD, "%s: %s/%s timer=%d", __func__, 764 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 765 if_name(inm->in6m_ifp), timer); 766 767 IN6_MULTI_LIST_LOCK_ASSERT(); 768 769 switch (inm->in6m_state) { 770 case MLD_NOT_MEMBER: 771 case MLD_SILENT_MEMBER: 772 break; 773 case MLD_REPORTING_MEMBER: 774 if (inm->in6m_timer != 0 && 775 inm->in6m_timer <= timer) { 776 CTR1(KTR_MLD, "%s: REPORTING and timer running, " 777 "skipping.", __func__); 778 break; 779 } 780 /* FALLTHROUGH */ 781 case MLD_SG_QUERY_PENDING_MEMBER: 782 case MLD_G_QUERY_PENDING_MEMBER: 783 case MLD_IDLE_MEMBER: 784 case MLD_LAZY_MEMBER: 785 case MLD_AWAKENING_MEMBER: 786 CTR1(KTR_MLD, "%s: ->REPORTING", __func__); 787 inm->in6m_state = MLD_REPORTING_MEMBER; 788 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 789 V_current_state_timers_running6 = 1; 790 break; 791 case MLD_SLEEPING_MEMBER: 792 CTR1(KTR_MLD, "%s: ->AWAKENING", __func__); 793 inm->in6m_state = MLD_AWAKENING_MEMBER; 794 break; 795 case MLD_LEAVING_MEMBER: 796 break; 797 } 798 } 799 800 /* 801 * Process a received MLDv2 general, group-specific or 802 * group-and-source-specific query. 803 * 804 * Assumes that mld points to a struct mldv2_query which is stored in 805 * contiguous memory. 806 * 807 * Return 0 if successful, otherwise an appropriate error code is returned. 808 */ 809 static int 810 mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 811 struct mbuf *m, struct mldv2_query *mld, const int off, const int icmp6len) 812 { 813 struct mld_ifsoftc *mli; 814 struct in6_multi *inm; 815 uint32_t maxdelay, nsrc, qqi; 816 int is_general_query; 817 uint16_t timer; 818 uint8_t qrv; 819 #ifdef KTR 820 char ip6tbuf[INET6_ADDRSTRLEN]; 821 #endif 822 823 NET_EPOCH_ASSERT(); 824 825 if (!mld_v2enable) { 826 CTR3(KTR_MLD, "ignore v2 query src %s on ifp %p(%s)", 827 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 828 ifp, if_name(ifp)); 829 return (0); 830 } 831 832 /* 833 * RFC3810 Section 6.2: MLD queries must originate from 834 * a router's link-local address. 835 */ 836 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 837 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 838 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 839 ifp, if_name(ifp)); 840 return (0); 841 } 842 843 is_general_query = 0; 844 845 CTR2(KTR_MLD, "input v2 query on ifp %p(%s)", ifp, if_name(ifp)); 846 847 maxdelay = ntohs(mld->mld_maxdelay); /* in 1/10ths of a second */ 848 if (maxdelay >= 32768) { 849 maxdelay = (MLD_MRC_MANT(maxdelay) | 0x1000) << 850 (MLD_MRC_EXP(maxdelay) + 3); 851 } 852 timer = (maxdelay * PR_FASTHZ) / MLD_TIMER_SCALE; 853 if (timer == 0) 854 timer = 1; 855 856 qrv = MLD_QRV(mld->mld_misc); 857 if (qrv < 2) { 858 CTR3(KTR_MLD, "%s: clamping qrv %d to %d", __func__, 859 qrv, MLD_RV_INIT); 860 qrv = MLD_RV_INIT; 861 } 862 863 qqi = mld->mld_qqi; 864 if (qqi >= 128) { 865 qqi = MLD_QQIC_MANT(mld->mld_qqi) << 866 (MLD_QQIC_EXP(mld->mld_qqi) + 3); 867 } 868 869 nsrc = ntohs(mld->mld_numsrc); 870 if (nsrc > MLD_MAX_GS_SOURCES) 871 return (EMSGSIZE); 872 if (icmp6len < sizeof(struct mldv2_query) + 873 (nsrc * sizeof(struct in6_addr))) 874 return (EMSGSIZE); 875 876 /* 877 * Do further input validation upfront to avoid resetting timers 878 * should we need to discard this query. 879 */ 880 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 881 /* 882 * A general query with a source list has undefined 883 * behaviour; discard it. 884 */ 885 if (nsrc > 0) 886 return (EINVAL); 887 is_general_query = 1; 888 } else { 889 /* 890 * Embed scope ID of receiving interface in MLD query for 891 * lookup whilst we don't hold other locks (due to KAME 892 * locking lameness). We own this mbuf chain just now. 893 */ 894 in6_setscope(&mld->mld_addr, ifp, NULL); 895 } 896 897 IN6_MULTI_LIST_LOCK(); 898 MLD_LOCK(); 899 900 mli = MLD_IFINFO(ifp); 901 KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp)); 902 903 /* 904 * Discard the v2 query if we're in Compatibility Mode. 905 * The RFC is pretty clear that hosts need to stay in MLDv1 mode 906 * until the Old Version Querier Present timer expires. 907 */ 908 if (mli->mli_version != MLD_VERSION_2) 909 goto out_locked; 910 911 mld_set_version(mli, MLD_VERSION_2); 912 mli->mli_rv = qrv; 913 mli->mli_qi = qqi; 914 mli->mli_qri = maxdelay; 915 916 CTR4(KTR_MLD, "%s: qrv %d qi %d maxdelay %d", __func__, qrv, qqi, 917 maxdelay); 918 919 if (is_general_query) { 920 /* 921 * MLDv2 General Query. 922 * 923 * Schedule a current-state report on this ifp for 924 * all groups, possibly containing source lists. 925 * 926 * If there is a pending General Query response 927 * scheduled earlier than the selected delay, do 928 * not schedule any other reports. 929 * Otherwise, reset the interface timer. 930 */ 931 CTR2(KTR_MLD, "process v2 general query on ifp %p(%s)", 932 ifp, if_name(ifp)); 933 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) { 934 mli->mli_v2_timer = MLD_RANDOM_DELAY(timer); 935 V_interface_timers_running6 = 1; 936 } 937 } else { 938 /* 939 * MLDv2 Group-specific or Group-and-source-specific Query. 940 * 941 * Group-source-specific queries are throttled on 942 * a per-group basis to defeat denial-of-service attempts. 943 * Queries for groups we are not a member of on this 944 * link are simply ignored. 945 */ 946 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 947 if (inm == NULL) 948 goto out_locked; 949 if (nsrc > 0) { 950 if (!ratecheck(&inm->in6m_lastgsrtv, 951 &V_mld_gsrdelay)) { 952 CTR1(KTR_MLD, "%s: GS query throttled.", 953 __func__); 954 goto out_locked; 955 } 956 } 957 CTR2(KTR_MLD, "process v2 group query on ifp %p(%s)", 958 ifp, if_name(ifp)); 959 /* 960 * If there is a pending General Query response 961 * scheduled sooner than the selected delay, no 962 * further report need be scheduled. 963 * Otherwise, prepare to respond to the 964 * group-specific or group-and-source query. 965 */ 966 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) 967 mld_v2_process_group_query(inm, mli, timer, m, mld, off); 968 969 /* XXX Clear embedded scope ID as userland won't expect it. */ 970 in6_clearscope(&mld->mld_addr); 971 } 972 973 out_locked: 974 MLD_UNLOCK(); 975 IN6_MULTI_LIST_UNLOCK(); 976 977 return (0); 978 } 979 980 /* 981 * Process a received MLDv2 group-specific or group-and-source-specific 982 * query. 983 * Return <0 if any error occurred. Currently this is ignored. 984 */ 985 static int 986 mld_v2_process_group_query(struct in6_multi *inm, struct mld_ifsoftc *mli, 987 int timer, struct mbuf *m0, struct mldv2_query *mld, const int off) 988 { 989 int retval; 990 uint16_t nsrc; 991 992 IN6_MULTI_LIST_LOCK_ASSERT(); 993 MLD_LOCK_ASSERT(); 994 995 retval = 0; 996 997 switch (inm->in6m_state) { 998 case MLD_NOT_MEMBER: 999 case MLD_SILENT_MEMBER: 1000 case MLD_SLEEPING_MEMBER: 1001 case MLD_LAZY_MEMBER: 1002 case MLD_AWAKENING_MEMBER: 1003 case MLD_IDLE_MEMBER: 1004 case MLD_LEAVING_MEMBER: 1005 return (retval); 1006 break; 1007 case MLD_REPORTING_MEMBER: 1008 case MLD_G_QUERY_PENDING_MEMBER: 1009 case MLD_SG_QUERY_PENDING_MEMBER: 1010 break; 1011 } 1012 1013 nsrc = ntohs(mld->mld_numsrc); 1014 1015 /* Length should be checked by calling function. */ 1016 KASSERT((m0->m_flags & M_PKTHDR) == 0 || 1017 m0->m_pkthdr.len >= off + sizeof(struct mldv2_query) + 1018 nsrc * sizeof(struct in6_addr), 1019 ("mldv2 packet is too short: (%d bytes < %zd bytes, m=%p)", 1020 m0->m_pkthdr.len, off + sizeof(struct mldv2_query) + 1021 nsrc * sizeof(struct in6_addr), m0)); 1022 1023 /* 1024 * Deal with group-specific queries upfront. 1025 * If any group query is already pending, purge any recorded 1026 * source-list state if it exists, and schedule a query response 1027 * for this group-specific query. 1028 */ 1029 if (nsrc == 0) { 1030 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 1031 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) { 1032 in6m_clear_recorded(inm); 1033 timer = min(inm->in6m_timer, timer); 1034 } 1035 inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER; 1036 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1037 V_current_state_timers_running6 = 1; 1038 return (retval); 1039 } 1040 1041 /* 1042 * Deal with the case where a group-and-source-specific query has 1043 * been received but a group-specific query is already pending. 1044 */ 1045 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) { 1046 timer = min(inm->in6m_timer, timer); 1047 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1048 V_current_state_timers_running6 = 1; 1049 return (retval); 1050 } 1051 1052 /* 1053 * Finally, deal with the case where a group-and-source-specific 1054 * query has been received, where a response to a previous g-s-r 1055 * query exists, or none exists. 1056 * In this case, we need to parse the source-list which the Querier 1057 * has provided us with and check if we have any source list filter 1058 * entries at T1 for these sources. If we do not, there is no need 1059 * schedule a report and the query may be dropped. 1060 * If we do, we must record them and schedule a current-state 1061 * report for those sources. 1062 */ 1063 if (inm->in6m_nsrc > 0) { 1064 struct in6_addr srcaddr; 1065 int i, nrecorded; 1066 int soff; 1067 1068 soff = off + sizeof(struct mldv2_query); 1069 nrecorded = 0; 1070 for (i = 0; i < nsrc; i++) { 1071 m_copydata(m0, soff, sizeof(struct in6_addr), 1072 (caddr_t)&srcaddr); 1073 retval = in6m_record_source(inm, &srcaddr); 1074 if (retval < 0) 1075 break; 1076 nrecorded += retval; 1077 soff += sizeof(struct in6_addr); 1078 } 1079 if (nrecorded > 0) { 1080 CTR1(KTR_MLD, 1081 "%s: schedule response to SG query", __func__); 1082 inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER; 1083 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1084 V_current_state_timers_running6 = 1; 1085 } 1086 } 1087 1088 return (retval); 1089 } 1090 1091 /* 1092 * Process a received MLDv1 host membership report. 1093 * Assumes mld points to mld_hdr in pulled up mbuf chain. 1094 * 1095 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 1096 * mld_addr. This is OK as we own the mbuf chain. 1097 */ 1098 static int 1099 mld_v1_input_report(struct ifnet *ifp, const struct ip6_hdr *ip6, 1100 /*const*/ struct mld_hdr *mld) 1101 { 1102 struct in6_addr src, dst; 1103 struct in6_ifaddr *ia; 1104 struct in6_multi *inm; 1105 #ifdef KTR 1106 char ip6tbuf[INET6_ADDRSTRLEN]; 1107 #endif 1108 1109 NET_EPOCH_ASSERT(); 1110 1111 if (!mld_v1enable) { 1112 CTR3(KTR_MLD, "ignore v1 report %s on ifp %p(%s)", 1113 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1114 ifp, if_name(ifp)); 1115 return (0); 1116 } 1117 1118 if (ifp->if_flags & IFF_LOOPBACK) 1119 return (0); 1120 1121 /* 1122 * MLDv1 reports must originate from a host's link-local address, 1123 * or the unspecified address (when booting). 1124 */ 1125 src = ip6->ip6_src; 1126 in6_clearscope(&src); 1127 if (!IN6_IS_SCOPE_LINKLOCAL(&src) && !IN6_IS_ADDR_UNSPECIFIED(&src)) { 1128 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 1129 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 1130 ifp, if_name(ifp)); 1131 return (EINVAL); 1132 } 1133 1134 /* 1135 * RFC2710 Section 4: MLDv1 reports must pertain to a multicast 1136 * group, and must be directed to the group itself. 1137 */ 1138 dst = ip6->ip6_dst; 1139 in6_clearscope(&dst); 1140 if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) || 1141 !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &dst)) { 1142 CTR3(KTR_MLD, "ignore v1 query dst %s on ifp %p(%s)", 1143 ip6_sprintf(ip6tbuf, &ip6->ip6_dst), 1144 ifp, if_name(ifp)); 1145 return (EINVAL); 1146 } 1147 1148 /* 1149 * Make sure we don't hear our own membership report, as fast 1150 * leave requires knowing that we are the only member of a 1151 * group. Assume we used the link-local address if available, 1152 * otherwise look for ::. 1153 * 1154 * XXX Note that scope ID comparison is needed for the address 1155 * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be 1156 * performed for the on-wire address. 1157 */ 1158 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1159 if ((ia && IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia))) || 1160 (ia == NULL && IN6_IS_ADDR_UNSPECIFIED(&src))) { 1161 if (ia != NULL) 1162 ifa_free(&ia->ia_ifa); 1163 return (0); 1164 } 1165 if (ia != NULL) 1166 ifa_free(&ia->ia_ifa); 1167 1168 CTR3(KTR_MLD, "process v1 report %s on ifp %p(%s)", 1169 ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, if_name(ifp)); 1170 1171 /* 1172 * Embed scope ID of receiving interface in MLD query for lookup 1173 * whilst we don't hold other locks (due to KAME locking lameness). 1174 */ 1175 if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) 1176 in6_setscope(&mld->mld_addr, ifp, NULL); 1177 1178 IN6_MULTI_LIST_LOCK(); 1179 MLD_LOCK(); 1180 1181 /* 1182 * MLDv1 report suppression. 1183 * If we are a member of this group, and our membership should be 1184 * reported, and our group timer is pending or about to be reset, 1185 * stop our group timer by transitioning to the 'lazy' state. 1186 */ 1187 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 1188 if (inm != NULL) { 1189 struct mld_ifsoftc *mli; 1190 1191 mli = inm->in6m_mli; 1192 KASSERT(mli != NULL, 1193 ("%s: no mli for ifp %p", __func__, ifp)); 1194 1195 /* 1196 * If we are in MLDv2 host mode, do not allow the 1197 * other host's MLDv1 report to suppress our reports. 1198 */ 1199 if (mli->mli_version == MLD_VERSION_2) 1200 goto out_locked; 1201 1202 inm->in6m_timer = 0; 1203 1204 switch (inm->in6m_state) { 1205 case MLD_NOT_MEMBER: 1206 case MLD_SILENT_MEMBER: 1207 case MLD_SLEEPING_MEMBER: 1208 break; 1209 case MLD_REPORTING_MEMBER: 1210 case MLD_IDLE_MEMBER: 1211 case MLD_AWAKENING_MEMBER: 1212 CTR3(KTR_MLD, 1213 "report suppressed for %s on ifp %p(%s)", 1214 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1215 ifp, if_name(ifp)); 1216 case MLD_LAZY_MEMBER: 1217 inm->in6m_state = MLD_LAZY_MEMBER; 1218 break; 1219 case MLD_G_QUERY_PENDING_MEMBER: 1220 case MLD_SG_QUERY_PENDING_MEMBER: 1221 case MLD_LEAVING_MEMBER: 1222 break; 1223 } 1224 } 1225 1226 out_locked: 1227 MLD_UNLOCK(); 1228 IN6_MULTI_LIST_UNLOCK(); 1229 1230 /* XXX Clear embedded scope ID as userland won't expect it. */ 1231 in6_clearscope(&mld->mld_addr); 1232 1233 return (0); 1234 } 1235 1236 /* 1237 * MLD input path. 1238 * 1239 * Assume query messages which fit in a single ICMPv6 message header 1240 * have been pulled up. 1241 * Assume that userland will want to see the message, even if it 1242 * otherwise fails kernel input validation; do not free it. 1243 * Pullup may however free the mbuf chain m if it fails. 1244 * 1245 * Return IPPROTO_DONE if we freed m. Otherwise, return 0. 1246 */ 1247 int 1248 mld_input(struct mbuf **mp, int off, int icmp6len) 1249 { 1250 struct ifnet *ifp; 1251 struct ip6_hdr *ip6; 1252 struct mbuf *m; 1253 struct mld_hdr *mld; 1254 int mldlen; 1255 1256 m = *mp; 1257 CTR3(KTR_MLD, "%s: called w/mbuf (%p,%d)", __func__, m, off); 1258 1259 ifp = m->m_pkthdr.rcvif; 1260 1261 /* Pullup to appropriate size. */ 1262 if (m->m_len < off + sizeof(*mld)) { 1263 m = m_pullup(m, off + sizeof(*mld)); 1264 if (m == NULL) { 1265 ICMP6STAT_INC(icp6s_badlen); 1266 return (IPPROTO_DONE); 1267 } 1268 } 1269 mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off); 1270 if (mld->mld_type == MLD_LISTENER_QUERY && 1271 icmp6len >= sizeof(struct mldv2_query)) { 1272 mldlen = sizeof(struct mldv2_query); 1273 } else { 1274 mldlen = sizeof(struct mld_hdr); 1275 } 1276 if (m->m_len < off + mldlen) { 1277 m = m_pullup(m, off + mldlen); 1278 if (m == NULL) { 1279 ICMP6STAT_INC(icp6s_badlen); 1280 return (IPPROTO_DONE); 1281 } 1282 } 1283 *mp = m; 1284 ip6 = mtod(m, struct ip6_hdr *); 1285 mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off); 1286 1287 /* 1288 * Userland needs to see all of this traffic for implementing 1289 * the endpoint discovery portion of multicast routing. 1290 */ 1291 switch (mld->mld_type) { 1292 case MLD_LISTENER_QUERY: 1293 icmp6_ifstat_inc(ifp, ifs6_in_mldquery); 1294 if (icmp6len == sizeof(struct mld_hdr)) { 1295 if (mld_v1_input_query(ifp, ip6, mld) != 0) 1296 return (0); 1297 } else if (icmp6len >= sizeof(struct mldv2_query)) { 1298 if (mld_v2_input_query(ifp, ip6, m, 1299 (struct mldv2_query *)mld, off, icmp6len) != 0) 1300 return (0); 1301 } 1302 break; 1303 case MLD_LISTENER_REPORT: 1304 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1305 if (mld_v1_input_report(ifp, ip6, mld) != 0) 1306 return (0); 1307 break; 1308 case MLDV2_LISTENER_REPORT: 1309 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1310 break; 1311 case MLD_LISTENER_DONE: 1312 icmp6_ifstat_inc(ifp, ifs6_in_mlddone); 1313 break; 1314 default: 1315 break; 1316 } 1317 1318 return (0); 1319 } 1320 1321 /* 1322 * Fast timeout handler (global). 1323 * VIMAGE: Timeout handlers are expected to service all vimages. 1324 */ 1325 void 1326 mld_fasttimo(void) 1327 { 1328 struct in6_multi_head inmh; 1329 VNET_ITERATOR_DECL(vnet_iter); 1330 1331 SLIST_INIT(&inmh); 1332 1333 VNET_LIST_RLOCK_NOSLEEP(); 1334 VNET_FOREACH(vnet_iter) { 1335 CURVNET_SET(vnet_iter); 1336 mld_fasttimo_vnet(&inmh); 1337 CURVNET_RESTORE(); 1338 } 1339 VNET_LIST_RUNLOCK_NOSLEEP(); 1340 in6m_release_list_deferred(&inmh); 1341 } 1342 1343 /* 1344 * Fast timeout handler (per-vnet). 1345 * 1346 * VIMAGE: Assume caller has set up our curvnet. 1347 */ 1348 static void 1349 mld_fasttimo_vnet(struct in6_multi_head *inmh) 1350 { 1351 struct epoch_tracker et; 1352 struct mbufq scq; /* State-change packets */ 1353 struct mbufq qrq; /* Query response packets */ 1354 struct ifnet *ifp; 1355 struct mld_ifsoftc *mli; 1356 struct ifmultiaddr *ifma; 1357 struct in6_multi *inm; 1358 int uri_fasthz; 1359 1360 uri_fasthz = 0; 1361 1362 /* 1363 * Quick check to see if any work needs to be done, in order to 1364 * minimize the overhead of fasttimo processing. 1365 * SMPng: XXX Unlocked reads. 1366 */ 1367 if (!V_current_state_timers_running6 && 1368 !V_interface_timers_running6 && 1369 !V_state_change_timers_running6) 1370 return; 1371 1372 IN6_MULTI_LIST_LOCK(); 1373 MLD_LOCK(); 1374 1375 /* 1376 * MLDv2 General Query response timer processing. 1377 */ 1378 if (V_interface_timers_running6) { 1379 CTR1(KTR_MLD, "%s: interface timers running", __func__); 1380 1381 V_interface_timers_running6 = 0; 1382 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1383 if (mli->mli_v2_timer == 0) { 1384 /* Do nothing. */ 1385 } else if (--mli->mli_v2_timer == 0) { 1386 mld_v2_dispatch_general_query(mli); 1387 } else { 1388 V_interface_timers_running6 = 1; 1389 } 1390 } 1391 } 1392 1393 if (!V_current_state_timers_running6 && 1394 !V_state_change_timers_running6) 1395 goto out_locked; 1396 1397 V_current_state_timers_running6 = 0; 1398 V_state_change_timers_running6 = 0; 1399 1400 CTR1(KTR_MLD, "%s: state change timers running", __func__); 1401 1402 /* 1403 * MLD host report and state-change timer processing. 1404 * Note: Processing a v2 group timer may remove a node. 1405 */ 1406 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1407 ifp = mli->mli_ifp; 1408 1409 if (mli->mli_version == MLD_VERSION_2) { 1410 uri_fasthz = MLD_RANDOM_DELAY(mli->mli_uri * 1411 PR_FASTHZ); 1412 mbufq_init(&qrq, MLD_MAX_G_GS_PACKETS); 1413 mbufq_init(&scq, MLD_MAX_STATE_CHANGE_PACKETS); 1414 } 1415 1416 NET_EPOCH_ENTER(et); 1417 IF_ADDR_WLOCK(ifp); 1418 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1419 inm = in6m_ifmultiaddr_get_inm(ifma); 1420 if (inm == NULL) 1421 continue; 1422 switch (mli->mli_version) { 1423 case MLD_VERSION_1: 1424 mld_v1_process_group_timer(inmh, inm); 1425 break; 1426 case MLD_VERSION_2: 1427 mld_v2_process_group_timers(inmh, &qrq, 1428 &scq, inm, uri_fasthz); 1429 break; 1430 } 1431 } 1432 IF_ADDR_WUNLOCK(ifp); 1433 1434 switch (mli->mli_version) { 1435 case MLD_VERSION_1: 1436 /* 1437 * Transmit reports for this lifecycle. This 1438 * is done while not holding IF_ADDR_LOCK 1439 * since this can call 1440 * in6ifa_ifpforlinklocal() which locks 1441 * IF_ADDR_LOCK internally as well as 1442 * ip6_output() to transmit a packet. 1443 */ 1444 while ((inm = SLIST_FIRST(inmh)) != NULL) { 1445 SLIST_REMOVE_HEAD(inmh, in6m_defer); 1446 (void)mld_v1_transmit_report(inm, 1447 MLD_LISTENER_REPORT); 1448 } 1449 break; 1450 case MLD_VERSION_2: 1451 mld_dispatch_queue(&qrq, 0); 1452 mld_dispatch_queue(&scq, 0); 1453 break; 1454 } 1455 NET_EPOCH_EXIT(et); 1456 } 1457 1458 out_locked: 1459 MLD_UNLOCK(); 1460 IN6_MULTI_LIST_UNLOCK(); 1461 } 1462 1463 /* 1464 * Update host report group timer. 1465 * Will update the global pending timer flags. 1466 */ 1467 static void 1468 mld_v1_process_group_timer(struct in6_multi_head *inmh, struct in6_multi *inm) 1469 { 1470 int report_timer_expired; 1471 1472 IN6_MULTI_LIST_LOCK_ASSERT(); 1473 MLD_LOCK_ASSERT(); 1474 1475 if (inm->in6m_timer == 0) { 1476 report_timer_expired = 0; 1477 } else if (--inm->in6m_timer == 0) { 1478 report_timer_expired = 1; 1479 } else { 1480 V_current_state_timers_running6 = 1; 1481 return; 1482 } 1483 1484 switch (inm->in6m_state) { 1485 case MLD_NOT_MEMBER: 1486 case MLD_SILENT_MEMBER: 1487 case MLD_IDLE_MEMBER: 1488 case MLD_LAZY_MEMBER: 1489 case MLD_SLEEPING_MEMBER: 1490 case MLD_AWAKENING_MEMBER: 1491 break; 1492 case MLD_REPORTING_MEMBER: 1493 if (report_timer_expired) { 1494 inm->in6m_state = MLD_IDLE_MEMBER; 1495 SLIST_INSERT_HEAD(inmh, inm, in6m_defer); 1496 } 1497 break; 1498 case MLD_G_QUERY_PENDING_MEMBER: 1499 case MLD_SG_QUERY_PENDING_MEMBER: 1500 case MLD_LEAVING_MEMBER: 1501 break; 1502 } 1503 } 1504 1505 /* 1506 * Update a group's timers for MLDv2. 1507 * Will update the global pending timer flags. 1508 * Note: Unlocked read from mli. 1509 */ 1510 static void 1511 mld_v2_process_group_timers(struct in6_multi_head *inmh, 1512 struct mbufq *qrq, struct mbufq *scq, 1513 struct in6_multi *inm, const int uri_fasthz) 1514 { 1515 int query_response_timer_expired; 1516 int state_change_retransmit_timer_expired; 1517 #ifdef KTR 1518 char ip6tbuf[INET6_ADDRSTRLEN]; 1519 #endif 1520 1521 IN6_MULTI_LIST_LOCK_ASSERT(); 1522 MLD_LOCK_ASSERT(); 1523 1524 query_response_timer_expired = 0; 1525 state_change_retransmit_timer_expired = 0; 1526 1527 /* 1528 * During a transition from compatibility mode back to MLDv2, 1529 * a group record in REPORTING state may still have its group 1530 * timer active. This is a no-op in this function; it is easier 1531 * to deal with it here than to complicate the slow-timeout path. 1532 */ 1533 if (inm->in6m_timer == 0) { 1534 query_response_timer_expired = 0; 1535 } else if (--inm->in6m_timer == 0) { 1536 query_response_timer_expired = 1; 1537 } else { 1538 V_current_state_timers_running6 = 1; 1539 } 1540 1541 if (inm->in6m_sctimer == 0) { 1542 state_change_retransmit_timer_expired = 0; 1543 } else if (--inm->in6m_sctimer == 0) { 1544 state_change_retransmit_timer_expired = 1; 1545 } else { 1546 V_state_change_timers_running6 = 1; 1547 } 1548 1549 /* We are in fasttimo, so be quick about it. */ 1550 if (!state_change_retransmit_timer_expired && 1551 !query_response_timer_expired) 1552 return; 1553 1554 switch (inm->in6m_state) { 1555 case MLD_NOT_MEMBER: 1556 case MLD_SILENT_MEMBER: 1557 case MLD_SLEEPING_MEMBER: 1558 case MLD_LAZY_MEMBER: 1559 case MLD_AWAKENING_MEMBER: 1560 case MLD_IDLE_MEMBER: 1561 break; 1562 case MLD_G_QUERY_PENDING_MEMBER: 1563 case MLD_SG_QUERY_PENDING_MEMBER: 1564 /* 1565 * Respond to a previously pending Group-Specific 1566 * or Group-and-Source-Specific query by enqueueing 1567 * the appropriate Current-State report for 1568 * immediate transmission. 1569 */ 1570 if (query_response_timer_expired) { 1571 int retval; 1572 1573 retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1, 1574 (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER), 1575 0); 1576 CTR2(KTR_MLD, "%s: enqueue record = %d", 1577 __func__, retval); 1578 inm->in6m_state = MLD_REPORTING_MEMBER; 1579 in6m_clear_recorded(inm); 1580 } 1581 /* FALLTHROUGH */ 1582 case MLD_REPORTING_MEMBER: 1583 case MLD_LEAVING_MEMBER: 1584 if (state_change_retransmit_timer_expired) { 1585 /* 1586 * State-change retransmission timer fired. 1587 * If there are any further pending retransmissions, 1588 * set the global pending state-change flag, and 1589 * reset the timer. 1590 */ 1591 if (--inm->in6m_scrv > 0) { 1592 inm->in6m_sctimer = uri_fasthz; 1593 V_state_change_timers_running6 = 1; 1594 } 1595 /* 1596 * Retransmit the previously computed state-change 1597 * report. If there are no further pending 1598 * retransmissions, the mbuf queue will be consumed. 1599 * Update T0 state to T1 as we have now sent 1600 * a state-change. 1601 */ 1602 (void)mld_v2_merge_state_changes(inm, scq); 1603 1604 in6m_commit(inm); 1605 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 1606 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1607 if_name(inm->in6m_ifp)); 1608 1609 /* 1610 * If we are leaving the group for good, make sure 1611 * we release MLD's reference to it. 1612 * This release must be deferred using a SLIST, 1613 * as we are called from a loop which traverses 1614 * the in_ifmultiaddr TAILQ. 1615 */ 1616 if (inm->in6m_state == MLD_LEAVING_MEMBER && 1617 inm->in6m_scrv == 0) { 1618 inm->in6m_state = MLD_NOT_MEMBER; 1619 in6m_disconnect_locked(inmh, inm); 1620 in6m_rele_locked(inmh, inm); 1621 } 1622 } 1623 break; 1624 } 1625 } 1626 1627 /* 1628 * Switch to a different version on the given interface, 1629 * as per Section 9.12. 1630 */ 1631 static void 1632 mld_set_version(struct mld_ifsoftc *mli, const int version) 1633 { 1634 int old_version_timer; 1635 1636 MLD_LOCK_ASSERT(); 1637 1638 CTR4(KTR_MLD, "%s: switching to v%d on ifp %p(%s)", __func__, 1639 version, mli->mli_ifp, if_name(mli->mli_ifp)); 1640 1641 if (version == MLD_VERSION_1) { 1642 /* 1643 * Compute the "Older Version Querier Present" timer as per 1644 * Section 9.12. 1645 */ 1646 old_version_timer = (mli->mli_rv * mli->mli_qi) + mli->mli_qri; 1647 old_version_timer *= PR_SLOWHZ; 1648 mli->mli_v1_timer = old_version_timer; 1649 } 1650 1651 if (mli->mli_v1_timer > 0 && mli->mli_version != MLD_VERSION_1) { 1652 mli->mli_version = MLD_VERSION_1; 1653 mld_v2_cancel_link_timers(mli); 1654 } 1655 } 1656 1657 /* 1658 * Cancel pending MLDv2 timers for the given link and all groups 1659 * joined on it; state-change, general-query, and group-query timers. 1660 */ 1661 static void 1662 mld_v2_cancel_link_timers(struct mld_ifsoftc *mli) 1663 { 1664 struct epoch_tracker et; 1665 struct in6_multi_head inmh; 1666 struct ifmultiaddr *ifma; 1667 struct ifnet *ifp; 1668 struct in6_multi *inm; 1669 1670 CTR3(KTR_MLD, "%s: cancel v2 timers on ifp %p(%s)", __func__, 1671 mli->mli_ifp, if_name(mli->mli_ifp)); 1672 1673 SLIST_INIT(&inmh); 1674 IN6_MULTI_LIST_LOCK_ASSERT(); 1675 MLD_LOCK_ASSERT(); 1676 1677 /* 1678 * Fast-track this potentially expensive operation 1679 * by checking all the global 'timer pending' flags. 1680 */ 1681 if (!V_interface_timers_running6 && 1682 !V_state_change_timers_running6 && 1683 !V_current_state_timers_running6) 1684 return; 1685 1686 mli->mli_v2_timer = 0; 1687 1688 ifp = mli->mli_ifp; 1689 1690 IF_ADDR_WLOCK(ifp); 1691 NET_EPOCH_ENTER(et); 1692 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1693 inm = in6m_ifmultiaddr_get_inm(ifma); 1694 if (inm == NULL) 1695 continue; 1696 switch (inm->in6m_state) { 1697 case MLD_NOT_MEMBER: 1698 case MLD_SILENT_MEMBER: 1699 case MLD_IDLE_MEMBER: 1700 case MLD_LAZY_MEMBER: 1701 case MLD_SLEEPING_MEMBER: 1702 case MLD_AWAKENING_MEMBER: 1703 break; 1704 case MLD_LEAVING_MEMBER: 1705 /* 1706 * If we are leaving the group and switching 1707 * version, we need to release the final 1708 * reference held for issuing the INCLUDE {}. 1709 */ 1710 if (inm->in6m_refcount == 1) 1711 in6m_disconnect_locked(&inmh, inm); 1712 in6m_rele_locked(&inmh, inm); 1713 /* FALLTHROUGH */ 1714 case MLD_G_QUERY_PENDING_MEMBER: 1715 case MLD_SG_QUERY_PENDING_MEMBER: 1716 in6m_clear_recorded(inm); 1717 /* FALLTHROUGH */ 1718 case MLD_REPORTING_MEMBER: 1719 inm->in6m_sctimer = 0; 1720 inm->in6m_timer = 0; 1721 inm->in6m_state = MLD_REPORTING_MEMBER; 1722 /* 1723 * Free any pending MLDv2 state-change records. 1724 */ 1725 mbufq_drain(&inm->in6m_scq); 1726 break; 1727 } 1728 } 1729 NET_EPOCH_EXIT(et); 1730 IF_ADDR_WUNLOCK(ifp); 1731 in6m_release_list_deferred(&inmh); 1732 } 1733 1734 /* 1735 * Global slowtimo handler. 1736 * VIMAGE: Timeout handlers are expected to service all vimages. 1737 */ 1738 void 1739 mld_slowtimo(void) 1740 { 1741 VNET_ITERATOR_DECL(vnet_iter); 1742 1743 VNET_LIST_RLOCK_NOSLEEP(); 1744 VNET_FOREACH(vnet_iter) { 1745 CURVNET_SET(vnet_iter); 1746 mld_slowtimo_vnet(); 1747 CURVNET_RESTORE(); 1748 } 1749 VNET_LIST_RUNLOCK_NOSLEEP(); 1750 } 1751 1752 /* 1753 * Per-vnet slowtimo handler. 1754 */ 1755 static void 1756 mld_slowtimo_vnet(void) 1757 { 1758 struct mld_ifsoftc *mli; 1759 1760 MLD_LOCK(); 1761 1762 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1763 mld_v1_process_querier_timers(mli); 1764 } 1765 1766 MLD_UNLOCK(); 1767 } 1768 1769 /* 1770 * Update the Older Version Querier Present timers for a link. 1771 * See Section 9.12 of RFC 3810. 1772 */ 1773 static void 1774 mld_v1_process_querier_timers(struct mld_ifsoftc *mli) 1775 { 1776 1777 MLD_LOCK_ASSERT(); 1778 1779 if (mli->mli_version != MLD_VERSION_2 && --mli->mli_v1_timer == 0) { 1780 /* 1781 * MLDv1 Querier Present timer expired; revert to MLDv2. 1782 */ 1783 CTR5(KTR_MLD, 1784 "%s: transition from v%d -> v%d on %p(%s)", 1785 __func__, mli->mli_version, MLD_VERSION_2, 1786 mli->mli_ifp, if_name(mli->mli_ifp)); 1787 mli->mli_version = MLD_VERSION_2; 1788 } 1789 } 1790 1791 /* 1792 * Transmit an MLDv1 report immediately. 1793 */ 1794 static int 1795 mld_v1_transmit_report(struct in6_multi *in6m, const int type) 1796 { 1797 struct ifnet *ifp; 1798 struct in6_ifaddr *ia; 1799 struct ip6_hdr *ip6; 1800 struct mbuf *mh, *md; 1801 struct mld_hdr *mld; 1802 1803 NET_EPOCH_ASSERT(); 1804 IN6_MULTI_LIST_LOCK_ASSERT(); 1805 MLD_LOCK_ASSERT(); 1806 1807 ifp = in6m->in6m_ifp; 1808 /* in process of being freed */ 1809 if (ifp == NULL) 1810 return (0); 1811 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1812 /* ia may be NULL if link-local address is tentative. */ 1813 1814 mh = m_gethdr(M_NOWAIT, MT_DATA); 1815 if (mh == NULL) { 1816 if (ia != NULL) 1817 ifa_free(&ia->ia_ifa); 1818 return (ENOMEM); 1819 } 1820 md = m_get(M_NOWAIT, MT_DATA); 1821 if (md == NULL) { 1822 m_free(mh); 1823 if (ia != NULL) 1824 ifa_free(&ia->ia_ifa); 1825 return (ENOMEM); 1826 } 1827 mh->m_next = md; 1828 1829 /* 1830 * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so 1831 * that ether_output() does not need to allocate another mbuf 1832 * for the header in the most common case. 1833 */ 1834 M_ALIGN(mh, sizeof(struct ip6_hdr)); 1835 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr); 1836 mh->m_len = sizeof(struct ip6_hdr); 1837 1838 ip6 = mtod(mh, struct ip6_hdr *); 1839 ip6->ip6_flow = 0; 1840 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 1841 ip6->ip6_vfc |= IPV6_VERSION; 1842 ip6->ip6_nxt = IPPROTO_ICMPV6; 1843 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 1844 ip6->ip6_dst = in6m->in6m_addr; 1845 1846 md->m_len = sizeof(struct mld_hdr); 1847 mld = mtod(md, struct mld_hdr *); 1848 mld->mld_type = type; 1849 mld->mld_code = 0; 1850 mld->mld_cksum = 0; 1851 mld->mld_maxdelay = 0; 1852 mld->mld_reserved = 0; 1853 mld->mld_addr = in6m->in6m_addr; 1854 in6_clearscope(&mld->mld_addr); 1855 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 1856 sizeof(struct ip6_hdr), sizeof(struct mld_hdr)); 1857 1858 mld_save_context(mh, ifp); 1859 mh->m_flags |= M_MLDV1; 1860 1861 mld_dispatch_packet(mh); 1862 1863 if (ia != NULL) 1864 ifa_free(&ia->ia_ifa); 1865 return (0); 1866 } 1867 1868 /* 1869 * Process a state change from the upper layer for the given IPv6 group. 1870 * 1871 * Each socket holds a reference on the in_multi in its own ip_moptions. 1872 * The socket layer will have made the necessary updates to.the group 1873 * state, it is now up to MLD to issue a state change report if there 1874 * has been any change between T0 (when the last state-change was issued) 1875 * and T1 (now). 1876 * 1877 * We use the MLDv2 state machine at group level. The MLd module 1878 * however makes the decision as to which MLD protocol version to speak. 1879 * A state change *from* INCLUDE {} always means an initial join. 1880 * A state change *to* INCLUDE {} always means a final leave. 1881 * 1882 * If delay is non-zero, and the state change is an initial multicast 1883 * join, the state change report will be delayed by 'delay' ticks 1884 * in units of PR_FASTHZ if MLDv1 is active on the link; otherwise 1885 * the initial MLDv2 state change report will be delayed by whichever 1886 * is sooner, a pending state-change timer or delay itself. 1887 * 1888 * VIMAGE: curvnet should have been set by caller, as this routine 1889 * is called from the socket option handlers. 1890 */ 1891 int 1892 mld_change_state(struct in6_multi *inm, const int delay) 1893 { 1894 struct mld_ifsoftc *mli; 1895 struct ifnet *ifp; 1896 int error; 1897 1898 IN6_MULTI_LIST_LOCK_ASSERT(); 1899 1900 error = 0; 1901 1902 /* 1903 * Check if the in6_multi has already been disconnected. 1904 */ 1905 if (inm->in6m_ifp == NULL) { 1906 CTR1(KTR_MLD, "%s: inm is disconnected", __func__); 1907 return (0); 1908 } 1909 1910 /* 1911 * Try to detect if the upper layer just asked us to change state 1912 * for an interface which has now gone away. 1913 */ 1914 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); 1915 ifp = inm->in6m_ifma->ifma_ifp; 1916 if (ifp == NULL) 1917 return (0); 1918 /* 1919 * Sanity check that netinet6's notion of ifp is the 1920 * same as net's. 1921 */ 1922 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); 1923 1924 MLD_LOCK(); 1925 mli = MLD_IFINFO(ifp); 1926 KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp)); 1927 1928 /* 1929 * If we detect a state transition to or from MCAST_UNDEFINED 1930 * for this group, then we are starting or finishing an MLD 1931 * life cycle for this group. 1932 */ 1933 if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) { 1934 CTR3(KTR_MLD, "%s: inm transition %d -> %d", __func__, 1935 inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode); 1936 if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) { 1937 CTR1(KTR_MLD, "%s: initial join", __func__); 1938 error = mld_initial_join(inm, mli, delay); 1939 goto out_locked; 1940 } else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) { 1941 CTR1(KTR_MLD, "%s: final leave", __func__); 1942 mld_final_leave(inm, mli); 1943 goto out_locked; 1944 } 1945 } else { 1946 CTR1(KTR_MLD, "%s: filter set change", __func__); 1947 } 1948 1949 error = mld_handle_state_change(inm, mli); 1950 1951 out_locked: 1952 MLD_UNLOCK(); 1953 return (error); 1954 } 1955 1956 /* 1957 * Perform the initial join for an MLD group. 1958 * 1959 * When joining a group: 1960 * If the group should have its MLD traffic suppressed, do nothing. 1961 * MLDv1 starts sending MLDv1 host membership reports. 1962 * MLDv2 will schedule an MLDv2 state-change report containing the 1963 * initial state of the membership. 1964 * 1965 * If the delay argument is non-zero, then we must delay sending the 1966 * initial state change for delay ticks (in units of PR_FASTHZ). 1967 */ 1968 static int 1969 mld_initial_join(struct in6_multi *inm, struct mld_ifsoftc *mli, 1970 const int delay) 1971 { 1972 struct epoch_tracker et; 1973 struct ifnet *ifp; 1974 struct mbufq *mq; 1975 int error, retval, syncstates; 1976 int odelay; 1977 #ifdef KTR 1978 char ip6tbuf[INET6_ADDRSTRLEN]; 1979 #endif 1980 1981 CTR4(KTR_MLD, "%s: initial join %s on ifp %p(%s)", 1982 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1983 inm->in6m_ifp, if_name(inm->in6m_ifp)); 1984 1985 error = 0; 1986 syncstates = 1; 1987 1988 ifp = inm->in6m_ifp; 1989 1990 IN6_MULTI_LIST_LOCK_ASSERT(); 1991 MLD_LOCK_ASSERT(); 1992 1993 KASSERT(mli && mli->mli_ifp == ifp, ("%s: inconsistent ifp", __func__)); 1994 1995 /* 1996 * Groups joined on loopback or marked as 'not reported', 1997 * enter the MLD_SILENT_MEMBER state and 1998 * are never reported in any protocol exchanges. 1999 * All other groups enter the appropriate state machine 2000 * for the version in use on this link. 2001 * A link marked as MLIF_SILENT causes MLD to be completely 2002 * disabled for the link. 2003 */ 2004 if ((ifp->if_flags & IFF_LOOPBACK) || 2005 (mli->mli_flags & MLIF_SILENT) || 2006 !mld_is_addr_reported(&inm->in6m_addr)) { 2007 CTR1(KTR_MLD, 2008 "%s: not kicking state machine for silent group", __func__); 2009 inm->in6m_state = MLD_SILENT_MEMBER; 2010 inm->in6m_timer = 0; 2011 } else { 2012 /* 2013 * Deal with overlapping in_multi lifecycle. 2014 * If this group was LEAVING, then make sure 2015 * we drop the reference we picked up to keep the 2016 * group around for the final INCLUDE {} enqueue. 2017 */ 2018 if (mli->mli_version == MLD_VERSION_2 && 2019 inm->in6m_state == MLD_LEAVING_MEMBER) { 2020 inm->in6m_refcount--; 2021 MPASS(inm->in6m_refcount > 0); 2022 } 2023 inm->in6m_state = MLD_REPORTING_MEMBER; 2024 2025 switch (mli->mli_version) { 2026 case MLD_VERSION_1: 2027 /* 2028 * If a delay was provided, only use it if 2029 * it is greater than the delay normally 2030 * used for an MLDv1 state change report, 2031 * and delay sending the initial MLDv1 report 2032 * by not transitioning to the IDLE state. 2033 */ 2034 odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI * PR_FASTHZ); 2035 if (delay) { 2036 inm->in6m_timer = max(delay, odelay); 2037 V_current_state_timers_running6 = 1; 2038 } else { 2039 inm->in6m_state = MLD_IDLE_MEMBER; 2040 NET_EPOCH_ENTER(et); 2041 error = mld_v1_transmit_report(inm, 2042 MLD_LISTENER_REPORT); 2043 NET_EPOCH_EXIT(et); 2044 if (error == 0) { 2045 inm->in6m_timer = odelay; 2046 V_current_state_timers_running6 = 1; 2047 } 2048 } 2049 break; 2050 2051 case MLD_VERSION_2: 2052 /* 2053 * Defer update of T0 to T1, until the first copy 2054 * of the state change has been transmitted. 2055 */ 2056 syncstates = 0; 2057 2058 /* 2059 * Immediately enqueue a State-Change Report for 2060 * this interface, freeing any previous reports. 2061 * Don't kick the timers if there is nothing to do, 2062 * or if an error occurred. 2063 */ 2064 mq = &inm->in6m_scq; 2065 mbufq_drain(mq); 2066 retval = mld_v2_enqueue_group_record(mq, inm, 1, 2067 0, 0, (mli->mli_flags & MLIF_USEALLOW)); 2068 CTR2(KTR_MLD, "%s: enqueue record = %d", 2069 __func__, retval); 2070 if (retval <= 0) { 2071 error = retval * -1; 2072 break; 2073 } 2074 2075 /* 2076 * Schedule transmission of pending state-change 2077 * report up to RV times for this link. The timer 2078 * will fire at the next mld_fasttimo (~200ms), 2079 * giving us an opportunity to merge the reports. 2080 * 2081 * If a delay was provided to this function, only 2082 * use this delay if sooner than the existing one. 2083 */ 2084 KASSERT(mli->mli_rv > 1, 2085 ("%s: invalid robustness %d", __func__, 2086 mli->mli_rv)); 2087 inm->in6m_scrv = mli->mli_rv; 2088 if (delay) { 2089 if (inm->in6m_sctimer > 1) { 2090 inm->in6m_sctimer = 2091 min(inm->in6m_sctimer, delay); 2092 } else 2093 inm->in6m_sctimer = delay; 2094 } else 2095 inm->in6m_sctimer = 1; 2096 V_state_change_timers_running6 = 1; 2097 2098 error = 0; 2099 break; 2100 } 2101 } 2102 2103 /* 2104 * Only update the T0 state if state change is atomic, 2105 * i.e. we don't need to wait for a timer to fire before we 2106 * can consider the state change to have been communicated. 2107 */ 2108 if (syncstates) { 2109 in6m_commit(inm); 2110 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2111 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2112 if_name(inm->in6m_ifp)); 2113 } 2114 2115 return (error); 2116 } 2117 2118 /* 2119 * Issue an intermediate state change during the life-cycle. 2120 */ 2121 static int 2122 mld_handle_state_change(struct in6_multi *inm, struct mld_ifsoftc *mli) 2123 { 2124 struct ifnet *ifp; 2125 int retval; 2126 #ifdef KTR 2127 char ip6tbuf[INET6_ADDRSTRLEN]; 2128 #endif 2129 2130 CTR4(KTR_MLD, "%s: state change for %s on ifp %p(%s)", 2131 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2132 inm->in6m_ifp, if_name(inm->in6m_ifp)); 2133 2134 ifp = inm->in6m_ifp; 2135 2136 IN6_MULTI_LIST_LOCK_ASSERT(); 2137 MLD_LOCK_ASSERT(); 2138 2139 KASSERT(mli && mli->mli_ifp == ifp, 2140 ("%s: inconsistent ifp", __func__)); 2141 2142 if ((ifp->if_flags & IFF_LOOPBACK) || 2143 (mli->mli_flags & MLIF_SILENT) || 2144 !mld_is_addr_reported(&inm->in6m_addr) || 2145 (mli->mli_version != MLD_VERSION_2)) { 2146 if (!mld_is_addr_reported(&inm->in6m_addr)) { 2147 CTR1(KTR_MLD, 2148 "%s: not kicking state machine for silent group", __func__); 2149 } 2150 CTR1(KTR_MLD, "%s: nothing to do", __func__); 2151 in6m_commit(inm); 2152 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2153 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2154 if_name(inm->in6m_ifp)); 2155 return (0); 2156 } 2157 2158 mbufq_drain(&inm->in6m_scq); 2159 2160 retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0, 2161 (mli->mli_flags & MLIF_USEALLOW)); 2162 CTR2(KTR_MLD, "%s: enqueue record = %d", __func__, retval); 2163 if (retval <= 0) 2164 return (-retval); 2165 2166 /* 2167 * If record(s) were enqueued, start the state-change 2168 * report timer for this group. 2169 */ 2170 inm->in6m_scrv = mli->mli_rv; 2171 inm->in6m_sctimer = 1; 2172 V_state_change_timers_running6 = 1; 2173 2174 return (0); 2175 } 2176 2177 /* 2178 * Perform the final leave for a multicast address. 2179 * 2180 * When leaving a group: 2181 * MLDv1 sends a DONE message, if and only if we are the reporter. 2182 * MLDv2 enqueues a state-change report containing a transition 2183 * to INCLUDE {} for immediate transmission. 2184 */ 2185 static void 2186 mld_final_leave(struct in6_multi *inm, struct mld_ifsoftc *mli) 2187 { 2188 struct epoch_tracker et; 2189 int syncstates; 2190 #ifdef KTR 2191 char ip6tbuf[INET6_ADDRSTRLEN]; 2192 #endif 2193 2194 syncstates = 1; 2195 2196 CTR4(KTR_MLD, "%s: final leave %s on ifp %p(%s)", 2197 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2198 inm->in6m_ifp, if_name(inm->in6m_ifp)); 2199 2200 IN6_MULTI_LIST_LOCK_ASSERT(); 2201 MLD_LOCK_ASSERT(); 2202 2203 switch (inm->in6m_state) { 2204 case MLD_NOT_MEMBER: 2205 case MLD_SILENT_MEMBER: 2206 case MLD_LEAVING_MEMBER: 2207 /* Already leaving or left; do nothing. */ 2208 CTR1(KTR_MLD, 2209 "%s: not kicking state machine for silent group", __func__); 2210 break; 2211 case MLD_REPORTING_MEMBER: 2212 case MLD_IDLE_MEMBER: 2213 case MLD_G_QUERY_PENDING_MEMBER: 2214 case MLD_SG_QUERY_PENDING_MEMBER: 2215 if (mli->mli_version == MLD_VERSION_1) { 2216 #ifdef INVARIANTS 2217 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 2218 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) 2219 panic("%s: MLDv2 state reached, not MLDv2 mode", 2220 __func__); 2221 #endif 2222 NET_EPOCH_ENTER(et); 2223 mld_v1_transmit_report(inm, MLD_LISTENER_DONE); 2224 NET_EPOCH_EXIT(et); 2225 inm->in6m_state = MLD_NOT_MEMBER; 2226 V_current_state_timers_running6 = 1; 2227 } else if (mli->mli_version == MLD_VERSION_2) { 2228 /* 2229 * Stop group timer and all pending reports. 2230 * Immediately enqueue a state-change report 2231 * TO_IN {} to be sent on the next fast timeout, 2232 * giving us an opportunity to merge reports. 2233 */ 2234 mbufq_drain(&inm->in6m_scq); 2235 inm->in6m_timer = 0; 2236 inm->in6m_scrv = mli->mli_rv; 2237 CTR4(KTR_MLD, "%s: Leaving %s/%s with %d " 2238 "pending retransmissions.", __func__, 2239 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2240 if_name(inm->in6m_ifp), inm->in6m_scrv); 2241 if (inm->in6m_scrv == 0) { 2242 inm->in6m_state = MLD_NOT_MEMBER; 2243 inm->in6m_sctimer = 0; 2244 } else { 2245 int retval; 2246 2247 in6m_acquire_locked(inm); 2248 2249 retval = mld_v2_enqueue_group_record( 2250 &inm->in6m_scq, inm, 1, 0, 0, 2251 (mli->mli_flags & MLIF_USEALLOW)); 2252 KASSERT(retval != 0, 2253 ("%s: enqueue record = %d", __func__, 2254 retval)); 2255 2256 inm->in6m_state = MLD_LEAVING_MEMBER; 2257 inm->in6m_sctimer = 1; 2258 V_state_change_timers_running6 = 1; 2259 syncstates = 0; 2260 } 2261 break; 2262 } 2263 break; 2264 case MLD_LAZY_MEMBER: 2265 case MLD_SLEEPING_MEMBER: 2266 case MLD_AWAKENING_MEMBER: 2267 /* Our reports are suppressed; do nothing. */ 2268 break; 2269 } 2270 2271 if (syncstates) { 2272 in6m_commit(inm); 2273 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2274 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2275 if_name(inm->in6m_ifp)); 2276 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 2277 CTR3(KTR_MLD, "%s: T1 now MCAST_UNDEFINED for %p/%s", 2278 __func__, &inm->in6m_addr, if_name(inm->in6m_ifp)); 2279 } 2280 } 2281 2282 /* 2283 * Enqueue an MLDv2 group record to the given output queue. 2284 * 2285 * If is_state_change is zero, a current-state record is appended. 2286 * If is_state_change is non-zero, a state-change report is appended. 2287 * 2288 * If is_group_query is non-zero, an mbuf packet chain is allocated. 2289 * If is_group_query is zero, and if there is a packet with free space 2290 * at the tail of the queue, it will be appended to providing there 2291 * is enough free space. 2292 * Otherwise a new mbuf packet chain is allocated. 2293 * 2294 * If is_source_query is non-zero, each source is checked to see if 2295 * it was recorded for a Group-Source query, and will be omitted if 2296 * it is not both in-mode and recorded. 2297 * 2298 * If use_block_allow is non-zero, state change reports for initial join 2299 * and final leave, on an inclusive mode group with a source list, will be 2300 * rewritten to use the ALLOW_NEW and BLOCK_OLD record types, respectively. 2301 * 2302 * The function will attempt to allocate leading space in the packet 2303 * for the IPv6+ICMP headers to be prepended without fragmenting the chain. 2304 * 2305 * If successful the size of all data appended to the queue is returned, 2306 * otherwise an error code less than zero is returned, or zero if 2307 * no record(s) were appended. 2308 */ 2309 static int 2310 mld_v2_enqueue_group_record(struct mbufq *mq, struct in6_multi *inm, 2311 const int is_state_change, const int is_group_query, 2312 const int is_source_query, const int use_block_allow) 2313 { 2314 struct mldv2_record mr; 2315 struct mldv2_record *pmr; 2316 struct ifnet *ifp; 2317 struct ip6_msource *ims, *nims; 2318 struct mbuf *m0, *m, *md; 2319 int is_filter_list_change; 2320 int minrec0len, m0srcs, msrcs, nbytes, off; 2321 int record_has_sources; 2322 int now; 2323 int type; 2324 uint8_t mode; 2325 #ifdef KTR 2326 char ip6tbuf[INET6_ADDRSTRLEN]; 2327 #endif 2328 2329 IN6_MULTI_LIST_LOCK_ASSERT(); 2330 2331 ifp = inm->in6m_ifp; 2332 is_filter_list_change = 0; 2333 m = NULL; 2334 m0 = NULL; 2335 m0srcs = 0; 2336 msrcs = 0; 2337 nbytes = 0; 2338 nims = NULL; 2339 record_has_sources = 1; 2340 pmr = NULL; 2341 type = MLD_DO_NOTHING; 2342 mode = inm->in6m_st[1].iss_fmode; 2343 2344 /* 2345 * If we did not transition out of ASM mode during t0->t1, 2346 * and there are no source nodes to process, we can skip 2347 * the generation of source records. 2348 */ 2349 if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 && 2350 inm->in6m_nsrc == 0) 2351 record_has_sources = 0; 2352 2353 if (is_state_change) { 2354 /* 2355 * Queue a state change record. 2356 * If the mode did not change, and there are non-ASM 2357 * listeners or source filters present, 2358 * we potentially need to issue two records for the group. 2359 * If there are ASM listeners, and there was no filter 2360 * mode transition of any kind, do nothing. 2361 * 2362 * If we are transitioning to MCAST_UNDEFINED, we need 2363 * not send any sources. A transition to/from this state is 2364 * considered inclusive with some special treatment. 2365 * 2366 * If we are rewriting initial joins/leaves to use 2367 * ALLOW/BLOCK, and the group's membership is inclusive, 2368 * we need to send sources in all cases. 2369 */ 2370 if (mode != inm->in6m_st[0].iss_fmode) { 2371 if (mode == MCAST_EXCLUDE) { 2372 CTR1(KTR_MLD, "%s: change to EXCLUDE", 2373 __func__); 2374 type = MLD_CHANGE_TO_EXCLUDE_MODE; 2375 } else { 2376 CTR1(KTR_MLD, "%s: change to INCLUDE", 2377 __func__); 2378 if (use_block_allow) { 2379 /* 2380 * XXX 2381 * Here we're interested in state 2382 * edges either direction between 2383 * MCAST_UNDEFINED and MCAST_INCLUDE. 2384 * Perhaps we should just check 2385 * the group state, rather than 2386 * the filter mode. 2387 */ 2388 if (mode == MCAST_UNDEFINED) { 2389 type = MLD_BLOCK_OLD_SOURCES; 2390 } else { 2391 type = MLD_ALLOW_NEW_SOURCES; 2392 } 2393 } else { 2394 type = MLD_CHANGE_TO_INCLUDE_MODE; 2395 if (mode == MCAST_UNDEFINED) 2396 record_has_sources = 0; 2397 } 2398 } 2399 } else { 2400 if (record_has_sources) { 2401 is_filter_list_change = 1; 2402 } else { 2403 type = MLD_DO_NOTHING; 2404 } 2405 } 2406 } else { 2407 /* 2408 * Queue a current state record. 2409 */ 2410 if (mode == MCAST_EXCLUDE) { 2411 type = MLD_MODE_IS_EXCLUDE; 2412 } else if (mode == MCAST_INCLUDE) { 2413 type = MLD_MODE_IS_INCLUDE; 2414 KASSERT(inm->in6m_st[1].iss_asm == 0, 2415 ("%s: inm %p is INCLUDE but ASM count is %d", 2416 __func__, inm, inm->in6m_st[1].iss_asm)); 2417 } 2418 } 2419 2420 /* 2421 * Generate the filter list changes using a separate function. 2422 */ 2423 if (is_filter_list_change) 2424 return (mld_v2_enqueue_filter_change(mq, inm)); 2425 2426 if (type == MLD_DO_NOTHING) { 2427 CTR3(KTR_MLD, "%s: nothing to do for %s/%s", 2428 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2429 if_name(inm->in6m_ifp)); 2430 return (0); 2431 } 2432 2433 /* 2434 * If any sources are present, we must be able to fit at least 2435 * one in the trailing space of the tail packet's mbuf, 2436 * ideally more. 2437 */ 2438 minrec0len = sizeof(struct mldv2_record); 2439 if (record_has_sources) 2440 minrec0len += sizeof(struct in6_addr); 2441 2442 CTR4(KTR_MLD, "%s: queueing %s for %s/%s", __func__, 2443 mld_rec_type_to_str(type), 2444 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2445 if_name(inm->in6m_ifp)); 2446 2447 /* 2448 * Check if we have a packet in the tail of the queue for this 2449 * group into which the first group record for this group will fit. 2450 * Otherwise allocate a new packet. 2451 * Always allocate leading space for IP6+RA+ICMPV6+REPORT. 2452 * Note: Group records for G/GSR query responses MUST be sent 2453 * in their own packet. 2454 */ 2455 m0 = mbufq_last(mq); 2456 if (!is_group_query && 2457 m0 != NULL && 2458 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) && 2459 (m0->m_pkthdr.len + minrec0len) < 2460 (ifp->if_mtu - MLD_MTUSPACE)) { 2461 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2462 sizeof(struct mldv2_record)) / 2463 sizeof(struct in6_addr); 2464 m = m0; 2465 CTR1(KTR_MLD, "%s: use existing packet", __func__); 2466 } else { 2467 if (mbufq_full(mq)) { 2468 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2469 return (-ENOMEM); 2470 } 2471 m = NULL; 2472 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2473 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2474 if (!is_state_change && !is_group_query) 2475 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2476 if (m == NULL) 2477 m = m_gethdr(M_NOWAIT, MT_DATA); 2478 if (m == NULL) 2479 return (-ENOMEM); 2480 2481 mld_save_context(m, ifp); 2482 2483 CTR1(KTR_MLD, "%s: allocated first packet", __func__); 2484 } 2485 2486 /* 2487 * Append group record. 2488 * If we have sources, we don't know how many yet. 2489 */ 2490 mr.mr_type = type; 2491 mr.mr_datalen = 0; 2492 mr.mr_numsrc = 0; 2493 mr.mr_addr = inm->in6m_addr; 2494 in6_clearscope(&mr.mr_addr); 2495 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2496 if (m != m0) 2497 m_freem(m); 2498 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2499 return (-ENOMEM); 2500 } 2501 nbytes += sizeof(struct mldv2_record); 2502 2503 /* 2504 * Append as many sources as will fit in the first packet. 2505 * If we are appending to a new packet, the chain allocation 2506 * may potentially use clusters; use m_getptr() in this case. 2507 * If we are appending to an existing packet, we need to obtain 2508 * a pointer to the group record after m_append(), in case a new 2509 * mbuf was allocated. 2510 * 2511 * Only append sources which are in-mode at t1. If we are 2512 * transitioning to MCAST_UNDEFINED state on the group, and 2513 * use_block_allow is zero, do not include source entries. 2514 * Otherwise, we need to include this source in the report. 2515 * 2516 * Only report recorded sources in our filter set when responding 2517 * to a group-source query. 2518 */ 2519 if (record_has_sources) { 2520 if (m == m0) { 2521 md = m_last(m); 2522 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2523 md->m_len - nbytes); 2524 } else { 2525 md = m_getptr(m, 0, &off); 2526 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2527 off); 2528 } 2529 msrcs = 0; 2530 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, 2531 nims) { 2532 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2533 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2534 now = im6s_get_mode(inm, ims, 1); 2535 CTR2(KTR_MLD, "%s: node is %d", __func__, now); 2536 if ((now != mode) || 2537 (now == mode && 2538 (!use_block_allow && mode == MCAST_UNDEFINED))) { 2539 CTR1(KTR_MLD, "%s: skip node", __func__); 2540 continue; 2541 } 2542 if (is_source_query && ims->im6s_stp == 0) { 2543 CTR1(KTR_MLD, "%s: skip unrecorded node", 2544 __func__); 2545 continue; 2546 } 2547 CTR1(KTR_MLD, "%s: append node", __func__); 2548 if (!m_append(m, sizeof(struct in6_addr), 2549 (void *)&ims->im6s_addr)) { 2550 if (m != m0) 2551 m_freem(m); 2552 CTR1(KTR_MLD, "%s: m_append() failed.", 2553 __func__); 2554 return (-ENOMEM); 2555 } 2556 nbytes += sizeof(struct in6_addr); 2557 ++msrcs; 2558 if (msrcs == m0srcs) 2559 break; 2560 } 2561 CTR2(KTR_MLD, "%s: msrcs is %d this packet", __func__, 2562 msrcs); 2563 pmr->mr_numsrc = htons(msrcs); 2564 nbytes += (msrcs * sizeof(struct in6_addr)); 2565 } 2566 2567 if (is_source_query && msrcs == 0) { 2568 CTR1(KTR_MLD, "%s: no recorded sources to report", __func__); 2569 if (m != m0) 2570 m_freem(m); 2571 return (0); 2572 } 2573 2574 /* 2575 * We are good to go with first packet. 2576 */ 2577 if (m != m0) { 2578 CTR1(KTR_MLD, "%s: enqueueing first packet", __func__); 2579 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2580 mbufq_enqueue(mq, m); 2581 } else 2582 m->m_pkthdr.PH_vt.vt_nrecs++; 2583 2584 /* 2585 * No further work needed if no source list in packet(s). 2586 */ 2587 if (!record_has_sources) 2588 return (nbytes); 2589 2590 /* 2591 * Whilst sources remain to be announced, we need to allocate 2592 * a new packet and fill out as many sources as will fit. 2593 * Always try for a cluster first. 2594 */ 2595 while (nims != NULL) { 2596 if (mbufq_full(mq)) { 2597 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2598 return (-ENOMEM); 2599 } 2600 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2601 if (m == NULL) 2602 m = m_gethdr(M_NOWAIT, MT_DATA); 2603 if (m == NULL) 2604 return (-ENOMEM); 2605 mld_save_context(m, ifp); 2606 md = m_getptr(m, 0, &off); 2607 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off); 2608 CTR1(KTR_MLD, "%s: allocated next packet", __func__); 2609 2610 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2611 if (m != m0) 2612 m_freem(m); 2613 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2614 return (-ENOMEM); 2615 } 2616 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2617 nbytes += sizeof(struct mldv2_record); 2618 2619 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2620 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2621 2622 msrcs = 0; 2623 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2624 CTR2(KTR_MLD, "%s: visit node %s", 2625 __func__, ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2626 now = im6s_get_mode(inm, ims, 1); 2627 if ((now != mode) || 2628 (now == mode && 2629 (!use_block_allow && mode == MCAST_UNDEFINED))) { 2630 CTR1(KTR_MLD, "%s: skip node", __func__); 2631 continue; 2632 } 2633 if (is_source_query && ims->im6s_stp == 0) { 2634 CTR1(KTR_MLD, "%s: skip unrecorded node", 2635 __func__); 2636 continue; 2637 } 2638 CTR1(KTR_MLD, "%s: append node", __func__); 2639 if (!m_append(m, sizeof(struct in6_addr), 2640 (void *)&ims->im6s_addr)) { 2641 if (m != m0) 2642 m_freem(m); 2643 CTR1(KTR_MLD, "%s: m_append() failed.", 2644 __func__); 2645 return (-ENOMEM); 2646 } 2647 ++msrcs; 2648 if (msrcs == m0srcs) 2649 break; 2650 } 2651 pmr->mr_numsrc = htons(msrcs); 2652 nbytes += (msrcs * sizeof(struct in6_addr)); 2653 2654 CTR1(KTR_MLD, "%s: enqueueing next packet", __func__); 2655 mbufq_enqueue(mq, m); 2656 } 2657 2658 return (nbytes); 2659 } 2660 2661 /* 2662 * Type used to mark record pass completion. 2663 * We exploit the fact we can cast to this easily from the 2664 * current filter modes on each ip_msource node. 2665 */ 2666 typedef enum { 2667 REC_NONE = 0x00, /* MCAST_UNDEFINED */ 2668 REC_ALLOW = 0x01, /* MCAST_INCLUDE */ 2669 REC_BLOCK = 0x02, /* MCAST_EXCLUDE */ 2670 REC_FULL = REC_ALLOW | REC_BLOCK 2671 } rectype_t; 2672 2673 /* 2674 * Enqueue an MLDv2 filter list change to the given output queue. 2675 * 2676 * Source list filter state is held in an RB-tree. When the filter list 2677 * for a group is changed without changing its mode, we need to compute 2678 * the deltas between T0 and T1 for each source in the filter set, 2679 * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records. 2680 * 2681 * As we may potentially queue two record types, and the entire R-B tree 2682 * needs to be walked at once, we break this out into its own function 2683 * so we can generate a tightly packed queue of packets. 2684 * 2685 * XXX This could be written to only use one tree walk, although that makes 2686 * serializing into the mbuf chains a bit harder. For now we do two walks 2687 * which makes things easier on us, and it may or may not be harder on 2688 * the L2 cache. 2689 * 2690 * If successful the size of all data appended to the queue is returned, 2691 * otherwise an error code less than zero is returned, or zero if 2692 * no record(s) were appended. 2693 */ 2694 static int 2695 mld_v2_enqueue_filter_change(struct mbufq *mq, struct in6_multi *inm) 2696 { 2697 static const int MINRECLEN = 2698 sizeof(struct mldv2_record) + sizeof(struct in6_addr); 2699 struct ifnet *ifp; 2700 struct mldv2_record mr; 2701 struct mldv2_record *pmr; 2702 struct ip6_msource *ims, *nims; 2703 struct mbuf *m, *m0, *md; 2704 int m0srcs, nbytes, npbytes, off, rsrcs, schanged; 2705 int nallow, nblock; 2706 uint8_t mode, now, then; 2707 rectype_t crt, drt, nrt; 2708 #ifdef KTR 2709 char ip6tbuf[INET6_ADDRSTRLEN]; 2710 #endif 2711 2712 IN6_MULTI_LIST_LOCK_ASSERT(); 2713 2714 if (inm->in6m_nsrc == 0 || 2715 (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0)) 2716 return (0); 2717 2718 ifp = inm->in6m_ifp; /* interface */ 2719 mode = inm->in6m_st[1].iss_fmode; /* filter mode at t1 */ 2720 crt = REC_NONE; /* current group record type */ 2721 drt = REC_NONE; /* mask of completed group record types */ 2722 nrt = REC_NONE; /* record type for current node */ 2723 m0srcs = 0; /* # source which will fit in current mbuf chain */ 2724 npbytes = 0; /* # of bytes appended this packet */ 2725 nbytes = 0; /* # of bytes appended to group's state-change queue */ 2726 rsrcs = 0; /* # sources encoded in current record */ 2727 schanged = 0; /* # nodes encoded in overall filter change */ 2728 nallow = 0; /* # of source entries in ALLOW_NEW */ 2729 nblock = 0; /* # of source entries in BLOCK_OLD */ 2730 nims = NULL; /* next tree node pointer */ 2731 2732 /* 2733 * For each possible filter record mode. 2734 * The first kind of source we encounter tells us which 2735 * is the first kind of record we start appending. 2736 * If a node transitioned to UNDEFINED at t1, its mode is treated 2737 * as the inverse of the group's filter mode. 2738 */ 2739 while (drt != REC_FULL) { 2740 do { 2741 m0 = mbufq_last(mq); 2742 if (m0 != NULL && 2743 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= 2744 MLD_V2_REPORT_MAXRECS) && 2745 (m0->m_pkthdr.len + MINRECLEN) < 2746 (ifp->if_mtu - MLD_MTUSPACE)) { 2747 m = m0; 2748 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2749 sizeof(struct mldv2_record)) / 2750 sizeof(struct in6_addr); 2751 CTR1(KTR_MLD, 2752 "%s: use previous packet", __func__); 2753 } else { 2754 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2755 if (m == NULL) 2756 m = m_gethdr(M_NOWAIT, MT_DATA); 2757 if (m == NULL) { 2758 CTR1(KTR_MLD, 2759 "%s: m_get*() failed", __func__); 2760 return (-ENOMEM); 2761 } 2762 m->m_pkthdr.PH_vt.vt_nrecs = 0; 2763 mld_save_context(m, ifp); 2764 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2765 sizeof(struct mldv2_record)) / 2766 sizeof(struct in6_addr); 2767 npbytes = 0; 2768 CTR1(KTR_MLD, 2769 "%s: allocated new packet", __func__); 2770 } 2771 /* 2772 * Append the MLD group record header to the 2773 * current packet's data area. 2774 * Recalculate pointer to free space for next 2775 * group record, in case m_append() allocated 2776 * a new mbuf or cluster. 2777 */ 2778 memset(&mr, 0, sizeof(mr)); 2779 mr.mr_addr = inm->in6m_addr; 2780 in6_clearscope(&mr.mr_addr); 2781 if (!m_append(m, sizeof(mr), (void *)&mr)) { 2782 if (m != m0) 2783 m_freem(m); 2784 CTR1(KTR_MLD, 2785 "%s: m_append() failed", __func__); 2786 return (-ENOMEM); 2787 } 2788 npbytes += sizeof(struct mldv2_record); 2789 if (m != m0) { 2790 /* new packet; offset in chain */ 2791 md = m_getptr(m, npbytes - 2792 sizeof(struct mldv2_record), &off); 2793 pmr = (struct mldv2_record *)(mtod(md, 2794 uint8_t *) + off); 2795 } else { 2796 /* current packet; offset from last append */ 2797 md = m_last(m); 2798 pmr = (struct mldv2_record *)(mtod(md, 2799 uint8_t *) + md->m_len - 2800 sizeof(struct mldv2_record)); 2801 } 2802 /* 2803 * Begin walking the tree for this record type 2804 * pass, or continue from where we left off 2805 * previously if we had to allocate a new packet. 2806 * Only report deltas in-mode at t1. 2807 * We need not report included sources as allowed 2808 * if we are in inclusive mode on the group, 2809 * however the converse is not true. 2810 */ 2811 rsrcs = 0; 2812 if (nims == NULL) { 2813 nims = RB_MIN(ip6_msource_tree, 2814 &inm->in6m_srcs); 2815 } 2816 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2817 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2818 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2819 now = im6s_get_mode(inm, ims, 1); 2820 then = im6s_get_mode(inm, ims, 0); 2821 CTR3(KTR_MLD, "%s: mode: t0 %d, t1 %d", 2822 __func__, then, now); 2823 if (now == then) { 2824 CTR1(KTR_MLD, 2825 "%s: skip unchanged", __func__); 2826 continue; 2827 } 2828 if (mode == MCAST_EXCLUDE && 2829 now == MCAST_INCLUDE) { 2830 CTR1(KTR_MLD, 2831 "%s: skip IN src on EX group", 2832 __func__); 2833 continue; 2834 } 2835 nrt = (rectype_t)now; 2836 if (nrt == REC_NONE) 2837 nrt = (rectype_t)(~mode & REC_FULL); 2838 if (schanged++ == 0) { 2839 crt = nrt; 2840 } else if (crt != nrt) 2841 continue; 2842 if (!m_append(m, sizeof(struct in6_addr), 2843 (void *)&ims->im6s_addr)) { 2844 if (m != m0) 2845 m_freem(m); 2846 CTR1(KTR_MLD, 2847 "%s: m_append() failed", __func__); 2848 return (-ENOMEM); 2849 } 2850 nallow += !!(crt == REC_ALLOW); 2851 nblock += !!(crt == REC_BLOCK); 2852 if (++rsrcs == m0srcs) 2853 break; 2854 } 2855 /* 2856 * If we did not append any tree nodes on this 2857 * pass, back out of allocations. 2858 */ 2859 if (rsrcs == 0) { 2860 npbytes -= sizeof(struct mldv2_record); 2861 if (m != m0) { 2862 CTR1(KTR_MLD, 2863 "%s: m_free(m)", __func__); 2864 m_freem(m); 2865 } else { 2866 CTR1(KTR_MLD, 2867 "%s: m_adj(m, -mr)", __func__); 2868 m_adj(m, -((int)sizeof( 2869 struct mldv2_record))); 2870 } 2871 continue; 2872 } 2873 npbytes += (rsrcs * sizeof(struct in6_addr)); 2874 if (crt == REC_ALLOW) 2875 pmr->mr_type = MLD_ALLOW_NEW_SOURCES; 2876 else if (crt == REC_BLOCK) 2877 pmr->mr_type = MLD_BLOCK_OLD_SOURCES; 2878 pmr->mr_numsrc = htons(rsrcs); 2879 /* 2880 * Count the new group record, and enqueue this 2881 * packet if it wasn't already queued. 2882 */ 2883 m->m_pkthdr.PH_vt.vt_nrecs++; 2884 if (m != m0) 2885 mbufq_enqueue(mq, m); 2886 nbytes += npbytes; 2887 } while (nims != NULL); 2888 drt |= crt; 2889 crt = (~crt & REC_FULL); 2890 } 2891 2892 CTR3(KTR_MLD, "%s: queued %d ALLOW_NEW, %d BLOCK_OLD", __func__, 2893 nallow, nblock); 2894 2895 return (nbytes); 2896 } 2897 2898 static int 2899 mld_v2_merge_state_changes(struct in6_multi *inm, struct mbufq *scq) 2900 { 2901 struct mbufq *gq; 2902 struct mbuf *m; /* pending state-change */ 2903 struct mbuf *m0; /* copy of pending state-change */ 2904 struct mbuf *mt; /* last state-change in packet */ 2905 int docopy, domerge; 2906 u_int recslen; 2907 2908 docopy = 0; 2909 domerge = 0; 2910 recslen = 0; 2911 2912 IN6_MULTI_LIST_LOCK_ASSERT(); 2913 MLD_LOCK_ASSERT(); 2914 2915 /* 2916 * If there are further pending retransmissions, make a writable 2917 * copy of each queued state-change message before merging. 2918 */ 2919 if (inm->in6m_scrv > 0) 2920 docopy = 1; 2921 2922 gq = &inm->in6m_scq; 2923 #ifdef KTR 2924 if (mbufq_first(gq) == NULL) { 2925 CTR2(KTR_MLD, "%s: WARNING: queue for inm %p is empty", 2926 __func__, inm); 2927 } 2928 #endif 2929 2930 m = mbufq_first(gq); 2931 while (m != NULL) { 2932 /* 2933 * Only merge the report into the current packet if 2934 * there is sufficient space to do so; an MLDv2 report 2935 * packet may only contain 65,535 group records. 2936 * Always use a simple mbuf chain concatentation to do this, 2937 * as large state changes for single groups may have 2938 * allocated clusters. 2939 */ 2940 domerge = 0; 2941 mt = mbufq_last(scq); 2942 if (mt != NULL) { 2943 recslen = m_length(m, NULL); 2944 2945 if ((mt->m_pkthdr.PH_vt.vt_nrecs + 2946 m->m_pkthdr.PH_vt.vt_nrecs <= 2947 MLD_V2_REPORT_MAXRECS) && 2948 (mt->m_pkthdr.len + recslen <= 2949 (inm->in6m_ifp->if_mtu - MLD_MTUSPACE))) 2950 domerge = 1; 2951 } 2952 2953 if (!domerge && mbufq_full(gq)) { 2954 CTR2(KTR_MLD, 2955 "%s: outbound queue full, skipping whole packet %p", 2956 __func__, m); 2957 mt = m->m_nextpkt; 2958 if (!docopy) 2959 m_freem(m); 2960 m = mt; 2961 continue; 2962 } 2963 2964 if (!docopy) { 2965 CTR2(KTR_MLD, "%s: dequeueing %p", __func__, m); 2966 m0 = mbufq_dequeue(gq); 2967 m = m0->m_nextpkt; 2968 } else { 2969 CTR2(KTR_MLD, "%s: copying %p", __func__, m); 2970 m0 = m_dup(m, M_NOWAIT); 2971 if (m0 == NULL) 2972 return (ENOMEM); 2973 m0->m_nextpkt = NULL; 2974 m = m->m_nextpkt; 2975 } 2976 2977 if (!domerge) { 2978 CTR3(KTR_MLD, "%s: queueing %p to scq %p)", 2979 __func__, m0, scq); 2980 mbufq_enqueue(scq, m0); 2981 } else { 2982 struct mbuf *mtl; /* last mbuf of packet mt */ 2983 2984 CTR3(KTR_MLD, "%s: merging %p with ifscq tail %p)", 2985 __func__, m0, mt); 2986 2987 mtl = m_last(mt); 2988 m0->m_flags &= ~M_PKTHDR; 2989 mt->m_pkthdr.len += recslen; 2990 mt->m_pkthdr.PH_vt.vt_nrecs += 2991 m0->m_pkthdr.PH_vt.vt_nrecs; 2992 2993 mtl->m_next = m0; 2994 } 2995 } 2996 2997 return (0); 2998 } 2999 3000 /* 3001 * Respond to a pending MLDv2 General Query. 3002 */ 3003 static void 3004 mld_v2_dispatch_general_query(struct mld_ifsoftc *mli) 3005 { 3006 struct ifmultiaddr *ifma; 3007 struct ifnet *ifp; 3008 struct in6_multi *inm; 3009 int retval; 3010 3011 NET_EPOCH_ASSERT(); 3012 IN6_MULTI_LIST_LOCK_ASSERT(); 3013 MLD_LOCK_ASSERT(); 3014 3015 KASSERT(mli->mli_version == MLD_VERSION_2, 3016 ("%s: called when version %d", __func__, mli->mli_version)); 3017 3018 /* 3019 * Check that there are some packets queued. If so, send them first. 3020 * For large number of groups the reply to general query can take 3021 * many packets, we should finish sending them before starting of 3022 * queuing the new reply. 3023 */ 3024 if (mbufq_len(&mli->mli_gq) != 0) 3025 goto send; 3026 3027 ifp = mli->mli_ifp; 3028 3029 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3030 inm = in6m_ifmultiaddr_get_inm(ifma); 3031 if (inm == NULL) 3032 continue; 3033 KASSERT(ifp == inm->in6m_ifp, 3034 ("%s: inconsistent ifp", __func__)); 3035 3036 switch (inm->in6m_state) { 3037 case MLD_NOT_MEMBER: 3038 case MLD_SILENT_MEMBER: 3039 break; 3040 case MLD_REPORTING_MEMBER: 3041 case MLD_IDLE_MEMBER: 3042 case MLD_LAZY_MEMBER: 3043 case MLD_SLEEPING_MEMBER: 3044 case MLD_AWAKENING_MEMBER: 3045 inm->in6m_state = MLD_REPORTING_MEMBER; 3046 retval = mld_v2_enqueue_group_record(&mli->mli_gq, 3047 inm, 0, 0, 0, 0); 3048 CTR2(KTR_MLD, "%s: enqueue record = %d", 3049 __func__, retval); 3050 break; 3051 case MLD_G_QUERY_PENDING_MEMBER: 3052 case MLD_SG_QUERY_PENDING_MEMBER: 3053 case MLD_LEAVING_MEMBER: 3054 break; 3055 } 3056 } 3057 3058 send: 3059 mld_dispatch_queue(&mli->mli_gq, MLD_MAX_RESPONSE_BURST); 3060 3061 /* 3062 * Slew transmission of bursts over 500ms intervals. 3063 */ 3064 if (mbufq_first(&mli->mli_gq) != NULL) { 3065 mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY( 3066 MLD_RESPONSE_BURST_INTERVAL); 3067 V_interface_timers_running6 = 1; 3068 } 3069 } 3070 3071 /* 3072 * Transmit the next pending message in the output queue. 3073 * 3074 * VIMAGE: Needs to store/restore vnet pointer on a per-mbuf-chain basis. 3075 * MRT: Nothing needs to be done, as MLD traffic is always local to 3076 * a link and uses a link-scope multicast address. 3077 */ 3078 static void 3079 mld_dispatch_packet(struct mbuf *m) 3080 { 3081 struct ip6_moptions im6o; 3082 struct ifnet *ifp; 3083 struct ifnet *oifp; 3084 struct mbuf *m0; 3085 struct mbuf *md; 3086 struct ip6_hdr *ip6; 3087 struct mld_hdr *mld; 3088 int error; 3089 int off; 3090 int type; 3091 uint32_t ifindex; 3092 3093 CTR2(KTR_MLD, "%s: transmit %p", __func__, m); 3094 NET_EPOCH_ASSERT(); 3095 3096 /* 3097 * Set VNET image pointer from enqueued mbuf chain 3098 * before doing anything else. Whilst we use interface 3099 * indexes to guard against interface detach, they are 3100 * unique to each VIMAGE and must be retrieved. 3101 */ 3102 ifindex = mld_restore_context(m); 3103 3104 /* 3105 * Check if the ifnet still exists. This limits the scope of 3106 * any race in the absence of a global ifp lock for low cost 3107 * (an array lookup). 3108 */ 3109 ifp = ifnet_byindex(ifindex); 3110 if (ifp == NULL) { 3111 CTR3(KTR_MLD, "%s: dropped %p as ifindex %u went away.", 3112 __func__, m, ifindex); 3113 m_freem(m); 3114 IP6STAT_INC(ip6s_noroute); 3115 goto out; 3116 } 3117 3118 im6o.im6o_multicast_hlim = 1; 3119 im6o.im6o_multicast_loop = (V_ip6_mrouter != NULL); 3120 im6o.im6o_multicast_ifp = ifp; 3121 3122 if (m->m_flags & M_MLDV1) { 3123 m0 = m; 3124 } else { 3125 m0 = mld_v2_encap_report(ifp, m); 3126 if (m0 == NULL) { 3127 CTR2(KTR_MLD, "%s: dropped %p", __func__, m); 3128 IP6STAT_INC(ip6s_odropped); 3129 goto out; 3130 } 3131 } 3132 3133 mld_scrub_context(m0); 3134 m_clrprotoflags(m); 3135 m0->m_pkthdr.rcvif = V_loif; 3136 3137 ip6 = mtod(m0, struct ip6_hdr *); 3138 #if 0 3139 (void)in6_setscope(&ip6->ip6_dst, ifp, NULL); /* XXX LOR */ 3140 #else 3141 /* 3142 * XXX XXX Break some KPI rules to prevent an LOR which would 3143 * occur if we called in6_setscope() at transmission. 3144 * See comments at top of file. 3145 */ 3146 MLD_EMBEDSCOPE(&ip6->ip6_dst, ifp->if_index); 3147 #endif 3148 3149 /* 3150 * Retrieve the ICMPv6 type before handoff to ip6_output(), 3151 * so we can bump the stats. 3152 */ 3153 md = m_getptr(m0, sizeof(struct ip6_hdr), &off); 3154 mld = (struct mld_hdr *)(mtod(md, uint8_t *) + off); 3155 type = mld->mld_type; 3156 3157 oifp = NULL; 3158 error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, &im6o, 3159 &oifp, NULL); 3160 if (error) { 3161 CTR3(KTR_MLD, "%s: ip6_output(%p) = %d", __func__, m0, error); 3162 goto out; 3163 } 3164 ICMP6STAT_INC(icp6s_outhist[type]); 3165 if (oifp != NULL) { 3166 icmp6_ifstat_inc(oifp, ifs6_out_msg); 3167 switch (type) { 3168 case MLD_LISTENER_REPORT: 3169 case MLDV2_LISTENER_REPORT: 3170 icmp6_ifstat_inc(oifp, ifs6_out_mldreport); 3171 break; 3172 case MLD_LISTENER_DONE: 3173 icmp6_ifstat_inc(oifp, ifs6_out_mlddone); 3174 break; 3175 } 3176 } 3177 out: 3178 return; 3179 } 3180 3181 /* 3182 * Encapsulate an MLDv2 report. 3183 * 3184 * KAME IPv6 requires that hop-by-hop options be passed separately, 3185 * and that the IPv6 header be prepended in a separate mbuf. 3186 * 3187 * Returns a pointer to the new mbuf chain head, or NULL if the 3188 * allocation failed. 3189 */ 3190 static struct mbuf * 3191 mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m) 3192 { 3193 struct mbuf *mh; 3194 struct mldv2_report *mld; 3195 struct ip6_hdr *ip6; 3196 struct in6_ifaddr *ia; 3197 int mldreclen; 3198 3199 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 3200 KASSERT((m->m_flags & M_PKTHDR), 3201 ("%s: mbuf chain %p is !M_PKTHDR", __func__, m)); 3202 3203 /* 3204 * RFC3590: OK to send as :: or tentative during DAD. 3205 */ 3206 NET_EPOCH_ASSERT(); 3207 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 3208 if (ia == NULL) 3209 CTR1(KTR_MLD, "%s: warning: ia is NULL", __func__); 3210 3211 mh = m_gethdr(M_NOWAIT, MT_DATA); 3212 if (mh == NULL) { 3213 if (ia != NULL) 3214 ifa_free(&ia->ia_ifa); 3215 m_freem(m); 3216 return (NULL); 3217 } 3218 M_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report)); 3219 3220 mldreclen = m_length(m, NULL); 3221 CTR2(KTR_MLD, "%s: mldreclen is %d", __func__, mldreclen); 3222 3223 mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report); 3224 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + 3225 sizeof(struct mldv2_report) + mldreclen; 3226 3227 ip6 = mtod(mh, struct ip6_hdr *); 3228 ip6->ip6_flow = 0; 3229 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 3230 ip6->ip6_vfc |= IPV6_VERSION; 3231 ip6->ip6_nxt = IPPROTO_ICMPV6; 3232 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 3233 if (ia != NULL) 3234 ifa_free(&ia->ia_ifa); 3235 ip6->ip6_dst = in6addr_linklocal_allv2routers; 3236 /* scope ID will be set in netisr */ 3237 3238 mld = (struct mldv2_report *)(ip6 + 1); 3239 mld->mld_type = MLDV2_LISTENER_REPORT; 3240 mld->mld_code = 0; 3241 mld->mld_cksum = 0; 3242 mld->mld_v2_reserved = 0; 3243 mld->mld_v2_numrecs = htons(m->m_pkthdr.PH_vt.vt_nrecs); 3244 m->m_pkthdr.PH_vt.vt_nrecs = 0; 3245 3246 mh->m_next = m; 3247 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 3248 sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen); 3249 return (mh); 3250 } 3251 3252 #ifdef KTR 3253 static char * 3254 mld_rec_type_to_str(const int type) 3255 { 3256 3257 switch (type) { 3258 case MLD_CHANGE_TO_EXCLUDE_MODE: 3259 return "TO_EX"; 3260 break; 3261 case MLD_CHANGE_TO_INCLUDE_MODE: 3262 return "TO_IN"; 3263 break; 3264 case MLD_MODE_IS_EXCLUDE: 3265 return "MODE_EX"; 3266 break; 3267 case MLD_MODE_IS_INCLUDE: 3268 return "MODE_IN"; 3269 break; 3270 case MLD_ALLOW_NEW_SOURCES: 3271 return "ALLOW_NEW"; 3272 break; 3273 case MLD_BLOCK_OLD_SOURCES: 3274 return "BLOCK_OLD"; 3275 break; 3276 default: 3277 break; 3278 } 3279 return "unknown"; 3280 } 3281 #endif 3282 3283 static void 3284 mld_init(void *unused __unused) 3285 { 3286 3287 CTR1(KTR_MLD, "%s: initializing", __func__); 3288 MLD_LOCK_INIT(); 3289 3290 ip6_initpktopts(&mld_po); 3291 mld_po.ip6po_hlim = 1; 3292 mld_po.ip6po_hbh = &mld_ra.hbh; 3293 mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER; 3294 mld_po.ip6po_flags = IP6PO_DONTFRAG; 3295 } 3296 SYSINIT(mld_init, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, mld_init, NULL); 3297 3298 static void 3299 mld_uninit(void *unused __unused) 3300 { 3301 3302 CTR1(KTR_MLD, "%s: tearing down", __func__); 3303 MLD_LOCK_DESTROY(); 3304 } 3305 SYSUNINIT(mld_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, mld_uninit, NULL); 3306 3307 static void 3308 vnet_mld_init(const void *unused __unused) 3309 { 3310 3311 CTR1(KTR_MLD, "%s: initializing", __func__); 3312 3313 LIST_INIT(&V_mli_head); 3314 } 3315 VNET_SYSINIT(vnet_mld_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mld_init, 3316 NULL); 3317 3318 static void 3319 vnet_mld_uninit(const void *unused __unused) 3320 { 3321 3322 /* This can happen if we shutdown the network stack. */ 3323 CTR1(KTR_MLD, "%s: tearing down", __func__); 3324 } 3325 VNET_SYSUNINIT(vnet_mld_uninit, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mld_uninit, 3326 NULL); 3327 3328 static int 3329 mld_modevent(module_t mod, int type, void *unused __unused) 3330 { 3331 3332 switch (type) { 3333 case MOD_LOAD: 3334 case MOD_UNLOAD: 3335 break; 3336 default: 3337 return (EOPNOTSUPP); 3338 } 3339 return (0); 3340 } 3341 3342 static moduledata_t mld_mod = { 3343 "mld", 3344 mld_modevent, 3345 0 3346 }; 3347 DECLARE_MODULE(mld, mld_mod, SI_SUB_PROTO_MC, SI_ORDER_ANY); 3348