1 /*- 2 * Copyright (c) 2009 Bruce Simpson. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 3. The name of the author may not be used to endorse or promote 13 * products derived from this software without specific prior written 14 * permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $KAME: mld6.c,v 1.27 2001/04/04 05:17:30 itojun Exp $ 29 */ 30 31 /*- 32 * Copyright (c) 1988 Stephen Deering. 33 * Copyright (c) 1992, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * This code is derived from software contributed to Berkeley by 37 * Stephen Deering of Stanford University. 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 1. Redistributions of source code must retain the above copyright 43 * notice, this list of conditions and the following disclaimer. 44 * 2. Redistributions in binary form must reproduce the above copyright 45 * notice, this list of conditions and the following disclaimer in the 46 * documentation and/or other materials provided with the distribution. 47 * 4. Neither the name of the University nor the names of its contributors 48 * may be used to endorse or promote products derived from this software 49 * without specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 61 * SUCH DAMAGE. 62 * 63 * @(#)igmp.c 8.1 (Berkeley) 7/19/93 64 */ 65 66 #include <sys/cdefs.h> 67 __FBSDID("$FreeBSD$"); 68 69 #include "opt_inet.h" 70 #include "opt_inet6.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/mbuf.h> 75 #include <sys/socket.h> 76 #include <sys/protosw.h> 77 #include <sys/sysctl.h> 78 #include <sys/kernel.h> 79 #include <sys/callout.h> 80 #include <sys/malloc.h> 81 #include <sys/module.h> 82 83 #include <net/if.h> 84 #include <net/route.h> 85 #include <net/vnet.h> 86 87 #include <netinet/in.h> 88 #include <netinet/in_var.h> 89 #include <netinet6/in6_var.h> 90 #include <netinet/ip6.h> 91 #include <netinet6/ip6_var.h> 92 #include <netinet6/scope6_var.h> 93 #include <netinet/icmp6.h> 94 #include <netinet6/mld6.h> 95 #include <netinet6/mld6_var.h> 96 97 #include <security/mac/mac_framework.h> 98 99 #ifndef KTR_MLD 100 #define KTR_MLD KTR_INET6 101 #endif 102 103 static struct mld_ifinfo * 104 mli_alloc_locked(struct ifnet *); 105 static void mli_delete_locked(const struct ifnet *); 106 static void mld_dispatch_packet(struct mbuf *); 107 static void mld_dispatch_queue(struct ifqueue *, int); 108 static void mld_final_leave(struct in6_multi *, struct mld_ifinfo *); 109 static void mld_fasttimo_vnet(void); 110 static int mld_handle_state_change(struct in6_multi *, 111 struct mld_ifinfo *); 112 static int mld_initial_join(struct in6_multi *, struct mld_ifinfo *, 113 const int); 114 #ifdef KTR 115 static char * mld_rec_type_to_str(const int); 116 #endif 117 static void mld_set_version(struct mld_ifinfo *, const int); 118 static void mld_slowtimo_vnet(void); 119 static int mld_v1_input_query(struct ifnet *, const struct ip6_hdr *, 120 /*const*/ struct mld_hdr *); 121 static int mld_v1_input_report(struct ifnet *, const struct ip6_hdr *, 122 /*const*/ struct mld_hdr *); 123 static void mld_v1_process_group_timer(struct in6_multi *, const int); 124 static void mld_v1_process_querier_timers(struct mld_ifinfo *); 125 static int mld_v1_transmit_report(struct in6_multi *, const int); 126 static void mld_v1_update_group(struct in6_multi *, const int); 127 static void mld_v2_cancel_link_timers(struct mld_ifinfo *); 128 static void mld_v2_dispatch_general_query(struct mld_ifinfo *); 129 static struct mbuf * 130 mld_v2_encap_report(struct ifnet *, struct mbuf *); 131 static int mld_v2_enqueue_filter_change(struct ifqueue *, 132 struct in6_multi *); 133 static int mld_v2_enqueue_group_record(struct ifqueue *, 134 struct in6_multi *, const int, const int, const int); 135 static int mld_v2_input_query(struct ifnet *, const struct ip6_hdr *, 136 struct mbuf *, const int, const int); 137 static int mld_v2_merge_state_changes(struct in6_multi *, 138 struct ifqueue *); 139 static void mld_v2_process_group_timers(struct mld_ifinfo *, 140 struct ifqueue *, struct ifqueue *, 141 struct in6_multi *, const int); 142 static int mld_v2_process_group_query(struct in6_multi *, 143 struct mld_ifinfo *mli, int, struct mbuf *, const int); 144 static int sysctl_mld_gsr(SYSCTL_HANDLER_ARGS); 145 static int sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS); 146 147 /* 148 * Normative references: RFC 2710, RFC 3590, RFC 3810. 149 * 150 * Locking: 151 * * The MLD subsystem lock ends up being system-wide for the moment, 152 * but could be per-VIMAGE later on. 153 * * The permitted lock order is: IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK. 154 * Any may be taken independently; if any are held at the same 155 * time, the above lock order must be followed. 156 * * IN6_MULTI_LOCK covers in_multi. 157 * * MLD_LOCK covers per-link state and any global variables in this file. 158 * * IF_ADDR_LOCK covers if_multiaddrs, which is used for a variety of 159 * per-link state iterators. 160 * 161 * XXX LOR PREVENTION 162 * A special case for IPv6 is the in6_setscope() routine. ip6_output() 163 * will not accept an ifp; it wants an embedded scope ID, unlike 164 * ip_output(), which happily takes the ifp given to it. The embedded 165 * scope ID is only used by MLD to select the outgoing interface. 166 * 167 * During interface attach and detach, MLD will take MLD_LOCK *after* 168 * the IF_AFDATA_LOCK. 169 * As in6_setscope() takes IF_AFDATA_LOCK then SCOPE_LOCK, we can't call 170 * it with MLD_LOCK held without triggering an LOR. A netisr with indirect 171 * dispatch could work around this, but we'd rather not do that, as it 172 * can introduce other races. 173 * 174 * As such, we exploit the fact that the scope ID is just the interface 175 * index, and embed it in the IPv6 destination address accordingly. 176 * This is potentially NOT VALID for MLDv1 reports, as they 177 * are always sent to the multicast group itself; as MLDv2 178 * reports are always sent to ff02::16, this is not an issue 179 * when MLDv2 is in use. 180 * 181 * This does not however eliminate the LOR when ip6_output() itself 182 * calls in6_setscope() internally whilst MLD_LOCK is held. This will 183 * trigger a LOR warning in WITNESS when the ifnet is detached. 184 * 185 * The right answer is probably to make IF_AFDATA_LOCK an rwlock, given 186 * how it's used across the network stack. Here we're simply exploiting 187 * the fact that MLD runs at a similar layer in the stack to scope6.c. 188 * 189 * VIMAGE: 190 * * Each in6_multi corresponds to an ifp, and each ifp corresponds 191 * to a vnet in ifp->if_vnet. 192 */ 193 static struct mtx mld_mtx; 194 MALLOC_DEFINE(M_MLD, "mld", "mld state"); 195 196 #define MLD_EMBEDSCOPE(pin6, zoneid) \ 197 (pin6)->s6_addr16[1] = htons((zoneid) & 0xFFFF) 198 199 /* 200 * VIMAGE-wide globals. 201 */ 202 static VNET_DEFINE(struct timeval, mld_gsrdelay) = {10, 0}; 203 static VNET_DEFINE(LIST_HEAD(, mld_ifinfo), mli_head); 204 static VNET_DEFINE(int, interface_timers_running6); 205 static VNET_DEFINE(int, state_change_timers_running6); 206 static VNET_DEFINE(int, current_state_timers_running6); 207 208 #define V_mld_gsrdelay VNET(mld_gsrdelay) 209 #define V_mli_head VNET(mli_head) 210 #define V_interface_timers_running6 VNET(interface_timers_running6) 211 #define V_state_change_timers_running6 VNET(state_change_timers_running6) 212 #define V_current_state_timers_running6 VNET(current_state_timers_running6) 213 214 SYSCTL_DECL(_net_inet6); /* Note: Not in any common header. */ 215 216 SYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW, 0, 217 "IPv6 Multicast Listener Discovery"); 218 219 /* 220 * Virtualized sysctls. 221 */ 222 SYSCTL_VNET_PROC(_net_inet6_mld, OID_AUTO, gsrdelay, 223 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 224 &VNET_NAME(mld_gsrdelay.tv_sec), 0, sysctl_mld_gsr, "I", 225 "Rate limit for MLDv2 Group-and-Source queries in seconds"); 226 227 /* 228 * Non-virtualized sysctls. 229 */ 230 SYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo, CTLFLAG_RD | CTLFLAG_MPSAFE, 231 sysctl_mld_ifinfo, "Per-interface MLDv2 state"); 232 233 static int mld_v1enable = 1; 234 SYSCTL_INT(_net_inet6_mld, OID_AUTO, v1enable, CTLFLAG_RW, 235 &mld_v1enable, 0, "Enable fallback to MLDv1"); 236 TUNABLE_INT("net.inet6.mld.v1enable", &mld_v1enable); 237 238 /* 239 * Packed Router Alert option structure declaration. 240 */ 241 struct mld_raopt { 242 struct ip6_hbh hbh; 243 struct ip6_opt pad; 244 struct ip6_opt_router ra; 245 } __packed; 246 247 /* 248 * Router Alert hop-by-hop option header. 249 */ 250 static struct mld_raopt mld_ra = { 251 .hbh = { 0, 0 }, 252 .pad = { .ip6o_type = IP6OPT_PADN, 0 }, 253 .ra = { 254 .ip6or_type = IP6OPT_ROUTER_ALERT, 255 .ip6or_len = IP6OPT_RTALERT_LEN - 2, 256 .ip6or_value[0] = ((IP6OPT_RTALERT_MLD >> 8) & 0xFF), 257 .ip6or_value[1] = (IP6OPT_RTALERT_MLD & 0xFF) 258 } 259 }; 260 static struct ip6_pktopts mld_po; 261 262 static __inline void 263 mld_save_context(struct mbuf *m, struct ifnet *ifp) 264 { 265 266 #ifdef VIMAGE 267 m->m_pkthdr.header = ifp->if_vnet; 268 #endif /* VIMAGE */ 269 m->m_pkthdr.flowid = ifp->if_index; 270 } 271 272 static __inline void 273 mld_scrub_context(struct mbuf *m) 274 { 275 276 m->m_pkthdr.header = NULL; 277 m->m_pkthdr.flowid = 0; 278 } 279 280 /* 281 * Restore context from a queued output chain. 282 * Return saved ifindex. 283 * 284 * VIMAGE: The assertion is there to make sure that we 285 * actually called CURVNET_SET() with what's in the mbuf chain. 286 */ 287 static __inline uint32_t 288 mld_restore_context(struct mbuf *m) 289 { 290 291 #if defined(VIMAGE) && defined(INVARIANTS) 292 KASSERT(curvnet == m->m_pkthdr.header, 293 ("%s: called when curvnet was not restored", __func__)); 294 #endif 295 return (m->m_pkthdr.flowid); 296 } 297 298 /* 299 * Retrieve or set threshold between group-source queries in seconds. 300 * 301 * VIMAGE: Assume curvnet set by caller. 302 * SMPng: NOTE: Serialized by MLD lock. 303 */ 304 static int 305 sysctl_mld_gsr(SYSCTL_HANDLER_ARGS) 306 { 307 int error; 308 int i; 309 310 error = sysctl_wire_old_buffer(req, sizeof(int)); 311 if (error) 312 return (error); 313 314 MLD_LOCK(); 315 316 i = V_mld_gsrdelay.tv_sec; 317 318 error = sysctl_handle_int(oidp, &i, 0, req); 319 if (error || !req->newptr) 320 goto out_locked; 321 322 if (i < -1 || i >= 60) { 323 error = EINVAL; 324 goto out_locked; 325 } 326 327 CTR2(KTR_MLD, "change mld_gsrdelay from %d to %d", 328 V_mld_gsrdelay.tv_sec, i); 329 V_mld_gsrdelay.tv_sec = i; 330 331 out_locked: 332 MLD_UNLOCK(); 333 return (error); 334 } 335 336 /* 337 * Expose struct mld_ifinfo to userland, keyed by ifindex. 338 * For use by ifmcstat(8). 339 * 340 * SMPng: NOTE: Does an unlocked ifindex space read. 341 * VIMAGE: Assume curvnet set by caller. The node handler itself 342 * is not directly virtualized. 343 */ 344 static int 345 sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS) 346 { 347 int *name; 348 int error; 349 u_int namelen; 350 struct ifnet *ifp; 351 struct mld_ifinfo *mli; 352 353 name = (int *)arg1; 354 namelen = arg2; 355 356 if (req->newptr != NULL) 357 return (EPERM); 358 359 if (namelen != 1) 360 return (EINVAL); 361 362 error = sysctl_wire_old_buffer(req, sizeof(struct mld_ifinfo)); 363 if (error) 364 return (error); 365 366 IN6_MULTI_LOCK(); 367 MLD_LOCK(); 368 369 if (name[0] <= 0 || name[0] > V_if_index) { 370 error = ENOENT; 371 goto out_locked; 372 } 373 374 error = ENOENT; 375 376 ifp = ifnet_byindex(name[0]); 377 if (ifp == NULL) 378 goto out_locked; 379 380 LIST_FOREACH(mli, &V_mli_head, mli_link) { 381 if (ifp == mli->mli_ifp) { 382 error = SYSCTL_OUT(req, mli, 383 sizeof(struct mld_ifinfo)); 384 break; 385 } 386 } 387 388 out_locked: 389 MLD_UNLOCK(); 390 IN6_MULTI_UNLOCK(); 391 return (error); 392 } 393 394 /* 395 * Dispatch an entire queue of pending packet chains. 396 * VIMAGE: Assumes the vnet pointer has been set. 397 */ 398 static void 399 mld_dispatch_queue(struct ifqueue *ifq, int limit) 400 { 401 struct mbuf *m; 402 403 for (;;) { 404 _IF_DEQUEUE(ifq, m); 405 if (m == NULL) 406 break; 407 CTR3(KTR_MLD, "%s: dispatch %p from %p", __func__, ifq, m); 408 mld_dispatch_packet(m); 409 if (--limit == 0) 410 break; 411 } 412 } 413 414 /* 415 * Filter outgoing MLD report state by group. 416 * 417 * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1) 418 * and node-local addresses. However, kernel and socket consumers 419 * always embed the KAME scope ID in the address provided, so strip it 420 * when performing comparison. 421 * Note: This is not the same as the *multicast* scope. 422 * 423 * Return zero if the given group is one for which MLD reports 424 * should be suppressed, or non-zero if reports should be issued. 425 */ 426 static __inline int 427 mld_is_addr_reported(const struct in6_addr *addr) 428 { 429 430 KASSERT(IN6_IS_ADDR_MULTICAST(addr), ("%s: not multicast", __func__)); 431 432 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL) 433 return (0); 434 435 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL) { 436 struct in6_addr tmp = *addr; 437 in6_clearscope(&tmp); 438 if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes)) 439 return (0); 440 } 441 442 return (1); 443 } 444 445 /* 446 * Attach MLD when PF_INET6 is attached to an interface. 447 * 448 * SMPng: Normally called with IF_AFDATA_LOCK held. 449 */ 450 struct mld_ifinfo * 451 mld_domifattach(struct ifnet *ifp) 452 { 453 struct mld_ifinfo *mli; 454 455 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 456 __func__, ifp, ifp->if_xname); 457 458 MLD_LOCK(); 459 460 mli = mli_alloc_locked(ifp); 461 if (!(ifp->if_flags & IFF_MULTICAST)) 462 mli->mli_flags |= MLIF_SILENT; 463 464 MLD_UNLOCK(); 465 466 return (mli); 467 } 468 469 /* 470 * VIMAGE: assume curvnet set by caller. 471 */ 472 static struct mld_ifinfo * 473 mli_alloc_locked(/*const*/ struct ifnet *ifp) 474 { 475 struct mld_ifinfo *mli; 476 477 MLD_LOCK_ASSERT(); 478 479 mli = malloc(sizeof(struct mld_ifinfo), M_MLD, M_NOWAIT|M_ZERO); 480 if (mli == NULL) 481 goto out; 482 483 mli->mli_ifp = ifp; 484 mli->mli_version = MLD_VERSION_2; 485 mli->mli_flags = 0; 486 mli->mli_rv = MLD_RV_INIT; 487 mli->mli_qi = MLD_QI_INIT; 488 mli->mli_qri = MLD_QRI_INIT; 489 mli->mli_uri = MLD_URI_INIT; 490 491 SLIST_INIT(&mli->mli_relinmhead); 492 493 /* 494 * Responses to general queries are subject to bounds. 495 */ 496 IFQ_SET_MAXLEN(&mli->mli_gq, MLD_MAX_RESPONSE_PACKETS); 497 498 LIST_INSERT_HEAD(&V_mli_head, mli, mli_link); 499 500 CTR2(KTR_MLD, "allocate mld_ifinfo for ifp %p(%s)", 501 ifp, ifp->if_xname); 502 503 out: 504 return (mli); 505 } 506 507 /* 508 * Hook for ifdetach. 509 * 510 * NOTE: Some finalization tasks need to run before the protocol domain 511 * is detached, but also before the link layer does its cleanup. 512 * Run before link-layer cleanup; cleanup groups, but do not free MLD state. 513 * 514 * SMPng: Caller must hold IN6_MULTI_LOCK(). 515 * Must take IF_ADDR_LOCK() to cover if_multiaddrs iterator. 516 * XXX This routine is also bitten by unlocked ifma_protospec access. 517 */ 518 void 519 mld_ifdetach(struct ifnet *ifp) 520 { 521 struct mld_ifinfo *mli; 522 struct ifmultiaddr *ifma; 523 struct in6_multi *inm, *tinm; 524 525 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", __func__, ifp, 526 ifp->if_xname); 527 528 IN6_MULTI_LOCK_ASSERT(); 529 MLD_LOCK(); 530 531 mli = MLD_IFINFO(ifp); 532 if (mli->mli_version == MLD_VERSION_2) { 533 IF_ADDR_LOCK(ifp); 534 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 535 if (ifma->ifma_addr->sa_family != AF_INET6 || 536 ifma->ifma_protospec == NULL) 537 continue; 538 inm = (struct in6_multi *)ifma->ifma_protospec; 539 if (inm->in6m_state == MLD_LEAVING_MEMBER) { 540 SLIST_INSERT_HEAD(&mli->mli_relinmhead, 541 inm, in6m_nrele); 542 } 543 in6m_clear_recorded(inm); 544 } 545 IF_ADDR_UNLOCK(ifp); 546 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele, 547 tinm) { 548 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele); 549 in6m_release_locked(inm); 550 } 551 } 552 553 MLD_UNLOCK(); 554 } 555 556 /* 557 * Hook for domifdetach. 558 * Runs after link-layer cleanup; free MLD state. 559 * 560 * SMPng: Normally called with IF_AFDATA_LOCK held. 561 */ 562 void 563 mld_domifdetach(struct ifnet *ifp) 564 { 565 566 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 567 __func__, ifp, ifp->if_xname); 568 569 MLD_LOCK(); 570 mli_delete_locked(ifp); 571 MLD_UNLOCK(); 572 } 573 574 static void 575 mli_delete_locked(const struct ifnet *ifp) 576 { 577 struct mld_ifinfo *mli, *tmli; 578 579 CTR3(KTR_MLD, "%s: freeing mld_ifinfo for ifp %p(%s)", 580 __func__, ifp, ifp->if_xname); 581 582 MLD_LOCK_ASSERT(); 583 584 LIST_FOREACH_SAFE(mli, &V_mli_head, mli_link, tmli) { 585 if (mli->mli_ifp == ifp) { 586 /* 587 * Free deferred General Query responses. 588 */ 589 _IF_DRAIN(&mli->mli_gq); 590 591 LIST_REMOVE(mli, mli_link); 592 593 KASSERT(SLIST_EMPTY(&mli->mli_relinmhead), 594 ("%s: there are dangling in_multi references", 595 __func__)); 596 597 free(mli, M_MLD); 598 return; 599 } 600 } 601 #ifdef INVARIANTS 602 panic("%s: mld_ifinfo not found for ifp %p\n", __func__, ifp); 603 #endif 604 } 605 606 /* 607 * Process a received MLDv1 general or address-specific query. 608 * Assumes that the query header has been pulled up to sizeof(mld_hdr). 609 * 610 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 611 * mld_addr. This is OK as we own the mbuf chain. 612 */ 613 static int 614 mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 615 /*const*/ struct mld_hdr *mld) 616 { 617 struct ifmultiaddr *ifma; 618 struct mld_ifinfo *mli; 619 struct in6_multi *inm; 620 int is_general_query; 621 uint16_t timer; 622 #ifdef KTR 623 char ip6tbuf[INET6_ADDRSTRLEN]; 624 #endif 625 626 is_general_query = 0; 627 628 if (!mld_v1enable) { 629 CTR3(KTR_MLD, "ignore v1 query %s on ifp %p(%s)", 630 ip6_sprintf(ip6tbuf, &mld->mld_addr), 631 ifp, ifp->if_xname); 632 return (0); 633 } 634 635 /* 636 * RFC3810 Section 6.2: MLD queries must originate from 637 * a router's link-local address. 638 */ 639 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 640 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 641 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 642 ifp, ifp->if_xname); 643 return (0); 644 } 645 646 /* 647 * Do address field validation upfront before we accept 648 * the query. 649 */ 650 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 651 /* 652 * MLDv1 General Query. 653 * If this was not sent to the all-nodes group, ignore it. 654 */ 655 struct in6_addr dst; 656 657 dst = ip6->ip6_dst; 658 in6_clearscope(&dst); 659 if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes)) 660 return (EINVAL); 661 is_general_query = 1; 662 } else { 663 /* 664 * Embed scope ID of receiving interface in MLD query for 665 * lookup whilst we don't hold other locks. 666 */ 667 in6_setscope(&mld->mld_addr, ifp, NULL); 668 } 669 670 IN6_MULTI_LOCK(); 671 MLD_LOCK(); 672 IF_ADDR_LOCK(ifp); 673 674 /* 675 * Switch to MLDv1 host compatibility mode. 676 */ 677 mli = MLD_IFINFO(ifp); 678 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 679 mld_set_version(mli, MLD_VERSION_1); 680 681 timer = (ntohs(mld->mld_maxdelay) * PR_FASTHZ) / MLD_TIMER_SCALE; 682 if (timer == 0) 683 timer = 1; 684 685 if (is_general_query) { 686 /* 687 * For each reporting group joined on this 688 * interface, kick the report timer. 689 */ 690 CTR2(KTR_MLD, "process v1 general query on ifp %p(%s)", 691 ifp, ifp->if_xname); 692 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 693 if (ifma->ifma_addr->sa_family != AF_INET6 || 694 ifma->ifma_protospec == NULL) 695 continue; 696 inm = (struct in6_multi *)ifma->ifma_protospec; 697 mld_v1_update_group(inm, timer); 698 } 699 } else { 700 /* 701 * MLDv1 Group-Specific Query. 702 * If this is a group-specific MLDv1 query, we need only 703 * look up the single group to process it. 704 */ 705 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 706 if (inm != NULL) { 707 CTR3(KTR_MLD, "process v1 query %s on ifp %p(%s)", 708 ip6_sprintf(ip6tbuf, &mld->mld_addr), 709 ifp, ifp->if_xname); 710 mld_v1_update_group(inm, timer); 711 } 712 /* XXX Clear embedded scope ID as userland won't expect it. */ 713 in6_clearscope(&mld->mld_addr); 714 } 715 716 IF_ADDR_UNLOCK(ifp); 717 MLD_UNLOCK(); 718 IN6_MULTI_UNLOCK(); 719 720 return (0); 721 } 722 723 /* 724 * Update the report timer on a group in response to an MLDv1 query. 725 * 726 * If we are becoming the reporting member for this group, start the timer. 727 * If we already are the reporting member for this group, and timer is 728 * below the threshold, reset it. 729 * 730 * We may be updating the group for the first time since we switched 731 * to MLDv2. If we are, then we must clear any recorded source lists, 732 * and transition to REPORTING state; the group timer is overloaded 733 * for group and group-source query responses. 734 * 735 * Unlike MLDv2, the delay per group should be jittered 736 * to avoid bursts of MLDv1 reports. 737 */ 738 static void 739 mld_v1_update_group(struct in6_multi *inm, const int timer) 740 { 741 #ifdef KTR 742 char ip6tbuf[INET6_ADDRSTRLEN]; 743 #endif 744 745 CTR4(KTR_MLD, "%s: %s/%s timer=%d", __func__, 746 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 747 inm->in6m_ifp->if_xname, timer); 748 749 IN6_MULTI_LOCK_ASSERT(); 750 751 switch (inm->in6m_state) { 752 case MLD_NOT_MEMBER: 753 case MLD_SILENT_MEMBER: 754 break; 755 case MLD_REPORTING_MEMBER: 756 if (inm->in6m_timer != 0 && 757 inm->in6m_timer <= timer) { 758 CTR1(KTR_MLD, "%s: REPORTING and timer running, " 759 "skipping.", __func__); 760 break; 761 } 762 /* FALLTHROUGH */ 763 case MLD_SG_QUERY_PENDING_MEMBER: 764 case MLD_G_QUERY_PENDING_MEMBER: 765 case MLD_IDLE_MEMBER: 766 case MLD_LAZY_MEMBER: 767 case MLD_AWAKENING_MEMBER: 768 CTR1(KTR_MLD, "%s: ->REPORTING", __func__); 769 inm->in6m_state = MLD_REPORTING_MEMBER; 770 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 771 V_current_state_timers_running6 = 1; 772 break; 773 case MLD_SLEEPING_MEMBER: 774 CTR1(KTR_MLD, "%s: ->AWAKENING", __func__); 775 inm->in6m_state = MLD_AWAKENING_MEMBER; 776 break; 777 case MLD_LEAVING_MEMBER: 778 break; 779 } 780 } 781 782 /* 783 * Process a received MLDv2 general, group-specific or 784 * group-and-source-specific query. 785 * 786 * Assumes that the query header has been pulled up to sizeof(mldv2_query). 787 * 788 * Return 0 if successful, otherwise an appropriate error code is returned. 789 */ 790 static int 791 mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 792 struct mbuf *m, const int off, const int icmp6len) 793 { 794 struct mld_ifinfo *mli; 795 struct mldv2_query *mld; 796 struct in6_multi *inm; 797 uint32_t maxdelay, nsrc, qqi; 798 int is_general_query; 799 uint16_t timer; 800 uint8_t qrv; 801 #ifdef KTR 802 char ip6tbuf[INET6_ADDRSTRLEN]; 803 #endif 804 805 is_general_query = 0; 806 807 /* 808 * RFC3810 Section 6.2: MLD queries must originate from 809 * a router's link-local address. 810 */ 811 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 812 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 813 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 814 ifp, ifp->if_xname); 815 return (0); 816 } 817 818 CTR2(KTR_MLD, "input v2 query on ifp %p(%s)", ifp, ifp->if_xname); 819 820 mld = (struct mldv2_query *)(mtod(m, uint8_t *) + off); 821 822 maxdelay = ntohs(mld->mld_maxdelay); /* in 1/10ths of a second */ 823 if (maxdelay >= 32678) { 824 maxdelay = (MLD_MRC_MANT(maxdelay) | 0x1000) << 825 (MLD_MRC_EXP(maxdelay) + 3); 826 } 827 timer = (maxdelay * PR_FASTHZ) / MLD_TIMER_SCALE; 828 if (timer == 0) 829 timer = 1; 830 831 qrv = MLD_QRV(mld->mld_misc); 832 if (qrv < 2) { 833 CTR3(KTR_MLD, "%s: clamping qrv %d to %d", __func__, 834 qrv, MLD_RV_INIT); 835 qrv = MLD_RV_INIT; 836 } 837 838 qqi = mld->mld_qqi; 839 if (qqi >= 128) { 840 qqi = MLD_QQIC_MANT(mld->mld_qqi) << 841 (MLD_QQIC_EXP(mld->mld_qqi) + 3); 842 } 843 844 nsrc = ntohs(mld->mld_numsrc); 845 if (nsrc > MLD_MAX_GS_SOURCES) 846 return (EMSGSIZE); 847 if (icmp6len < sizeof(struct mldv2_query) + 848 (nsrc * sizeof(struct in6_addr))) 849 return (EMSGSIZE); 850 851 /* 852 * Do further input validation upfront to avoid resetting timers 853 * should we need to discard this query. 854 */ 855 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 856 /* 857 * General Queries SHOULD be directed to ff02::1. 858 * A general query with a source list has undefined 859 * behaviour; discard it. 860 */ 861 struct in6_addr dst; 862 863 dst = ip6->ip6_dst; 864 in6_clearscope(&dst); 865 if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes) || 866 nsrc > 0) 867 return (EINVAL); 868 is_general_query = 1; 869 } else { 870 /* 871 * Embed scope ID of receiving interface in MLD query for 872 * lookup whilst we don't hold other locks (due to KAME 873 * locking lameness). We own this mbuf chain just now. 874 */ 875 in6_setscope(&mld->mld_addr, ifp, NULL); 876 } 877 878 IN6_MULTI_LOCK(); 879 MLD_LOCK(); 880 IF_ADDR_LOCK(ifp); 881 882 mli = MLD_IFINFO(ifp); 883 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 884 885 /* 886 * Discard the v2 query if we're in Compatibility Mode. 887 * The RFC is pretty clear that hosts need to stay in MLDv1 mode 888 * until the Old Version Querier Present timer expires. 889 */ 890 if (mli->mli_version != MLD_VERSION_2) 891 goto out_locked; 892 893 mld_set_version(mli, MLD_VERSION_2); 894 mli->mli_rv = qrv; 895 mli->mli_qi = qqi; 896 mli->mli_qri = maxdelay; 897 898 CTR4(KTR_MLD, "%s: qrv %d qi %d maxdelay %d", __func__, qrv, qqi, 899 maxdelay); 900 901 if (is_general_query) { 902 /* 903 * MLDv2 General Query. 904 * 905 * Schedule a current-state report on this ifp for 906 * all groups, possibly containing source lists. 907 * 908 * If there is a pending General Query response 909 * scheduled earlier than the selected delay, do 910 * not schedule any other reports. 911 * Otherwise, reset the interface timer. 912 */ 913 CTR2(KTR_MLD, "process v2 general query on ifp %p(%s)", 914 ifp, ifp->if_xname); 915 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) { 916 mli->mli_v2_timer = MLD_RANDOM_DELAY(timer); 917 V_interface_timers_running6 = 1; 918 } 919 } else { 920 /* 921 * MLDv2 Group-specific or Group-and-source-specific Query. 922 * 923 * Group-source-specific queries are throttled on 924 * a per-group basis to defeat denial-of-service attempts. 925 * Queries for groups we are not a member of on this 926 * link are simply ignored. 927 */ 928 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 929 if (inm == NULL) 930 goto out_locked; 931 if (nsrc > 0) { 932 if (!ratecheck(&inm->in6m_lastgsrtv, 933 &V_mld_gsrdelay)) { 934 CTR1(KTR_MLD, "%s: GS query throttled.", 935 __func__); 936 goto out_locked; 937 } 938 } 939 CTR2(KTR_MLD, "process v2 group query on ifp %p(%s)", 940 ifp, ifp->if_xname); 941 /* 942 * If there is a pending General Query response 943 * scheduled sooner than the selected delay, no 944 * further report need be scheduled. 945 * Otherwise, prepare to respond to the 946 * group-specific or group-and-source query. 947 */ 948 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) 949 mld_v2_process_group_query(inm, mli, timer, m, off); 950 951 /* XXX Clear embedded scope ID as userland won't expect it. */ 952 in6_clearscope(&mld->mld_addr); 953 } 954 955 out_locked: 956 IF_ADDR_UNLOCK(ifp); 957 MLD_UNLOCK(); 958 IN6_MULTI_UNLOCK(); 959 960 return (0); 961 } 962 963 /* 964 * Process a recieved MLDv2 group-specific or group-and-source-specific 965 * query. 966 * Return <0 if any error occured. Currently this is ignored. 967 */ 968 static int 969 mld_v2_process_group_query(struct in6_multi *inm, struct mld_ifinfo *mli, 970 int timer, struct mbuf *m0, const int off) 971 { 972 struct mldv2_query *mld; 973 int retval; 974 uint16_t nsrc; 975 976 IN6_MULTI_LOCK_ASSERT(); 977 MLD_LOCK_ASSERT(); 978 979 retval = 0; 980 mld = (struct mldv2_query *)(mtod(m0, uint8_t *) + off); 981 982 switch (inm->in6m_state) { 983 case MLD_NOT_MEMBER: 984 case MLD_SILENT_MEMBER: 985 case MLD_SLEEPING_MEMBER: 986 case MLD_LAZY_MEMBER: 987 case MLD_AWAKENING_MEMBER: 988 case MLD_IDLE_MEMBER: 989 case MLD_LEAVING_MEMBER: 990 return (retval); 991 break; 992 case MLD_REPORTING_MEMBER: 993 case MLD_G_QUERY_PENDING_MEMBER: 994 case MLD_SG_QUERY_PENDING_MEMBER: 995 break; 996 } 997 998 nsrc = ntohs(mld->mld_numsrc); 999 1000 /* 1001 * Deal with group-specific queries upfront. 1002 * If any group query is already pending, purge any recorded 1003 * source-list state if it exists, and schedule a query response 1004 * for this group-specific query. 1005 */ 1006 if (nsrc == 0) { 1007 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 1008 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) { 1009 in6m_clear_recorded(inm); 1010 timer = min(inm->in6m_timer, timer); 1011 } 1012 inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER; 1013 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1014 V_current_state_timers_running6 = 1; 1015 return (retval); 1016 } 1017 1018 /* 1019 * Deal with the case where a group-and-source-specific query has 1020 * been received but a group-specific query is already pending. 1021 */ 1022 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) { 1023 timer = min(inm->in6m_timer, timer); 1024 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1025 V_current_state_timers_running6 = 1; 1026 return (retval); 1027 } 1028 1029 /* 1030 * Finally, deal with the case where a group-and-source-specific 1031 * query has been received, where a response to a previous g-s-r 1032 * query exists, or none exists. 1033 * In this case, we need to parse the source-list which the Querier 1034 * has provided us with and check if we have any source list filter 1035 * entries at T1 for these sources. If we do not, there is no need 1036 * schedule a report and the query may be dropped. 1037 * If we do, we must record them and schedule a current-state 1038 * report for those sources. 1039 */ 1040 if (inm->in6m_nsrc > 0) { 1041 struct mbuf *m; 1042 uint8_t *sp; 1043 int i, nrecorded; 1044 int soff; 1045 1046 m = m0; 1047 soff = off + sizeof(struct mldv2_query); 1048 nrecorded = 0; 1049 for (i = 0; i < nsrc; i++) { 1050 sp = mtod(m, uint8_t *) + soff; 1051 retval = in6m_record_source(inm, 1052 (const struct in6_addr *)sp); 1053 if (retval < 0) 1054 break; 1055 nrecorded += retval; 1056 soff += sizeof(struct in6_addr); 1057 if (soff >= m->m_len) { 1058 soff = soff - m->m_len; 1059 m = m->m_next; 1060 if (m == NULL) 1061 break; 1062 } 1063 } 1064 if (nrecorded > 0) { 1065 CTR1(KTR_MLD, 1066 "%s: schedule response to SG query", __func__); 1067 inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER; 1068 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1069 V_current_state_timers_running6 = 1; 1070 } 1071 } 1072 1073 return (retval); 1074 } 1075 1076 /* 1077 * Process a received MLDv1 host membership report. 1078 * Assumes mld points to mld_hdr in pulled up mbuf chain. 1079 * 1080 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 1081 * mld_addr. This is OK as we own the mbuf chain. 1082 */ 1083 static int 1084 mld_v1_input_report(struct ifnet *ifp, const struct ip6_hdr *ip6, 1085 /*const*/ struct mld_hdr *mld) 1086 { 1087 struct in6_addr src, dst; 1088 struct in6_ifaddr *ia; 1089 struct in6_multi *inm; 1090 #ifdef KTR 1091 char ip6tbuf[INET6_ADDRSTRLEN]; 1092 #endif 1093 1094 if (!mld_v1enable) { 1095 CTR3(KTR_MLD, "ignore v1 report %s on ifp %p(%s)", 1096 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1097 ifp, ifp->if_xname); 1098 return (0); 1099 } 1100 1101 if (ifp->if_flags & IFF_LOOPBACK) 1102 return (0); 1103 1104 /* 1105 * MLDv1 reports must originate from a host's link-local address, 1106 * or the unspecified address (when booting). 1107 */ 1108 src = ip6->ip6_src; 1109 in6_clearscope(&src); 1110 if (!IN6_IS_SCOPE_LINKLOCAL(&src) && !IN6_IS_ADDR_UNSPECIFIED(&src)) { 1111 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 1112 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 1113 ifp, ifp->if_xname); 1114 return (EINVAL); 1115 } 1116 1117 /* 1118 * RFC2710 Section 4: MLDv1 reports must pertain to a multicast 1119 * group, and must be directed to the group itself. 1120 */ 1121 dst = ip6->ip6_dst; 1122 in6_clearscope(&dst); 1123 if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) || 1124 !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &dst)) { 1125 CTR3(KTR_MLD, "ignore v1 query dst %s on ifp %p(%s)", 1126 ip6_sprintf(ip6tbuf, &ip6->ip6_dst), 1127 ifp, ifp->if_xname); 1128 return (EINVAL); 1129 } 1130 1131 /* 1132 * Make sure we don't hear our own membership report, as fast 1133 * leave requires knowing that we are the only member of a 1134 * group. Assume we used the link-local address if available, 1135 * otherwise look for ::. 1136 * 1137 * XXX Note that scope ID comparison is needed for the address 1138 * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be 1139 * performed for the on-wire address. 1140 */ 1141 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1142 if ((ia && IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia))) || 1143 (ia == NULL && IN6_IS_ADDR_UNSPECIFIED(&src))) { 1144 if (ia != NULL) 1145 ifa_free(&ia->ia_ifa); 1146 return (0); 1147 } 1148 if (ia != NULL) 1149 ifa_free(&ia->ia_ifa); 1150 1151 CTR3(KTR_MLD, "process v1 report %s on ifp %p(%s)", 1152 ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, ifp->if_xname); 1153 1154 /* 1155 * Embed scope ID of receiving interface in MLD query for lookup 1156 * whilst we don't hold other locks (due to KAME locking lameness). 1157 */ 1158 if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) 1159 in6_setscope(&mld->mld_addr, ifp, NULL); 1160 1161 IN6_MULTI_LOCK(); 1162 MLD_LOCK(); 1163 IF_ADDR_LOCK(ifp); 1164 1165 /* 1166 * MLDv1 report suppression. 1167 * If we are a member of this group, and our membership should be 1168 * reported, and our group timer is pending or about to be reset, 1169 * stop our group timer by transitioning to the 'lazy' state. 1170 */ 1171 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 1172 if (inm != NULL) { 1173 struct mld_ifinfo *mli; 1174 1175 mli = inm->in6m_mli; 1176 KASSERT(mli != NULL, 1177 ("%s: no mli for ifp %p", __func__, ifp)); 1178 1179 /* 1180 * If we are in MLDv2 host mode, do not allow the 1181 * other host's MLDv1 report to suppress our reports. 1182 */ 1183 if (mli->mli_version == MLD_VERSION_2) 1184 goto out_locked; 1185 1186 inm->in6m_timer = 0; 1187 1188 switch (inm->in6m_state) { 1189 case MLD_NOT_MEMBER: 1190 case MLD_SILENT_MEMBER: 1191 case MLD_SLEEPING_MEMBER: 1192 break; 1193 case MLD_REPORTING_MEMBER: 1194 case MLD_IDLE_MEMBER: 1195 case MLD_AWAKENING_MEMBER: 1196 CTR3(KTR_MLD, 1197 "report suppressed for %s on ifp %p(%s)", 1198 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1199 ifp, ifp->if_xname); 1200 case MLD_LAZY_MEMBER: 1201 inm->in6m_state = MLD_LAZY_MEMBER; 1202 break; 1203 case MLD_G_QUERY_PENDING_MEMBER: 1204 case MLD_SG_QUERY_PENDING_MEMBER: 1205 case MLD_LEAVING_MEMBER: 1206 break; 1207 } 1208 } 1209 1210 out_locked: 1211 MLD_UNLOCK(); 1212 IF_ADDR_UNLOCK(ifp); 1213 IN6_MULTI_UNLOCK(); 1214 1215 /* XXX Clear embedded scope ID as userland won't expect it. */ 1216 in6_clearscope(&mld->mld_addr); 1217 1218 return (0); 1219 } 1220 1221 /* 1222 * MLD input path. 1223 * 1224 * Assume query messages which fit in a single ICMPv6 message header 1225 * have been pulled up. 1226 * Assume that userland will want to see the message, even if it 1227 * otherwise fails kernel input validation; do not free it. 1228 * Pullup may however free the mbuf chain m if it fails. 1229 * 1230 * Return IPPROTO_DONE if we freed m. Otherwise, return 0. 1231 */ 1232 int 1233 mld_input(struct mbuf *m, int off, int icmp6len) 1234 { 1235 struct ifnet *ifp; 1236 struct ip6_hdr *ip6; 1237 struct mld_hdr *mld; 1238 int mldlen; 1239 1240 CTR3(KTR_MLD, "%s: called w/mbuf (%p,%d)", __func__, m, off); 1241 1242 ifp = m->m_pkthdr.rcvif; 1243 1244 ip6 = mtod(m, struct ip6_hdr *); 1245 1246 /* Pullup to appropriate size. */ 1247 mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off); 1248 if (mld->mld_type == MLD_LISTENER_QUERY && 1249 icmp6len >= sizeof(struct mldv2_query)) { 1250 mldlen = sizeof(struct mldv2_query); 1251 } else { 1252 mldlen = sizeof(struct mld_hdr); 1253 } 1254 IP6_EXTHDR_GET(mld, struct mld_hdr *, m, off, mldlen); 1255 if (mld == NULL) { 1256 ICMP6STAT_INC(icp6s_badlen); 1257 return (IPPROTO_DONE); 1258 } 1259 1260 /* 1261 * Userland needs to see all of this traffic for implementing 1262 * the endpoint discovery portion of multicast routing. 1263 */ 1264 switch (mld->mld_type) { 1265 case MLD_LISTENER_QUERY: 1266 icmp6_ifstat_inc(ifp, ifs6_in_mldquery); 1267 if (icmp6len == sizeof(struct mld_hdr)) { 1268 if (mld_v1_input_query(ifp, ip6, mld) != 0) 1269 return (0); 1270 } else if (icmp6len >= sizeof(struct mldv2_query)) { 1271 if (mld_v2_input_query(ifp, ip6, m, off, 1272 icmp6len) != 0) 1273 return (0); 1274 } 1275 break; 1276 case MLD_LISTENER_REPORT: 1277 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1278 if (mld_v1_input_report(ifp, ip6, mld) != 0) 1279 return (0); 1280 break; 1281 case MLDV2_LISTENER_REPORT: 1282 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1283 break; 1284 case MLD_LISTENER_DONE: 1285 icmp6_ifstat_inc(ifp, ifs6_in_mlddone); 1286 break; 1287 default: 1288 break; 1289 } 1290 1291 return (0); 1292 } 1293 1294 /* 1295 * Fast timeout handler (global). 1296 * VIMAGE: Timeout handlers are expected to service all vimages. 1297 */ 1298 void 1299 mld_fasttimo(void) 1300 { 1301 VNET_ITERATOR_DECL(vnet_iter); 1302 1303 VNET_LIST_RLOCK_NOSLEEP(); 1304 VNET_FOREACH(vnet_iter) { 1305 CURVNET_SET(vnet_iter); 1306 mld_fasttimo_vnet(); 1307 CURVNET_RESTORE(); 1308 } 1309 VNET_LIST_RUNLOCK_NOSLEEP(); 1310 } 1311 1312 /* 1313 * Fast timeout handler (per-vnet). 1314 * 1315 * VIMAGE: Assume caller has set up our curvnet. 1316 */ 1317 static void 1318 mld_fasttimo_vnet(void) 1319 { 1320 struct ifqueue scq; /* State-change packets */ 1321 struct ifqueue qrq; /* Query response packets */ 1322 struct ifnet *ifp; 1323 struct mld_ifinfo *mli; 1324 struct ifmultiaddr *ifma, *tifma; 1325 struct in6_multi *inm; 1326 int uri_fasthz; 1327 1328 uri_fasthz = 0; 1329 1330 /* 1331 * Quick check to see if any work needs to be done, in order to 1332 * minimize the overhead of fasttimo processing. 1333 * SMPng: XXX Unlocked reads. 1334 */ 1335 if (!V_current_state_timers_running6 && 1336 !V_interface_timers_running6 && 1337 !V_state_change_timers_running6) 1338 return; 1339 1340 IN6_MULTI_LOCK(); 1341 MLD_LOCK(); 1342 1343 /* 1344 * MLDv2 General Query response timer processing. 1345 */ 1346 if (V_interface_timers_running6) { 1347 CTR1(KTR_MLD, "%s: interface timers running", __func__); 1348 1349 V_interface_timers_running6 = 0; 1350 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1351 if (mli->mli_v2_timer == 0) { 1352 /* Do nothing. */ 1353 } else if (--mli->mli_v2_timer == 0) { 1354 mld_v2_dispatch_general_query(mli); 1355 } else { 1356 V_interface_timers_running6 = 1; 1357 } 1358 } 1359 } 1360 1361 if (!V_current_state_timers_running6 && 1362 !V_state_change_timers_running6) 1363 goto out_locked; 1364 1365 V_current_state_timers_running6 = 0; 1366 V_state_change_timers_running6 = 0; 1367 1368 CTR1(KTR_MLD, "%s: state change timers running", __func__); 1369 1370 /* 1371 * MLD host report and state-change timer processing. 1372 * Note: Processing a v2 group timer may remove a node. 1373 */ 1374 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1375 ifp = mli->mli_ifp; 1376 1377 if (mli->mli_version == MLD_VERSION_2) { 1378 uri_fasthz = MLD_RANDOM_DELAY(mli->mli_uri * 1379 PR_FASTHZ); 1380 1381 memset(&qrq, 0, sizeof(struct ifqueue)); 1382 IFQ_SET_MAXLEN(&qrq, MLD_MAX_G_GS_PACKETS); 1383 1384 memset(&scq, 0, sizeof(struct ifqueue)); 1385 IFQ_SET_MAXLEN(&scq, MLD_MAX_STATE_CHANGE_PACKETS); 1386 } 1387 1388 IF_ADDR_LOCK(ifp); 1389 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, 1390 tifma) { 1391 if (ifma->ifma_addr->sa_family != AF_INET6 || 1392 ifma->ifma_protospec == NULL) 1393 continue; 1394 inm = (struct in6_multi *)ifma->ifma_protospec; 1395 switch (mli->mli_version) { 1396 case MLD_VERSION_1: 1397 /* 1398 * XXX Drop IF_ADDR lock temporarily to 1399 * avoid recursion caused by a potential 1400 * call by in6ifa_ifpforlinklocal(). 1401 * rwlock candidate? 1402 */ 1403 IF_ADDR_UNLOCK(ifp); 1404 mld_v1_process_group_timer(inm, 1405 mli->mli_version); 1406 IF_ADDR_LOCK(ifp); 1407 break; 1408 case MLD_VERSION_2: 1409 mld_v2_process_group_timers(mli, &qrq, 1410 &scq, inm, uri_fasthz); 1411 break; 1412 } 1413 } 1414 IF_ADDR_UNLOCK(ifp); 1415 1416 if (mli->mli_version == MLD_VERSION_2) { 1417 struct in6_multi *tinm; 1418 1419 mld_dispatch_queue(&qrq, 0); 1420 mld_dispatch_queue(&scq, 0); 1421 1422 /* 1423 * Free the in_multi reference(s) for 1424 * this lifecycle. 1425 */ 1426 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, 1427 in6m_nrele, tinm) { 1428 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, 1429 in6m_nrele); 1430 in6m_release_locked(inm); 1431 } 1432 } 1433 } 1434 1435 out_locked: 1436 MLD_UNLOCK(); 1437 IN6_MULTI_UNLOCK(); 1438 } 1439 1440 /* 1441 * Update host report group timer. 1442 * Will update the global pending timer flags. 1443 */ 1444 static void 1445 mld_v1_process_group_timer(struct in6_multi *inm, const int version) 1446 { 1447 int report_timer_expired; 1448 1449 IN6_MULTI_LOCK_ASSERT(); 1450 MLD_LOCK_ASSERT(); 1451 1452 if (inm->in6m_timer == 0) { 1453 report_timer_expired = 0; 1454 } else if (--inm->in6m_timer == 0) { 1455 report_timer_expired = 1; 1456 } else { 1457 V_current_state_timers_running6 = 1; 1458 return; 1459 } 1460 1461 switch (inm->in6m_state) { 1462 case MLD_NOT_MEMBER: 1463 case MLD_SILENT_MEMBER: 1464 case MLD_IDLE_MEMBER: 1465 case MLD_LAZY_MEMBER: 1466 case MLD_SLEEPING_MEMBER: 1467 case MLD_AWAKENING_MEMBER: 1468 break; 1469 case MLD_REPORTING_MEMBER: 1470 if (report_timer_expired) { 1471 inm->in6m_state = MLD_IDLE_MEMBER; 1472 (void)mld_v1_transmit_report(inm, 1473 MLD_LISTENER_REPORT); 1474 } 1475 break; 1476 case MLD_G_QUERY_PENDING_MEMBER: 1477 case MLD_SG_QUERY_PENDING_MEMBER: 1478 case MLD_LEAVING_MEMBER: 1479 break; 1480 } 1481 } 1482 1483 /* 1484 * Update a group's timers for MLDv2. 1485 * Will update the global pending timer flags. 1486 * Note: Unlocked read from mli. 1487 */ 1488 static void 1489 mld_v2_process_group_timers(struct mld_ifinfo *mli, 1490 struct ifqueue *qrq, struct ifqueue *scq, 1491 struct in6_multi *inm, const int uri_fasthz) 1492 { 1493 int query_response_timer_expired; 1494 int state_change_retransmit_timer_expired; 1495 #ifdef KTR 1496 char ip6tbuf[INET6_ADDRSTRLEN]; 1497 #endif 1498 1499 IN6_MULTI_LOCK_ASSERT(); 1500 MLD_LOCK_ASSERT(); 1501 1502 query_response_timer_expired = 0; 1503 state_change_retransmit_timer_expired = 0; 1504 1505 /* 1506 * During a transition from compatibility mode back to MLDv2, 1507 * a group record in REPORTING state may still have its group 1508 * timer active. This is a no-op in this function; it is easier 1509 * to deal with it here than to complicate the slow-timeout path. 1510 */ 1511 if (inm->in6m_timer == 0) { 1512 query_response_timer_expired = 0; 1513 } else if (--inm->in6m_timer == 0) { 1514 query_response_timer_expired = 1; 1515 } else { 1516 V_current_state_timers_running6 = 1; 1517 } 1518 1519 if (inm->in6m_sctimer == 0) { 1520 state_change_retransmit_timer_expired = 0; 1521 } else if (--inm->in6m_sctimer == 0) { 1522 state_change_retransmit_timer_expired = 1; 1523 } else { 1524 V_state_change_timers_running6 = 1; 1525 } 1526 1527 /* We are in fasttimo, so be quick about it. */ 1528 if (!state_change_retransmit_timer_expired && 1529 !query_response_timer_expired) 1530 return; 1531 1532 switch (inm->in6m_state) { 1533 case MLD_NOT_MEMBER: 1534 case MLD_SILENT_MEMBER: 1535 case MLD_SLEEPING_MEMBER: 1536 case MLD_LAZY_MEMBER: 1537 case MLD_AWAKENING_MEMBER: 1538 case MLD_IDLE_MEMBER: 1539 break; 1540 case MLD_G_QUERY_PENDING_MEMBER: 1541 case MLD_SG_QUERY_PENDING_MEMBER: 1542 /* 1543 * Respond to a previously pending Group-Specific 1544 * or Group-and-Source-Specific query by enqueueing 1545 * the appropriate Current-State report for 1546 * immediate transmission. 1547 */ 1548 if (query_response_timer_expired) { 1549 int retval; 1550 1551 retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1, 1552 (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER)); 1553 CTR2(KTR_MLD, "%s: enqueue record = %d", 1554 __func__, retval); 1555 inm->in6m_state = MLD_REPORTING_MEMBER; 1556 in6m_clear_recorded(inm); 1557 } 1558 /* FALLTHROUGH */ 1559 case MLD_REPORTING_MEMBER: 1560 case MLD_LEAVING_MEMBER: 1561 if (state_change_retransmit_timer_expired) { 1562 /* 1563 * State-change retransmission timer fired. 1564 * If there are any further pending retransmissions, 1565 * set the global pending state-change flag, and 1566 * reset the timer. 1567 */ 1568 if (--inm->in6m_scrv > 0) { 1569 inm->in6m_sctimer = uri_fasthz; 1570 V_state_change_timers_running6 = 1; 1571 } 1572 /* 1573 * Retransmit the previously computed state-change 1574 * report. If there are no further pending 1575 * retransmissions, the mbuf queue will be consumed. 1576 * Update T0 state to T1 as we have now sent 1577 * a state-change. 1578 */ 1579 (void)mld_v2_merge_state_changes(inm, scq); 1580 1581 in6m_commit(inm); 1582 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 1583 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1584 inm->in6m_ifp->if_xname); 1585 1586 /* 1587 * If we are leaving the group for good, make sure 1588 * we release MLD's reference to it. 1589 * This release must be deferred using a SLIST, 1590 * as we are called from a loop which traverses 1591 * the in_ifmultiaddr TAILQ. 1592 */ 1593 if (inm->in6m_state == MLD_LEAVING_MEMBER && 1594 inm->in6m_scrv == 0) { 1595 inm->in6m_state = MLD_NOT_MEMBER; 1596 SLIST_INSERT_HEAD(&mli->mli_relinmhead, 1597 inm, in6m_nrele); 1598 } 1599 } 1600 break; 1601 } 1602 } 1603 1604 /* 1605 * Switch to a different version on the given interface, 1606 * as per Section 9.12. 1607 */ 1608 static void 1609 mld_set_version(struct mld_ifinfo *mli, const int version) 1610 { 1611 int old_version_timer; 1612 1613 MLD_LOCK_ASSERT(); 1614 1615 CTR4(KTR_MLD, "%s: switching to v%d on ifp %p(%s)", __func__, 1616 version, mli->mli_ifp, mli->mli_ifp->if_xname); 1617 1618 if (version == MLD_VERSION_1) { 1619 /* 1620 * Compute the "Older Version Querier Present" timer as per 1621 * Section 9.12. 1622 */ 1623 old_version_timer = (mli->mli_rv * mli->mli_qi) + mli->mli_qri; 1624 old_version_timer *= PR_SLOWHZ; 1625 mli->mli_v1_timer = old_version_timer; 1626 } 1627 1628 if (mli->mli_v1_timer > 0 && mli->mli_version != MLD_VERSION_1) { 1629 mli->mli_version = MLD_VERSION_1; 1630 mld_v2_cancel_link_timers(mli); 1631 } 1632 } 1633 1634 /* 1635 * Cancel pending MLDv2 timers for the given link and all groups 1636 * joined on it; state-change, general-query, and group-query timers. 1637 */ 1638 static void 1639 mld_v2_cancel_link_timers(struct mld_ifinfo *mli) 1640 { 1641 struct ifmultiaddr *ifma; 1642 struct ifnet *ifp; 1643 struct in6_multi *inm; 1644 1645 CTR3(KTR_MLD, "%s: cancel v2 timers on ifp %p(%s)", __func__, 1646 mli->mli_ifp, mli->mli_ifp->if_xname); 1647 1648 IN6_MULTI_LOCK_ASSERT(); 1649 MLD_LOCK_ASSERT(); 1650 1651 /* 1652 * Fast-track this potentially expensive operation 1653 * by checking all the global 'timer pending' flags. 1654 */ 1655 if (!V_interface_timers_running6 && 1656 !V_state_change_timers_running6 && 1657 !V_current_state_timers_running6) 1658 return; 1659 1660 mli->mli_v2_timer = 0; 1661 1662 ifp = mli->mli_ifp; 1663 1664 IF_ADDR_LOCK(ifp); 1665 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1666 if (ifma->ifma_addr->sa_family != AF_INET6) 1667 continue; 1668 inm = (struct in6_multi *)ifma->ifma_protospec; 1669 switch (inm->in6m_state) { 1670 case MLD_NOT_MEMBER: 1671 case MLD_SILENT_MEMBER: 1672 case MLD_IDLE_MEMBER: 1673 case MLD_LAZY_MEMBER: 1674 case MLD_SLEEPING_MEMBER: 1675 case MLD_AWAKENING_MEMBER: 1676 break; 1677 case MLD_LEAVING_MEMBER: 1678 /* 1679 * If we are leaving the group and switching 1680 * version, we need to release the final 1681 * reference held for issuing the INCLUDE {}. 1682 * 1683 * SMPNG: Must drop and re-acquire IF_ADDR_LOCK 1684 * around in6m_release_locked(), as it is not 1685 * a recursive mutex. 1686 */ 1687 IF_ADDR_UNLOCK(ifp); 1688 in6m_release_locked(inm); 1689 IF_ADDR_LOCK(ifp); 1690 /* FALLTHROUGH */ 1691 case MLD_G_QUERY_PENDING_MEMBER: 1692 case MLD_SG_QUERY_PENDING_MEMBER: 1693 in6m_clear_recorded(inm); 1694 /* FALLTHROUGH */ 1695 case MLD_REPORTING_MEMBER: 1696 inm->in6m_sctimer = 0; 1697 inm->in6m_timer = 0; 1698 inm->in6m_state = MLD_REPORTING_MEMBER; 1699 /* 1700 * Free any pending MLDv2 state-change records. 1701 */ 1702 _IF_DRAIN(&inm->in6m_scq); 1703 break; 1704 } 1705 } 1706 IF_ADDR_UNLOCK(ifp); 1707 } 1708 1709 /* 1710 * Global slowtimo handler. 1711 * VIMAGE: Timeout handlers are expected to service all vimages. 1712 */ 1713 void 1714 mld_slowtimo(void) 1715 { 1716 VNET_ITERATOR_DECL(vnet_iter); 1717 1718 VNET_LIST_RLOCK_NOSLEEP(); 1719 VNET_FOREACH(vnet_iter) { 1720 CURVNET_SET(vnet_iter); 1721 mld_slowtimo_vnet(); 1722 CURVNET_RESTORE(); 1723 } 1724 VNET_LIST_RUNLOCK_NOSLEEP(); 1725 } 1726 1727 /* 1728 * Per-vnet slowtimo handler. 1729 */ 1730 static void 1731 mld_slowtimo_vnet(void) 1732 { 1733 struct mld_ifinfo *mli; 1734 1735 MLD_LOCK(); 1736 1737 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1738 mld_v1_process_querier_timers(mli); 1739 } 1740 1741 MLD_UNLOCK(); 1742 } 1743 1744 /* 1745 * Update the Older Version Querier Present timers for a link. 1746 * See Section 9.12 of RFC 3810. 1747 */ 1748 static void 1749 mld_v1_process_querier_timers(struct mld_ifinfo *mli) 1750 { 1751 1752 MLD_LOCK_ASSERT(); 1753 1754 if (mli->mli_version != MLD_VERSION_2 && --mli->mli_v1_timer == 0) { 1755 /* 1756 * MLDv1 Querier Present timer expired; revert to MLDv2. 1757 */ 1758 CTR5(KTR_MLD, 1759 "%s: transition from v%d -> v%d on %p(%s)", 1760 __func__, mli->mli_version, MLD_VERSION_2, 1761 mli->mli_ifp, mli->mli_ifp->if_xname); 1762 mli->mli_version = MLD_VERSION_2; 1763 } 1764 } 1765 1766 /* 1767 * Transmit an MLDv1 report immediately. 1768 */ 1769 static int 1770 mld_v1_transmit_report(struct in6_multi *in6m, const int type) 1771 { 1772 struct ifnet *ifp; 1773 struct in6_ifaddr *ia; 1774 struct ip6_hdr *ip6; 1775 struct mbuf *mh, *md; 1776 struct mld_hdr *mld; 1777 1778 IN6_MULTI_LOCK_ASSERT(); 1779 MLD_LOCK_ASSERT(); 1780 1781 ifp = in6m->in6m_ifp; 1782 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1783 /* ia may be NULL if link-local address is tentative. */ 1784 1785 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 1786 if (mh == NULL) { 1787 if (ia != NULL) 1788 ifa_free(&ia->ia_ifa); 1789 return (ENOMEM); 1790 } 1791 MGET(md, M_DONTWAIT, MT_DATA); 1792 if (md == NULL) { 1793 m_free(mh); 1794 if (ia != NULL) 1795 ifa_free(&ia->ia_ifa); 1796 return (ENOMEM); 1797 } 1798 mh->m_next = md; 1799 1800 /* 1801 * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so 1802 * that ether_output() does not need to allocate another mbuf 1803 * for the header in the most common case. 1804 */ 1805 MH_ALIGN(mh, sizeof(struct ip6_hdr)); 1806 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr); 1807 mh->m_len = sizeof(struct ip6_hdr); 1808 1809 ip6 = mtod(mh, struct ip6_hdr *); 1810 ip6->ip6_flow = 0; 1811 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 1812 ip6->ip6_vfc |= IPV6_VERSION; 1813 ip6->ip6_nxt = IPPROTO_ICMPV6; 1814 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 1815 ip6->ip6_dst = in6m->in6m_addr; 1816 1817 md->m_len = sizeof(struct mld_hdr); 1818 mld = mtod(md, struct mld_hdr *); 1819 mld->mld_type = type; 1820 mld->mld_code = 0; 1821 mld->mld_cksum = 0; 1822 mld->mld_maxdelay = 0; 1823 mld->mld_reserved = 0; 1824 mld->mld_addr = in6m->in6m_addr; 1825 in6_clearscope(&mld->mld_addr); 1826 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 1827 sizeof(struct ip6_hdr), sizeof(struct mld_hdr)); 1828 1829 mld_save_context(mh, ifp); 1830 mh->m_flags |= M_MLDV1; 1831 1832 mld_dispatch_packet(mh); 1833 1834 if (ia != NULL) 1835 ifa_free(&ia->ia_ifa); 1836 return (0); 1837 } 1838 1839 /* 1840 * Process a state change from the upper layer for the given IPv6 group. 1841 * 1842 * Each socket holds a reference on the in_multi in its own ip_moptions. 1843 * The socket layer will have made the necessary updates to.the group 1844 * state, it is now up to MLD to issue a state change report if there 1845 * has been any change between T0 (when the last state-change was issued) 1846 * and T1 (now). 1847 * 1848 * We use the MLDv2 state machine at group level. The MLd module 1849 * however makes the decision as to which MLD protocol version to speak. 1850 * A state change *from* INCLUDE {} always means an initial join. 1851 * A state change *to* INCLUDE {} always means a final leave. 1852 * 1853 * If delay is non-zero, and the state change is an initial multicast 1854 * join, the state change report will be delayed by 'delay' ticks 1855 * in units of PR_FASTHZ if MLDv1 is active on the link; otherwise 1856 * the initial MLDv2 state change report will be delayed by whichever 1857 * is sooner, a pending state-change timer or delay itself. 1858 * 1859 * VIMAGE: curvnet should have been set by caller, as this routine 1860 * is called from the socket option handlers. 1861 */ 1862 int 1863 mld_change_state(struct in6_multi *inm, const int delay) 1864 { 1865 struct mld_ifinfo *mli; 1866 struct ifnet *ifp; 1867 int error; 1868 1869 IN6_MULTI_LOCK_ASSERT(); 1870 1871 error = 0; 1872 1873 /* 1874 * Try to detect if the upper layer just asked us to change state 1875 * for an interface which has now gone away. 1876 */ 1877 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); 1878 ifp = inm->in6m_ifma->ifma_ifp; 1879 if (ifp != NULL) { 1880 /* 1881 * Sanity check that netinet6's notion of ifp is the 1882 * same as net's. 1883 */ 1884 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); 1885 } 1886 1887 MLD_LOCK(); 1888 1889 mli = MLD_IFINFO(ifp); 1890 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 1891 1892 /* 1893 * If we detect a state transition to or from MCAST_UNDEFINED 1894 * for this group, then we are starting or finishing an MLD 1895 * life cycle for this group. 1896 */ 1897 if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) { 1898 CTR3(KTR_MLD, "%s: inm transition %d -> %d", __func__, 1899 inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode); 1900 if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) { 1901 CTR1(KTR_MLD, "%s: initial join", __func__); 1902 error = mld_initial_join(inm, mli, delay); 1903 goto out_locked; 1904 } else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) { 1905 CTR1(KTR_MLD, "%s: final leave", __func__); 1906 mld_final_leave(inm, mli); 1907 goto out_locked; 1908 } 1909 } else { 1910 CTR1(KTR_MLD, "%s: filter set change", __func__); 1911 } 1912 1913 error = mld_handle_state_change(inm, mli); 1914 1915 out_locked: 1916 MLD_UNLOCK(); 1917 return (error); 1918 } 1919 1920 /* 1921 * Perform the initial join for an MLD group. 1922 * 1923 * When joining a group: 1924 * If the group should have its MLD traffic suppressed, do nothing. 1925 * MLDv1 starts sending MLDv1 host membership reports. 1926 * MLDv2 will schedule an MLDv2 state-change report containing the 1927 * initial state of the membership. 1928 * 1929 * If the delay argument is non-zero, then we must delay sending the 1930 * initial state change for delay ticks (in units of PR_FASTHZ). 1931 */ 1932 static int 1933 mld_initial_join(struct in6_multi *inm, struct mld_ifinfo *mli, 1934 const int delay) 1935 { 1936 struct ifnet *ifp; 1937 struct ifqueue *ifq; 1938 int error, retval, syncstates; 1939 int odelay; 1940 #ifdef KTR 1941 char ip6tbuf[INET6_ADDRSTRLEN]; 1942 #endif 1943 1944 CTR4(KTR_MLD, "%s: initial join %s on ifp %p(%s)", 1945 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1946 inm->in6m_ifp, inm->in6m_ifp->if_xname); 1947 1948 error = 0; 1949 syncstates = 1; 1950 1951 ifp = inm->in6m_ifp; 1952 1953 IN6_MULTI_LOCK_ASSERT(); 1954 MLD_LOCK_ASSERT(); 1955 1956 KASSERT(mli && mli->mli_ifp == ifp, ("%s: inconsistent ifp", __func__)); 1957 1958 /* 1959 * Groups joined on loopback or marked as 'not reported', 1960 * enter the MLD_SILENT_MEMBER state and 1961 * are never reported in any protocol exchanges. 1962 * All other groups enter the appropriate state machine 1963 * for the version in use on this link. 1964 * A link marked as MLIF_SILENT causes MLD to be completely 1965 * disabled for the link. 1966 */ 1967 if ((ifp->if_flags & IFF_LOOPBACK) || 1968 (mli->mli_flags & MLIF_SILENT) || 1969 !mld_is_addr_reported(&inm->in6m_addr)) { 1970 CTR1(KTR_MLD, 1971 "%s: not kicking state machine for silent group", __func__); 1972 inm->in6m_state = MLD_SILENT_MEMBER; 1973 inm->in6m_timer = 0; 1974 } else { 1975 /* 1976 * Deal with overlapping in_multi lifecycle. 1977 * If this group was LEAVING, then make sure 1978 * we drop the reference we picked up to keep the 1979 * group around for the final INCLUDE {} enqueue. 1980 */ 1981 if (mli->mli_version == MLD_VERSION_2 && 1982 inm->in6m_state == MLD_LEAVING_MEMBER) 1983 in6m_release_locked(inm); 1984 1985 inm->in6m_state = MLD_REPORTING_MEMBER; 1986 1987 switch (mli->mli_version) { 1988 case MLD_VERSION_1: 1989 /* 1990 * If a delay was provided, only use it if 1991 * it is greater than the delay normally 1992 * used for an MLDv1 state change report, 1993 * and delay sending the initial MLDv1 report 1994 * by not transitioning to the IDLE state. 1995 */ 1996 odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI * PR_FASTHZ); 1997 if (delay) { 1998 inm->in6m_timer = max(delay, odelay); 1999 V_current_state_timers_running6 = 1; 2000 } else { 2001 inm->in6m_state = MLD_IDLE_MEMBER; 2002 error = mld_v1_transmit_report(inm, 2003 MLD_LISTENER_REPORT); 2004 if (error == 0) { 2005 inm->in6m_timer = odelay; 2006 V_current_state_timers_running6 = 1; 2007 } 2008 } 2009 break; 2010 2011 case MLD_VERSION_2: 2012 /* 2013 * Defer update of T0 to T1, until the first copy 2014 * of the state change has been transmitted. 2015 */ 2016 syncstates = 0; 2017 2018 /* 2019 * Immediately enqueue a State-Change Report for 2020 * this interface, freeing any previous reports. 2021 * Don't kick the timers if there is nothing to do, 2022 * or if an error occurred. 2023 */ 2024 ifq = &inm->in6m_scq; 2025 _IF_DRAIN(ifq); 2026 retval = mld_v2_enqueue_group_record(ifq, inm, 1, 2027 0, 0); 2028 CTR2(KTR_MLD, "%s: enqueue record = %d", 2029 __func__, retval); 2030 if (retval <= 0) { 2031 error = retval * -1; 2032 break; 2033 } 2034 2035 /* 2036 * Schedule transmission of pending state-change 2037 * report up to RV times for this link. The timer 2038 * will fire at the next mld_fasttimo (~200ms), 2039 * giving us an opportunity to merge the reports. 2040 * 2041 * If a delay was provided to this function, only 2042 * use this delay if sooner than the existing one. 2043 */ 2044 KASSERT(mli->mli_rv > 1, 2045 ("%s: invalid robustness %d", __func__, 2046 mli->mli_rv)); 2047 inm->in6m_scrv = mli->mli_rv; 2048 if (delay) { 2049 if (inm->in6m_sctimer > 1) { 2050 inm->in6m_sctimer = 2051 min(inm->in6m_sctimer, delay); 2052 } else 2053 inm->in6m_sctimer = delay; 2054 } else 2055 inm->in6m_sctimer = 1; 2056 V_state_change_timers_running6 = 1; 2057 2058 error = 0; 2059 break; 2060 } 2061 } 2062 2063 /* 2064 * Only update the T0 state if state change is atomic, 2065 * i.e. we don't need to wait for a timer to fire before we 2066 * can consider the state change to have been communicated. 2067 */ 2068 if (syncstates) { 2069 in6m_commit(inm); 2070 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2071 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2072 inm->in6m_ifp->if_xname); 2073 } 2074 2075 return (error); 2076 } 2077 2078 /* 2079 * Issue an intermediate state change during the life-cycle. 2080 */ 2081 static int 2082 mld_handle_state_change(struct in6_multi *inm, struct mld_ifinfo *mli) 2083 { 2084 struct ifnet *ifp; 2085 int retval; 2086 #ifdef KTR 2087 char ip6tbuf[INET6_ADDRSTRLEN]; 2088 #endif 2089 2090 CTR4(KTR_MLD, "%s: state change for %s on ifp %p(%s)", 2091 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2092 inm->in6m_ifp, inm->in6m_ifp->if_xname); 2093 2094 ifp = inm->in6m_ifp; 2095 2096 IN6_MULTI_LOCK_ASSERT(); 2097 MLD_LOCK_ASSERT(); 2098 2099 KASSERT(mli && mli->mli_ifp == ifp, 2100 ("%s: inconsistent ifp", __func__)); 2101 2102 if ((ifp->if_flags & IFF_LOOPBACK) || 2103 (mli->mli_flags & MLIF_SILENT) || 2104 !mld_is_addr_reported(&inm->in6m_addr) || 2105 (mli->mli_version != MLD_VERSION_2)) { 2106 if (!mld_is_addr_reported(&inm->in6m_addr)) { 2107 CTR1(KTR_MLD, 2108 "%s: not kicking state machine for silent group", __func__); 2109 } 2110 CTR1(KTR_MLD, "%s: nothing to do", __func__); 2111 in6m_commit(inm); 2112 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2113 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2114 inm->in6m_ifp->if_xname); 2115 return (0); 2116 } 2117 2118 _IF_DRAIN(&inm->in6m_scq); 2119 2120 retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0); 2121 CTR2(KTR_MLD, "%s: enqueue record = %d", __func__, retval); 2122 if (retval <= 0) 2123 return (-retval); 2124 2125 /* 2126 * If record(s) were enqueued, start the state-change 2127 * report timer for this group. 2128 */ 2129 inm->in6m_scrv = mli->mli_rv; 2130 inm->in6m_sctimer = 1; 2131 V_state_change_timers_running6 = 1; 2132 2133 return (0); 2134 } 2135 2136 /* 2137 * Perform the final leave for a multicast address. 2138 * 2139 * When leaving a group: 2140 * MLDv1 sends a DONE message, if and only if we are the reporter. 2141 * MLDv2 enqueues a state-change report containing a transition 2142 * to INCLUDE {} for immediate transmission. 2143 */ 2144 static void 2145 mld_final_leave(struct in6_multi *inm, struct mld_ifinfo *mli) 2146 { 2147 int syncstates; 2148 #ifdef KTR 2149 char ip6tbuf[INET6_ADDRSTRLEN]; 2150 #endif 2151 2152 syncstates = 1; 2153 2154 CTR4(KTR_MLD, "%s: final leave %s on ifp %p(%s)", 2155 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2156 inm->in6m_ifp, inm->in6m_ifp->if_xname); 2157 2158 IN6_MULTI_LOCK_ASSERT(); 2159 MLD_LOCK_ASSERT(); 2160 2161 switch (inm->in6m_state) { 2162 case MLD_NOT_MEMBER: 2163 case MLD_SILENT_MEMBER: 2164 case MLD_LEAVING_MEMBER: 2165 /* Already leaving or left; do nothing. */ 2166 CTR1(KTR_MLD, 2167 "%s: not kicking state machine for silent group", __func__); 2168 break; 2169 case MLD_REPORTING_MEMBER: 2170 case MLD_IDLE_MEMBER: 2171 case MLD_G_QUERY_PENDING_MEMBER: 2172 case MLD_SG_QUERY_PENDING_MEMBER: 2173 if (mli->mli_version == MLD_VERSION_1) { 2174 #ifdef INVARIANTS 2175 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 2176 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) 2177 panic("%s: MLDv2 state reached, not MLDv2 mode", 2178 __func__); 2179 #endif 2180 mld_v1_transmit_report(inm, MLD_LISTENER_DONE); 2181 inm->in6m_state = MLD_NOT_MEMBER; 2182 } else if (mli->mli_version == MLD_VERSION_2) { 2183 /* 2184 * Stop group timer and all pending reports. 2185 * Immediately enqueue a state-change report 2186 * TO_IN {} to be sent on the next fast timeout, 2187 * giving us an opportunity to merge reports. 2188 */ 2189 _IF_DRAIN(&inm->in6m_scq); 2190 inm->in6m_timer = 0; 2191 inm->in6m_scrv = mli->mli_rv; 2192 CTR4(KTR_MLD, "%s: Leaving %s/%s with %d " 2193 "pending retransmissions.", __func__, 2194 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2195 inm->in6m_ifp->if_xname, inm->in6m_scrv); 2196 if (inm->in6m_scrv == 0) { 2197 inm->in6m_state = MLD_NOT_MEMBER; 2198 inm->in6m_sctimer = 0; 2199 } else { 2200 int retval; 2201 2202 in6m_acquire_locked(inm); 2203 2204 retval = mld_v2_enqueue_group_record( 2205 &inm->in6m_scq, inm, 1, 0, 0); 2206 KASSERT(retval != 0, 2207 ("%s: enqueue record = %d", __func__, 2208 retval)); 2209 2210 inm->in6m_state = MLD_LEAVING_MEMBER; 2211 inm->in6m_sctimer = 1; 2212 V_state_change_timers_running6 = 1; 2213 syncstates = 0; 2214 } 2215 break; 2216 } 2217 break; 2218 case MLD_LAZY_MEMBER: 2219 case MLD_SLEEPING_MEMBER: 2220 case MLD_AWAKENING_MEMBER: 2221 /* Our reports are suppressed; do nothing. */ 2222 break; 2223 } 2224 2225 if (syncstates) { 2226 in6m_commit(inm); 2227 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2228 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2229 inm->in6m_ifp->if_xname); 2230 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 2231 CTR3(KTR_MLD, "%s: T1 now MCAST_UNDEFINED for %p/%s", 2232 __func__, &inm->in6m_addr, inm->in6m_ifp->if_xname); 2233 } 2234 } 2235 2236 /* 2237 * Enqueue an MLDv2 group record to the given output queue. 2238 * 2239 * If is_state_change is zero, a current-state record is appended. 2240 * If is_state_change is non-zero, a state-change report is appended. 2241 * 2242 * If is_group_query is non-zero, an mbuf packet chain is allocated. 2243 * If is_group_query is zero, and if there is a packet with free space 2244 * at the tail of the queue, it will be appended to providing there 2245 * is enough free space. 2246 * Otherwise a new mbuf packet chain is allocated. 2247 * 2248 * If is_source_query is non-zero, each source is checked to see if 2249 * it was recorded for a Group-Source query, and will be omitted if 2250 * it is not both in-mode and recorded. 2251 * 2252 * The function will attempt to allocate leading space in the packet 2253 * for the IPv6+ICMP headers to be prepended without fragmenting the chain. 2254 * 2255 * If successful the size of all data appended to the queue is returned, 2256 * otherwise an error code less than zero is returned, or zero if 2257 * no record(s) were appended. 2258 */ 2259 static int 2260 mld_v2_enqueue_group_record(struct ifqueue *ifq, struct in6_multi *inm, 2261 const int is_state_change, const int is_group_query, 2262 const int is_source_query) 2263 { 2264 struct mldv2_record mr; 2265 struct mldv2_record *pmr; 2266 struct ifnet *ifp; 2267 struct ip6_msource *ims, *nims; 2268 struct mbuf *m0, *m, *md; 2269 int error, is_filter_list_change; 2270 int minrec0len, m0srcs, msrcs, nbytes, off; 2271 int record_has_sources; 2272 int now; 2273 int type; 2274 uint8_t mode; 2275 #ifdef KTR 2276 char ip6tbuf[INET6_ADDRSTRLEN]; 2277 #endif 2278 2279 IN6_MULTI_LOCK_ASSERT(); 2280 2281 error = 0; 2282 ifp = inm->in6m_ifp; 2283 is_filter_list_change = 0; 2284 m = NULL; 2285 m0 = NULL; 2286 m0srcs = 0; 2287 msrcs = 0; 2288 nbytes = 0; 2289 nims = NULL; 2290 record_has_sources = 1; 2291 pmr = NULL; 2292 type = MLD_DO_NOTHING; 2293 mode = inm->in6m_st[1].iss_fmode; 2294 2295 /* 2296 * If we did not transition out of ASM mode during t0->t1, 2297 * and there are no source nodes to process, we can skip 2298 * the generation of source records. 2299 */ 2300 if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 && 2301 inm->in6m_nsrc == 0) 2302 record_has_sources = 0; 2303 2304 if (is_state_change) { 2305 /* 2306 * Queue a state change record. 2307 * If the mode did not change, and there are non-ASM 2308 * listeners or source filters present, 2309 * we potentially need to issue two records for the group. 2310 * If we are transitioning to MCAST_UNDEFINED, we need 2311 * not send any sources. 2312 * If there are ASM listeners, and there was no filter 2313 * mode transition of any kind, do nothing. 2314 */ 2315 if (mode != inm->in6m_st[0].iss_fmode) { 2316 if (mode == MCAST_EXCLUDE) { 2317 CTR1(KTR_MLD, "%s: change to EXCLUDE", 2318 __func__); 2319 type = MLD_CHANGE_TO_EXCLUDE_MODE; 2320 } else { 2321 CTR1(KTR_MLD, "%s: change to INCLUDE", 2322 __func__); 2323 type = MLD_CHANGE_TO_INCLUDE_MODE; 2324 if (mode == MCAST_UNDEFINED) 2325 record_has_sources = 0; 2326 } 2327 } else { 2328 if (record_has_sources) { 2329 is_filter_list_change = 1; 2330 } else { 2331 type = MLD_DO_NOTHING; 2332 } 2333 } 2334 } else { 2335 /* 2336 * Queue a current state record. 2337 */ 2338 if (mode == MCAST_EXCLUDE) { 2339 type = MLD_MODE_IS_EXCLUDE; 2340 } else if (mode == MCAST_INCLUDE) { 2341 type = MLD_MODE_IS_INCLUDE; 2342 KASSERT(inm->in6m_st[1].iss_asm == 0, 2343 ("%s: inm %p is INCLUDE but ASM count is %d", 2344 __func__, inm, inm->in6m_st[1].iss_asm)); 2345 } 2346 } 2347 2348 /* 2349 * Generate the filter list changes using a separate function. 2350 */ 2351 if (is_filter_list_change) 2352 return (mld_v2_enqueue_filter_change(ifq, inm)); 2353 2354 if (type == MLD_DO_NOTHING) { 2355 CTR3(KTR_MLD, "%s: nothing to do for %s/%s", 2356 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2357 inm->in6m_ifp->if_xname); 2358 return (0); 2359 } 2360 2361 /* 2362 * If any sources are present, we must be able to fit at least 2363 * one in the trailing space of the tail packet's mbuf, 2364 * ideally more. 2365 */ 2366 minrec0len = sizeof(struct mldv2_record); 2367 if (record_has_sources) 2368 minrec0len += sizeof(struct in6_addr); 2369 2370 CTR4(KTR_MLD, "%s: queueing %s for %s/%s", __func__, 2371 mld_rec_type_to_str(type), 2372 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2373 inm->in6m_ifp->if_xname); 2374 2375 /* 2376 * Check if we have a packet in the tail of the queue for this 2377 * group into which the first group record for this group will fit. 2378 * Otherwise allocate a new packet. 2379 * Always allocate leading space for IP6+RA+ICMPV6+REPORT. 2380 * Note: Group records for G/GSR query responses MUST be sent 2381 * in their own packet. 2382 */ 2383 m0 = ifq->ifq_tail; 2384 if (!is_group_query && 2385 m0 != NULL && 2386 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) && 2387 (m0->m_pkthdr.len + minrec0len) < 2388 (ifp->if_mtu - MLD_MTUSPACE)) { 2389 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2390 sizeof(struct mldv2_record)) / 2391 sizeof(struct in6_addr); 2392 m = m0; 2393 CTR1(KTR_MLD, "%s: use existing packet", __func__); 2394 } else { 2395 if (_IF_QFULL(ifq)) { 2396 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2397 return (-ENOMEM); 2398 } 2399 m = NULL; 2400 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2401 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2402 if (!is_state_change && !is_group_query) 2403 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2404 if (m == NULL) 2405 m = m_gethdr(M_DONTWAIT, MT_DATA); 2406 if (m == NULL) 2407 return (-ENOMEM); 2408 2409 mld_save_context(m, ifp); 2410 2411 CTR1(KTR_MLD, "%s: allocated first packet", __func__); 2412 } 2413 2414 /* 2415 * Append group record. 2416 * If we have sources, we don't know how many yet. 2417 */ 2418 mr.mr_type = type; 2419 mr.mr_datalen = 0; 2420 mr.mr_numsrc = 0; 2421 mr.mr_addr = inm->in6m_addr; 2422 in6_clearscope(&mr.mr_addr); 2423 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2424 if (m != m0) 2425 m_freem(m); 2426 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2427 return (-ENOMEM); 2428 } 2429 nbytes += sizeof(struct mldv2_record); 2430 2431 /* 2432 * Append as many sources as will fit in the first packet. 2433 * If we are appending to a new packet, the chain allocation 2434 * may potentially use clusters; use m_getptr() in this case. 2435 * If we are appending to an existing packet, we need to obtain 2436 * a pointer to the group record after m_append(), in case a new 2437 * mbuf was allocated. 2438 * Only append sources which are in-mode at t1. If we are 2439 * transitioning to MCAST_UNDEFINED state on the group, do not 2440 * include source entries. 2441 * Only report recorded sources in our filter set when responding 2442 * to a group-source query. 2443 */ 2444 if (record_has_sources) { 2445 if (m == m0) { 2446 md = m_last(m); 2447 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2448 md->m_len - nbytes); 2449 } else { 2450 md = m_getptr(m, 0, &off); 2451 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2452 off); 2453 } 2454 msrcs = 0; 2455 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, 2456 nims) { 2457 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2458 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2459 now = im6s_get_mode(inm, ims, 1); 2460 CTR2(KTR_MLD, "%s: node is %d", __func__, now); 2461 if ((now != mode) || 2462 (now == mode && mode == MCAST_UNDEFINED)) { 2463 CTR1(KTR_MLD, "%s: skip node", __func__); 2464 continue; 2465 } 2466 if (is_source_query && ims->im6s_stp == 0) { 2467 CTR1(KTR_MLD, "%s: skip unrecorded node", 2468 __func__); 2469 continue; 2470 } 2471 CTR1(KTR_MLD, "%s: append node", __func__); 2472 if (!m_append(m, sizeof(struct in6_addr), 2473 (void *)&ims->im6s_addr)) { 2474 if (m != m0) 2475 m_freem(m); 2476 CTR1(KTR_MLD, "%s: m_append() failed.", 2477 __func__); 2478 return (-ENOMEM); 2479 } 2480 nbytes += sizeof(struct in6_addr); 2481 ++msrcs; 2482 if (msrcs == m0srcs) 2483 break; 2484 } 2485 CTR2(KTR_MLD, "%s: msrcs is %d this packet", __func__, 2486 msrcs); 2487 pmr->mr_numsrc = htons(msrcs); 2488 nbytes += (msrcs * sizeof(struct in6_addr)); 2489 } 2490 2491 if (is_source_query && msrcs == 0) { 2492 CTR1(KTR_MLD, "%s: no recorded sources to report", __func__); 2493 if (m != m0) 2494 m_freem(m); 2495 return (0); 2496 } 2497 2498 /* 2499 * We are good to go with first packet. 2500 */ 2501 if (m != m0) { 2502 CTR1(KTR_MLD, "%s: enqueueing first packet", __func__); 2503 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2504 _IF_ENQUEUE(ifq, m); 2505 } else 2506 m->m_pkthdr.PH_vt.vt_nrecs++; 2507 2508 /* 2509 * No further work needed if no source list in packet(s). 2510 */ 2511 if (!record_has_sources) 2512 return (nbytes); 2513 2514 /* 2515 * Whilst sources remain to be announced, we need to allocate 2516 * a new packet and fill out as many sources as will fit. 2517 * Always try for a cluster first. 2518 */ 2519 while (nims != NULL) { 2520 if (_IF_QFULL(ifq)) { 2521 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2522 return (-ENOMEM); 2523 } 2524 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2525 if (m == NULL) 2526 m = m_gethdr(M_DONTWAIT, MT_DATA); 2527 if (m == NULL) 2528 return (-ENOMEM); 2529 mld_save_context(m, ifp); 2530 md = m_getptr(m, 0, &off); 2531 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off); 2532 CTR1(KTR_MLD, "%s: allocated next packet", __func__); 2533 2534 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2535 if (m != m0) 2536 m_freem(m); 2537 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2538 return (-ENOMEM); 2539 } 2540 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2541 nbytes += sizeof(struct mldv2_record); 2542 2543 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2544 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2545 2546 msrcs = 0; 2547 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2548 CTR2(KTR_MLD, "%s: visit node %s", 2549 __func__, ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2550 now = im6s_get_mode(inm, ims, 1); 2551 if ((now != mode) || 2552 (now == mode && mode == MCAST_UNDEFINED)) { 2553 CTR1(KTR_MLD, "%s: skip node", __func__); 2554 continue; 2555 } 2556 if (is_source_query && ims->im6s_stp == 0) { 2557 CTR1(KTR_MLD, "%s: skip unrecorded node", 2558 __func__); 2559 continue; 2560 } 2561 CTR1(KTR_MLD, "%s: append node", __func__); 2562 if (!m_append(m, sizeof(struct in6_addr), 2563 (void *)&ims->im6s_addr)) { 2564 if (m != m0) 2565 m_freem(m); 2566 CTR1(KTR_MLD, "%s: m_append() failed.", 2567 __func__); 2568 return (-ENOMEM); 2569 } 2570 ++msrcs; 2571 if (msrcs == m0srcs) 2572 break; 2573 } 2574 pmr->mr_numsrc = htons(msrcs); 2575 nbytes += (msrcs * sizeof(struct in6_addr)); 2576 2577 CTR1(KTR_MLD, "%s: enqueueing next packet", __func__); 2578 _IF_ENQUEUE(ifq, m); 2579 } 2580 2581 return (nbytes); 2582 } 2583 2584 /* 2585 * Type used to mark record pass completion. 2586 * We exploit the fact we can cast to this easily from the 2587 * current filter modes on each ip_msource node. 2588 */ 2589 typedef enum { 2590 REC_NONE = 0x00, /* MCAST_UNDEFINED */ 2591 REC_ALLOW = 0x01, /* MCAST_INCLUDE */ 2592 REC_BLOCK = 0x02, /* MCAST_EXCLUDE */ 2593 REC_FULL = REC_ALLOW | REC_BLOCK 2594 } rectype_t; 2595 2596 /* 2597 * Enqueue an MLDv2 filter list change to the given output queue. 2598 * 2599 * Source list filter state is held in an RB-tree. When the filter list 2600 * for a group is changed without changing its mode, we need to compute 2601 * the deltas between T0 and T1 for each source in the filter set, 2602 * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records. 2603 * 2604 * As we may potentially queue two record types, and the entire R-B tree 2605 * needs to be walked at once, we break this out into its own function 2606 * so we can generate a tightly packed queue of packets. 2607 * 2608 * XXX This could be written to only use one tree walk, although that makes 2609 * serializing into the mbuf chains a bit harder. For now we do two walks 2610 * which makes things easier on us, and it may or may not be harder on 2611 * the L2 cache. 2612 * 2613 * If successful the size of all data appended to the queue is returned, 2614 * otherwise an error code less than zero is returned, or zero if 2615 * no record(s) were appended. 2616 */ 2617 static int 2618 mld_v2_enqueue_filter_change(struct ifqueue *ifq, struct in6_multi *inm) 2619 { 2620 static const int MINRECLEN = 2621 sizeof(struct mldv2_record) + sizeof(struct in6_addr); 2622 struct ifnet *ifp; 2623 struct mldv2_record mr; 2624 struct mldv2_record *pmr; 2625 struct ip6_msource *ims, *nims; 2626 struct mbuf *m, *m0, *md; 2627 int m0srcs, nbytes, npbytes, off, rsrcs, schanged; 2628 int nallow, nblock; 2629 uint8_t mode, now, then; 2630 rectype_t crt, drt, nrt; 2631 #ifdef KTR 2632 char ip6tbuf[INET6_ADDRSTRLEN]; 2633 #endif 2634 2635 IN6_MULTI_LOCK_ASSERT(); 2636 2637 if (inm->in6m_nsrc == 0 || 2638 (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0)) 2639 return (0); 2640 2641 ifp = inm->in6m_ifp; /* interface */ 2642 mode = inm->in6m_st[1].iss_fmode; /* filter mode at t1 */ 2643 crt = REC_NONE; /* current group record type */ 2644 drt = REC_NONE; /* mask of completed group record types */ 2645 nrt = REC_NONE; /* record type for current node */ 2646 m0srcs = 0; /* # source which will fit in current mbuf chain */ 2647 npbytes = 0; /* # of bytes appended this packet */ 2648 nbytes = 0; /* # of bytes appended to group's state-change queue */ 2649 rsrcs = 0; /* # sources encoded in current record */ 2650 schanged = 0; /* # nodes encoded in overall filter change */ 2651 nallow = 0; /* # of source entries in ALLOW_NEW */ 2652 nblock = 0; /* # of source entries in BLOCK_OLD */ 2653 nims = NULL; /* next tree node pointer */ 2654 2655 /* 2656 * For each possible filter record mode. 2657 * The first kind of source we encounter tells us which 2658 * is the first kind of record we start appending. 2659 * If a node transitioned to UNDEFINED at t1, its mode is treated 2660 * as the inverse of the group's filter mode. 2661 */ 2662 while (drt != REC_FULL) { 2663 do { 2664 m0 = ifq->ifq_tail; 2665 if (m0 != NULL && 2666 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= 2667 MLD_V2_REPORT_MAXRECS) && 2668 (m0->m_pkthdr.len + MINRECLEN) < 2669 (ifp->if_mtu - MLD_MTUSPACE)) { 2670 m = m0; 2671 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2672 sizeof(struct mldv2_record)) / 2673 sizeof(struct in6_addr); 2674 CTR1(KTR_MLD, 2675 "%s: use previous packet", __func__); 2676 } else { 2677 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2678 if (m == NULL) 2679 m = m_gethdr(M_DONTWAIT, MT_DATA); 2680 if (m == NULL) { 2681 CTR1(KTR_MLD, 2682 "%s: m_get*() failed", __func__); 2683 return (-ENOMEM); 2684 } 2685 m->m_pkthdr.PH_vt.vt_nrecs = 0; 2686 mld_save_context(m, ifp); 2687 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2688 sizeof(struct mldv2_record)) / 2689 sizeof(struct in6_addr); 2690 npbytes = 0; 2691 CTR1(KTR_MLD, 2692 "%s: allocated new packet", __func__); 2693 } 2694 /* 2695 * Append the MLD group record header to the 2696 * current packet's data area. 2697 * Recalculate pointer to free space for next 2698 * group record, in case m_append() allocated 2699 * a new mbuf or cluster. 2700 */ 2701 memset(&mr, 0, sizeof(mr)); 2702 mr.mr_addr = inm->in6m_addr; 2703 in6_clearscope(&mr.mr_addr); 2704 if (!m_append(m, sizeof(mr), (void *)&mr)) { 2705 if (m != m0) 2706 m_freem(m); 2707 CTR1(KTR_MLD, 2708 "%s: m_append() failed", __func__); 2709 return (-ENOMEM); 2710 } 2711 npbytes += sizeof(struct mldv2_record); 2712 if (m != m0) { 2713 /* new packet; offset in chain */ 2714 md = m_getptr(m, npbytes - 2715 sizeof(struct mldv2_record), &off); 2716 pmr = (struct mldv2_record *)(mtod(md, 2717 uint8_t *) + off); 2718 } else { 2719 /* current packet; offset from last append */ 2720 md = m_last(m); 2721 pmr = (struct mldv2_record *)(mtod(md, 2722 uint8_t *) + md->m_len - 2723 sizeof(struct mldv2_record)); 2724 } 2725 /* 2726 * Begin walking the tree for this record type 2727 * pass, or continue from where we left off 2728 * previously if we had to allocate a new packet. 2729 * Only report deltas in-mode at t1. 2730 * We need not report included sources as allowed 2731 * if we are in inclusive mode on the group, 2732 * however the converse is not true. 2733 */ 2734 rsrcs = 0; 2735 if (nims == NULL) { 2736 nims = RB_MIN(ip6_msource_tree, 2737 &inm->in6m_srcs); 2738 } 2739 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2740 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2741 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2742 now = im6s_get_mode(inm, ims, 1); 2743 then = im6s_get_mode(inm, ims, 0); 2744 CTR3(KTR_MLD, "%s: mode: t0 %d, t1 %d", 2745 __func__, then, now); 2746 if (now == then) { 2747 CTR1(KTR_MLD, 2748 "%s: skip unchanged", __func__); 2749 continue; 2750 } 2751 if (mode == MCAST_EXCLUDE && 2752 now == MCAST_INCLUDE) { 2753 CTR1(KTR_MLD, 2754 "%s: skip IN src on EX group", 2755 __func__); 2756 continue; 2757 } 2758 nrt = (rectype_t)now; 2759 if (nrt == REC_NONE) 2760 nrt = (rectype_t)(~mode & REC_FULL); 2761 if (schanged++ == 0) { 2762 crt = nrt; 2763 } else if (crt != nrt) 2764 continue; 2765 if (!m_append(m, sizeof(struct in6_addr), 2766 (void *)&ims->im6s_addr)) { 2767 if (m != m0) 2768 m_freem(m); 2769 CTR1(KTR_MLD, 2770 "%s: m_append() failed", __func__); 2771 return (-ENOMEM); 2772 } 2773 nallow += !!(crt == REC_ALLOW); 2774 nblock += !!(crt == REC_BLOCK); 2775 if (++rsrcs == m0srcs) 2776 break; 2777 } 2778 /* 2779 * If we did not append any tree nodes on this 2780 * pass, back out of allocations. 2781 */ 2782 if (rsrcs == 0) { 2783 npbytes -= sizeof(struct mldv2_record); 2784 if (m != m0) { 2785 CTR1(KTR_MLD, 2786 "%s: m_free(m)", __func__); 2787 m_freem(m); 2788 } else { 2789 CTR1(KTR_MLD, 2790 "%s: m_adj(m, -mr)", __func__); 2791 m_adj(m, -((int)sizeof( 2792 struct mldv2_record))); 2793 } 2794 continue; 2795 } 2796 npbytes += (rsrcs * sizeof(struct in6_addr)); 2797 if (crt == REC_ALLOW) 2798 pmr->mr_type = MLD_ALLOW_NEW_SOURCES; 2799 else if (crt == REC_BLOCK) 2800 pmr->mr_type = MLD_BLOCK_OLD_SOURCES; 2801 pmr->mr_numsrc = htons(rsrcs); 2802 /* 2803 * Count the new group record, and enqueue this 2804 * packet if it wasn't already queued. 2805 */ 2806 m->m_pkthdr.PH_vt.vt_nrecs++; 2807 if (m != m0) 2808 _IF_ENQUEUE(ifq, m); 2809 nbytes += npbytes; 2810 } while (nims != NULL); 2811 drt |= crt; 2812 crt = (~crt & REC_FULL); 2813 } 2814 2815 CTR3(KTR_MLD, "%s: queued %d ALLOW_NEW, %d BLOCK_OLD", __func__, 2816 nallow, nblock); 2817 2818 return (nbytes); 2819 } 2820 2821 static int 2822 mld_v2_merge_state_changes(struct in6_multi *inm, struct ifqueue *ifscq) 2823 { 2824 struct ifqueue *gq; 2825 struct mbuf *m; /* pending state-change */ 2826 struct mbuf *m0; /* copy of pending state-change */ 2827 struct mbuf *mt; /* last state-change in packet */ 2828 int docopy, domerge; 2829 u_int recslen; 2830 2831 docopy = 0; 2832 domerge = 0; 2833 recslen = 0; 2834 2835 IN6_MULTI_LOCK_ASSERT(); 2836 MLD_LOCK_ASSERT(); 2837 2838 /* 2839 * If there are further pending retransmissions, make a writable 2840 * copy of each queued state-change message before merging. 2841 */ 2842 if (inm->in6m_scrv > 0) 2843 docopy = 1; 2844 2845 gq = &inm->in6m_scq; 2846 #ifdef KTR 2847 if (gq->ifq_head == NULL) { 2848 CTR2(KTR_MLD, "%s: WARNING: queue for inm %p is empty", 2849 __func__, inm); 2850 } 2851 #endif 2852 2853 m = gq->ifq_head; 2854 while (m != NULL) { 2855 /* 2856 * Only merge the report into the current packet if 2857 * there is sufficient space to do so; an MLDv2 report 2858 * packet may only contain 65,535 group records. 2859 * Always use a simple mbuf chain concatentation to do this, 2860 * as large state changes for single groups may have 2861 * allocated clusters. 2862 */ 2863 domerge = 0; 2864 mt = ifscq->ifq_tail; 2865 if (mt != NULL) { 2866 recslen = m_length(m, NULL); 2867 2868 if ((mt->m_pkthdr.PH_vt.vt_nrecs + 2869 m->m_pkthdr.PH_vt.vt_nrecs <= 2870 MLD_V2_REPORT_MAXRECS) && 2871 (mt->m_pkthdr.len + recslen <= 2872 (inm->in6m_ifp->if_mtu - MLD_MTUSPACE))) 2873 domerge = 1; 2874 } 2875 2876 if (!domerge && _IF_QFULL(gq)) { 2877 CTR2(KTR_MLD, 2878 "%s: outbound queue full, skipping whole packet %p", 2879 __func__, m); 2880 mt = m->m_nextpkt; 2881 if (!docopy) 2882 m_freem(m); 2883 m = mt; 2884 continue; 2885 } 2886 2887 if (!docopy) { 2888 CTR2(KTR_MLD, "%s: dequeueing %p", __func__, m); 2889 _IF_DEQUEUE(gq, m0); 2890 m = m0->m_nextpkt; 2891 } else { 2892 CTR2(KTR_MLD, "%s: copying %p", __func__, m); 2893 m0 = m_dup(m, M_NOWAIT); 2894 if (m0 == NULL) 2895 return (ENOMEM); 2896 m0->m_nextpkt = NULL; 2897 m = m->m_nextpkt; 2898 } 2899 2900 if (!domerge) { 2901 CTR3(KTR_MLD, "%s: queueing %p to ifscq %p)", 2902 __func__, m0, ifscq); 2903 _IF_ENQUEUE(ifscq, m0); 2904 } else { 2905 struct mbuf *mtl; /* last mbuf of packet mt */ 2906 2907 CTR3(KTR_MLD, "%s: merging %p with ifscq tail %p)", 2908 __func__, m0, mt); 2909 2910 mtl = m_last(mt); 2911 m0->m_flags &= ~M_PKTHDR; 2912 mt->m_pkthdr.len += recslen; 2913 mt->m_pkthdr.PH_vt.vt_nrecs += 2914 m0->m_pkthdr.PH_vt.vt_nrecs; 2915 2916 mtl->m_next = m0; 2917 } 2918 } 2919 2920 return (0); 2921 } 2922 2923 /* 2924 * Respond to a pending MLDv2 General Query. 2925 */ 2926 static void 2927 mld_v2_dispatch_general_query(struct mld_ifinfo *mli) 2928 { 2929 struct ifmultiaddr *ifma, *tifma; 2930 struct ifnet *ifp; 2931 struct in6_multi *inm; 2932 int retval; 2933 2934 IN6_MULTI_LOCK_ASSERT(); 2935 MLD_LOCK_ASSERT(); 2936 2937 KASSERT(mli->mli_version == MLD_VERSION_2, 2938 ("%s: called when version %d", __func__, mli->mli_version)); 2939 2940 ifp = mli->mli_ifp; 2941 2942 IF_ADDR_LOCK(ifp); 2943 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, tifma) { 2944 if (ifma->ifma_addr->sa_family != AF_INET6 || 2945 ifma->ifma_protospec == NULL) 2946 continue; 2947 2948 inm = (struct in6_multi *)ifma->ifma_protospec; 2949 KASSERT(ifp == inm->in6m_ifp, 2950 ("%s: inconsistent ifp", __func__)); 2951 2952 switch (inm->in6m_state) { 2953 case MLD_NOT_MEMBER: 2954 case MLD_SILENT_MEMBER: 2955 break; 2956 case MLD_REPORTING_MEMBER: 2957 case MLD_IDLE_MEMBER: 2958 case MLD_LAZY_MEMBER: 2959 case MLD_SLEEPING_MEMBER: 2960 case MLD_AWAKENING_MEMBER: 2961 inm->in6m_state = MLD_REPORTING_MEMBER; 2962 retval = mld_v2_enqueue_group_record(&mli->mli_gq, 2963 inm, 0, 0, 0); 2964 CTR2(KTR_MLD, "%s: enqueue record = %d", 2965 __func__, retval); 2966 break; 2967 case MLD_G_QUERY_PENDING_MEMBER: 2968 case MLD_SG_QUERY_PENDING_MEMBER: 2969 case MLD_LEAVING_MEMBER: 2970 break; 2971 } 2972 } 2973 IF_ADDR_UNLOCK(ifp); 2974 2975 mld_dispatch_queue(&mli->mli_gq, MLD_MAX_RESPONSE_BURST); 2976 2977 /* 2978 * Slew transmission of bursts over 500ms intervals. 2979 */ 2980 if (mli->mli_gq.ifq_head != NULL) { 2981 mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY( 2982 MLD_RESPONSE_BURST_INTERVAL); 2983 V_interface_timers_running6 = 1; 2984 } 2985 } 2986 2987 /* 2988 * Transmit the next pending message in the output queue. 2989 * 2990 * VIMAGE: Needs to store/restore vnet pointer on a per-mbuf-chain basis. 2991 * MRT: Nothing needs to be done, as MLD traffic is always local to 2992 * a link and uses a link-scope multicast address. 2993 */ 2994 static void 2995 mld_dispatch_packet(struct mbuf *m) 2996 { 2997 struct ip6_moptions im6o; 2998 struct ifnet *ifp; 2999 struct ifnet *oifp; 3000 struct mbuf *m0; 3001 struct mbuf *md; 3002 struct ip6_hdr *ip6; 3003 struct mld_hdr *mld; 3004 int error; 3005 int off; 3006 int type; 3007 uint32_t ifindex; 3008 3009 CTR2(KTR_MLD, "%s: transmit %p", __func__, m); 3010 3011 /* 3012 * Set VNET image pointer from enqueued mbuf chain 3013 * before doing anything else. Whilst we use interface 3014 * indexes to guard against interface detach, they are 3015 * unique to each VIMAGE and must be retrieved. 3016 */ 3017 ifindex = mld_restore_context(m); 3018 3019 /* 3020 * Check if the ifnet still exists. This limits the scope of 3021 * any race in the absence of a global ifp lock for low cost 3022 * (an array lookup). 3023 */ 3024 ifp = ifnet_byindex(ifindex); 3025 if (ifp == NULL) { 3026 CTR3(KTR_MLD, "%s: dropped %p as ifindex %u went away.", 3027 __func__, m, ifindex); 3028 m_freem(m); 3029 IP6STAT_INC(ip6s_noroute); 3030 goto out; 3031 } 3032 3033 im6o.im6o_multicast_hlim = 1; 3034 im6o.im6o_multicast_loop = (V_ip6_mrouter != NULL); 3035 im6o.im6o_multicast_ifp = ifp; 3036 3037 if (m->m_flags & M_MLDV1) { 3038 m0 = m; 3039 } else { 3040 m0 = mld_v2_encap_report(ifp, m); 3041 if (m0 == NULL) { 3042 CTR2(KTR_MLD, "%s: dropped %p", __func__, m); 3043 m_freem(m); 3044 IP6STAT_INC(ip6s_odropped); 3045 goto out; 3046 } 3047 } 3048 3049 mld_scrub_context(m0); 3050 m->m_flags &= ~(M_PROTOFLAGS); 3051 m0->m_pkthdr.rcvif = V_loif; 3052 3053 ip6 = mtod(m0, struct ip6_hdr *); 3054 #if 0 3055 (void)in6_setscope(&ip6->ip6_dst, ifp, NULL); /* XXX LOR */ 3056 #else 3057 /* 3058 * XXX XXX Break some KPI rules to prevent an LOR which would 3059 * occur if we called in6_setscope() at transmission. 3060 * See comments at top of file. 3061 */ 3062 MLD_EMBEDSCOPE(&ip6->ip6_dst, ifp->if_index); 3063 #endif 3064 3065 /* 3066 * Retrieve the ICMPv6 type before handoff to ip6_output(), 3067 * so we can bump the stats. 3068 */ 3069 md = m_getptr(m0, sizeof(struct ip6_hdr), &off); 3070 mld = (struct mld_hdr *)(mtod(md, uint8_t *) + off); 3071 type = mld->mld_type; 3072 3073 error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, &im6o, 3074 &oifp, NULL); 3075 if (error) { 3076 CTR3(KTR_MLD, "%s: ip6_output(%p) = %d", __func__, m0, error); 3077 goto out; 3078 } 3079 ICMP6STAT_INC(icp6s_outhist[type]); 3080 if (oifp != NULL) { 3081 icmp6_ifstat_inc(oifp, ifs6_out_msg); 3082 switch (type) { 3083 case MLD_LISTENER_REPORT: 3084 case MLDV2_LISTENER_REPORT: 3085 icmp6_ifstat_inc(oifp, ifs6_out_mldreport); 3086 break; 3087 case MLD_LISTENER_DONE: 3088 icmp6_ifstat_inc(oifp, ifs6_out_mlddone); 3089 break; 3090 } 3091 } 3092 out: 3093 return; 3094 } 3095 3096 /* 3097 * Encapsulate an MLDv2 report. 3098 * 3099 * KAME IPv6 requires that hop-by-hop options be passed separately, 3100 * and that the IPv6 header be prepended in a separate mbuf. 3101 * 3102 * Returns a pointer to the new mbuf chain head, or NULL if the 3103 * allocation failed. 3104 */ 3105 static struct mbuf * 3106 mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m) 3107 { 3108 struct mbuf *mh; 3109 struct mldv2_report *mld; 3110 struct ip6_hdr *ip6; 3111 struct in6_ifaddr *ia; 3112 int mldreclen; 3113 3114 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 3115 KASSERT((m->m_flags & M_PKTHDR), 3116 ("%s: mbuf chain %p is !M_PKTHDR", __func__, m)); 3117 3118 /* 3119 * RFC3590: OK to send as :: or tentative during DAD. 3120 */ 3121 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 3122 if (ia == NULL) 3123 CTR1(KTR_MLD, "%s: warning: ia is NULL", __func__); 3124 3125 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3126 if (mh == NULL) { 3127 if (ia != NULL) 3128 ifa_free(&ia->ia_ifa); 3129 m_freem(m); 3130 return (NULL); 3131 } 3132 MH_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report)); 3133 3134 mldreclen = m_length(m, NULL); 3135 CTR2(KTR_MLD, "%s: mldreclen is %d", __func__, mldreclen); 3136 3137 mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report); 3138 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + 3139 sizeof(struct mldv2_report) + mldreclen; 3140 3141 ip6 = mtod(mh, struct ip6_hdr *); 3142 ip6->ip6_flow = 0; 3143 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 3144 ip6->ip6_vfc |= IPV6_VERSION; 3145 ip6->ip6_nxt = IPPROTO_ICMPV6; 3146 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 3147 if (ia != NULL) 3148 ifa_free(&ia->ia_ifa); 3149 ip6->ip6_dst = in6addr_linklocal_allv2routers; 3150 /* scope ID will be set in netisr */ 3151 3152 mld = (struct mldv2_report *)(ip6 + 1); 3153 mld->mld_type = MLDV2_LISTENER_REPORT; 3154 mld->mld_code = 0; 3155 mld->mld_cksum = 0; 3156 mld->mld_v2_reserved = 0; 3157 mld->mld_v2_numrecs = htons(m->m_pkthdr.PH_vt.vt_nrecs); 3158 m->m_pkthdr.PH_vt.vt_nrecs = 0; 3159 3160 mh->m_next = m; 3161 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 3162 sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen); 3163 return (mh); 3164 } 3165 3166 #ifdef KTR 3167 static char * 3168 mld_rec_type_to_str(const int type) 3169 { 3170 3171 switch (type) { 3172 case MLD_CHANGE_TO_EXCLUDE_MODE: 3173 return "TO_EX"; 3174 break; 3175 case MLD_CHANGE_TO_INCLUDE_MODE: 3176 return "TO_IN"; 3177 break; 3178 case MLD_MODE_IS_EXCLUDE: 3179 return "MODE_EX"; 3180 break; 3181 case MLD_MODE_IS_INCLUDE: 3182 return "MODE_IN"; 3183 break; 3184 case MLD_ALLOW_NEW_SOURCES: 3185 return "ALLOW_NEW"; 3186 break; 3187 case MLD_BLOCK_OLD_SOURCES: 3188 return "BLOCK_OLD"; 3189 break; 3190 default: 3191 break; 3192 } 3193 return "unknown"; 3194 } 3195 #endif 3196 3197 static void 3198 mld_init(void *unused __unused) 3199 { 3200 3201 CTR1(KTR_MLD, "%s: initializing", __func__); 3202 MLD_LOCK_INIT(); 3203 3204 ip6_initpktopts(&mld_po); 3205 mld_po.ip6po_hlim = 1; 3206 mld_po.ip6po_hbh = &mld_ra.hbh; 3207 mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER; 3208 mld_po.ip6po_flags = IP6PO_DONTFRAG; 3209 } 3210 SYSINIT(mld_init, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, mld_init, NULL); 3211 3212 static void 3213 mld_uninit(void *unused __unused) 3214 { 3215 3216 CTR1(KTR_MLD, "%s: tearing down", __func__); 3217 MLD_LOCK_DESTROY(); 3218 } 3219 SYSUNINIT(mld_uninit, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, mld_uninit, NULL); 3220 3221 static void 3222 vnet_mld_init(const void *unused __unused) 3223 { 3224 3225 CTR1(KTR_MLD, "%s: initializing", __func__); 3226 3227 LIST_INIT(&V_mli_head); 3228 } 3229 VNET_SYSINIT(vnet_mld_init, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mld_init, 3230 NULL); 3231 3232 static void 3233 vnet_mld_uninit(const void *unused __unused) 3234 { 3235 3236 CTR1(KTR_MLD, "%s: tearing down", __func__); 3237 3238 KASSERT(LIST_EMPTY(&V_mli_head), 3239 ("%s: mli list not empty; ifnets not detached?", __func__)); 3240 } 3241 VNET_SYSUNINIT(vnet_mld_uninit, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mld_uninit, 3242 NULL); 3243 3244 static int 3245 mld_modevent(module_t mod, int type, void *unused __unused) 3246 { 3247 3248 switch (type) { 3249 case MOD_LOAD: 3250 case MOD_UNLOAD: 3251 break; 3252 default: 3253 return (EOPNOTSUPP); 3254 } 3255 return (0); 3256 } 3257 3258 static moduledata_t mld_mod = { 3259 "mld", 3260 mld_modevent, 3261 0 3262 }; 3263 DECLARE_MODULE(mld, mld_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); 3264