1 /*- 2 * Copyright (c) 2009 Bruce Simpson. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 3. The name of the author may not be used to endorse or promote 13 * products derived from this software without specific prior written 14 * permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $KAME: mld6.c,v 1.27 2001/04/04 05:17:30 itojun Exp $ 29 */ 30 31 /*- 32 * Copyright (c) 1988 Stephen Deering. 33 * Copyright (c) 1992, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * This code is derived from software contributed to Berkeley by 37 * Stephen Deering of Stanford University. 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 1. Redistributions of source code must retain the above copyright 43 * notice, this list of conditions and the following disclaimer. 44 * 2. Redistributions in binary form must reproduce the above copyright 45 * notice, this list of conditions and the following disclaimer in the 46 * documentation and/or other materials provided with the distribution. 47 * 4. Neither the name of the University nor the names of its contributors 48 * may be used to endorse or promote products derived from this software 49 * without specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 61 * SUCH DAMAGE. 62 * 63 * @(#)igmp.c 8.1 (Berkeley) 7/19/93 64 */ 65 66 #include <sys/cdefs.h> 67 __FBSDID("$FreeBSD$"); 68 69 #include "opt_inet.h" 70 #include "opt_inet6.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/mbuf.h> 75 #include <sys/socket.h> 76 #include <sys/protosw.h> 77 #include <sys/sysctl.h> 78 #include <sys/kernel.h> 79 #include <sys/callout.h> 80 #include <sys/malloc.h> 81 #include <sys/module.h> 82 #include <sys/ktr.h> 83 84 #include <net/if.h> 85 #include <net/route.h> 86 #include <net/vnet.h> 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet6/in6_var.h> 91 #include <netinet/ip6.h> 92 #include <netinet6/ip6_var.h> 93 #include <netinet6/scope6_var.h> 94 #include <netinet/icmp6.h> 95 #include <netinet6/mld6.h> 96 #include <netinet6/mld6_var.h> 97 98 #include <security/mac/mac_framework.h> 99 100 #ifndef KTR_MLD 101 #define KTR_MLD KTR_INET6 102 #endif 103 104 static struct mld_ifinfo * 105 mli_alloc_locked(struct ifnet *); 106 static void mli_delete_locked(const struct ifnet *); 107 static void mld_dispatch_packet(struct mbuf *); 108 static void mld_dispatch_queue(struct ifqueue *, int); 109 static void mld_final_leave(struct in6_multi *, struct mld_ifinfo *); 110 static void mld_fasttimo_vnet(void); 111 static int mld_handle_state_change(struct in6_multi *, 112 struct mld_ifinfo *); 113 static int mld_initial_join(struct in6_multi *, struct mld_ifinfo *, 114 const int); 115 #ifdef KTR 116 static char * mld_rec_type_to_str(const int); 117 #endif 118 static void mld_set_version(struct mld_ifinfo *, const int); 119 static void mld_slowtimo_vnet(void); 120 static int mld_v1_input_query(struct ifnet *, const struct ip6_hdr *, 121 /*const*/ struct mld_hdr *); 122 static int mld_v1_input_report(struct ifnet *, const struct ip6_hdr *, 123 /*const*/ struct mld_hdr *); 124 static void mld_v1_process_group_timer(struct in6_multi *, const int); 125 static void mld_v1_process_querier_timers(struct mld_ifinfo *); 126 static int mld_v1_transmit_report(struct in6_multi *, const int); 127 static void mld_v1_update_group(struct in6_multi *, const int); 128 static void mld_v2_cancel_link_timers(struct mld_ifinfo *); 129 static void mld_v2_dispatch_general_query(struct mld_ifinfo *); 130 static struct mbuf * 131 mld_v2_encap_report(struct ifnet *, struct mbuf *); 132 static int mld_v2_enqueue_filter_change(struct ifqueue *, 133 struct in6_multi *); 134 static int mld_v2_enqueue_group_record(struct ifqueue *, 135 struct in6_multi *, const int, const int, const int, 136 const int); 137 static int mld_v2_input_query(struct ifnet *, const struct ip6_hdr *, 138 struct mbuf *, const int, const int); 139 static int mld_v2_merge_state_changes(struct in6_multi *, 140 struct ifqueue *); 141 static void mld_v2_process_group_timers(struct mld_ifinfo *, 142 struct ifqueue *, struct ifqueue *, 143 struct in6_multi *, const int); 144 static int mld_v2_process_group_query(struct in6_multi *, 145 struct mld_ifinfo *mli, int, struct mbuf *, const int); 146 static int sysctl_mld_gsr(SYSCTL_HANDLER_ARGS); 147 static int sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS); 148 149 /* 150 * Normative references: RFC 2710, RFC 3590, RFC 3810. 151 * 152 * Locking: 153 * * The MLD subsystem lock ends up being system-wide for the moment, 154 * but could be per-VIMAGE later on. 155 * * The permitted lock order is: IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK. 156 * Any may be taken independently; if any are held at the same 157 * time, the above lock order must be followed. 158 * * IN6_MULTI_LOCK covers in_multi. 159 * * MLD_LOCK covers per-link state and any global variables in this file. 160 * * IF_ADDR_LOCK covers if_multiaddrs, which is used for a variety of 161 * per-link state iterators. 162 * 163 * XXX LOR PREVENTION 164 * A special case for IPv6 is the in6_setscope() routine. ip6_output() 165 * will not accept an ifp; it wants an embedded scope ID, unlike 166 * ip_output(), which happily takes the ifp given to it. The embedded 167 * scope ID is only used by MLD to select the outgoing interface. 168 * 169 * During interface attach and detach, MLD will take MLD_LOCK *after* 170 * the IF_AFDATA_LOCK. 171 * As in6_setscope() takes IF_AFDATA_LOCK then SCOPE_LOCK, we can't call 172 * it with MLD_LOCK held without triggering an LOR. A netisr with indirect 173 * dispatch could work around this, but we'd rather not do that, as it 174 * can introduce other races. 175 * 176 * As such, we exploit the fact that the scope ID is just the interface 177 * index, and embed it in the IPv6 destination address accordingly. 178 * This is potentially NOT VALID for MLDv1 reports, as they 179 * are always sent to the multicast group itself; as MLDv2 180 * reports are always sent to ff02::16, this is not an issue 181 * when MLDv2 is in use. 182 * 183 * This does not however eliminate the LOR when ip6_output() itself 184 * calls in6_setscope() internally whilst MLD_LOCK is held. This will 185 * trigger a LOR warning in WITNESS when the ifnet is detached. 186 * 187 * The right answer is probably to make IF_AFDATA_LOCK an rwlock, given 188 * how it's used across the network stack. Here we're simply exploiting 189 * the fact that MLD runs at a similar layer in the stack to scope6.c. 190 * 191 * VIMAGE: 192 * * Each in6_multi corresponds to an ifp, and each ifp corresponds 193 * to a vnet in ifp->if_vnet. 194 */ 195 static struct mtx mld_mtx; 196 MALLOC_DEFINE(M_MLD, "mld", "mld state"); 197 198 #define MLD_EMBEDSCOPE(pin6, zoneid) \ 199 (pin6)->s6_addr16[1] = htons((zoneid) & 0xFFFF) 200 201 /* 202 * VIMAGE-wide globals. 203 */ 204 static VNET_DEFINE(struct timeval, mld_gsrdelay) = {10, 0}; 205 static VNET_DEFINE(LIST_HEAD(, mld_ifinfo), mli_head); 206 static VNET_DEFINE(int, interface_timers_running6); 207 static VNET_DEFINE(int, state_change_timers_running6); 208 static VNET_DEFINE(int, current_state_timers_running6); 209 210 #define V_mld_gsrdelay VNET(mld_gsrdelay) 211 #define V_mli_head VNET(mli_head) 212 #define V_interface_timers_running6 VNET(interface_timers_running6) 213 #define V_state_change_timers_running6 VNET(state_change_timers_running6) 214 #define V_current_state_timers_running6 VNET(current_state_timers_running6) 215 216 SYSCTL_DECL(_net_inet6); /* Note: Not in any common header. */ 217 218 SYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW, 0, 219 "IPv6 Multicast Listener Discovery"); 220 221 /* 222 * Virtualized sysctls. 223 */ 224 SYSCTL_VNET_PROC(_net_inet6_mld, OID_AUTO, gsrdelay, 225 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 226 &VNET_NAME(mld_gsrdelay.tv_sec), 0, sysctl_mld_gsr, "I", 227 "Rate limit for MLDv2 Group-and-Source queries in seconds"); 228 229 /* 230 * Non-virtualized sysctls. 231 */ 232 SYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo, CTLFLAG_RD | CTLFLAG_MPSAFE, 233 sysctl_mld_ifinfo, "Per-interface MLDv2 state"); 234 235 static int mld_v1enable = 1; 236 SYSCTL_INT(_net_inet6_mld, OID_AUTO, v1enable, CTLFLAG_RW, 237 &mld_v1enable, 0, "Enable fallback to MLDv1"); 238 TUNABLE_INT("net.inet6.mld.v1enable", &mld_v1enable); 239 240 static int mld_use_allow = 1; 241 SYSCTL_INT(_net_inet6_mld, OID_AUTO, use_allow, CTLFLAG_RW, 242 &mld_use_allow, 0, "Use ALLOW/BLOCK for RFC 4604 SSM joins/leaves"); 243 TUNABLE_INT("net.inet6.mld.use_allow", &mld_use_allow); 244 245 /* 246 * Packed Router Alert option structure declaration. 247 */ 248 struct mld_raopt { 249 struct ip6_hbh hbh; 250 struct ip6_opt pad; 251 struct ip6_opt_router ra; 252 } __packed; 253 254 /* 255 * Router Alert hop-by-hop option header. 256 */ 257 static struct mld_raopt mld_ra = { 258 .hbh = { 0, 0 }, 259 .pad = { .ip6o_type = IP6OPT_PADN, 0 }, 260 .ra = { 261 .ip6or_type = IP6OPT_ROUTER_ALERT, 262 .ip6or_len = IP6OPT_RTALERT_LEN - 2, 263 .ip6or_value[0] = ((IP6OPT_RTALERT_MLD >> 8) & 0xFF), 264 .ip6or_value[1] = (IP6OPT_RTALERT_MLD & 0xFF) 265 } 266 }; 267 static struct ip6_pktopts mld_po; 268 269 static __inline void 270 mld_save_context(struct mbuf *m, struct ifnet *ifp) 271 { 272 273 #ifdef VIMAGE 274 m->m_pkthdr.header = ifp->if_vnet; 275 #endif /* VIMAGE */ 276 m->m_pkthdr.flowid = ifp->if_index; 277 } 278 279 static __inline void 280 mld_scrub_context(struct mbuf *m) 281 { 282 283 m->m_pkthdr.header = NULL; 284 m->m_pkthdr.flowid = 0; 285 } 286 287 /* 288 * Restore context from a queued output chain. 289 * Return saved ifindex. 290 * 291 * VIMAGE: The assertion is there to make sure that we 292 * actually called CURVNET_SET() with what's in the mbuf chain. 293 */ 294 static __inline uint32_t 295 mld_restore_context(struct mbuf *m) 296 { 297 298 #if defined(VIMAGE) && defined(INVARIANTS) 299 KASSERT(curvnet == m->m_pkthdr.header, 300 ("%s: called when curvnet was not restored", __func__)); 301 #endif 302 return (m->m_pkthdr.flowid); 303 } 304 305 /* 306 * Retrieve or set threshold between group-source queries in seconds. 307 * 308 * VIMAGE: Assume curvnet set by caller. 309 * SMPng: NOTE: Serialized by MLD lock. 310 */ 311 static int 312 sysctl_mld_gsr(SYSCTL_HANDLER_ARGS) 313 { 314 int error; 315 int i; 316 317 error = sysctl_wire_old_buffer(req, sizeof(int)); 318 if (error) 319 return (error); 320 321 MLD_LOCK(); 322 323 i = V_mld_gsrdelay.tv_sec; 324 325 error = sysctl_handle_int(oidp, &i, 0, req); 326 if (error || !req->newptr) 327 goto out_locked; 328 329 if (i < -1 || i >= 60) { 330 error = EINVAL; 331 goto out_locked; 332 } 333 334 CTR2(KTR_MLD, "change mld_gsrdelay from %d to %d", 335 V_mld_gsrdelay.tv_sec, i); 336 V_mld_gsrdelay.tv_sec = i; 337 338 out_locked: 339 MLD_UNLOCK(); 340 return (error); 341 } 342 343 /* 344 * Expose struct mld_ifinfo to userland, keyed by ifindex. 345 * For use by ifmcstat(8). 346 * 347 * SMPng: NOTE: Does an unlocked ifindex space read. 348 * VIMAGE: Assume curvnet set by caller. The node handler itself 349 * is not directly virtualized. 350 */ 351 static int 352 sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS) 353 { 354 int *name; 355 int error; 356 u_int namelen; 357 struct ifnet *ifp; 358 struct mld_ifinfo *mli; 359 360 name = (int *)arg1; 361 namelen = arg2; 362 363 if (req->newptr != NULL) 364 return (EPERM); 365 366 if (namelen != 1) 367 return (EINVAL); 368 369 error = sysctl_wire_old_buffer(req, sizeof(struct mld_ifinfo)); 370 if (error) 371 return (error); 372 373 IN6_MULTI_LOCK(); 374 MLD_LOCK(); 375 376 if (name[0] <= 0 || name[0] > V_if_index) { 377 error = ENOENT; 378 goto out_locked; 379 } 380 381 error = ENOENT; 382 383 ifp = ifnet_byindex(name[0]); 384 if (ifp == NULL) 385 goto out_locked; 386 387 LIST_FOREACH(mli, &V_mli_head, mli_link) { 388 if (ifp == mli->mli_ifp) { 389 error = SYSCTL_OUT(req, mli, 390 sizeof(struct mld_ifinfo)); 391 break; 392 } 393 } 394 395 out_locked: 396 MLD_UNLOCK(); 397 IN6_MULTI_UNLOCK(); 398 return (error); 399 } 400 401 /* 402 * Dispatch an entire queue of pending packet chains. 403 * VIMAGE: Assumes the vnet pointer has been set. 404 */ 405 static void 406 mld_dispatch_queue(struct ifqueue *ifq, int limit) 407 { 408 struct mbuf *m; 409 410 for (;;) { 411 _IF_DEQUEUE(ifq, m); 412 if (m == NULL) 413 break; 414 CTR3(KTR_MLD, "%s: dispatch %p from %p", __func__, ifq, m); 415 mld_dispatch_packet(m); 416 if (--limit == 0) 417 break; 418 } 419 } 420 421 /* 422 * Filter outgoing MLD report state by group. 423 * 424 * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1) 425 * and node-local addresses. However, kernel and socket consumers 426 * always embed the KAME scope ID in the address provided, so strip it 427 * when performing comparison. 428 * Note: This is not the same as the *multicast* scope. 429 * 430 * Return zero if the given group is one for which MLD reports 431 * should be suppressed, or non-zero if reports should be issued. 432 */ 433 static __inline int 434 mld_is_addr_reported(const struct in6_addr *addr) 435 { 436 437 KASSERT(IN6_IS_ADDR_MULTICAST(addr), ("%s: not multicast", __func__)); 438 439 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL) 440 return (0); 441 442 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL) { 443 struct in6_addr tmp = *addr; 444 in6_clearscope(&tmp); 445 if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes)) 446 return (0); 447 } 448 449 return (1); 450 } 451 452 /* 453 * Attach MLD when PF_INET6 is attached to an interface. 454 * 455 * SMPng: Normally called with IF_AFDATA_LOCK held. 456 */ 457 struct mld_ifinfo * 458 mld_domifattach(struct ifnet *ifp) 459 { 460 struct mld_ifinfo *mli; 461 462 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 463 __func__, ifp, ifp->if_xname); 464 465 MLD_LOCK(); 466 467 mli = mli_alloc_locked(ifp); 468 if (!(ifp->if_flags & IFF_MULTICAST)) 469 mli->mli_flags |= MLIF_SILENT; 470 if (mld_use_allow) 471 mli->mli_flags |= MLIF_USEALLOW; 472 473 MLD_UNLOCK(); 474 475 return (mli); 476 } 477 478 /* 479 * VIMAGE: assume curvnet set by caller. 480 */ 481 static struct mld_ifinfo * 482 mli_alloc_locked(/*const*/ struct ifnet *ifp) 483 { 484 struct mld_ifinfo *mli; 485 486 MLD_LOCK_ASSERT(); 487 488 mli = malloc(sizeof(struct mld_ifinfo), M_MLD, M_NOWAIT|M_ZERO); 489 if (mli == NULL) 490 goto out; 491 492 mli->mli_ifp = ifp; 493 mli->mli_version = MLD_VERSION_2; 494 mli->mli_flags = 0; 495 mli->mli_rv = MLD_RV_INIT; 496 mli->mli_qi = MLD_QI_INIT; 497 mli->mli_qri = MLD_QRI_INIT; 498 mli->mli_uri = MLD_URI_INIT; 499 500 SLIST_INIT(&mli->mli_relinmhead); 501 502 /* 503 * Responses to general queries are subject to bounds. 504 */ 505 IFQ_SET_MAXLEN(&mli->mli_gq, MLD_MAX_RESPONSE_PACKETS); 506 507 LIST_INSERT_HEAD(&V_mli_head, mli, mli_link); 508 509 CTR2(KTR_MLD, "allocate mld_ifinfo for ifp %p(%s)", 510 ifp, ifp->if_xname); 511 512 out: 513 return (mli); 514 } 515 516 /* 517 * Hook for ifdetach. 518 * 519 * NOTE: Some finalization tasks need to run before the protocol domain 520 * is detached, but also before the link layer does its cleanup. 521 * Run before link-layer cleanup; cleanup groups, but do not free MLD state. 522 * 523 * SMPng: Caller must hold IN6_MULTI_LOCK(). 524 * Must take IF_ADDR_LOCK() to cover if_multiaddrs iterator. 525 * XXX This routine is also bitten by unlocked ifma_protospec access. 526 */ 527 void 528 mld_ifdetach(struct ifnet *ifp) 529 { 530 struct mld_ifinfo *mli; 531 struct ifmultiaddr *ifma; 532 struct in6_multi *inm, *tinm; 533 534 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", __func__, ifp, 535 ifp->if_xname); 536 537 IN6_MULTI_LOCK_ASSERT(); 538 MLD_LOCK(); 539 540 mli = MLD_IFINFO(ifp); 541 if (mli->mli_version == MLD_VERSION_2) { 542 IF_ADDR_LOCK(ifp); 543 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 544 if (ifma->ifma_addr->sa_family != AF_INET6 || 545 ifma->ifma_protospec == NULL) 546 continue; 547 inm = (struct in6_multi *)ifma->ifma_protospec; 548 if (inm->in6m_state == MLD_LEAVING_MEMBER) { 549 SLIST_INSERT_HEAD(&mli->mli_relinmhead, 550 inm, in6m_nrele); 551 } 552 in6m_clear_recorded(inm); 553 } 554 IF_ADDR_UNLOCK(ifp); 555 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele, 556 tinm) { 557 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele); 558 in6m_release_locked(inm); 559 } 560 } 561 562 MLD_UNLOCK(); 563 } 564 565 /* 566 * Hook for domifdetach. 567 * Runs after link-layer cleanup; free MLD state. 568 * 569 * SMPng: Normally called with IF_AFDATA_LOCK held. 570 */ 571 void 572 mld_domifdetach(struct ifnet *ifp) 573 { 574 575 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 576 __func__, ifp, ifp->if_xname); 577 578 MLD_LOCK(); 579 mli_delete_locked(ifp); 580 MLD_UNLOCK(); 581 } 582 583 static void 584 mli_delete_locked(const struct ifnet *ifp) 585 { 586 struct mld_ifinfo *mli, *tmli; 587 588 CTR3(KTR_MLD, "%s: freeing mld_ifinfo for ifp %p(%s)", 589 __func__, ifp, ifp->if_xname); 590 591 MLD_LOCK_ASSERT(); 592 593 LIST_FOREACH_SAFE(mli, &V_mli_head, mli_link, tmli) { 594 if (mli->mli_ifp == ifp) { 595 /* 596 * Free deferred General Query responses. 597 */ 598 _IF_DRAIN(&mli->mli_gq); 599 600 LIST_REMOVE(mli, mli_link); 601 602 KASSERT(SLIST_EMPTY(&mli->mli_relinmhead), 603 ("%s: there are dangling in_multi references", 604 __func__)); 605 606 free(mli, M_MLD); 607 return; 608 } 609 } 610 #ifdef INVARIANTS 611 panic("%s: mld_ifinfo not found for ifp %p\n", __func__, ifp); 612 #endif 613 } 614 615 /* 616 * Process a received MLDv1 general or address-specific query. 617 * Assumes that the query header has been pulled up to sizeof(mld_hdr). 618 * 619 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 620 * mld_addr. This is OK as we own the mbuf chain. 621 */ 622 static int 623 mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 624 /*const*/ struct mld_hdr *mld) 625 { 626 struct ifmultiaddr *ifma; 627 struct mld_ifinfo *mli; 628 struct in6_multi *inm; 629 int is_general_query; 630 uint16_t timer; 631 #ifdef KTR 632 char ip6tbuf[INET6_ADDRSTRLEN]; 633 #endif 634 635 is_general_query = 0; 636 637 if (!mld_v1enable) { 638 CTR3(KTR_MLD, "ignore v1 query %s on ifp %p(%s)", 639 ip6_sprintf(ip6tbuf, &mld->mld_addr), 640 ifp, ifp->if_xname); 641 return (0); 642 } 643 644 /* 645 * RFC3810 Section 6.2: MLD queries must originate from 646 * a router's link-local address. 647 */ 648 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 649 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 650 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 651 ifp, ifp->if_xname); 652 return (0); 653 } 654 655 /* 656 * Do address field validation upfront before we accept 657 * the query. 658 */ 659 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 660 /* 661 * MLDv1 General Query. 662 * If this was not sent to the all-nodes group, ignore it. 663 */ 664 struct in6_addr dst; 665 666 dst = ip6->ip6_dst; 667 in6_clearscope(&dst); 668 if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes)) 669 return (EINVAL); 670 is_general_query = 1; 671 } else { 672 /* 673 * Embed scope ID of receiving interface in MLD query for 674 * lookup whilst we don't hold other locks. 675 */ 676 in6_setscope(&mld->mld_addr, ifp, NULL); 677 } 678 679 IN6_MULTI_LOCK(); 680 MLD_LOCK(); 681 IF_ADDR_LOCK(ifp); 682 683 /* 684 * Switch to MLDv1 host compatibility mode. 685 */ 686 mli = MLD_IFINFO(ifp); 687 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 688 mld_set_version(mli, MLD_VERSION_1); 689 690 timer = (ntohs(mld->mld_maxdelay) * PR_FASTHZ) / MLD_TIMER_SCALE; 691 if (timer == 0) 692 timer = 1; 693 694 if (is_general_query) { 695 /* 696 * For each reporting group joined on this 697 * interface, kick the report timer. 698 */ 699 CTR2(KTR_MLD, "process v1 general query on ifp %p(%s)", 700 ifp, ifp->if_xname); 701 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 702 if (ifma->ifma_addr->sa_family != AF_INET6 || 703 ifma->ifma_protospec == NULL) 704 continue; 705 inm = (struct in6_multi *)ifma->ifma_protospec; 706 mld_v1_update_group(inm, timer); 707 } 708 } else { 709 /* 710 * MLDv1 Group-Specific Query. 711 * If this is a group-specific MLDv1 query, we need only 712 * look up the single group to process it. 713 */ 714 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 715 if (inm != NULL) { 716 CTR3(KTR_MLD, "process v1 query %s on ifp %p(%s)", 717 ip6_sprintf(ip6tbuf, &mld->mld_addr), 718 ifp, ifp->if_xname); 719 mld_v1_update_group(inm, timer); 720 } 721 /* XXX Clear embedded scope ID as userland won't expect it. */ 722 in6_clearscope(&mld->mld_addr); 723 } 724 725 IF_ADDR_UNLOCK(ifp); 726 MLD_UNLOCK(); 727 IN6_MULTI_UNLOCK(); 728 729 return (0); 730 } 731 732 /* 733 * Update the report timer on a group in response to an MLDv1 query. 734 * 735 * If we are becoming the reporting member for this group, start the timer. 736 * If we already are the reporting member for this group, and timer is 737 * below the threshold, reset it. 738 * 739 * We may be updating the group for the first time since we switched 740 * to MLDv2. If we are, then we must clear any recorded source lists, 741 * and transition to REPORTING state; the group timer is overloaded 742 * for group and group-source query responses. 743 * 744 * Unlike MLDv2, the delay per group should be jittered 745 * to avoid bursts of MLDv1 reports. 746 */ 747 static void 748 mld_v1_update_group(struct in6_multi *inm, const int timer) 749 { 750 #ifdef KTR 751 char ip6tbuf[INET6_ADDRSTRLEN]; 752 #endif 753 754 CTR4(KTR_MLD, "%s: %s/%s timer=%d", __func__, 755 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 756 inm->in6m_ifp->if_xname, timer); 757 758 IN6_MULTI_LOCK_ASSERT(); 759 760 switch (inm->in6m_state) { 761 case MLD_NOT_MEMBER: 762 case MLD_SILENT_MEMBER: 763 break; 764 case MLD_REPORTING_MEMBER: 765 if (inm->in6m_timer != 0 && 766 inm->in6m_timer <= timer) { 767 CTR1(KTR_MLD, "%s: REPORTING and timer running, " 768 "skipping.", __func__); 769 break; 770 } 771 /* FALLTHROUGH */ 772 case MLD_SG_QUERY_PENDING_MEMBER: 773 case MLD_G_QUERY_PENDING_MEMBER: 774 case MLD_IDLE_MEMBER: 775 case MLD_LAZY_MEMBER: 776 case MLD_AWAKENING_MEMBER: 777 CTR1(KTR_MLD, "%s: ->REPORTING", __func__); 778 inm->in6m_state = MLD_REPORTING_MEMBER; 779 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 780 V_current_state_timers_running6 = 1; 781 break; 782 case MLD_SLEEPING_MEMBER: 783 CTR1(KTR_MLD, "%s: ->AWAKENING", __func__); 784 inm->in6m_state = MLD_AWAKENING_MEMBER; 785 break; 786 case MLD_LEAVING_MEMBER: 787 break; 788 } 789 } 790 791 /* 792 * Process a received MLDv2 general, group-specific or 793 * group-and-source-specific query. 794 * 795 * Assumes that the query header has been pulled up to sizeof(mldv2_query). 796 * 797 * Return 0 if successful, otherwise an appropriate error code is returned. 798 */ 799 static int 800 mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 801 struct mbuf *m, const int off, const int icmp6len) 802 { 803 struct mld_ifinfo *mli; 804 struct mldv2_query *mld; 805 struct in6_multi *inm; 806 uint32_t maxdelay, nsrc, qqi; 807 int is_general_query; 808 uint16_t timer; 809 uint8_t qrv; 810 #ifdef KTR 811 char ip6tbuf[INET6_ADDRSTRLEN]; 812 #endif 813 814 is_general_query = 0; 815 816 /* 817 * RFC3810 Section 6.2: MLD queries must originate from 818 * a router's link-local address. 819 */ 820 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 821 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 822 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 823 ifp, ifp->if_xname); 824 return (0); 825 } 826 827 CTR2(KTR_MLD, "input v2 query on ifp %p(%s)", ifp, ifp->if_xname); 828 829 mld = (struct mldv2_query *)(mtod(m, uint8_t *) + off); 830 831 maxdelay = ntohs(mld->mld_maxdelay); /* in 1/10ths of a second */ 832 if (maxdelay >= 32678) { 833 maxdelay = (MLD_MRC_MANT(maxdelay) | 0x1000) << 834 (MLD_MRC_EXP(maxdelay) + 3); 835 } 836 timer = (maxdelay * PR_FASTHZ) / MLD_TIMER_SCALE; 837 if (timer == 0) 838 timer = 1; 839 840 qrv = MLD_QRV(mld->mld_misc); 841 if (qrv < 2) { 842 CTR3(KTR_MLD, "%s: clamping qrv %d to %d", __func__, 843 qrv, MLD_RV_INIT); 844 qrv = MLD_RV_INIT; 845 } 846 847 qqi = mld->mld_qqi; 848 if (qqi >= 128) { 849 qqi = MLD_QQIC_MANT(mld->mld_qqi) << 850 (MLD_QQIC_EXP(mld->mld_qqi) + 3); 851 } 852 853 nsrc = ntohs(mld->mld_numsrc); 854 if (nsrc > MLD_MAX_GS_SOURCES) 855 return (EMSGSIZE); 856 if (icmp6len < sizeof(struct mldv2_query) + 857 (nsrc * sizeof(struct in6_addr))) 858 return (EMSGSIZE); 859 860 /* 861 * Do further input validation upfront to avoid resetting timers 862 * should we need to discard this query. 863 */ 864 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 865 /* 866 * General Queries SHOULD be directed to ff02::1. 867 * A general query with a source list has undefined 868 * behaviour; discard it. 869 */ 870 struct in6_addr dst; 871 872 dst = ip6->ip6_dst; 873 in6_clearscope(&dst); 874 if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes) || 875 nsrc > 0) 876 return (EINVAL); 877 is_general_query = 1; 878 } else { 879 /* 880 * Embed scope ID of receiving interface in MLD query for 881 * lookup whilst we don't hold other locks (due to KAME 882 * locking lameness). We own this mbuf chain just now. 883 */ 884 in6_setscope(&mld->mld_addr, ifp, NULL); 885 } 886 887 IN6_MULTI_LOCK(); 888 MLD_LOCK(); 889 IF_ADDR_LOCK(ifp); 890 891 mli = MLD_IFINFO(ifp); 892 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 893 894 /* 895 * Discard the v2 query if we're in Compatibility Mode. 896 * The RFC is pretty clear that hosts need to stay in MLDv1 mode 897 * until the Old Version Querier Present timer expires. 898 */ 899 if (mli->mli_version != MLD_VERSION_2) 900 goto out_locked; 901 902 mld_set_version(mli, MLD_VERSION_2); 903 mli->mli_rv = qrv; 904 mli->mli_qi = qqi; 905 mli->mli_qri = maxdelay; 906 907 CTR4(KTR_MLD, "%s: qrv %d qi %d maxdelay %d", __func__, qrv, qqi, 908 maxdelay); 909 910 if (is_general_query) { 911 /* 912 * MLDv2 General Query. 913 * 914 * Schedule a current-state report on this ifp for 915 * all groups, possibly containing source lists. 916 * 917 * If there is a pending General Query response 918 * scheduled earlier than the selected delay, do 919 * not schedule any other reports. 920 * Otherwise, reset the interface timer. 921 */ 922 CTR2(KTR_MLD, "process v2 general query on ifp %p(%s)", 923 ifp, ifp->if_xname); 924 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) { 925 mli->mli_v2_timer = MLD_RANDOM_DELAY(timer); 926 V_interface_timers_running6 = 1; 927 } 928 } else { 929 /* 930 * MLDv2 Group-specific or Group-and-source-specific Query. 931 * 932 * Group-source-specific queries are throttled on 933 * a per-group basis to defeat denial-of-service attempts. 934 * Queries for groups we are not a member of on this 935 * link are simply ignored. 936 */ 937 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 938 if (inm == NULL) 939 goto out_locked; 940 if (nsrc > 0) { 941 if (!ratecheck(&inm->in6m_lastgsrtv, 942 &V_mld_gsrdelay)) { 943 CTR1(KTR_MLD, "%s: GS query throttled.", 944 __func__); 945 goto out_locked; 946 } 947 } 948 CTR2(KTR_MLD, "process v2 group query on ifp %p(%s)", 949 ifp, ifp->if_xname); 950 /* 951 * If there is a pending General Query response 952 * scheduled sooner than the selected delay, no 953 * further report need be scheduled. 954 * Otherwise, prepare to respond to the 955 * group-specific or group-and-source query. 956 */ 957 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) 958 mld_v2_process_group_query(inm, mli, timer, m, off); 959 960 /* XXX Clear embedded scope ID as userland won't expect it. */ 961 in6_clearscope(&mld->mld_addr); 962 } 963 964 out_locked: 965 IF_ADDR_UNLOCK(ifp); 966 MLD_UNLOCK(); 967 IN6_MULTI_UNLOCK(); 968 969 return (0); 970 } 971 972 /* 973 * Process a recieved MLDv2 group-specific or group-and-source-specific 974 * query. 975 * Return <0 if any error occured. Currently this is ignored. 976 */ 977 static int 978 mld_v2_process_group_query(struct in6_multi *inm, struct mld_ifinfo *mli, 979 int timer, struct mbuf *m0, const int off) 980 { 981 struct mldv2_query *mld; 982 int retval; 983 uint16_t nsrc; 984 985 IN6_MULTI_LOCK_ASSERT(); 986 MLD_LOCK_ASSERT(); 987 988 retval = 0; 989 mld = (struct mldv2_query *)(mtod(m0, uint8_t *) + off); 990 991 switch (inm->in6m_state) { 992 case MLD_NOT_MEMBER: 993 case MLD_SILENT_MEMBER: 994 case MLD_SLEEPING_MEMBER: 995 case MLD_LAZY_MEMBER: 996 case MLD_AWAKENING_MEMBER: 997 case MLD_IDLE_MEMBER: 998 case MLD_LEAVING_MEMBER: 999 return (retval); 1000 break; 1001 case MLD_REPORTING_MEMBER: 1002 case MLD_G_QUERY_PENDING_MEMBER: 1003 case MLD_SG_QUERY_PENDING_MEMBER: 1004 break; 1005 } 1006 1007 nsrc = ntohs(mld->mld_numsrc); 1008 1009 /* 1010 * Deal with group-specific queries upfront. 1011 * If any group query is already pending, purge any recorded 1012 * source-list state if it exists, and schedule a query response 1013 * for this group-specific query. 1014 */ 1015 if (nsrc == 0) { 1016 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 1017 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) { 1018 in6m_clear_recorded(inm); 1019 timer = min(inm->in6m_timer, timer); 1020 } 1021 inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER; 1022 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1023 V_current_state_timers_running6 = 1; 1024 return (retval); 1025 } 1026 1027 /* 1028 * Deal with the case where a group-and-source-specific query has 1029 * been received but a group-specific query is already pending. 1030 */ 1031 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) { 1032 timer = min(inm->in6m_timer, timer); 1033 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1034 V_current_state_timers_running6 = 1; 1035 return (retval); 1036 } 1037 1038 /* 1039 * Finally, deal with the case where a group-and-source-specific 1040 * query has been received, where a response to a previous g-s-r 1041 * query exists, or none exists. 1042 * In this case, we need to parse the source-list which the Querier 1043 * has provided us with and check if we have any source list filter 1044 * entries at T1 for these sources. If we do not, there is no need 1045 * schedule a report and the query may be dropped. 1046 * If we do, we must record them and schedule a current-state 1047 * report for those sources. 1048 */ 1049 if (inm->in6m_nsrc > 0) { 1050 struct mbuf *m; 1051 uint8_t *sp; 1052 int i, nrecorded; 1053 int soff; 1054 1055 m = m0; 1056 soff = off + sizeof(struct mldv2_query); 1057 nrecorded = 0; 1058 for (i = 0; i < nsrc; i++) { 1059 sp = mtod(m, uint8_t *) + soff; 1060 retval = in6m_record_source(inm, 1061 (const struct in6_addr *)sp); 1062 if (retval < 0) 1063 break; 1064 nrecorded += retval; 1065 soff += sizeof(struct in6_addr); 1066 if (soff >= m->m_len) { 1067 soff = soff - m->m_len; 1068 m = m->m_next; 1069 if (m == NULL) 1070 break; 1071 } 1072 } 1073 if (nrecorded > 0) { 1074 CTR1(KTR_MLD, 1075 "%s: schedule response to SG query", __func__); 1076 inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER; 1077 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1078 V_current_state_timers_running6 = 1; 1079 } 1080 } 1081 1082 return (retval); 1083 } 1084 1085 /* 1086 * Process a received MLDv1 host membership report. 1087 * Assumes mld points to mld_hdr in pulled up mbuf chain. 1088 * 1089 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 1090 * mld_addr. This is OK as we own the mbuf chain. 1091 */ 1092 static int 1093 mld_v1_input_report(struct ifnet *ifp, const struct ip6_hdr *ip6, 1094 /*const*/ struct mld_hdr *mld) 1095 { 1096 struct in6_addr src, dst; 1097 struct in6_ifaddr *ia; 1098 struct in6_multi *inm; 1099 #ifdef KTR 1100 char ip6tbuf[INET6_ADDRSTRLEN]; 1101 #endif 1102 1103 if (!mld_v1enable) { 1104 CTR3(KTR_MLD, "ignore v1 report %s on ifp %p(%s)", 1105 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1106 ifp, ifp->if_xname); 1107 return (0); 1108 } 1109 1110 if (ifp->if_flags & IFF_LOOPBACK) 1111 return (0); 1112 1113 /* 1114 * MLDv1 reports must originate from a host's link-local address, 1115 * or the unspecified address (when booting). 1116 */ 1117 src = ip6->ip6_src; 1118 in6_clearscope(&src); 1119 if (!IN6_IS_SCOPE_LINKLOCAL(&src) && !IN6_IS_ADDR_UNSPECIFIED(&src)) { 1120 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 1121 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 1122 ifp, ifp->if_xname); 1123 return (EINVAL); 1124 } 1125 1126 /* 1127 * RFC2710 Section 4: MLDv1 reports must pertain to a multicast 1128 * group, and must be directed to the group itself. 1129 */ 1130 dst = ip6->ip6_dst; 1131 in6_clearscope(&dst); 1132 if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) || 1133 !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &dst)) { 1134 CTR3(KTR_MLD, "ignore v1 query dst %s on ifp %p(%s)", 1135 ip6_sprintf(ip6tbuf, &ip6->ip6_dst), 1136 ifp, ifp->if_xname); 1137 return (EINVAL); 1138 } 1139 1140 /* 1141 * Make sure we don't hear our own membership report, as fast 1142 * leave requires knowing that we are the only member of a 1143 * group. Assume we used the link-local address if available, 1144 * otherwise look for ::. 1145 * 1146 * XXX Note that scope ID comparison is needed for the address 1147 * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be 1148 * performed for the on-wire address. 1149 */ 1150 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1151 if ((ia && IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia))) || 1152 (ia == NULL && IN6_IS_ADDR_UNSPECIFIED(&src))) { 1153 if (ia != NULL) 1154 ifa_free(&ia->ia_ifa); 1155 return (0); 1156 } 1157 if (ia != NULL) 1158 ifa_free(&ia->ia_ifa); 1159 1160 CTR3(KTR_MLD, "process v1 report %s on ifp %p(%s)", 1161 ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, ifp->if_xname); 1162 1163 /* 1164 * Embed scope ID of receiving interface in MLD query for lookup 1165 * whilst we don't hold other locks (due to KAME locking lameness). 1166 */ 1167 if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) 1168 in6_setscope(&mld->mld_addr, ifp, NULL); 1169 1170 IN6_MULTI_LOCK(); 1171 MLD_LOCK(); 1172 IF_ADDR_LOCK(ifp); 1173 1174 /* 1175 * MLDv1 report suppression. 1176 * If we are a member of this group, and our membership should be 1177 * reported, and our group timer is pending or about to be reset, 1178 * stop our group timer by transitioning to the 'lazy' state. 1179 */ 1180 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 1181 if (inm != NULL) { 1182 struct mld_ifinfo *mli; 1183 1184 mli = inm->in6m_mli; 1185 KASSERT(mli != NULL, 1186 ("%s: no mli for ifp %p", __func__, ifp)); 1187 1188 /* 1189 * If we are in MLDv2 host mode, do not allow the 1190 * other host's MLDv1 report to suppress our reports. 1191 */ 1192 if (mli->mli_version == MLD_VERSION_2) 1193 goto out_locked; 1194 1195 inm->in6m_timer = 0; 1196 1197 switch (inm->in6m_state) { 1198 case MLD_NOT_MEMBER: 1199 case MLD_SILENT_MEMBER: 1200 case MLD_SLEEPING_MEMBER: 1201 break; 1202 case MLD_REPORTING_MEMBER: 1203 case MLD_IDLE_MEMBER: 1204 case MLD_AWAKENING_MEMBER: 1205 CTR3(KTR_MLD, 1206 "report suppressed for %s on ifp %p(%s)", 1207 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1208 ifp, ifp->if_xname); 1209 case MLD_LAZY_MEMBER: 1210 inm->in6m_state = MLD_LAZY_MEMBER; 1211 break; 1212 case MLD_G_QUERY_PENDING_MEMBER: 1213 case MLD_SG_QUERY_PENDING_MEMBER: 1214 case MLD_LEAVING_MEMBER: 1215 break; 1216 } 1217 } 1218 1219 out_locked: 1220 MLD_UNLOCK(); 1221 IF_ADDR_UNLOCK(ifp); 1222 IN6_MULTI_UNLOCK(); 1223 1224 /* XXX Clear embedded scope ID as userland won't expect it. */ 1225 in6_clearscope(&mld->mld_addr); 1226 1227 return (0); 1228 } 1229 1230 /* 1231 * MLD input path. 1232 * 1233 * Assume query messages which fit in a single ICMPv6 message header 1234 * have been pulled up. 1235 * Assume that userland will want to see the message, even if it 1236 * otherwise fails kernel input validation; do not free it. 1237 * Pullup may however free the mbuf chain m if it fails. 1238 * 1239 * Return IPPROTO_DONE if we freed m. Otherwise, return 0. 1240 */ 1241 int 1242 mld_input(struct mbuf *m, int off, int icmp6len) 1243 { 1244 struct ifnet *ifp; 1245 struct ip6_hdr *ip6; 1246 struct mld_hdr *mld; 1247 int mldlen; 1248 1249 CTR3(KTR_MLD, "%s: called w/mbuf (%p,%d)", __func__, m, off); 1250 1251 ifp = m->m_pkthdr.rcvif; 1252 1253 ip6 = mtod(m, struct ip6_hdr *); 1254 1255 /* Pullup to appropriate size. */ 1256 mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off); 1257 if (mld->mld_type == MLD_LISTENER_QUERY && 1258 icmp6len >= sizeof(struct mldv2_query)) { 1259 mldlen = sizeof(struct mldv2_query); 1260 } else { 1261 mldlen = sizeof(struct mld_hdr); 1262 } 1263 IP6_EXTHDR_GET(mld, struct mld_hdr *, m, off, mldlen); 1264 if (mld == NULL) { 1265 ICMP6STAT_INC(icp6s_badlen); 1266 return (IPPROTO_DONE); 1267 } 1268 1269 /* 1270 * Userland needs to see all of this traffic for implementing 1271 * the endpoint discovery portion of multicast routing. 1272 */ 1273 switch (mld->mld_type) { 1274 case MLD_LISTENER_QUERY: 1275 icmp6_ifstat_inc(ifp, ifs6_in_mldquery); 1276 if (icmp6len == sizeof(struct mld_hdr)) { 1277 if (mld_v1_input_query(ifp, ip6, mld) != 0) 1278 return (0); 1279 } else if (icmp6len >= sizeof(struct mldv2_query)) { 1280 if (mld_v2_input_query(ifp, ip6, m, off, 1281 icmp6len) != 0) 1282 return (0); 1283 } 1284 break; 1285 case MLD_LISTENER_REPORT: 1286 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1287 if (mld_v1_input_report(ifp, ip6, mld) != 0) 1288 return (0); 1289 break; 1290 case MLDV2_LISTENER_REPORT: 1291 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1292 break; 1293 case MLD_LISTENER_DONE: 1294 icmp6_ifstat_inc(ifp, ifs6_in_mlddone); 1295 break; 1296 default: 1297 break; 1298 } 1299 1300 return (0); 1301 } 1302 1303 /* 1304 * Fast timeout handler (global). 1305 * VIMAGE: Timeout handlers are expected to service all vimages. 1306 */ 1307 void 1308 mld_fasttimo(void) 1309 { 1310 VNET_ITERATOR_DECL(vnet_iter); 1311 1312 VNET_LIST_RLOCK_NOSLEEP(); 1313 VNET_FOREACH(vnet_iter) { 1314 CURVNET_SET(vnet_iter); 1315 mld_fasttimo_vnet(); 1316 CURVNET_RESTORE(); 1317 } 1318 VNET_LIST_RUNLOCK_NOSLEEP(); 1319 } 1320 1321 /* 1322 * Fast timeout handler (per-vnet). 1323 * 1324 * VIMAGE: Assume caller has set up our curvnet. 1325 */ 1326 static void 1327 mld_fasttimo_vnet(void) 1328 { 1329 struct ifqueue scq; /* State-change packets */ 1330 struct ifqueue qrq; /* Query response packets */ 1331 struct ifnet *ifp; 1332 struct mld_ifinfo *mli; 1333 struct ifmultiaddr *ifma, *tifma; 1334 struct in6_multi *inm; 1335 int uri_fasthz; 1336 1337 uri_fasthz = 0; 1338 1339 /* 1340 * Quick check to see if any work needs to be done, in order to 1341 * minimize the overhead of fasttimo processing. 1342 * SMPng: XXX Unlocked reads. 1343 */ 1344 if (!V_current_state_timers_running6 && 1345 !V_interface_timers_running6 && 1346 !V_state_change_timers_running6) 1347 return; 1348 1349 IN6_MULTI_LOCK(); 1350 MLD_LOCK(); 1351 1352 /* 1353 * MLDv2 General Query response timer processing. 1354 */ 1355 if (V_interface_timers_running6) { 1356 CTR1(KTR_MLD, "%s: interface timers running", __func__); 1357 1358 V_interface_timers_running6 = 0; 1359 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1360 if (mli->mli_v2_timer == 0) { 1361 /* Do nothing. */ 1362 } else if (--mli->mli_v2_timer == 0) { 1363 mld_v2_dispatch_general_query(mli); 1364 } else { 1365 V_interface_timers_running6 = 1; 1366 } 1367 } 1368 } 1369 1370 if (!V_current_state_timers_running6 && 1371 !V_state_change_timers_running6) 1372 goto out_locked; 1373 1374 V_current_state_timers_running6 = 0; 1375 V_state_change_timers_running6 = 0; 1376 1377 CTR1(KTR_MLD, "%s: state change timers running", __func__); 1378 1379 /* 1380 * MLD host report and state-change timer processing. 1381 * Note: Processing a v2 group timer may remove a node. 1382 */ 1383 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1384 ifp = mli->mli_ifp; 1385 1386 if (mli->mli_version == MLD_VERSION_2) { 1387 uri_fasthz = MLD_RANDOM_DELAY(mli->mli_uri * 1388 PR_FASTHZ); 1389 1390 memset(&qrq, 0, sizeof(struct ifqueue)); 1391 IFQ_SET_MAXLEN(&qrq, MLD_MAX_G_GS_PACKETS); 1392 1393 memset(&scq, 0, sizeof(struct ifqueue)); 1394 IFQ_SET_MAXLEN(&scq, MLD_MAX_STATE_CHANGE_PACKETS); 1395 } 1396 1397 IF_ADDR_LOCK(ifp); 1398 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, 1399 tifma) { 1400 if (ifma->ifma_addr->sa_family != AF_INET6 || 1401 ifma->ifma_protospec == NULL) 1402 continue; 1403 inm = (struct in6_multi *)ifma->ifma_protospec; 1404 switch (mli->mli_version) { 1405 case MLD_VERSION_1: 1406 /* 1407 * XXX Drop IF_ADDR lock temporarily to 1408 * avoid recursion caused by a potential 1409 * call by in6ifa_ifpforlinklocal(). 1410 * rwlock candidate? 1411 */ 1412 IF_ADDR_UNLOCK(ifp); 1413 mld_v1_process_group_timer(inm, 1414 mli->mli_version); 1415 IF_ADDR_LOCK(ifp); 1416 break; 1417 case MLD_VERSION_2: 1418 mld_v2_process_group_timers(mli, &qrq, 1419 &scq, inm, uri_fasthz); 1420 break; 1421 } 1422 } 1423 IF_ADDR_UNLOCK(ifp); 1424 1425 if (mli->mli_version == MLD_VERSION_2) { 1426 struct in6_multi *tinm; 1427 1428 mld_dispatch_queue(&qrq, 0); 1429 mld_dispatch_queue(&scq, 0); 1430 1431 /* 1432 * Free the in_multi reference(s) for 1433 * this lifecycle. 1434 */ 1435 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, 1436 in6m_nrele, tinm) { 1437 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, 1438 in6m_nrele); 1439 in6m_release_locked(inm); 1440 } 1441 } 1442 } 1443 1444 out_locked: 1445 MLD_UNLOCK(); 1446 IN6_MULTI_UNLOCK(); 1447 } 1448 1449 /* 1450 * Update host report group timer. 1451 * Will update the global pending timer flags. 1452 */ 1453 static void 1454 mld_v1_process_group_timer(struct in6_multi *inm, const int version) 1455 { 1456 int report_timer_expired; 1457 1458 IN6_MULTI_LOCK_ASSERT(); 1459 MLD_LOCK_ASSERT(); 1460 1461 if (inm->in6m_timer == 0) { 1462 report_timer_expired = 0; 1463 } else if (--inm->in6m_timer == 0) { 1464 report_timer_expired = 1; 1465 } else { 1466 V_current_state_timers_running6 = 1; 1467 return; 1468 } 1469 1470 switch (inm->in6m_state) { 1471 case MLD_NOT_MEMBER: 1472 case MLD_SILENT_MEMBER: 1473 case MLD_IDLE_MEMBER: 1474 case MLD_LAZY_MEMBER: 1475 case MLD_SLEEPING_MEMBER: 1476 case MLD_AWAKENING_MEMBER: 1477 break; 1478 case MLD_REPORTING_MEMBER: 1479 if (report_timer_expired) { 1480 inm->in6m_state = MLD_IDLE_MEMBER; 1481 (void)mld_v1_transmit_report(inm, 1482 MLD_LISTENER_REPORT); 1483 } 1484 break; 1485 case MLD_G_QUERY_PENDING_MEMBER: 1486 case MLD_SG_QUERY_PENDING_MEMBER: 1487 case MLD_LEAVING_MEMBER: 1488 break; 1489 } 1490 } 1491 1492 /* 1493 * Update a group's timers for MLDv2. 1494 * Will update the global pending timer flags. 1495 * Note: Unlocked read from mli. 1496 */ 1497 static void 1498 mld_v2_process_group_timers(struct mld_ifinfo *mli, 1499 struct ifqueue *qrq, struct ifqueue *scq, 1500 struct in6_multi *inm, const int uri_fasthz) 1501 { 1502 int query_response_timer_expired; 1503 int state_change_retransmit_timer_expired; 1504 #ifdef KTR 1505 char ip6tbuf[INET6_ADDRSTRLEN]; 1506 #endif 1507 1508 IN6_MULTI_LOCK_ASSERT(); 1509 MLD_LOCK_ASSERT(); 1510 1511 query_response_timer_expired = 0; 1512 state_change_retransmit_timer_expired = 0; 1513 1514 /* 1515 * During a transition from compatibility mode back to MLDv2, 1516 * a group record in REPORTING state may still have its group 1517 * timer active. This is a no-op in this function; it is easier 1518 * to deal with it here than to complicate the slow-timeout path. 1519 */ 1520 if (inm->in6m_timer == 0) { 1521 query_response_timer_expired = 0; 1522 } else if (--inm->in6m_timer == 0) { 1523 query_response_timer_expired = 1; 1524 } else { 1525 V_current_state_timers_running6 = 1; 1526 } 1527 1528 if (inm->in6m_sctimer == 0) { 1529 state_change_retransmit_timer_expired = 0; 1530 } else if (--inm->in6m_sctimer == 0) { 1531 state_change_retransmit_timer_expired = 1; 1532 } else { 1533 V_state_change_timers_running6 = 1; 1534 } 1535 1536 /* We are in fasttimo, so be quick about it. */ 1537 if (!state_change_retransmit_timer_expired && 1538 !query_response_timer_expired) 1539 return; 1540 1541 switch (inm->in6m_state) { 1542 case MLD_NOT_MEMBER: 1543 case MLD_SILENT_MEMBER: 1544 case MLD_SLEEPING_MEMBER: 1545 case MLD_LAZY_MEMBER: 1546 case MLD_AWAKENING_MEMBER: 1547 case MLD_IDLE_MEMBER: 1548 break; 1549 case MLD_G_QUERY_PENDING_MEMBER: 1550 case MLD_SG_QUERY_PENDING_MEMBER: 1551 /* 1552 * Respond to a previously pending Group-Specific 1553 * or Group-and-Source-Specific query by enqueueing 1554 * the appropriate Current-State report for 1555 * immediate transmission. 1556 */ 1557 if (query_response_timer_expired) { 1558 int retval; 1559 1560 retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1, 1561 (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER), 1562 0); 1563 CTR2(KTR_MLD, "%s: enqueue record = %d", 1564 __func__, retval); 1565 inm->in6m_state = MLD_REPORTING_MEMBER; 1566 in6m_clear_recorded(inm); 1567 } 1568 /* FALLTHROUGH */ 1569 case MLD_REPORTING_MEMBER: 1570 case MLD_LEAVING_MEMBER: 1571 if (state_change_retransmit_timer_expired) { 1572 /* 1573 * State-change retransmission timer fired. 1574 * If there are any further pending retransmissions, 1575 * set the global pending state-change flag, and 1576 * reset the timer. 1577 */ 1578 if (--inm->in6m_scrv > 0) { 1579 inm->in6m_sctimer = uri_fasthz; 1580 V_state_change_timers_running6 = 1; 1581 } 1582 /* 1583 * Retransmit the previously computed state-change 1584 * report. If there are no further pending 1585 * retransmissions, the mbuf queue will be consumed. 1586 * Update T0 state to T1 as we have now sent 1587 * a state-change. 1588 */ 1589 (void)mld_v2_merge_state_changes(inm, scq); 1590 1591 in6m_commit(inm); 1592 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 1593 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1594 inm->in6m_ifp->if_xname); 1595 1596 /* 1597 * If we are leaving the group for good, make sure 1598 * we release MLD's reference to it. 1599 * This release must be deferred using a SLIST, 1600 * as we are called from a loop which traverses 1601 * the in_ifmultiaddr TAILQ. 1602 */ 1603 if (inm->in6m_state == MLD_LEAVING_MEMBER && 1604 inm->in6m_scrv == 0) { 1605 inm->in6m_state = MLD_NOT_MEMBER; 1606 SLIST_INSERT_HEAD(&mli->mli_relinmhead, 1607 inm, in6m_nrele); 1608 } 1609 } 1610 break; 1611 } 1612 } 1613 1614 /* 1615 * Switch to a different version on the given interface, 1616 * as per Section 9.12. 1617 */ 1618 static void 1619 mld_set_version(struct mld_ifinfo *mli, const int version) 1620 { 1621 int old_version_timer; 1622 1623 MLD_LOCK_ASSERT(); 1624 1625 CTR4(KTR_MLD, "%s: switching to v%d on ifp %p(%s)", __func__, 1626 version, mli->mli_ifp, mli->mli_ifp->if_xname); 1627 1628 if (version == MLD_VERSION_1) { 1629 /* 1630 * Compute the "Older Version Querier Present" timer as per 1631 * Section 9.12. 1632 */ 1633 old_version_timer = (mli->mli_rv * mli->mli_qi) + mli->mli_qri; 1634 old_version_timer *= PR_SLOWHZ; 1635 mli->mli_v1_timer = old_version_timer; 1636 } 1637 1638 if (mli->mli_v1_timer > 0 && mli->mli_version != MLD_VERSION_1) { 1639 mli->mli_version = MLD_VERSION_1; 1640 mld_v2_cancel_link_timers(mli); 1641 } 1642 } 1643 1644 /* 1645 * Cancel pending MLDv2 timers for the given link and all groups 1646 * joined on it; state-change, general-query, and group-query timers. 1647 */ 1648 static void 1649 mld_v2_cancel_link_timers(struct mld_ifinfo *mli) 1650 { 1651 struct ifmultiaddr *ifma; 1652 struct ifnet *ifp; 1653 struct in6_multi *inm; 1654 1655 CTR3(KTR_MLD, "%s: cancel v2 timers on ifp %p(%s)", __func__, 1656 mli->mli_ifp, mli->mli_ifp->if_xname); 1657 1658 IN6_MULTI_LOCK_ASSERT(); 1659 MLD_LOCK_ASSERT(); 1660 1661 /* 1662 * Fast-track this potentially expensive operation 1663 * by checking all the global 'timer pending' flags. 1664 */ 1665 if (!V_interface_timers_running6 && 1666 !V_state_change_timers_running6 && 1667 !V_current_state_timers_running6) 1668 return; 1669 1670 mli->mli_v2_timer = 0; 1671 1672 ifp = mli->mli_ifp; 1673 1674 IF_ADDR_LOCK(ifp); 1675 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1676 if (ifma->ifma_addr->sa_family != AF_INET6) 1677 continue; 1678 inm = (struct in6_multi *)ifma->ifma_protospec; 1679 switch (inm->in6m_state) { 1680 case MLD_NOT_MEMBER: 1681 case MLD_SILENT_MEMBER: 1682 case MLD_IDLE_MEMBER: 1683 case MLD_LAZY_MEMBER: 1684 case MLD_SLEEPING_MEMBER: 1685 case MLD_AWAKENING_MEMBER: 1686 break; 1687 case MLD_LEAVING_MEMBER: 1688 /* 1689 * If we are leaving the group and switching 1690 * version, we need to release the final 1691 * reference held for issuing the INCLUDE {}. 1692 * 1693 * SMPNG: Must drop and re-acquire IF_ADDR_LOCK 1694 * around in6m_release_locked(), as it is not 1695 * a recursive mutex. 1696 */ 1697 IF_ADDR_UNLOCK(ifp); 1698 in6m_release_locked(inm); 1699 IF_ADDR_LOCK(ifp); 1700 /* FALLTHROUGH */ 1701 case MLD_G_QUERY_PENDING_MEMBER: 1702 case MLD_SG_QUERY_PENDING_MEMBER: 1703 in6m_clear_recorded(inm); 1704 /* FALLTHROUGH */ 1705 case MLD_REPORTING_MEMBER: 1706 inm->in6m_sctimer = 0; 1707 inm->in6m_timer = 0; 1708 inm->in6m_state = MLD_REPORTING_MEMBER; 1709 /* 1710 * Free any pending MLDv2 state-change records. 1711 */ 1712 _IF_DRAIN(&inm->in6m_scq); 1713 break; 1714 } 1715 } 1716 IF_ADDR_UNLOCK(ifp); 1717 } 1718 1719 /* 1720 * Global slowtimo handler. 1721 * VIMAGE: Timeout handlers are expected to service all vimages. 1722 */ 1723 void 1724 mld_slowtimo(void) 1725 { 1726 VNET_ITERATOR_DECL(vnet_iter); 1727 1728 VNET_LIST_RLOCK_NOSLEEP(); 1729 VNET_FOREACH(vnet_iter) { 1730 CURVNET_SET(vnet_iter); 1731 mld_slowtimo_vnet(); 1732 CURVNET_RESTORE(); 1733 } 1734 VNET_LIST_RUNLOCK_NOSLEEP(); 1735 } 1736 1737 /* 1738 * Per-vnet slowtimo handler. 1739 */ 1740 static void 1741 mld_slowtimo_vnet(void) 1742 { 1743 struct mld_ifinfo *mli; 1744 1745 MLD_LOCK(); 1746 1747 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1748 mld_v1_process_querier_timers(mli); 1749 } 1750 1751 MLD_UNLOCK(); 1752 } 1753 1754 /* 1755 * Update the Older Version Querier Present timers for a link. 1756 * See Section 9.12 of RFC 3810. 1757 */ 1758 static void 1759 mld_v1_process_querier_timers(struct mld_ifinfo *mli) 1760 { 1761 1762 MLD_LOCK_ASSERT(); 1763 1764 if (mli->mli_version != MLD_VERSION_2 && --mli->mli_v1_timer == 0) { 1765 /* 1766 * MLDv1 Querier Present timer expired; revert to MLDv2. 1767 */ 1768 CTR5(KTR_MLD, 1769 "%s: transition from v%d -> v%d on %p(%s)", 1770 __func__, mli->mli_version, MLD_VERSION_2, 1771 mli->mli_ifp, mli->mli_ifp->if_xname); 1772 mli->mli_version = MLD_VERSION_2; 1773 } 1774 } 1775 1776 /* 1777 * Transmit an MLDv1 report immediately. 1778 */ 1779 static int 1780 mld_v1_transmit_report(struct in6_multi *in6m, const int type) 1781 { 1782 struct ifnet *ifp; 1783 struct in6_ifaddr *ia; 1784 struct ip6_hdr *ip6; 1785 struct mbuf *mh, *md; 1786 struct mld_hdr *mld; 1787 1788 IN6_MULTI_LOCK_ASSERT(); 1789 MLD_LOCK_ASSERT(); 1790 1791 ifp = in6m->in6m_ifp; 1792 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1793 /* ia may be NULL if link-local address is tentative. */ 1794 1795 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 1796 if (mh == NULL) { 1797 if (ia != NULL) 1798 ifa_free(&ia->ia_ifa); 1799 return (ENOMEM); 1800 } 1801 MGET(md, M_DONTWAIT, MT_DATA); 1802 if (md == NULL) { 1803 m_free(mh); 1804 if (ia != NULL) 1805 ifa_free(&ia->ia_ifa); 1806 return (ENOMEM); 1807 } 1808 mh->m_next = md; 1809 1810 /* 1811 * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so 1812 * that ether_output() does not need to allocate another mbuf 1813 * for the header in the most common case. 1814 */ 1815 MH_ALIGN(mh, sizeof(struct ip6_hdr)); 1816 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr); 1817 mh->m_len = sizeof(struct ip6_hdr); 1818 1819 ip6 = mtod(mh, struct ip6_hdr *); 1820 ip6->ip6_flow = 0; 1821 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 1822 ip6->ip6_vfc |= IPV6_VERSION; 1823 ip6->ip6_nxt = IPPROTO_ICMPV6; 1824 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 1825 ip6->ip6_dst = in6m->in6m_addr; 1826 1827 md->m_len = sizeof(struct mld_hdr); 1828 mld = mtod(md, struct mld_hdr *); 1829 mld->mld_type = type; 1830 mld->mld_code = 0; 1831 mld->mld_cksum = 0; 1832 mld->mld_maxdelay = 0; 1833 mld->mld_reserved = 0; 1834 mld->mld_addr = in6m->in6m_addr; 1835 in6_clearscope(&mld->mld_addr); 1836 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 1837 sizeof(struct ip6_hdr), sizeof(struct mld_hdr)); 1838 1839 mld_save_context(mh, ifp); 1840 mh->m_flags |= M_MLDV1; 1841 1842 mld_dispatch_packet(mh); 1843 1844 if (ia != NULL) 1845 ifa_free(&ia->ia_ifa); 1846 return (0); 1847 } 1848 1849 /* 1850 * Process a state change from the upper layer for the given IPv6 group. 1851 * 1852 * Each socket holds a reference on the in_multi in its own ip_moptions. 1853 * The socket layer will have made the necessary updates to.the group 1854 * state, it is now up to MLD to issue a state change report if there 1855 * has been any change between T0 (when the last state-change was issued) 1856 * and T1 (now). 1857 * 1858 * We use the MLDv2 state machine at group level. The MLd module 1859 * however makes the decision as to which MLD protocol version to speak. 1860 * A state change *from* INCLUDE {} always means an initial join. 1861 * A state change *to* INCLUDE {} always means a final leave. 1862 * 1863 * If delay is non-zero, and the state change is an initial multicast 1864 * join, the state change report will be delayed by 'delay' ticks 1865 * in units of PR_FASTHZ if MLDv1 is active on the link; otherwise 1866 * the initial MLDv2 state change report will be delayed by whichever 1867 * is sooner, a pending state-change timer or delay itself. 1868 * 1869 * VIMAGE: curvnet should have been set by caller, as this routine 1870 * is called from the socket option handlers. 1871 */ 1872 int 1873 mld_change_state(struct in6_multi *inm, const int delay) 1874 { 1875 struct mld_ifinfo *mli; 1876 struct ifnet *ifp; 1877 int error; 1878 1879 IN6_MULTI_LOCK_ASSERT(); 1880 1881 error = 0; 1882 1883 /* 1884 * Try to detect if the upper layer just asked us to change state 1885 * for an interface which has now gone away. 1886 */ 1887 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); 1888 ifp = inm->in6m_ifma->ifma_ifp; 1889 if (ifp != NULL) { 1890 /* 1891 * Sanity check that netinet6's notion of ifp is the 1892 * same as net's. 1893 */ 1894 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); 1895 } 1896 1897 MLD_LOCK(); 1898 1899 mli = MLD_IFINFO(ifp); 1900 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 1901 1902 /* 1903 * If we detect a state transition to or from MCAST_UNDEFINED 1904 * for this group, then we are starting or finishing an MLD 1905 * life cycle for this group. 1906 */ 1907 if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) { 1908 CTR3(KTR_MLD, "%s: inm transition %d -> %d", __func__, 1909 inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode); 1910 if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) { 1911 CTR1(KTR_MLD, "%s: initial join", __func__); 1912 error = mld_initial_join(inm, mli, delay); 1913 goto out_locked; 1914 } else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) { 1915 CTR1(KTR_MLD, "%s: final leave", __func__); 1916 mld_final_leave(inm, mli); 1917 goto out_locked; 1918 } 1919 } else { 1920 CTR1(KTR_MLD, "%s: filter set change", __func__); 1921 } 1922 1923 error = mld_handle_state_change(inm, mli); 1924 1925 out_locked: 1926 MLD_UNLOCK(); 1927 return (error); 1928 } 1929 1930 /* 1931 * Perform the initial join for an MLD group. 1932 * 1933 * When joining a group: 1934 * If the group should have its MLD traffic suppressed, do nothing. 1935 * MLDv1 starts sending MLDv1 host membership reports. 1936 * MLDv2 will schedule an MLDv2 state-change report containing the 1937 * initial state of the membership. 1938 * 1939 * If the delay argument is non-zero, then we must delay sending the 1940 * initial state change for delay ticks (in units of PR_FASTHZ). 1941 */ 1942 static int 1943 mld_initial_join(struct in6_multi *inm, struct mld_ifinfo *mli, 1944 const int delay) 1945 { 1946 struct ifnet *ifp; 1947 struct ifqueue *ifq; 1948 int error, retval, syncstates; 1949 int odelay; 1950 #ifdef KTR 1951 char ip6tbuf[INET6_ADDRSTRLEN]; 1952 #endif 1953 1954 CTR4(KTR_MLD, "%s: initial join %s on ifp %p(%s)", 1955 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1956 inm->in6m_ifp, inm->in6m_ifp->if_xname); 1957 1958 error = 0; 1959 syncstates = 1; 1960 1961 ifp = inm->in6m_ifp; 1962 1963 IN6_MULTI_LOCK_ASSERT(); 1964 MLD_LOCK_ASSERT(); 1965 1966 KASSERT(mli && mli->mli_ifp == ifp, ("%s: inconsistent ifp", __func__)); 1967 1968 /* 1969 * Groups joined on loopback or marked as 'not reported', 1970 * enter the MLD_SILENT_MEMBER state and 1971 * are never reported in any protocol exchanges. 1972 * All other groups enter the appropriate state machine 1973 * for the version in use on this link. 1974 * A link marked as MLIF_SILENT causes MLD to be completely 1975 * disabled for the link. 1976 */ 1977 if ((ifp->if_flags & IFF_LOOPBACK) || 1978 (mli->mli_flags & MLIF_SILENT) || 1979 !mld_is_addr_reported(&inm->in6m_addr)) { 1980 CTR1(KTR_MLD, 1981 "%s: not kicking state machine for silent group", __func__); 1982 inm->in6m_state = MLD_SILENT_MEMBER; 1983 inm->in6m_timer = 0; 1984 } else { 1985 /* 1986 * Deal with overlapping in_multi lifecycle. 1987 * If this group was LEAVING, then make sure 1988 * we drop the reference we picked up to keep the 1989 * group around for the final INCLUDE {} enqueue. 1990 */ 1991 if (mli->mli_version == MLD_VERSION_2 && 1992 inm->in6m_state == MLD_LEAVING_MEMBER) 1993 in6m_release_locked(inm); 1994 1995 inm->in6m_state = MLD_REPORTING_MEMBER; 1996 1997 switch (mli->mli_version) { 1998 case MLD_VERSION_1: 1999 /* 2000 * If a delay was provided, only use it if 2001 * it is greater than the delay normally 2002 * used for an MLDv1 state change report, 2003 * and delay sending the initial MLDv1 report 2004 * by not transitioning to the IDLE state. 2005 */ 2006 odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI * PR_FASTHZ); 2007 if (delay) { 2008 inm->in6m_timer = max(delay, odelay); 2009 V_current_state_timers_running6 = 1; 2010 } else { 2011 inm->in6m_state = MLD_IDLE_MEMBER; 2012 error = mld_v1_transmit_report(inm, 2013 MLD_LISTENER_REPORT); 2014 if (error == 0) { 2015 inm->in6m_timer = odelay; 2016 V_current_state_timers_running6 = 1; 2017 } 2018 } 2019 break; 2020 2021 case MLD_VERSION_2: 2022 /* 2023 * Defer update of T0 to T1, until the first copy 2024 * of the state change has been transmitted. 2025 */ 2026 syncstates = 0; 2027 2028 /* 2029 * Immediately enqueue a State-Change Report for 2030 * this interface, freeing any previous reports. 2031 * Don't kick the timers if there is nothing to do, 2032 * or if an error occurred. 2033 */ 2034 ifq = &inm->in6m_scq; 2035 _IF_DRAIN(ifq); 2036 retval = mld_v2_enqueue_group_record(ifq, inm, 1, 2037 0, 0, (mli->mli_flags & MLIF_USEALLOW)); 2038 CTR2(KTR_MLD, "%s: enqueue record = %d", 2039 __func__, retval); 2040 if (retval <= 0) { 2041 error = retval * -1; 2042 break; 2043 } 2044 2045 /* 2046 * Schedule transmission of pending state-change 2047 * report up to RV times for this link. The timer 2048 * will fire at the next mld_fasttimo (~200ms), 2049 * giving us an opportunity to merge the reports. 2050 * 2051 * If a delay was provided to this function, only 2052 * use this delay if sooner than the existing one. 2053 */ 2054 KASSERT(mli->mli_rv > 1, 2055 ("%s: invalid robustness %d", __func__, 2056 mli->mli_rv)); 2057 inm->in6m_scrv = mli->mli_rv; 2058 if (delay) { 2059 if (inm->in6m_sctimer > 1) { 2060 inm->in6m_sctimer = 2061 min(inm->in6m_sctimer, delay); 2062 } else 2063 inm->in6m_sctimer = delay; 2064 } else 2065 inm->in6m_sctimer = 1; 2066 V_state_change_timers_running6 = 1; 2067 2068 error = 0; 2069 break; 2070 } 2071 } 2072 2073 /* 2074 * Only update the T0 state if state change is atomic, 2075 * i.e. we don't need to wait for a timer to fire before we 2076 * can consider the state change to have been communicated. 2077 */ 2078 if (syncstates) { 2079 in6m_commit(inm); 2080 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2081 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2082 inm->in6m_ifp->if_xname); 2083 } 2084 2085 return (error); 2086 } 2087 2088 /* 2089 * Issue an intermediate state change during the life-cycle. 2090 */ 2091 static int 2092 mld_handle_state_change(struct in6_multi *inm, struct mld_ifinfo *mli) 2093 { 2094 struct ifnet *ifp; 2095 int retval; 2096 #ifdef KTR 2097 char ip6tbuf[INET6_ADDRSTRLEN]; 2098 #endif 2099 2100 CTR4(KTR_MLD, "%s: state change for %s on ifp %p(%s)", 2101 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2102 inm->in6m_ifp, inm->in6m_ifp->if_xname); 2103 2104 ifp = inm->in6m_ifp; 2105 2106 IN6_MULTI_LOCK_ASSERT(); 2107 MLD_LOCK_ASSERT(); 2108 2109 KASSERT(mli && mli->mli_ifp == ifp, 2110 ("%s: inconsistent ifp", __func__)); 2111 2112 if ((ifp->if_flags & IFF_LOOPBACK) || 2113 (mli->mli_flags & MLIF_SILENT) || 2114 !mld_is_addr_reported(&inm->in6m_addr) || 2115 (mli->mli_version != MLD_VERSION_2)) { 2116 if (!mld_is_addr_reported(&inm->in6m_addr)) { 2117 CTR1(KTR_MLD, 2118 "%s: not kicking state machine for silent group", __func__); 2119 } 2120 CTR1(KTR_MLD, "%s: nothing to do", __func__); 2121 in6m_commit(inm); 2122 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2123 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2124 inm->in6m_ifp->if_xname); 2125 return (0); 2126 } 2127 2128 _IF_DRAIN(&inm->in6m_scq); 2129 2130 retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0, 2131 (mli->mli_flags & MLIF_USEALLOW)); 2132 CTR2(KTR_MLD, "%s: enqueue record = %d", __func__, retval); 2133 if (retval <= 0) 2134 return (-retval); 2135 2136 /* 2137 * If record(s) were enqueued, start the state-change 2138 * report timer for this group. 2139 */ 2140 inm->in6m_scrv = mli->mli_rv; 2141 inm->in6m_sctimer = 1; 2142 V_state_change_timers_running6 = 1; 2143 2144 return (0); 2145 } 2146 2147 /* 2148 * Perform the final leave for a multicast address. 2149 * 2150 * When leaving a group: 2151 * MLDv1 sends a DONE message, if and only if we are the reporter. 2152 * MLDv2 enqueues a state-change report containing a transition 2153 * to INCLUDE {} for immediate transmission. 2154 */ 2155 static void 2156 mld_final_leave(struct in6_multi *inm, struct mld_ifinfo *mli) 2157 { 2158 int syncstates; 2159 #ifdef KTR 2160 char ip6tbuf[INET6_ADDRSTRLEN]; 2161 #endif 2162 2163 syncstates = 1; 2164 2165 CTR4(KTR_MLD, "%s: final leave %s on ifp %p(%s)", 2166 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2167 inm->in6m_ifp, inm->in6m_ifp->if_xname); 2168 2169 IN6_MULTI_LOCK_ASSERT(); 2170 MLD_LOCK_ASSERT(); 2171 2172 switch (inm->in6m_state) { 2173 case MLD_NOT_MEMBER: 2174 case MLD_SILENT_MEMBER: 2175 case MLD_LEAVING_MEMBER: 2176 /* Already leaving or left; do nothing. */ 2177 CTR1(KTR_MLD, 2178 "%s: not kicking state machine for silent group", __func__); 2179 break; 2180 case MLD_REPORTING_MEMBER: 2181 case MLD_IDLE_MEMBER: 2182 case MLD_G_QUERY_PENDING_MEMBER: 2183 case MLD_SG_QUERY_PENDING_MEMBER: 2184 if (mli->mli_version == MLD_VERSION_1) { 2185 #ifdef INVARIANTS 2186 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 2187 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) 2188 panic("%s: MLDv2 state reached, not MLDv2 mode", 2189 __func__); 2190 #endif 2191 mld_v1_transmit_report(inm, MLD_LISTENER_DONE); 2192 inm->in6m_state = MLD_NOT_MEMBER; 2193 } else if (mli->mli_version == MLD_VERSION_2) { 2194 /* 2195 * Stop group timer and all pending reports. 2196 * Immediately enqueue a state-change report 2197 * TO_IN {} to be sent on the next fast timeout, 2198 * giving us an opportunity to merge reports. 2199 */ 2200 _IF_DRAIN(&inm->in6m_scq); 2201 inm->in6m_timer = 0; 2202 inm->in6m_scrv = mli->mli_rv; 2203 CTR4(KTR_MLD, "%s: Leaving %s/%s with %d " 2204 "pending retransmissions.", __func__, 2205 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2206 inm->in6m_ifp->if_xname, inm->in6m_scrv); 2207 if (inm->in6m_scrv == 0) { 2208 inm->in6m_state = MLD_NOT_MEMBER; 2209 inm->in6m_sctimer = 0; 2210 } else { 2211 int retval; 2212 2213 in6m_acquire_locked(inm); 2214 2215 retval = mld_v2_enqueue_group_record( 2216 &inm->in6m_scq, inm, 1, 0, 0, 2217 (mli->mli_flags & MLIF_USEALLOW)); 2218 KASSERT(retval != 0, 2219 ("%s: enqueue record = %d", __func__, 2220 retval)); 2221 2222 inm->in6m_state = MLD_LEAVING_MEMBER; 2223 inm->in6m_sctimer = 1; 2224 V_state_change_timers_running6 = 1; 2225 syncstates = 0; 2226 } 2227 break; 2228 } 2229 break; 2230 case MLD_LAZY_MEMBER: 2231 case MLD_SLEEPING_MEMBER: 2232 case MLD_AWAKENING_MEMBER: 2233 /* Our reports are suppressed; do nothing. */ 2234 break; 2235 } 2236 2237 if (syncstates) { 2238 in6m_commit(inm); 2239 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2240 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2241 inm->in6m_ifp->if_xname); 2242 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 2243 CTR3(KTR_MLD, "%s: T1 now MCAST_UNDEFINED for %p/%s", 2244 __func__, &inm->in6m_addr, inm->in6m_ifp->if_xname); 2245 } 2246 } 2247 2248 /* 2249 * Enqueue an MLDv2 group record to the given output queue. 2250 * 2251 * If is_state_change is zero, a current-state record is appended. 2252 * If is_state_change is non-zero, a state-change report is appended. 2253 * 2254 * If is_group_query is non-zero, an mbuf packet chain is allocated. 2255 * If is_group_query is zero, and if there is a packet with free space 2256 * at the tail of the queue, it will be appended to providing there 2257 * is enough free space. 2258 * Otherwise a new mbuf packet chain is allocated. 2259 * 2260 * If is_source_query is non-zero, each source is checked to see if 2261 * it was recorded for a Group-Source query, and will be omitted if 2262 * it is not both in-mode and recorded. 2263 * 2264 * If use_block_allow is non-zero, state change reports for initial join 2265 * and final leave, on an inclusive mode group with a source list, will be 2266 * rewritten to use the ALLOW_NEW and BLOCK_OLD record types, respectively. 2267 * 2268 * The function will attempt to allocate leading space in the packet 2269 * for the IPv6+ICMP headers to be prepended without fragmenting the chain. 2270 * 2271 * If successful the size of all data appended to the queue is returned, 2272 * otherwise an error code less than zero is returned, or zero if 2273 * no record(s) were appended. 2274 */ 2275 static int 2276 mld_v2_enqueue_group_record(struct ifqueue *ifq, struct in6_multi *inm, 2277 const int is_state_change, const int is_group_query, 2278 const int is_source_query, const int use_block_allow) 2279 { 2280 struct mldv2_record mr; 2281 struct mldv2_record *pmr; 2282 struct ifnet *ifp; 2283 struct ip6_msource *ims, *nims; 2284 struct mbuf *m0, *m, *md; 2285 int error, is_filter_list_change; 2286 int minrec0len, m0srcs, msrcs, nbytes, off; 2287 int record_has_sources; 2288 int now; 2289 int type; 2290 uint8_t mode; 2291 #ifdef KTR 2292 char ip6tbuf[INET6_ADDRSTRLEN]; 2293 #endif 2294 2295 IN6_MULTI_LOCK_ASSERT(); 2296 2297 error = 0; 2298 ifp = inm->in6m_ifp; 2299 is_filter_list_change = 0; 2300 m = NULL; 2301 m0 = NULL; 2302 m0srcs = 0; 2303 msrcs = 0; 2304 nbytes = 0; 2305 nims = NULL; 2306 record_has_sources = 1; 2307 pmr = NULL; 2308 type = MLD_DO_NOTHING; 2309 mode = inm->in6m_st[1].iss_fmode; 2310 2311 /* 2312 * If we did not transition out of ASM mode during t0->t1, 2313 * and there are no source nodes to process, we can skip 2314 * the generation of source records. 2315 */ 2316 if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 && 2317 inm->in6m_nsrc == 0) 2318 record_has_sources = 0; 2319 2320 if (is_state_change) { 2321 /* 2322 * Queue a state change record. 2323 * If the mode did not change, and there are non-ASM 2324 * listeners or source filters present, 2325 * we potentially need to issue two records for the group. 2326 * If there are ASM listeners, and there was no filter 2327 * mode transition of any kind, do nothing. 2328 * 2329 * If we are transitioning to MCAST_UNDEFINED, we need 2330 * not send any sources. A transition to/from this state is 2331 * considered inclusive with some special treatment. 2332 * 2333 * If we are rewriting initial joins/leaves to use 2334 * ALLOW/BLOCK, and the group's membership is inclusive, 2335 * we need to send sources in all cases. 2336 */ 2337 if (mode != inm->in6m_st[0].iss_fmode) { 2338 if (mode == MCAST_EXCLUDE) { 2339 CTR1(KTR_MLD, "%s: change to EXCLUDE", 2340 __func__); 2341 type = MLD_CHANGE_TO_EXCLUDE_MODE; 2342 } else { 2343 CTR1(KTR_MLD, "%s: change to INCLUDE", 2344 __func__); 2345 if (use_block_allow) { 2346 /* 2347 * XXX 2348 * Here we're interested in state 2349 * edges either direction between 2350 * MCAST_UNDEFINED and MCAST_INCLUDE. 2351 * Perhaps we should just check 2352 * the group state, rather than 2353 * the filter mode. 2354 */ 2355 if (mode == MCAST_UNDEFINED) { 2356 type = MLD_BLOCK_OLD_SOURCES; 2357 } else { 2358 type = MLD_ALLOW_NEW_SOURCES; 2359 } 2360 } else { 2361 type = MLD_CHANGE_TO_INCLUDE_MODE; 2362 if (mode == MCAST_UNDEFINED) 2363 record_has_sources = 0; 2364 } 2365 } 2366 } else { 2367 if (record_has_sources) { 2368 is_filter_list_change = 1; 2369 } else { 2370 type = MLD_DO_NOTHING; 2371 } 2372 } 2373 } else { 2374 /* 2375 * Queue a current state record. 2376 */ 2377 if (mode == MCAST_EXCLUDE) { 2378 type = MLD_MODE_IS_EXCLUDE; 2379 } else if (mode == MCAST_INCLUDE) { 2380 type = MLD_MODE_IS_INCLUDE; 2381 KASSERT(inm->in6m_st[1].iss_asm == 0, 2382 ("%s: inm %p is INCLUDE but ASM count is %d", 2383 __func__, inm, inm->in6m_st[1].iss_asm)); 2384 } 2385 } 2386 2387 /* 2388 * Generate the filter list changes using a separate function. 2389 */ 2390 if (is_filter_list_change) 2391 return (mld_v2_enqueue_filter_change(ifq, inm)); 2392 2393 if (type == MLD_DO_NOTHING) { 2394 CTR3(KTR_MLD, "%s: nothing to do for %s/%s", 2395 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2396 inm->in6m_ifp->if_xname); 2397 return (0); 2398 } 2399 2400 /* 2401 * If any sources are present, we must be able to fit at least 2402 * one in the trailing space of the tail packet's mbuf, 2403 * ideally more. 2404 */ 2405 minrec0len = sizeof(struct mldv2_record); 2406 if (record_has_sources) 2407 minrec0len += sizeof(struct in6_addr); 2408 2409 CTR4(KTR_MLD, "%s: queueing %s for %s/%s", __func__, 2410 mld_rec_type_to_str(type), 2411 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2412 inm->in6m_ifp->if_xname); 2413 2414 /* 2415 * Check if we have a packet in the tail of the queue for this 2416 * group into which the first group record for this group will fit. 2417 * Otherwise allocate a new packet. 2418 * Always allocate leading space for IP6+RA+ICMPV6+REPORT. 2419 * Note: Group records for G/GSR query responses MUST be sent 2420 * in their own packet. 2421 */ 2422 m0 = ifq->ifq_tail; 2423 if (!is_group_query && 2424 m0 != NULL && 2425 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) && 2426 (m0->m_pkthdr.len + minrec0len) < 2427 (ifp->if_mtu - MLD_MTUSPACE)) { 2428 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2429 sizeof(struct mldv2_record)) / 2430 sizeof(struct in6_addr); 2431 m = m0; 2432 CTR1(KTR_MLD, "%s: use existing packet", __func__); 2433 } else { 2434 if (_IF_QFULL(ifq)) { 2435 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2436 return (-ENOMEM); 2437 } 2438 m = NULL; 2439 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2440 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2441 if (!is_state_change && !is_group_query) 2442 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2443 if (m == NULL) 2444 m = m_gethdr(M_DONTWAIT, MT_DATA); 2445 if (m == NULL) 2446 return (-ENOMEM); 2447 2448 mld_save_context(m, ifp); 2449 2450 CTR1(KTR_MLD, "%s: allocated first packet", __func__); 2451 } 2452 2453 /* 2454 * Append group record. 2455 * If we have sources, we don't know how many yet. 2456 */ 2457 mr.mr_type = type; 2458 mr.mr_datalen = 0; 2459 mr.mr_numsrc = 0; 2460 mr.mr_addr = inm->in6m_addr; 2461 in6_clearscope(&mr.mr_addr); 2462 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2463 if (m != m0) 2464 m_freem(m); 2465 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2466 return (-ENOMEM); 2467 } 2468 nbytes += sizeof(struct mldv2_record); 2469 2470 /* 2471 * Append as many sources as will fit in the first packet. 2472 * If we are appending to a new packet, the chain allocation 2473 * may potentially use clusters; use m_getptr() in this case. 2474 * If we are appending to an existing packet, we need to obtain 2475 * a pointer to the group record after m_append(), in case a new 2476 * mbuf was allocated. 2477 * 2478 * Only append sources which are in-mode at t1. If we are 2479 * transitioning to MCAST_UNDEFINED state on the group, and 2480 * use_block_allow is zero, do not include source entries. 2481 * Otherwise, we need to include this source in the report. 2482 * 2483 * Only report recorded sources in our filter set when responding 2484 * to a group-source query. 2485 */ 2486 if (record_has_sources) { 2487 if (m == m0) { 2488 md = m_last(m); 2489 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2490 md->m_len - nbytes); 2491 } else { 2492 md = m_getptr(m, 0, &off); 2493 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2494 off); 2495 } 2496 msrcs = 0; 2497 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, 2498 nims) { 2499 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2500 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2501 now = im6s_get_mode(inm, ims, 1); 2502 CTR2(KTR_MLD, "%s: node is %d", __func__, now); 2503 if ((now != mode) || 2504 (now == mode && 2505 (!use_block_allow && mode == MCAST_UNDEFINED))) { 2506 CTR1(KTR_MLD, "%s: skip node", __func__); 2507 continue; 2508 } 2509 if (is_source_query && ims->im6s_stp == 0) { 2510 CTR1(KTR_MLD, "%s: skip unrecorded node", 2511 __func__); 2512 continue; 2513 } 2514 CTR1(KTR_MLD, "%s: append node", __func__); 2515 if (!m_append(m, sizeof(struct in6_addr), 2516 (void *)&ims->im6s_addr)) { 2517 if (m != m0) 2518 m_freem(m); 2519 CTR1(KTR_MLD, "%s: m_append() failed.", 2520 __func__); 2521 return (-ENOMEM); 2522 } 2523 nbytes += sizeof(struct in6_addr); 2524 ++msrcs; 2525 if (msrcs == m0srcs) 2526 break; 2527 } 2528 CTR2(KTR_MLD, "%s: msrcs is %d this packet", __func__, 2529 msrcs); 2530 pmr->mr_numsrc = htons(msrcs); 2531 nbytes += (msrcs * sizeof(struct in6_addr)); 2532 } 2533 2534 if (is_source_query && msrcs == 0) { 2535 CTR1(KTR_MLD, "%s: no recorded sources to report", __func__); 2536 if (m != m0) 2537 m_freem(m); 2538 return (0); 2539 } 2540 2541 /* 2542 * We are good to go with first packet. 2543 */ 2544 if (m != m0) { 2545 CTR1(KTR_MLD, "%s: enqueueing first packet", __func__); 2546 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2547 _IF_ENQUEUE(ifq, m); 2548 } else 2549 m->m_pkthdr.PH_vt.vt_nrecs++; 2550 2551 /* 2552 * No further work needed if no source list in packet(s). 2553 */ 2554 if (!record_has_sources) 2555 return (nbytes); 2556 2557 /* 2558 * Whilst sources remain to be announced, we need to allocate 2559 * a new packet and fill out as many sources as will fit. 2560 * Always try for a cluster first. 2561 */ 2562 while (nims != NULL) { 2563 if (_IF_QFULL(ifq)) { 2564 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2565 return (-ENOMEM); 2566 } 2567 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2568 if (m == NULL) 2569 m = m_gethdr(M_DONTWAIT, MT_DATA); 2570 if (m == NULL) 2571 return (-ENOMEM); 2572 mld_save_context(m, ifp); 2573 md = m_getptr(m, 0, &off); 2574 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off); 2575 CTR1(KTR_MLD, "%s: allocated next packet", __func__); 2576 2577 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2578 if (m != m0) 2579 m_freem(m); 2580 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2581 return (-ENOMEM); 2582 } 2583 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2584 nbytes += sizeof(struct mldv2_record); 2585 2586 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2587 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2588 2589 msrcs = 0; 2590 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2591 CTR2(KTR_MLD, "%s: visit node %s", 2592 __func__, ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2593 now = im6s_get_mode(inm, ims, 1); 2594 if ((now != mode) || 2595 (now == mode && 2596 (!use_block_allow && mode == MCAST_UNDEFINED))) { 2597 CTR1(KTR_MLD, "%s: skip node", __func__); 2598 continue; 2599 } 2600 if (is_source_query && ims->im6s_stp == 0) { 2601 CTR1(KTR_MLD, "%s: skip unrecorded node", 2602 __func__); 2603 continue; 2604 } 2605 CTR1(KTR_MLD, "%s: append node", __func__); 2606 if (!m_append(m, sizeof(struct in6_addr), 2607 (void *)&ims->im6s_addr)) { 2608 if (m != m0) 2609 m_freem(m); 2610 CTR1(KTR_MLD, "%s: m_append() failed.", 2611 __func__); 2612 return (-ENOMEM); 2613 } 2614 ++msrcs; 2615 if (msrcs == m0srcs) 2616 break; 2617 } 2618 pmr->mr_numsrc = htons(msrcs); 2619 nbytes += (msrcs * sizeof(struct in6_addr)); 2620 2621 CTR1(KTR_MLD, "%s: enqueueing next packet", __func__); 2622 _IF_ENQUEUE(ifq, m); 2623 } 2624 2625 return (nbytes); 2626 } 2627 2628 /* 2629 * Type used to mark record pass completion. 2630 * We exploit the fact we can cast to this easily from the 2631 * current filter modes on each ip_msource node. 2632 */ 2633 typedef enum { 2634 REC_NONE = 0x00, /* MCAST_UNDEFINED */ 2635 REC_ALLOW = 0x01, /* MCAST_INCLUDE */ 2636 REC_BLOCK = 0x02, /* MCAST_EXCLUDE */ 2637 REC_FULL = REC_ALLOW | REC_BLOCK 2638 } rectype_t; 2639 2640 /* 2641 * Enqueue an MLDv2 filter list change to the given output queue. 2642 * 2643 * Source list filter state is held in an RB-tree. When the filter list 2644 * for a group is changed without changing its mode, we need to compute 2645 * the deltas between T0 and T1 for each source in the filter set, 2646 * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records. 2647 * 2648 * As we may potentially queue two record types, and the entire R-B tree 2649 * needs to be walked at once, we break this out into its own function 2650 * so we can generate a tightly packed queue of packets. 2651 * 2652 * XXX This could be written to only use one tree walk, although that makes 2653 * serializing into the mbuf chains a bit harder. For now we do two walks 2654 * which makes things easier on us, and it may or may not be harder on 2655 * the L2 cache. 2656 * 2657 * If successful the size of all data appended to the queue is returned, 2658 * otherwise an error code less than zero is returned, or zero if 2659 * no record(s) were appended. 2660 */ 2661 static int 2662 mld_v2_enqueue_filter_change(struct ifqueue *ifq, struct in6_multi *inm) 2663 { 2664 static const int MINRECLEN = 2665 sizeof(struct mldv2_record) + sizeof(struct in6_addr); 2666 struct ifnet *ifp; 2667 struct mldv2_record mr; 2668 struct mldv2_record *pmr; 2669 struct ip6_msource *ims, *nims; 2670 struct mbuf *m, *m0, *md; 2671 int m0srcs, nbytes, npbytes, off, rsrcs, schanged; 2672 int nallow, nblock; 2673 uint8_t mode, now, then; 2674 rectype_t crt, drt, nrt; 2675 #ifdef KTR 2676 char ip6tbuf[INET6_ADDRSTRLEN]; 2677 #endif 2678 2679 IN6_MULTI_LOCK_ASSERT(); 2680 2681 if (inm->in6m_nsrc == 0 || 2682 (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0)) 2683 return (0); 2684 2685 ifp = inm->in6m_ifp; /* interface */ 2686 mode = inm->in6m_st[1].iss_fmode; /* filter mode at t1 */ 2687 crt = REC_NONE; /* current group record type */ 2688 drt = REC_NONE; /* mask of completed group record types */ 2689 nrt = REC_NONE; /* record type for current node */ 2690 m0srcs = 0; /* # source which will fit in current mbuf chain */ 2691 npbytes = 0; /* # of bytes appended this packet */ 2692 nbytes = 0; /* # of bytes appended to group's state-change queue */ 2693 rsrcs = 0; /* # sources encoded in current record */ 2694 schanged = 0; /* # nodes encoded in overall filter change */ 2695 nallow = 0; /* # of source entries in ALLOW_NEW */ 2696 nblock = 0; /* # of source entries in BLOCK_OLD */ 2697 nims = NULL; /* next tree node pointer */ 2698 2699 /* 2700 * For each possible filter record mode. 2701 * The first kind of source we encounter tells us which 2702 * is the first kind of record we start appending. 2703 * If a node transitioned to UNDEFINED at t1, its mode is treated 2704 * as the inverse of the group's filter mode. 2705 */ 2706 while (drt != REC_FULL) { 2707 do { 2708 m0 = ifq->ifq_tail; 2709 if (m0 != NULL && 2710 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= 2711 MLD_V2_REPORT_MAXRECS) && 2712 (m0->m_pkthdr.len + MINRECLEN) < 2713 (ifp->if_mtu - MLD_MTUSPACE)) { 2714 m = m0; 2715 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2716 sizeof(struct mldv2_record)) / 2717 sizeof(struct in6_addr); 2718 CTR1(KTR_MLD, 2719 "%s: use previous packet", __func__); 2720 } else { 2721 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2722 if (m == NULL) 2723 m = m_gethdr(M_DONTWAIT, MT_DATA); 2724 if (m == NULL) { 2725 CTR1(KTR_MLD, 2726 "%s: m_get*() failed", __func__); 2727 return (-ENOMEM); 2728 } 2729 m->m_pkthdr.PH_vt.vt_nrecs = 0; 2730 mld_save_context(m, ifp); 2731 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2732 sizeof(struct mldv2_record)) / 2733 sizeof(struct in6_addr); 2734 npbytes = 0; 2735 CTR1(KTR_MLD, 2736 "%s: allocated new packet", __func__); 2737 } 2738 /* 2739 * Append the MLD group record header to the 2740 * current packet's data area. 2741 * Recalculate pointer to free space for next 2742 * group record, in case m_append() allocated 2743 * a new mbuf or cluster. 2744 */ 2745 memset(&mr, 0, sizeof(mr)); 2746 mr.mr_addr = inm->in6m_addr; 2747 in6_clearscope(&mr.mr_addr); 2748 if (!m_append(m, sizeof(mr), (void *)&mr)) { 2749 if (m != m0) 2750 m_freem(m); 2751 CTR1(KTR_MLD, 2752 "%s: m_append() failed", __func__); 2753 return (-ENOMEM); 2754 } 2755 npbytes += sizeof(struct mldv2_record); 2756 if (m != m0) { 2757 /* new packet; offset in chain */ 2758 md = m_getptr(m, npbytes - 2759 sizeof(struct mldv2_record), &off); 2760 pmr = (struct mldv2_record *)(mtod(md, 2761 uint8_t *) + off); 2762 } else { 2763 /* current packet; offset from last append */ 2764 md = m_last(m); 2765 pmr = (struct mldv2_record *)(mtod(md, 2766 uint8_t *) + md->m_len - 2767 sizeof(struct mldv2_record)); 2768 } 2769 /* 2770 * Begin walking the tree for this record type 2771 * pass, or continue from where we left off 2772 * previously if we had to allocate a new packet. 2773 * Only report deltas in-mode at t1. 2774 * We need not report included sources as allowed 2775 * if we are in inclusive mode on the group, 2776 * however the converse is not true. 2777 */ 2778 rsrcs = 0; 2779 if (nims == NULL) { 2780 nims = RB_MIN(ip6_msource_tree, 2781 &inm->in6m_srcs); 2782 } 2783 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2784 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2785 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2786 now = im6s_get_mode(inm, ims, 1); 2787 then = im6s_get_mode(inm, ims, 0); 2788 CTR3(KTR_MLD, "%s: mode: t0 %d, t1 %d", 2789 __func__, then, now); 2790 if (now == then) { 2791 CTR1(KTR_MLD, 2792 "%s: skip unchanged", __func__); 2793 continue; 2794 } 2795 if (mode == MCAST_EXCLUDE && 2796 now == MCAST_INCLUDE) { 2797 CTR1(KTR_MLD, 2798 "%s: skip IN src on EX group", 2799 __func__); 2800 continue; 2801 } 2802 nrt = (rectype_t)now; 2803 if (nrt == REC_NONE) 2804 nrt = (rectype_t)(~mode & REC_FULL); 2805 if (schanged++ == 0) { 2806 crt = nrt; 2807 } else if (crt != nrt) 2808 continue; 2809 if (!m_append(m, sizeof(struct in6_addr), 2810 (void *)&ims->im6s_addr)) { 2811 if (m != m0) 2812 m_freem(m); 2813 CTR1(KTR_MLD, 2814 "%s: m_append() failed", __func__); 2815 return (-ENOMEM); 2816 } 2817 nallow += !!(crt == REC_ALLOW); 2818 nblock += !!(crt == REC_BLOCK); 2819 if (++rsrcs == m0srcs) 2820 break; 2821 } 2822 /* 2823 * If we did not append any tree nodes on this 2824 * pass, back out of allocations. 2825 */ 2826 if (rsrcs == 0) { 2827 npbytes -= sizeof(struct mldv2_record); 2828 if (m != m0) { 2829 CTR1(KTR_MLD, 2830 "%s: m_free(m)", __func__); 2831 m_freem(m); 2832 } else { 2833 CTR1(KTR_MLD, 2834 "%s: m_adj(m, -mr)", __func__); 2835 m_adj(m, -((int)sizeof( 2836 struct mldv2_record))); 2837 } 2838 continue; 2839 } 2840 npbytes += (rsrcs * sizeof(struct in6_addr)); 2841 if (crt == REC_ALLOW) 2842 pmr->mr_type = MLD_ALLOW_NEW_SOURCES; 2843 else if (crt == REC_BLOCK) 2844 pmr->mr_type = MLD_BLOCK_OLD_SOURCES; 2845 pmr->mr_numsrc = htons(rsrcs); 2846 /* 2847 * Count the new group record, and enqueue this 2848 * packet if it wasn't already queued. 2849 */ 2850 m->m_pkthdr.PH_vt.vt_nrecs++; 2851 if (m != m0) 2852 _IF_ENQUEUE(ifq, m); 2853 nbytes += npbytes; 2854 } while (nims != NULL); 2855 drt |= crt; 2856 crt = (~crt & REC_FULL); 2857 } 2858 2859 CTR3(KTR_MLD, "%s: queued %d ALLOW_NEW, %d BLOCK_OLD", __func__, 2860 nallow, nblock); 2861 2862 return (nbytes); 2863 } 2864 2865 static int 2866 mld_v2_merge_state_changes(struct in6_multi *inm, struct ifqueue *ifscq) 2867 { 2868 struct ifqueue *gq; 2869 struct mbuf *m; /* pending state-change */ 2870 struct mbuf *m0; /* copy of pending state-change */ 2871 struct mbuf *mt; /* last state-change in packet */ 2872 int docopy, domerge; 2873 u_int recslen; 2874 2875 docopy = 0; 2876 domerge = 0; 2877 recslen = 0; 2878 2879 IN6_MULTI_LOCK_ASSERT(); 2880 MLD_LOCK_ASSERT(); 2881 2882 /* 2883 * If there are further pending retransmissions, make a writable 2884 * copy of each queued state-change message before merging. 2885 */ 2886 if (inm->in6m_scrv > 0) 2887 docopy = 1; 2888 2889 gq = &inm->in6m_scq; 2890 #ifdef KTR 2891 if (gq->ifq_head == NULL) { 2892 CTR2(KTR_MLD, "%s: WARNING: queue for inm %p is empty", 2893 __func__, inm); 2894 } 2895 #endif 2896 2897 m = gq->ifq_head; 2898 while (m != NULL) { 2899 /* 2900 * Only merge the report into the current packet if 2901 * there is sufficient space to do so; an MLDv2 report 2902 * packet may only contain 65,535 group records. 2903 * Always use a simple mbuf chain concatentation to do this, 2904 * as large state changes for single groups may have 2905 * allocated clusters. 2906 */ 2907 domerge = 0; 2908 mt = ifscq->ifq_tail; 2909 if (mt != NULL) { 2910 recslen = m_length(m, NULL); 2911 2912 if ((mt->m_pkthdr.PH_vt.vt_nrecs + 2913 m->m_pkthdr.PH_vt.vt_nrecs <= 2914 MLD_V2_REPORT_MAXRECS) && 2915 (mt->m_pkthdr.len + recslen <= 2916 (inm->in6m_ifp->if_mtu - MLD_MTUSPACE))) 2917 domerge = 1; 2918 } 2919 2920 if (!domerge && _IF_QFULL(gq)) { 2921 CTR2(KTR_MLD, 2922 "%s: outbound queue full, skipping whole packet %p", 2923 __func__, m); 2924 mt = m->m_nextpkt; 2925 if (!docopy) 2926 m_freem(m); 2927 m = mt; 2928 continue; 2929 } 2930 2931 if (!docopy) { 2932 CTR2(KTR_MLD, "%s: dequeueing %p", __func__, m); 2933 _IF_DEQUEUE(gq, m0); 2934 m = m0->m_nextpkt; 2935 } else { 2936 CTR2(KTR_MLD, "%s: copying %p", __func__, m); 2937 m0 = m_dup(m, M_NOWAIT); 2938 if (m0 == NULL) 2939 return (ENOMEM); 2940 m0->m_nextpkt = NULL; 2941 m = m->m_nextpkt; 2942 } 2943 2944 if (!domerge) { 2945 CTR3(KTR_MLD, "%s: queueing %p to ifscq %p)", 2946 __func__, m0, ifscq); 2947 _IF_ENQUEUE(ifscq, m0); 2948 } else { 2949 struct mbuf *mtl; /* last mbuf of packet mt */ 2950 2951 CTR3(KTR_MLD, "%s: merging %p with ifscq tail %p)", 2952 __func__, m0, mt); 2953 2954 mtl = m_last(mt); 2955 m0->m_flags &= ~M_PKTHDR; 2956 mt->m_pkthdr.len += recslen; 2957 mt->m_pkthdr.PH_vt.vt_nrecs += 2958 m0->m_pkthdr.PH_vt.vt_nrecs; 2959 2960 mtl->m_next = m0; 2961 } 2962 } 2963 2964 return (0); 2965 } 2966 2967 /* 2968 * Respond to a pending MLDv2 General Query. 2969 */ 2970 static void 2971 mld_v2_dispatch_general_query(struct mld_ifinfo *mli) 2972 { 2973 struct ifmultiaddr *ifma, *tifma; 2974 struct ifnet *ifp; 2975 struct in6_multi *inm; 2976 int retval; 2977 2978 IN6_MULTI_LOCK_ASSERT(); 2979 MLD_LOCK_ASSERT(); 2980 2981 KASSERT(mli->mli_version == MLD_VERSION_2, 2982 ("%s: called when version %d", __func__, mli->mli_version)); 2983 2984 ifp = mli->mli_ifp; 2985 2986 IF_ADDR_LOCK(ifp); 2987 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, tifma) { 2988 if (ifma->ifma_addr->sa_family != AF_INET6 || 2989 ifma->ifma_protospec == NULL) 2990 continue; 2991 2992 inm = (struct in6_multi *)ifma->ifma_protospec; 2993 KASSERT(ifp == inm->in6m_ifp, 2994 ("%s: inconsistent ifp", __func__)); 2995 2996 switch (inm->in6m_state) { 2997 case MLD_NOT_MEMBER: 2998 case MLD_SILENT_MEMBER: 2999 break; 3000 case MLD_REPORTING_MEMBER: 3001 case MLD_IDLE_MEMBER: 3002 case MLD_LAZY_MEMBER: 3003 case MLD_SLEEPING_MEMBER: 3004 case MLD_AWAKENING_MEMBER: 3005 inm->in6m_state = MLD_REPORTING_MEMBER; 3006 retval = mld_v2_enqueue_group_record(&mli->mli_gq, 3007 inm, 0, 0, 0, 0); 3008 CTR2(KTR_MLD, "%s: enqueue record = %d", 3009 __func__, retval); 3010 break; 3011 case MLD_G_QUERY_PENDING_MEMBER: 3012 case MLD_SG_QUERY_PENDING_MEMBER: 3013 case MLD_LEAVING_MEMBER: 3014 break; 3015 } 3016 } 3017 IF_ADDR_UNLOCK(ifp); 3018 3019 mld_dispatch_queue(&mli->mli_gq, MLD_MAX_RESPONSE_BURST); 3020 3021 /* 3022 * Slew transmission of bursts over 500ms intervals. 3023 */ 3024 if (mli->mli_gq.ifq_head != NULL) { 3025 mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY( 3026 MLD_RESPONSE_BURST_INTERVAL); 3027 V_interface_timers_running6 = 1; 3028 } 3029 } 3030 3031 /* 3032 * Transmit the next pending message in the output queue. 3033 * 3034 * VIMAGE: Needs to store/restore vnet pointer on a per-mbuf-chain basis. 3035 * MRT: Nothing needs to be done, as MLD traffic is always local to 3036 * a link and uses a link-scope multicast address. 3037 */ 3038 static void 3039 mld_dispatch_packet(struct mbuf *m) 3040 { 3041 struct ip6_moptions im6o; 3042 struct ifnet *ifp; 3043 struct ifnet *oifp; 3044 struct mbuf *m0; 3045 struct mbuf *md; 3046 struct ip6_hdr *ip6; 3047 struct mld_hdr *mld; 3048 int error; 3049 int off; 3050 int type; 3051 uint32_t ifindex; 3052 3053 CTR2(KTR_MLD, "%s: transmit %p", __func__, m); 3054 3055 /* 3056 * Set VNET image pointer from enqueued mbuf chain 3057 * before doing anything else. Whilst we use interface 3058 * indexes to guard against interface detach, they are 3059 * unique to each VIMAGE and must be retrieved. 3060 */ 3061 ifindex = mld_restore_context(m); 3062 3063 /* 3064 * Check if the ifnet still exists. This limits the scope of 3065 * any race in the absence of a global ifp lock for low cost 3066 * (an array lookup). 3067 */ 3068 ifp = ifnet_byindex(ifindex); 3069 if (ifp == NULL) { 3070 CTR3(KTR_MLD, "%s: dropped %p as ifindex %u went away.", 3071 __func__, m, ifindex); 3072 m_freem(m); 3073 IP6STAT_INC(ip6s_noroute); 3074 goto out; 3075 } 3076 3077 im6o.im6o_multicast_hlim = 1; 3078 im6o.im6o_multicast_loop = (V_ip6_mrouter != NULL); 3079 im6o.im6o_multicast_ifp = ifp; 3080 3081 if (m->m_flags & M_MLDV1) { 3082 m0 = m; 3083 } else { 3084 m0 = mld_v2_encap_report(ifp, m); 3085 if (m0 == NULL) { 3086 CTR2(KTR_MLD, "%s: dropped %p", __func__, m); 3087 m_freem(m); 3088 IP6STAT_INC(ip6s_odropped); 3089 goto out; 3090 } 3091 } 3092 3093 mld_scrub_context(m0); 3094 m->m_flags &= ~(M_PROTOFLAGS); 3095 m0->m_pkthdr.rcvif = V_loif; 3096 3097 ip6 = mtod(m0, struct ip6_hdr *); 3098 #if 0 3099 (void)in6_setscope(&ip6->ip6_dst, ifp, NULL); /* XXX LOR */ 3100 #else 3101 /* 3102 * XXX XXX Break some KPI rules to prevent an LOR which would 3103 * occur if we called in6_setscope() at transmission. 3104 * See comments at top of file. 3105 */ 3106 MLD_EMBEDSCOPE(&ip6->ip6_dst, ifp->if_index); 3107 #endif 3108 3109 /* 3110 * Retrieve the ICMPv6 type before handoff to ip6_output(), 3111 * so we can bump the stats. 3112 */ 3113 md = m_getptr(m0, sizeof(struct ip6_hdr), &off); 3114 mld = (struct mld_hdr *)(mtod(md, uint8_t *) + off); 3115 type = mld->mld_type; 3116 3117 error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, &im6o, 3118 &oifp, NULL); 3119 if (error) { 3120 CTR3(KTR_MLD, "%s: ip6_output(%p) = %d", __func__, m0, error); 3121 goto out; 3122 } 3123 ICMP6STAT_INC(icp6s_outhist[type]); 3124 if (oifp != NULL) { 3125 icmp6_ifstat_inc(oifp, ifs6_out_msg); 3126 switch (type) { 3127 case MLD_LISTENER_REPORT: 3128 case MLDV2_LISTENER_REPORT: 3129 icmp6_ifstat_inc(oifp, ifs6_out_mldreport); 3130 break; 3131 case MLD_LISTENER_DONE: 3132 icmp6_ifstat_inc(oifp, ifs6_out_mlddone); 3133 break; 3134 } 3135 } 3136 out: 3137 return; 3138 } 3139 3140 /* 3141 * Encapsulate an MLDv2 report. 3142 * 3143 * KAME IPv6 requires that hop-by-hop options be passed separately, 3144 * and that the IPv6 header be prepended in a separate mbuf. 3145 * 3146 * Returns a pointer to the new mbuf chain head, or NULL if the 3147 * allocation failed. 3148 */ 3149 static struct mbuf * 3150 mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m) 3151 { 3152 struct mbuf *mh; 3153 struct mldv2_report *mld; 3154 struct ip6_hdr *ip6; 3155 struct in6_ifaddr *ia; 3156 int mldreclen; 3157 3158 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 3159 KASSERT((m->m_flags & M_PKTHDR), 3160 ("%s: mbuf chain %p is !M_PKTHDR", __func__, m)); 3161 3162 /* 3163 * RFC3590: OK to send as :: or tentative during DAD. 3164 */ 3165 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 3166 if (ia == NULL) 3167 CTR1(KTR_MLD, "%s: warning: ia is NULL", __func__); 3168 3169 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3170 if (mh == NULL) { 3171 if (ia != NULL) 3172 ifa_free(&ia->ia_ifa); 3173 m_freem(m); 3174 return (NULL); 3175 } 3176 MH_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report)); 3177 3178 mldreclen = m_length(m, NULL); 3179 CTR2(KTR_MLD, "%s: mldreclen is %d", __func__, mldreclen); 3180 3181 mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report); 3182 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + 3183 sizeof(struct mldv2_report) + mldreclen; 3184 3185 ip6 = mtod(mh, struct ip6_hdr *); 3186 ip6->ip6_flow = 0; 3187 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 3188 ip6->ip6_vfc |= IPV6_VERSION; 3189 ip6->ip6_nxt = IPPROTO_ICMPV6; 3190 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 3191 if (ia != NULL) 3192 ifa_free(&ia->ia_ifa); 3193 ip6->ip6_dst = in6addr_linklocal_allv2routers; 3194 /* scope ID will be set in netisr */ 3195 3196 mld = (struct mldv2_report *)(ip6 + 1); 3197 mld->mld_type = MLDV2_LISTENER_REPORT; 3198 mld->mld_code = 0; 3199 mld->mld_cksum = 0; 3200 mld->mld_v2_reserved = 0; 3201 mld->mld_v2_numrecs = htons(m->m_pkthdr.PH_vt.vt_nrecs); 3202 m->m_pkthdr.PH_vt.vt_nrecs = 0; 3203 3204 mh->m_next = m; 3205 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 3206 sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen); 3207 return (mh); 3208 } 3209 3210 #ifdef KTR 3211 static char * 3212 mld_rec_type_to_str(const int type) 3213 { 3214 3215 switch (type) { 3216 case MLD_CHANGE_TO_EXCLUDE_MODE: 3217 return "TO_EX"; 3218 break; 3219 case MLD_CHANGE_TO_INCLUDE_MODE: 3220 return "TO_IN"; 3221 break; 3222 case MLD_MODE_IS_EXCLUDE: 3223 return "MODE_EX"; 3224 break; 3225 case MLD_MODE_IS_INCLUDE: 3226 return "MODE_IN"; 3227 break; 3228 case MLD_ALLOW_NEW_SOURCES: 3229 return "ALLOW_NEW"; 3230 break; 3231 case MLD_BLOCK_OLD_SOURCES: 3232 return "BLOCK_OLD"; 3233 break; 3234 default: 3235 break; 3236 } 3237 return "unknown"; 3238 } 3239 #endif 3240 3241 static void 3242 mld_init(void *unused __unused) 3243 { 3244 3245 CTR1(KTR_MLD, "%s: initializing", __func__); 3246 MLD_LOCK_INIT(); 3247 3248 ip6_initpktopts(&mld_po); 3249 mld_po.ip6po_hlim = 1; 3250 mld_po.ip6po_hbh = &mld_ra.hbh; 3251 mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER; 3252 mld_po.ip6po_flags = IP6PO_DONTFRAG; 3253 } 3254 SYSINIT(mld_init, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, mld_init, NULL); 3255 3256 static void 3257 mld_uninit(void *unused __unused) 3258 { 3259 3260 CTR1(KTR_MLD, "%s: tearing down", __func__); 3261 MLD_LOCK_DESTROY(); 3262 } 3263 SYSUNINIT(mld_uninit, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, mld_uninit, NULL); 3264 3265 static void 3266 vnet_mld_init(const void *unused __unused) 3267 { 3268 3269 CTR1(KTR_MLD, "%s: initializing", __func__); 3270 3271 LIST_INIT(&V_mli_head); 3272 } 3273 VNET_SYSINIT(vnet_mld_init, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mld_init, 3274 NULL); 3275 3276 static void 3277 vnet_mld_uninit(const void *unused __unused) 3278 { 3279 3280 CTR1(KTR_MLD, "%s: tearing down", __func__); 3281 3282 KASSERT(LIST_EMPTY(&V_mli_head), 3283 ("%s: mli list not empty; ifnets not detached?", __func__)); 3284 } 3285 VNET_SYSUNINIT(vnet_mld_uninit, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mld_uninit, 3286 NULL); 3287 3288 static int 3289 mld_modevent(module_t mod, int type, void *unused __unused) 3290 { 3291 3292 switch (type) { 3293 case MOD_LOAD: 3294 case MOD_UNLOAD: 3295 break; 3296 default: 3297 return (EOPNOTSUPP); 3298 } 3299 return (0); 3300 } 3301 3302 static moduledata_t mld_mod = { 3303 "mld", 3304 mld_modevent, 3305 0 3306 }; 3307 DECLARE_MODULE(mld, mld_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); 3308