xref: /freebsd/sys/netinet6/mld6.c (revision b4af4f93c682e445bf159f0d1ec90b636296c946)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2009 Bruce Simpson.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. The name of the author may not be used to endorse or promote
15  *    products derived from this software without specific prior written
16  *    permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  *	$KAME: mld6.c,v 1.27 2001/04/04 05:17:30 itojun Exp $
31  */
32 
33 /*-
34  * Copyright (c) 1988 Stephen Deering.
35  * Copyright (c) 1992, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * This code is derived from software contributed to Berkeley by
39  * Stephen Deering of Stanford University.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)igmp.c	8.1 (Berkeley) 7/19/93
66  */
67 
68 #include <sys/cdefs.h>
69 __FBSDID("$FreeBSD$");
70 
71 #include "opt_inet.h"
72 #include "opt_inet6.h"
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/mbuf.h>
77 #include <sys/socket.h>
78 #include <sys/protosw.h>
79 #include <sys/sysctl.h>
80 #include <sys/kernel.h>
81 #include <sys/callout.h>
82 #include <sys/malloc.h>
83 #include <sys/module.h>
84 #include <sys/ktr.h>
85 
86 #include <net/if.h>
87 #include <net/if_var.h>
88 #include <net/route.h>
89 #include <net/vnet.h>
90 
91 #include <netinet/in.h>
92 #include <netinet/in_var.h>
93 #include <netinet6/in6_var.h>
94 #include <netinet/ip6.h>
95 #include <netinet6/ip6_var.h>
96 #include <netinet6/scope6_var.h>
97 #include <netinet/icmp6.h>
98 #include <netinet6/mld6.h>
99 #include <netinet6/mld6_var.h>
100 
101 #include <security/mac/mac_framework.h>
102 
103 #ifndef KTR_MLD
104 #define KTR_MLD KTR_INET6
105 #endif
106 
107 static struct mld_ifsoftc *
108 		mli_alloc_locked(struct ifnet *);
109 static void	mli_delete_locked(const struct ifnet *);
110 static void	mld_dispatch_packet(struct mbuf *);
111 static void	mld_dispatch_queue(struct mbufq *, int);
112 static void	mld_final_leave(struct in6_multi *, struct mld_ifsoftc *);
113 static void	mld_fasttimo_vnet(struct in6_multi_head *inmh);
114 static int	mld_handle_state_change(struct in6_multi *,
115 		    struct mld_ifsoftc *);
116 static int	mld_initial_join(struct in6_multi *, struct mld_ifsoftc *,
117 		    const int);
118 #ifdef KTR
119 static char *	mld_rec_type_to_str(const int);
120 #endif
121 static void	mld_set_version(struct mld_ifsoftc *, const int);
122 static void	mld_slowtimo_vnet(void);
123 static int	mld_v1_input_query(struct ifnet *, const struct ip6_hdr *,
124 		    /*const*/ struct mld_hdr *);
125 static int	mld_v1_input_report(struct ifnet *, const struct ip6_hdr *,
126 		    /*const*/ struct mld_hdr *);
127 static void	mld_v1_process_group_timer(struct in6_multi_head *,
128 		    struct in6_multi *);
129 static void	mld_v1_process_querier_timers(struct mld_ifsoftc *);
130 static int	mld_v1_transmit_report(struct in6_multi *, const int);
131 static void	mld_v1_update_group(struct in6_multi *, const int);
132 static void	mld_v2_cancel_link_timers(struct mld_ifsoftc *);
133 static void	mld_v2_dispatch_general_query(struct mld_ifsoftc *);
134 static struct mbuf *
135 		mld_v2_encap_report(struct ifnet *, struct mbuf *);
136 static int	mld_v2_enqueue_filter_change(struct mbufq *,
137 		    struct in6_multi *);
138 static int	mld_v2_enqueue_group_record(struct mbufq *,
139 		    struct in6_multi *, const int, const int, const int,
140 		    const int);
141 static int	mld_v2_input_query(struct ifnet *, const struct ip6_hdr *,
142 		    struct mbuf *, struct mldv2_query *, const int, const int);
143 static int	mld_v2_merge_state_changes(struct in6_multi *,
144 		    struct mbufq *);
145 static void	mld_v2_process_group_timers(struct in6_multi_head *,
146 		    struct mbufq *, struct mbufq *,
147 		    struct in6_multi *, const int);
148 static int	mld_v2_process_group_query(struct in6_multi *,
149 		    struct mld_ifsoftc *mli, int, struct mbuf *,
150 		    struct mldv2_query *, const int);
151 static int	sysctl_mld_gsr(SYSCTL_HANDLER_ARGS);
152 static int	sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS);
153 
154 /*
155  * Normative references: RFC 2710, RFC 3590, RFC 3810.
156  *
157  * Locking:
158  *  * The MLD subsystem lock ends up being system-wide for the moment,
159  *    but could be per-VIMAGE later on.
160  *  * The permitted lock order is: IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK.
161  *    Any may be taken independently; if any are held at the same
162  *    time, the above lock order must be followed.
163  *  * IN6_MULTI_LOCK covers in_multi.
164  *  * MLD_LOCK covers per-link state and any global variables in this file.
165  *  * IF_ADDR_LOCK covers if_multiaddrs, which is used for a variety of
166  *    per-link state iterators.
167  *
168  *  XXX LOR PREVENTION
169  *  A special case for IPv6 is the in6_setscope() routine. ip6_output()
170  *  will not accept an ifp; it wants an embedded scope ID, unlike
171  *  ip_output(), which happily takes the ifp given to it. The embedded
172  *  scope ID is only used by MLD to select the outgoing interface.
173  *
174  *  During interface attach and detach, MLD will take MLD_LOCK *after*
175  *  the IF_AFDATA_LOCK.
176  *  As in6_setscope() takes IF_AFDATA_LOCK then SCOPE_LOCK, we can't call
177  *  it with MLD_LOCK held without triggering an LOR. A netisr with indirect
178  *  dispatch could work around this, but we'd rather not do that, as it
179  *  can introduce other races.
180  *
181  *  As such, we exploit the fact that the scope ID is just the interface
182  *  index, and embed it in the IPv6 destination address accordingly.
183  *  This is potentially NOT VALID for MLDv1 reports, as they
184  *  are always sent to the multicast group itself; as MLDv2
185  *  reports are always sent to ff02::16, this is not an issue
186  *  when MLDv2 is in use.
187  *
188  *  This does not however eliminate the LOR when ip6_output() itself
189  *  calls in6_setscope() internally whilst MLD_LOCK is held. This will
190  *  trigger a LOR warning in WITNESS when the ifnet is detached.
191  *
192  *  The right answer is probably to make IF_AFDATA_LOCK an rwlock, given
193  *  how it's used across the network stack. Here we're simply exploiting
194  *  the fact that MLD runs at a similar layer in the stack to scope6.c.
195  *
196  * VIMAGE:
197  *  * Each in6_multi corresponds to an ifp, and each ifp corresponds
198  *    to a vnet in ifp->if_vnet.
199  */
200 static struct mtx		 mld_mtx;
201 static MALLOC_DEFINE(M_MLD, "mld", "mld state");
202 
203 #define	MLD_EMBEDSCOPE(pin6, zoneid)					\
204 	if (IN6_IS_SCOPE_LINKLOCAL(pin6) ||				\
205 	    IN6_IS_ADDR_MC_INTFACELOCAL(pin6))				\
206 		(pin6)->s6_addr16[1] = htons((zoneid) & 0xFFFF)		\
207 
208 /*
209  * VIMAGE-wide globals.
210  */
211 VNET_DEFINE_STATIC(struct timeval, mld_gsrdelay) = {10, 0};
212 VNET_DEFINE_STATIC(LIST_HEAD(, mld_ifsoftc), mli_head);
213 VNET_DEFINE_STATIC(int, interface_timers_running6);
214 VNET_DEFINE_STATIC(int, state_change_timers_running6);
215 VNET_DEFINE_STATIC(int, current_state_timers_running6);
216 
217 #define	V_mld_gsrdelay			VNET(mld_gsrdelay)
218 #define	V_mli_head			VNET(mli_head)
219 #define	V_interface_timers_running6	VNET(interface_timers_running6)
220 #define	V_state_change_timers_running6	VNET(state_change_timers_running6)
221 #define	V_current_state_timers_running6	VNET(current_state_timers_running6)
222 
223 SYSCTL_DECL(_net_inet6);	/* Note: Not in any common header. */
224 
225 SYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
226     "IPv6 Multicast Listener Discovery");
227 
228 /*
229  * Virtualized sysctls.
230  */
231 SYSCTL_PROC(_net_inet6_mld, OID_AUTO, gsrdelay,
232     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
233     &VNET_NAME(mld_gsrdelay.tv_sec), 0, sysctl_mld_gsr, "I",
234     "Rate limit for MLDv2 Group-and-Source queries in seconds");
235 
236 /*
237  * Non-virtualized sysctls.
238  */
239 static SYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo,
240     CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mld_ifinfo,
241     "Per-interface MLDv2 state");
242 
243 static int	mld_v1enable = 1;
244 SYSCTL_INT(_net_inet6_mld, OID_AUTO, v1enable, CTLFLAG_RWTUN,
245     &mld_v1enable, 0, "Enable fallback to MLDv1");
246 
247 static int	mld_v2enable = 1;
248 SYSCTL_INT(_net_inet6_mld, OID_AUTO, v2enable, CTLFLAG_RWTUN,
249     &mld_v2enable, 0, "Enable MLDv2");
250 
251 static int	mld_use_allow = 1;
252 SYSCTL_INT(_net_inet6_mld, OID_AUTO, use_allow, CTLFLAG_RWTUN,
253     &mld_use_allow, 0, "Use ALLOW/BLOCK for RFC 4604 SSM joins/leaves");
254 
255 /*
256  * Packed Router Alert option structure declaration.
257  */
258 struct mld_raopt {
259 	struct ip6_hbh		hbh;
260 	struct ip6_opt		pad;
261 	struct ip6_opt_router	ra;
262 } __packed;
263 
264 /*
265  * Router Alert hop-by-hop option header.
266  */
267 static struct mld_raopt mld_ra = {
268 	.hbh = { 0, 0 },
269 	.pad = { .ip6o_type = IP6OPT_PADN, 0 },
270 	.ra = {
271 	    .ip6or_type = IP6OPT_ROUTER_ALERT,
272 	    .ip6or_len = IP6OPT_RTALERT_LEN - 2,
273 	    .ip6or_value[0] = ((IP6OPT_RTALERT_MLD >> 8) & 0xFF),
274 	    .ip6or_value[1] = (IP6OPT_RTALERT_MLD & 0xFF)
275 	}
276 };
277 static struct ip6_pktopts mld_po;
278 
279 static __inline void
280 mld_save_context(struct mbuf *m, struct ifnet *ifp)
281 {
282 
283 #ifdef VIMAGE
284 	m->m_pkthdr.PH_loc.ptr = ifp->if_vnet;
285 #endif /* VIMAGE */
286 	m->m_pkthdr.rcvif = ifp;
287 	m->m_pkthdr.flowid = ifp->if_index;
288 }
289 
290 static __inline void
291 mld_scrub_context(struct mbuf *m)
292 {
293 
294 	m->m_pkthdr.PH_loc.ptr = NULL;
295 	m->m_pkthdr.flowid = 0;
296 }
297 
298 /*
299  * Restore context from a queued output chain.
300  * Return saved ifindex.
301  *
302  * VIMAGE: The assertion is there to make sure that we
303  * actually called CURVNET_SET() with what's in the mbuf chain.
304  */
305 static __inline uint32_t
306 mld_restore_context(struct mbuf *m)
307 {
308 
309 #if defined(VIMAGE) && defined(INVARIANTS)
310 	KASSERT(curvnet == m->m_pkthdr.PH_loc.ptr,
311 	    ("%s: called when curvnet was not restored: cuvnet %p m ptr %p",
312 	    __func__, curvnet, m->m_pkthdr.PH_loc.ptr));
313 #endif
314 	return (m->m_pkthdr.flowid);
315 }
316 
317 /*
318  * Retrieve or set threshold between group-source queries in seconds.
319  *
320  * VIMAGE: Assume curvnet set by caller.
321  * SMPng: NOTE: Serialized by MLD lock.
322  */
323 static int
324 sysctl_mld_gsr(SYSCTL_HANDLER_ARGS)
325 {
326 	int error;
327 	int i;
328 
329 	error = sysctl_wire_old_buffer(req, sizeof(int));
330 	if (error)
331 		return (error);
332 
333 	MLD_LOCK();
334 
335 	i = V_mld_gsrdelay.tv_sec;
336 
337 	error = sysctl_handle_int(oidp, &i, 0, req);
338 	if (error || !req->newptr)
339 		goto out_locked;
340 
341 	if (i < -1 || i >= 60) {
342 		error = EINVAL;
343 		goto out_locked;
344 	}
345 
346 	CTR2(KTR_MLD, "change mld_gsrdelay from %d to %d",
347 	     V_mld_gsrdelay.tv_sec, i);
348 	V_mld_gsrdelay.tv_sec = i;
349 
350 out_locked:
351 	MLD_UNLOCK();
352 	return (error);
353 }
354 
355 /*
356  * Expose struct mld_ifsoftc to userland, keyed by ifindex.
357  * For use by ifmcstat(8).
358  *
359  * SMPng: NOTE: Does an unlocked ifindex space read.
360  * VIMAGE: Assume curvnet set by caller. The node handler itself
361  * is not directly virtualized.
362  */
363 static int
364 sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS)
365 {
366 	int			*name;
367 	int			 error;
368 	u_int			 namelen;
369 	struct ifnet		*ifp;
370 	struct mld_ifsoftc	*mli;
371 
372 	name = (int *)arg1;
373 	namelen = arg2;
374 
375 	if (req->newptr != NULL)
376 		return (EPERM);
377 
378 	if (namelen != 1)
379 		return (EINVAL);
380 
381 	error = sysctl_wire_old_buffer(req, sizeof(struct mld_ifinfo));
382 	if (error)
383 		return (error);
384 
385 	IN6_MULTI_LOCK();
386 	IN6_MULTI_LIST_LOCK();
387 	MLD_LOCK();
388 
389 	if (name[0] <= 0 || name[0] > V_if_index) {
390 		error = ENOENT;
391 		goto out_locked;
392 	}
393 
394 	error = ENOENT;
395 
396 	ifp = ifnet_byindex(name[0]);
397 	if (ifp == NULL)
398 		goto out_locked;
399 
400 	LIST_FOREACH(mli, &V_mli_head, mli_link) {
401 		if (ifp == mli->mli_ifp) {
402 			struct mld_ifinfo info;
403 
404 			info.mli_version = mli->mli_version;
405 			info.mli_v1_timer = mli->mli_v1_timer;
406 			info.mli_v2_timer = mli->mli_v2_timer;
407 			info.mli_flags = mli->mli_flags;
408 			info.mli_rv = mli->mli_rv;
409 			info.mli_qi = mli->mli_qi;
410 			info.mli_qri = mli->mli_qri;
411 			info.mli_uri = mli->mli_uri;
412 			error = SYSCTL_OUT(req, &info, sizeof(info));
413 			break;
414 		}
415 	}
416 
417 out_locked:
418 	MLD_UNLOCK();
419 	IN6_MULTI_LIST_UNLOCK();
420 	IN6_MULTI_UNLOCK();
421 	return (error);
422 }
423 
424 /*
425  * Dispatch an entire queue of pending packet chains.
426  * VIMAGE: Assumes the vnet pointer has been set.
427  */
428 static void
429 mld_dispatch_queue(struct mbufq *mq, int limit)
430 {
431 	struct mbuf *m;
432 
433 	while ((m = mbufq_dequeue(mq)) != NULL) {
434 		CTR3(KTR_MLD, "%s: dispatch %p from %p", __func__, mq, m);
435 		mld_dispatch_packet(m);
436 		if (--limit == 0)
437 			break;
438 	}
439 }
440 
441 /*
442  * Filter outgoing MLD report state by group.
443  *
444  * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1)
445  * and node-local addresses. However, kernel and socket consumers
446  * always embed the KAME scope ID in the address provided, so strip it
447  * when performing comparison.
448  * Note: This is not the same as the *multicast* scope.
449  *
450  * Return zero if the given group is one for which MLD reports
451  * should be suppressed, or non-zero if reports should be issued.
452  */
453 static __inline int
454 mld_is_addr_reported(const struct in6_addr *addr)
455 {
456 
457 	KASSERT(IN6_IS_ADDR_MULTICAST(addr), ("%s: not multicast", __func__));
458 
459 	if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL)
460 		return (0);
461 
462 	if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL) {
463 		struct in6_addr tmp = *addr;
464 		in6_clearscope(&tmp);
465 		if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes))
466 			return (0);
467 	}
468 
469 	return (1);
470 }
471 
472 /*
473  * Attach MLD when PF_INET6 is attached to an interface.
474  *
475  * SMPng: Normally called with IF_AFDATA_LOCK held.
476  */
477 struct mld_ifsoftc *
478 mld_domifattach(struct ifnet *ifp)
479 {
480 	struct mld_ifsoftc *mli;
481 
482 	CTR3(KTR_MLD, "%s: called for ifp %p(%s)",
483 	    __func__, ifp, if_name(ifp));
484 
485 	MLD_LOCK();
486 
487 	mli = mli_alloc_locked(ifp);
488 	if (!(ifp->if_flags & IFF_MULTICAST))
489 		mli->mli_flags |= MLIF_SILENT;
490 	if (mld_use_allow)
491 		mli->mli_flags |= MLIF_USEALLOW;
492 
493 	MLD_UNLOCK();
494 
495 	return (mli);
496 }
497 
498 /*
499  * VIMAGE: assume curvnet set by caller.
500  */
501 static struct mld_ifsoftc *
502 mli_alloc_locked(/*const*/ struct ifnet *ifp)
503 {
504 	struct mld_ifsoftc *mli;
505 
506 	MLD_LOCK_ASSERT();
507 
508 	mli = malloc(sizeof(struct mld_ifsoftc), M_MLD, M_NOWAIT|M_ZERO);
509 	if (mli == NULL)
510 		goto out;
511 
512 	mli->mli_ifp = ifp;
513 	mli->mli_version = MLD_VERSION_2;
514 	mli->mli_flags = 0;
515 	mli->mli_rv = MLD_RV_INIT;
516 	mli->mli_qi = MLD_QI_INIT;
517 	mli->mli_qri = MLD_QRI_INIT;
518 	mli->mli_uri = MLD_URI_INIT;
519 	mbufq_init(&mli->mli_gq, MLD_MAX_RESPONSE_PACKETS);
520 
521 	LIST_INSERT_HEAD(&V_mli_head, mli, mli_link);
522 
523 	CTR2(KTR_MLD, "allocate mld_ifsoftc for ifp %p(%s)",
524 	     ifp, if_name(ifp));
525 
526 out:
527 	return (mli);
528 }
529 
530 /*
531  * Hook for ifdetach.
532  *
533  * NOTE: Some finalization tasks need to run before the protocol domain
534  * is detached, but also before the link layer does its cleanup.
535  * Run before link-layer cleanup; cleanup groups, but do not free MLD state.
536  *
537  * SMPng: Caller must hold IN6_MULTI_LOCK().
538  * Must take IF_ADDR_LOCK() to cover if_multiaddrs iterator.
539  * XXX This routine is also bitten by unlocked ifma_protospec access.
540  */
541 void
542 mld_ifdetach(struct ifnet *ifp, struct in6_multi_head *inmh)
543 {
544 	struct epoch_tracker     et;
545 	struct mld_ifsoftc	*mli;
546 	struct ifmultiaddr	*ifma;
547 	struct in6_multi	*inm;
548 
549 	CTR3(KTR_MLD, "%s: called for ifp %p(%s)", __func__, ifp,
550 	    if_name(ifp));
551 
552 	IN6_MULTI_LIST_LOCK_ASSERT();
553 	MLD_LOCK();
554 
555 	mli = MLD_IFINFO(ifp);
556 	IF_ADDR_WLOCK(ifp);
557 	/*
558 	 * Extract list of in6_multi associated with the detaching ifp
559 	 * which the PF_INET6 layer is about to release.
560 	 */
561 	NET_EPOCH_ENTER(et);
562 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
563 		inm = in6m_ifmultiaddr_get_inm(ifma);
564 		if (inm == NULL)
565 			continue;
566 		in6m_disconnect_locked(inmh, inm);
567 
568 		if (mli->mli_version == MLD_VERSION_2) {
569 			in6m_clear_recorded(inm);
570 
571 			/*
572 			 * We need to release the final reference held
573 			 * for issuing the INCLUDE {}.
574 			 */
575 			if (inm->in6m_state == MLD_LEAVING_MEMBER) {
576 				inm->in6m_state = MLD_NOT_MEMBER;
577 				in6m_rele_locked(inmh, inm);
578 			}
579 		}
580 	}
581 	NET_EPOCH_EXIT(et);
582 	IF_ADDR_WUNLOCK(ifp);
583 	MLD_UNLOCK();
584 }
585 
586 /*
587  * Hook for domifdetach.
588  * Runs after link-layer cleanup; free MLD state.
589  *
590  * SMPng: Normally called with IF_AFDATA_LOCK held.
591  */
592 void
593 mld_domifdetach(struct ifnet *ifp)
594 {
595 
596 	CTR3(KTR_MLD, "%s: called for ifp %p(%s)",
597 	    __func__, ifp, if_name(ifp));
598 
599 	MLD_LOCK();
600 	mli_delete_locked(ifp);
601 	MLD_UNLOCK();
602 }
603 
604 static void
605 mli_delete_locked(const struct ifnet *ifp)
606 {
607 	struct mld_ifsoftc *mli, *tmli;
608 
609 	CTR3(KTR_MLD, "%s: freeing mld_ifsoftc for ifp %p(%s)",
610 	    __func__, ifp, if_name(ifp));
611 
612 	MLD_LOCK_ASSERT();
613 
614 	LIST_FOREACH_SAFE(mli, &V_mli_head, mli_link, tmli) {
615 		if (mli->mli_ifp == ifp) {
616 			/*
617 			 * Free deferred General Query responses.
618 			 */
619 			mbufq_drain(&mli->mli_gq);
620 
621 			LIST_REMOVE(mli, mli_link);
622 
623 			free(mli, M_MLD);
624 			return;
625 		}
626 	}
627 }
628 
629 /*
630  * Process a received MLDv1 general or address-specific query.
631  * Assumes that the query header has been pulled up to sizeof(mld_hdr).
632  *
633  * NOTE: Can't be fully const correct as we temporarily embed scope ID in
634  * mld_addr. This is OK as we own the mbuf chain.
635  */
636 static int
637 mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6,
638     /*const*/ struct mld_hdr *mld)
639 {
640 	struct ifmultiaddr	*ifma;
641 	struct mld_ifsoftc	*mli;
642 	struct in6_multi	*inm;
643 	int			 is_general_query;
644 	uint16_t		 timer;
645 #ifdef KTR
646 	char			 ip6tbuf[INET6_ADDRSTRLEN];
647 #endif
648 
649 	NET_EPOCH_ASSERT();
650 
651 	is_general_query = 0;
652 
653 	if (!mld_v1enable) {
654 		CTR3(KTR_MLD, "ignore v1 query %s on ifp %p(%s)",
655 		    ip6_sprintf(ip6tbuf, &mld->mld_addr),
656 		    ifp, if_name(ifp));
657 		return (0);
658 	}
659 
660 	/*
661 	 * RFC3810 Section 6.2: MLD queries must originate from
662 	 * a router's link-local address.
663 	 */
664 	if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) {
665 		CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)",
666 		    ip6_sprintf(ip6tbuf, &ip6->ip6_src),
667 		    ifp, if_name(ifp));
668 		return (0);
669 	}
670 
671 	/*
672 	 * Do address field validation upfront before we accept
673 	 * the query.
674 	 */
675 	if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) {
676 		/*
677 		 * MLDv1 General Query.
678 		 * If this was not sent to the all-nodes group, ignore it.
679 		 */
680 		struct in6_addr		 dst;
681 
682 		dst = ip6->ip6_dst;
683 		in6_clearscope(&dst);
684 		if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes))
685 			return (EINVAL);
686 		is_general_query = 1;
687 	} else {
688 		/*
689 		 * Embed scope ID of receiving interface in MLD query for
690 		 * lookup whilst we don't hold other locks.
691 		 */
692 		in6_setscope(&mld->mld_addr, ifp, NULL);
693 	}
694 
695 	IN6_MULTI_LIST_LOCK();
696 	MLD_LOCK();
697 
698 	/*
699 	 * Switch to MLDv1 host compatibility mode.
700 	 */
701 	mli = MLD_IFINFO(ifp);
702 	KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp));
703 	mld_set_version(mli, MLD_VERSION_1);
704 
705 	timer = (ntohs(mld->mld_maxdelay) * PR_FASTHZ) / MLD_TIMER_SCALE;
706 	if (timer == 0)
707 		timer = 1;
708 
709 	if (is_general_query) {
710 		/*
711 		 * For each reporting group joined on this
712 		 * interface, kick the report timer.
713 		 */
714 		CTR2(KTR_MLD, "process v1 general query on ifp %p(%s)",
715 			 ifp, if_name(ifp));
716 		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
717 			inm = in6m_ifmultiaddr_get_inm(ifma);
718 			if (inm == NULL)
719 				continue;
720 			mld_v1_update_group(inm, timer);
721 		}
722 	} else {
723 		/*
724 		 * MLDv1 Group-Specific Query.
725 		 * If this is a group-specific MLDv1 query, we need only
726 		 * look up the single group to process it.
727 		 */
728 		inm = in6m_lookup_locked(ifp, &mld->mld_addr);
729 		if (inm != NULL) {
730 			CTR3(KTR_MLD, "process v1 query %s on ifp %p(%s)",
731 			    ip6_sprintf(ip6tbuf, &mld->mld_addr),
732 			    ifp, if_name(ifp));
733 			mld_v1_update_group(inm, timer);
734 		}
735 		/* XXX Clear embedded scope ID as userland won't expect it. */
736 		in6_clearscope(&mld->mld_addr);
737 	}
738 
739 	MLD_UNLOCK();
740 	IN6_MULTI_LIST_UNLOCK();
741 
742 	return (0);
743 }
744 
745 /*
746  * Update the report timer on a group in response to an MLDv1 query.
747  *
748  * If we are becoming the reporting member for this group, start the timer.
749  * If we already are the reporting member for this group, and timer is
750  * below the threshold, reset it.
751  *
752  * We may be updating the group for the first time since we switched
753  * to MLDv2. If we are, then we must clear any recorded source lists,
754  * and transition to REPORTING state; the group timer is overloaded
755  * for group and group-source query responses.
756  *
757  * Unlike MLDv2, the delay per group should be jittered
758  * to avoid bursts of MLDv1 reports.
759  */
760 static void
761 mld_v1_update_group(struct in6_multi *inm, const int timer)
762 {
763 #ifdef KTR
764 	char			 ip6tbuf[INET6_ADDRSTRLEN];
765 #endif
766 
767 	CTR4(KTR_MLD, "%s: %s/%s timer=%d", __func__,
768 	    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
769 	    if_name(inm->in6m_ifp), timer);
770 
771 	IN6_MULTI_LIST_LOCK_ASSERT();
772 
773 	switch (inm->in6m_state) {
774 	case MLD_NOT_MEMBER:
775 	case MLD_SILENT_MEMBER:
776 		break;
777 	case MLD_REPORTING_MEMBER:
778 		if (inm->in6m_timer != 0 &&
779 		    inm->in6m_timer <= timer) {
780 			CTR1(KTR_MLD, "%s: REPORTING and timer running, "
781 			    "skipping.", __func__);
782 			break;
783 		}
784 		/* FALLTHROUGH */
785 	case MLD_SG_QUERY_PENDING_MEMBER:
786 	case MLD_G_QUERY_PENDING_MEMBER:
787 	case MLD_IDLE_MEMBER:
788 	case MLD_LAZY_MEMBER:
789 	case MLD_AWAKENING_MEMBER:
790 		CTR1(KTR_MLD, "%s: ->REPORTING", __func__);
791 		inm->in6m_state = MLD_REPORTING_MEMBER;
792 		inm->in6m_timer = MLD_RANDOM_DELAY(timer);
793 		V_current_state_timers_running6 = 1;
794 		break;
795 	case MLD_SLEEPING_MEMBER:
796 		CTR1(KTR_MLD, "%s: ->AWAKENING", __func__);
797 		inm->in6m_state = MLD_AWAKENING_MEMBER;
798 		break;
799 	case MLD_LEAVING_MEMBER:
800 		break;
801 	}
802 }
803 
804 /*
805  * Process a received MLDv2 general, group-specific or
806  * group-and-source-specific query.
807  *
808  * Assumes that mld points to a struct mldv2_query which is stored in
809  * contiguous memory.
810  *
811  * Return 0 if successful, otherwise an appropriate error code is returned.
812  */
813 static int
814 mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6,
815     struct mbuf *m, struct mldv2_query *mld, const int off, const int icmp6len)
816 {
817 	struct mld_ifsoftc	*mli;
818 	struct in6_multi	*inm;
819 	uint32_t		 maxdelay, nsrc, qqi;
820 	int			 is_general_query;
821 	uint16_t		 timer;
822 	uint8_t			 qrv;
823 #ifdef KTR
824 	char			 ip6tbuf[INET6_ADDRSTRLEN];
825 #endif
826 
827 	NET_EPOCH_ASSERT();
828 
829 	if (!mld_v2enable) {
830 		CTR3(KTR_MLD, "ignore v2 query src %s on ifp %p(%s)",
831 		    ip6_sprintf(ip6tbuf, &ip6->ip6_src),
832 		    ifp, if_name(ifp));
833 		return (0);
834 	}
835 
836 	/*
837 	 * RFC3810 Section 6.2: MLD queries must originate from
838 	 * a router's link-local address.
839 	 */
840 	if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) {
841 		CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)",
842 		    ip6_sprintf(ip6tbuf, &ip6->ip6_src),
843 		    ifp, if_name(ifp));
844 		return (0);
845 	}
846 
847 	is_general_query = 0;
848 
849 	CTR2(KTR_MLD, "input v2 query on ifp %p(%s)", ifp, if_name(ifp));
850 
851 	maxdelay = ntohs(mld->mld_maxdelay);	/* in 1/10ths of a second */
852 	if (maxdelay >= 32768) {
853 		maxdelay = (MLD_MRC_MANT(maxdelay) | 0x1000) <<
854 			   (MLD_MRC_EXP(maxdelay) + 3);
855 	}
856 	timer = (maxdelay * PR_FASTHZ) / MLD_TIMER_SCALE;
857 	if (timer == 0)
858 		timer = 1;
859 
860 	qrv = MLD_QRV(mld->mld_misc);
861 	if (qrv < 2) {
862 		CTR3(KTR_MLD, "%s: clamping qrv %d to %d", __func__,
863 		    qrv, MLD_RV_INIT);
864 		qrv = MLD_RV_INIT;
865 	}
866 
867 	qqi = mld->mld_qqi;
868 	if (qqi >= 128) {
869 		qqi = MLD_QQIC_MANT(mld->mld_qqi) <<
870 		     (MLD_QQIC_EXP(mld->mld_qqi) + 3);
871 	}
872 
873 	nsrc = ntohs(mld->mld_numsrc);
874 	if (nsrc > MLD_MAX_GS_SOURCES)
875 		return (EMSGSIZE);
876 	if (icmp6len < sizeof(struct mldv2_query) +
877 	    (nsrc * sizeof(struct in6_addr)))
878 		return (EMSGSIZE);
879 
880 	/*
881 	 * Do further input validation upfront to avoid resetting timers
882 	 * should we need to discard this query.
883 	 */
884 	if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) {
885 		/*
886 		 * A general query with a source list has undefined
887 		 * behaviour; discard it.
888 		 */
889 		if (nsrc > 0)
890 			return (EINVAL);
891 		is_general_query = 1;
892 	} else {
893 		/*
894 		 * Embed scope ID of receiving interface in MLD query for
895 		 * lookup whilst we don't hold other locks (due to KAME
896 		 * locking lameness). We own this mbuf chain just now.
897 		 */
898 		in6_setscope(&mld->mld_addr, ifp, NULL);
899 	}
900 
901 	IN6_MULTI_LIST_LOCK();
902 	MLD_LOCK();
903 
904 	mli = MLD_IFINFO(ifp);
905 	KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp));
906 
907 	/*
908 	 * Discard the v2 query if we're in Compatibility Mode.
909 	 * The RFC is pretty clear that hosts need to stay in MLDv1 mode
910 	 * until the Old Version Querier Present timer expires.
911 	 */
912 	if (mli->mli_version != MLD_VERSION_2)
913 		goto out_locked;
914 
915 	mld_set_version(mli, MLD_VERSION_2);
916 	mli->mli_rv = qrv;
917 	mli->mli_qi = qqi;
918 	mli->mli_qri = maxdelay;
919 
920 	CTR4(KTR_MLD, "%s: qrv %d qi %d maxdelay %d", __func__, qrv, qqi,
921 	    maxdelay);
922 
923 	if (is_general_query) {
924 		/*
925 		 * MLDv2 General Query.
926 		 *
927 		 * Schedule a current-state report on this ifp for
928 		 * all groups, possibly containing source lists.
929 		 *
930 		 * If there is a pending General Query response
931 		 * scheduled earlier than the selected delay, do
932 		 * not schedule any other reports.
933 		 * Otherwise, reset the interface timer.
934 		 */
935 		CTR2(KTR_MLD, "process v2 general query on ifp %p(%s)",
936 		    ifp, if_name(ifp));
937 		if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) {
938 			mli->mli_v2_timer = MLD_RANDOM_DELAY(timer);
939 			V_interface_timers_running6 = 1;
940 		}
941 	} else {
942 		/*
943 		 * MLDv2 Group-specific or Group-and-source-specific Query.
944 		 *
945 		 * Group-source-specific queries are throttled on
946 		 * a per-group basis to defeat denial-of-service attempts.
947 		 * Queries for groups we are not a member of on this
948 		 * link are simply ignored.
949 		 */
950 		inm = in6m_lookup_locked(ifp, &mld->mld_addr);
951 		if (inm == NULL)
952 			goto out_locked;
953 		if (nsrc > 0) {
954 			if (!ratecheck(&inm->in6m_lastgsrtv,
955 			    &V_mld_gsrdelay)) {
956 				CTR1(KTR_MLD, "%s: GS query throttled.",
957 				    __func__);
958 				goto out_locked;
959 			}
960 		}
961 		CTR2(KTR_MLD, "process v2 group query on ifp %p(%s)",
962 		     ifp, if_name(ifp));
963 		/*
964 		 * If there is a pending General Query response
965 		 * scheduled sooner than the selected delay, no
966 		 * further report need be scheduled.
967 		 * Otherwise, prepare to respond to the
968 		 * group-specific or group-and-source query.
969 		 */
970 		if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer)
971 			mld_v2_process_group_query(inm, mli, timer, m, mld, off);
972 
973 		/* XXX Clear embedded scope ID as userland won't expect it. */
974 		in6_clearscope(&mld->mld_addr);
975 	}
976 
977 out_locked:
978 	MLD_UNLOCK();
979 	IN6_MULTI_LIST_UNLOCK();
980 
981 	return (0);
982 }
983 
984 /*
985  * Process a received MLDv2 group-specific or group-and-source-specific
986  * query.
987  * Return <0 if any error occurred. Currently this is ignored.
988  */
989 static int
990 mld_v2_process_group_query(struct in6_multi *inm, struct mld_ifsoftc *mli,
991     int timer, struct mbuf *m0, struct mldv2_query *mld, const int off)
992 {
993 	int			 retval;
994 	uint16_t		 nsrc;
995 
996 	IN6_MULTI_LIST_LOCK_ASSERT();
997 	MLD_LOCK_ASSERT();
998 
999 	retval = 0;
1000 
1001 	switch (inm->in6m_state) {
1002 	case MLD_NOT_MEMBER:
1003 	case MLD_SILENT_MEMBER:
1004 	case MLD_SLEEPING_MEMBER:
1005 	case MLD_LAZY_MEMBER:
1006 	case MLD_AWAKENING_MEMBER:
1007 	case MLD_IDLE_MEMBER:
1008 	case MLD_LEAVING_MEMBER:
1009 		return (retval);
1010 		break;
1011 	case MLD_REPORTING_MEMBER:
1012 	case MLD_G_QUERY_PENDING_MEMBER:
1013 	case MLD_SG_QUERY_PENDING_MEMBER:
1014 		break;
1015 	}
1016 
1017 	nsrc = ntohs(mld->mld_numsrc);
1018 
1019 	/* Length should be checked by calling function. */
1020 	KASSERT((m0->m_flags & M_PKTHDR) == 0 ||
1021 	    m0->m_pkthdr.len >= off + sizeof(struct mldv2_query) +
1022 	    nsrc * sizeof(struct in6_addr),
1023 	    ("mldv2 packet is too short: (%d bytes < %zd bytes, m=%p)",
1024 	    m0->m_pkthdr.len, off + sizeof(struct mldv2_query) +
1025 	    nsrc * sizeof(struct in6_addr), m0));
1026 
1027 
1028 	/*
1029 	 * Deal with group-specific queries upfront.
1030 	 * If any group query is already pending, purge any recorded
1031 	 * source-list state if it exists, and schedule a query response
1032 	 * for this group-specific query.
1033 	 */
1034 	if (nsrc == 0) {
1035 		if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER ||
1036 		    inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) {
1037 			in6m_clear_recorded(inm);
1038 			timer = min(inm->in6m_timer, timer);
1039 		}
1040 		inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER;
1041 		inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1042 		V_current_state_timers_running6 = 1;
1043 		return (retval);
1044 	}
1045 
1046 	/*
1047 	 * Deal with the case where a group-and-source-specific query has
1048 	 * been received but a group-specific query is already pending.
1049 	 */
1050 	if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) {
1051 		timer = min(inm->in6m_timer, timer);
1052 		inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1053 		V_current_state_timers_running6 = 1;
1054 		return (retval);
1055 	}
1056 
1057 	/*
1058 	 * Finally, deal with the case where a group-and-source-specific
1059 	 * query has been received, where a response to a previous g-s-r
1060 	 * query exists, or none exists.
1061 	 * In this case, we need to parse the source-list which the Querier
1062 	 * has provided us with and check if we have any source list filter
1063 	 * entries at T1 for these sources. If we do not, there is no need
1064 	 * schedule a report and the query may be dropped.
1065 	 * If we do, we must record them and schedule a current-state
1066 	 * report for those sources.
1067 	 */
1068 	if (inm->in6m_nsrc > 0) {
1069 		struct in6_addr		 srcaddr;
1070 		int			 i, nrecorded;
1071 		int			 soff;
1072 
1073 		soff = off + sizeof(struct mldv2_query);
1074 		nrecorded = 0;
1075 		for (i = 0; i < nsrc; i++) {
1076 			m_copydata(m0, soff, sizeof(struct in6_addr),
1077 			    (caddr_t)&srcaddr);
1078 			retval = in6m_record_source(inm, &srcaddr);
1079 			if (retval < 0)
1080 				break;
1081 			nrecorded += retval;
1082 			soff += sizeof(struct in6_addr);
1083 		}
1084 		if (nrecorded > 0) {
1085 			CTR1(KTR_MLD,
1086 			    "%s: schedule response to SG query", __func__);
1087 			inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER;
1088 			inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1089 			V_current_state_timers_running6 = 1;
1090 		}
1091 	}
1092 
1093 	return (retval);
1094 }
1095 
1096 /*
1097  * Process a received MLDv1 host membership report.
1098  * Assumes mld points to mld_hdr in pulled up mbuf chain.
1099  *
1100  * NOTE: Can't be fully const correct as we temporarily embed scope ID in
1101  * mld_addr. This is OK as we own the mbuf chain.
1102  */
1103 static int
1104 mld_v1_input_report(struct ifnet *ifp, const struct ip6_hdr *ip6,
1105     /*const*/ struct mld_hdr *mld)
1106 {
1107 	struct in6_addr		 src, dst;
1108 	struct in6_ifaddr	*ia;
1109 	struct in6_multi	*inm;
1110 #ifdef KTR
1111 	char			 ip6tbuf[INET6_ADDRSTRLEN];
1112 #endif
1113 
1114 	NET_EPOCH_ASSERT();
1115 
1116 	if (!mld_v1enable) {
1117 		CTR3(KTR_MLD, "ignore v1 report %s on ifp %p(%s)",
1118 		    ip6_sprintf(ip6tbuf, &mld->mld_addr),
1119 		    ifp, if_name(ifp));
1120 		return (0);
1121 	}
1122 
1123 	if (ifp->if_flags & IFF_LOOPBACK)
1124 		return (0);
1125 
1126 	/*
1127 	 * MLDv1 reports must originate from a host's link-local address,
1128 	 * or the unspecified address (when booting).
1129 	 */
1130 	src = ip6->ip6_src;
1131 	in6_clearscope(&src);
1132 	if (!IN6_IS_SCOPE_LINKLOCAL(&src) && !IN6_IS_ADDR_UNSPECIFIED(&src)) {
1133 		CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)",
1134 		    ip6_sprintf(ip6tbuf, &ip6->ip6_src),
1135 		    ifp, if_name(ifp));
1136 		return (EINVAL);
1137 	}
1138 
1139 	/*
1140 	 * RFC2710 Section 4: MLDv1 reports must pertain to a multicast
1141 	 * group, and must be directed to the group itself.
1142 	 */
1143 	dst = ip6->ip6_dst;
1144 	in6_clearscope(&dst);
1145 	if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) ||
1146 	    !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &dst)) {
1147 		CTR3(KTR_MLD, "ignore v1 query dst %s on ifp %p(%s)",
1148 		    ip6_sprintf(ip6tbuf, &ip6->ip6_dst),
1149 		    ifp, if_name(ifp));
1150 		return (EINVAL);
1151 	}
1152 
1153 	/*
1154 	 * Make sure we don't hear our own membership report, as fast
1155 	 * leave requires knowing that we are the only member of a
1156 	 * group. Assume we used the link-local address if available,
1157 	 * otherwise look for ::.
1158 	 *
1159 	 * XXX Note that scope ID comparison is needed for the address
1160 	 * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be
1161 	 * performed for the on-wire address.
1162 	 */
1163 	ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
1164 	if ((ia && IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia))) ||
1165 	    (ia == NULL && IN6_IS_ADDR_UNSPECIFIED(&src))) {
1166 		if (ia != NULL)
1167 			ifa_free(&ia->ia_ifa);
1168 		return (0);
1169 	}
1170 	if (ia != NULL)
1171 		ifa_free(&ia->ia_ifa);
1172 
1173 	CTR3(KTR_MLD, "process v1 report %s on ifp %p(%s)",
1174 	    ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, if_name(ifp));
1175 
1176 	/*
1177 	 * Embed scope ID of receiving interface in MLD query for lookup
1178 	 * whilst we don't hold other locks (due to KAME locking lameness).
1179 	 */
1180 	if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr))
1181 		in6_setscope(&mld->mld_addr, ifp, NULL);
1182 
1183 	IN6_MULTI_LIST_LOCK();
1184 	MLD_LOCK();
1185 
1186 	/*
1187 	 * MLDv1 report suppression.
1188 	 * If we are a member of this group, and our membership should be
1189 	 * reported, and our group timer is pending or about to be reset,
1190 	 * stop our group timer by transitioning to the 'lazy' state.
1191 	 */
1192 	inm = in6m_lookup_locked(ifp, &mld->mld_addr);
1193 	if (inm != NULL) {
1194 		struct mld_ifsoftc *mli;
1195 
1196 		mli = inm->in6m_mli;
1197 		KASSERT(mli != NULL,
1198 		    ("%s: no mli for ifp %p", __func__, ifp));
1199 
1200 		/*
1201 		 * If we are in MLDv2 host mode, do not allow the
1202 		 * other host's MLDv1 report to suppress our reports.
1203 		 */
1204 		if (mli->mli_version == MLD_VERSION_2)
1205 			goto out_locked;
1206 
1207 		inm->in6m_timer = 0;
1208 
1209 		switch (inm->in6m_state) {
1210 		case MLD_NOT_MEMBER:
1211 		case MLD_SILENT_MEMBER:
1212 		case MLD_SLEEPING_MEMBER:
1213 			break;
1214 		case MLD_REPORTING_MEMBER:
1215 		case MLD_IDLE_MEMBER:
1216 		case MLD_AWAKENING_MEMBER:
1217 			CTR3(KTR_MLD,
1218 			    "report suppressed for %s on ifp %p(%s)",
1219 			    ip6_sprintf(ip6tbuf, &mld->mld_addr),
1220 			    ifp, if_name(ifp));
1221 		case MLD_LAZY_MEMBER:
1222 			inm->in6m_state = MLD_LAZY_MEMBER;
1223 			break;
1224 		case MLD_G_QUERY_PENDING_MEMBER:
1225 		case MLD_SG_QUERY_PENDING_MEMBER:
1226 		case MLD_LEAVING_MEMBER:
1227 			break;
1228 		}
1229 	}
1230 
1231 out_locked:
1232 	MLD_UNLOCK();
1233 	IN6_MULTI_LIST_UNLOCK();
1234 
1235 	/* XXX Clear embedded scope ID as userland won't expect it. */
1236 	in6_clearscope(&mld->mld_addr);
1237 
1238 	return (0);
1239 }
1240 
1241 /*
1242  * MLD input path.
1243  *
1244  * Assume query messages which fit in a single ICMPv6 message header
1245  * have been pulled up.
1246  * Assume that userland will want to see the message, even if it
1247  * otherwise fails kernel input validation; do not free it.
1248  * Pullup may however free the mbuf chain m if it fails.
1249  *
1250  * Return IPPROTO_DONE if we freed m. Otherwise, return 0.
1251  */
1252 int
1253 mld_input(struct mbuf **mp, int off, int icmp6len)
1254 {
1255 	struct ifnet	*ifp;
1256 	struct ip6_hdr	*ip6;
1257 	struct mbuf	*m;
1258 	struct mld_hdr	*mld;
1259 	int		 mldlen;
1260 
1261 	m = *mp;
1262 	CTR3(KTR_MLD, "%s: called w/mbuf (%p,%d)", __func__, m, off);
1263 
1264 	ifp = m->m_pkthdr.rcvif;
1265 
1266 	/* Pullup to appropriate size. */
1267 	if (m->m_len < off + sizeof(*mld)) {
1268 		m = m_pullup(m, off + sizeof(*mld));
1269 		if (m == NULL) {
1270 			ICMP6STAT_INC(icp6s_badlen);
1271 			return (IPPROTO_DONE);
1272 		}
1273 	}
1274 	mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off);
1275 	if (mld->mld_type == MLD_LISTENER_QUERY &&
1276 	    icmp6len >= sizeof(struct mldv2_query)) {
1277 		mldlen = sizeof(struct mldv2_query);
1278 	} else {
1279 		mldlen = sizeof(struct mld_hdr);
1280 	}
1281 	if (m->m_len < off + mldlen) {
1282 		m = m_pullup(m, off + mldlen);
1283 		if (m == NULL) {
1284 			ICMP6STAT_INC(icp6s_badlen);
1285 			return (IPPROTO_DONE);
1286 		}
1287 	}
1288 	*mp = m;
1289 	ip6 = mtod(m, struct ip6_hdr *);
1290 	mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off);
1291 
1292 	/*
1293 	 * Userland needs to see all of this traffic for implementing
1294 	 * the endpoint discovery portion of multicast routing.
1295 	 */
1296 	switch (mld->mld_type) {
1297 	case MLD_LISTENER_QUERY:
1298 		icmp6_ifstat_inc(ifp, ifs6_in_mldquery);
1299 		if (icmp6len == sizeof(struct mld_hdr)) {
1300 			if (mld_v1_input_query(ifp, ip6, mld) != 0)
1301 				return (0);
1302 		} else if (icmp6len >= sizeof(struct mldv2_query)) {
1303 			if (mld_v2_input_query(ifp, ip6, m,
1304 			    (struct mldv2_query *)mld, off, icmp6len) != 0)
1305 				return (0);
1306 		}
1307 		break;
1308 	case MLD_LISTENER_REPORT:
1309 		icmp6_ifstat_inc(ifp, ifs6_in_mldreport);
1310 		if (mld_v1_input_report(ifp, ip6, mld) != 0)
1311 			return (0);
1312 		break;
1313 	case MLDV2_LISTENER_REPORT:
1314 		icmp6_ifstat_inc(ifp, ifs6_in_mldreport);
1315 		break;
1316 	case MLD_LISTENER_DONE:
1317 		icmp6_ifstat_inc(ifp, ifs6_in_mlddone);
1318 		break;
1319 	default:
1320 		break;
1321 	}
1322 
1323 	return (0);
1324 }
1325 
1326 /*
1327  * Fast timeout handler (global).
1328  * VIMAGE: Timeout handlers are expected to service all vimages.
1329  */
1330 void
1331 mld_fasttimo(void)
1332 {
1333 	struct in6_multi_head inmh;
1334 	VNET_ITERATOR_DECL(vnet_iter);
1335 
1336 	SLIST_INIT(&inmh);
1337 
1338 	VNET_LIST_RLOCK_NOSLEEP();
1339 	VNET_FOREACH(vnet_iter) {
1340 		CURVNET_SET(vnet_iter);
1341 		mld_fasttimo_vnet(&inmh);
1342 		CURVNET_RESTORE();
1343 	}
1344 	VNET_LIST_RUNLOCK_NOSLEEP();
1345 	in6m_release_list_deferred(&inmh);
1346 }
1347 
1348 /*
1349  * Fast timeout handler (per-vnet).
1350  *
1351  * VIMAGE: Assume caller has set up our curvnet.
1352  */
1353 static void
1354 mld_fasttimo_vnet(struct in6_multi_head *inmh)
1355 {
1356 	struct epoch_tracker     et;
1357 	struct mbufq		 scq;	/* State-change packets */
1358 	struct mbufq		 qrq;	/* Query response packets */
1359 	struct ifnet		*ifp;
1360 	struct mld_ifsoftc	*mli;
1361 	struct ifmultiaddr	*ifma;
1362 	struct in6_multi	*inm;
1363 	int			 uri_fasthz;
1364 
1365 	uri_fasthz = 0;
1366 
1367 	/*
1368 	 * Quick check to see if any work needs to be done, in order to
1369 	 * minimize the overhead of fasttimo processing.
1370 	 * SMPng: XXX Unlocked reads.
1371 	 */
1372 	if (!V_current_state_timers_running6 &&
1373 	    !V_interface_timers_running6 &&
1374 	    !V_state_change_timers_running6)
1375 		return;
1376 
1377 	IN6_MULTI_LIST_LOCK();
1378 	MLD_LOCK();
1379 
1380 	/*
1381 	 * MLDv2 General Query response timer processing.
1382 	 */
1383 	if (V_interface_timers_running6) {
1384 		CTR1(KTR_MLD, "%s: interface timers running", __func__);
1385 
1386 		V_interface_timers_running6 = 0;
1387 		LIST_FOREACH(mli, &V_mli_head, mli_link) {
1388 			if (mli->mli_v2_timer == 0) {
1389 				/* Do nothing. */
1390 			} else if (--mli->mli_v2_timer == 0) {
1391 				mld_v2_dispatch_general_query(mli);
1392 			} else {
1393 				V_interface_timers_running6 = 1;
1394 			}
1395 		}
1396 	}
1397 
1398 	if (!V_current_state_timers_running6 &&
1399 	    !V_state_change_timers_running6)
1400 		goto out_locked;
1401 
1402 	V_current_state_timers_running6 = 0;
1403 	V_state_change_timers_running6 = 0;
1404 
1405 	CTR1(KTR_MLD, "%s: state change timers running", __func__);
1406 
1407 	/*
1408 	 * MLD host report and state-change timer processing.
1409 	 * Note: Processing a v2 group timer may remove a node.
1410 	 */
1411 	LIST_FOREACH(mli, &V_mli_head, mli_link) {
1412 		ifp = mli->mli_ifp;
1413 
1414 		if (mli->mli_version == MLD_VERSION_2) {
1415 			uri_fasthz = MLD_RANDOM_DELAY(mli->mli_uri *
1416 			    PR_FASTHZ);
1417 			mbufq_init(&qrq, MLD_MAX_G_GS_PACKETS);
1418 			mbufq_init(&scq, MLD_MAX_STATE_CHANGE_PACKETS);
1419 		}
1420 
1421 		NET_EPOCH_ENTER(et);
1422 		IF_ADDR_WLOCK(ifp);
1423 		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1424 			inm = in6m_ifmultiaddr_get_inm(ifma);
1425 			if (inm == NULL)
1426 				continue;
1427 			switch (mli->mli_version) {
1428 			case MLD_VERSION_1:
1429 				mld_v1_process_group_timer(inmh, inm);
1430 				break;
1431 			case MLD_VERSION_2:
1432 				mld_v2_process_group_timers(inmh, &qrq,
1433 				    &scq, inm, uri_fasthz);
1434 				break;
1435 			}
1436 		}
1437 		IF_ADDR_WUNLOCK(ifp);
1438 
1439 		switch (mli->mli_version) {
1440 		case MLD_VERSION_1:
1441 			/*
1442 			 * Transmit reports for this lifecycle.  This
1443 			 * is done while not holding IF_ADDR_LOCK
1444 			 * since this can call
1445 			 * in6ifa_ifpforlinklocal() which locks
1446 			 * IF_ADDR_LOCK internally as well as
1447 			 * ip6_output() to transmit a packet.
1448 			 */
1449 			while ((inm = SLIST_FIRST(inmh)) != NULL) {
1450 				SLIST_REMOVE_HEAD(inmh, in6m_defer);
1451 				(void)mld_v1_transmit_report(inm,
1452 				    MLD_LISTENER_REPORT);
1453 			}
1454 			break;
1455 		case MLD_VERSION_2:
1456 			mld_dispatch_queue(&qrq, 0);
1457 			mld_dispatch_queue(&scq, 0);
1458 			break;
1459 		}
1460 		NET_EPOCH_EXIT(et);
1461 	}
1462 
1463 out_locked:
1464 	MLD_UNLOCK();
1465 	IN6_MULTI_LIST_UNLOCK();
1466 }
1467 
1468 /*
1469  * Update host report group timer.
1470  * Will update the global pending timer flags.
1471  */
1472 static void
1473 mld_v1_process_group_timer(struct in6_multi_head *inmh, struct in6_multi *inm)
1474 {
1475 	int report_timer_expired;
1476 
1477 	IN6_MULTI_LIST_LOCK_ASSERT();
1478 	MLD_LOCK_ASSERT();
1479 
1480 	if (inm->in6m_timer == 0) {
1481 		report_timer_expired = 0;
1482 	} else if (--inm->in6m_timer == 0) {
1483 		report_timer_expired = 1;
1484 	} else {
1485 		V_current_state_timers_running6 = 1;
1486 		return;
1487 	}
1488 
1489 	switch (inm->in6m_state) {
1490 	case MLD_NOT_MEMBER:
1491 	case MLD_SILENT_MEMBER:
1492 	case MLD_IDLE_MEMBER:
1493 	case MLD_LAZY_MEMBER:
1494 	case MLD_SLEEPING_MEMBER:
1495 	case MLD_AWAKENING_MEMBER:
1496 		break;
1497 	case MLD_REPORTING_MEMBER:
1498 		if (report_timer_expired) {
1499 			inm->in6m_state = MLD_IDLE_MEMBER;
1500 			SLIST_INSERT_HEAD(inmh, inm, in6m_defer);
1501 		}
1502 		break;
1503 	case MLD_G_QUERY_PENDING_MEMBER:
1504 	case MLD_SG_QUERY_PENDING_MEMBER:
1505 	case MLD_LEAVING_MEMBER:
1506 		break;
1507 	}
1508 }
1509 
1510 /*
1511  * Update a group's timers for MLDv2.
1512  * Will update the global pending timer flags.
1513  * Note: Unlocked read from mli.
1514  */
1515 static void
1516 mld_v2_process_group_timers(struct in6_multi_head *inmh,
1517     struct mbufq *qrq, struct mbufq *scq,
1518     struct in6_multi *inm, const int uri_fasthz)
1519 {
1520 	int query_response_timer_expired;
1521 	int state_change_retransmit_timer_expired;
1522 #ifdef KTR
1523 	char ip6tbuf[INET6_ADDRSTRLEN];
1524 #endif
1525 
1526 	IN6_MULTI_LIST_LOCK_ASSERT();
1527 	MLD_LOCK_ASSERT();
1528 
1529 	query_response_timer_expired = 0;
1530 	state_change_retransmit_timer_expired = 0;
1531 
1532 	/*
1533 	 * During a transition from compatibility mode back to MLDv2,
1534 	 * a group record in REPORTING state may still have its group
1535 	 * timer active. This is a no-op in this function; it is easier
1536 	 * to deal with it here than to complicate the slow-timeout path.
1537 	 */
1538 	if (inm->in6m_timer == 0) {
1539 		query_response_timer_expired = 0;
1540 	} else if (--inm->in6m_timer == 0) {
1541 		query_response_timer_expired = 1;
1542 	} else {
1543 		V_current_state_timers_running6 = 1;
1544 	}
1545 
1546 	if (inm->in6m_sctimer == 0) {
1547 		state_change_retransmit_timer_expired = 0;
1548 	} else if (--inm->in6m_sctimer == 0) {
1549 		state_change_retransmit_timer_expired = 1;
1550 	} else {
1551 		V_state_change_timers_running6 = 1;
1552 	}
1553 
1554 	/* We are in fasttimo, so be quick about it. */
1555 	if (!state_change_retransmit_timer_expired &&
1556 	    !query_response_timer_expired)
1557 		return;
1558 
1559 	switch (inm->in6m_state) {
1560 	case MLD_NOT_MEMBER:
1561 	case MLD_SILENT_MEMBER:
1562 	case MLD_SLEEPING_MEMBER:
1563 	case MLD_LAZY_MEMBER:
1564 	case MLD_AWAKENING_MEMBER:
1565 	case MLD_IDLE_MEMBER:
1566 		break;
1567 	case MLD_G_QUERY_PENDING_MEMBER:
1568 	case MLD_SG_QUERY_PENDING_MEMBER:
1569 		/*
1570 		 * Respond to a previously pending Group-Specific
1571 		 * or Group-and-Source-Specific query by enqueueing
1572 		 * the appropriate Current-State report for
1573 		 * immediate transmission.
1574 		 */
1575 		if (query_response_timer_expired) {
1576 			int retval;
1577 
1578 			retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1,
1579 			    (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER),
1580 			    0);
1581 			CTR2(KTR_MLD, "%s: enqueue record = %d",
1582 			    __func__, retval);
1583 			inm->in6m_state = MLD_REPORTING_MEMBER;
1584 			in6m_clear_recorded(inm);
1585 		}
1586 		/* FALLTHROUGH */
1587 	case MLD_REPORTING_MEMBER:
1588 	case MLD_LEAVING_MEMBER:
1589 		if (state_change_retransmit_timer_expired) {
1590 			/*
1591 			 * State-change retransmission timer fired.
1592 			 * If there are any further pending retransmissions,
1593 			 * set the global pending state-change flag, and
1594 			 * reset the timer.
1595 			 */
1596 			if (--inm->in6m_scrv > 0) {
1597 				inm->in6m_sctimer = uri_fasthz;
1598 				V_state_change_timers_running6 = 1;
1599 			}
1600 			/*
1601 			 * Retransmit the previously computed state-change
1602 			 * report. If there are no further pending
1603 			 * retransmissions, the mbuf queue will be consumed.
1604 			 * Update T0 state to T1 as we have now sent
1605 			 * a state-change.
1606 			 */
1607 			(void)mld_v2_merge_state_changes(inm, scq);
1608 
1609 			in6m_commit(inm);
1610 			CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
1611 			    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
1612 			    if_name(inm->in6m_ifp));
1613 
1614 			/*
1615 			 * If we are leaving the group for good, make sure
1616 			 * we release MLD's reference to it.
1617 			 * This release must be deferred using a SLIST,
1618 			 * as we are called from a loop which traverses
1619 			 * the in_ifmultiaddr TAILQ.
1620 			 */
1621 			if (inm->in6m_state == MLD_LEAVING_MEMBER &&
1622 			    inm->in6m_scrv == 0) {
1623 				inm->in6m_state = MLD_NOT_MEMBER;
1624 				in6m_disconnect_locked(inmh, inm);
1625 				in6m_rele_locked(inmh, inm);
1626 			}
1627 		}
1628 		break;
1629 	}
1630 }
1631 
1632 /*
1633  * Switch to a different version on the given interface,
1634  * as per Section 9.12.
1635  */
1636 static void
1637 mld_set_version(struct mld_ifsoftc *mli, const int version)
1638 {
1639 	int old_version_timer;
1640 
1641 	MLD_LOCK_ASSERT();
1642 
1643 	CTR4(KTR_MLD, "%s: switching to v%d on ifp %p(%s)", __func__,
1644 	    version, mli->mli_ifp, if_name(mli->mli_ifp));
1645 
1646 	if (version == MLD_VERSION_1) {
1647 		/*
1648 		 * Compute the "Older Version Querier Present" timer as per
1649 		 * Section 9.12.
1650 		 */
1651 		old_version_timer = (mli->mli_rv * mli->mli_qi) + mli->mli_qri;
1652 		old_version_timer *= PR_SLOWHZ;
1653 		mli->mli_v1_timer = old_version_timer;
1654 	}
1655 
1656 	if (mli->mli_v1_timer > 0 && mli->mli_version != MLD_VERSION_1) {
1657 		mli->mli_version = MLD_VERSION_1;
1658 		mld_v2_cancel_link_timers(mli);
1659 	}
1660 }
1661 
1662 /*
1663  * Cancel pending MLDv2 timers for the given link and all groups
1664  * joined on it; state-change, general-query, and group-query timers.
1665  */
1666 static void
1667 mld_v2_cancel_link_timers(struct mld_ifsoftc *mli)
1668 {
1669 	struct epoch_tracker	 et;
1670 	struct in6_multi_head	 inmh;
1671 	struct ifmultiaddr	*ifma;
1672 	struct ifnet		*ifp;
1673 	struct in6_multi	*inm;
1674 
1675 	CTR3(KTR_MLD, "%s: cancel v2 timers on ifp %p(%s)", __func__,
1676 	    mli->mli_ifp, if_name(mli->mli_ifp));
1677 
1678 	SLIST_INIT(&inmh);
1679 	IN6_MULTI_LIST_LOCK_ASSERT();
1680 	MLD_LOCK_ASSERT();
1681 
1682 	/*
1683 	 * Fast-track this potentially expensive operation
1684 	 * by checking all the global 'timer pending' flags.
1685 	 */
1686 	if (!V_interface_timers_running6 &&
1687 	    !V_state_change_timers_running6 &&
1688 	    !V_current_state_timers_running6)
1689 		return;
1690 
1691 	mli->mli_v2_timer = 0;
1692 
1693 	ifp = mli->mli_ifp;
1694 
1695 	IF_ADDR_WLOCK(ifp);
1696 	NET_EPOCH_ENTER(et);
1697 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1698 		inm = in6m_ifmultiaddr_get_inm(ifma);
1699 		if (inm == NULL)
1700 			continue;
1701 		switch (inm->in6m_state) {
1702 		case MLD_NOT_MEMBER:
1703 		case MLD_SILENT_MEMBER:
1704 		case MLD_IDLE_MEMBER:
1705 		case MLD_LAZY_MEMBER:
1706 		case MLD_SLEEPING_MEMBER:
1707 		case MLD_AWAKENING_MEMBER:
1708 			break;
1709 		case MLD_LEAVING_MEMBER:
1710 			/*
1711 			 * If we are leaving the group and switching
1712 			 * version, we need to release the final
1713 			 * reference held for issuing the INCLUDE {}.
1714 			 */
1715 			if (inm->in6m_refcount == 1)
1716 				in6m_disconnect_locked(&inmh, inm);
1717 			in6m_rele_locked(&inmh, inm);
1718 			/* FALLTHROUGH */
1719 		case MLD_G_QUERY_PENDING_MEMBER:
1720 		case MLD_SG_QUERY_PENDING_MEMBER:
1721 			in6m_clear_recorded(inm);
1722 			/* FALLTHROUGH */
1723 		case MLD_REPORTING_MEMBER:
1724 			inm->in6m_sctimer = 0;
1725 			inm->in6m_timer = 0;
1726 			inm->in6m_state = MLD_REPORTING_MEMBER;
1727 			/*
1728 			 * Free any pending MLDv2 state-change records.
1729 			 */
1730 			mbufq_drain(&inm->in6m_scq);
1731 			break;
1732 		}
1733 	}
1734 	NET_EPOCH_EXIT(et);
1735 	IF_ADDR_WUNLOCK(ifp);
1736 	in6m_release_list_deferred(&inmh);
1737 }
1738 
1739 /*
1740  * Global slowtimo handler.
1741  * VIMAGE: Timeout handlers are expected to service all vimages.
1742  */
1743 void
1744 mld_slowtimo(void)
1745 {
1746 	VNET_ITERATOR_DECL(vnet_iter);
1747 
1748 	VNET_LIST_RLOCK_NOSLEEP();
1749 	VNET_FOREACH(vnet_iter) {
1750 		CURVNET_SET(vnet_iter);
1751 		mld_slowtimo_vnet();
1752 		CURVNET_RESTORE();
1753 	}
1754 	VNET_LIST_RUNLOCK_NOSLEEP();
1755 }
1756 
1757 /*
1758  * Per-vnet slowtimo handler.
1759  */
1760 static void
1761 mld_slowtimo_vnet(void)
1762 {
1763 	struct mld_ifsoftc *mli;
1764 
1765 	MLD_LOCK();
1766 
1767 	LIST_FOREACH(mli, &V_mli_head, mli_link) {
1768 		mld_v1_process_querier_timers(mli);
1769 	}
1770 
1771 	MLD_UNLOCK();
1772 }
1773 
1774 /*
1775  * Update the Older Version Querier Present timers for a link.
1776  * See Section 9.12 of RFC 3810.
1777  */
1778 static void
1779 mld_v1_process_querier_timers(struct mld_ifsoftc *mli)
1780 {
1781 
1782 	MLD_LOCK_ASSERT();
1783 
1784 	if (mli->mli_version != MLD_VERSION_2 && --mli->mli_v1_timer == 0) {
1785 		/*
1786 		 * MLDv1 Querier Present timer expired; revert to MLDv2.
1787 		 */
1788 		CTR5(KTR_MLD,
1789 		    "%s: transition from v%d -> v%d on %p(%s)",
1790 		    __func__, mli->mli_version, MLD_VERSION_2,
1791 		    mli->mli_ifp, if_name(mli->mli_ifp));
1792 		mli->mli_version = MLD_VERSION_2;
1793 	}
1794 }
1795 
1796 /*
1797  * Transmit an MLDv1 report immediately.
1798  */
1799 static int
1800 mld_v1_transmit_report(struct in6_multi *in6m, const int type)
1801 {
1802 	struct ifnet		*ifp;
1803 	struct in6_ifaddr	*ia;
1804 	struct ip6_hdr		*ip6;
1805 	struct mbuf		*mh, *md;
1806 	struct mld_hdr		*mld;
1807 
1808 	NET_EPOCH_ASSERT();
1809 	IN6_MULTI_LIST_LOCK_ASSERT();
1810 	MLD_LOCK_ASSERT();
1811 
1812 	ifp = in6m->in6m_ifp;
1813 	/* in process of being freed */
1814 	if (ifp == NULL)
1815 		return (0);
1816 	ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
1817 	/* ia may be NULL if link-local address is tentative. */
1818 
1819 	mh = m_gethdr(M_NOWAIT, MT_DATA);
1820 	if (mh == NULL) {
1821 		if (ia != NULL)
1822 			ifa_free(&ia->ia_ifa);
1823 		return (ENOMEM);
1824 	}
1825 	md = m_get(M_NOWAIT, MT_DATA);
1826 	if (md == NULL) {
1827 		m_free(mh);
1828 		if (ia != NULL)
1829 			ifa_free(&ia->ia_ifa);
1830 		return (ENOMEM);
1831 	}
1832 	mh->m_next = md;
1833 
1834 	/*
1835 	 * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so
1836 	 * that ether_output() does not need to allocate another mbuf
1837 	 * for the header in the most common case.
1838 	 */
1839 	M_ALIGN(mh, sizeof(struct ip6_hdr));
1840 	mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr);
1841 	mh->m_len = sizeof(struct ip6_hdr);
1842 
1843 	ip6 = mtod(mh, struct ip6_hdr *);
1844 	ip6->ip6_flow = 0;
1845 	ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
1846 	ip6->ip6_vfc |= IPV6_VERSION;
1847 	ip6->ip6_nxt = IPPROTO_ICMPV6;
1848 	ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any;
1849 	ip6->ip6_dst = in6m->in6m_addr;
1850 
1851 	md->m_len = sizeof(struct mld_hdr);
1852 	mld = mtod(md, struct mld_hdr *);
1853 	mld->mld_type = type;
1854 	mld->mld_code = 0;
1855 	mld->mld_cksum = 0;
1856 	mld->mld_maxdelay = 0;
1857 	mld->mld_reserved = 0;
1858 	mld->mld_addr = in6m->in6m_addr;
1859 	in6_clearscope(&mld->mld_addr);
1860 	mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6,
1861 	    sizeof(struct ip6_hdr), sizeof(struct mld_hdr));
1862 
1863 	mld_save_context(mh, ifp);
1864 	mh->m_flags |= M_MLDV1;
1865 
1866 	mld_dispatch_packet(mh);
1867 
1868 	if (ia != NULL)
1869 		ifa_free(&ia->ia_ifa);
1870 	return (0);
1871 }
1872 
1873 /*
1874  * Process a state change from the upper layer for the given IPv6 group.
1875  *
1876  * Each socket holds a reference on the in_multi in its own ip_moptions.
1877  * The socket layer will have made the necessary updates to.the group
1878  * state, it is now up to MLD to issue a state change report if there
1879  * has been any change between T0 (when the last state-change was issued)
1880  * and T1 (now).
1881  *
1882  * We use the MLDv2 state machine at group level. The MLd module
1883  * however makes the decision as to which MLD protocol version to speak.
1884  * A state change *from* INCLUDE {} always means an initial join.
1885  * A state change *to* INCLUDE {} always means a final leave.
1886  *
1887  * If delay is non-zero, and the state change is an initial multicast
1888  * join, the state change report will be delayed by 'delay' ticks
1889  * in units of PR_FASTHZ if MLDv1 is active on the link; otherwise
1890  * the initial MLDv2 state change report will be delayed by whichever
1891  * is sooner, a pending state-change timer or delay itself.
1892  *
1893  * VIMAGE: curvnet should have been set by caller, as this routine
1894  * is called from the socket option handlers.
1895  */
1896 int
1897 mld_change_state(struct in6_multi *inm, const int delay)
1898 {
1899 	struct mld_ifsoftc *mli;
1900 	struct ifnet *ifp;
1901 	int error;
1902 
1903 	IN6_MULTI_LIST_LOCK_ASSERT();
1904 
1905 	error = 0;
1906 
1907 	/*
1908 	 * Check if the in6_multi has already been disconnected.
1909 	 */
1910 	if (inm->in6m_ifp == NULL) {
1911 		CTR1(KTR_MLD, "%s: inm is disconnected", __func__);
1912 		return (0);
1913 	}
1914 
1915 	/*
1916 	 * Try to detect if the upper layer just asked us to change state
1917 	 * for an interface which has now gone away.
1918 	 */
1919 	KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__));
1920 	ifp = inm->in6m_ifma->ifma_ifp;
1921 	if (ifp == NULL)
1922 		return (0);
1923 	/*
1924 	 * Sanity check that netinet6's notion of ifp is the
1925 	 * same as net's.
1926 	 */
1927 	KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__));
1928 
1929 	MLD_LOCK();
1930 	mli = MLD_IFINFO(ifp);
1931 	KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp));
1932 
1933 	/*
1934 	 * If we detect a state transition to or from MCAST_UNDEFINED
1935 	 * for this group, then we are starting or finishing an MLD
1936 	 * life cycle for this group.
1937 	 */
1938 	if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) {
1939 		CTR3(KTR_MLD, "%s: inm transition %d -> %d", __func__,
1940 		    inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode);
1941 		if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) {
1942 			CTR1(KTR_MLD, "%s: initial join", __func__);
1943 			error = mld_initial_join(inm, mli, delay);
1944 			goto out_locked;
1945 		} else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) {
1946 			CTR1(KTR_MLD, "%s: final leave", __func__);
1947 			mld_final_leave(inm, mli);
1948 			goto out_locked;
1949 		}
1950 	} else {
1951 		CTR1(KTR_MLD, "%s: filter set change", __func__);
1952 	}
1953 
1954 	error = mld_handle_state_change(inm, mli);
1955 
1956 out_locked:
1957 	MLD_UNLOCK();
1958 	return (error);
1959 }
1960 
1961 /*
1962  * Perform the initial join for an MLD group.
1963  *
1964  * When joining a group:
1965  *  If the group should have its MLD traffic suppressed, do nothing.
1966  *  MLDv1 starts sending MLDv1 host membership reports.
1967  *  MLDv2 will schedule an MLDv2 state-change report containing the
1968  *  initial state of the membership.
1969  *
1970  * If the delay argument is non-zero, then we must delay sending the
1971  * initial state change for delay ticks (in units of PR_FASTHZ).
1972  */
1973 static int
1974 mld_initial_join(struct in6_multi *inm, struct mld_ifsoftc *mli,
1975     const int delay)
1976 {
1977 	struct epoch_tracker     et;
1978 	struct ifnet		*ifp;
1979 	struct mbufq		*mq;
1980 	int			 error, retval, syncstates;
1981 	int			 odelay;
1982 #ifdef KTR
1983 	char			 ip6tbuf[INET6_ADDRSTRLEN];
1984 #endif
1985 
1986 	CTR4(KTR_MLD, "%s: initial join %s on ifp %p(%s)",
1987 	    __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
1988 	    inm->in6m_ifp, if_name(inm->in6m_ifp));
1989 
1990 	error = 0;
1991 	syncstates = 1;
1992 
1993 	ifp = inm->in6m_ifp;
1994 
1995 	IN6_MULTI_LIST_LOCK_ASSERT();
1996 	MLD_LOCK_ASSERT();
1997 
1998 	KASSERT(mli && mli->mli_ifp == ifp, ("%s: inconsistent ifp", __func__));
1999 
2000 	/*
2001 	 * Groups joined on loopback or marked as 'not reported',
2002 	 * enter the MLD_SILENT_MEMBER state and
2003 	 * are never reported in any protocol exchanges.
2004 	 * All other groups enter the appropriate state machine
2005 	 * for the version in use on this link.
2006 	 * A link marked as MLIF_SILENT causes MLD to be completely
2007 	 * disabled for the link.
2008 	 */
2009 	if ((ifp->if_flags & IFF_LOOPBACK) ||
2010 	    (mli->mli_flags & MLIF_SILENT) ||
2011 	    !mld_is_addr_reported(&inm->in6m_addr)) {
2012 		CTR1(KTR_MLD,
2013 "%s: not kicking state machine for silent group", __func__);
2014 		inm->in6m_state = MLD_SILENT_MEMBER;
2015 		inm->in6m_timer = 0;
2016 	} else {
2017 		/*
2018 		 * Deal with overlapping in_multi lifecycle.
2019 		 * If this group was LEAVING, then make sure
2020 		 * we drop the reference we picked up to keep the
2021 		 * group around for the final INCLUDE {} enqueue.
2022 		 */
2023 		if (mli->mli_version == MLD_VERSION_2 &&
2024 		    inm->in6m_state == MLD_LEAVING_MEMBER) {
2025 			inm->in6m_refcount--;
2026 			MPASS(inm->in6m_refcount > 0);
2027 		}
2028 		inm->in6m_state = MLD_REPORTING_MEMBER;
2029 
2030 		switch (mli->mli_version) {
2031 		case MLD_VERSION_1:
2032 			/*
2033 			 * If a delay was provided, only use it if
2034 			 * it is greater than the delay normally
2035 			 * used for an MLDv1 state change report,
2036 			 * and delay sending the initial MLDv1 report
2037 			 * by not transitioning to the IDLE state.
2038 			 */
2039 			odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI * PR_FASTHZ);
2040 			if (delay) {
2041 				inm->in6m_timer = max(delay, odelay);
2042 				V_current_state_timers_running6 = 1;
2043 			} else {
2044 				inm->in6m_state = MLD_IDLE_MEMBER;
2045 				NET_EPOCH_ENTER(et);
2046 				error = mld_v1_transmit_report(inm,
2047 				     MLD_LISTENER_REPORT);
2048 				NET_EPOCH_EXIT(et);
2049 				if (error == 0) {
2050 					inm->in6m_timer = odelay;
2051 					V_current_state_timers_running6 = 1;
2052 				}
2053 			}
2054 			break;
2055 
2056 		case MLD_VERSION_2:
2057 			/*
2058 			 * Defer update of T0 to T1, until the first copy
2059 			 * of the state change has been transmitted.
2060 			 */
2061 			syncstates = 0;
2062 
2063 			/*
2064 			 * Immediately enqueue a State-Change Report for
2065 			 * this interface, freeing any previous reports.
2066 			 * Don't kick the timers if there is nothing to do,
2067 			 * or if an error occurred.
2068 			 */
2069 			mq = &inm->in6m_scq;
2070 			mbufq_drain(mq);
2071 			retval = mld_v2_enqueue_group_record(mq, inm, 1,
2072 			    0, 0, (mli->mli_flags & MLIF_USEALLOW));
2073 			CTR2(KTR_MLD, "%s: enqueue record = %d",
2074 			    __func__, retval);
2075 			if (retval <= 0) {
2076 				error = retval * -1;
2077 				break;
2078 			}
2079 
2080 			/*
2081 			 * Schedule transmission of pending state-change
2082 			 * report up to RV times for this link. The timer
2083 			 * will fire at the next mld_fasttimo (~200ms),
2084 			 * giving us an opportunity to merge the reports.
2085 			 *
2086 			 * If a delay was provided to this function, only
2087 			 * use this delay if sooner than the existing one.
2088 			 */
2089 			KASSERT(mli->mli_rv > 1,
2090 			   ("%s: invalid robustness %d", __func__,
2091 			    mli->mli_rv));
2092 			inm->in6m_scrv = mli->mli_rv;
2093 			if (delay) {
2094 				if (inm->in6m_sctimer > 1) {
2095 					inm->in6m_sctimer =
2096 					    min(inm->in6m_sctimer, delay);
2097 				} else
2098 					inm->in6m_sctimer = delay;
2099 			} else
2100 				inm->in6m_sctimer = 1;
2101 			V_state_change_timers_running6 = 1;
2102 
2103 			error = 0;
2104 			break;
2105 		}
2106 	}
2107 
2108 	/*
2109 	 * Only update the T0 state if state change is atomic,
2110 	 * i.e. we don't need to wait for a timer to fire before we
2111 	 * can consider the state change to have been communicated.
2112 	 */
2113 	if (syncstates) {
2114 		in6m_commit(inm);
2115 		CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
2116 		    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2117 		    if_name(inm->in6m_ifp));
2118 	}
2119 
2120 	return (error);
2121 }
2122 
2123 /*
2124  * Issue an intermediate state change during the life-cycle.
2125  */
2126 static int
2127 mld_handle_state_change(struct in6_multi *inm, struct mld_ifsoftc *mli)
2128 {
2129 	struct ifnet		*ifp;
2130 	int			 retval;
2131 #ifdef KTR
2132 	char			 ip6tbuf[INET6_ADDRSTRLEN];
2133 #endif
2134 
2135 	CTR4(KTR_MLD, "%s: state change for %s on ifp %p(%s)",
2136 	    __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2137 	    inm->in6m_ifp, if_name(inm->in6m_ifp));
2138 
2139 	ifp = inm->in6m_ifp;
2140 
2141 	IN6_MULTI_LIST_LOCK_ASSERT();
2142 	MLD_LOCK_ASSERT();
2143 
2144 	KASSERT(mli && mli->mli_ifp == ifp,
2145 	    ("%s: inconsistent ifp", __func__));
2146 
2147 	if ((ifp->if_flags & IFF_LOOPBACK) ||
2148 	    (mli->mli_flags & MLIF_SILENT) ||
2149 	    !mld_is_addr_reported(&inm->in6m_addr) ||
2150 	    (mli->mli_version != MLD_VERSION_2)) {
2151 		if (!mld_is_addr_reported(&inm->in6m_addr)) {
2152 			CTR1(KTR_MLD,
2153 "%s: not kicking state machine for silent group", __func__);
2154 		}
2155 		CTR1(KTR_MLD, "%s: nothing to do", __func__);
2156 		in6m_commit(inm);
2157 		CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
2158 		    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2159 		    if_name(inm->in6m_ifp));
2160 		return (0);
2161 	}
2162 
2163 	mbufq_drain(&inm->in6m_scq);
2164 
2165 	retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0,
2166 	    (mli->mli_flags & MLIF_USEALLOW));
2167 	CTR2(KTR_MLD, "%s: enqueue record = %d", __func__, retval);
2168 	if (retval <= 0)
2169 		return (-retval);
2170 
2171 	/*
2172 	 * If record(s) were enqueued, start the state-change
2173 	 * report timer for this group.
2174 	 */
2175 	inm->in6m_scrv = mli->mli_rv;
2176 	inm->in6m_sctimer = 1;
2177 	V_state_change_timers_running6 = 1;
2178 
2179 	return (0);
2180 }
2181 
2182 /*
2183  * Perform the final leave for a multicast address.
2184  *
2185  * When leaving a group:
2186  *  MLDv1 sends a DONE message, if and only if we are the reporter.
2187  *  MLDv2 enqueues a state-change report containing a transition
2188  *  to INCLUDE {} for immediate transmission.
2189  */
2190 static void
2191 mld_final_leave(struct in6_multi *inm, struct mld_ifsoftc *mli)
2192 {
2193 	struct epoch_tracker     et;
2194 	int syncstates;
2195 #ifdef KTR
2196 	char ip6tbuf[INET6_ADDRSTRLEN];
2197 #endif
2198 
2199 	syncstates = 1;
2200 
2201 	CTR4(KTR_MLD, "%s: final leave %s on ifp %p(%s)",
2202 	    __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2203 	    inm->in6m_ifp, if_name(inm->in6m_ifp));
2204 
2205 	IN6_MULTI_LIST_LOCK_ASSERT();
2206 	MLD_LOCK_ASSERT();
2207 
2208 	switch (inm->in6m_state) {
2209 	case MLD_NOT_MEMBER:
2210 	case MLD_SILENT_MEMBER:
2211 	case MLD_LEAVING_MEMBER:
2212 		/* Already leaving or left; do nothing. */
2213 		CTR1(KTR_MLD,
2214 "%s: not kicking state machine for silent group", __func__);
2215 		break;
2216 	case MLD_REPORTING_MEMBER:
2217 	case MLD_IDLE_MEMBER:
2218 	case MLD_G_QUERY_PENDING_MEMBER:
2219 	case MLD_SG_QUERY_PENDING_MEMBER:
2220 		if (mli->mli_version == MLD_VERSION_1) {
2221 #ifdef INVARIANTS
2222 			if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER ||
2223 			    inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER)
2224 			panic("%s: MLDv2 state reached, not MLDv2 mode",
2225 			     __func__);
2226 #endif
2227 			NET_EPOCH_ENTER(et);
2228 			mld_v1_transmit_report(inm, MLD_LISTENER_DONE);
2229 			NET_EPOCH_EXIT(et);
2230 			inm->in6m_state = MLD_NOT_MEMBER;
2231 			V_current_state_timers_running6 = 1;
2232 		} else if (mli->mli_version == MLD_VERSION_2) {
2233 			/*
2234 			 * Stop group timer and all pending reports.
2235 			 * Immediately enqueue a state-change report
2236 			 * TO_IN {} to be sent on the next fast timeout,
2237 			 * giving us an opportunity to merge reports.
2238 			 */
2239 			mbufq_drain(&inm->in6m_scq);
2240 			inm->in6m_timer = 0;
2241 			inm->in6m_scrv = mli->mli_rv;
2242 			CTR4(KTR_MLD, "%s: Leaving %s/%s with %d "
2243 			    "pending retransmissions.", __func__,
2244 			    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2245 			    if_name(inm->in6m_ifp), inm->in6m_scrv);
2246 			if (inm->in6m_scrv == 0) {
2247 				inm->in6m_state = MLD_NOT_MEMBER;
2248 				inm->in6m_sctimer = 0;
2249 			} else {
2250 				int retval;
2251 
2252 				in6m_acquire_locked(inm);
2253 
2254 				retval = mld_v2_enqueue_group_record(
2255 				    &inm->in6m_scq, inm, 1, 0, 0,
2256 				    (mli->mli_flags & MLIF_USEALLOW));
2257 				KASSERT(retval != 0,
2258 				    ("%s: enqueue record = %d", __func__,
2259 				     retval));
2260 
2261 				inm->in6m_state = MLD_LEAVING_MEMBER;
2262 				inm->in6m_sctimer = 1;
2263 				V_state_change_timers_running6 = 1;
2264 				syncstates = 0;
2265 			}
2266 			break;
2267 		}
2268 		break;
2269 	case MLD_LAZY_MEMBER:
2270 	case MLD_SLEEPING_MEMBER:
2271 	case MLD_AWAKENING_MEMBER:
2272 		/* Our reports are suppressed; do nothing. */
2273 		break;
2274 	}
2275 
2276 	if (syncstates) {
2277 		in6m_commit(inm);
2278 		CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
2279 		    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2280 		    if_name(inm->in6m_ifp));
2281 		inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED;
2282 		CTR3(KTR_MLD, "%s: T1 now MCAST_UNDEFINED for %p/%s",
2283 		    __func__, &inm->in6m_addr, if_name(inm->in6m_ifp));
2284 	}
2285 }
2286 
2287 /*
2288  * Enqueue an MLDv2 group record to the given output queue.
2289  *
2290  * If is_state_change is zero, a current-state record is appended.
2291  * If is_state_change is non-zero, a state-change report is appended.
2292  *
2293  * If is_group_query is non-zero, an mbuf packet chain is allocated.
2294  * If is_group_query is zero, and if there is a packet with free space
2295  * at the tail of the queue, it will be appended to providing there
2296  * is enough free space.
2297  * Otherwise a new mbuf packet chain is allocated.
2298  *
2299  * If is_source_query is non-zero, each source is checked to see if
2300  * it was recorded for a Group-Source query, and will be omitted if
2301  * it is not both in-mode and recorded.
2302  *
2303  * If use_block_allow is non-zero, state change reports for initial join
2304  * and final leave, on an inclusive mode group with a source list, will be
2305  * rewritten to use the ALLOW_NEW and BLOCK_OLD record types, respectively.
2306  *
2307  * The function will attempt to allocate leading space in the packet
2308  * for the IPv6+ICMP headers to be prepended without fragmenting the chain.
2309  *
2310  * If successful the size of all data appended to the queue is returned,
2311  * otherwise an error code less than zero is returned, or zero if
2312  * no record(s) were appended.
2313  */
2314 static int
2315 mld_v2_enqueue_group_record(struct mbufq *mq, struct in6_multi *inm,
2316     const int is_state_change, const int is_group_query,
2317     const int is_source_query, const int use_block_allow)
2318 {
2319 	struct mldv2_record	 mr;
2320 	struct mldv2_record	*pmr;
2321 	struct ifnet		*ifp;
2322 	struct ip6_msource	*ims, *nims;
2323 	struct mbuf		*m0, *m, *md;
2324 	int			 is_filter_list_change;
2325 	int			 minrec0len, m0srcs, msrcs, nbytes, off;
2326 	int			 record_has_sources;
2327 	int			 now;
2328 	int			 type;
2329 	uint8_t			 mode;
2330 #ifdef KTR
2331 	char			 ip6tbuf[INET6_ADDRSTRLEN];
2332 #endif
2333 
2334 	IN6_MULTI_LIST_LOCK_ASSERT();
2335 
2336 	ifp = inm->in6m_ifp;
2337 	is_filter_list_change = 0;
2338 	m = NULL;
2339 	m0 = NULL;
2340 	m0srcs = 0;
2341 	msrcs = 0;
2342 	nbytes = 0;
2343 	nims = NULL;
2344 	record_has_sources = 1;
2345 	pmr = NULL;
2346 	type = MLD_DO_NOTHING;
2347 	mode = inm->in6m_st[1].iss_fmode;
2348 
2349 	/*
2350 	 * If we did not transition out of ASM mode during t0->t1,
2351 	 * and there are no source nodes to process, we can skip
2352 	 * the generation of source records.
2353 	 */
2354 	if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 &&
2355 	    inm->in6m_nsrc == 0)
2356 		record_has_sources = 0;
2357 
2358 	if (is_state_change) {
2359 		/*
2360 		 * Queue a state change record.
2361 		 * If the mode did not change, and there are non-ASM
2362 		 * listeners or source filters present,
2363 		 * we potentially need to issue two records for the group.
2364 		 * If there are ASM listeners, and there was no filter
2365 		 * mode transition of any kind, do nothing.
2366 		 *
2367 		 * If we are transitioning to MCAST_UNDEFINED, we need
2368 		 * not send any sources. A transition to/from this state is
2369 		 * considered inclusive with some special treatment.
2370 		 *
2371 		 * If we are rewriting initial joins/leaves to use
2372 		 * ALLOW/BLOCK, and the group's membership is inclusive,
2373 		 * we need to send sources in all cases.
2374 		 */
2375 		if (mode != inm->in6m_st[0].iss_fmode) {
2376 			if (mode == MCAST_EXCLUDE) {
2377 				CTR1(KTR_MLD, "%s: change to EXCLUDE",
2378 				    __func__);
2379 				type = MLD_CHANGE_TO_EXCLUDE_MODE;
2380 			} else {
2381 				CTR1(KTR_MLD, "%s: change to INCLUDE",
2382 				    __func__);
2383 				if (use_block_allow) {
2384 					/*
2385 					 * XXX
2386 					 * Here we're interested in state
2387 					 * edges either direction between
2388 					 * MCAST_UNDEFINED and MCAST_INCLUDE.
2389 					 * Perhaps we should just check
2390 					 * the group state, rather than
2391 					 * the filter mode.
2392 					 */
2393 					if (mode == MCAST_UNDEFINED) {
2394 						type = MLD_BLOCK_OLD_SOURCES;
2395 					} else {
2396 						type = MLD_ALLOW_NEW_SOURCES;
2397 					}
2398 				} else {
2399 					type = MLD_CHANGE_TO_INCLUDE_MODE;
2400 					if (mode == MCAST_UNDEFINED)
2401 						record_has_sources = 0;
2402 				}
2403 			}
2404 		} else {
2405 			if (record_has_sources) {
2406 				is_filter_list_change = 1;
2407 			} else {
2408 				type = MLD_DO_NOTHING;
2409 			}
2410 		}
2411 	} else {
2412 		/*
2413 		 * Queue a current state record.
2414 		 */
2415 		if (mode == MCAST_EXCLUDE) {
2416 			type = MLD_MODE_IS_EXCLUDE;
2417 		} else if (mode == MCAST_INCLUDE) {
2418 			type = MLD_MODE_IS_INCLUDE;
2419 			KASSERT(inm->in6m_st[1].iss_asm == 0,
2420 			    ("%s: inm %p is INCLUDE but ASM count is %d",
2421 			     __func__, inm, inm->in6m_st[1].iss_asm));
2422 		}
2423 	}
2424 
2425 	/*
2426 	 * Generate the filter list changes using a separate function.
2427 	 */
2428 	if (is_filter_list_change)
2429 		return (mld_v2_enqueue_filter_change(mq, inm));
2430 
2431 	if (type == MLD_DO_NOTHING) {
2432 		CTR3(KTR_MLD, "%s: nothing to do for %s/%s",
2433 		    __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2434 		    if_name(inm->in6m_ifp));
2435 		return (0);
2436 	}
2437 
2438 	/*
2439 	 * If any sources are present, we must be able to fit at least
2440 	 * one in the trailing space of the tail packet's mbuf,
2441 	 * ideally more.
2442 	 */
2443 	minrec0len = sizeof(struct mldv2_record);
2444 	if (record_has_sources)
2445 		minrec0len += sizeof(struct in6_addr);
2446 
2447 	CTR4(KTR_MLD, "%s: queueing %s for %s/%s", __func__,
2448 	    mld_rec_type_to_str(type),
2449 	    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2450 	    if_name(inm->in6m_ifp));
2451 
2452 	/*
2453 	 * Check if we have a packet in the tail of the queue for this
2454 	 * group into which the first group record for this group will fit.
2455 	 * Otherwise allocate a new packet.
2456 	 * Always allocate leading space for IP6+RA+ICMPV6+REPORT.
2457 	 * Note: Group records for G/GSR query responses MUST be sent
2458 	 * in their own packet.
2459 	 */
2460 	m0 = mbufq_last(mq);
2461 	if (!is_group_query &&
2462 	    m0 != NULL &&
2463 	    (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) &&
2464 	    (m0->m_pkthdr.len + minrec0len) <
2465 	     (ifp->if_mtu - MLD_MTUSPACE)) {
2466 		m0srcs = (ifp->if_mtu - m0->m_pkthdr.len -
2467 			    sizeof(struct mldv2_record)) /
2468 			    sizeof(struct in6_addr);
2469 		m = m0;
2470 		CTR1(KTR_MLD, "%s: use existing packet", __func__);
2471 	} else {
2472 		if (mbufq_full(mq)) {
2473 			CTR1(KTR_MLD, "%s: outbound queue full", __func__);
2474 			return (-ENOMEM);
2475 		}
2476 		m = NULL;
2477 		m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
2478 		    sizeof(struct mldv2_record)) / sizeof(struct in6_addr);
2479 		if (!is_state_change && !is_group_query)
2480 			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2481 		if (m == NULL)
2482 			m = m_gethdr(M_NOWAIT, MT_DATA);
2483 		if (m == NULL)
2484 			return (-ENOMEM);
2485 
2486 		mld_save_context(m, ifp);
2487 
2488 		CTR1(KTR_MLD, "%s: allocated first packet", __func__);
2489 	}
2490 
2491 	/*
2492 	 * Append group record.
2493 	 * If we have sources, we don't know how many yet.
2494 	 */
2495 	mr.mr_type = type;
2496 	mr.mr_datalen = 0;
2497 	mr.mr_numsrc = 0;
2498 	mr.mr_addr = inm->in6m_addr;
2499 	in6_clearscope(&mr.mr_addr);
2500 	if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) {
2501 		if (m != m0)
2502 			m_freem(m);
2503 		CTR1(KTR_MLD, "%s: m_append() failed.", __func__);
2504 		return (-ENOMEM);
2505 	}
2506 	nbytes += sizeof(struct mldv2_record);
2507 
2508 	/*
2509 	 * Append as many sources as will fit in the first packet.
2510 	 * If we are appending to a new packet, the chain allocation
2511 	 * may potentially use clusters; use m_getptr() in this case.
2512 	 * If we are appending to an existing packet, we need to obtain
2513 	 * a pointer to the group record after m_append(), in case a new
2514 	 * mbuf was allocated.
2515 	 *
2516 	 * Only append sources which are in-mode at t1. If we are
2517 	 * transitioning to MCAST_UNDEFINED state on the group, and
2518 	 * use_block_allow is zero, do not include source entries.
2519 	 * Otherwise, we need to include this source in the report.
2520 	 *
2521 	 * Only report recorded sources in our filter set when responding
2522 	 * to a group-source query.
2523 	 */
2524 	if (record_has_sources) {
2525 		if (m == m0) {
2526 			md = m_last(m);
2527 			pmr = (struct mldv2_record *)(mtod(md, uint8_t *) +
2528 			    md->m_len - nbytes);
2529 		} else {
2530 			md = m_getptr(m, 0, &off);
2531 			pmr = (struct mldv2_record *)(mtod(md, uint8_t *) +
2532 			    off);
2533 		}
2534 		msrcs = 0;
2535 		RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs,
2536 		    nims) {
2537 			CTR2(KTR_MLD, "%s: visit node %s", __func__,
2538 			    ip6_sprintf(ip6tbuf, &ims->im6s_addr));
2539 			now = im6s_get_mode(inm, ims, 1);
2540 			CTR2(KTR_MLD, "%s: node is %d", __func__, now);
2541 			if ((now != mode) ||
2542 			    (now == mode &&
2543 			     (!use_block_allow && mode == MCAST_UNDEFINED))) {
2544 				CTR1(KTR_MLD, "%s: skip node", __func__);
2545 				continue;
2546 			}
2547 			if (is_source_query && ims->im6s_stp == 0) {
2548 				CTR1(KTR_MLD, "%s: skip unrecorded node",
2549 				    __func__);
2550 				continue;
2551 			}
2552 			CTR1(KTR_MLD, "%s: append node", __func__);
2553 			if (!m_append(m, sizeof(struct in6_addr),
2554 			    (void *)&ims->im6s_addr)) {
2555 				if (m != m0)
2556 					m_freem(m);
2557 				CTR1(KTR_MLD, "%s: m_append() failed.",
2558 				    __func__);
2559 				return (-ENOMEM);
2560 			}
2561 			nbytes += sizeof(struct in6_addr);
2562 			++msrcs;
2563 			if (msrcs == m0srcs)
2564 				break;
2565 		}
2566 		CTR2(KTR_MLD, "%s: msrcs is %d this packet", __func__,
2567 		    msrcs);
2568 		pmr->mr_numsrc = htons(msrcs);
2569 		nbytes += (msrcs * sizeof(struct in6_addr));
2570 	}
2571 
2572 	if (is_source_query && msrcs == 0) {
2573 		CTR1(KTR_MLD, "%s: no recorded sources to report", __func__);
2574 		if (m != m0)
2575 			m_freem(m);
2576 		return (0);
2577 	}
2578 
2579 	/*
2580 	 * We are good to go with first packet.
2581 	 */
2582 	if (m != m0) {
2583 		CTR1(KTR_MLD, "%s: enqueueing first packet", __func__);
2584 		m->m_pkthdr.PH_vt.vt_nrecs = 1;
2585 		mbufq_enqueue(mq, m);
2586 	} else
2587 		m->m_pkthdr.PH_vt.vt_nrecs++;
2588 
2589 	/*
2590 	 * No further work needed if no source list in packet(s).
2591 	 */
2592 	if (!record_has_sources)
2593 		return (nbytes);
2594 
2595 	/*
2596 	 * Whilst sources remain to be announced, we need to allocate
2597 	 * a new packet and fill out as many sources as will fit.
2598 	 * Always try for a cluster first.
2599 	 */
2600 	while (nims != NULL) {
2601 		if (mbufq_full(mq)) {
2602 			CTR1(KTR_MLD, "%s: outbound queue full", __func__);
2603 			return (-ENOMEM);
2604 		}
2605 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2606 		if (m == NULL)
2607 			m = m_gethdr(M_NOWAIT, MT_DATA);
2608 		if (m == NULL)
2609 			return (-ENOMEM);
2610 		mld_save_context(m, ifp);
2611 		md = m_getptr(m, 0, &off);
2612 		pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off);
2613 		CTR1(KTR_MLD, "%s: allocated next packet", __func__);
2614 
2615 		if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) {
2616 			if (m != m0)
2617 				m_freem(m);
2618 			CTR1(KTR_MLD, "%s: m_append() failed.", __func__);
2619 			return (-ENOMEM);
2620 		}
2621 		m->m_pkthdr.PH_vt.vt_nrecs = 1;
2622 		nbytes += sizeof(struct mldv2_record);
2623 
2624 		m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
2625 		    sizeof(struct mldv2_record)) / sizeof(struct in6_addr);
2626 
2627 		msrcs = 0;
2628 		RB_FOREACH_FROM(ims, ip6_msource_tree, nims) {
2629 			CTR2(KTR_MLD, "%s: visit node %s",
2630 			    __func__, ip6_sprintf(ip6tbuf, &ims->im6s_addr));
2631 			now = im6s_get_mode(inm, ims, 1);
2632 			if ((now != mode) ||
2633 			    (now == mode &&
2634 			     (!use_block_allow && mode == MCAST_UNDEFINED))) {
2635 				CTR1(KTR_MLD, "%s: skip node", __func__);
2636 				continue;
2637 			}
2638 			if (is_source_query && ims->im6s_stp == 0) {
2639 				CTR1(KTR_MLD, "%s: skip unrecorded node",
2640 				    __func__);
2641 				continue;
2642 			}
2643 			CTR1(KTR_MLD, "%s: append node", __func__);
2644 			if (!m_append(m, sizeof(struct in6_addr),
2645 			    (void *)&ims->im6s_addr)) {
2646 				if (m != m0)
2647 					m_freem(m);
2648 				CTR1(KTR_MLD, "%s: m_append() failed.",
2649 				    __func__);
2650 				return (-ENOMEM);
2651 			}
2652 			++msrcs;
2653 			if (msrcs == m0srcs)
2654 				break;
2655 		}
2656 		pmr->mr_numsrc = htons(msrcs);
2657 		nbytes += (msrcs * sizeof(struct in6_addr));
2658 
2659 		CTR1(KTR_MLD, "%s: enqueueing next packet", __func__);
2660 		mbufq_enqueue(mq, m);
2661 	}
2662 
2663 	return (nbytes);
2664 }
2665 
2666 /*
2667  * Type used to mark record pass completion.
2668  * We exploit the fact we can cast to this easily from the
2669  * current filter modes on each ip_msource node.
2670  */
2671 typedef enum {
2672 	REC_NONE = 0x00,	/* MCAST_UNDEFINED */
2673 	REC_ALLOW = 0x01,	/* MCAST_INCLUDE */
2674 	REC_BLOCK = 0x02,	/* MCAST_EXCLUDE */
2675 	REC_FULL = REC_ALLOW | REC_BLOCK
2676 } rectype_t;
2677 
2678 /*
2679  * Enqueue an MLDv2 filter list change to the given output queue.
2680  *
2681  * Source list filter state is held in an RB-tree. When the filter list
2682  * for a group is changed without changing its mode, we need to compute
2683  * the deltas between T0 and T1 for each source in the filter set,
2684  * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records.
2685  *
2686  * As we may potentially queue two record types, and the entire R-B tree
2687  * needs to be walked at once, we break this out into its own function
2688  * so we can generate a tightly packed queue of packets.
2689  *
2690  * XXX This could be written to only use one tree walk, although that makes
2691  * serializing into the mbuf chains a bit harder. For now we do two walks
2692  * which makes things easier on us, and it may or may not be harder on
2693  * the L2 cache.
2694  *
2695  * If successful the size of all data appended to the queue is returned,
2696  * otherwise an error code less than zero is returned, or zero if
2697  * no record(s) were appended.
2698  */
2699 static int
2700 mld_v2_enqueue_filter_change(struct mbufq *mq, struct in6_multi *inm)
2701 {
2702 	static const int MINRECLEN =
2703 	    sizeof(struct mldv2_record) + sizeof(struct in6_addr);
2704 	struct ifnet		*ifp;
2705 	struct mldv2_record	 mr;
2706 	struct mldv2_record	*pmr;
2707 	struct ip6_msource	*ims, *nims;
2708 	struct mbuf		*m, *m0, *md;
2709 	int			 m0srcs, nbytes, npbytes, off, rsrcs, schanged;
2710 	int			 nallow, nblock;
2711 	uint8_t			 mode, now, then;
2712 	rectype_t		 crt, drt, nrt;
2713 #ifdef KTR
2714 	char			 ip6tbuf[INET6_ADDRSTRLEN];
2715 #endif
2716 
2717 	IN6_MULTI_LIST_LOCK_ASSERT();
2718 
2719 	if (inm->in6m_nsrc == 0 ||
2720 	    (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0))
2721 		return (0);
2722 
2723 	ifp = inm->in6m_ifp;			/* interface */
2724 	mode = inm->in6m_st[1].iss_fmode;	/* filter mode at t1 */
2725 	crt = REC_NONE;	/* current group record type */
2726 	drt = REC_NONE;	/* mask of completed group record types */
2727 	nrt = REC_NONE;	/* record type for current node */
2728 	m0srcs = 0;	/* # source which will fit in current mbuf chain */
2729 	npbytes = 0;	/* # of bytes appended this packet */
2730 	nbytes = 0;	/* # of bytes appended to group's state-change queue */
2731 	rsrcs = 0;	/* # sources encoded in current record */
2732 	schanged = 0;	/* # nodes encoded in overall filter change */
2733 	nallow = 0;	/* # of source entries in ALLOW_NEW */
2734 	nblock = 0;	/* # of source entries in BLOCK_OLD */
2735 	nims = NULL;	/* next tree node pointer */
2736 
2737 	/*
2738 	 * For each possible filter record mode.
2739 	 * The first kind of source we encounter tells us which
2740 	 * is the first kind of record we start appending.
2741 	 * If a node transitioned to UNDEFINED at t1, its mode is treated
2742 	 * as the inverse of the group's filter mode.
2743 	 */
2744 	while (drt != REC_FULL) {
2745 		do {
2746 			m0 = mbufq_last(mq);
2747 			if (m0 != NULL &&
2748 			    (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <=
2749 			     MLD_V2_REPORT_MAXRECS) &&
2750 			    (m0->m_pkthdr.len + MINRECLEN) <
2751 			     (ifp->if_mtu - MLD_MTUSPACE)) {
2752 				m = m0;
2753 				m0srcs = (ifp->if_mtu - m0->m_pkthdr.len -
2754 					    sizeof(struct mldv2_record)) /
2755 					    sizeof(struct in6_addr);
2756 				CTR1(KTR_MLD,
2757 				    "%s: use previous packet", __func__);
2758 			} else {
2759 				m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2760 				if (m == NULL)
2761 					m = m_gethdr(M_NOWAIT, MT_DATA);
2762 				if (m == NULL) {
2763 					CTR1(KTR_MLD,
2764 					    "%s: m_get*() failed", __func__);
2765 					return (-ENOMEM);
2766 				}
2767 				m->m_pkthdr.PH_vt.vt_nrecs = 0;
2768 				mld_save_context(m, ifp);
2769 				m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
2770 				    sizeof(struct mldv2_record)) /
2771 				    sizeof(struct in6_addr);
2772 				npbytes = 0;
2773 				CTR1(KTR_MLD,
2774 				    "%s: allocated new packet", __func__);
2775 			}
2776 			/*
2777 			 * Append the MLD group record header to the
2778 			 * current packet's data area.
2779 			 * Recalculate pointer to free space for next
2780 			 * group record, in case m_append() allocated
2781 			 * a new mbuf or cluster.
2782 			 */
2783 			memset(&mr, 0, sizeof(mr));
2784 			mr.mr_addr = inm->in6m_addr;
2785 			in6_clearscope(&mr.mr_addr);
2786 			if (!m_append(m, sizeof(mr), (void *)&mr)) {
2787 				if (m != m0)
2788 					m_freem(m);
2789 				CTR1(KTR_MLD,
2790 				    "%s: m_append() failed", __func__);
2791 				return (-ENOMEM);
2792 			}
2793 			npbytes += sizeof(struct mldv2_record);
2794 			if (m != m0) {
2795 				/* new packet; offset in chain */
2796 				md = m_getptr(m, npbytes -
2797 				    sizeof(struct mldv2_record), &off);
2798 				pmr = (struct mldv2_record *)(mtod(md,
2799 				    uint8_t *) + off);
2800 			} else {
2801 				/* current packet; offset from last append */
2802 				md = m_last(m);
2803 				pmr = (struct mldv2_record *)(mtod(md,
2804 				    uint8_t *) + md->m_len -
2805 				    sizeof(struct mldv2_record));
2806 			}
2807 			/*
2808 			 * Begin walking the tree for this record type
2809 			 * pass, or continue from where we left off
2810 			 * previously if we had to allocate a new packet.
2811 			 * Only report deltas in-mode at t1.
2812 			 * We need not report included sources as allowed
2813 			 * if we are in inclusive mode on the group,
2814 			 * however the converse is not true.
2815 			 */
2816 			rsrcs = 0;
2817 			if (nims == NULL) {
2818 				nims = RB_MIN(ip6_msource_tree,
2819 				    &inm->in6m_srcs);
2820 			}
2821 			RB_FOREACH_FROM(ims, ip6_msource_tree, nims) {
2822 				CTR2(KTR_MLD, "%s: visit node %s", __func__,
2823 				    ip6_sprintf(ip6tbuf, &ims->im6s_addr));
2824 				now = im6s_get_mode(inm, ims, 1);
2825 				then = im6s_get_mode(inm, ims, 0);
2826 				CTR3(KTR_MLD, "%s: mode: t0 %d, t1 %d",
2827 				    __func__, then, now);
2828 				if (now == then) {
2829 					CTR1(KTR_MLD,
2830 					    "%s: skip unchanged", __func__);
2831 					continue;
2832 				}
2833 				if (mode == MCAST_EXCLUDE &&
2834 				    now == MCAST_INCLUDE) {
2835 					CTR1(KTR_MLD,
2836 					    "%s: skip IN src on EX group",
2837 					    __func__);
2838 					continue;
2839 				}
2840 				nrt = (rectype_t)now;
2841 				if (nrt == REC_NONE)
2842 					nrt = (rectype_t)(~mode & REC_FULL);
2843 				if (schanged++ == 0) {
2844 					crt = nrt;
2845 				} else if (crt != nrt)
2846 					continue;
2847 				if (!m_append(m, sizeof(struct in6_addr),
2848 				    (void *)&ims->im6s_addr)) {
2849 					if (m != m0)
2850 						m_freem(m);
2851 					CTR1(KTR_MLD,
2852 					    "%s: m_append() failed", __func__);
2853 					return (-ENOMEM);
2854 				}
2855 				nallow += !!(crt == REC_ALLOW);
2856 				nblock += !!(crt == REC_BLOCK);
2857 				if (++rsrcs == m0srcs)
2858 					break;
2859 			}
2860 			/*
2861 			 * If we did not append any tree nodes on this
2862 			 * pass, back out of allocations.
2863 			 */
2864 			if (rsrcs == 0) {
2865 				npbytes -= sizeof(struct mldv2_record);
2866 				if (m != m0) {
2867 					CTR1(KTR_MLD,
2868 					    "%s: m_free(m)", __func__);
2869 					m_freem(m);
2870 				} else {
2871 					CTR1(KTR_MLD,
2872 					    "%s: m_adj(m, -mr)", __func__);
2873 					m_adj(m, -((int)sizeof(
2874 					    struct mldv2_record)));
2875 				}
2876 				continue;
2877 			}
2878 			npbytes += (rsrcs * sizeof(struct in6_addr));
2879 			if (crt == REC_ALLOW)
2880 				pmr->mr_type = MLD_ALLOW_NEW_SOURCES;
2881 			else if (crt == REC_BLOCK)
2882 				pmr->mr_type = MLD_BLOCK_OLD_SOURCES;
2883 			pmr->mr_numsrc = htons(rsrcs);
2884 			/*
2885 			 * Count the new group record, and enqueue this
2886 			 * packet if it wasn't already queued.
2887 			 */
2888 			m->m_pkthdr.PH_vt.vt_nrecs++;
2889 			if (m != m0)
2890 				mbufq_enqueue(mq, m);
2891 			nbytes += npbytes;
2892 		} while (nims != NULL);
2893 		drt |= crt;
2894 		crt = (~crt & REC_FULL);
2895 	}
2896 
2897 	CTR3(KTR_MLD, "%s: queued %d ALLOW_NEW, %d BLOCK_OLD", __func__,
2898 	    nallow, nblock);
2899 
2900 	return (nbytes);
2901 }
2902 
2903 static int
2904 mld_v2_merge_state_changes(struct in6_multi *inm, struct mbufq *scq)
2905 {
2906 	struct mbufq	*gq;
2907 	struct mbuf	*m;		/* pending state-change */
2908 	struct mbuf	*m0;		/* copy of pending state-change */
2909 	struct mbuf	*mt;		/* last state-change in packet */
2910 	int		 docopy, domerge;
2911 	u_int		 recslen;
2912 
2913 	docopy = 0;
2914 	domerge = 0;
2915 	recslen = 0;
2916 
2917 	IN6_MULTI_LIST_LOCK_ASSERT();
2918 	MLD_LOCK_ASSERT();
2919 
2920 	/*
2921 	 * If there are further pending retransmissions, make a writable
2922 	 * copy of each queued state-change message before merging.
2923 	 */
2924 	if (inm->in6m_scrv > 0)
2925 		docopy = 1;
2926 
2927 	gq = &inm->in6m_scq;
2928 #ifdef KTR
2929 	if (mbufq_first(gq) == NULL) {
2930 		CTR2(KTR_MLD, "%s: WARNING: queue for inm %p is empty",
2931 		    __func__, inm);
2932 	}
2933 #endif
2934 
2935 	m = mbufq_first(gq);
2936 	while (m != NULL) {
2937 		/*
2938 		 * Only merge the report into the current packet if
2939 		 * there is sufficient space to do so; an MLDv2 report
2940 		 * packet may only contain 65,535 group records.
2941 		 * Always use a simple mbuf chain concatentation to do this,
2942 		 * as large state changes for single groups may have
2943 		 * allocated clusters.
2944 		 */
2945 		domerge = 0;
2946 		mt = mbufq_last(scq);
2947 		if (mt != NULL) {
2948 			recslen = m_length(m, NULL);
2949 
2950 			if ((mt->m_pkthdr.PH_vt.vt_nrecs +
2951 			    m->m_pkthdr.PH_vt.vt_nrecs <=
2952 			    MLD_V2_REPORT_MAXRECS) &&
2953 			    (mt->m_pkthdr.len + recslen <=
2954 			    (inm->in6m_ifp->if_mtu - MLD_MTUSPACE)))
2955 				domerge = 1;
2956 		}
2957 
2958 		if (!domerge && mbufq_full(gq)) {
2959 			CTR2(KTR_MLD,
2960 			    "%s: outbound queue full, skipping whole packet %p",
2961 			    __func__, m);
2962 			mt = m->m_nextpkt;
2963 			if (!docopy)
2964 				m_freem(m);
2965 			m = mt;
2966 			continue;
2967 		}
2968 
2969 		if (!docopy) {
2970 			CTR2(KTR_MLD, "%s: dequeueing %p", __func__, m);
2971 			m0 = mbufq_dequeue(gq);
2972 			m = m0->m_nextpkt;
2973 		} else {
2974 			CTR2(KTR_MLD, "%s: copying %p", __func__, m);
2975 			m0 = m_dup(m, M_NOWAIT);
2976 			if (m0 == NULL)
2977 				return (ENOMEM);
2978 			m0->m_nextpkt = NULL;
2979 			m = m->m_nextpkt;
2980 		}
2981 
2982 		if (!domerge) {
2983 			CTR3(KTR_MLD, "%s: queueing %p to scq %p)",
2984 			    __func__, m0, scq);
2985 			mbufq_enqueue(scq, m0);
2986 		} else {
2987 			struct mbuf *mtl;	/* last mbuf of packet mt */
2988 
2989 			CTR3(KTR_MLD, "%s: merging %p with ifscq tail %p)",
2990 			    __func__, m0, mt);
2991 
2992 			mtl = m_last(mt);
2993 			m0->m_flags &= ~M_PKTHDR;
2994 			mt->m_pkthdr.len += recslen;
2995 			mt->m_pkthdr.PH_vt.vt_nrecs +=
2996 			    m0->m_pkthdr.PH_vt.vt_nrecs;
2997 
2998 			mtl->m_next = m0;
2999 		}
3000 	}
3001 
3002 	return (0);
3003 }
3004 
3005 /*
3006  * Respond to a pending MLDv2 General Query.
3007  */
3008 static void
3009 mld_v2_dispatch_general_query(struct mld_ifsoftc *mli)
3010 {
3011 	struct ifmultiaddr	*ifma;
3012 	struct ifnet		*ifp;
3013 	struct in6_multi	*inm;
3014 	int			 retval;
3015 
3016 	NET_EPOCH_ASSERT();
3017 	IN6_MULTI_LIST_LOCK_ASSERT();
3018 	MLD_LOCK_ASSERT();
3019 
3020 	KASSERT(mli->mli_version == MLD_VERSION_2,
3021 	    ("%s: called when version %d", __func__, mli->mli_version));
3022 
3023 	/*
3024 	 * Check that there are some packets queued. If so, send them first.
3025 	 * For large number of groups the reply to general query can take
3026 	 * many packets, we should finish sending them before starting of
3027 	 * queuing the new reply.
3028 	 */
3029 	if (mbufq_len(&mli->mli_gq) != 0)
3030 		goto send;
3031 
3032 	ifp = mli->mli_ifp;
3033 
3034 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3035 		inm = in6m_ifmultiaddr_get_inm(ifma);
3036 		if (inm == NULL)
3037 			continue;
3038 		KASSERT(ifp == inm->in6m_ifp,
3039 		    ("%s: inconsistent ifp", __func__));
3040 
3041 		switch (inm->in6m_state) {
3042 		case MLD_NOT_MEMBER:
3043 		case MLD_SILENT_MEMBER:
3044 			break;
3045 		case MLD_REPORTING_MEMBER:
3046 		case MLD_IDLE_MEMBER:
3047 		case MLD_LAZY_MEMBER:
3048 		case MLD_SLEEPING_MEMBER:
3049 		case MLD_AWAKENING_MEMBER:
3050 			inm->in6m_state = MLD_REPORTING_MEMBER;
3051 			retval = mld_v2_enqueue_group_record(&mli->mli_gq,
3052 			    inm, 0, 0, 0, 0);
3053 			CTR2(KTR_MLD, "%s: enqueue record = %d",
3054 			    __func__, retval);
3055 			break;
3056 		case MLD_G_QUERY_PENDING_MEMBER:
3057 		case MLD_SG_QUERY_PENDING_MEMBER:
3058 		case MLD_LEAVING_MEMBER:
3059 			break;
3060 		}
3061 	}
3062 
3063 send:
3064 	mld_dispatch_queue(&mli->mli_gq, MLD_MAX_RESPONSE_BURST);
3065 
3066 	/*
3067 	 * Slew transmission of bursts over 500ms intervals.
3068 	 */
3069 	if (mbufq_first(&mli->mli_gq) != NULL) {
3070 		mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY(
3071 		    MLD_RESPONSE_BURST_INTERVAL);
3072 		V_interface_timers_running6 = 1;
3073 	}
3074 }
3075 
3076 /*
3077  * Transmit the next pending message in the output queue.
3078  *
3079  * VIMAGE: Needs to store/restore vnet pointer on a per-mbuf-chain basis.
3080  * MRT: Nothing needs to be done, as MLD traffic is always local to
3081  * a link and uses a link-scope multicast address.
3082  */
3083 static void
3084 mld_dispatch_packet(struct mbuf *m)
3085 {
3086 	struct ip6_moptions	 im6o;
3087 	struct ifnet		*ifp;
3088 	struct ifnet		*oifp;
3089 	struct mbuf		*m0;
3090 	struct mbuf		*md;
3091 	struct ip6_hdr		*ip6;
3092 	struct mld_hdr		*mld;
3093 	int			 error;
3094 	int			 off;
3095 	int			 type;
3096 	uint32_t		 ifindex;
3097 
3098 	CTR2(KTR_MLD, "%s: transmit %p", __func__, m);
3099 	NET_EPOCH_ASSERT();
3100 
3101 	/*
3102 	 * Set VNET image pointer from enqueued mbuf chain
3103 	 * before doing anything else. Whilst we use interface
3104 	 * indexes to guard against interface detach, they are
3105 	 * unique to each VIMAGE and must be retrieved.
3106 	 */
3107 	ifindex = mld_restore_context(m);
3108 
3109 	/*
3110 	 * Check if the ifnet still exists. This limits the scope of
3111 	 * any race in the absence of a global ifp lock for low cost
3112 	 * (an array lookup).
3113 	 */
3114 	ifp = ifnet_byindex(ifindex);
3115 	if (ifp == NULL) {
3116 		CTR3(KTR_MLD, "%s: dropped %p as ifindex %u went away.",
3117 		    __func__, m, ifindex);
3118 		m_freem(m);
3119 		IP6STAT_INC(ip6s_noroute);
3120 		goto out;
3121 	}
3122 
3123 	im6o.im6o_multicast_hlim  = 1;
3124 	im6o.im6o_multicast_loop = (V_ip6_mrouter != NULL);
3125 	im6o.im6o_multicast_ifp = ifp;
3126 
3127 	if (m->m_flags & M_MLDV1) {
3128 		m0 = m;
3129 	} else {
3130 		m0 = mld_v2_encap_report(ifp, m);
3131 		if (m0 == NULL) {
3132 			CTR2(KTR_MLD, "%s: dropped %p", __func__, m);
3133 			IP6STAT_INC(ip6s_odropped);
3134 			goto out;
3135 		}
3136 	}
3137 
3138 	mld_scrub_context(m0);
3139 	m_clrprotoflags(m);
3140 	m0->m_pkthdr.rcvif = V_loif;
3141 
3142 	ip6 = mtod(m0, struct ip6_hdr *);
3143 #if 0
3144 	(void)in6_setscope(&ip6->ip6_dst, ifp, NULL);	/* XXX LOR */
3145 #else
3146 	/*
3147 	 * XXX XXX Break some KPI rules to prevent an LOR which would
3148 	 * occur if we called in6_setscope() at transmission.
3149 	 * See comments at top of file.
3150 	 */
3151 	MLD_EMBEDSCOPE(&ip6->ip6_dst, ifp->if_index);
3152 #endif
3153 
3154 	/*
3155 	 * Retrieve the ICMPv6 type before handoff to ip6_output(),
3156 	 * so we can bump the stats.
3157 	 */
3158 	md = m_getptr(m0, sizeof(struct ip6_hdr), &off);
3159 	mld = (struct mld_hdr *)(mtod(md, uint8_t *) + off);
3160 	type = mld->mld_type;
3161 
3162 	oifp = NULL;
3163 	error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, &im6o,
3164 	    &oifp, NULL);
3165 	if (error) {
3166 		CTR3(KTR_MLD, "%s: ip6_output(%p) = %d", __func__, m0, error);
3167 		goto out;
3168 	}
3169 	ICMP6STAT_INC(icp6s_outhist[type]);
3170 	if (oifp != NULL) {
3171 		icmp6_ifstat_inc(oifp, ifs6_out_msg);
3172 		switch (type) {
3173 		case MLD_LISTENER_REPORT:
3174 		case MLDV2_LISTENER_REPORT:
3175 			icmp6_ifstat_inc(oifp, ifs6_out_mldreport);
3176 			break;
3177 		case MLD_LISTENER_DONE:
3178 			icmp6_ifstat_inc(oifp, ifs6_out_mlddone);
3179 			break;
3180 		}
3181 	}
3182 out:
3183 	return;
3184 }
3185 
3186 /*
3187  * Encapsulate an MLDv2 report.
3188  *
3189  * KAME IPv6 requires that hop-by-hop options be passed separately,
3190  * and that the IPv6 header be prepended in a separate mbuf.
3191  *
3192  * Returns a pointer to the new mbuf chain head, or NULL if the
3193  * allocation failed.
3194  */
3195 static struct mbuf *
3196 mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m)
3197 {
3198 	struct mbuf		*mh;
3199 	struct mldv2_report	*mld;
3200 	struct ip6_hdr		*ip6;
3201 	struct in6_ifaddr	*ia;
3202 	int			 mldreclen;
3203 
3204 	KASSERT(ifp != NULL, ("%s: null ifp", __func__));
3205 	KASSERT((m->m_flags & M_PKTHDR),
3206 	    ("%s: mbuf chain %p is !M_PKTHDR", __func__, m));
3207 
3208 	/*
3209 	 * RFC3590: OK to send as :: or tentative during DAD.
3210 	 */
3211 	NET_EPOCH_ASSERT();
3212 	ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
3213 	if (ia == NULL)
3214 		CTR1(KTR_MLD, "%s: warning: ia is NULL", __func__);
3215 
3216 	mh = m_gethdr(M_NOWAIT, MT_DATA);
3217 	if (mh == NULL) {
3218 		if (ia != NULL)
3219 			ifa_free(&ia->ia_ifa);
3220 		m_freem(m);
3221 		return (NULL);
3222 	}
3223 	M_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report));
3224 
3225 	mldreclen = m_length(m, NULL);
3226 	CTR2(KTR_MLD, "%s: mldreclen is %d", __func__, mldreclen);
3227 
3228 	mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report);
3229 	mh->m_pkthdr.len = sizeof(struct ip6_hdr) +
3230 	    sizeof(struct mldv2_report) + mldreclen;
3231 
3232 	ip6 = mtod(mh, struct ip6_hdr *);
3233 	ip6->ip6_flow = 0;
3234 	ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3235 	ip6->ip6_vfc |= IPV6_VERSION;
3236 	ip6->ip6_nxt = IPPROTO_ICMPV6;
3237 	ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any;
3238 	if (ia != NULL)
3239 		ifa_free(&ia->ia_ifa);
3240 	ip6->ip6_dst = in6addr_linklocal_allv2routers;
3241 	/* scope ID will be set in netisr */
3242 
3243 	mld = (struct mldv2_report *)(ip6 + 1);
3244 	mld->mld_type = MLDV2_LISTENER_REPORT;
3245 	mld->mld_code = 0;
3246 	mld->mld_cksum = 0;
3247 	mld->mld_v2_reserved = 0;
3248 	mld->mld_v2_numrecs = htons(m->m_pkthdr.PH_vt.vt_nrecs);
3249 	m->m_pkthdr.PH_vt.vt_nrecs = 0;
3250 
3251 	mh->m_next = m;
3252 	mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6,
3253 	    sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen);
3254 	return (mh);
3255 }
3256 
3257 #ifdef KTR
3258 static char *
3259 mld_rec_type_to_str(const int type)
3260 {
3261 
3262 	switch (type) {
3263 		case MLD_CHANGE_TO_EXCLUDE_MODE:
3264 			return "TO_EX";
3265 			break;
3266 		case MLD_CHANGE_TO_INCLUDE_MODE:
3267 			return "TO_IN";
3268 			break;
3269 		case MLD_MODE_IS_EXCLUDE:
3270 			return "MODE_EX";
3271 			break;
3272 		case MLD_MODE_IS_INCLUDE:
3273 			return "MODE_IN";
3274 			break;
3275 		case MLD_ALLOW_NEW_SOURCES:
3276 			return "ALLOW_NEW";
3277 			break;
3278 		case MLD_BLOCK_OLD_SOURCES:
3279 			return "BLOCK_OLD";
3280 			break;
3281 		default:
3282 			break;
3283 	}
3284 	return "unknown";
3285 }
3286 #endif
3287 
3288 static void
3289 mld_init(void *unused __unused)
3290 {
3291 
3292 	CTR1(KTR_MLD, "%s: initializing", __func__);
3293 	MLD_LOCK_INIT();
3294 
3295 	ip6_initpktopts(&mld_po);
3296 	mld_po.ip6po_hlim = 1;
3297 	mld_po.ip6po_hbh = &mld_ra.hbh;
3298 	mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER;
3299 	mld_po.ip6po_flags = IP6PO_DONTFRAG;
3300 }
3301 SYSINIT(mld_init, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, mld_init, NULL);
3302 
3303 static void
3304 mld_uninit(void *unused __unused)
3305 {
3306 
3307 	CTR1(KTR_MLD, "%s: tearing down", __func__);
3308 	MLD_LOCK_DESTROY();
3309 }
3310 SYSUNINIT(mld_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, mld_uninit, NULL);
3311 
3312 static void
3313 vnet_mld_init(const void *unused __unused)
3314 {
3315 
3316 	CTR1(KTR_MLD, "%s: initializing", __func__);
3317 
3318 	LIST_INIT(&V_mli_head);
3319 }
3320 VNET_SYSINIT(vnet_mld_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mld_init,
3321     NULL);
3322 
3323 static void
3324 vnet_mld_uninit(const void *unused __unused)
3325 {
3326 
3327 	/* This can happen if we shutdown the network stack. */
3328 	CTR1(KTR_MLD, "%s: tearing down", __func__);
3329 }
3330 VNET_SYSUNINIT(vnet_mld_uninit, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mld_uninit,
3331     NULL);
3332 
3333 static int
3334 mld_modevent(module_t mod, int type, void *unused __unused)
3335 {
3336 
3337     switch (type) {
3338     case MOD_LOAD:
3339     case MOD_UNLOAD:
3340 	break;
3341     default:
3342 	return (EOPNOTSUPP);
3343     }
3344     return (0);
3345 }
3346 
3347 static moduledata_t mld_mod = {
3348     "mld",
3349     mld_modevent,
3350     0
3351 };
3352 DECLARE_MODULE(mld, mld_mod, SI_SUB_PROTO_MC, SI_ORDER_ANY);
3353