1 /*- 2 * Copyright (c) 2009 Bruce Simpson. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 3. The name of the author may not be used to endorse or promote 13 * products derived from this software without specific prior written 14 * permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $KAME: mld6.c,v 1.27 2001/04/04 05:17:30 itojun Exp $ 29 */ 30 31 /*- 32 * Copyright (c) 1988 Stephen Deering. 33 * Copyright (c) 1992, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * This code is derived from software contributed to Berkeley by 37 * Stephen Deering of Stanford University. 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 1. Redistributions of source code must retain the above copyright 43 * notice, this list of conditions and the following disclaimer. 44 * 2. Redistributions in binary form must reproduce the above copyright 45 * notice, this list of conditions and the following disclaimer in the 46 * documentation and/or other materials provided with the distribution. 47 * 4. Neither the name of the University nor the names of its contributors 48 * may be used to endorse or promote products derived from this software 49 * without specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 61 * SUCH DAMAGE. 62 * 63 * @(#)igmp.c 8.1 (Berkeley) 7/19/93 64 */ 65 66 #include <sys/cdefs.h> 67 __FBSDID("$FreeBSD$"); 68 69 #include "opt_inet.h" 70 #include "opt_inet6.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/mbuf.h> 75 #include <sys/socket.h> 76 #include <sys/protosw.h> 77 #include <sys/sysctl.h> 78 #include <sys/kernel.h> 79 #include <sys/callout.h> 80 #include <sys/malloc.h> 81 #include <sys/module.h> 82 #include <sys/ktr.h> 83 84 #include <net/if.h> 85 #include <net/route.h> 86 #include <net/vnet.h> 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet6/in6_var.h> 91 #include <netinet/ip6.h> 92 #include <netinet6/ip6_var.h> 93 #include <netinet6/scope6_var.h> 94 #include <netinet/icmp6.h> 95 #include <netinet6/mld6.h> 96 #include <netinet6/mld6_var.h> 97 98 #include <security/mac/mac_framework.h> 99 100 #ifndef KTR_MLD 101 #define KTR_MLD KTR_INET6 102 #endif 103 104 static struct mld_ifinfo * 105 mli_alloc_locked(struct ifnet *); 106 static void mli_delete_locked(const struct ifnet *); 107 static void mld_dispatch_packet(struct mbuf *); 108 static void mld_dispatch_queue(struct ifqueue *, int); 109 static void mld_final_leave(struct in6_multi *, struct mld_ifinfo *); 110 static void mld_fasttimo_vnet(void); 111 static int mld_handle_state_change(struct in6_multi *, 112 struct mld_ifinfo *); 113 static int mld_initial_join(struct in6_multi *, struct mld_ifinfo *, 114 const int); 115 #ifdef KTR 116 static char * mld_rec_type_to_str(const int); 117 #endif 118 static void mld_set_version(struct mld_ifinfo *, const int); 119 static void mld_slowtimo_vnet(void); 120 static int mld_v1_input_query(struct ifnet *, const struct ip6_hdr *, 121 /*const*/ struct mld_hdr *); 122 static int mld_v1_input_report(struct ifnet *, const struct ip6_hdr *, 123 /*const*/ struct mld_hdr *); 124 static void mld_v1_process_group_timer(struct in6_multi *, const int); 125 static void mld_v1_process_querier_timers(struct mld_ifinfo *); 126 static int mld_v1_transmit_report(struct in6_multi *, const int); 127 static void mld_v1_update_group(struct in6_multi *, const int); 128 static void mld_v2_cancel_link_timers(struct mld_ifinfo *); 129 static void mld_v2_dispatch_general_query(struct mld_ifinfo *); 130 static struct mbuf * 131 mld_v2_encap_report(struct ifnet *, struct mbuf *); 132 static int mld_v2_enqueue_filter_change(struct ifqueue *, 133 struct in6_multi *); 134 static int mld_v2_enqueue_group_record(struct ifqueue *, 135 struct in6_multi *, const int, const int, const int, 136 const int); 137 static int mld_v2_input_query(struct ifnet *, const struct ip6_hdr *, 138 struct mbuf *, const int, const int); 139 static int mld_v2_merge_state_changes(struct in6_multi *, 140 struct ifqueue *); 141 static void mld_v2_process_group_timers(struct mld_ifinfo *, 142 struct ifqueue *, struct ifqueue *, 143 struct in6_multi *, const int); 144 static int mld_v2_process_group_query(struct in6_multi *, 145 struct mld_ifinfo *mli, int, struct mbuf *, const int); 146 static int sysctl_mld_gsr(SYSCTL_HANDLER_ARGS); 147 static int sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS); 148 149 /* 150 * Normative references: RFC 2710, RFC 3590, RFC 3810. 151 * 152 * Locking: 153 * * The MLD subsystem lock ends up being system-wide for the moment, 154 * but could be per-VIMAGE later on. 155 * * The permitted lock order is: IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK. 156 * Any may be taken independently; if any are held at the same 157 * time, the above lock order must be followed. 158 * * IN6_MULTI_LOCK covers in_multi. 159 * * MLD_LOCK covers per-link state and any global variables in this file. 160 * * IF_ADDR_LOCK covers if_multiaddrs, which is used for a variety of 161 * per-link state iterators. 162 * 163 * XXX LOR PREVENTION 164 * A special case for IPv6 is the in6_setscope() routine. ip6_output() 165 * will not accept an ifp; it wants an embedded scope ID, unlike 166 * ip_output(), which happily takes the ifp given to it. The embedded 167 * scope ID is only used by MLD to select the outgoing interface. 168 * 169 * During interface attach and detach, MLD will take MLD_LOCK *after* 170 * the IF_AFDATA_LOCK. 171 * As in6_setscope() takes IF_AFDATA_LOCK then SCOPE_LOCK, we can't call 172 * it with MLD_LOCK held without triggering an LOR. A netisr with indirect 173 * dispatch could work around this, but we'd rather not do that, as it 174 * can introduce other races. 175 * 176 * As such, we exploit the fact that the scope ID is just the interface 177 * index, and embed it in the IPv6 destination address accordingly. 178 * This is potentially NOT VALID for MLDv1 reports, as they 179 * are always sent to the multicast group itself; as MLDv2 180 * reports are always sent to ff02::16, this is not an issue 181 * when MLDv2 is in use. 182 * 183 * This does not however eliminate the LOR when ip6_output() itself 184 * calls in6_setscope() internally whilst MLD_LOCK is held. This will 185 * trigger a LOR warning in WITNESS when the ifnet is detached. 186 * 187 * The right answer is probably to make IF_AFDATA_LOCK an rwlock, given 188 * how it's used across the network stack. Here we're simply exploiting 189 * the fact that MLD runs at a similar layer in the stack to scope6.c. 190 * 191 * VIMAGE: 192 * * Each in6_multi corresponds to an ifp, and each ifp corresponds 193 * to a vnet in ifp->if_vnet. 194 */ 195 static struct mtx mld_mtx; 196 MALLOC_DEFINE(M_MLD, "mld", "mld state"); 197 198 #define MLD_EMBEDSCOPE(pin6, zoneid) \ 199 if (IN6_IS_SCOPE_LINKLOCAL(pin6) || \ 200 IN6_IS_ADDR_MC_INTFACELOCAL(pin6)) \ 201 (pin6)->s6_addr16[1] = htons((zoneid) & 0xFFFF) \ 202 203 /* 204 * VIMAGE-wide globals. 205 */ 206 static VNET_DEFINE(struct timeval, mld_gsrdelay) = {10, 0}; 207 static VNET_DEFINE(LIST_HEAD(, mld_ifinfo), mli_head); 208 static VNET_DEFINE(int, interface_timers_running6); 209 static VNET_DEFINE(int, state_change_timers_running6); 210 static VNET_DEFINE(int, current_state_timers_running6); 211 212 #define V_mld_gsrdelay VNET(mld_gsrdelay) 213 #define V_mli_head VNET(mli_head) 214 #define V_interface_timers_running6 VNET(interface_timers_running6) 215 #define V_state_change_timers_running6 VNET(state_change_timers_running6) 216 #define V_current_state_timers_running6 VNET(current_state_timers_running6) 217 218 SYSCTL_DECL(_net_inet6); /* Note: Not in any common header. */ 219 220 SYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW, 0, 221 "IPv6 Multicast Listener Discovery"); 222 223 /* 224 * Virtualized sysctls. 225 */ 226 SYSCTL_VNET_PROC(_net_inet6_mld, OID_AUTO, gsrdelay, 227 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 228 &VNET_NAME(mld_gsrdelay.tv_sec), 0, sysctl_mld_gsr, "I", 229 "Rate limit for MLDv2 Group-and-Source queries in seconds"); 230 231 /* 232 * Non-virtualized sysctls. 233 */ 234 SYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo, CTLFLAG_RD | CTLFLAG_MPSAFE, 235 sysctl_mld_ifinfo, "Per-interface MLDv2 state"); 236 237 static int mld_v1enable = 1; 238 SYSCTL_INT(_net_inet6_mld, OID_AUTO, v1enable, CTLFLAG_RW, 239 &mld_v1enable, 0, "Enable fallback to MLDv1"); 240 TUNABLE_INT("net.inet6.mld.v1enable", &mld_v1enable); 241 242 static int mld_use_allow = 1; 243 SYSCTL_INT(_net_inet6_mld, OID_AUTO, use_allow, CTLFLAG_RW, 244 &mld_use_allow, 0, "Use ALLOW/BLOCK for RFC 4604 SSM joins/leaves"); 245 TUNABLE_INT("net.inet6.mld.use_allow", &mld_use_allow); 246 247 /* 248 * Packed Router Alert option structure declaration. 249 */ 250 struct mld_raopt { 251 struct ip6_hbh hbh; 252 struct ip6_opt pad; 253 struct ip6_opt_router ra; 254 } __packed; 255 256 /* 257 * Router Alert hop-by-hop option header. 258 */ 259 static struct mld_raopt mld_ra = { 260 .hbh = { 0, 0 }, 261 .pad = { .ip6o_type = IP6OPT_PADN, 0 }, 262 .ra = { 263 .ip6or_type = IP6OPT_ROUTER_ALERT, 264 .ip6or_len = IP6OPT_RTALERT_LEN - 2, 265 .ip6or_value[0] = ((IP6OPT_RTALERT_MLD >> 8) & 0xFF), 266 .ip6or_value[1] = (IP6OPT_RTALERT_MLD & 0xFF) 267 } 268 }; 269 static struct ip6_pktopts mld_po; 270 271 static __inline void 272 mld_save_context(struct mbuf *m, struct ifnet *ifp) 273 { 274 275 #ifdef VIMAGE 276 m->m_pkthdr.header = ifp->if_vnet; 277 #endif /* VIMAGE */ 278 m->m_pkthdr.flowid = ifp->if_index; 279 } 280 281 static __inline void 282 mld_scrub_context(struct mbuf *m) 283 { 284 285 m->m_pkthdr.header = NULL; 286 m->m_pkthdr.flowid = 0; 287 } 288 289 /* 290 * Restore context from a queued output chain. 291 * Return saved ifindex. 292 * 293 * VIMAGE: The assertion is there to make sure that we 294 * actually called CURVNET_SET() with what's in the mbuf chain. 295 */ 296 static __inline uint32_t 297 mld_restore_context(struct mbuf *m) 298 { 299 300 #if defined(VIMAGE) && defined(INVARIANTS) 301 KASSERT(curvnet == m->m_pkthdr.header, 302 ("%s: called when curvnet was not restored", __func__)); 303 #endif 304 return (m->m_pkthdr.flowid); 305 } 306 307 /* 308 * Retrieve or set threshold between group-source queries in seconds. 309 * 310 * VIMAGE: Assume curvnet set by caller. 311 * SMPng: NOTE: Serialized by MLD lock. 312 */ 313 static int 314 sysctl_mld_gsr(SYSCTL_HANDLER_ARGS) 315 { 316 int error; 317 int i; 318 319 error = sysctl_wire_old_buffer(req, sizeof(int)); 320 if (error) 321 return (error); 322 323 MLD_LOCK(); 324 325 i = V_mld_gsrdelay.tv_sec; 326 327 error = sysctl_handle_int(oidp, &i, 0, req); 328 if (error || !req->newptr) 329 goto out_locked; 330 331 if (i < -1 || i >= 60) { 332 error = EINVAL; 333 goto out_locked; 334 } 335 336 CTR2(KTR_MLD, "change mld_gsrdelay from %d to %d", 337 V_mld_gsrdelay.tv_sec, i); 338 V_mld_gsrdelay.tv_sec = i; 339 340 out_locked: 341 MLD_UNLOCK(); 342 return (error); 343 } 344 345 /* 346 * Expose struct mld_ifinfo to userland, keyed by ifindex. 347 * For use by ifmcstat(8). 348 * 349 * SMPng: NOTE: Does an unlocked ifindex space read. 350 * VIMAGE: Assume curvnet set by caller. The node handler itself 351 * is not directly virtualized. 352 */ 353 static int 354 sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS) 355 { 356 int *name; 357 int error; 358 u_int namelen; 359 struct ifnet *ifp; 360 struct mld_ifinfo *mli; 361 362 name = (int *)arg1; 363 namelen = arg2; 364 365 if (req->newptr != NULL) 366 return (EPERM); 367 368 if (namelen != 1) 369 return (EINVAL); 370 371 error = sysctl_wire_old_buffer(req, sizeof(struct mld_ifinfo)); 372 if (error) 373 return (error); 374 375 IN6_MULTI_LOCK(); 376 MLD_LOCK(); 377 378 if (name[0] <= 0 || name[0] > V_if_index) { 379 error = ENOENT; 380 goto out_locked; 381 } 382 383 error = ENOENT; 384 385 ifp = ifnet_byindex(name[0]); 386 if (ifp == NULL) 387 goto out_locked; 388 389 LIST_FOREACH(mli, &V_mli_head, mli_link) { 390 if (ifp == mli->mli_ifp) { 391 error = SYSCTL_OUT(req, mli, 392 sizeof(struct mld_ifinfo)); 393 break; 394 } 395 } 396 397 out_locked: 398 MLD_UNLOCK(); 399 IN6_MULTI_UNLOCK(); 400 return (error); 401 } 402 403 /* 404 * Dispatch an entire queue of pending packet chains. 405 * VIMAGE: Assumes the vnet pointer has been set. 406 */ 407 static void 408 mld_dispatch_queue(struct ifqueue *ifq, int limit) 409 { 410 struct mbuf *m; 411 412 for (;;) { 413 _IF_DEQUEUE(ifq, m); 414 if (m == NULL) 415 break; 416 CTR3(KTR_MLD, "%s: dispatch %p from %p", __func__, ifq, m); 417 mld_dispatch_packet(m); 418 if (--limit == 0) 419 break; 420 } 421 } 422 423 /* 424 * Filter outgoing MLD report state by group. 425 * 426 * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1) 427 * and node-local addresses. However, kernel and socket consumers 428 * always embed the KAME scope ID in the address provided, so strip it 429 * when performing comparison. 430 * Note: This is not the same as the *multicast* scope. 431 * 432 * Return zero if the given group is one for which MLD reports 433 * should be suppressed, or non-zero if reports should be issued. 434 */ 435 static __inline int 436 mld_is_addr_reported(const struct in6_addr *addr) 437 { 438 439 KASSERT(IN6_IS_ADDR_MULTICAST(addr), ("%s: not multicast", __func__)); 440 441 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL) 442 return (0); 443 444 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL) { 445 struct in6_addr tmp = *addr; 446 in6_clearscope(&tmp); 447 if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes)) 448 return (0); 449 } 450 451 return (1); 452 } 453 454 /* 455 * Attach MLD when PF_INET6 is attached to an interface. 456 * 457 * SMPng: Normally called with IF_AFDATA_LOCK held. 458 */ 459 struct mld_ifinfo * 460 mld_domifattach(struct ifnet *ifp) 461 { 462 struct mld_ifinfo *mli; 463 464 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 465 __func__, ifp, ifp->if_xname); 466 467 MLD_LOCK(); 468 469 mli = mli_alloc_locked(ifp); 470 if (!(ifp->if_flags & IFF_MULTICAST)) 471 mli->mli_flags |= MLIF_SILENT; 472 if (mld_use_allow) 473 mli->mli_flags |= MLIF_USEALLOW; 474 475 MLD_UNLOCK(); 476 477 return (mli); 478 } 479 480 /* 481 * VIMAGE: assume curvnet set by caller. 482 */ 483 static struct mld_ifinfo * 484 mli_alloc_locked(/*const*/ struct ifnet *ifp) 485 { 486 struct mld_ifinfo *mli; 487 488 MLD_LOCK_ASSERT(); 489 490 mli = malloc(sizeof(struct mld_ifinfo), M_MLD, M_NOWAIT|M_ZERO); 491 if (mli == NULL) 492 goto out; 493 494 mli->mli_ifp = ifp; 495 mli->mli_version = MLD_VERSION_2; 496 mli->mli_flags = 0; 497 mli->mli_rv = MLD_RV_INIT; 498 mli->mli_qi = MLD_QI_INIT; 499 mli->mli_qri = MLD_QRI_INIT; 500 mli->mli_uri = MLD_URI_INIT; 501 502 SLIST_INIT(&mli->mli_relinmhead); 503 504 /* 505 * Responses to general queries are subject to bounds. 506 */ 507 IFQ_SET_MAXLEN(&mli->mli_gq, MLD_MAX_RESPONSE_PACKETS); 508 509 LIST_INSERT_HEAD(&V_mli_head, mli, mli_link); 510 511 CTR2(KTR_MLD, "allocate mld_ifinfo for ifp %p(%s)", 512 ifp, ifp->if_xname); 513 514 out: 515 return (mli); 516 } 517 518 /* 519 * Hook for ifdetach. 520 * 521 * NOTE: Some finalization tasks need to run before the protocol domain 522 * is detached, but also before the link layer does its cleanup. 523 * Run before link-layer cleanup; cleanup groups, but do not free MLD state. 524 * 525 * SMPng: Caller must hold IN6_MULTI_LOCK(). 526 * Must take IF_ADDR_LOCK() to cover if_multiaddrs iterator. 527 * XXX This routine is also bitten by unlocked ifma_protospec access. 528 */ 529 void 530 mld_ifdetach(struct ifnet *ifp) 531 { 532 struct mld_ifinfo *mli; 533 struct ifmultiaddr *ifma; 534 struct in6_multi *inm, *tinm; 535 536 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", __func__, ifp, 537 ifp->if_xname); 538 539 IN6_MULTI_LOCK_ASSERT(); 540 MLD_LOCK(); 541 542 mli = MLD_IFINFO(ifp); 543 if (mli->mli_version == MLD_VERSION_2) { 544 IF_ADDR_LOCK(ifp); 545 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 546 if (ifma->ifma_addr->sa_family != AF_INET6 || 547 ifma->ifma_protospec == NULL) 548 continue; 549 inm = (struct in6_multi *)ifma->ifma_protospec; 550 if (inm->in6m_state == MLD_LEAVING_MEMBER) { 551 SLIST_INSERT_HEAD(&mli->mli_relinmhead, 552 inm, in6m_nrele); 553 } 554 in6m_clear_recorded(inm); 555 } 556 IF_ADDR_UNLOCK(ifp); 557 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele, 558 tinm) { 559 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele); 560 in6m_release_locked(inm); 561 } 562 } 563 564 MLD_UNLOCK(); 565 } 566 567 /* 568 * Hook for domifdetach. 569 * Runs after link-layer cleanup; free MLD state. 570 * 571 * SMPng: Normally called with IF_AFDATA_LOCK held. 572 */ 573 void 574 mld_domifdetach(struct ifnet *ifp) 575 { 576 577 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 578 __func__, ifp, ifp->if_xname); 579 580 MLD_LOCK(); 581 mli_delete_locked(ifp); 582 MLD_UNLOCK(); 583 } 584 585 static void 586 mli_delete_locked(const struct ifnet *ifp) 587 { 588 struct mld_ifinfo *mli, *tmli; 589 590 CTR3(KTR_MLD, "%s: freeing mld_ifinfo for ifp %p(%s)", 591 __func__, ifp, ifp->if_xname); 592 593 MLD_LOCK_ASSERT(); 594 595 LIST_FOREACH_SAFE(mli, &V_mli_head, mli_link, tmli) { 596 if (mli->mli_ifp == ifp) { 597 /* 598 * Free deferred General Query responses. 599 */ 600 _IF_DRAIN(&mli->mli_gq); 601 602 LIST_REMOVE(mli, mli_link); 603 604 KASSERT(SLIST_EMPTY(&mli->mli_relinmhead), 605 ("%s: there are dangling in_multi references", 606 __func__)); 607 608 free(mli, M_MLD); 609 return; 610 } 611 } 612 #ifdef INVARIANTS 613 panic("%s: mld_ifinfo not found for ifp %p\n", __func__, ifp); 614 #endif 615 } 616 617 /* 618 * Process a received MLDv1 general or address-specific query. 619 * Assumes that the query header has been pulled up to sizeof(mld_hdr). 620 * 621 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 622 * mld_addr. This is OK as we own the mbuf chain. 623 */ 624 static int 625 mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 626 /*const*/ struct mld_hdr *mld) 627 { 628 struct ifmultiaddr *ifma; 629 struct mld_ifinfo *mli; 630 struct in6_multi *inm; 631 int is_general_query; 632 uint16_t timer; 633 #ifdef KTR 634 char ip6tbuf[INET6_ADDRSTRLEN]; 635 #endif 636 637 is_general_query = 0; 638 639 if (!mld_v1enable) { 640 CTR3(KTR_MLD, "ignore v1 query %s on ifp %p(%s)", 641 ip6_sprintf(ip6tbuf, &mld->mld_addr), 642 ifp, ifp->if_xname); 643 return (0); 644 } 645 646 /* 647 * RFC3810 Section 6.2: MLD queries must originate from 648 * a router's link-local address. 649 */ 650 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 651 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 652 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 653 ifp, ifp->if_xname); 654 return (0); 655 } 656 657 /* 658 * Do address field validation upfront before we accept 659 * the query. 660 */ 661 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 662 /* 663 * MLDv1 General Query. 664 * If this was not sent to the all-nodes group, ignore it. 665 */ 666 struct in6_addr dst; 667 668 dst = ip6->ip6_dst; 669 in6_clearscope(&dst); 670 if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes)) 671 return (EINVAL); 672 is_general_query = 1; 673 } else { 674 /* 675 * Embed scope ID of receiving interface in MLD query for 676 * lookup whilst we don't hold other locks. 677 */ 678 in6_setscope(&mld->mld_addr, ifp, NULL); 679 } 680 681 IN6_MULTI_LOCK(); 682 MLD_LOCK(); 683 IF_ADDR_LOCK(ifp); 684 685 /* 686 * Switch to MLDv1 host compatibility mode. 687 */ 688 mli = MLD_IFINFO(ifp); 689 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 690 mld_set_version(mli, MLD_VERSION_1); 691 692 timer = (ntohs(mld->mld_maxdelay) * PR_FASTHZ) / MLD_TIMER_SCALE; 693 if (timer == 0) 694 timer = 1; 695 696 if (is_general_query) { 697 /* 698 * For each reporting group joined on this 699 * interface, kick the report timer. 700 */ 701 CTR2(KTR_MLD, "process v1 general query on ifp %p(%s)", 702 ifp, ifp->if_xname); 703 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 704 if (ifma->ifma_addr->sa_family != AF_INET6 || 705 ifma->ifma_protospec == NULL) 706 continue; 707 inm = (struct in6_multi *)ifma->ifma_protospec; 708 mld_v1_update_group(inm, timer); 709 } 710 } else { 711 /* 712 * MLDv1 Group-Specific Query. 713 * If this is a group-specific MLDv1 query, we need only 714 * look up the single group to process it. 715 */ 716 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 717 if (inm != NULL) { 718 CTR3(KTR_MLD, "process v1 query %s on ifp %p(%s)", 719 ip6_sprintf(ip6tbuf, &mld->mld_addr), 720 ifp, ifp->if_xname); 721 mld_v1_update_group(inm, timer); 722 } 723 /* XXX Clear embedded scope ID as userland won't expect it. */ 724 in6_clearscope(&mld->mld_addr); 725 } 726 727 IF_ADDR_UNLOCK(ifp); 728 MLD_UNLOCK(); 729 IN6_MULTI_UNLOCK(); 730 731 return (0); 732 } 733 734 /* 735 * Update the report timer on a group in response to an MLDv1 query. 736 * 737 * If we are becoming the reporting member for this group, start the timer. 738 * If we already are the reporting member for this group, and timer is 739 * below the threshold, reset it. 740 * 741 * We may be updating the group for the first time since we switched 742 * to MLDv2. If we are, then we must clear any recorded source lists, 743 * and transition to REPORTING state; the group timer is overloaded 744 * for group and group-source query responses. 745 * 746 * Unlike MLDv2, the delay per group should be jittered 747 * to avoid bursts of MLDv1 reports. 748 */ 749 static void 750 mld_v1_update_group(struct in6_multi *inm, const int timer) 751 { 752 #ifdef KTR 753 char ip6tbuf[INET6_ADDRSTRLEN]; 754 #endif 755 756 CTR4(KTR_MLD, "%s: %s/%s timer=%d", __func__, 757 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 758 inm->in6m_ifp->if_xname, timer); 759 760 IN6_MULTI_LOCK_ASSERT(); 761 762 switch (inm->in6m_state) { 763 case MLD_NOT_MEMBER: 764 case MLD_SILENT_MEMBER: 765 break; 766 case MLD_REPORTING_MEMBER: 767 if (inm->in6m_timer != 0 && 768 inm->in6m_timer <= timer) { 769 CTR1(KTR_MLD, "%s: REPORTING and timer running, " 770 "skipping.", __func__); 771 break; 772 } 773 /* FALLTHROUGH */ 774 case MLD_SG_QUERY_PENDING_MEMBER: 775 case MLD_G_QUERY_PENDING_MEMBER: 776 case MLD_IDLE_MEMBER: 777 case MLD_LAZY_MEMBER: 778 case MLD_AWAKENING_MEMBER: 779 CTR1(KTR_MLD, "%s: ->REPORTING", __func__); 780 inm->in6m_state = MLD_REPORTING_MEMBER; 781 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 782 V_current_state_timers_running6 = 1; 783 break; 784 case MLD_SLEEPING_MEMBER: 785 CTR1(KTR_MLD, "%s: ->AWAKENING", __func__); 786 inm->in6m_state = MLD_AWAKENING_MEMBER; 787 break; 788 case MLD_LEAVING_MEMBER: 789 break; 790 } 791 } 792 793 /* 794 * Process a received MLDv2 general, group-specific or 795 * group-and-source-specific query. 796 * 797 * Assumes that the query header has been pulled up to sizeof(mldv2_query). 798 * 799 * Return 0 if successful, otherwise an appropriate error code is returned. 800 */ 801 static int 802 mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 803 struct mbuf *m, const int off, const int icmp6len) 804 { 805 struct mld_ifinfo *mli; 806 struct mldv2_query *mld; 807 struct in6_multi *inm; 808 uint32_t maxdelay, nsrc, qqi; 809 int is_general_query; 810 uint16_t timer; 811 uint8_t qrv; 812 #ifdef KTR 813 char ip6tbuf[INET6_ADDRSTRLEN]; 814 #endif 815 816 is_general_query = 0; 817 818 /* 819 * RFC3810 Section 6.2: MLD queries must originate from 820 * a router's link-local address. 821 */ 822 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 823 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 824 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 825 ifp, ifp->if_xname); 826 return (0); 827 } 828 829 CTR2(KTR_MLD, "input v2 query on ifp %p(%s)", ifp, ifp->if_xname); 830 831 mld = (struct mldv2_query *)(mtod(m, uint8_t *) + off); 832 833 maxdelay = ntohs(mld->mld_maxdelay); /* in 1/10ths of a second */ 834 if (maxdelay >= 32678) { 835 maxdelay = (MLD_MRC_MANT(maxdelay) | 0x1000) << 836 (MLD_MRC_EXP(maxdelay) + 3); 837 } 838 timer = (maxdelay * PR_FASTHZ) / MLD_TIMER_SCALE; 839 if (timer == 0) 840 timer = 1; 841 842 qrv = MLD_QRV(mld->mld_misc); 843 if (qrv < 2) { 844 CTR3(KTR_MLD, "%s: clamping qrv %d to %d", __func__, 845 qrv, MLD_RV_INIT); 846 qrv = MLD_RV_INIT; 847 } 848 849 qqi = mld->mld_qqi; 850 if (qqi >= 128) { 851 qqi = MLD_QQIC_MANT(mld->mld_qqi) << 852 (MLD_QQIC_EXP(mld->mld_qqi) + 3); 853 } 854 855 nsrc = ntohs(mld->mld_numsrc); 856 if (nsrc > MLD_MAX_GS_SOURCES) 857 return (EMSGSIZE); 858 if (icmp6len < sizeof(struct mldv2_query) + 859 (nsrc * sizeof(struct in6_addr))) 860 return (EMSGSIZE); 861 862 /* 863 * Do further input validation upfront to avoid resetting timers 864 * should we need to discard this query. 865 */ 866 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 867 /* 868 * General Queries SHOULD be directed to ff02::1. 869 * A general query with a source list has undefined 870 * behaviour; discard it. 871 */ 872 struct in6_addr dst; 873 874 dst = ip6->ip6_dst; 875 in6_clearscope(&dst); 876 if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes) || 877 nsrc > 0) 878 return (EINVAL); 879 is_general_query = 1; 880 } else { 881 /* 882 * Embed scope ID of receiving interface in MLD query for 883 * lookup whilst we don't hold other locks (due to KAME 884 * locking lameness). We own this mbuf chain just now. 885 */ 886 in6_setscope(&mld->mld_addr, ifp, NULL); 887 } 888 889 IN6_MULTI_LOCK(); 890 MLD_LOCK(); 891 IF_ADDR_LOCK(ifp); 892 893 mli = MLD_IFINFO(ifp); 894 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 895 896 /* 897 * Discard the v2 query if we're in Compatibility Mode. 898 * The RFC is pretty clear that hosts need to stay in MLDv1 mode 899 * until the Old Version Querier Present timer expires. 900 */ 901 if (mli->mli_version != MLD_VERSION_2) 902 goto out_locked; 903 904 mld_set_version(mli, MLD_VERSION_2); 905 mli->mli_rv = qrv; 906 mli->mli_qi = qqi; 907 mli->mli_qri = maxdelay; 908 909 CTR4(KTR_MLD, "%s: qrv %d qi %d maxdelay %d", __func__, qrv, qqi, 910 maxdelay); 911 912 if (is_general_query) { 913 /* 914 * MLDv2 General Query. 915 * 916 * Schedule a current-state report on this ifp for 917 * all groups, possibly containing source lists. 918 * 919 * If there is a pending General Query response 920 * scheduled earlier than the selected delay, do 921 * not schedule any other reports. 922 * Otherwise, reset the interface timer. 923 */ 924 CTR2(KTR_MLD, "process v2 general query on ifp %p(%s)", 925 ifp, ifp->if_xname); 926 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) { 927 mli->mli_v2_timer = MLD_RANDOM_DELAY(timer); 928 V_interface_timers_running6 = 1; 929 } 930 } else { 931 /* 932 * MLDv2 Group-specific or Group-and-source-specific Query. 933 * 934 * Group-source-specific queries are throttled on 935 * a per-group basis to defeat denial-of-service attempts. 936 * Queries for groups we are not a member of on this 937 * link are simply ignored. 938 */ 939 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 940 if (inm == NULL) 941 goto out_locked; 942 if (nsrc > 0) { 943 if (!ratecheck(&inm->in6m_lastgsrtv, 944 &V_mld_gsrdelay)) { 945 CTR1(KTR_MLD, "%s: GS query throttled.", 946 __func__); 947 goto out_locked; 948 } 949 } 950 CTR2(KTR_MLD, "process v2 group query on ifp %p(%s)", 951 ifp, ifp->if_xname); 952 /* 953 * If there is a pending General Query response 954 * scheduled sooner than the selected delay, no 955 * further report need be scheduled. 956 * Otherwise, prepare to respond to the 957 * group-specific or group-and-source query. 958 */ 959 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) 960 mld_v2_process_group_query(inm, mli, timer, m, off); 961 962 /* XXX Clear embedded scope ID as userland won't expect it. */ 963 in6_clearscope(&mld->mld_addr); 964 } 965 966 out_locked: 967 IF_ADDR_UNLOCK(ifp); 968 MLD_UNLOCK(); 969 IN6_MULTI_UNLOCK(); 970 971 return (0); 972 } 973 974 /* 975 * Process a recieved MLDv2 group-specific or group-and-source-specific 976 * query. 977 * Return <0 if any error occured. Currently this is ignored. 978 */ 979 static int 980 mld_v2_process_group_query(struct in6_multi *inm, struct mld_ifinfo *mli, 981 int timer, struct mbuf *m0, const int off) 982 { 983 struct mldv2_query *mld; 984 int retval; 985 uint16_t nsrc; 986 987 IN6_MULTI_LOCK_ASSERT(); 988 MLD_LOCK_ASSERT(); 989 990 retval = 0; 991 mld = (struct mldv2_query *)(mtod(m0, uint8_t *) + off); 992 993 switch (inm->in6m_state) { 994 case MLD_NOT_MEMBER: 995 case MLD_SILENT_MEMBER: 996 case MLD_SLEEPING_MEMBER: 997 case MLD_LAZY_MEMBER: 998 case MLD_AWAKENING_MEMBER: 999 case MLD_IDLE_MEMBER: 1000 case MLD_LEAVING_MEMBER: 1001 return (retval); 1002 break; 1003 case MLD_REPORTING_MEMBER: 1004 case MLD_G_QUERY_PENDING_MEMBER: 1005 case MLD_SG_QUERY_PENDING_MEMBER: 1006 break; 1007 } 1008 1009 nsrc = ntohs(mld->mld_numsrc); 1010 1011 /* 1012 * Deal with group-specific queries upfront. 1013 * If any group query is already pending, purge any recorded 1014 * source-list state if it exists, and schedule a query response 1015 * for this group-specific query. 1016 */ 1017 if (nsrc == 0) { 1018 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 1019 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) { 1020 in6m_clear_recorded(inm); 1021 timer = min(inm->in6m_timer, timer); 1022 } 1023 inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER; 1024 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1025 V_current_state_timers_running6 = 1; 1026 return (retval); 1027 } 1028 1029 /* 1030 * Deal with the case where a group-and-source-specific query has 1031 * been received but a group-specific query is already pending. 1032 */ 1033 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) { 1034 timer = min(inm->in6m_timer, timer); 1035 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1036 V_current_state_timers_running6 = 1; 1037 return (retval); 1038 } 1039 1040 /* 1041 * Finally, deal with the case where a group-and-source-specific 1042 * query has been received, where a response to a previous g-s-r 1043 * query exists, or none exists. 1044 * In this case, we need to parse the source-list which the Querier 1045 * has provided us with and check if we have any source list filter 1046 * entries at T1 for these sources. If we do not, there is no need 1047 * schedule a report and the query may be dropped. 1048 * If we do, we must record them and schedule a current-state 1049 * report for those sources. 1050 */ 1051 if (inm->in6m_nsrc > 0) { 1052 struct mbuf *m; 1053 uint8_t *sp; 1054 int i, nrecorded; 1055 int soff; 1056 1057 m = m0; 1058 soff = off + sizeof(struct mldv2_query); 1059 nrecorded = 0; 1060 for (i = 0; i < nsrc; i++) { 1061 sp = mtod(m, uint8_t *) + soff; 1062 retval = in6m_record_source(inm, 1063 (const struct in6_addr *)sp); 1064 if (retval < 0) 1065 break; 1066 nrecorded += retval; 1067 soff += sizeof(struct in6_addr); 1068 if (soff >= m->m_len) { 1069 soff = soff - m->m_len; 1070 m = m->m_next; 1071 if (m == NULL) 1072 break; 1073 } 1074 } 1075 if (nrecorded > 0) { 1076 CTR1(KTR_MLD, 1077 "%s: schedule response to SG query", __func__); 1078 inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER; 1079 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1080 V_current_state_timers_running6 = 1; 1081 } 1082 } 1083 1084 return (retval); 1085 } 1086 1087 /* 1088 * Process a received MLDv1 host membership report. 1089 * Assumes mld points to mld_hdr in pulled up mbuf chain. 1090 * 1091 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 1092 * mld_addr. This is OK as we own the mbuf chain. 1093 */ 1094 static int 1095 mld_v1_input_report(struct ifnet *ifp, const struct ip6_hdr *ip6, 1096 /*const*/ struct mld_hdr *mld) 1097 { 1098 struct in6_addr src, dst; 1099 struct in6_ifaddr *ia; 1100 struct in6_multi *inm; 1101 #ifdef KTR 1102 char ip6tbuf[INET6_ADDRSTRLEN]; 1103 #endif 1104 1105 if (!mld_v1enable) { 1106 CTR3(KTR_MLD, "ignore v1 report %s on ifp %p(%s)", 1107 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1108 ifp, ifp->if_xname); 1109 return (0); 1110 } 1111 1112 if (ifp->if_flags & IFF_LOOPBACK) 1113 return (0); 1114 1115 /* 1116 * MLDv1 reports must originate from a host's link-local address, 1117 * or the unspecified address (when booting). 1118 */ 1119 src = ip6->ip6_src; 1120 in6_clearscope(&src); 1121 if (!IN6_IS_SCOPE_LINKLOCAL(&src) && !IN6_IS_ADDR_UNSPECIFIED(&src)) { 1122 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 1123 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 1124 ifp, ifp->if_xname); 1125 return (EINVAL); 1126 } 1127 1128 /* 1129 * RFC2710 Section 4: MLDv1 reports must pertain to a multicast 1130 * group, and must be directed to the group itself. 1131 */ 1132 dst = ip6->ip6_dst; 1133 in6_clearscope(&dst); 1134 if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) || 1135 !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &dst)) { 1136 CTR3(KTR_MLD, "ignore v1 query dst %s on ifp %p(%s)", 1137 ip6_sprintf(ip6tbuf, &ip6->ip6_dst), 1138 ifp, ifp->if_xname); 1139 return (EINVAL); 1140 } 1141 1142 /* 1143 * Make sure we don't hear our own membership report, as fast 1144 * leave requires knowing that we are the only member of a 1145 * group. Assume we used the link-local address if available, 1146 * otherwise look for ::. 1147 * 1148 * XXX Note that scope ID comparison is needed for the address 1149 * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be 1150 * performed for the on-wire address. 1151 */ 1152 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1153 if ((ia && IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia))) || 1154 (ia == NULL && IN6_IS_ADDR_UNSPECIFIED(&src))) { 1155 if (ia != NULL) 1156 ifa_free(&ia->ia_ifa); 1157 return (0); 1158 } 1159 if (ia != NULL) 1160 ifa_free(&ia->ia_ifa); 1161 1162 CTR3(KTR_MLD, "process v1 report %s on ifp %p(%s)", 1163 ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, ifp->if_xname); 1164 1165 /* 1166 * Embed scope ID of receiving interface in MLD query for lookup 1167 * whilst we don't hold other locks (due to KAME locking lameness). 1168 */ 1169 if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) 1170 in6_setscope(&mld->mld_addr, ifp, NULL); 1171 1172 IN6_MULTI_LOCK(); 1173 MLD_LOCK(); 1174 IF_ADDR_LOCK(ifp); 1175 1176 /* 1177 * MLDv1 report suppression. 1178 * If we are a member of this group, and our membership should be 1179 * reported, and our group timer is pending or about to be reset, 1180 * stop our group timer by transitioning to the 'lazy' state. 1181 */ 1182 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 1183 if (inm != NULL) { 1184 struct mld_ifinfo *mli; 1185 1186 mli = inm->in6m_mli; 1187 KASSERT(mli != NULL, 1188 ("%s: no mli for ifp %p", __func__, ifp)); 1189 1190 /* 1191 * If we are in MLDv2 host mode, do not allow the 1192 * other host's MLDv1 report to suppress our reports. 1193 */ 1194 if (mli->mli_version == MLD_VERSION_2) 1195 goto out_locked; 1196 1197 inm->in6m_timer = 0; 1198 1199 switch (inm->in6m_state) { 1200 case MLD_NOT_MEMBER: 1201 case MLD_SILENT_MEMBER: 1202 case MLD_SLEEPING_MEMBER: 1203 break; 1204 case MLD_REPORTING_MEMBER: 1205 case MLD_IDLE_MEMBER: 1206 case MLD_AWAKENING_MEMBER: 1207 CTR3(KTR_MLD, 1208 "report suppressed for %s on ifp %p(%s)", 1209 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1210 ifp, ifp->if_xname); 1211 case MLD_LAZY_MEMBER: 1212 inm->in6m_state = MLD_LAZY_MEMBER; 1213 break; 1214 case MLD_G_QUERY_PENDING_MEMBER: 1215 case MLD_SG_QUERY_PENDING_MEMBER: 1216 case MLD_LEAVING_MEMBER: 1217 break; 1218 } 1219 } 1220 1221 out_locked: 1222 MLD_UNLOCK(); 1223 IF_ADDR_UNLOCK(ifp); 1224 IN6_MULTI_UNLOCK(); 1225 1226 /* XXX Clear embedded scope ID as userland won't expect it. */ 1227 in6_clearscope(&mld->mld_addr); 1228 1229 return (0); 1230 } 1231 1232 /* 1233 * MLD input path. 1234 * 1235 * Assume query messages which fit in a single ICMPv6 message header 1236 * have been pulled up. 1237 * Assume that userland will want to see the message, even if it 1238 * otherwise fails kernel input validation; do not free it. 1239 * Pullup may however free the mbuf chain m if it fails. 1240 * 1241 * Return IPPROTO_DONE if we freed m. Otherwise, return 0. 1242 */ 1243 int 1244 mld_input(struct mbuf *m, int off, int icmp6len) 1245 { 1246 struct ifnet *ifp; 1247 struct ip6_hdr *ip6; 1248 struct mld_hdr *mld; 1249 int mldlen; 1250 1251 CTR3(KTR_MLD, "%s: called w/mbuf (%p,%d)", __func__, m, off); 1252 1253 ifp = m->m_pkthdr.rcvif; 1254 1255 ip6 = mtod(m, struct ip6_hdr *); 1256 1257 /* Pullup to appropriate size. */ 1258 mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off); 1259 if (mld->mld_type == MLD_LISTENER_QUERY && 1260 icmp6len >= sizeof(struct mldv2_query)) { 1261 mldlen = sizeof(struct mldv2_query); 1262 } else { 1263 mldlen = sizeof(struct mld_hdr); 1264 } 1265 IP6_EXTHDR_GET(mld, struct mld_hdr *, m, off, mldlen); 1266 if (mld == NULL) { 1267 ICMP6STAT_INC(icp6s_badlen); 1268 return (IPPROTO_DONE); 1269 } 1270 1271 /* 1272 * Userland needs to see all of this traffic for implementing 1273 * the endpoint discovery portion of multicast routing. 1274 */ 1275 switch (mld->mld_type) { 1276 case MLD_LISTENER_QUERY: 1277 icmp6_ifstat_inc(ifp, ifs6_in_mldquery); 1278 if (icmp6len == sizeof(struct mld_hdr)) { 1279 if (mld_v1_input_query(ifp, ip6, mld) != 0) 1280 return (0); 1281 } else if (icmp6len >= sizeof(struct mldv2_query)) { 1282 if (mld_v2_input_query(ifp, ip6, m, off, 1283 icmp6len) != 0) 1284 return (0); 1285 } 1286 break; 1287 case MLD_LISTENER_REPORT: 1288 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1289 if (mld_v1_input_report(ifp, ip6, mld) != 0) 1290 return (0); 1291 break; 1292 case MLDV2_LISTENER_REPORT: 1293 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1294 break; 1295 case MLD_LISTENER_DONE: 1296 icmp6_ifstat_inc(ifp, ifs6_in_mlddone); 1297 break; 1298 default: 1299 break; 1300 } 1301 1302 return (0); 1303 } 1304 1305 /* 1306 * Fast timeout handler (global). 1307 * VIMAGE: Timeout handlers are expected to service all vimages. 1308 */ 1309 void 1310 mld_fasttimo(void) 1311 { 1312 VNET_ITERATOR_DECL(vnet_iter); 1313 1314 VNET_LIST_RLOCK_NOSLEEP(); 1315 VNET_FOREACH(vnet_iter) { 1316 CURVNET_SET(vnet_iter); 1317 mld_fasttimo_vnet(); 1318 CURVNET_RESTORE(); 1319 } 1320 VNET_LIST_RUNLOCK_NOSLEEP(); 1321 } 1322 1323 /* 1324 * Fast timeout handler (per-vnet). 1325 * 1326 * VIMAGE: Assume caller has set up our curvnet. 1327 */ 1328 static void 1329 mld_fasttimo_vnet(void) 1330 { 1331 struct ifqueue scq; /* State-change packets */ 1332 struct ifqueue qrq; /* Query response packets */ 1333 struct ifnet *ifp; 1334 struct mld_ifinfo *mli; 1335 struct ifmultiaddr *ifma, *tifma; 1336 struct in6_multi *inm; 1337 int uri_fasthz; 1338 1339 uri_fasthz = 0; 1340 1341 /* 1342 * Quick check to see if any work needs to be done, in order to 1343 * minimize the overhead of fasttimo processing. 1344 * SMPng: XXX Unlocked reads. 1345 */ 1346 if (!V_current_state_timers_running6 && 1347 !V_interface_timers_running6 && 1348 !V_state_change_timers_running6) 1349 return; 1350 1351 IN6_MULTI_LOCK(); 1352 MLD_LOCK(); 1353 1354 /* 1355 * MLDv2 General Query response timer processing. 1356 */ 1357 if (V_interface_timers_running6) { 1358 CTR1(KTR_MLD, "%s: interface timers running", __func__); 1359 1360 V_interface_timers_running6 = 0; 1361 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1362 if (mli->mli_v2_timer == 0) { 1363 /* Do nothing. */ 1364 } else if (--mli->mli_v2_timer == 0) { 1365 mld_v2_dispatch_general_query(mli); 1366 } else { 1367 V_interface_timers_running6 = 1; 1368 } 1369 } 1370 } 1371 1372 if (!V_current_state_timers_running6 && 1373 !V_state_change_timers_running6) 1374 goto out_locked; 1375 1376 V_current_state_timers_running6 = 0; 1377 V_state_change_timers_running6 = 0; 1378 1379 CTR1(KTR_MLD, "%s: state change timers running", __func__); 1380 1381 /* 1382 * MLD host report and state-change timer processing. 1383 * Note: Processing a v2 group timer may remove a node. 1384 */ 1385 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1386 ifp = mli->mli_ifp; 1387 1388 if (mli->mli_version == MLD_VERSION_2) { 1389 uri_fasthz = MLD_RANDOM_DELAY(mli->mli_uri * 1390 PR_FASTHZ); 1391 1392 memset(&qrq, 0, sizeof(struct ifqueue)); 1393 IFQ_SET_MAXLEN(&qrq, MLD_MAX_G_GS_PACKETS); 1394 1395 memset(&scq, 0, sizeof(struct ifqueue)); 1396 IFQ_SET_MAXLEN(&scq, MLD_MAX_STATE_CHANGE_PACKETS); 1397 } 1398 1399 IF_ADDR_LOCK(ifp); 1400 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, 1401 tifma) { 1402 if (ifma->ifma_addr->sa_family != AF_INET6 || 1403 ifma->ifma_protospec == NULL) 1404 continue; 1405 inm = (struct in6_multi *)ifma->ifma_protospec; 1406 switch (mli->mli_version) { 1407 case MLD_VERSION_1: 1408 /* 1409 * XXX Drop IF_ADDR lock temporarily to 1410 * avoid recursion caused by a potential 1411 * call by in6ifa_ifpforlinklocal(). 1412 * rwlock candidate? 1413 */ 1414 IF_ADDR_UNLOCK(ifp); 1415 mld_v1_process_group_timer(inm, 1416 mli->mli_version); 1417 IF_ADDR_LOCK(ifp); 1418 break; 1419 case MLD_VERSION_2: 1420 mld_v2_process_group_timers(mli, &qrq, 1421 &scq, inm, uri_fasthz); 1422 break; 1423 } 1424 } 1425 IF_ADDR_UNLOCK(ifp); 1426 1427 if (mli->mli_version == MLD_VERSION_2) { 1428 struct in6_multi *tinm; 1429 1430 mld_dispatch_queue(&qrq, 0); 1431 mld_dispatch_queue(&scq, 0); 1432 1433 /* 1434 * Free the in_multi reference(s) for 1435 * this lifecycle. 1436 */ 1437 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, 1438 in6m_nrele, tinm) { 1439 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, 1440 in6m_nrele); 1441 in6m_release_locked(inm); 1442 } 1443 } 1444 } 1445 1446 out_locked: 1447 MLD_UNLOCK(); 1448 IN6_MULTI_UNLOCK(); 1449 } 1450 1451 /* 1452 * Update host report group timer. 1453 * Will update the global pending timer flags. 1454 */ 1455 static void 1456 mld_v1_process_group_timer(struct in6_multi *inm, const int version) 1457 { 1458 int report_timer_expired; 1459 1460 IN6_MULTI_LOCK_ASSERT(); 1461 MLD_LOCK_ASSERT(); 1462 1463 if (inm->in6m_timer == 0) { 1464 report_timer_expired = 0; 1465 } else if (--inm->in6m_timer == 0) { 1466 report_timer_expired = 1; 1467 } else { 1468 V_current_state_timers_running6 = 1; 1469 return; 1470 } 1471 1472 switch (inm->in6m_state) { 1473 case MLD_NOT_MEMBER: 1474 case MLD_SILENT_MEMBER: 1475 case MLD_IDLE_MEMBER: 1476 case MLD_LAZY_MEMBER: 1477 case MLD_SLEEPING_MEMBER: 1478 case MLD_AWAKENING_MEMBER: 1479 break; 1480 case MLD_REPORTING_MEMBER: 1481 if (report_timer_expired) { 1482 inm->in6m_state = MLD_IDLE_MEMBER; 1483 (void)mld_v1_transmit_report(inm, 1484 MLD_LISTENER_REPORT); 1485 } 1486 break; 1487 case MLD_G_QUERY_PENDING_MEMBER: 1488 case MLD_SG_QUERY_PENDING_MEMBER: 1489 case MLD_LEAVING_MEMBER: 1490 break; 1491 } 1492 } 1493 1494 /* 1495 * Update a group's timers for MLDv2. 1496 * Will update the global pending timer flags. 1497 * Note: Unlocked read from mli. 1498 */ 1499 static void 1500 mld_v2_process_group_timers(struct mld_ifinfo *mli, 1501 struct ifqueue *qrq, struct ifqueue *scq, 1502 struct in6_multi *inm, const int uri_fasthz) 1503 { 1504 int query_response_timer_expired; 1505 int state_change_retransmit_timer_expired; 1506 #ifdef KTR 1507 char ip6tbuf[INET6_ADDRSTRLEN]; 1508 #endif 1509 1510 IN6_MULTI_LOCK_ASSERT(); 1511 MLD_LOCK_ASSERT(); 1512 1513 query_response_timer_expired = 0; 1514 state_change_retransmit_timer_expired = 0; 1515 1516 /* 1517 * During a transition from compatibility mode back to MLDv2, 1518 * a group record in REPORTING state may still have its group 1519 * timer active. This is a no-op in this function; it is easier 1520 * to deal with it here than to complicate the slow-timeout path. 1521 */ 1522 if (inm->in6m_timer == 0) { 1523 query_response_timer_expired = 0; 1524 } else if (--inm->in6m_timer == 0) { 1525 query_response_timer_expired = 1; 1526 } else { 1527 V_current_state_timers_running6 = 1; 1528 } 1529 1530 if (inm->in6m_sctimer == 0) { 1531 state_change_retransmit_timer_expired = 0; 1532 } else if (--inm->in6m_sctimer == 0) { 1533 state_change_retransmit_timer_expired = 1; 1534 } else { 1535 V_state_change_timers_running6 = 1; 1536 } 1537 1538 /* We are in fasttimo, so be quick about it. */ 1539 if (!state_change_retransmit_timer_expired && 1540 !query_response_timer_expired) 1541 return; 1542 1543 switch (inm->in6m_state) { 1544 case MLD_NOT_MEMBER: 1545 case MLD_SILENT_MEMBER: 1546 case MLD_SLEEPING_MEMBER: 1547 case MLD_LAZY_MEMBER: 1548 case MLD_AWAKENING_MEMBER: 1549 case MLD_IDLE_MEMBER: 1550 break; 1551 case MLD_G_QUERY_PENDING_MEMBER: 1552 case MLD_SG_QUERY_PENDING_MEMBER: 1553 /* 1554 * Respond to a previously pending Group-Specific 1555 * or Group-and-Source-Specific query by enqueueing 1556 * the appropriate Current-State report for 1557 * immediate transmission. 1558 */ 1559 if (query_response_timer_expired) { 1560 int retval; 1561 1562 retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1, 1563 (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER), 1564 0); 1565 CTR2(KTR_MLD, "%s: enqueue record = %d", 1566 __func__, retval); 1567 inm->in6m_state = MLD_REPORTING_MEMBER; 1568 in6m_clear_recorded(inm); 1569 } 1570 /* FALLTHROUGH */ 1571 case MLD_REPORTING_MEMBER: 1572 case MLD_LEAVING_MEMBER: 1573 if (state_change_retransmit_timer_expired) { 1574 /* 1575 * State-change retransmission timer fired. 1576 * If there are any further pending retransmissions, 1577 * set the global pending state-change flag, and 1578 * reset the timer. 1579 */ 1580 if (--inm->in6m_scrv > 0) { 1581 inm->in6m_sctimer = uri_fasthz; 1582 V_state_change_timers_running6 = 1; 1583 } 1584 /* 1585 * Retransmit the previously computed state-change 1586 * report. If there are no further pending 1587 * retransmissions, the mbuf queue will be consumed. 1588 * Update T0 state to T1 as we have now sent 1589 * a state-change. 1590 */ 1591 (void)mld_v2_merge_state_changes(inm, scq); 1592 1593 in6m_commit(inm); 1594 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 1595 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1596 inm->in6m_ifp->if_xname); 1597 1598 /* 1599 * If we are leaving the group for good, make sure 1600 * we release MLD's reference to it. 1601 * This release must be deferred using a SLIST, 1602 * as we are called from a loop which traverses 1603 * the in_ifmultiaddr TAILQ. 1604 */ 1605 if (inm->in6m_state == MLD_LEAVING_MEMBER && 1606 inm->in6m_scrv == 0) { 1607 inm->in6m_state = MLD_NOT_MEMBER; 1608 SLIST_INSERT_HEAD(&mli->mli_relinmhead, 1609 inm, in6m_nrele); 1610 } 1611 } 1612 break; 1613 } 1614 } 1615 1616 /* 1617 * Switch to a different version on the given interface, 1618 * as per Section 9.12. 1619 */ 1620 static void 1621 mld_set_version(struct mld_ifinfo *mli, const int version) 1622 { 1623 int old_version_timer; 1624 1625 MLD_LOCK_ASSERT(); 1626 1627 CTR4(KTR_MLD, "%s: switching to v%d on ifp %p(%s)", __func__, 1628 version, mli->mli_ifp, mli->mli_ifp->if_xname); 1629 1630 if (version == MLD_VERSION_1) { 1631 /* 1632 * Compute the "Older Version Querier Present" timer as per 1633 * Section 9.12. 1634 */ 1635 old_version_timer = (mli->mli_rv * mli->mli_qi) + mli->mli_qri; 1636 old_version_timer *= PR_SLOWHZ; 1637 mli->mli_v1_timer = old_version_timer; 1638 } 1639 1640 if (mli->mli_v1_timer > 0 && mli->mli_version != MLD_VERSION_1) { 1641 mli->mli_version = MLD_VERSION_1; 1642 mld_v2_cancel_link_timers(mli); 1643 } 1644 } 1645 1646 /* 1647 * Cancel pending MLDv2 timers for the given link and all groups 1648 * joined on it; state-change, general-query, and group-query timers. 1649 */ 1650 static void 1651 mld_v2_cancel_link_timers(struct mld_ifinfo *mli) 1652 { 1653 struct ifmultiaddr *ifma; 1654 struct ifnet *ifp; 1655 struct in6_multi *inm; 1656 1657 CTR3(KTR_MLD, "%s: cancel v2 timers on ifp %p(%s)", __func__, 1658 mli->mli_ifp, mli->mli_ifp->if_xname); 1659 1660 IN6_MULTI_LOCK_ASSERT(); 1661 MLD_LOCK_ASSERT(); 1662 1663 /* 1664 * Fast-track this potentially expensive operation 1665 * by checking all the global 'timer pending' flags. 1666 */ 1667 if (!V_interface_timers_running6 && 1668 !V_state_change_timers_running6 && 1669 !V_current_state_timers_running6) 1670 return; 1671 1672 mli->mli_v2_timer = 0; 1673 1674 ifp = mli->mli_ifp; 1675 1676 IF_ADDR_LOCK(ifp); 1677 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1678 if (ifma->ifma_addr->sa_family != AF_INET6) 1679 continue; 1680 inm = (struct in6_multi *)ifma->ifma_protospec; 1681 switch (inm->in6m_state) { 1682 case MLD_NOT_MEMBER: 1683 case MLD_SILENT_MEMBER: 1684 case MLD_IDLE_MEMBER: 1685 case MLD_LAZY_MEMBER: 1686 case MLD_SLEEPING_MEMBER: 1687 case MLD_AWAKENING_MEMBER: 1688 break; 1689 case MLD_LEAVING_MEMBER: 1690 /* 1691 * If we are leaving the group and switching 1692 * version, we need to release the final 1693 * reference held for issuing the INCLUDE {}. 1694 * 1695 * SMPNG: Must drop and re-acquire IF_ADDR_LOCK 1696 * around in6m_release_locked(), as it is not 1697 * a recursive mutex. 1698 */ 1699 IF_ADDR_UNLOCK(ifp); 1700 in6m_release_locked(inm); 1701 IF_ADDR_LOCK(ifp); 1702 /* FALLTHROUGH */ 1703 case MLD_G_QUERY_PENDING_MEMBER: 1704 case MLD_SG_QUERY_PENDING_MEMBER: 1705 in6m_clear_recorded(inm); 1706 /* FALLTHROUGH */ 1707 case MLD_REPORTING_MEMBER: 1708 inm->in6m_sctimer = 0; 1709 inm->in6m_timer = 0; 1710 inm->in6m_state = MLD_REPORTING_MEMBER; 1711 /* 1712 * Free any pending MLDv2 state-change records. 1713 */ 1714 _IF_DRAIN(&inm->in6m_scq); 1715 break; 1716 } 1717 } 1718 IF_ADDR_UNLOCK(ifp); 1719 } 1720 1721 /* 1722 * Global slowtimo handler. 1723 * VIMAGE: Timeout handlers are expected to service all vimages. 1724 */ 1725 void 1726 mld_slowtimo(void) 1727 { 1728 VNET_ITERATOR_DECL(vnet_iter); 1729 1730 VNET_LIST_RLOCK_NOSLEEP(); 1731 VNET_FOREACH(vnet_iter) { 1732 CURVNET_SET(vnet_iter); 1733 mld_slowtimo_vnet(); 1734 CURVNET_RESTORE(); 1735 } 1736 VNET_LIST_RUNLOCK_NOSLEEP(); 1737 } 1738 1739 /* 1740 * Per-vnet slowtimo handler. 1741 */ 1742 static void 1743 mld_slowtimo_vnet(void) 1744 { 1745 struct mld_ifinfo *mli; 1746 1747 MLD_LOCK(); 1748 1749 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1750 mld_v1_process_querier_timers(mli); 1751 } 1752 1753 MLD_UNLOCK(); 1754 } 1755 1756 /* 1757 * Update the Older Version Querier Present timers for a link. 1758 * See Section 9.12 of RFC 3810. 1759 */ 1760 static void 1761 mld_v1_process_querier_timers(struct mld_ifinfo *mli) 1762 { 1763 1764 MLD_LOCK_ASSERT(); 1765 1766 if (mli->mli_version != MLD_VERSION_2 && --mli->mli_v1_timer == 0) { 1767 /* 1768 * MLDv1 Querier Present timer expired; revert to MLDv2. 1769 */ 1770 CTR5(KTR_MLD, 1771 "%s: transition from v%d -> v%d on %p(%s)", 1772 __func__, mli->mli_version, MLD_VERSION_2, 1773 mli->mli_ifp, mli->mli_ifp->if_xname); 1774 mli->mli_version = MLD_VERSION_2; 1775 } 1776 } 1777 1778 /* 1779 * Transmit an MLDv1 report immediately. 1780 */ 1781 static int 1782 mld_v1_transmit_report(struct in6_multi *in6m, const int type) 1783 { 1784 struct ifnet *ifp; 1785 struct in6_ifaddr *ia; 1786 struct ip6_hdr *ip6; 1787 struct mbuf *mh, *md; 1788 struct mld_hdr *mld; 1789 1790 IN6_MULTI_LOCK_ASSERT(); 1791 MLD_LOCK_ASSERT(); 1792 1793 ifp = in6m->in6m_ifp; 1794 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1795 /* ia may be NULL if link-local address is tentative. */ 1796 1797 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 1798 if (mh == NULL) { 1799 if (ia != NULL) 1800 ifa_free(&ia->ia_ifa); 1801 return (ENOMEM); 1802 } 1803 MGET(md, M_DONTWAIT, MT_DATA); 1804 if (md == NULL) { 1805 m_free(mh); 1806 if (ia != NULL) 1807 ifa_free(&ia->ia_ifa); 1808 return (ENOMEM); 1809 } 1810 mh->m_next = md; 1811 1812 /* 1813 * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so 1814 * that ether_output() does not need to allocate another mbuf 1815 * for the header in the most common case. 1816 */ 1817 MH_ALIGN(mh, sizeof(struct ip6_hdr)); 1818 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr); 1819 mh->m_len = sizeof(struct ip6_hdr); 1820 1821 ip6 = mtod(mh, struct ip6_hdr *); 1822 ip6->ip6_flow = 0; 1823 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 1824 ip6->ip6_vfc |= IPV6_VERSION; 1825 ip6->ip6_nxt = IPPROTO_ICMPV6; 1826 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 1827 ip6->ip6_dst = in6m->in6m_addr; 1828 1829 md->m_len = sizeof(struct mld_hdr); 1830 mld = mtod(md, struct mld_hdr *); 1831 mld->mld_type = type; 1832 mld->mld_code = 0; 1833 mld->mld_cksum = 0; 1834 mld->mld_maxdelay = 0; 1835 mld->mld_reserved = 0; 1836 mld->mld_addr = in6m->in6m_addr; 1837 in6_clearscope(&mld->mld_addr); 1838 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 1839 sizeof(struct ip6_hdr), sizeof(struct mld_hdr)); 1840 1841 mld_save_context(mh, ifp); 1842 mh->m_flags |= M_MLDV1; 1843 1844 mld_dispatch_packet(mh); 1845 1846 if (ia != NULL) 1847 ifa_free(&ia->ia_ifa); 1848 return (0); 1849 } 1850 1851 /* 1852 * Process a state change from the upper layer for the given IPv6 group. 1853 * 1854 * Each socket holds a reference on the in_multi in its own ip_moptions. 1855 * The socket layer will have made the necessary updates to.the group 1856 * state, it is now up to MLD to issue a state change report if there 1857 * has been any change between T0 (when the last state-change was issued) 1858 * and T1 (now). 1859 * 1860 * We use the MLDv2 state machine at group level. The MLd module 1861 * however makes the decision as to which MLD protocol version to speak. 1862 * A state change *from* INCLUDE {} always means an initial join. 1863 * A state change *to* INCLUDE {} always means a final leave. 1864 * 1865 * If delay is non-zero, and the state change is an initial multicast 1866 * join, the state change report will be delayed by 'delay' ticks 1867 * in units of PR_FASTHZ if MLDv1 is active on the link; otherwise 1868 * the initial MLDv2 state change report will be delayed by whichever 1869 * is sooner, a pending state-change timer or delay itself. 1870 * 1871 * VIMAGE: curvnet should have been set by caller, as this routine 1872 * is called from the socket option handlers. 1873 */ 1874 int 1875 mld_change_state(struct in6_multi *inm, const int delay) 1876 { 1877 struct mld_ifinfo *mli; 1878 struct ifnet *ifp; 1879 int error; 1880 1881 IN6_MULTI_LOCK_ASSERT(); 1882 1883 error = 0; 1884 1885 /* 1886 * Try to detect if the upper layer just asked us to change state 1887 * for an interface which has now gone away. 1888 */ 1889 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); 1890 ifp = inm->in6m_ifma->ifma_ifp; 1891 if (ifp != NULL) { 1892 /* 1893 * Sanity check that netinet6's notion of ifp is the 1894 * same as net's. 1895 */ 1896 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); 1897 } 1898 1899 MLD_LOCK(); 1900 1901 mli = MLD_IFINFO(ifp); 1902 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 1903 1904 /* 1905 * If we detect a state transition to or from MCAST_UNDEFINED 1906 * for this group, then we are starting or finishing an MLD 1907 * life cycle for this group. 1908 */ 1909 if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) { 1910 CTR3(KTR_MLD, "%s: inm transition %d -> %d", __func__, 1911 inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode); 1912 if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) { 1913 CTR1(KTR_MLD, "%s: initial join", __func__); 1914 error = mld_initial_join(inm, mli, delay); 1915 goto out_locked; 1916 } else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) { 1917 CTR1(KTR_MLD, "%s: final leave", __func__); 1918 mld_final_leave(inm, mli); 1919 goto out_locked; 1920 } 1921 } else { 1922 CTR1(KTR_MLD, "%s: filter set change", __func__); 1923 } 1924 1925 error = mld_handle_state_change(inm, mli); 1926 1927 out_locked: 1928 MLD_UNLOCK(); 1929 return (error); 1930 } 1931 1932 /* 1933 * Perform the initial join for an MLD group. 1934 * 1935 * When joining a group: 1936 * If the group should have its MLD traffic suppressed, do nothing. 1937 * MLDv1 starts sending MLDv1 host membership reports. 1938 * MLDv2 will schedule an MLDv2 state-change report containing the 1939 * initial state of the membership. 1940 * 1941 * If the delay argument is non-zero, then we must delay sending the 1942 * initial state change for delay ticks (in units of PR_FASTHZ). 1943 */ 1944 static int 1945 mld_initial_join(struct in6_multi *inm, struct mld_ifinfo *mli, 1946 const int delay) 1947 { 1948 struct ifnet *ifp; 1949 struct ifqueue *ifq; 1950 int error, retval, syncstates; 1951 int odelay; 1952 #ifdef KTR 1953 char ip6tbuf[INET6_ADDRSTRLEN]; 1954 #endif 1955 1956 CTR4(KTR_MLD, "%s: initial join %s on ifp %p(%s)", 1957 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1958 inm->in6m_ifp, inm->in6m_ifp->if_xname); 1959 1960 error = 0; 1961 syncstates = 1; 1962 1963 ifp = inm->in6m_ifp; 1964 1965 IN6_MULTI_LOCK_ASSERT(); 1966 MLD_LOCK_ASSERT(); 1967 1968 KASSERT(mli && mli->mli_ifp == ifp, ("%s: inconsistent ifp", __func__)); 1969 1970 /* 1971 * Groups joined on loopback or marked as 'not reported', 1972 * enter the MLD_SILENT_MEMBER state and 1973 * are never reported in any protocol exchanges. 1974 * All other groups enter the appropriate state machine 1975 * for the version in use on this link. 1976 * A link marked as MLIF_SILENT causes MLD to be completely 1977 * disabled for the link. 1978 */ 1979 if ((ifp->if_flags & IFF_LOOPBACK) || 1980 (mli->mli_flags & MLIF_SILENT) || 1981 !mld_is_addr_reported(&inm->in6m_addr)) { 1982 CTR1(KTR_MLD, 1983 "%s: not kicking state machine for silent group", __func__); 1984 inm->in6m_state = MLD_SILENT_MEMBER; 1985 inm->in6m_timer = 0; 1986 } else { 1987 /* 1988 * Deal with overlapping in_multi lifecycle. 1989 * If this group was LEAVING, then make sure 1990 * we drop the reference we picked up to keep the 1991 * group around for the final INCLUDE {} enqueue. 1992 */ 1993 if (mli->mli_version == MLD_VERSION_2 && 1994 inm->in6m_state == MLD_LEAVING_MEMBER) 1995 in6m_release_locked(inm); 1996 1997 inm->in6m_state = MLD_REPORTING_MEMBER; 1998 1999 switch (mli->mli_version) { 2000 case MLD_VERSION_1: 2001 /* 2002 * If a delay was provided, only use it if 2003 * it is greater than the delay normally 2004 * used for an MLDv1 state change report, 2005 * and delay sending the initial MLDv1 report 2006 * by not transitioning to the IDLE state. 2007 */ 2008 odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI * PR_FASTHZ); 2009 if (delay) { 2010 inm->in6m_timer = max(delay, odelay); 2011 V_current_state_timers_running6 = 1; 2012 } else { 2013 inm->in6m_state = MLD_IDLE_MEMBER; 2014 error = mld_v1_transmit_report(inm, 2015 MLD_LISTENER_REPORT); 2016 if (error == 0) { 2017 inm->in6m_timer = odelay; 2018 V_current_state_timers_running6 = 1; 2019 } 2020 } 2021 break; 2022 2023 case MLD_VERSION_2: 2024 /* 2025 * Defer update of T0 to T1, until the first copy 2026 * of the state change has been transmitted. 2027 */ 2028 syncstates = 0; 2029 2030 /* 2031 * Immediately enqueue a State-Change Report for 2032 * this interface, freeing any previous reports. 2033 * Don't kick the timers if there is nothing to do, 2034 * or if an error occurred. 2035 */ 2036 ifq = &inm->in6m_scq; 2037 _IF_DRAIN(ifq); 2038 retval = mld_v2_enqueue_group_record(ifq, inm, 1, 2039 0, 0, (mli->mli_flags & MLIF_USEALLOW)); 2040 CTR2(KTR_MLD, "%s: enqueue record = %d", 2041 __func__, retval); 2042 if (retval <= 0) { 2043 error = retval * -1; 2044 break; 2045 } 2046 2047 /* 2048 * Schedule transmission of pending state-change 2049 * report up to RV times for this link. The timer 2050 * will fire at the next mld_fasttimo (~200ms), 2051 * giving us an opportunity to merge the reports. 2052 * 2053 * If a delay was provided to this function, only 2054 * use this delay if sooner than the existing one. 2055 */ 2056 KASSERT(mli->mli_rv > 1, 2057 ("%s: invalid robustness %d", __func__, 2058 mli->mli_rv)); 2059 inm->in6m_scrv = mli->mli_rv; 2060 if (delay) { 2061 if (inm->in6m_sctimer > 1) { 2062 inm->in6m_sctimer = 2063 min(inm->in6m_sctimer, delay); 2064 } else 2065 inm->in6m_sctimer = delay; 2066 } else 2067 inm->in6m_sctimer = 1; 2068 V_state_change_timers_running6 = 1; 2069 2070 error = 0; 2071 break; 2072 } 2073 } 2074 2075 /* 2076 * Only update the T0 state if state change is atomic, 2077 * i.e. we don't need to wait for a timer to fire before we 2078 * can consider the state change to have been communicated. 2079 */ 2080 if (syncstates) { 2081 in6m_commit(inm); 2082 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2083 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2084 inm->in6m_ifp->if_xname); 2085 } 2086 2087 return (error); 2088 } 2089 2090 /* 2091 * Issue an intermediate state change during the life-cycle. 2092 */ 2093 static int 2094 mld_handle_state_change(struct in6_multi *inm, struct mld_ifinfo *mli) 2095 { 2096 struct ifnet *ifp; 2097 int retval; 2098 #ifdef KTR 2099 char ip6tbuf[INET6_ADDRSTRLEN]; 2100 #endif 2101 2102 CTR4(KTR_MLD, "%s: state change for %s on ifp %p(%s)", 2103 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2104 inm->in6m_ifp, inm->in6m_ifp->if_xname); 2105 2106 ifp = inm->in6m_ifp; 2107 2108 IN6_MULTI_LOCK_ASSERT(); 2109 MLD_LOCK_ASSERT(); 2110 2111 KASSERT(mli && mli->mli_ifp == ifp, 2112 ("%s: inconsistent ifp", __func__)); 2113 2114 if ((ifp->if_flags & IFF_LOOPBACK) || 2115 (mli->mli_flags & MLIF_SILENT) || 2116 !mld_is_addr_reported(&inm->in6m_addr) || 2117 (mli->mli_version != MLD_VERSION_2)) { 2118 if (!mld_is_addr_reported(&inm->in6m_addr)) { 2119 CTR1(KTR_MLD, 2120 "%s: not kicking state machine for silent group", __func__); 2121 } 2122 CTR1(KTR_MLD, "%s: nothing to do", __func__); 2123 in6m_commit(inm); 2124 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2125 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2126 inm->in6m_ifp->if_xname); 2127 return (0); 2128 } 2129 2130 _IF_DRAIN(&inm->in6m_scq); 2131 2132 retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0, 2133 (mli->mli_flags & MLIF_USEALLOW)); 2134 CTR2(KTR_MLD, "%s: enqueue record = %d", __func__, retval); 2135 if (retval <= 0) 2136 return (-retval); 2137 2138 /* 2139 * If record(s) were enqueued, start the state-change 2140 * report timer for this group. 2141 */ 2142 inm->in6m_scrv = mli->mli_rv; 2143 inm->in6m_sctimer = 1; 2144 V_state_change_timers_running6 = 1; 2145 2146 return (0); 2147 } 2148 2149 /* 2150 * Perform the final leave for a multicast address. 2151 * 2152 * When leaving a group: 2153 * MLDv1 sends a DONE message, if and only if we are the reporter. 2154 * MLDv2 enqueues a state-change report containing a transition 2155 * to INCLUDE {} for immediate transmission. 2156 */ 2157 static void 2158 mld_final_leave(struct in6_multi *inm, struct mld_ifinfo *mli) 2159 { 2160 int syncstates; 2161 #ifdef KTR 2162 char ip6tbuf[INET6_ADDRSTRLEN]; 2163 #endif 2164 2165 syncstates = 1; 2166 2167 CTR4(KTR_MLD, "%s: final leave %s on ifp %p(%s)", 2168 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2169 inm->in6m_ifp, inm->in6m_ifp->if_xname); 2170 2171 IN6_MULTI_LOCK_ASSERT(); 2172 MLD_LOCK_ASSERT(); 2173 2174 switch (inm->in6m_state) { 2175 case MLD_NOT_MEMBER: 2176 case MLD_SILENT_MEMBER: 2177 case MLD_LEAVING_MEMBER: 2178 /* Already leaving or left; do nothing. */ 2179 CTR1(KTR_MLD, 2180 "%s: not kicking state machine for silent group", __func__); 2181 break; 2182 case MLD_REPORTING_MEMBER: 2183 case MLD_IDLE_MEMBER: 2184 case MLD_G_QUERY_PENDING_MEMBER: 2185 case MLD_SG_QUERY_PENDING_MEMBER: 2186 if (mli->mli_version == MLD_VERSION_1) { 2187 #ifdef INVARIANTS 2188 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 2189 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) 2190 panic("%s: MLDv2 state reached, not MLDv2 mode", 2191 __func__); 2192 #endif 2193 mld_v1_transmit_report(inm, MLD_LISTENER_DONE); 2194 inm->in6m_state = MLD_NOT_MEMBER; 2195 } else if (mli->mli_version == MLD_VERSION_2) { 2196 /* 2197 * Stop group timer and all pending reports. 2198 * Immediately enqueue a state-change report 2199 * TO_IN {} to be sent on the next fast timeout, 2200 * giving us an opportunity to merge reports. 2201 */ 2202 _IF_DRAIN(&inm->in6m_scq); 2203 inm->in6m_timer = 0; 2204 inm->in6m_scrv = mli->mli_rv; 2205 CTR4(KTR_MLD, "%s: Leaving %s/%s with %d " 2206 "pending retransmissions.", __func__, 2207 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2208 inm->in6m_ifp->if_xname, inm->in6m_scrv); 2209 if (inm->in6m_scrv == 0) { 2210 inm->in6m_state = MLD_NOT_MEMBER; 2211 inm->in6m_sctimer = 0; 2212 } else { 2213 int retval; 2214 2215 in6m_acquire_locked(inm); 2216 2217 retval = mld_v2_enqueue_group_record( 2218 &inm->in6m_scq, inm, 1, 0, 0, 2219 (mli->mli_flags & MLIF_USEALLOW)); 2220 KASSERT(retval != 0, 2221 ("%s: enqueue record = %d", __func__, 2222 retval)); 2223 2224 inm->in6m_state = MLD_LEAVING_MEMBER; 2225 inm->in6m_sctimer = 1; 2226 V_state_change_timers_running6 = 1; 2227 syncstates = 0; 2228 } 2229 break; 2230 } 2231 break; 2232 case MLD_LAZY_MEMBER: 2233 case MLD_SLEEPING_MEMBER: 2234 case MLD_AWAKENING_MEMBER: 2235 /* Our reports are suppressed; do nothing. */ 2236 break; 2237 } 2238 2239 if (syncstates) { 2240 in6m_commit(inm); 2241 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2242 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2243 inm->in6m_ifp->if_xname); 2244 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 2245 CTR3(KTR_MLD, "%s: T1 now MCAST_UNDEFINED for %p/%s", 2246 __func__, &inm->in6m_addr, inm->in6m_ifp->if_xname); 2247 } 2248 } 2249 2250 /* 2251 * Enqueue an MLDv2 group record to the given output queue. 2252 * 2253 * If is_state_change is zero, a current-state record is appended. 2254 * If is_state_change is non-zero, a state-change report is appended. 2255 * 2256 * If is_group_query is non-zero, an mbuf packet chain is allocated. 2257 * If is_group_query is zero, and if there is a packet with free space 2258 * at the tail of the queue, it will be appended to providing there 2259 * is enough free space. 2260 * Otherwise a new mbuf packet chain is allocated. 2261 * 2262 * If is_source_query is non-zero, each source is checked to see if 2263 * it was recorded for a Group-Source query, and will be omitted if 2264 * it is not both in-mode and recorded. 2265 * 2266 * If use_block_allow is non-zero, state change reports for initial join 2267 * and final leave, on an inclusive mode group with a source list, will be 2268 * rewritten to use the ALLOW_NEW and BLOCK_OLD record types, respectively. 2269 * 2270 * The function will attempt to allocate leading space in the packet 2271 * for the IPv6+ICMP headers to be prepended without fragmenting the chain. 2272 * 2273 * If successful the size of all data appended to the queue is returned, 2274 * otherwise an error code less than zero is returned, or zero if 2275 * no record(s) were appended. 2276 */ 2277 static int 2278 mld_v2_enqueue_group_record(struct ifqueue *ifq, struct in6_multi *inm, 2279 const int is_state_change, const int is_group_query, 2280 const int is_source_query, const int use_block_allow) 2281 { 2282 struct mldv2_record mr; 2283 struct mldv2_record *pmr; 2284 struct ifnet *ifp; 2285 struct ip6_msource *ims, *nims; 2286 struct mbuf *m0, *m, *md; 2287 int error, is_filter_list_change; 2288 int minrec0len, m0srcs, msrcs, nbytes, off; 2289 int record_has_sources; 2290 int now; 2291 int type; 2292 uint8_t mode; 2293 #ifdef KTR 2294 char ip6tbuf[INET6_ADDRSTRLEN]; 2295 #endif 2296 2297 IN6_MULTI_LOCK_ASSERT(); 2298 2299 error = 0; 2300 ifp = inm->in6m_ifp; 2301 is_filter_list_change = 0; 2302 m = NULL; 2303 m0 = NULL; 2304 m0srcs = 0; 2305 msrcs = 0; 2306 nbytes = 0; 2307 nims = NULL; 2308 record_has_sources = 1; 2309 pmr = NULL; 2310 type = MLD_DO_NOTHING; 2311 mode = inm->in6m_st[1].iss_fmode; 2312 2313 /* 2314 * If we did not transition out of ASM mode during t0->t1, 2315 * and there are no source nodes to process, we can skip 2316 * the generation of source records. 2317 */ 2318 if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 && 2319 inm->in6m_nsrc == 0) 2320 record_has_sources = 0; 2321 2322 if (is_state_change) { 2323 /* 2324 * Queue a state change record. 2325 * If the mode did not change, and there are non-ASM 2326 * listeners or source filters present, 2327 * we potentially need to issue two records for the group. 2328 * If there are ASM listeners, and there was no filter 2329 * mode transition of any kind, do nothing. 2330 * 2331 * If we are transitioning to MCAST_UNDEFINED, we need 2332 * not send any sources. A transition to/from this state is 2333 * considered inclusive with some special treatment. 2334 * 2335 * If we are rewriting initial joins/leaves to use 2336 * ALLOW/BLOCK, and the group's membership is inclusive, 2337 * we need to send sources in all cases. 2338 */ 2339 if (mode != inm->in6m_st[0].iss_fmode) { 2340 if (mode == MCAST_EXCLUDE) { 2341 CTR1(KTR_MLD, "%s: change to EXCLUDE", 2342 __func__); 2343 type = MLD_CHANGE_TO_EXCLUDE_MODE; 2344 } else { 2345 CTR1(KTR_MLD, "%s: change to INCLUDE", 2346 __func__); 2347 if (use_block_allow) { 2348 /* 2349 * XXX 2350 * Here we're interested in state 2351 * edges either direction between 2352 * MCAST_UNDEFINED and MCAST_INCLUDE. 2353 * Perhaps we should just check 2354 * the group state, rather than 2355 * the filter mode. 2356 */ 2357 if (mode == MCAST_UNDEFINED) { 2358 type = MLD_BLOCK_OLD_SOURCES; 2359 } else { 2360 type = MLD_ALLOW_NEW_SOURCES; 2361 } 2362 } else { 2363 type = MLD_CHANGE_TO_INCLUDE_MODE; 2364 if (mode == MCAST_UNDEFINED) 2365 record_has_sources = 0; 2366 } 2367 } 2368 } else { 2369 if (record_has_sources) { 2370 is_filter_list_change = 1; 2371 } else { 2372 type = MLD_DO_NOTHING; 2373 } 2374 } 2375 } else { 2376 /* 2377 * Queue a current state record. 2378 */ 2379 if (mode == MCAST_EXCLUDE) { 2380 type = MLD_MODE_IS_EXCLUDE; 2381 } else if (mode == MCAST_INCLUDE) { 2382 type = MLD_MODE_IS_INCLUDE; 2383 KASSERT(inm->in6m_st[1].iss_asm == 0, 2384 ("%s: inm %p is INCLUDE but ASM count is %d", 2385 __func__, inm, inm->in6m_st[1].iss_asm)); 2386 } 2387 } 2388 2389 /* 2390 * Generate the filter list changes using a separate function. 2391 */ 2392 if (is_filter_list_change) 2393 return (mld_v2_enqueue_filter_change(ifq, inm)); 2394 2395 if (type == MLD_DO_NOTHING) { 2396 CTR3(KTR_MLD, "%s: nothing to do for %s/%s", 2397 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2398 inm->in6m_ifp->if_xname); 2399 return (0); 2400 } 2401 2402 /* 2403 * If any sources are present, we must be able to fit at least 2404 * one in the trailing space of the tail packet's mbuf, 2405 * ideally more. 2406 */ 2407 minrec0len = sizeof(struct mldv2_record); 2408 if (record_has_sources) 2409 minrec0len += sizeof(struct in6_addr); 2410 2411 CTR4(KTR_MLD, "%s: queueing %s for %s/%s", __func__, 2412 mld_rec_type_to_str(type), 2413 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2414 inm->in6m_ifp->if_xname); 2415 2416 /* 2417 * Check if we have a packet in the tail of the queue for this 2418 * group into which the first group record for this group will fit. 2419 * Otherwise allocate a new packet. 2420 * Always allocate leading space for IP6+RA+ICMPV6+REPORT. 2421 * Note: Group records for G/GSR query responses MUST be sent 2422 * in their own packet. 2423 */ 2424 m0 = ifq->ifq_tail; 2425 if (!is_group_query && 2426 m0 != NULL && 2427 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) && 2428 (m0->m_pkthdr.len + minrec0len) < 2429 (ifp->if_mtu - MLD_MTUSPACE)) { 2430 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2431 sizeof(struct mldv2_record)) / 2432 sizeof(struct in6_addr); 2433 m = m0; 2434 CTR1(KTR_MLD, "%s: use existing packet", __func__); 2435 } else { 2436 if (_IF_QFULL(ifq)) { 2437 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2438 return (-ENOMEM); 2439 } 2440 m = NULL; 2441 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2442 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2443 if (!is_state_change && !is_group_query) 2444 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2445 if (m == NULL) 2446 m = m_gethdr(M_DONTWAIT, MT_DATA); 2447 if (m == NULL) 2448 return (-ENOMEM); 2449 2450 mld_save_context(m, ifp); 2451 2452 CTR1(KTR_MLD, "%s: allocated first packet", __func__); 2453 } 2454 2455 /* 2456 * Append group record. 2457 * If we have sources, we don't know how many yet. 2458 */ 2459 mr.mr_type = type; 2460 mr.mr_datalen = 0; 2461 mr.mr_numsrc = 0; 2462 mr.mr_addr = inm->in6m_addr; 2463 in6_clearscope(&mr.mr_addr); 2464 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2465 if (m != m0) 2466 m_freem(m); 2467 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2468 return (-ENOMEM); 2469 } 2470 nbytes += sizeof(struct mldv2_record); 2471 2472 /* 2473 * Append as many sources as will fit in the first packet. 2474 * If we are appending to a new packet, the chain allocation 2475 * may potentially use clusters; use m_getptr() in this case. 2476 * If we are appending to an existing packet, we need to obtain 2477 * a pointer to the group record after m_append(), in case a new 2478 * mbuf was allocated. 2479 * 2480 * Only append sources which are in-mode at t1. If we are 2481 * transitioning to MCAST_UNDEFINED state on the group, and 2482 * use_block_allow is zero, do not include source entries. 2483 * Otherwise, we need to include this source in the report. 2484 * 2485 * Only report recorded sources in our filter set when responding 2486 * to a group-source query. 2487 */ 2488 if (record_has_sources) { 2489 if (m == m0) { 2490 md = m_last(m); 2491 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2492 md->m_len - nbytes); 2493 } else { 2494 md = m_getptr(m, 0, &off); 2495 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2496 off); 2497 } 2498 msrcs = 0; 2499 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, 2500 nims) { 2501 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2502 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2503 now = im6s_get_mode(inm, ims, 1); 2504 CTR2(KTR_MLD, "%s: node is %d", __func__, now); 2505 if ((now != mode) || 2506 (now == mode && 2507 (!use_block_allow && mode == MCAST_UNDEFINED))) { 2508 CTR1(KTR_MLD, "%s: skip node", __func__); 2509 continue; 2510 } 2511 if (is_source_query && ims->im6s_stp == 0) { 2512 CTR1(KTR_MLD, "%s: skip unrecorded node", 2513 __func__); 2514 continue; 2515 } 2516 CTR1(KTR_MLD, "%s: append node", __func__); 2517 if (!m_append(m, sizeof(struct in6_addr), 2518 (void *)&ims->im6s_addr)) { 2519 if (m != m0) 2520 m_freem(m); 2521 CTR1(KTR_MLD, "%s: m_append() failed.", 2522 __func__); 2523 return (-ENOMEM); 2524 } 2525 nbytes += sizeof(struct in6_addr); 2526 ++msrcs; 2527 if (msrcs == m0srcs) 2528 break; 2529 } 2530 CTR2(KTR_MLD, "%s: msrcs is %d this packet", __func__, 2531 msrcs); 2532 pmr->mr_numsrc = htons(msrcs); 2533 nbytes += (msrcs * sizeof(struct in6_addr)); 2534 } 2535 2536 if (is_source_query && msrcs == 0) { 2537 CTR1(KTR_MLD, "%s: no recorded sources to report", __func__); 2538 if (m != m0) 2539 m_freem(m); 2540 return (0); 2541 } 2542 2543 /* 2544 * We are good to go with first packet. 2545 */ 2546 if (m != m0) { 2547 CTR1(KTR_MLD, "%s: enqueueing first packet", __func__); 2548 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2549 _IF_ENQUEUE(ifq, m); 2550 } else 2551 m->m_pkthdr.PH_vt.vt_nrecs++; 2552 2553 /* 2554 * No further work needed if no source list in packet(s). 2555 */ 2556 if (!record_has_sources) 2557 return (nbytes); 2558 2559 /* 2560 * Whilst sources remain to be announced, we need to allocate 2561 * a new packet and fill out as many sources as will fit. 2562 * Always try for a cluster first. 2563 */ 2564 while (nims != NULL) { 2565 if (_IF_QFULL(ifq)) { 2566 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2567 return (-ENOMEM); 2568 } 2569 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2570 if (m == NULL) 2571 m = m_gethdr(M_DONTWAIT, MT_DATA); 2572 if (m == NULL) 2573 return (-ENOMEM); 2574 mld_save_context(m, ifp); 2575 md = m_getptr(m, 0, &off); 2576 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off); 2577 CTR1(KTR_MLD, "%s: allocated next packet", __func__); 2578 2579 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2580 if (m != m0) 2581 m_freem(m); 2582 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2583 return (-ENOMEM); 2584 } 2585 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2586 nbytes += sizeof(struct mldv2_record); 2587 2588 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2589 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2590 2591 msrcs = 0; 2592 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2593 CTR2(KTR_MLD, "%s: visit node %s", 2594 __func__, ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2595 now = im6s_get_mode(inm, ims, 1); 2596 if ((now != mode) || 2597 (now == mode && 2598 (!use_block_allow && mode == MCAST_UNDEFINED))) { 2599 CTR1(KTR_MLD, "%s: skip node", __func__); 2600 continue; 2601 } 2602 if (is_source_query && ims->im6s_stp == 0) { 2603 CTR1(KTR_MLD, "%s: skip unrecorded node", 2604 __func__); 2605 continue; 2606 } 2607 CTR1(KTR_MLD, "%s: append node", __func__); 2608 if (!m_append(m, sizeof(struct in6_addr), 2609 (void *)&ims->im6s_addr)) { 2610 if (m != m0) 2611 m_freem(m); 2612 CTR1(KTR_MLD, "%s: m_append() failed.", 2613 __func__); 2614 return (-ENOMEM); 2615 } 2616 ++msrcs; 2617 if (msrcs == m0srcs) 2618 break; 2619 } 2620 pmr->mr_numsrc = htons(msrcs); 2621 nbytes += (msrcs * sizeof(struct in6_addr)); 2622 2623 CTR1(KTR_MLD, "%s: enqueueing next packet", __func__); 2624 _IF_ENQUEUE(ifq, m); 2625 } 2626 2627 return (nbytes); 2628 } 2629 2630 /* 2631 * Type used to mark record pass completion. 2632 * We exploit the fact we can cast to this easily from the 2633 * current filter modes on each ip_msource node. 2634 */ 2635 typedef enum { 2636 REC_NONE = 0x00, /* MCAST_UNDEFINED */ 2637 REC_ALLOW = 0x01, /* MCAST_INCLUDE */ 2638 REC_BLOCK = 0x02, /* MCAST_EXCLUDE */ 2639 REC_FULL = REC_ALLOW | REC_BLOCK 2640 } rectype_t; 2641 2642 /* 2643 * Enqueue an MLDv2 filter list change to the given output queue. 2644 * 2645 * Source list filter state is held in an RB-tree. When the filter list 2646 * for a group is changed without changing its mode, we need to compute 2647 * the deltas between T0 and T1 for each source in the filter set, 2648 * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records. 2649 * 2650 * As we may potentially queue two record types, and the entire R-B tree 2651 * needs to be walked at once, we break this out into its own function 2652 * so we can generate a tightly packed queue of packets. 2653 * 2654 * XXX This could be written to only use one tree walk, although that makes 2655 * serializing into the mbuf chains a bit harder. For now we do two walks 2656 * which makes things easier on us, and it may or may not be harder on 2657 * the L2 cache. 2658 * 2659 * If successful the size of all data appended to the queue is returned, 2660 * otherwise an error code less than zero is returned, or zero if 2661 * no record(s) were appended. 2662 */ 2663 static int 2664 mld_v2_enqueue_filter_change(struct ifqueue *ifq, struct in6_multi *inm) 2665 { 2666 static const int MINRECLEN = 2667 sizeof(struct mldv2_record) + sizeof(struct in6_addr); 2668 struct ifnet *ifp; 2669 struct mldv2_record mr; 2670 struct mldv2_record *pmr; 2671 struct ip6_msource *ims, *nims; 2672 struct mbuf *m, *m0, *md; 2673 int m0srcs, nbytes, npbytes, off, rsrcs, schanged; 2674 int nallow, nblock; 2675 uint8_t mode, now, then; 2676 rectype_t crt, drt, nrt; 2677 #ifdef KTR 2678 char ip6tbuf[INET6_ADDRSTRLEN]; 2679 #endif 2680 2681 IN6_MULTI_LOCK_ASSERT(); 2682 2683 if (inm->in6m_nsrc == 0 || 2684 (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0)) 2685 return (0); 2686 2687 ifp = inm->in6m_ifp; /* interface */ 2688 mode = inm->in6m_st[1].iss_fmode; /* filter mode at t1 */ 2689 crt = REC_NONE; /* current group record type */ 2690 drt = REC_NONE; /* mask of completed group record types */ 2691 nrt = REC_NONE; /* record type for current node */ 2692 m0srcs = 0; /* # source which will fit in current mbuf chain */ 2693 npbytes = 0; /* # of bytes appended this packet */ 2694 nbytes = 0; /* # of bytes appended to group's state-change queue */ 2695 rsrcs = 0; /* # sources encoded in current record */ 2696 schanged = 0; /* # nodes encoded in overall filter change */ 2697 nallow = 0; /* # of source entries in ALLOW_NEW */ 2698 nblock = 0; /* # of source entries in BLOCK_OLD */ 2699 nims = NULL; /* next tree node pointer */ 2700 2701 /* 2702 * For each possible filter record mode. 2703 * The first kind of source we encounter tells us which 2704 * is the first kind of record we start appending. 2705 * If a node transitioned to UNDEFINED at t1, its mode is treated 2706 * as the inverse of the group's filter mode. 2707 */ 2708 while (drt != REC_FULL) { 2709 do { 2710 m0 = ifq->ifq_tail; 2711 if (m0 != NULL && 2712 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= 2713 MLD_V2_REPORT_MAXRECS) && 2714 (m0->m_pkthdr.len + MINRECLEN) < 2715 (ifp->if_mtu - MLD_MTUSPACE)) { 2716 m = m0; 2717 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2718 sizeof(struct mldv2_record)) / 2719 sizeof(struct in6_addr); 2720 CTR1(KTR_MLD, 2721 "%s: use previous packet", __func__); 2722 } else { 2723 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2724 if (m == NULL) 2725 m = m_gethdr(M_DONTWAIT, MT_DATA); 2726 if (m == NULL) { 2727 CTR1(KTR_MLD, 2728 "%s: m_get*() failed", __func__); 2729 return (-ENOMEM); 2730 } 2731 m->m_pkthdr.PH_vt.vt_nrecs = 0; 2732 mld_save_context(m, ifp); 2733 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2734 sizeof(struct mldv2_record)) / 2735 sizeof(struct in6_addr); 2736 npbytes = 0; 2737 CTR1(KTR_MLD, 2738 "%s: allocated new packet", __func__); 2739 } 2740 /* 2741 * Append the MLD group record header to the 2742 * current packet's data area. 2743 * Recalculate pointer to free space for next 2744 * group record, in case m_append() allocated 2745 * a new mbuf or cluster. 2746 */ 2747 memset(&mr, 0, sizeof(mr)); 2748 mr.mr_addr = inm->in6m_addr; 2749 in6_clearscope(&mr.mr_addr); 2750 if (!m_append(m, sizeof(mr), (void *)&mr)) { 2751 if (m != m0) 2752 m_freem(m); 2753 CTR1(KTR_MLD, 2754 "%s: m_append() failed", __func__); 2755 return (-ENOMEM); 2756 } 2757 npbytes += sizeof(struct mldv2_record); 2758 if (m != m0) { 2759 /* new packet; offset in chain */ 2760 md = m_getptr(m, npbytes - 2761 sizeof(struct mldv2_record), &off); 2762 pmr = (struct mldv2_record *)(mtod(md, 2763 uint8_t *) + off); 2764 } else { 2765 /* current packet; offset from last append */ 2766 md = m_last(m); 2767 pmr = (struct mldv2_record *)(mtod(md, 2768 uint8_t *) + md->m_len - 2769 sizeof(struct mldv2_record)); 2770 } 2771 /* 2772 * Begin walking the tree for this record type 2773 * pass, or continue from where we left off 2774 * previously if we had to allocate a new packet. 2775 * Only report deltas in-mode at t1. 2776 * We need not report included sources as allowed 2777 * if we are in inclusive mode on the group, 2778 * however the converse is not true. 2779 */ 2780 rsrcs = 0; 2781 if (nims == NULL) { 2782 nims = RB_MIN(ip6_msource_tree, 2783 &inm->in6m_srcs); 2784 } 2785 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2786 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2787 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2788 now = im6s_get_mode(inm, ims, 1); 2789 then = im6s_get_mode(inm, ims, 0); 2790 CTR3(KTR_MLD, "%s: mode: t0 %d, t1 %d", 2791 __func__, then, now); 2792 if (now == then) { 2793 CTR1(KTR_MLD, 2794 "%s: skip unchanged", __func__); 2795 continue; 2796 } 2797 if (mode == MCAST_EXCLUDE && 2798 now == MCAST_INCLUDE) { 2799 CTR1(KTR_MLD, 2800 "%s: skip IN src on EX group", 2801 __func__); 2802 continue; 2803 } 2804 nrt = (rectype_t)now; 2805 if (nrt == REC_NONE) 2806 nrt = (rectype_t)(~mode & REC_FULL); 2807 if (schanged++ == 0) { 2808 crt = nrt; 2809 } else if (crt != nrt) 2810 continue; 2811 if (!m_append(m, sizeof(struct in6_addr), 2812 (void *)&ims->im6s_addr)) { 2813 if (m != m0) 2814 m_freem(m); 2815 CTR1(KTR_MLD, 2816 "%s: m_append() failed", __func__); 2817 return (-ENOMEM); 2818 } 2819 nallow += !!(crt == REC_ALLOW); 2820 nblock += !!(crt == REC_BLOCK); 2821 if (++rsrcs == m0srcs) 2822 break; 2823 } 2824 /* 2825 * If we did not append any tree nodes on this 2826 * pass, back out of allocations. 2827 */ 2828 if (rsrcs == 0) { 2829 npbytes -= sizeof(struct mldv2_record); 2830 if (m != m0) { 2831 CTR1(KTR_MLD, 2832 "%s: m_free(m)", __func__); 2833 m_freem(m); 2834 } else { 2835 CTR1(KTR_MLD, 2836 "%s: m_adj(m, -mr)", __func__); 2837 m_adj(m, -((int)sizeof( 2838 struct mldv2_record))); 2839 } 2840 continue; 2841 } 2842 npbytes += (rsrcs * sizeof(struct in6_addr)); 2843 if (crt == REC_ALLOW) 2844 pmr->mr_type = MLD_ALLOW_NEW_SOURCES; 2845 else if (crt == REC_BLOCK) 2846 pmr->mr_type = MLD_BLOCK_OLD_SOURCES; 2847 pmr->mr_numsrc = htons(rsrcs); 2848 /* 2849 * Count the new group record, and enqueue this 2850 * packet if it wasn't already queued. 2851 */ 2852 m->m_pkthdr.PH_vt.vt_nrecs++; 2853 if (m != m0) 2854 _IF_ENQUEUE(ifq, m); 2855 nbytes += npbytes; 2856 } while (nims != NULL); 2857 drt |= crt; 2858 crt = (~crt & REC_FULL); 2859 } 2860 2861 CTR3(KTR_MLD, "%s: queued %d ALLOW_NEW, %d BLOCK_OLD", __func__, 2862 nallow, nblock); 2863 2864 return (nbytes); 2865 } 2866 2867 static int 2868 mld_v2_merge_state_changes(struct in6_multi *inm, struct ifqueue *ifscq) 2869 { 2870 struct ifqueue *gq; 2871 struct mbuf *m; /* pending state-change */ 2872 struct mbuf *m0; /* copy of pending state-change */ 2873 struct mbuf *mt; /* last state-change in packet */ 2874 int docopy, domerge; 2875 u_int recslen; 2876 2877 docopy = 0; 2878 domerge = 0; 2879 recslen = 0; 2880 2881 IN6_MULTI_LOCK_ASSERT(); 2882 MLD_LOCK_ASSERT(); 2883 2884 /* 2885 * If there are further pending retransmissions, make a writable 2886 * copy of each queued state-change message before merging. 2887 */ 2888 if (inm->in6m_scrv > 0) 2889 docopy = 1; 2890 2891 gq = &inm->in6m_scq; 2892 #ifdef KTR 2893 if (gq->ifq_head == NULL) { 2894 CTR2(KTR_MLD, "%s: WARNING: queue for inm %p is empty", 2895 __func__, inm); 2896 } 2897 #endif 2898 2899 m = gq->ifq_head; 2900 while (m != NULL) { 2901 /* 2902 * Only merge the report into the current packet if 2903 * there is sufficient space to do so; an MLDv2 report 2904 * packet may only contain 65,535 group records. 2905 * Always use a simple mbuf chain concatentation to do this, 2906 * as large state changes for single groups may have 2907 * allocated clusters. 2908 */ 2909 domerge = 0; 2910 mt = ifscq->ifq_tail; 2911 if (mt != NULL) { 2912 recslen = m_length(m, NULL); 2913 2914 if ((mt->m_pkthdr.PH_vt.vt_nrecs + 2915 m->m_pkthdr.PH_vt.vt_nrecs <= 2916 MLD_V2_REPORT_MAXRECS) && 2917 (mt->m_pkthdr.len + recslen <= 2918 (inm->in6m_ifp->if_mtu - MLD_MTUSPACE))) 2919 domerge = 1; 2920 } 2921 2922 if (!domerge && _IF_QFULL(gq)) { 2923 CTR2(KTR_MLD, 2924 "%s: outbound queue full, skipping whole packet %p", 2925 __func__, m); 2926 mt = m->m_nextpkt; 2927 if (!docopy) 2928 m_freem(m); 2929 m = mt; 2930 continue; 2931 } 2932 2933 if (!docopy) { 2934 CTR2(KTR_MLD, "%s: dequeueing %p", __func__, m); 2935 _IF_DEQUEUE(gq, m0); 2936 m = m0->m_nextpkt; 2937 } else { 2938 CTR2(KTR_MLD, "%s: copying %p", __func__, m); 2939 m0 = m_dup(m, M_NOWAIT); 2940 if (m0 == NULL) 2941 return (ENOMEM); 2942 m0->m_nextpkt = NULL; 2943 m = m->m_nextpkt; 2944 } 2945 2946 if (!domerge) { 2947 CTR3(KTR_MLD, "%s: queueing %p to ifscq %p)", 2948 __func__, m0, ifscq); 2949 _IF_ENQUEUE(ifscq, m0); 2950 } else { 2951 struct mbuf *mtl; /* last mbuf of packet mt */ 2952 2953 CTR3(KTR_MLD, "%s: merging %p with ifscq tail %p)", 2954 __func__, m0, mt); 2955 2956 mtl = m_last(mt); 2957 m0->m_flags &= ~M_PKTHDR; 2958 mt->m_pkthdr.len += recslen; 2959 mt->m_pkthdr.PH_vt.vt_nrecs += 2960 m0->m_pkthdr.PH_vt.vt_nrecs; 2961 2962 mtl->m_next = m0; 2963 } 2964 } 2965 2966 return (0); 2967 } 2968 2969 /* 2970 * Respond to a pending MLDv2 General Query. 2971 */ 2972 static void 2973 mld_v2_dispatch_general_query(struct mld_ifinfo *mli) 2974 { 2975 struct ifmultiaddr *ifma, *tifma; 2976 struct ifnet *ifp; 2977 struct in6_multi *inm; 2978 int retval; 2979 2980 IN6_MULTI_LOCK_ASSERT(); 2981 MLD_LOCK_ASSERT(); 2982 2983 KASSERT(mli->mli_version == MLD_VERSION_2, 2984 ("%s: called when version %d", __func__, mli->mli_version)); 2985 2986 ifp = mli->mli_ifp; 2987 2988 IF_ADDR_LOCK(ifp); 2989 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, tifma) { 2990 if (ifma->ifma_addr->sa_family != AF_INET6 || 2991 ifma->ifma_protospec == NULL) 2992 continue; 2993 2994 inm = (struct in6_multi *)ifma->ifma_protospec; 2995 KASSERT(ifp == inm->in6m_ifp, 2996 ("%s: inconsistent ifp", __func__)); 2997 2998 switch (inm->in6m_state) { 2999 case MLD_NOT_MEMBER: 3000 case MLD_SILENT_MEMBER: 3001 break; 3002 case MLD_REPORTING_MEMBER: 3003 case MLD_IDLE_MEMBER: 3004 case MLD_LAZY_MEMBER: 3005 case MLD_SLEEPING_MEMBER: 3006 case MLD_AWAKENING_MEMBER: 3007 inm->in6m_state = MLD_REPORTING_MEMBER; 3008 retval = mld_v2_enqueue_group_record(&mli->mli_gq, 3009 inm, 0, 0, 0, 0); 3010 CTR2(KTR_MLD, "%s: enqueue record = %d", 3011 __func__, retval); 3012 break; 3013 case MLD_G_QUERY_PENDING_MEMBER: 3014 case MLD_SG_QUERY_PENDING_MEMBER: 3015 case MLD_LEAVING_MEMBER: 3016 break; 3017 } 3018 } 3019 IF_ADDR_UNLOCK(ifp); 3020 3021 mld_dispatch_queue(&mli->mli_gq, MLD_MAX_RESPONSE_BURST); 3022 3023 /* 3024 * Slew transmission of bursts over 500ms intervals. 3025 */ 3026 if (mli->mli_gq.ifq_head != NULL) { 3027 mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY( 3028 MLD_RESPONSE_BURST_INTERVAL); 3029 V_interface_timers_running6 = 1; 3030 } 3031 } 3032 3033 /* 3034 * Transmit the next pending message in the output queue. 3035 * 3036 * VIMAGE: Needs to store/restore vnet pointer on a per-mbuf-chain basis. 3037 * MRT: Nothing needs to be done, as MLD traffic is always local to 3038 * a link and uses a link-scope multicast address. 3039 */ 3040 static void 3041 mld_dispatch_packet(struct mbuf *m) 3042 { 3043 struct ip6_moptions im6o; 3044 struct ifnet *ifp; 3045 struct ifnet *oifp; 3046 struct mbuf *m0; 3047 struct mbuf *md; 3048 struct ip6_hdr *ip6; 3049 struct mld_hdr *mld; 3050 int error; 3051 int off; 3052 int type; 3053 uint32_t ifindex; 3054 3055 CTR2(KTR_MLD, "%s: transmit %p", __func__, m); 3056 3057 /* 3058 * Set VNET image pointer from enqueued mbuf chain 3059 * before doing anything else. Whilst we use interface 3060 * indexes to guard against interface detach, they are 3061 * unique to each VIMAGE and must be retrieved. 3062 */ 3063 ifindex = mld_restore_context(m); 3064 3065 /* 3066 * Check if the ifnet still exists. This limits the scope of 3067 * any race in the absence of a global ifp lock for low cost 3068 * (an array lookup). 3069 */ 3070 ifp = ifnet_byindex(ifindex); 3071 if (ifp == NULL) { 3072 CTR3(KTR_MLD, "%s: dropped %p as ifindex %u went away.", 3073 __func__, m, ifindex); 3074 m_freem(m); 3075 IP6STAT_INC(ip6s_noroute); 3076 goto out; 3077 } 3078 3079 im6o.im6o_multicast_hlim = 1; 3080 im6o.im6o_multicast_loop = (V_ip6_mrouter != NULL); 3081 im6o.im6o_multicast_ifp = ifp; 3082 3083 if (m->m_flags & M_MLDV1) { 3084 m0 = m; 3085 } else { 3086 m0 = mld_v2_encap_report(ifp, m); 3087 if (m0 == NULL) { 3088 CTR2(KTR_MLD, "%s: dropped %p", __func__, m); 3089 m_freem(m); 3090 IP6STAT_INC(ip6s_odropped); 3091 goto out; 3092 } 3093 } 3094 3095 mld_scrub_context(m0); 3096 m->m_flags &= ~(M_PROTOFLAGS); 3097 m0->m_pkthdr.rcvif = V_loif; 3098 3099 ip6 = mtod(m0, struct ip6_hdr *); 3100 #if 0 3101 (void)in6_setscope(&ip6->ip6_dst, ifp, NULL); /* XXX LOR */ 3102 #else 3103 /* 3104 * XXX XXX Break some KPI rules to prevent an LOR which would 3105 * occur if we called in6_setscope() at transmission. 3106 * See comments at top of file. 3107 */ 3108 MLD_EMBEDSCOPE(&ip6->ip6_dst, ifp->if_index); 3109 #endif 3110 3111 /* 3112 * Retrieve the ICMPv6 type before handoff to ip6_output(), 3113 * so we can bump the stats. 3114 */ 3115 md = m_getptr(m0, sizeof(struct ip6_hdr), &off); 3116 mld = (struct mld_hdr *)(mtod(md, uint8_t *) + off); 3117 type = mld->mld_type; 3118 3119 error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, &im6o, 3120 &oifp, NULL); 3121 if (error) { 3122 CTR3(KTR_MLD, "%s: ip6_output(%p) = %d", __func__, m0, error); 3123 goto out; 3124 } 3125 ICMP6STAT_INC(icp6s_outhist[type]); 3126 if (oifp != NULL) { 3127 icmp6_ifstat_inc(oifp, ifs6_out_msg); 3128 switch (type) { 3129 case MLD_LISTENER_REPORT: 3130 case MLDV2_LISTENER_REPORT: 3131 icmp6_ifstat_inc(oifp, ifs6_out_mldreport); 3132 break; 3133 case MLD_LISTENER_DONE: 3134 icmp6_ifstat_inc(oifp, ifs6_out_mlddone); 3135 break; 3136 } 3137 } 3138 out: 3139 return; 3140 } 3141 3142 /* 3143 * Encapsulate an MLDv2 report. 3144 * 3145 * KAME IPv6 requires that hop-by-hop options be passed separately, 3146 * and that the IPv6 header be prepended in a separate mbuf. 3147 * 3148 * Returns a pointer to the new mbuf chain head, or NULL if the 3149 * allocation failed. 3150 */ 3151 static struct mbuf * 3152 mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m) 3153 { 3154 struct mbuf *mh; 3155 struct mldv2_report *mld; 3156 struct ip6_hdr *ip6; 3157 struct in6_ifaddr *ia; 3158 int mldreclen; 3159 3160 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 3161 KASSERT((m->m_flags & M_PKTHDR), 3162 ("%s: mbuf chain %p is !M_PKTHDR", __func__, m)); 3163 3164 /* 3165 * RFC3590: OK to send as :: or tentative during DAD. 3166 */ 3167 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 3168 if (ia == NULL) 3169 CTR1(KTR_MLD, "%s: warning: ia is NULL", __func__); 3170 3171 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3172 if (mh == NULL) { 3173 if (ia != NULL) 3174 ifa_free(&ia->ia_ifa); 3175 m_freem(m); 3176 return (NULL); 3177 } 3178 MH_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report)); 3179 3180 mldreclen = m_length(m, NULL); 3181 CTR2(KTR_MLD, "%s: mldreclen is %d", __func__, mldreclen); 3182 3183 mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report); 3184 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + 3185 sizeof(struct mldv2_report) + mldreclen; 3186 3187 ip6 = mtod(mh, struct ip6_hdr *); 3188 ip6->ip6_flow = 0; 3189 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 3190 ip6->ip6_vfc |= IPV6_VERSION; 3191 ip6->ip6_nxt = IPPROTO_ICMPV6; 3192 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 3193 if (ia != NULL) 3194 ifa_free(&ia->ia_ifa); 3195 ip6->ip6_dst = in6addr_linklocal_allv2routers; 3196 /* scope ID will be set in netisr */ 3197 3198 mld = (struct mldv2_report *)(ip6 + 1); 3199 mld->mld_type = MLDV2_LISTENER_REPORT; 3200 mld->mld_code = 0; 3201 mld->mld_cksum = 0; 3202 mld->mld_v2_reserved = 0; 3203 mld->mld_v2_numrecs = htons(m->m_pkthdr.PH_vt.vt_nrecs); 3204 m->m_pkthdr.PH_vt.vt_nrecs = 0; 3205 3206 mh->m_next = m; 3207 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 3208 sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen); 3209 return (mh); 3210 } 3211 3212 #ifdef KTR 3213 static char * 3214 mld_rec_type_to_str(const int type) 3215 { 3216 3217 switch (type) { 3218 case MLD_CHANGE_TO_EXCLUDE_MODE: 3219 return "TO_EX"; 3220 break; 3221 case MLD_CHANGE_TO_INCLUDE_MODE: 3222 return "TO_IN"; 3223 break; 3224 case MLD_MODE_IS_EXCLUDE: 3225 return "MODE_EX"; 3226 break; 3227 case MLD_MODE_IS_INCLUDE: 3228 return "MODE_IN"; 3229 break; 3230 case MLD_ALLOW_NEW_SOURCES: 3231 return "ALLOW_NEW"; 3232 break; 3233 case MLD_BLOCK_OLD_SOURCES: 3234 return "BLOCK_OLD"; 3235 break; 3236 default: 3237 break; 3238 } 3239 return "unknown"; 3240 } 3241 #endif 3242 3243 static void 3244 mld_init(void *unused __unused) 3245 { 3246 3247 CTR1(KTR_MLD, "%s: initializing", __func__); 3248 MLD_LOCK_INIT(); 3249 3250 ip6_initpktopts(&mld_po); 3251 mld_po.ip6po_hlim = 1; 3252 mld_po.ip6po_hbh = &mld_ra.hbh; 3253 mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER; 3254 mld_po.ip6po_flags = IP6PO_DONTFRAG; 3255 } 3256 SYSINIT(mld_init, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, mld_init, NULL); 3257 3258 static void 3259 mld_uninit(void *unused __unused) 3260 { 3261 3262 CTR1(KTR_MLD, "%s: tearing down", __func__); 3263 MLD_LOCK_DESTROY(); 3264 } 3265 SYSUNINIT(mld_uninit, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, mld_uninit, NULL); 3266 3267 static void 3268 vnet_mld_init(const void *unused __unused) 3269 { 3270 3271 CTR1(KTR_MLD, "%s: initializing", __func__); 3272 3273 LIST_INIT(&V_mli_head); 3274 } 3275 VNET_SYSINIT(vnet_mld_init, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mld_init, 3276 NULL); 3277 3278 static void 3279 vnet_mld_uninit(const void *unused __unused) 3280 { 3281 3282 CTR1(KTR_MLD, "%s: tearing down", __func__); 3283 3284 KASSERT(LIST_EMPTY(&V_mli_head), 3285 ("%s: mli list not empty; ifnets not detached?", __func__)); 3286 } 3287 VNET_SYSUNINIT(vnet_mld_uninit, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mld_uninit, 3288 NULL); 3289 3290 static int 3291 mld_modevent(module_t mod, int type, void *unused __unused) 3292 { 3293 3294 switch (type) { 3295 case MOD_LOAD: 3296 case MOD_UNLOAD: 3297 break; 3298 default: 3299 return (EOPNOTSUPP); 3300 } 3301 return (0); 3302 } 3303 3304 static moduledata_t mld_mod = { 3305 "mld", 3306 mld_modevent, 3307 0 3308 }; 3309 DECLARE_MODULE(mld, mld_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); 3310