1 /*- 2 * Copyright (c) 2009 Bruce Simpson. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 3. The name of the author may not be used to endorse or promote 13 * products derived from this software without specific prior written 14 * permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $KAME: mld6.c,v 1.27 2001/04/04 05:17:30 itojun Exp $ 29 */ 30 31 /*- 32 * Copyright (c) 1988 Stephen Deering. 33 * Copyright (c) 1992, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * This code is derived from software contributed to Berkeley by 37 * Stephen Deering of Stanford University. 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 1. Redistributions of source code must retain the above copyright 43 * notice, this list of conditions and the following disclaimer. 44 * 2. Redistributions in binary form must reproduce the above copyright 45 * notice, this list of conditions and the following disclaimer in the 46 * documentation and/or other materials provided with the distribution. 47 * 4. Neither the name of the University nor the names of its contributors 48 * may be used to endorse or promote products derived from this software 49 * without specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 61 * SUCH DAMAGE. 62 * 63 * @(#)igmp.c 8.1 (Berkeley) 7/19/93 64 */ 65 66 #include <sys/cdefs.h> 67 __FBSDID("$FreeBSD$"); 68 69 #include "opt_inet.h" 70 #include "opt_inet6.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/mbuf.h> 75 #include <sys/socket.h> 76 #include <sys/protosw.h> 77 #include <sys/sysctl.h> 78 #include <sys/kernel.h> 79 #include <sys/callout.h> 80 #include <sys/malloc.h> 81 #include <sys/module.h> 82 #include <sys/vimage.h> 83 84 #include <net/if.h> 85 #include <net/route.h> 86 #include <net/vnet.h> 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet6/in6_var.h> 91 #include <netinet/ip6.h> 92 #include <netinet6/ip6_var.h> 93 #include <netinet6/scope6_var.h> 94 #include <netinet/icmp6.h> 95 #include <netinet6/mld6.h> 96 #include <netinet6/mld6_var.h> 97 #include <netinet/vinet.h> 98 #include <netinet6/vinet6.h> 99 100 #include <security/mac/mac_framework.h> 101 102 #ifndef KTR_MLD 103 #define KTR_MLD KTR_INET6 104 #endif 105 106 static struct mld_ifinfo * 107 mli_alloc_locked(struct ifnet *); 108 static void mli_delete_locked(const struct ifnet *); 109 static void mld_dispatch_packet(struct mbuf *); 110 static void mld_dispatch_queue(struct ifqueue *, int); 111 static void mld_final_leave(struct in6_multi *, struct mld_ifinfo *); 112 static void mld_fasttimo_vnet(void); 113 static int mld_handle_state_change(struct in6_multi *, 114 struct mld_ifinfo *); 115 static int mld_initial_join(struct in6_multi *, struct mld_ifinfo *, 116 const int); 117 #ifdef KTR 118 static char * mld_rec_type_to_str(const int); 119 #endif 120 static void mld_set_version(struct mld_ifinfo *, const int); 121 static void mld_slowtimo_vnet(void); 122 static void mld_sysinit(void); 123 static void mld_sysuninit(void); 124 static int mld_v1_input_query(struct ifnet *, const struct ip6_hdr *, 125 const struct mld_hdr *); 126 static int mld_v1_input_report(struct ifnet *, const struct ip6_hdr *, 127 const struct mld_hdr *); 128 static void mld_v1_process_group_timer(struct in6_multi *, const int); 129 static void mld_v1_process_querier_timers(struct mld_ifinfo *); 130 static int mld_v1_transmit_report(struct in6_multi *, const int); 131 static void mld_v1_update_group(struct in6_multi *, const int); 132 static void mld_v2_cancel_link_timers(struct mld_ifinfo *); 133 static void mld_v2_dispatch_general_query(struct mld_ifinfo *); 134 static struct mbuf * 135 mld_v2_encap_report(struct ifnet *, struct mbuf *); 136 static int mld_v2_enqueue_filter_change(struct ifqueue *, 137 struct in6_multi *); 138 static int mld_v2_enqueue_group_record(struct ifqueue *, 139 struct in6_multi *, const int, const int, const int); 140 static int mld_v2_input_query(struct ifnet *, const struct ip6_hdr *, 141 struct mbuf *, const int, const int); 142 static int mld_v2_merge_state_changes(struct in6_multi *, 143 struct ifqueue *); 144 static void mld_v2_process_group_timers(struct mld_ifinfo *, 145 struct ifqueue *, struct ifqueue *, 146 struct in6_multi *, const int); 147 static int mld_v2_process_group_query(struct in6_multi *, 148 struct mld_ifinfo *mli, int, struct mbuf *, const int); 149 static int sysctl_mld_gsr(SYSCTL_HANDLER_ARGS); 150 static int sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS); 151 152 #ifdef VIMAGE 153 static vnet_attach_fn vnet_mld_iattach; 154 static vnet_detach_fn vnet_mld_idetach; 155 #else 156 static int vnet_mld_iattach(const void *); 157 static int vnet_mld_idetach(const void *); 158 #endif /* VIMAGE */ 159 160 /* 161 * Normative references: RFC 2710, RFC 3590, RFC 3810. 162 * 163 * Locking: 164 * * The MLD subsystem lock ends up being system-wide for the moment, 165 * but could be per-VIMAGE later on. 166 * * The permitted lock order is: IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK. 167 * Any may be taken independently; if any are held at the same 168 * time, the above lock order must be followed. 169 * * IN6_MULTI_LOCK covers in_multi. 170 * * MLD_LOCK covers per-link state and any global variables in this file. 171 * * IF_ADDR_LOCK covers if_multiaddrs, which is used for a variety of 172 * per-link state iterators. 173 * 174 * XXX LOR PREVENTION 175 * A special case for IPv6 is the in6_setscope() routine. ip6_output() 176 * will not accept an ifp; it wants an embedded scope ID, unlike 177 * ip_output(), which happily takes the ifp given to it. The embedded 178 * scope ID is only used by MLD to select the outgoing interface. 179 * 180 * During interface attach and detach, MLD will take MLD_LOCK *after* 181 * the IF_AFDATA_LOCK. 182 * As in6_setscope() takes IF_AFDATA_LOCK then SCOPE_LOCK, we can't call 183 * it with MLD_LOCK held without triggering an LOR. A netisr with indirect 184 * dispatch could work around this, but we'd rather not do that, as it 185 * can introduce other races. 186 * 187 * As such, we exploit the fact that the scope ID is just the interface 188 * index, and embed it in the IPv6 destination address accordingly. 189 * This is potentially NOT VALID for MLDv1 reports, as they 190 * are always sent to the multicast group itself; as MLDv2 191 * reports are always sent to ff02::16, this is not an issue 192 * when MLDv2 is in use. 193 * 194 * This does not however eliminate the LOR when ip6_output() itself 195 * calls in6_setscope() internally whilst MLD_LOCK is held. This will 196 * trigger a LOR warning in WITNESS when the ifnet is detached. 197 * 198 * The right answer is probably to make IF_AFDATA_LOCK an rwlock, given 199 * how it's used across the network stack. Here we're simply exploiting 200 * the fact that MLD runs at a similar layer in the stack to scope6.c. 201 * 202 * VIMAGE: 203 * * Each in6_multi corresponds to an ifp, and each ifp corresponds 204 * to a vnet in ifp->if_vnet. 205 */ 206 static struct mtx mld_mtx; 207 MALLOC_DEFINE(M_MLD, "mld", "mld state"); 208 209 #define MLD_EMBEDSCOPE(pin6, zoneid) \ 210 (pin6)->s6_addr16[1] = htons((zoneid) & 0xFFFF) 211 212 /* 213 * VIMAGE-wide globals. 214 */ 215 #ifdef VIMAGE_GLOBALS 216 struct timeval mld_gsrdelay; 217 LIST_HEAD(, mld_ifinfo) mli_head; 218 int interface_timers_running6; 219 int state_change_timers_running6; 220 int current_state_timers_running6; 221 #endif /* VIMAGE_GLOBALS */ 222 223 SYSCTL_DECL(_net_inet6); /* Note: Not in any common header. */ 224 225 SYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW, 0, 226 "IPv6 Multicast Listener Discovery"); 227 228 /* 229 * Virtualized sysctls. 230 */ 231 SYSCTL_V_PROC(V_NET, vnet_inet6, _net_inet6_mld, OID_AUTO, gsrdelay, 232 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, mld_gsrdelay.tv_sec, 0, 233 sysctl_mld_gsr, "I", 234 "Rate limit for MLDv2 Group-and-Source queries in seconds"); 235 236 /* 237 * Non-virtualized sysctls. 238 */ 239 SYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo, CTLFLAG_RD | CTLFLAG_MPSAFE, 240 sysctl_mld_ifinfo, "Per-interface MLDv2 state"); 241 242 /* 243 * Packed Router Alert option structure declaration. 244 */ 245 struct mld_raopt { 246 struct ip6_hbh hbh; 247 struct ip6_opt pad; 248 struct ip6_opt_router ra; 249 } __packed; 250 251 /* 252 * Router Alert hop-by-hop option header. 253 */ 254 static struct mld_raopt mld_ra = { 255 .hbh = { 0, 0 }, 256 .pad = { .ip6o_type = IP6OPT_PADN, 0 }, 257 .ra = { 258 .ip6or_type = IP6OPT_ROUTER_ALERT, 259 .ip6or_len = IP6OPT_RTALERT_LEN - 2, 260 .ip6or_value[0] = ((IP6OPT_RTALERT_MLD >> 8) & 0xFF), 261 .ip6or_value[1] = (IP6OPT_RTALERT_MLD & 0xFF) 262 } 263 }; 264 static struct ip6_pktopts mld_po; 265 266 static __inline void 267 mld_save_context(struct mbuf *m, struct ifnet *ifp) 268 { 269 270 #ifdef VIMAGE 271 m->m_pkthdr.header = ifp->if_vnet; 272 #endif /* VIMAGE */ 273 m->m_pkthdr.flowid = ifp->if_index; 274 } 275 276 static __inline void 277 mld_scrub_context(struct mbuf *m) 278 { 279 280 m->m_pkthdr.header = NULL; 281 m->m_pkthdr.flowid = 0; 282 } 283 284 /* 285 * Restore context from a queued output chain. 286 * Return saved ifindex. 287 * 288 * VIMAGE: The assertion is there to make sure that we 289 * actually called CURVNET_SET() with what's in the mbuf chain. 290 */ 291 static __inline uint32_t 292 mld_restore_context(struct mbuf *m) 293 { 294 295 #if defined(VIMAGE) && defined(INVARIANTS) 296 KASSERT(curvnet == m->m_pkthdr.header, 297 ("%s: called when curvnet was not restored", __func__)); 298 #endif 299 return (m->m_pkthdr.flowid); 300 } 301 302 /* 303 * Retrieve or set threshold between group-source queries in seconds. 304 * 305 * VIMAGE: Assume curvnet set by caller. 306 * SMPng: NOTE: Serialized by MLD lock. 307 */ 308 static int 309 sysctl_mld_gsr(SYSCTL_HANDLER_ARGS) 310 { 311 INIT_VNET_INET6(curvnet); 312 int error; 313 int i; 314 315 error = sysctl_wire_old_buffer(req, sizeof(int)); 316 if (error) 317 return (error); 318 319 MLD_LOCK(); 320 321 i = V_mld_gsrdelay.tv_sec; 322 323 error = sysctl_handle_int(oidp, &i, 0, req); 324 if (error || !req->newptr) 325 goto out_locked; 326 327 if (i < -1 || i >= 60) { 328 error = EINVAL; 329 goto out_locked; 330 } 331 332 CTR2(KTR_MLD, "change mld_gsrdelay from %d to %d", 333 V_mld_gsrdelay.tv_sec, i); 334 V_mld_gsrdelay.tv_sec = i; 335 336 out_locked: 337 MLD_UNLOCK(); 338 return (error); 339 } 340 341 /* 342 * Expose struct mld_ifinfo to userland, keyed by ifindex. 343 * For use by ifmcstat(8). 344 * 345 * SMPng: NOTE: Does an unlocked ifindex space read. 346 * VIMAGE: Assume curvnet set by caller. The node handler itself 347 * is not directly virtualized. 348 */ 349 static int 350 sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS) 351 { 352 INIT_VNET_NET(curvnet); 353 INIT_VNET_INET6(curvnet); 354 int *name; 355 int error; 356 u_int namelen; 357 struct ifnet *ifp; 358 struct mld_ifinfo *mli; 359 360 name = (int *)arg1; 361 namelen = arg2; 362 363 if (req->newptr != NULL) 364 return (EPERM); 365 366 if (namelen != 1) 367 return (EINVAL); 368 369 error = sysctl_wire_old_buffer(req, sizeof(struct mld_ifinfo)); 370 if (error) 371 return (error); 372 373 IN6_MULTI_LOCK(); 374 MLD_LOCK(); 375 376 if (name[0] <= 0 || name[0] > V_if_index) { 377 error = ENOENT; 378 goto out_locked; 379 } 380 381 error = ENOENT; 382 383 ifp = ifnet_byindex(name[0]); 384 if (ifp == NULL) 385 goto out_locked; 386 387 LIST_FOREACH(mli, &V_mli_head, mli_link) { 388 if (ifp == mli->mli_ifp) { 389 error = SYSCTL_OUT(req, mli, 390 sizeof(struct mld_ifinfo)); 391 break; 392 } 393 } 394 395 out_locked: 396 MLD_UNLOCK(); 397 IN6_MULTI_UNLOCK(); 398 return (error); 399 } 400 401 /* 402 * Dispatch an entire queue of pending packet chains. 403 * VIMAGE: Assumes the vnet pointer has been set. 404 */ 405 static void 406 mld_dispatch_queue(struct ifqueue *ifq, int limit) 407 { 408 struct mbuf *m; 409 410 for (;;) { 411 _IF_DEQUEUE(ifq, m); 412 if (m == NULL) 413 break; 414 CTR3(KTR_MLD, "%s: dispatch %p from %p", __func__, ifq, m); 415 mld_dispatch_packet(m); 416 if (--limit == 0) 417 break; 418 } 419 } 420 421 /* 422 * Filter outgoing MLD report state by group. 423 * 424 * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1) 425 * and node-local addresses. However, kernel and socket consumers 426 * always embed the KAME scope ID in the address provided, so strip it 427 * when performing comparison. 428 * Note: This is not the same as the *multicast* scope. 429 * 430 * Return zero if the given group is one for which MLD reports 431 * should be suppressed, or non-zero if reports should be issued. 432 */ 433 static __inline int 434 mld_is_addr_reported(const struct in6_addr *addr) 435 { 436 437 KASSERT(IN6_IS_ADDR_MULTICAST(addr), ("%s: not multicast", __func__)); 438 439 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL) 440 return (0); 441 442 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL) { 443 struct in6_addr tmp = *addr; 444 in6_clearscope(&tmp); 445 if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes)) 446 return (0); 447 } 448 449 return (1); 450 } 451 452 /* 453 * Attach MLD when PF_INET6 is attached to an interface. 454 * 455 * SMPng: Normally called with IF_AFDATA_LOCK held. 456 */ 457 struct mld_ifinfo * 458 mld_domifattach(struct ifnet *ifp) 459 { 460 struct mld_ifinfo *mli; 461 462 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 463 __func__, ifp, ifp->if_xname); 464 465 MLD_LOCK(); 466 467 mli = mli_alloc_locked(ifp); 468 if (!(ifp->if_flags & IFF_MULTICAST)) 469 mli->mli_flags |= MLIF_SILENT; 470 471 MLD_UNLOCK(); 472 473 return (mli); 474 } 475 476 /* 477 * VIMAGE: assume curvnet set by caller. 478 */ 479 static struct mld_ifinfo * 480 mli_alloc_locked(/*const*/ struct ifnet *ifp) 481 { 482 INIT_VNET_INET6(ifp->if_vnet); 483 struct mld_ifinfo *mli; 484 485 MLD_LOCK_ASSERT(); 486 487 mli = malloc(sizeof(struct mld_ifinfo), M_MLD, M_NOWAIT|M_ZERO); 488 if (mli == NULL) 489 goto out; 490 491 mli->mli_ifp = ifp; 492 mli->mli_version = MLD_VERSION_2; 493 mli->mli_flags = 0; 494 mli->mli_rv = MLD_RV_INIT; 495 mli->mli_qi = MLD_QI_INIT; 496 mli->mli_qri = MLD_QRI_INIT; 497 mli->mli_uri = MLD_URI_INIT; 498 499 SLIST_INIT(&mli->mli_relinmhead); 500 501 /* 502 * Responses to general queries are subject to bounds. 503 */ 504 IFQ_SET_MAXLEN(&mli->mli_gq, MLD_MAX_RESPONSE_PACKETS); 505 506 LIST_INSERT_HEAD(&V_mli_head, mli, mli_link); 507 508 CTR2(KTR_MLD, "allocate mld_ifinfo for ifp %p(%s)", 509 ifp, ifp->if_xname); 510 511 out: 512 return (mli); 513 } 514 515 /* 516 * Hook for ifdetach. 517 * 518 * NOTE: Some finalization tasks need to run before the protocol domain 519 * is detached, but also before the link layer does its cleanup. 520 * Run before link-layer cleanup; cleanup groups, but do not free MLD state. 521 * 522 * SMPng: Caller must hold IN6_MULTI_LOCK(). 523 * Must take IF_ADDR_LOCK() to cover if_multiaddrs iterator. 524 * XXX This routine is also bitten by unlocked ifma_protospec access. 525 */ 526 void 527 mld_ifdetach(struct ifnet *ifp) 528 { 529 struct mld_ifinfo *mli; 530 struct ifmultiaddr *ifma; 531 struct in6_multi *inm, *tinm; 532 533 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", __func__, ifp, 534 ifp->if_xname); 535 536 IN6_MULTI_LOCK_ASSERT(); 537 MLD_LOCK(); 538 539 mli = MLD_IFINFO(ifp); 540 if (mli->mli_version == MLD_VERSION_2) { 541 IF_ADDR_LOCK(ifp); 542 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 543 if (ifma->ifma_addr->sa_family != AF_INET6 || 544 ifma->ifma_protospec == NULL) 545 continue; 546 inm = (struct in6_multi *)ifma->ifma_protospec; 547 if (inm->in6m_state == MLD_LEAVING_MEMBER) { 548 SLIST_INSERT_HEAD(&mli->mli_relinmhead, 549 inm, in6m_nrele); 550 } 551 in6m_clear_recorded(inm); 552 } 553 IF_ADDR_UNLOCK(ifp); 554 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele, 555 tinm) { 556 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele); 557 in6m_release_locked(inm); 558 } 559 } 560 561 MLD_UNLOCK(); 562 } 563 564 /* 565 * Hook for domifdetach. 566 * Runs after link-layer cleanup; free MLD state. 567 * 568 * SMPng: Normally called with IF_AFDATA_LOCK held. 569 */ 570 void 571 mld_domifdetach(struct ifnet *ifp) 572 { 573 574 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 575 __func__, ifp, ifp->if_xname); 576 577 MLD_LOCK(); 578 mli_delete_locked(ifp); 579 MLD_UNLOCK(); 580 } 581 582 static void 583 mli_delete_locked(const struct ifnet *ifp) 584 { 585 INIT_VNET_INET6(ifp->if_vnet); 586 struct mld_ifinfo *mli, *tmli; 587 588 CTR3(KTR_MLD, "%s: freeing mld_ifinfo for ifp %p(%s)", 589 __func__, ifp, ifp->if_xname); 590 591 MLD_LOCK_ASSERT(); 592 593 LIST_FOREACH_SAFE(mli, &V_mli_head, mli_link, tmli) { 594 if (mli->mli_ifp == ifp) { 595 /* 596 * Free deferred General Query responses. 597 */ 598 _IF_DRAIN(&mli->mli_gq); 599 600 LIST_REMOVE(mli, mli_link); 601 602 KASSERT(SLIST_EMPTY(&mli->mli_relinmhead), 603 ("%s: there are dangling in_multi references", 604 __func__)); 605 606 free(mli, M_MLD); 607 return; 608 } 609 } 610 #ifdef INVARIANTS 611 panic("%s: mld_ifinfo not found for ifp %p\n", __func__, ifp); 612 #endif 613 } 614 615 /* 616 * Process a received MLDv1 general or address-specific query. 617 * Assumes that the query header has been pulled up to sizeof(mld_hdr). 618 */ 619 static int 620 mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 621 const struct mld_hdr *mld) 622 { 623 struct ifmultiaddr *ifma; 624 struct mld_ifinfo *mli; 625 struct in6_multi *inm; 626 uint16_t timer; 627 #ifdef KTR 628 char ip6tbuf[INET6_ADDRSTRLEN]; 629 #endif 630 631 IN6_MULTI_LOCK(); 632 IF_ADDR_LOCK(ifp); 633 MLD_LOCK(); 634 635 mli = MLD_IFINFO(ifp); 636 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 637 638 /* 639 * Switch to MLDv1 host compatibility mode. 640 */ 641 mld_set_version(mli, MLD_VERSION_1); 642 643 timer = ntohs(mld->mld_maxdelay) * PR_FASTHZ / MLD_TIMER_SCALE; 644 if (timer == 0) 645 timer = 1; 646 647 if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 648 /* 649 * MLDv1 Group-Specific Query. 650 * If this is a group-specific MLDv1 query, we need only 651 * look up the single group to process it. 652 */ 653 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 654 if (inm != NULL) { 655 CTR3(KTR_MLD, "process v1 query %s on ifp %p(%s)", 656 ip6_sprintf(ip6tbuf, &mld->mld_addr), 657 ifp, ifp->if_xname); 658 mld_v1_update_group(inm, timer); 659 } 660 } else { 661 /* 662 * MLDv1 General Query. 663 * If this was not sent to the all-nodes group, ignore it. 664 * 665 * XXX Do we need to check for a scope ID in the destination 666 * address on input and strip it? 667 */ 668 if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, 669 &in6addr_linklocal_allnodes)) { 670 /* 671 * For each reporting group joined on this 672 * interface, kick the report timer. 673 */ 674 CTR2(KTR_MLD, 675 "process v1 general query on ifp %p(%s)", 676 ifp, ifp->if_xname); 677 678 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 679 if (ifma->ifma_addr->sa_family != AF_INET6 || 680 ifma->ifma_protospec == NULL) 681 continue; 682 inm = (struct in6_multi *)ifma->ifma_protospec; 683 mld_v1_update_group(inm, timer); 684 } 685 } 686 } 687 688 MLD_UNLOCK(); 689 IF_ADDR_UNLOCK(ifp); 690 IN6_MULTI_UNLOCK(); 691 692 return (0); 693 } 694 695 /* 696 * Update the report timer on a group in response to an MLDv1 query. 697 * 698 * If we are becoming the reporting member for this group, start the timer. 699 * If we already are the reporting member for this group, and timer is 700 * below the threshold, reset it. 701 * 702 * We may be updating the group for the first time since we switched 703 * to MLDv2. If we are, then we must clear any recorded source lists, 704 * and transition to REPORTING state; the group timer is overloaded 705 * for group and group-source query responses. 706 * 707 * Unlike MLDv2, the delay per group should be jittered 708 * to avoid bursts of MLDv1 reports. 709 */ 710 static void 711 mld_v1_update_group(struct in6_multi *inm, const int timer) 712 { 713 INIT_VNET_INET6(curvnet); 714 #ifdef KTR 715 char ip6tbuf[INET6_ADDRSTRLEN]; 716 #endif 717 718 CTR4(KTR_MLD, "%s: %s/%s timer=%d", __func__, 719 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 720 inm->in6m_ifp->if_xname, timer); 721 722 IN6_MULTI_LOCK_ASSERT(); 723 724 switch (inm->in6m_state) { 725 case MLD_NOT_MEMBER: 726 case MLD_SILENT_MEMBER: 727 break; 728 case MLD_REPORTING_MEMBER: 729 if (inm->in6m_timer != 0 && 730 inm->in6m_timer <= timer) { 731 CTR1(KTR_MLD, "%s: REPORTING and timer running, " 732 "skipping.", __func__); 733 break; 734 } 735 /* FALLTHROUGH */ 736 case MLD_SG_QUERY_PENDING_MEMBER: 737 case MLD_G_QUERY_PENDING_MEMBER: 738 case MLD_IDLE_MEMBER: 739 case MLD_LAZY_MEMBER: 740 case MLD_AWAKENING_MEMBER: 741 CTR1(KTR_MLD, "%s: ->REPORTING", __func__); 742 inm->in6m_state = MLD_REPORTING_MEMBER; 743 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 744 V_current_state_timers_running6 = 1; 745 break; 746 case MLD_SLEEPING_MEMBER: 747 CTR1(KTR_MLD, "%s: ->AWAKENING", __func__); 748 inm->in6m_state = MLD_AWAKENING_MEMBER; 749 break; 750 case MLD_LEAVING_MEMBER: 751 break; 752 } 753 } 754 755 /* 756 * Process a received MLDv2 general, group-specific or 757 * group-and-source-specific query. 758 * 759 * Assumes that the query header has been pulled up to sizeof(mldv2_query). 760 * 761 * Return 0 if successful, otherwise an appropriate error code is returned. 762 */ 763 static int 764 mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 765 struct mbuf *m, const int off, const int icmp6len) 766 { 767 INIT_VNET_INET6(curvnet); 768 struct mld_ifinfo *mli; 769 struct mldv2_query *mld; 770 struct in6_multi *inm; 771 uint32_t maxdelay, nsrc, qqi; 772 uint16_t timer; 773 uint8_t qrv; 774 775 CTR2(KTR_MLD, "process v2 query on ifp %p(%s)", ifp, ifp->if_xname); 776 777 mld = (struct mldv2_query *)(mtod(m, uint8_t *) + off); 778 779 maxdelay = ntohs(mld->mld_maxdelay); /* in 1/10ths of a second */ 780 if (maxdelay >= 32678) { 781 maxdelay = (MLD_MRC_MANT(mld->mld_maxdelay) | 0x1000) << 782 (MLD_MRC_EXP(mld->mld_maxdelay) + 3); 783 } 784 785 qrv = MLD_QRV(mld->mld_misc); 786 if (qrv < 2) { 787 CTR3(KTR_MLD, "%s: clamping qrv %d to %d", __func__, 788 qrv, MLD_RV_INIT); 789 qrv = MLD_RV_INIT; 790 } 791 792 qqi = mld->mld_qqi; 793 if (qqi >= 128) { 794 qqi = MLD_QQIC_MANT(mld->mld_qqi) << 795 (MLD_QQIC_EXP(mld->mld_qqi) + 3); 796 } 797 798 timer = maxdelay * PR_FASTHZ / MLD_TIMER_SCALE; 799 if (timer == 0) 800 timer = 1; 801 802 nsrc = ntohs(mld->mld_numsrc); 803 if (nsrc > MLD_MAX_GS_SOURCES) 804 return (EMSGSIZE); 805 if (icmp6len < sizeof(struct mldv2_query) + 806 (nsrc * sizeof(struct in6_addr))) 807 return (EMSGSIZE); 808 809 IN6_MULTI_LOCK(); 810 IF_ADDR_LOCK(ifp); 811 MLD_LOCK(); 812 813 mli = MLD_IFINFO(ifp); 814 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 815 816 mld_set_version(mli, MLD_VERSION_2); 817 818 mli->mli_rv = qrv; 819 mli->mli_qi = qqi; 820 mli->mli_qri = maxdelay; 821 822 CTR4(KTR_MLD, "%s: qrv %d qi %d qri %d", __func__, qrv, qqi, 823 maxdelay); 824 825 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 826 /* 827 * MLDv2 General Query. 828 * Schedule a current-state report on this ifp for 829 * all groups, possibly containing source lists. 830 */ 831 if (!IN6_ARE_ADDR_EQUAL(&in6addr_linklocal_allnodes, 832 &ip6->ip6_dst) || nsrc > 0) { 833 /* 834 * General Queries SHOULD be directed to ff02::1. 835 * A general query with a source list has undefined 836 * behaviour; discard it. 837 */ 838 goto out_locked; 839 } 840 841 CTR2(KTR_MLD, "process v2 general query on ifp %p(%s)", 842 ifp, ifp->if_xname); 843 844 /* 845 * If there is a pending General Query response 846 * scheduled earlier than the selected delay, do 847 * not schedule any other reports. 848 * Otherwise, reset the interface timer. 849 */ 850 if (mli->mli_v1_timer == 0 || mli->mli_v2_timer >= timer) { 851 mli->mli_v1_timer = MLD_RANDOM_DELAY(timer); 852 V_interface_timers_running6 = 1; 853 } 854 } else { 855 /* 856 * MLDv2 Group-specific or Group-and-source-specific Query. 857 * 858 * Group-source-specific queries are throttled on 859 * a per-group basis to defeat denial-of-service attempts. 860 * Queries for groups we are not a member of on this 861 * link are simply ignored. 862 */ 863 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 864 if (inm == NULL) 865 goto out_locked; 866 if (nsrc > 0) { 867 if (!ratecheck(&inm->in6m_lastgsrtv, 868 &V_mld_gsrdelay)) { 869 CTR1(KTR_MLD, "%s: GS query throttled.", 870 __func__); 871 goto out_locked; 872 } 873 } 874 CTR2(KTR_MLD, "process v2 group query on ifp %p(%s)", 875 ifp, ifp->if_xname); 876 /* 877 * If there is a pending General Query response 878 * scheduled sooner than the selected delay, no 879 * further report need be scheduled. 880 * Otherwise, prepare to respond to the 881 * group-specific or group-and-source query. 882 */ 883 if (mli->mli_v1_timer == 0 || mli->mli_v2_timer >= timer) 884 mld_v2_process_group_query(inm, mli, timer, m, off); 885 } 886 887 out_locked: 888 MLD_UNLOCK(); 889 IF_ADDR_UNLOCK(ifp); 890 IN6_MULTI_UNLOCK(); 891 892 return (0); 893 } 894 895 /* 896 * Process a recieved MLDv2 group-specific or group-and-source-specific 897 * query. 898 * Return <0 if any error occured. Currently this is ignored. 899 */ 900 static int 901 mld_v2_process_group_query(struct in6_multi *inm, struct mld_ifinfo *mli, 902 int timer, struct mbuf *m0, const int off) 903 { 904 INIT_VNET_INET6(curvnet); 905 struct mldv2_query *mld; 906 int retval; 907 uint16_t nsrc; 908 909 IN6_MULTI_LOCK_ASSERT(); 910 MLD_LOCK_ASSERT(); 911 912 retval = 0; 913 mld = (struct mldv2_query *)(mtod(m0, uint8_t *) + off); 914 915 switch (inm->in6m_state) { 916 case MLD_NOT_MEMBER: 917 case MLD_SILENT_MEMBER: 918 case MLD_SLEEPING_MEMBER: 919 case MLD_LAZY_MEMBER: 920 case MLD_AWAKENING_MEMBER: 921 case MLD_IDLE_MEMBER: 922 case MLD_LEAVING_MEMBER: 923 return (retval); 924 break; 925 case MLD_REPORTING_MEMBER: 926 case MLD_G_QUERY_PENDING_MEMBER: 927 case MLD_SG_QUERY_PENDING_MEMBER: 928 break; 929 } 930 931 nsrc = ntohs(mld->mld_numsrc); 932 933 /* 934 * Deal with group-specific queries upfront. 935 * If any group query is already pending, purge any recorded 936 * source-list state if it exists, and schedule a query response 937 * for this group-specific query. 938 */ 939 if (nsrc == 0) { 940 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 941 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) { 942 in6m_clear_recorded(inm); 943 timer = min(inm->in6m_timer, timer); 944 } 945 inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER; 946 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 947 V_current_state_timers_running6 = 1; 948 return (retval); 949 } 950 951 /* 952 * Deal with the case where a group-and-source-specific query has 953 * been received but a group-specific query is already pending. 954 */ 955 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) { 956 timer = min(inm->in6m_timer, timer); 957 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 958 V_current_state_timers_running6 = 1; 959 return (retval); 960 } 961 962 /* 963 * Finally, deal with the case where a group-and-source-specific 964 * query has been received, where a response to a previous g-s-r 965 * query exists, or none exists. 966 * In this case, we need to parse the source-list which the Querier 967 * has provided us with and check if we have any source list filter 968 * entries at T1 for these sources. If we do not, there is no need 969 * schedule a report and the query may be dropped. 970 * If we do, we must record them and schedule a current-state 971 * report for those sources. 972 */ 973 if (inm->in6m_nsrc > 0) { 974 struct mbuf *m; 975 uint8_t *sp; 976 int i, nrecorded; 977 int soff; 978 979 m = m0; 980 soff = off + sizeof(struct mldv2_query); 981 nrecorded = 0; 982 for (i = 0; i < nsrc; i++) { 983 sp = mtod(m, uint8_t *) + soff; 984 retval = in6m_record_source(inm, 985 (const struct in6_addr *)sp); 986 if (retval < 0) 987 break; 988 nrecorded += retval; 989 soff += sizeof(struct in6_addr); 990 if (soff >= m->m_len) { 991 soff = soff - m->m_len; 992 m = m->m_next; 993 if (m == NULL) 994 break; 995 } 996 } 997 if (nrecorded > 0) { 998 CTR1(KTR_MLD, 999 "%s: schedule response to SG query", __func__); 1000 inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER; 1001 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1002 V_current_state_timers_running6 = 1; 1003 } 1004 } 1005 1006 return (retval); 1007 } 1008 1009 /* 1010 * Process a received MLDv1 host membership report. 1011 * Assumes mld points to mld_hdr in pulled up mbuf chain. 1012 */ 1013 static int 1014 mld_v1_input_report(struct ifnet *ifp, const struct ip6_hdr *ip6, 1015 const struct mld_hdr *mld) 1016 { 1017 struct in6_ifaddr *ia; 1018 struct in6_multi *inm; 1019 #ifdef KTR 1020 char ip6tbuf[INET6_ADDRSTRLEN]; 1021 #endif 1022 1023 if (ifp->if_flags & IFF_LOOPBACK) 1024 return (0); 1025 1026 if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) || 1027 !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &ip6->ip6_dst)) 1028 return (EINVAL); 1029 1030 /* 1031 * Make sure we don't hear our own membership report, as fast 1032 * leave requires knowing that we are the only member of a 1033 * group. Assume we used the link-local address if available, 1034 * otherwise look for ::. 1035 */ 1036 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1037 if ((ia && IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia))) || 1038 (ia == NULL && IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src))) 1039 return (0); 1040 1041 CTR3(KTR_MLD, "process v1 report %s on ifp %p(%s)", 1042 ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, ifp->if_xname); 1043 1044 IN6_MULTI_LOCK(); 1045 IF_ADDR_LOCK(ifp); 1046 1047 /* 1048 * MLDv1 report suppression. 1049 * If we are a member of this group, and our membership should be 1050 * reported, and our group timer is pending or about to be reset, 1051 * stop our group timer by transitioning to the 'lazy' state. 1052 */ 1053 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 1054 if (inm != NULL) { 1055 struct mld_ifinfo *mli; 1056 1057 mli = inm->in6m_mli; 1058 KASSERT(mli != NULL, 1059 ("%s: no mli for ifp %p", __func__, ifp)); 1060 1061 /* 1062 * If we are in MLDv2 host mode, do not allow the 1063 * other host's MLDv1 report to suppress our reports. 1064 */ 1065 if (mli->mli_version == MLD_VERSION_2) 1066 goto out_locked; 1067 1068 inm->in6m_timer = 0; 1069 1070 switch (inm->in6m_state) { 1071 case MLD_NOT_MEMBER: 1072 case MLD_SILENT_MEMBER: 1073 case MLD_SLEEPING_MEMBER: 1074 break; 1075 case MLD_REPORTING_MEMBER: 1076 case MLD_IDLE_MEMBER: 1077 case MLD_AWAKENING_MEMBER: 1078 CTR3(KTR_MLD, 1079 "report suppressed for %s on ifp %p(%s)", 1080 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1081 ifp, ifp->if_xname); 1082 case MLD_LAZY_MEMBER: 1083 inm->in6m_state = MLD_LAZY_MEMBER; 1084 break; 1085 case MLD_G_QUERY_PENDING_MEMBER: 1086 case MLD_SG_QUERY_PENDING_MEMBER: 1087 case MLD_LEAVING_MEMBER: 1088 break; 1089 } 1090 } 1091 1092 out_locked: 1093 IF_ADDR_UNLOCK(ifp); 1094 IN6_MULTI_UNLOCK(); 1095 1096 return (0); 1097 } 1098 1099 /* 1100 * MLD input path. 1101 * 1102 * Assume query messages which fit in a single ICMPv6 message header 1103 * have been pulled up. 1104 * Assume that userland will want to see the message, even if it 1105 * otherwise fails kernel input validation; do not free it. 1106 * Pullup may however free the mbuf chain m if it fails. 1107 * 1108 * Return IPPROTO_DONE if we freed m. Otherwise, return 0. 1109 */ 1110 int 1111 mld_input(struct mbuf *m, int off, int icmp6len) 1112 { 1113 struct ifnet *ifp; 1114 struct ip6_hdr *ip6; 1115 struct mld_hdr *mld; 1116 int mldlen; 1117 1118 CTR3(KTR_MLD, "%s: called w/mbuf (%p,%d)", __func__, m, off); 1119 1120 ifp = m->m_pkthdr.rcvif; 1121 INIT_VNET_INET6(ifp->if_vnet); 1122 1123 ip6 = mtod(m, struct ip6_hdr *); 1124 1125 /* Pullup to appropriate size. */ 1126 mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off); 1127 if (mld->mld_type == MLD_LISTENER_QUERY && 1128 icmp6len >= sizeof(struct mldv2_query)) { 1129 mldlen = sizeof(struct mldv2_query); 1130 } else { 1131 mldlen = sizeof(struct mld_hdr); 1132 } 1133 IP6_EXTHDR_GET(mld, struct mld_hdr *, m, off, mldlen); 1134 if (mld == NULL) { 1135 ICMP6STAT_INC(icp6s_badlen); 1136 return (IPPROTO_DONE); 1137 } 1138 1139 switch (mld->mld_type) { 1140 case MLD_LISTENER_QUERY: 1141 icmp6_ifstat_inc(ifp, ifs6_in_mldquery); 1142 if (icmp6len == sizeof(struct mld_hdr)) { 1143 if (mld_v1_input_query(ifp, ip6, mld) != 0) 1144 return (0); 1145 } else if (icmp6len >= sizeof(struct mldv2_query)) { 1146 if (mld_v2_input_query(ifp, ip6, m, off, 1147 icmp6len) != 0) 1148 return (0); 1149 } 1150 break; 1151 case MLD_LISTENER_REPORT: 1152 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1153 if (mld_v1_input_report(ifp, ip6, mld) != 0) 1154 return (0); /* Userland needs to see it. */ 1155 break; 1156 case MLDV2_LISTENER_REPORT: 1157 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1158 break; 1159 case MLD_LISTENER_DONE: 1160 icmp6_ifstat_inc(ifp, ifs6_in_mlddone); 1161 break; 1162 default: 1163 break; 1164 } 1165 1166 return (0); 1167 } 1168 1169 /* 1170 * Fast timeout handler (global). 1171 * VIMAGE: Timeout handlers are expected to service all vimages. 1172 */ 1173 void 1174 mld_fasttimo(void) 1175 { 1176 VNET_ITERATOR_DECL(vnet_iter); 1177 1178 VNET_LIST_RLOCK(); 1179 VNET_FOREACH(vnet_iter) { 1180 CURVNET_SET(vnet_iter); 1181 mld_fasttimo_vnet(); 1182 CURVNET_RESTORE(); 1183 } 1184 VNET_LIST_RUNLOCK(); 1185 } 1186 1187 /* 1188 * Fast timeout handler (per-vnet). 1189 * 1190 * VIMAGE: Assume caller has set up our curvnet. 1191 */ 1192 static void 1193 mld_fasttimo_vnet(void) 1194 { 1195 INIT_VNET_INET6(curvnet); 1196 struct ifqueue scq; /* State-change packets */ 1197 struct ifqueue qrq; /* Query response packets */ 1198 struct ifnet *ifp; 1199 struct mld_ifinfo *mli; 1200 struct ifmultiaddr *ifma, *tifma; 1201 struct in6_multi *inm; 1202 int uri_fasthz; 1203 1204 uri_fasthz = 0; 1205 1206 /* 1207 * Quick check to see if any work needs to be done, in order to 1208 * minimize the overhead of fasttimo processing. 1209 * SMPng: XXX Unlocked reads. 1210 */ 1211 if (!V_current_state_timers_running6 && 1212 !V_interface_timers_running6 && 1213 !V_state_change_timers_running6) 1214 return; 1215 1216 IN6_MULTI_LOCK(); 1217 MLD_LOCK(); 1218 1219 /* 1220 * MLDv2 General Query response timer processing. 1221 */ 1222 if (V_interface_timers_running6) { 1223 CTR1(KTR_MLD, "%s: interface timers running", __func__); 1224 1225 V_interface_timers_running6 = 0; 1226 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1227 if (mli->mli_v2_timer == 0) { 1228 /* Do nothing. */ 1229 } else if (--mli->mli_v2_timer == 0) { 1230 mld_v2_dispatch_general_query(mli); 1231 } else { 1232 V_interface_timers_running6 = 1; 1233 } 1234 } 1235 } 1236 1237 if (!V_current_state_timers_running6 && 1238 !V_state_change_timers_running6) 1239 goto out_locked; 1240 1241 V_current_state_timers_running6 = 0; 1242 V_state_change_timers_running6 = 0; 1243 1244 CTR1(KTR_MLD, "%s: state change timers running", __func__); 1245 1246 /* 1247 * MLD host report and state-change timer processing. 1248 * Note: Processing a v2 group timer may remove a node. 1249 */ 1250 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1251 ifp = mli->mli_ifp; 1252 1253 if (mli->mli_version == MLD_VERSION_2) { 1254 uri_fasthz = MLD_RANDOM_DELAY(mli->mli_uri * 1255 PR_FASTHZ); 1256 1257 memset(&qrq, 0, sizeof(struct ifqueue)); 1258 IFQ_SET_MAXLEN(&qrq, MLD_MAX_G_GS_PACKETS); 1259 1260 memset(&scq, 0, sizeof(struct ifqueue)); 1261 IFQ_SET_MAXLEN(&scq, MLD_MAX_STATE_CHANGE_PACKETS); 1262 } 1263 1264 IF_ADDR_LOCK(ifp); 1265 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, 1266 tifma) { 1267 if (ifma->ifma_addr->sa_family != AF_INET6 || 1268 ifma->ifma_protospec == NULL) 1269 continue; 1270 inm = (struct in6_multi *)ifma->ifma_protospec; 1271 switch (mli->mli_version) { 1272 case MLD_VERSION_1: 1273 mld_v1_process_group_timer(inm, 1274 mli->mli_version); 1275 break; 1276 case MLD_VERSION_2: 1277 mld_v2_process_group_timers(mli, &qrq, 1278 &scq, inm, uri_fasthz); 1279 break; 1280 } 1281 } 1282 IF_ADDR_UNLOCK(ifp); 1283 1284 if (mli->mli_version == MLD_VERSION_2) { 1285 struct in6_multi *tinm; 1286 1287 mld_dispatch_queue(&qrq, 0); 1288 mld_dispatch_queue(&scq, 0); 1289 1290 /* 1291 * Free the in_multi reference(s) for 1292 * this lifecycle. 1293 */ 1294 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, 1295 in6m_nrele, tinm) { 1296 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, 1297 in6m_nrele); 1298 in6m_release_locked(inm); 1299 } 1300 } 1301 } 1302 1303 out_locked: 1304 MLD_UNLOCK(); 1305 IN6_MULTI_UNLOCK(); 1306 } 1307 1308 /* 1309 * Update host report group timer. 1310 * Will update the global pending timer flags. 1311 */ 1312 static void 1313 mld_v1_process_group_timer(struct in6_multi *inm, const int version) 1314 { 1315 INIT_VNET_INET6(curvnet); 1316 int report_timer_expired; 1317 1318 IN6_MULTI_LOCK_ASSERT(); 1319 MLD_LOCK_ASSERT(); 1320 1321 if (inm->in6m_timer == 0) { 1322 report_timer_expired = 0; 1323 } else if (--inm->in6m_timer == 0) { 1324 report_timer_expired = 1; 1325 } else { 1326 V_current_state_timers_running6 = 1; 1327 return; 1328 } 1329 1330 switch (inm->in6m_state) { 1331 case MLD_NOT_MEMBER: 1332 case MLD_SILENT_MEMBER: 1333 case MLD_IDLE_MEMBER: 1334 case MLD_LAZY_MEMBER: 1335 case MLD_SLEEPING_MEMBER: 1336 case MLD_AWAKENING_MEMBER: 1337 break; 1338 case MLD_REPORTING_MEMBER: 1339 if (report_timer_expired) { 1340 inm->in6m_state = MLD_IDLE_MEMBER; 1341 (void)mld_v1_transmit_report(inm, 1342 MLD_LISTENER_REPORT); 1343 } 1344 break; 1345 case MLD_G_QUERY_PENDING_MEMBER: 1346 case MLD_SG_QUERY_PENDING_MEMBER: 1347 case MLD_LEAVING_MEMBER: 1348 break; 1349 } 1350 } 1351 1352 /* 1353 * Update a group's timers for MLDv2. 1354 * Will update the global pending timer flags. 1355 * Note: Unlocked read from mli. 1356 */ 1357 static void 1358 mld_v2_process_group_timers(struct mld_ifinfo *mli, 1359 struct ifqueue *qrq, struct ifqueue *scq, 1360 struct in6_multi *inm, const int uri_fasthz) 1361 { 1362 INIT_VNET_INET6(curvnet); 1363 int query_response_timer_expired; 1364 int state_change_retransmit_timer_expired; 1365 #ifdef KTR 1366 char ip6tbuf[INET6_ADDRSTRLEN]; 1367 #endif 1368 1369 IN6_MULTI_LOCK_ASSERT(); 1370 MLD_LOCK_ASSERT(); 1371 1372 query_response_timer_expired = 0; 1373 state_change_retransmit_timer_expired = 0; 1374 1375 /* 1376 * During a transition from compatibility mode back to MLDv2, 1377 * a group record in REPORTING state may still have its group 1378 * timer active. This is a no-op in this function; it is easier 1379 * to deal with it here than to complicate the slow-timeout path. 1380 */ 1381 if (inm->in6m_timer == 0) { 1382 query_response_timer_expired = 0; 1383 } else if (--inm->in6m_timer == 0) { 1384 query_response_timer_expired = 1; 1385 } else { 1386 V_current_state_timers_running6 = 1; 1387 } 1388 1389 if (inm->in6m_sctimer == 0) { 1390 state_change_retransmit_timer_expired = 0; 1391 } else if (--inm->in6m_sctimer == 0) { 1392 state_change_retransmit_timer_expired = 1; 1393 } else { 1394 V_state_change_timers_running6 = 1; 1395 } 1396 1397 /* We are in fasttimo, so be quick about it. */ 1398 if (!state_change_retransmit_timer_expired && 1399 !query_response_timer_expired) 1400 return; 1401 1402 switch (inm->in6m_state) { 1403 case MLD_NOT_MEMBER: 1404 case MLD_SILENT_MEMBER: 1405 case MLD_SLEEPING_MEMBER: 1406 case MLD_LAZY_MEMBER: 1407 case MLD_AWAKENING_MEMBER: 1408 case MLD_IDLE_MEMBER: 1409 break; 1410 case MLD_G_QUERY_PENDING_MEMBER: 1411 case MLD_SG_QUERY_PENDING_MEMBER: 1412 /* 1413 * Respond to a previously pending Group-Specific 1414 * or Group-and-Source-Specific query by enqueueing 1415 * the appropriate Current-State report for 1416 * immediate transmission. 1417 */ 1418 if (query_response_timer_expired) { 1419 int retval; 1420 1421 retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1, 1422 (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER)); 1423 CTR2(KTR_MLD, "%s: enqueue record = %d", 1424 __func__, retval); 1425 inm->in6m_state = MLD_REPORTING_MEMBER; 1426 in6m_clear_recorded(inm); 1427 } 1428 /* FALLTHROUGH */ 1429 case MLD_REPORTING_MEMBER: 1430 case MLD_LEAVING_MEMBER: 1431 if (state_change_retransmit_timer_expired) { 1432 /* 1433 * State-change retransmission timer fired. 1434 * If there are any further pending retransmissions, 1435 * set the global pending state-change flag, and 1436 * reset the timer. 1437 */ 1438 if (--inm->in6m_scrv > 0) { 1439 inm->in6m_sctimer = uri_fasthz; 1440 V_state_change_timers_running6 = 1; 1441 } 1442 /* 1443 * Retransmit the previously computed state-change 1444 * report. If there are no further pending 1445 * retransmissions, the mbuf queue will be consumed. 1446 * Update T0 state to T1 as we have now sent 1447 * a state-change. 1448 */ 1449 (void)mld_v2_merge_state_changes(inm, scq); 1450 1451 in6m_commit(inm); 1452 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 1453 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1454 inm->in6m_ifp->if_xname); 1455 1456 /* 1457 * If we are leaving the group for good, make sure 1458 * we release MLD's reference to it. 1459 * This release must be deferred using a SLIST, 1460 * as we are called from a loop which traverses 1461 * the in_ifmultiaddr TAILQ. 1462 */ 1463 if (inm->in6m_state == MLD_LEAVING_MEMBER && 1464 inm->in6m_scrv == 0) { 1465 inm->in6m_state = MLD_NOT_MEMBER; 1466 SLIST_INSERT_HEAD(&mli->mli_relinmhead, 1467 inm, in6m_nrele); 1468 } 1469 } 1470 break; 1471 } 1472 } 1473 1474 /* 1475 * Switch to a different version on the given interface, 1476 * as per Section 9.12. 1477 */ 1478 static void 1479 mld_set_version(struct mld_ifinfo *mli, const int version) 1480 { 1481 1482 MLD_LOCK_ASSERT(); 1483 1484 CTR4(KTR_MLD, "%s: switching to v%d on ifp %p(%s)", __func__, 1485 version, mli->mli_ifp, mli->mli_ifp->if_xname); 1486 1487 if (version == MLD_VERSION_1) { 1488 int old_version_timer; 1489 /* 1490 * Compute the "Older Version Querier Present" timer as per 1491 * Section 9.12. 1492 */ 1493 old_version_timer = mli->mli_rv * mli->mli_qi + mli->mli_qri; 1494 old_version_timer *= PR_SLOWHZ; 1495 1496 if (version == MLD_VERSION_1) { 1497 mli->mli_v1_timer = old_version_timer; 1498 } 1499 } 1500 1501 if (mli->mli_v1_timer > 0) { 1502 if (mli->mli_version != MLD_VERSION_1) { 1503 mli->mli_version = MLD_VERSION_1; 1504 mld_v2_cancel_link_timers(mli); 1505 } 1506 } 1507 } 1508 1509 /* 1510 * Cancel pending MLDv2 timers for the given link and all groups 1511 * joined on it; state-change, general-query, and group-query timers. 1512 */ 1513 static void 1514 mld_v2_cancel_link_timers(struct mld_ifinfo *mli) 1515 { 1516 INIT_VNET_INET6(curvnet); 1517 struct ifmultiaddr *ifma; 1518 struct ifnet *ifp; 1519 struct in6_multi *inm; 1520 1521 CTR3(KTR_MLD, "%s: cancel v2 timers on ifp %p(%s)", __func__, 1522 mli->mli_ifp, mli->mli_ifp->if_xname); 1523 1524 IN6_MULTI_LOCK_ASSERT(); 1525 MLD_LOCK_ASSERT(); 1526 1527 /* 1528 * Fast-track this potentially expensive operation 1529 * by checking all the global 'timer pending' flags. 1530 */ 1531 if (!V_interface_timers_running6 && 1532 !V_state_change_timers_running6 && 1533 !V_current_state_timers_running6) 1534 return; 1535 1536 mli->mli_v2_timer = 0; 1537 1538 ifp = mli->mli_ifp; 1539 1540 IF_ADDR_LOCK(ifp); 1541 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1542 if (ifma->ifma_addr->sa_family != AF_INET6) 1543 continue; 1544 inm = (struct in6_multi *)ifma->ifma_protospec; 1545 switch (inm->in6m_state) { 1546 case MLD_NOT_MEMBER: 1547 case MLD_SILENT_MEMBER: 1548 case MLD_IDLE_MEMBER: 1549 case MLD_LAZY_MEMBER: 1550 case MLD_SLEEPING_MEMBER: 1551 case MLD_AWAKENING_MEMBER: 1552 break; 1553 case MLD_LEAVING_MEMBER: 1554 /* 1555 * If we are leaving the group and switching 1556 * version, we need to release the final 1557 * reference held for issuing the INCLUDE {}. 1558 * 1559 * SMPNG: Must drop and re-acquire IF_ADDR_LOCK 1560 * around in6m_release_locked(), as it is not 1561 * a recursive mutex. 1562 */ 1563 IF_ADDR_UNLOCK(ifp); 1564 in6m_release_locked(inm); 1565 IF_ADDR_LOCK(ifp); 1566 /* FALLTHROUGH */ 1567 case MLD_G_QUERY_PENDING_MEMBER: 1568 case MLD_SG_QUERY_PENDING_MEMBER: 1569 in6m_clear_recorded(inm); 1570 /* FALLTHROUGH */ 1571 case MLD_REPORTING_MEMBER: 1572 inm->in6m_sctimer = 0; 1573 inm->in6m_timer = 0; 1574 inm->in6m_state = MLD_REPORTING_MEMBER; 1575 /* 1576 * Free any pending MLDv2 state-change records. 1577 */ 1578 _IF_DRAIN(&inm->in6m_scq); 1579 break; 1580 } 1581 } 1582 IF_ADDR_UNLOCK(ifp); 1583 } 1584 1585 /* 1586 * Global slowtimo handler. 1587 * VIMAGE: Timeout handlers are expected to service all vimages. 1588 */ 1589 void 1590 mld_slowtimo(void) 1591 { 1592 VNET_ITERATOR_DECL(vnet_iter); 1593 1594 VNET_LIST_RLOCK(); 1595 VNET_FOREACH(vnet_iter) { 1596 CURVNET_SET(vnet_iter); 1597 mld_slowtimo_vnet(); 1598 CURVNET_RESTORE(); 1599 } 1600 VNET_LIST_RUNLOCK(); 1601 } 1602 1603 /* 1604 * Per-vnet slowtimo handler. 1605 */ 1606 static void 1607 mld_slowtimo_vnet(void) 1608 { 1609 INIT_VNET_INET6(curvnet); 1610 struct mld_ifinfo *mli; 1611 1612 MLD_LOCK(); 1613 1614 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1615 mld_v1_process_querier_timers(mli); 1616 } 1617 1618 MLD_UNLOCK(); 1619 } 1620 1621 /* 1622 * Update the Older Version Querier Present timers for a link. 1623 * See Section 9.12 of RFC 3810. 1624 */ 1625 static void 1626 mld_v1_process_querier_timers(struct mld_ifinfo *mli) 1627 { 1628 1629 MLD_LOCK_ASSERT(); 1630 1631 if (mli->mli_v1_timer == 0) { 1632 /* 1633 * MLDv1 Querier Present timers expired; revert to MLDv2. 1634 */ 1635 if (mli->mli_version != MLD_VERSION_2) { 1636 CTR5(KTR_MLD, 1637 "%s: transition from v%d -> v%d on %p(%s)", 1638 __func__, mli->mli_version, MLD_VERSION_2, 1639 mli->mli_ifp, mli->mli_ifp->if_xname); 1640 mli->mli_version = MLD_VERSION_2; 1641 } 1642 } 1643 } 1644 1645 /* 1646 * Transmit an MLDv1 report immediately. 1647 */ 1648 static int 1649 mld_v1_transmit_report(struct in6_multi *in6m, const int type) 1650 { 1651 struct ifnet *ifp; 1652 struct in6_ifaddr *ia; 1653 struct ip6_hdr *ip6; 1654 struct mbuf *mh, *md; 1655 struct mld_hdr *mld; 1656 1657 IN6_MULTI_LOCK_ASSERT(); 1658 MLD_LOCK_ASSERT(); 1659 1660 ifp = in6m->in6m_ifp; 1661 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1662 /* ia may be NULL if link-local address is tentative. */ 1663 1664 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 1665 if (mh == NULL) 1666 return (ENOMEM); 1667 MGET(md, M_DONTWAIT, MT_DATA); 1668 if (md == NULL) { 1669 m_free(mh); 1670 return (ENOMEM); 1671 } 1672 mh->m_next = md; 1673 1674 /* 1675 * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so 1676 * that ether_output() does not need to allocate another mbuf 1677 * for the header in the most common case. 1678 */ 1679 MH_ALIGN(mh, sizeof(struct ip6_hdr)); 1680 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr); 1681 mh->m_len = sizeof(struct ip6_hdr); 1682 1683 ip6 = mtod(mh, struct ip6_hdr *); 1684 ip6->ip6_flow = 0; 1685 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 1686 ip6->ip6_vfc |= IPV6_VERSION; 1687 ip6->ip6_nxt = IPPROTO_ICMPV6; 1688 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 1689 ip6->ip6_dst = in6m->in6m_addr; 1690 1691 md->m_len = sizeof(struct mld_hdr); 1692 mld = mtod(md, struct mld_hdr *); 1693 mld->mld_type = type; 1694 mld->mld_code = 0; 1695 mld->mld_cksum = 0; 1696 mld->mld_maxdelay = 0; 1697 mld->mld_reserved = 0; 1698 mld->mld_addr = in6m->in6m_addr; 1699 in6_clearscope(&mld->mld_addr); 1700 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 1701 sizeof(struct ip6_hdr), sizeof(struct mld_hdr)); 1702 1703 mld_save_context(mh, ifp); 1704 mh->m_flags |= M_MLDV1; 1705 1706 mld_dispatch_packet(mh); 1707 1708 return (0); 1709 } 1710 1711 /* 1712 * Process a state change from the upper layer for the given IPv6 group. 1713 * 1714 * Each socket holds a reference on the in_multi in its own ip_moptions. 1715 * The socket layer will have made the necessary updates to.the group 1716 * state, it is now up to MLD to issue a state change report if there 1717 * has been any change between T0 (when the last state-change was issued) 1718 * and T1 (now). 1719 * 1720 * We use the MLDv2 state machine at group level. The MLd module 1721 * however makes the decision as to which MLD protocol version to speak. 1722 * A state change *from* INCLUDE {} always means an initial join. 1723 * A state change *to* INCLUDE {} always means a final leave. 1724 * 1725 * If delay is non-zero, and the state change is an initial multicast 1726 * join, the state change report will be delayed by 'delay' ticks 1727 * in units of PR_FASTHZ if MLDv1 is active on the link; otherwise 1728 * the initial MLDv2 state change report will be delayed by whichever 1729 * is sooner, a pending state-change timer or delay itself. 1730 * 1731 * VIMAGE: curvnet should have been set by caller, as this routine 1732 * is called from the socket option handlers. 1733 */ 1734 int 1735 mld_change_state(struct in6_multi *inm, const int delay) 1736 { 1737 struct mld_ifinfo *mli; 1738 struct ifnet *ifp; 1739 int error; 1740 1741 IN6_MULTI_LOCK_ASSERT(); 1742 1743 error = 0; 1744 1745 /* 1746 * Try to detect if the upper layer just asked us to change state 1747 * for an interface which has now gone away. 1748 */ 1749 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); 1750 ifp = inm->in6m_ifma->ifma_ifp; 1751 if (ifp != NULL) { 1752 /* 1753 * Sanity check that netinet6's notion of ifp is the 1754 * same as net's. 1755 */ 1756 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); 1757 } 1758 1759 MLD_LOCK(); 1760 1761 mli = MLD_IFINFO(ifp); 1762 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 1763 1764 /* 1765 * If we detect a state transition to or from MCAST_UNDEFINED 1766 * for this group, then we are starting or finishing an MLD 1767 * life cycle for this group. 1768 */ 1769 if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) { 1770 CTR3(KTR_MLD, "%s: inm transition %d -> %d", __func__, 1771 inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode); 1772 if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) { 1773 CTR1(KTR_MLD, "%s: initial join", __func__); 1774 error = mld_initial_join(inm, mli, delay); 1775 goto out_locked; 1776 } else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) { 1777 CTR1(KTR_MLD, "%s: final leave", __func__); 1778 mld_final_leave(inm, mli); 1779 goto out_locked; 1780 } 1781 } else { 1782 CTR1(KTR_MLD, "%s: filter set change", __func__); 1783 } 1784 1785 error = mld_handle_state_change(inm, mli); 1786 1787 out_locked: 1788 MLD_UNLOCK(); 1789 return (error); 1790 } 1791 1792 /* 1793 * Perform the initial join for an MLD group. 1794 * 1795 * When joining a group: 1796 * If the group should have its MLD traffic suppressed, do nothing. 1797 * MLDv1 starts sending MLDv1 host membership reports. 1798 * MLDv2 will schedule an MLDv2 state-change report containing the 1799 * initial state of the membership. 1800 * 1801 * If the delay argument is non-zero, then we must delay sending the 1802 * initial state change for delay ticks (in units of PR_FASTHZ). 1803 */ 1804 static int 1805 mld_initial_join(struct in6_multi *inm, struct mld_ifinfo *mli, 1806 const int delay) 1807 { 1808 INIT_VNET_INET6(curvnet); 1809 struct ifnet *ifp; 1810 struct ifqueue *ifq; 1811 int error, retval, syncstates; 1812 int odelay; 1813 #ifdef KTR 1814 char ip6tbuf[INET6_ADDRSTRLEN]; 1815 #endif 1816 1817 CTR4(KTR_MLD, "%s: initial join %s on ifp %p(%s)", 1818 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1819 inm->in6m_ifp, inm->in6m_ifp->if_xname); 1820 1821 error = 0; 1822 syncstates = 1; 1823 1824 ifp = inm->in6m_ifp; 1825 1826 IN6_MULTI_LOCK_ASSERT(); 1827 MLD_LOCK_ASSERT(); 1828 1829 KASSERT(mli && mli->mli_ifp == ifp, ("%s: inconsistent ifp", __func__)); 1830 1831 /* 1832 * Groups joined on loopback or marked as 'not reported', 1833 * enter the MLD_SILENT_MEMBER state and 1834 * are never reported in any protocol exchanges. 1835 * All other groups enter the appropriate state machine 1836 * for the version in use on this link. 1837 * A link marked as MLIF_SILENT causes MLD to be completely 1838 * disabled for the link. 1839 */ 1840 if ((ifp->if_flags & IFF_LOOPBACK) || 1841 (mli->mli_flags & MLIF_SILENT) || 1842 !mld_is_addr_reported(&inm->in6m_addr)) { 1843 CTR1(KTR_MLD, 1844 "%s: not kicking state machine for silent group", __func__); 1845 inm->in6m_state = MLD_SILENT_MEMBER; 1846 inm->in6m_timer = 0; 1847 } else { 1848 /* 1849 * Deal with overlapping in_multi lifecycle. 1850 * If this group was LEAVING, then make sure 1851 * we drop the reference we picked up to keep the 1852 * group around for the final INCLUDE {} enqueue. 1853 */ 1854 if (mli->mli_version == MLD_VERSION_2 && 1855 inm->in6m_state == MLD_LEAVING_MEMBER) 1856 in6m_release_locked(inm); 1857 1858 inm->in6m_state = MLD_REPORTING_MEMBER; 1859 1860 switch (mli->mli_version) { 1861 case MLD_VERSION_1: 1862 /* 1863 * If a delay was provided, only use it if 1864 * it is greater than the delay normally 1865 * used for an MLDv1 state change report, 1866 * and delay sending the initial MLDv1 report 1867 * by not transitioning to the IDLE state. 1868 */ 1869 odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI * PR_FASTHZ); 1870 if (delay) { 1871 inm->in6m_timer = max(delay, odelay); 1872 V_current_state_timers_running6 = 1; 1873 } else { 1874 inm->in6m_state = MLD_IDLE_MEMBER; 1875 error = mld_v1_transmit_report(inm, 1876 MLD_LISTENER_REPORT); 1877 if (error == 0) { 1878 inm->in6m_timer = odelay; 1879 V_current_state_timers_running6 = 1; 1880 } 1881 } 1882 break; 1883 1884 case MLD_VERSION_2: 1885 /* 1886 * Defer update of T0 to T1, until the first copy 1887 * of the state change has been transmitted. 1888 */ 1889 syncstates = 0; 1890 1891 /* 1892 * Immediately enqueue a State-Change Report for 1893 * this interface, freeing any previous reports. 1894 * Don't kick the timers if there is nothing to do, 1895 * or if an error occurred. 1896 */ 1897 ifq = &inm->in6m_scq; 1898 _IF_DRAIN(ifq); 1899 retval = mld_v2_enqueue_group_record(ifq, inm, 1, 1900 0, 0); 1901 CTR2(KTR_MLD, "%s: enqueue record = %d", 1902 __func__, retval); 1903 if (retval <= 0) { 1904 error = retval * -1; 1905 break; 1906 } 1907 1908 /* 1909 * Schedule transmission of pending state-change 1910 * report up to RV times for this link. The timer 1911 * will fire at the next mld_fasttimo (~200ms), 1912 * giving us an opportunity to merge the reports. 1913 * 1914 * If a delay was provided to this function, only 1915 * use this delay if sooner than the existing one. 1916 */ 1917 KASSERT(mli->mli_rv > 1, 1918 ("%s: invalid robustness %d", __func__, 1919 mli->mli_rv)); 1920 inm->in6m_scrv = mli->mli_rv; 1921 if (delay) { 1922 if (inm->in6m_sctimer > 1) { 1923 inm->in6m_sctimer = 1924 min(inm->in6m_sctimer, delay); 1925 } else 1926 inm->in6m_sctimer = delay; 1927 } else 1928 inm->in6m_sctimer = 1; 1929 V_state_change_timers_running6 = 1; 1930 1931 error = 0; 1932 break; 1933 } 1934 } 1935 1936 /* 1937 * Only update the T0 state if state change is atomic, 1938 * i.e. we don't need to wait for a timer to fire before we 1939 * can consider the state change to have been communicated. 1940 */ 1941 if (syncstates) { 1942 in6m_commit(inm); 1943 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 1944 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1945 inm->in6m_ifp->if_xname); 1946 } 1947 1948 return (error); 1949 } 1950 1951 /* 1952 * Issue an intermediate state change during the life-cycle. 1953 */ 1954 static int 1955 mld_handle_state_change(struct in6_multi *inm, struct mld_ifinfo *mli) 1956 { 1957 INIT_VNET_INET6(curvnet); 1958 struct ifnet *ifp; 1959 int retval; 1960 #ifdef KTR 1961 char ip6tbuf[INET6_ADDRSTRLEN]; 1962 #endif 1963 1964 CTR4(KTR_MLD, "%s: state change for %s on ifp %p(%s)", 1965 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1966 inm->in6m_ifp, inm->in6m_ifp->if_xname); 1967 1968 ifp = inm->in6m_ifp; 1969 1970 IN6_MULTI_LOCK_ASSERT(); 1971 MLD_LOCK_ASSERT(); 1972 1973 KASSERT(mli && mli->mli_ifp == ifp, 1974 ("%s: inconsistent ifp", __func__)); 1975 1976 if ((ifp->if_flags & IFF_LOOPBACK) || 1977 (mli->mli_flags & MLIF_SILENT) || 1978 !mld_is_addr_reported(&inm->in6m_addr) || 1979 (mli->mli_version != MLD_VERSION_2)) { 1980 if (!mld_is_addr_reported(&inm->in6m_addr)) { 1981 CTR1(KTR_MLD, 1982 "%s: not kicking state machine for silent group", __func__); 1983 } 1984 CTR1(KTR_MLD, "%s: nothing to do", __func__); 1985 in6m_commit(inm); 1986 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 1987 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1988 inm->in6m_ifp->if_xname); 1989 return (0); 1990 } 1991 1992 _IF_DRAIN(&inm->in6m_scq); 1993 1994 retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0); 1995 CTR2(KTR_MLD, "%s: enqueue record = %d", __func__, retval); 1996 if (retval <= 0) 1997 return (-retval); 1998 1999 /* 2000 * If record(s) were enqueued, start the state-change 2001 * report timer for this group. 2002 */ 2003 inm->in6m_scrv = mli->mli_rv; 2004 inm->in6m_sctimer = 1; 2005 V_state_change_timers_running6 = 1; 2006 2007 return (0); 2008 } 2009 2010 /* 2011 * Perform the final leave for a multicast address. 2012 * 2013 * When leaving a group: 2014 * MLDv1 sends a DONE message, if and only if we are the reporter. 2015 * MLDv2 enqueues a state-change report containing a transition 2016 * to INCLUDE {} for immediate transmission. 2017 */ 2018 static void 2019 mld_final_leave(struct in6_multi *inm, struct mld_ifinfo *mli) 2020 { 2021 INIT_VNET_INET6(curvnet); 2022 int syncstates; 2023 #ifdef KTR 2024 char ip6tbuf[INET6_ADDRSTRLEN]; 2025 #endif 2026 2027 syncstates = 1; 2028 2029 CTR4(KTR_MLD, "%s: final leave %s on ifp %p(%s)", 2030 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2031 inm->in6m_ifp, inm->in6m_ifp->if_xname); 2032 2033 IN6_MULTI_LOCK_ASSERT(); 2034 MLD_LOCK_ASSERT(); 2035 2036 switch (inm->in6m_state) { 2037 case MLD_NOT_MEMBER: 2038 case MLD_SILENT_MEMBER: 2039 case MLD_LEAVING_MEMBER: 2040 /* Already leaving or left; do nothing. */ 2041 CTR1(KTR_MLD, 2042 "%s: not kicking state machine for silent group", __func__); 2043 break; 2044 case MLD_REPORTING_MEMBER: 2045 case MLD_IDLE_MEMBER: 2046 case MLD_G_QUERY_PENDING_MEMBER: 2047 case MLD_SG_QUERY_PENDING_MEMBER: 2048 if (mli->mli_version == MLD_VERSION_1) { 2049 #ifdef INVARIANTS 2050 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 2051 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) 2052 panic("%s: MLDv2 state reached, not MLDv2 mode", 2053 __func__); 2054 #endif 2055 mld_v1_transmit_report(inm, MLD_LISTENER_DONE); 2056 inm->in6m_state = MLD_NOT_MEMBER; 2057 } else if (mli->mli_version == MLD_VERSION_2) { 2058 /* 2059 * Stop group timer and all pending reports. 2060 * Immediately enqueue a state-change report 2061 * TO_IN {} to be sent on the next fast timeout, 2062 * giving us an opportunity to merge reports. 2063 */ 2064 _IF_DRAIN(&inm->in6m_scq); 2065 inm->in6m_timer = 0; 2066 inm->in6m_scrv = mli->mli_rv; 2067 CTR4(KTR_MLD, "%s: Leaving %s/%s with %d " 2068 "pending retransmissions.", __func__, 2069 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2070 inm->in6m_ifp->if_xname, inm->in6m_scrv); 2071 if (inm->in6m_scrv == 0) { 2072 inm->in6m_state = MLD_NOT_MEMBER; 2073 inm->in6m_sctimer = 0; 2074 } else { 2075 int retval; 2076 2077 in6m_acquire_locked(inm); 2078 2079 retval = mld_v2_enqueue_group_record( 2080 &inm->in6m_scq, inm, 1, 0, 0); 2081 KASSERT(retval != 0, 2082 ("%s: enqueue record = %d", __func__, 2083 retval)); 2084 2085 inm->in6m_state = MLD_LEAVING_MEMBER; 2086 inm->in6m_sctimer = 1; 2087 V_state_change_timers_running6 = 1; 2088 syncstates = 0; 2089 } 2090 break; 2091 } 2092 break; 2093 case MLD_LAZY_MEMBER: 2094 case MLD_SLEEPING_MEMBER: 2095 case MLD_AWAKENING_MEMBER: 2096 /* Our reports are suppressed; do nothing. */ 2097 break; 2098 } 2099 2100 if (syncstates) { 2101 in6m_commit(inm); 2102 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2103 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2104 inm->in6m_ifp->if_xname); 2105 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 2106 CTR3(KTR_MLD, "%s: T1 now MCAST_UNDEFINED for %p/%s", 2107 __func__, &inm->in6m_addr, inm->in6m_ifp->if_xname); 2108 } 2109 } 2110 2111 /* 2112 * Enqueue an MLDv2 group record to the given output queue. 2113 * 2114 * If is_state_change is zero, a current-state record is appended. 2115 * If is_state_change is non-zero, a state-change report is appended. 2116 * 2117 * If is_group_query is non-zero, an mbuf packet chain is allocated. 2118 * If is_group_query is zero, and if there is a packet with free space 2119 * at the tail of the queue, it will be appended to providing there 2120 * is enough free space. 2121 * Otherwise a new mbuf packet chain is allocated. 2122 * 2123 * If is_source_query is non-zero, each source is checked to see if 2124 * it was recorded for a Group-Source query, and will be omitted if 2125 * it is not both in-mode and recorded. 2126 * 2127 * The function will attempt to allocate leading space in the packet 2128 * for the IPv6+ICMP headers to be prepended without fragmenting the chain. 2129 * 2130 * If successful the size of all data appended to the queue is returned, 2131 * otherwise an error code less than zero is returned, or zero if 2132 * no record(s) were appended. 2133 */ 2134 static int 2135 mld_v2_enqueue_group_record(struct ifqueue *ifq, struct in6_multi *inm, 2136 const int is_state_change, const int is_group_query, 2137 const int is_source_query) 2138 { 2139 struct mldv2_record mr; 2140 struct mldv2_record *pmr; 2141 struct ifnet *ifp; 2142 struct ip6_msource *ims, *nims; 2143 struct mbuf *m0, *m, *md; 2144 int error, is_filter_list_change; 2145 int minrec0len, m0srcs, msrcs, nbytes, off; 2146 int record_has_sources; 2147 int now; 2148 int type; 2149 uint8_t mode; 2150 #ifdef KTR 2151 char ip6tbuf[INET6_ADDRSTRLEN]; 2152 #endif 2153 2154 IN6_MULTI_LOCK_ASSERT(); 2155 2156 error = 0; 2157 ifp = inm->in6m_ifp; 2158 is_filter_list_change = 0; 2159 m = NULL; 2160 m0 = NULL; 2161 m0srcs = 0; 2162 msrcs = 0; 2163 nbytes = 0; 2164 nims = NULL; 2165 record_has_sources = 1; 2166 pmr = NULL; 2167 type = MLD_DO_NOTHING; 2168 mode = inm->in6m_st[1].iss_fmode; 2169 2170 /* 2171 * If we did not transition out of ASM mode during t0->t1, 2172 * and there are no source nodes to process, we can skip 2173 * the generation of source records. 2174 */ 2175 if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 && 2176 inm->in6m_nsrc == 0) 2177 record_has_sources = 0; 2178 2179 if (is_state_change) { 2180 /* 2181 * Queue a state change record. 2182 * If the mode did not change, and there are non-ASM 2183 * listeners or source filters present, 2184 * we potentially need to issue two records for the group. 2185 * If we are transitioning to MCAST_UNDEFINED, we need 2186 * not send any sources. 2187 * If there are ASM listeners, and there was no filter 2188 * mode transition of any kind, do nothing. 2189 */ 2190 if (mode != inm->in6m_st[0].iss_fmode) { 2191 if (mode == MCAST_EXCLUDE) { 2192 CTR1(KTR_MLD, "%s: change to EXCLUDE", 2193 __func__); 2194 type = MLD_CHANGE_TO_EXCLUDE_MODE; 2195 } else { 2196 CTR1(KTR_MLD, "%s: change to INCLUDE", 2197 __func__); 2198 type = MLD_CHANGE_TO_INCLUDE_MODE; 2199 if (mode == MCAST_UNDEFINED) 2200 record_has_sources = 0; 2201 } 2202 } else { 2203 if (record_has_sources) { 2204 is_filter_list_change = 1; 2205 } else { 2206 type = MLD_DO_NOTHING; 2207 } 2208 } 2209 } else { 2210 /* 2211 * Queue a current state record. 2212 */ 2213 if (mode == MCAST_EXCLUDE) { 2214 type = MLD_MODE_IS_EXCLUDE; 2215 } else if (mode == MCAST_INCLUDE) { 2216 type = MLD_MODE_IS_INCLUDE; 2217 KASSERT(inm->in6m_st[1].iss_asm == 0, 2218 ("%s: inm %p is INCLUDE but ASM count is %d", 2219 __func__, inm, inm->in6m_st[1].iss_asm)); 2220 } 2221 } 2222 2223 /* 2224 * Generate the filter list changes using a separate function. 2225 */ 2226 if (is_filter_list_change) 2227 return (mld_v2_enqueue_filter_change(ifq, inm)); 2228 2229 if (type == MLD_DO_NOTHING) { 2230 CTR3(KTR_MLD, "%s: nothing to do for %s/%s", 2231 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2232 inm->in6m_ifp->if_xname); 2233 return (0); 2234 } 2235 2236 /* 2237 * If any sources are present, we must be able to fit at least 2238 * one in the trailing space of the tail packet's mbuf, 2239 * ideally more. 2240 */ 2241 minrec0len = sizeof(struct mldv2_record); 2242 if (record_has_sources) 2243 minrec0len += sizeof(struct in6_addr); 2244 2245 CTR4(KTR_MLD, "%s: queueing %s for %s/%s", __func__, 2246 mld_rec_type_to_str(type), 2247 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2248 inm->in6m_ifp->if_xname); 2249 2250 /* 2251 * Check if we have a packet in the tail of the queue for this 2252 * group into which the first group record for this group will fit. 2253 * Otherwise allocate a new packet. 2254 * Always allocate leading space for IP6+RA+ICMPV6+REPORT. 2255 * Note: Group records for G/GSR query responses MUST be sent 2256 * in their own packet. 2257 */ 2258 m0 = ifq->ifq_tail; 2259 if (!is_group_query && 2260 m0 != NULL && 2261 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) && 2262 (m0->m_pkthdr.len + minrec0len) < 2263 (ifp->if_mtu - MLD_MTUSPACE)) { 2264 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2265 sizeof(struct mldv2_record)) / 2266 sizeof(struct in6_addr); 2267 m = m0; 2268 CTR1(KTR_MLD, "%s: use existing packet", __func__); 2269 } else { 2270 if (_IF_QFULL(ifq)) { 2271 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2272 return (-ENOMEM); 2273 } 2274 m = NULL; 2275 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2276 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2277 if (!is_state_change && !is_group_query) 2278 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2279 if (m == NULL) 2280 m = m_gethdr(M_DONTWAIT, MT_DATA); 2281 if (m == NULL) 2282 return (-ENOMEM); 2283 2284 mld_save_context(m, ifp); 2285 2286 CTR1(KTR_MLD, "%s: allocated first packet", __func__); 2287 } 2288 2289 /* 2290 * Append group record. 2291 * If we have sources, we don't know how many yet. 2292 */ 2293 mr.mr_type = type; 2294 mr.mr_datalen = 0; 2295 mr.mr_numsrc = 0; 2296 mr.mr_addr = inm->in6m_addr; 2297 in6_clearscope(&mr.mr_addr); 2298 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2299 if (m != m0) 2300 m_freem(m); 2301 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2302 return (-ENOMEM); 2303 } 2304 nbytes += sizeof(struct mldv2_record); 2305 2306 /* 2307 * Append as many sources as will fit in the first packet. 2308 * If we are appending to a new packet, the chain allocation 2309 * may potentially use clusters; use m_getptr() in this case. 2310 * If we are appending to an existing packet, we need to obtain 2311 * a pointer to the group record after m_append(), in case a new 2312 * mbuf was allocated. 2313 * Only append sources which are in-mode at t1. If we are 2314 * transitioning to MCAST_UNDEFINED state on the group, do not 2315 * include source entries. 2316 * Only report recorded sources in our filter set when responding 2317 * to a group-source query. 2318 */ 2319 if (record_has_sources) { 2320 if (m == m0) { 2321 md = m_last(m); 2322 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2323 md->m_len - nbytes); 2324 } else { 2325 md = m_getptr(m, 0, &off); 2326 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2327 off); 2328 } 2329 msrcs = 0; 2330 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, 2331 nims) { 2332 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2333 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2334 now = im6s_get_mode(inm, ims, 1); 2335 CTR2(KTR_MLD, "%s: node is %d", __func__, now); 2336 if ((now != mode) || 2337 (now == mode && mode == MCAST_UNDEFINED)) { 2338 CTR1(KTR_MLD, "%s: skip node", __func__); 2339 continue; 2340 } 2341 if (is_source_query && ims->im6s_stp == 0) { 2342 CTR1(KTR_MLD, "%s: skip unrecorded node", 2343 __func__); 2344 continue; 2345 } 2346 CTR1(KTR_MLD, "%s: append node", __func__); 2347 if (!m_append(m, sizeof(struct in6_addr), 2348 (void *)&ims->im6s_addr)) { 2349 if (m != m0) 2350 m_freem(m); 2351 CTR1(KTR_MLD, "%s: m_append() failed.", 2352 __func__); 2353 return (-ENOMEM); 2354 } 2355 nbytes += sizeof(struct in6_addr); 2356 ++msrcs; 2357 if (msrcs == m0srcs) 2358 break; 2359 } 2360 CTR2(KTR_MLD, "%s: msrcs is %d this packet", __func__, 2361 msrcs); 2362 pmr->mr_numsrc = htons(msrcs); 2363 nbytes += (msrcs * sizeof(struct in6_addr)); 2364 } 2365 2366 if (is_source_query && msrcs == 0) { 2367 CTR1(KTR_MLD, "%s: no recorded sources to report", __func__); 2368 if (m != m0) 2369 m_freem(m); 2370 return (0); 2371 } 2372 2373 /* 2374 * We are good to go with first packet. 2375 */ 2376 if (m != m0) { 2377 CTR1(KTR_MLD, "%s: enqueueing first packet", __func__); 2378 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2379 _IF_ENQUEUE(ifq, m); 2380 } else 2381 m->m_pkthdr.PH_vt.vt_nrecs++; 2382 2383 /* 2384 * No further work needed if no source list in packet(s). 2385 */ 2386 if (!record_has_sources) 2387 return (nbytes); 2388 2389 /* 2390 * Whilst sources remain to be announced, we need to allocate 2391 * a new packet and fill out as many sources as will fit. 2392 * Always try for a cluster first. 2393 */ 2394 while (nims != NULL) { 2395 if (_IF_QFULL(ifq)) { 2396 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2397 return (-ENOMEM); 2398 } 2399 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2400 if (m == NULL) 2401 m = m_gethdr(M_DONTWAIT, MT_DATA); 2402 if (m == NULL) 2403 return (-ENOMEM); 2404 mld_save_context(m, ifp); 2405 md = m_getptr(m, 0, &off); 2406 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off); 2407 CTR1(KTR_MLD, "%s: allocated next packet", __func__); 2408 2409 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2410 if (m != m0) 2411 m_freem(m); 2412 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2413 return (-ENOMEM); 2414 } 2415 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2416 nbytes += sizeof(struct mldv2_record); 2417 2418 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2419 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2420 2421 msrcs = 0; 2422 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2423 CTR2(KTR_MLD, "%s: visit node %s", 2424 __func__, ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2425 now = im6s_get_mode(inm, ims, 1); 2426 if ((now != mode) || 2427 (now == mode && mode == MCAST_UNDEFINED)) { 2428 CTR1(KTR_MLD, "%s: skip node", __func__); 2429 continue; 2430 } 2431 if (is_source_query && ims->im6s_stp == 0) { 2432 CTR1(KTR_MLD, "%s: skip unrecorded node", 2433 __func__); 2434 continue; 2435 } 2436 CTR1(KTR_MLD, "%s: append node", __func__); 2437 if (!m_append(m, sizeof(struct in6_addr), 2438 (void *)&ims->im6s_addr)) { 2439 if (m != m0) 2440 m_freem(m); 2441 CTR1(KTR_MLD, "%s: m_append() failed.", 2442 __func__); 2443 return (-ENOMEM); 2444 } 2445 ++msrcs; 2446 if (msrcs == m0srcs) 2447 break; 2448 } 2449 pmr->mr_numsrc = htons(msrcs); 2450 nbytes += (msrcs * sizeof(struct in6_addr)); 2451 2452 CTR1(KTR_MLD, "%s: enqueueing next packet", __func__); 2453 _IF_ENQUEUE(ifq, m); 2454 } 2455 2456 return (nbytes); 2457 } 2458 2459 /* 2460 * Type used to mark record pass completion. 2461 * We exploit the fact we can cast to this easily from the 2462 * current filter modes on each ip_msource node. 2463 */ 2464 typedef enum { 2465 REC_NONE = 0x00, /* MCAST_UNDEFINED */ 2466 REC_ALLOW = 0x01, /* MCAST_INCLUDE */ 2467 REC_BLOCK = 0x02, /* MCAST_EXCLUDE */ 2468 REC_FULL = REC_ALLOW | REC_BLOCK 2469 } rectype_t; 2470 2471 /* 2472 * Enqueue an MLDv2 filter list change to the given output queue. 2473 * 2474 * Source list filter state is held in an RB-tree. When the filter list 2475 * for a group is changed without changing its mode, we need to compute 2476 * the deltas between T0 and T1 for each source in the filter set, 2477 * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records. 2478 * 2479 * As we may potentially queue two record types, and the entire R-B tree 2480 * needs to be walked at once, we break this out into its own function 2481 * so we can generate a tightly packed queue of packets. 2482 * 2483 * XXX This could be written to only use one tree walk, although that makes 2484 * serializing into the mbuf chains a bit harder. For now we do two walks 2485 * which makes things easier on us, and it may or may not be harder on 2486 * the L2 cache. 2487 * 2488 * If successful the size of all data appended to the queue is returned, 2489 * otherwise an error code less than zero is returned, or zero if 2490 * no record(s) were appended. 2491 */ 2492 static int 2493 mld_v2_enqueue_filter_change(struct ifqueue *ifq, struct in6_multi *inm) 2494 { 2495 static const int MINRECLEN = 2496 sizeof(struct mldv2_record) + sizeof(struct in6_addr); 2497 struct ifnet *ifp; 2498 struct mldv2_record mr; 2499 struct mldv2_record *pmr; 2500 struct ip6_msource *ims, *nims; 2501 struct mbuf *m, *m0, *md; 2502 int m0srcs, nbytes, npbytes, off, rsrcs, schanged; 2503 int nallow, nblock; 2504 uint8_t mode, now, then; 2505 rectype_t crt, drt, nrt; 2506 #ifdef KTR 2507 char ip6tbuf[INET6_ADDRSTRLEN]; 2508 #endif 2509 2510 IN6_MULTI_LOCK_ASSERT(); 2511 2512 if (inm->in6m_nsrc == 0 || 2513 (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0)) 2514 return (0); 2515 2516 ifp = inm->in6m_ifp; /* interface */ 2517 mode = inm->in6m_st[1].iss_fmode; /* filter mode at t1 */ 2518 crt = REC_NONE; /* current group record type */ 2519 drt = REC_NONE; /* mask of completed group record types */ 2520 nrt = REC_NONE; /* record type for current node */ 2521 m0srcs = 0; /* # source which will fit in current mbuf chain */ 2522 npbytes = 0; /* # of bytes appended this packet */ 2523 nbytes = 0; /* # of bytes appended to group's state-change queue */ 2524 rsrcs = 0; /* # sources encoded in current record */ 2525 schanged = 0; /* # nodes encoded in overall filter change */ 2526 nallow = 0; /* # of source entries in ALLOW_NEW */ 2527 nblock = 0; /* # of source entries in BLOCK_OLD */ 2528 nims = NULL; /* next tree node pointer */ 2529 2530 /* 2531 * For each possible filter record mode. 2532 * The first kind of source we encounter tells us which 2533 * is the first kind of record we start appending. 2534 * If a node transitioned to UNDEFINED at t1, its mode is treated 2535 * as the inverse of the group's filter mode. 2536 */ 2537 while (drt != REC_FULL) { 2538 do { 2539 m0 = ifq->ifq_tail; 2540 if (m0 != NULL && 2541 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= 2542 MLD_V2_REPORT_MAXRECS) && 2543 (m0->m_pkthdr.len + MINRECLEN) < 2544 (ifp->if_mtu - MLD_MTUSPACE)) { 2545 m = m0; 2546 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2547 sizeof(struct mldv2_record)) / 2548 sizeof(struct in6_addr); 2549 CTR1(KTR_MLD, 2550 "%s: use previous packet", __func__); 2551 } else { 2552 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2553 if (m == NULL) 2554 m = m_gethdr(M_DONTWAIT, MT_DATA); 2555 if (m == NULL) { 2556 CTR1(KTR_MLD, 2557 "%s: m_get*() failed", __func__); 2558 return (-ENOMEM); 2559 } 2560 m->m_pkthdr.PH_vt.vt_nrecs = 0; 2561 mld_save_context(m, ifp); 2562 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2563 sizeof(struct mldv2_record)) / 2564 sizeof(struct in6_addr); 2565 npbytes = 0; 2566 CTR1(KTR_MLD, 2567 "%s: allocated new packet", __func__); 2568 } 2569 /* 2570 * Append the MLD group record header to the 2571 * current packet's data area. 2572 * Recalculate pointer to free space for next 2573 * group record, in case m_append() allocated 2574 * a new mbuf or cluster. 2575 */ 2576 memset(&mr, 0, sizeof(mr)); 2577 mr.mr_addr = inm->in6m_addr; 2578 in6_clearscope(&mr.mr_addr); 2579 if (!m_append(m, sizeof(mr), (void *)&mr)) { 2580 if (m != m0) 2581 m_freem(m); 2582 CTR1(KTR_MLD, 2583 "%s: m_append() failed", __func__); 2584 return (-ENOMEM); 2585 } 2586 npbytes += sizeof(struct mldv2_record); 2587 if (m != m0) { 2588 /* new packet; offset in chain */ 2589 md = m_getptr(m, npbytes - 2590 sizeof(struct mldv2_record), &off); 2591 pmr = (struct mldv2_record *)(mtod(md, 2592 uint8_t *) + off); 2593 } else { 2594 /* current packet; offset from last append */ 2595 md = m_last(m); 2596 pmr = (struct mldv2_record *)(mtod(md, 2597 uint8_t *) + md->m_len - 2598 sizeof(struct mldv2_record)); 2599 } 2600 /* 2601 * Begin walking the tree for this record type 2602 * pass, or continue from where we left off 2603 * previously if we had to allocate a new packet. 2604 * Only report deltas in-mode at t1. 2605 * We need not report included sources as allowed 2606 * if we are in inclusive mode on the group, 2607 * however the converse is not true. 2608 */ 2609 rsrcs = 0; 2610 if (nims == NULL) { 2611 nims = RB_MIN(ip6_msource_tree, 2612 &inm->in6m_srcs); 2613 } 2614 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2615 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2616 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2617 now = im6s_get_mode(inm, ims, 1); 2618 then = im6s_get_mode(inm, ims, 0); 2619 CTR3(KTR_MLD, "%s: mode: t0 %d, t1 %d", 2620 __func__, then, now); 2621 if (now == then) { 2622 CTR1(KTR_MLD, 2623 "%s: skip unchanged", __func__); 2624 continue; 2625 } 2626 if (mode == MCAST_EXCLUDE && 2627 now == MCAST_INCLUDE) { 2628 CTR1(KTR_MLD, 2629 "%s: skip IN src on EX group", 2630 __func__); 2631 continue; 2632 } 2633 nrt = (rectype_t)now; 2634 if (nrt == REC_NONE) 2635 nrt = (rectype_t)(~mode & REC_FULL); 2636 if (schanged++ == 0) { 2637 crt = nrt; 2638 } else if (crt != nrt) 2639 continue; 2640 if (!m_append(m, sizeof(struct in6_addr), 2641 (void *)&ims->im6s_addr)) { 2642 if (m != m0) 2643 m_freem(m); 2644 CTR1(KTR_MLD, 2645 "%s: m_append() failed", __func__); 2646 return (-ENOMEM); 2647 } 2648 nallow += !!(crt == REC_ALLOW); 2649 nblock += !!(crt == REC_BLOCK); 2650 if (++rsrcs == m0srcs) 2651 break; 2652 } 2653 /* 2654 * If we did not append any tree nodes on this 2655 * pass, back out of allocations. 2656 */ 2657 if (rsrcs == 0) { 2658 npbytes -= sizeof(struct mldv2_record); 2659 if (m != m0) { 2660 CTR1(KTR_MLD, 2661 "%s: m_free(m)", __func__); 2662 m_freem(m); 2663 } else { 2664 CTR1(KTR_MLD, 2665 "%s: m_adj(m, -mr)", __func__); 2666 m_adj(m, -((int)sizeof( 2667 struct mldv2_record))); 2668 } 2669 continue; 2670 } 2671 npbytes += (rsrcs * sizeof(struct in6_addr)); 2672 if (crt == REC_ALLOW) 2673 pmr->mr_type = MLD_ALLOW_NEW_SOURCES; 2674 else if (crt == REC_BLOCK) 2675 pmr->mr_type = MLD_BLOCK_OLD_SOURCES; 2676 pmr->mr_numsrc = htons(rsrcs); 2677 /* 2678 * Count the new group record, and enqueue this 2679 * packet if it wasn't already queued. 2680 */ 2681 m->m_pkthdr.PH_vt.vt_nrecs++; 2682 if (m != m0) 2683 _IF_ENQUEUE(ifq, m); 2684 nbytes += npbytes; 2685 } while (nims != NULL); 2686 drt |= crt; 2687 crt = (~crt & REC_FULL); 2688 } 2689 2690 CTR3(KTR_MLD, "%s: queued %d ALLOW_NEW, %d BLOCK_OLD", __func__, 2691 nallow, nblock); 2692 2693 return (nbytes); 2694 } 2695 2696 static int 2697 mld_v2_merge_state_changes(struct in6_multi *inm, struct ifqueue *ifscq) 2698 { 2699 struct ifqueue *gq; 2700 struct mbuf *m; /* pending state-change */ 2701 struct mbuf *m0; /* copy of pending state-change */ 2702 struct mbuf *mt; /* last state-change in packet */ 2703 int docopy, domerge; 2704 u_int recslen; 2705 2706 docopy = 0; 2707 domerge = 0; 2708 recslen = 0; 2709 2710 IN6_MULTI_LOCK_ASSERT(); 2711 MLD_LOCK_ASSERT(); 2712 2713 /* 2714 * If there are further pending retransmissions, make a writable 2715 * copy of each queued state-change message before merging. 2716 */ 2717 if (inm->in6m_scrv > 0) 2718 docopy = 1; 2719 2720 gq = &inm->in6m_scq; 2721 #ifdef KTR 2722 if (gq->ifq_head == NULL) { 2723 CTR2(KTR_MLD, "%s: WARNING: queue for inm %p is empty", 2724 __func__, inm); 2725 } 2726 #endif 2727 2728 m = gq->ifq_head; 2729 while (m != NULL) { 2730 /* 2731 * Only merge the report into the current packet if 2732 * there is sufficient space to do so; an MLDv2 report 2733 * packet may only contain 65,535 group records. 2734 * Always use a simple mbuf chain concatentation to do this, 2735 * as large state changes for single groups may have 2736 * allocated clusters. 2737 */ 2738 domerge = 0; 2739 mt = ifscq->ifq_tail; 2740 if (mt != NULL) { 2741 recslen = m_length(m, NULL); 2742 2743 if ((mt->m_pkthdr.PH_vt.vt_nrecs + 2744 m->m_pkthdr.PH_vt.vt_nrecs <= 2745 MLD_V2_REPORT_MAXRECS) && 2746 (mt->m_pkthdr.len + recslen <= 2747 (inm->in6m_ifp->if_mtu - MLD_MTUSPACE))) 2748 domerge = 1; 2749 } 2750 2751 if (!domerge && _IF_QFULL(gq)) { 2752 CTR2(KTR_MLD, 2753 "%s: outbound queue full, skipping whole packet %p", 2754 __func__, m); 2755 mt = m->m_nextpkt; 2756 if (!docopy) 2757 m_freem(m); 2758 m = mt; 2759 continue; 2760 } 2761 2762 if (!docopy) { 2763 CTR2(KTR_MLD, "%s: dequeueing %p", __func__, m); 2764 _IF_DEQUEUE(gq, m0); 2765 m = m0->m_nextpkt; 2766 } else { 2767 CTR2(KTR_MLD, "%s: copying %p", __func__, m); 2768 m0 = m_dup(m, M_NOWAIT); 2769 if (m0 == NULL) 2770 return (ENOMEM); 2771 m0->m_nextpkt = NULL; 2772 m = m->m_nextpkt; 2773 } 2774 2775 if (!domerge) { 2776 CTR3(KTR_MLD, "%s: queueing %p to ifscq %p)", 2777 __func__, m0, ifscq); 2778 _IF_ENQUEUE(ifscq, m0); 2779 } else { 2780 struct mbuf *mtl; /* last mbuf of packet mt */ 2781 2782 CTR3(KTR_MLD, "%s: merging %p with ifscq tail %p)", 2783 __func__, m0, mt); 2784 2785 mtl = m_last(mt); 2786 m0->m_flags &= ~M_PKTHDR; 2787 mt->m_pkthdr.len += recslen; 2788 mt->m_pkthdr.PH_vt.vt_nrecs += 2789 m0->m_pkthdr.PH_vt.vt_nrecs; 2790 2791 mtl->m_next = m0; 2792 } 2793 } 2794 2795 return (0); 2796 } 2797 2798 /* 2799 * Respond to a pending MLDv2 General Query. 2800 */ 2801 static void 2802 mld_v2_dispatch_general_query(struct mld_ifinfo *mli) 2803 { 2804 INIT_VNET_INET6(curvnet); 2805 struct ifmultiaddr *ifma, *tifma; 2806 struct ifnet *ifp; 2807 struct in6_multi *inm; 2808 int retval; 2809 2810 IN6_MULTI_LOCK_ASSERT(); 2811 MLD_LOCK_ASSERT(); 2812 2813 KASSERT(mli->mli_version == MLD_VERSION_2, 2814 ("%s: called when version %d", __func__, mli->mli_version)); 2815 2816 ifp = mli->mli_ifp; 2817 2818 IF_ADDR_LOCK(ifp); 2819 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, tifma) { 2820 if (ifma->ifma_addr->sa_family != AF_INET6 || 2821 ifma->ifma_protospec == NULL) 2822 continue; 2823 2824 inm = (struct in6_multi *)ifma->ifma_protospec; 2825 KASSERT(ifp == inm->in6m_ifp, 2826 ("%s: inconsistent ifp", __func__)); 2827 2828 switch (inm->in6m_state) { 2829 case MLD_NOT_MEMBER: 2830 case MLD_SILENT_MEMBER: 2831 break; 2832 case MLD_REPORTING_MEMBER: 2833 case MLD_IDLE_MEMBER: 2834 case MLD_LAZY_MEMBER: 2835 case MLD_SLEEPING_MEMBER: 2836 case MLD_AWAKENING_MEMBER: 2837 inm->in6m_state = MLD_REPORTING_MEMBER; 2838 retval = mld_v2_enqueue_group_record(&mli->mli_gq, 2839 inm, 0, 0, 0); 2840 CTR2(KTR_MLD, "%s: enqueue record = %d", 2841 __func__, retval); 2842 break; 2843 case MLD_G_QUERY_PENDING_MEMBER: 2844 case MLD_SG_QUERY_PENDING_MEMBER: 2845 case MLD_LEAVING_MEMBER: 2846 break; 2847 } 2848 } 2849 IF_ADDR_UNLOCK(ifp); 2850 2851 mld_dispatch_queue(&mli->mli_gq, MLD_MAX_RESPONSE_BURST); 2852 2853 /* 2854 * Slew transmission of bursts over 500ms intervals. 2855 */ 2856 if (mli->mli_gq.ifq_head != NULL) { 2857 mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY( 2858 MLD_RESPONSE_BURST_INTERVAL); 2859 V_interface_timers_running6 = 1; 2860 } 2861 } 2862 2863 /* 2864 * Transmit the next pending message in the output queue. 2865 * 2866 * VIMAGE: Needs to store/restore vnet pointer on a per-mbuf-chain basis. 2867 * MRT: Nothing needs to be done, as MLD traffic is always local to 2868 * a link and uses a link-scope multicast address. 2869 */ 2870 static void 2871 mld_dispatch_packet(struct mbuf *m) 2872 { 2873 struct ip6_moptions im6o; 2874 struct ifnet *ifp; 2875 struct ifnet *oifp; 2876 struct mbuf *m0; 2877 struct mbuf *md; 2878 struct ip6_hdr *ip6; 2879 struct mld_hdr *mld; 2880 int error; 2881 int off; 2882 int type; 2883 uint32_t ifindex; 2884 2885 CTR2(KTR_MLD, "%s: transmit %p", __func__, m); 2886 2887 /* 2888 * Set VNET image pointer from enqueued mbuf chain 2889 * before doing anything else. Whilst we use interface 2890 * indexes to guard against interface detach, they are 2891 * unique to each VIMAGE and must be retrieved. 2892 */ 2893 INIT_VNET_NET(curvnet); 2894 INIT_VNET_INET6(curvnet); 2895 ifindex = mld_restore_context(m); 2896 2897 /* 2898 * Check if the ifnet still exists. This limits the scope of 2899 * any race in the absence of a global ifp lock for low cost 2900 * (an array lookup). 2901 */ 2902 ifp = ifnet_byindex(ifindex); 2903 if (ifp == NULL) { 2904 CTR3(KTR_MLD, "%s: dropped %p as ifindex %u went away.", 2905 __func__, m, ifindex); 2906 m_freem(m); 2907 IP6STAT_INC(ip6s_noroute); 2908 goto out; 2909 } 2910 2911 im6o.im6o_multicast_hlim = 1; 2912 im6o.im6o_multicast_loop = (V_ip6_mrouter != NULL); 2913 im6o.im6o_multicast_ifp = ifp; 2914 2915 if (m->m_flags & M_MLDV1) { 2916 m0 = m; 2917 } else { 2918 m0 = mld_v2_encap_report(ifp, m); 2919 if (m0 == NULL) { 2920 CTR2(KTR_MLD, "%s: dropped %p", __func__, m); 2921 m_freem(m); 2922 IP6STAT_INC(ip6s_odropped); 2923 goto out; 2924 } 2925 } 2926 2927 mld_scrub_context(m0); 2928 m->m_flags &= ~(M_PROTOFLAGS); 2929 m0->m_pkthdr.rcvif = V_loif; 2930 2931 ip6 = mtod(m0, struct ip6_hdr *); 2932 #if 0 2933 (void)in6_setscope(&ip6->ip6_dst, ifp, NULL); /* XXX LOR */ 2934 #else 2935 /* 2936 * XXX XXX Break some KPI rules to prevent an LOR which would 2937 * occur if we called in6_setscope() at transmission. 2938 * See comments at top of file. 2939 */ 2940 MLD_EMBEDSCOPE(&ip6->ip6_dst, ifp->if_index); 2941 #endif 2942 2943 /* 2944 * Retrieve the ICMPv6 type before handoff to ip6_output(), 2945 * so we can bump the stats. 2946 */ 2947 md = m_getptr(m0, sizeof(struct ip6_hdr), &off); 2948 mld = (struct mld_hdr *)(mtod(md, uint8_t *) + off); 2949 type = mld->mld_type; 2950 2951 error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, &im6o, 2952 &oifp, NULL); 2953 if (error) { 2954 CTR3(KTR_MLD, "%s: ip6_output(%p) = %d", __func__, m0, error); 2955 goto out; 2956 } 2957 ICMP6STAT_INC(icp6s_outhist[type]); 2958 if (oifp != NULL) { 2959 icmp6_ifstat_inc(oifp, ifs6_out_msg); 2960 switch (type) { 2961 case MLD_LISTENER_REPORT: 2962 case MLDV2_LISTENER_REPORT: 2963 icmp6_ifstat_inc(oifp, ifs6_out_mldreport); 2964 break; 2965 case MLD_LISTENER_DONE: 2966 icmp6_ifstat_inc(oifp, ifs6_out_mlddone); 2967 break; 2968 } 2969 } 2970 out: 2971 return; 2972 } 2973 2974 /* 2975 * Encapsulate an MLDv2 report. 2976 * 2977 * KAME IPv6 requires that hop-by-hop options be passed separately, 2978 * and that the IPv6 header be prepended in a separate mbuf. 2979 * 2980 * Returns a pointer to the new mbuf chain head, or NULL if the 2981 * allocation failed. 2982 */ 2983 static struct mbuf * 2984 mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m) 2985 { 2986 struct mbuf *mh; 2987 struct mldv2_report *mld; 2988 struct ip6_hdr *ip6; 2989 struct in6_ifaddr *ia; 2990 int mldreclen; 2991 2992 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 2993 KASSERT((m->m_flags & M_PKTHDR), 2994 ("%s: mbuf chain %p is !M_PKTHDR", __func__, m)); 2995 2996 /* 2997 * RFC3590: OK to send as :: or tentative during DAD. 2998 */ 2999 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 3000 if (ia == NULL) 3001 CTR1(KTR_MLD, "%s: warning: ia is NULL", __func__); 3002 3003 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3004 if (mh == NULL) { 3005 m_freem(m); 3006 return (NULL); 3007 } 3008 MH_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report)); 3009 3010 mldreclen = m_length(m, NULL); 3011 CTR2(KTR_MLD, "%s: mldreclen is %d", __func__, mldreclen); 3012 3013 mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report); 3014 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + 3015 sizeof(struct mldv2_report) + mldreclen; 3016 3017 ip6 = mtod(mh, struct ip6_hdr *); 3018 ip6->ip6_flow = 0; 3019 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 3020 ip6->ip6_vfc |= IPV6_VERSION; 3021 ip6->ip6_nxt = IPPROTO_ICMPV6; 3022 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 3023 ip6->ip6_dst = in6addr_linklocal_allv2routers; 3024 /* scope ID will be set in netisr */ 3025 3026 mld = (struct mldv2_report *)(ip6 + 1); 3027 mld->mld_type = MLDV2_LISTENER_REPORT; 3028 mld->mld_code = 0; 3029 mld->mld_cksum = 0; 3030 mld->mld_v2_reserved = 0; 3031 mld->mld_v2_numrecs = htons(m->m_pkthdr.PH_vt.vt_nrecs); 3032 m->m_pkthdr.PH_vt.vt_nrecs = 0; 3033 3034 mh->m_next = m; 3035 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 3036 sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen); 3037 3038 return (mh); 3039 } 3040 3041 #ifdef KTR 3042 static char * 3043 mld_rec_type_to_str(const int type) 3044 { 3045 3046 switch (type) { 3047 case MLD_CHANGE_TO_EXCLUDE_MODE: 3048 return "TO_EX"; 3049 break; 3050 case MLD_CHANGE_TO_INCLUDE_MODE: 3051 return "TO_IN"; 3052 break; 3053 case MLD_MODE_IS_EXCLUDE: 3054 return "MODE_EX"; 3055 break; 3056 case MLD_MODE_IS_INCLUDE: 3057 return "MODE_IN"; 3058 break; 3059 case MLD_ALLOW_NEW_SOURCES: 3060 return "ALLOW_NEW"; 3061 break; 3062 case MLD_BLOCK_OLD_SOURCES: 3063 return "BLOCK_OLD"; 3064 break; 3065 default: 3066 break; 3067 } 3068 return "unknown"; 3069 } 3070 #endif 3071 3072 static void 3073 mld_sysinit(void) 3074 { 3075 3076 CTR1(KTR_MLD, "%s: initializing", __func__); 3077 MLD_LOCK_INIT(); 3078 3079 ip6_initpktopts(&mld_po); 3080 mld_po.ip6po_hlim = 1; 3081 mld_po.ip6po_hbh = &mld_ra.hbh; 3082 mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER; 3083 mld_po.ip6po_flags = IP6PO_DONTFRAG; 3084 } 3085 3086 static void 3087 mld_sysuninit(void) 3088 { 3089 3090 CTR1(KTR_MLD, "%s: tearing down", __func__); 3091 MLD_LOCK_DESTROY(); 3092 } 3093 3094 /* 3095 * Initialize an MLDv2 instance. 3096 * VIMAGE: Assumes curvnet set by caller and called per vimage. 3097 */ 3098 static int 3099 vnet_mld_iattach(const void *unused __unused) 3100 { 3101 INIT_VNET_INET6(curvnet); 3102 3103 CTR1(KTR_MLD, "%s: initializing", __func__); 3104 3105 LIST_INIT(&V_mli_head); 3106 3107 V_current_state_timers_running6 = 0; 3108 V_interface_timers_running6 = 0; 3109 V_state_change_timers_running6 = 0; 3110 3111 /* 3112 * Initialize sysctls to default values. 3113 */ 3114 V_mld_gsrdelay.tv_sec = 10; 3115 V_mld_gsrdelay.tv_usec = 0; 3116 3117 return (0); 3118 } 3119 3120 static int 3121 vnet_mld_idetach(const void *unused __unused) 3122 { 3123 #ifdef INVARIANTS 3124 INIT_VNET_INET6(curvnet); 3125 #endif 3126 3127 CTR1(KTR_MLD, "%s: tearing down", __func__); 3128 3129 KASSERT(LIST_EMPTY(&V_mli_head), 3130 ("%s: mli list not empty; ifnets not detached?", __func__)); 3131 3132 return (0); 3133 } 3134 3135 #ifndef VIMAGE_GLOBALS 3136 static vnet_modinfo_t vnet_mld_modinfo = { 3137 .vmi_id = VNET_MOD_MLD, 3138 .vmi_name = "mld", 3139 .vmi_dependson = VNET_MOD_INET6, 3140 .vmi_iattach = vnet_mld_iattach, 3141 .vmi_idetach = vnet_mld_idetach 3142 }; 3143 #endif 3144 3145 static int 3146 mld_modevent(module_t mod, int type, void *unused __unused) 3147 { 3148 3149 switch (type) { 3150 case MOD_LOAD: 3151 mld_sysinit(); 3152 #ifndef VIMAGE_GLOBALS 3153 vnet_mod_register(&vnet_mld_modinfo); 3154 #else 3155 vnet_mld_iattach(NULL); 3156 #endif 3157 break; 3158 case MOD_UNLOAD: 3159 #ifndef VIMAGE_GLOBALS 3160 #ifdef NOTYET 3161 vnet_mod_deregister(&vnet_mld_modinfo); 3162 #endif 3163 #else 3164 vnet_mld_idetach(NULL); 3165 #endif 3166 mld_sysuninit(); 3167 break; 3168 default: 3169 return (EOPNOTSUPP); 3170 } 3171 return (0); 3172 } 3173 3174 static moduledata_t mld_mod = { 3175 "mld", 3176 mld_modevent, 3177 0 3178 }; 3179 DECLARE_MODULE(mld, mld_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); 3180