1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2009 Bruce Simpson. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. The name of the author may not be used to endorse or promote 15 * products derived from this software without specific prior written 16 * permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * $KAME: mld6.c,v 1.27 2001/04/04 05:17:30 itojun Exp $ 31 */ 32 33 /*- 34 * Copyright (c) 1988 Stephen Deering. 35 * Copyright (c) 1992, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * This code is derived from software contributed to Berkeley by 39 * Stephen Deering of Stanford University. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)igmp.c 8.1 (Berkeley) 7/19/93 66 */ 67 68 #include <sys/cdefs.h> 69 __FBSDID("$FreeBSD$"); 70 71 #include "opt_inet.h" 72 #include "opt_inet6.h" 73 74 #include <sys/param.h> 75 #include <sys/systm.h> 76 #include <sys/mbuf.h> 77 #include <sys/socket.h> 78 #include <sys/protosw.h> 79 #include <sys/sysctl.h> 80 #include <sys/kernel.h> 81 #include <sys/callout.h> 82 #include <sys/malloc.h> 83 #include <sys/module.h> 84 #include <sys/ktr.h> 85 86 #include <net/if.h> 87 #include <net/if_var.h> 88 #include <net/route.h> 89 #include <net/vnet.h> 90 91 #include <netinet/in.h> 92 #include <netinet/in_var.h> 93 #include <netinet6/in6_var.h> 94 #include <netinet/ip6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/scope6_var.h> 97 #include <netinet/icmp6.h> 98 #include <netinet6/mld6.h> 99 #include <netinet6/mld6_var.h> 100 101 #include <security/mac/mac_framework.h> 102 103 #ifndef KTR_MLD 104 #define KTR_MLD KTR_INET6 105 #endif 106 107 static struct mld_ifsoftc * 108 mli_alloc_locked(struct ifnet *); 109 static void mli_delete_locked(const struct ifnet *); 110 static void mld_dispatch_packet(struct mbuf *); 111 static void mld_dispatch_queue(struct mbufq *, int); 112 static void mld_final_leave(struct in6_multi *, struct mld_ifsoftc *); 113 static void mld_fasttimo_vnet(void); 114 static int mld_handle_state_change(struct in6_multi *, 115 struct mld_ifsoftc *); 116 static int mld_initial_join(struct in6_multi *, struct mld_ifsoftc *, 117 const int); 118 #ifdef KTR 119 static char * mld_rec_type_to_str(const int); 120 #endif 121 static void mld_set_version(struct mld_ifsoftc *, const int); 122 static void mld_slowtimo_vnet(void); 123 static int mld_v1_input_query(struct ifnet *, const struct ip6_hdr *, 124 /*const*/ struct mld_hdr *); 125 static int mld_v1_input_report(struct ifnet *, const struct ip6_hdr *, 126 /*const*/ struct mld_hdr *); 127 static void mld_v1_process_group_timer(struct in6_multi_head *, 128 struct in6_multi *); 129 static void mld_v1_process_querier_timers(struct mld_ifsoftc *); 130 static int mld_v1_transmit_report(struct in6_multi *, const int); 131 static void mld_v1_update_group(struct in6_multi *, const int); 132 static void mld_v2_cancel_link_timers(struct mld_ifsoftc *); 133 static void mld_v2_dispatch_general_query(struct mld_ifsoftc *); 134 static struct mbuf * 135 mld_v2_encap_report(struct ifnet *, struct mbuf *); 136 static int mld_v2_enqueue_filter_change(struct mbufq *, 137 struct in6_multi *); 138 static int mld_v2_enqueue_group_record(struct mbufq *, 139 struct in6_multi *, const int, const int, const int, 140 const int); 141 static int mld_v2_input_query(struct ifnet *, const struct ip6_hdr *, 142 struct mbuf *, const int, const int); 143 static int mld_v2_merge_state_changes(struct in6_multi *, 144 struct mbufq *); 145 static void mld_v2_process_group_timers(struct in6_multi_head *, 146 struct mbufq *, struct mbufq *, 147 struct in6_multi *, const int); 148 static int mld_v2_process_group_query(struct in6_multi *, 149 struct mld_ifsoftc *mli, int, struct mbuf *, const int); 150 static int sysctl_mld_gsr(SYSCTL_HANDLER_ARGS); 151 static int sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS); 152 153 /* 154 * Normative references: RFC 2710, RFC 3590, RFC 3810. 155 * 156 * Locking: 157 * * The MLD subsystem lock ends up being system-wide for the moment, 158 * but could be per-VIMAGE later on. 159 * * The permitted lock order is: IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK. 160 * Any may be taken independently; if any are held at the same 161 * time, the above lock order must be followed. 162 * * IN6_MULTI_LOCK covers in_multi. 163 * * MLD_LOCK covers per-link state and any global variables in this file. 164 * * IF_ADDR_LOCK covers if_multiaddrs, which is used for a variety of 165 * per-link state iterators. 166 * 167 * XXX LOR PREVENTION 168 * A special case for IPv6 is the in6_setscope() routine. ip6_output() 169 * will not accept an ifp; it wants an embedded scope ID, unlike 170 * ip_output(), which happily takes the ifp given to it. The embedded 171 * scope ID is only used by MLD to select the outgoing interface. 172 * 173 * During interface attach and detach, MLD will take MLD_LOCK *after* 174 * the IF_AFDATA_LOCK. 175 * As in6_setscope() takes IF_AFDATA_LOCK then SCOPE_LOCK, we can't call 176 * it with MLD_LOCK held without triggering an LOR. A netisr with indirect 177 * dispatch could work around this, but we'd rather not do that, as it 178 * can introduce other races. 179 * 180 * As such, we exploit the fact that the scope ID is just the interface 181 * index, and embed it in the IPv6 destination address accordingly. 182 * This is potentially NOT VALID for MLDv1 reports, as they 183 * are always sent to the multicast group itself; as MLDv2 184 * reports are always sent to ff02::16, this is not an issue 185 * when MLDv2 is in use. 186 * 187 * This does not however eliminate the LOR when ip6_output() itself 188 * calls in6_setscope() internally whilst MLD_LOCK is held. This will 189 * trigger a LOR warning in WITNESS when the ifnet is detached. 190 * 191 * The right answer is probably to make IF_AFDATA_LOCK an rwlock, given 192 * how it's used across the network stack. Here we're simply exploiting 193 * the fact that MLD runs at a similar layer in the stack to scope6.c. 194 * 195 * VIMAGE: 196 * * Each in6_multi corresponds to an ifp, and each ifp corresponds 197 * to a vnet in ifp->if_vnet. 198 */ 199 static struct mtx mld_mtx; 200 static MALLOC_DEFINE(M_MLD, "mld", "mld state"); 201 202 #define MLD_EMBEDSCOPE(pin6, zoneid) \ 203 if (IN6_IS_SCOPE_LINKLOCAL(pin6) || \ 204 IN6_IS_ADDR_MC_INTFACELOCAL(pin6)) \ 205 (pin6)->s6_addr16[1] = htons((zoneid) & 0xFFFF) \ 206 207 /* 208 * VIMAGE-wide globals. 209 */ 210 VNET_DEFINE_STATIC(struct timeval, mld_gsrdelay) = {10, 0}; 211 VNET_DEFINE_STATIC(LIST_HEAD(, mld_ifsoftc), mli_head); 212 VNET_DEFINE_STATIC(int, interface_timers_running6); 213 VNET_DEFINE_STATIC(int, state_change_timers_running6); 214 VNET_DEFINE_STATIC(int, current_state_timers_running6); 215 216 #define V_mld_gsrdelay VNET(mld_gsrdelay) 217 #define V_mli_head VNET(mli_head) 218 #define V_interface_timers_running6 VNET(interface_timers_running6) 219 #define V_state_change_timers_running6 VNET(state_change_timers_running6) 220 #define V_current_state_timers_running6 VNET(current_state_timers_running6) 221 222 SYSCTL_DECL(_net_inet6); /* Note: Not in any common header. */ 223 224 SYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW, 0, 225 "IPv6 Multicast Listener Discovery"); 226 227 /* 228 * Virtualized sysctls. 229 */ 230 SYSCTL_PROC(_net_inet6_mld, OID_AUTO, gsrdelay, 231 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 232 &VNET_NAME(mld_gsrdelay.tv_sec), 0, sysctl_mld_gsr, "I", 233 "Rate limit for MLDv2 Group-and-Source queries in seconds"); 234 235 /* 236 * Non-virtualized sysctls. 237 */ 238 static SYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo, 239 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mld_ifinfo, 240 "Per-interface MLDv2 state"); 241 242 static int mld_v1enable = 1; 243 SYSCTL_INT(_net_inet6_mld, OID_AUTO, v1enable, CTLFLAG_RWTUN, 244 &mld_v1enable, 0, "Enable fallback to MLDv1"); 245 246 static int mld_use_allow = 1; 247 SYSCTL_INT(_net_inet6_mld, OID_AUTO, use_allow, CTLFLAG_RWTUN, 248 &mld_use_allow, 0, "Use ALLOW/BLOCK for RFC 4604 SSM joins/leaves"); 249 250 /* 251 * Packed Router Alert option structure declaration. 252 */ 253 struct mld_raopt { 254 struct ip6_hbh hbh; 255 struct ip6_opt pad; 256 struct ip6_opt_router ra; 257 } __packed; 258 259 /* 260 * Router Alert hop-by-hop option header. 261 */ 262 static struct mld_raopt mld_ra = { 263 .hbh = { 0, 0 }, 264 .pad = { .ip6o_type = IP6OPT_PADN, 0 }, 265 .ra = { 266 .ip6or_type = IP6OPT_ROUTER_ALERT, 267 .ip6or_len = IP6OPT_RTALERT_LEN - 2, 268 .ip6or_value[0] = ((IP6OPT_RTALERT_MLD >> 8) & 0xFF), 269 .ip6or_value[1] = (IP6OPT_RTALERT_MLD & 0xFF) 270 } 271 }; 272 static struct ip6_pktopts mld_po; 273 274 static __inline void 275 mld_save_context(struct mbuf *m, struct ifnet *ifp) 276 { 277 278 #ifdef VIMAGE 279 m->m_pkthdr.PH_loc.ptr = ifp->if_vnet; 280 #endif /* VIMAGE */ 281 m->m_pkthdr.flowid = ifp->if_index; 282 } 283 284 static __inline void 285 mld_scrub_context(struct mbuf *m) 286 { 287 288 m->m_pkthdr.PH_loc.ptr = NULL; 289 m->m_pkthdr.flowid = 0; 290 } 291 292 /* 293 * Restore context from a queued output chain. 294 * Return saved ifindex. 295 * 296 * VIMAGE: The assertion is there to make sure that we 297 * actually called CURVNET_SET() with what's in the mbuf chain. 298 */ 299 static __inline uint32_t 300 mld_restore_context(struct mbuf *m) 301 { 302 303 #if defined(VIMAGE) && defined(INVARIANTS) 304 KASSERT(curvnet == m->m_pkthdr.PH_loc.ptr, 305 ("%s: called when curvnet was not restored: cuvnet %p m ptr %p", 306 __func__, curvnet, m->m_pkthdr.PH_loc.ptr)); 307 #endif 308 return (m->m_pkthdr.flowid); 309 } 310 311 /* 312 * Retrieve or set threshold between group-source queries in seconds. 313 * 314 * VIMAGE: Assume curvnet set by caller. 315 * SMPng: NOTE: Serialized by MLD lock. 316 */ 317 static int 318 sysctl_mld_gsr(SYSCTL_HANDLER_ARGS) 319 { 320 int error; 321 int i; 322 323 error = sysctl_wire_old_buffer(req, sizeof(int)); 324 if (error) 325 return (error); 326 327 MLD_LOCK(); 328 329 i = V_mld_gsrdelay.tv_sec; 330 331 error = sysctl_handle_int(oidp, &i, 0, req); 332 if (error || !req->newptr) 333 goto out_locked; 334 335 if (i < -1 || i >= 60) { 336 error = EINVAL; 337 goto out_locked; 338 } 339 340 CTR2(KTR_MLD, "change mld_gsrdelay from %d to %d", 341 V_mld_gsrdelay.tv_sec, i); 342 V_mld_gsrdelay.tv_sec = i; 343 344 out_locked: 345 MLD_UNLOCK(); 346 return (error); 347 } 348 349 /* 350 * Expose struct mld_ifsoftc to userland, keyed by ifindex. 351 * For use by ifmcstat(8). 352 * 353 * SMPng: NOTE: Does an unlocked ifindex space read. 354 * VIMAGE: Assume curvnet set by caller. The node handler itself 355 * is not directly virtualized. 356 */ 357 static int 358 sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS) 359 { 360 int *name; 361 int error; 362 u_int namelen; 363 struct ifnet *ifp; 364 struct mld_ifsoftc *mli; 365 366 name = (int *)arg1; 367 namelen = arg2; 368 369 if (req->newptr != NULL) 370 return (EPERM); 371 372 if (namelen != 1) 373 return (EINVAL); 374 375 error = sysctl_wire_old_buffer(req, sizeof(struct mld_ifinfo)); 376 if (error) 377 return (error); 378 379 IN6_MULTI_LOCK(); 380 IN6_MULTI_LIST_LOCK(); 381 MLD_LOCK(); 382 383 if (name[0] <= 0 || name[0] > V_if_index) { 384 error = ENOENT; 385 goto out_locked; 386 } 387 388 error = ENOENT; 389 390 ifp = ifnet_byindex(name[0]); 391 if (ifp == NULL) 392 goto out_locked; 393 394 LIST_FOREACH(mli, &V_mli_head, mli_link) { 395 if (ifp == mli->mli_ifp) { 396 struct mld_ifinfo info; 397 398 info.mli_version = mli->mli_version; 399 info.mli_v1_timer = mli->mli_v1_timer; 400 info.mli_v2_timer = mli->mli_v2_timer; 401 info.mli_flags = mli->mli_flags; 402 info.mli_rv = mli->mli_rv; 403 info.mli_qi = mli->mli_qi; 404 info.mli_qri = mli->mli_qri; 405 info.mli_uri = mli->mli_uri; 406 error = SYSCTL_OUT(req, &info, sizeof(info)); 407 break; 408 } 409 } 410 411 out_locked: 412 MLD_UNLOCK(); 413 IN6_MULTI_LIST_UNLOCK(); 414 IN6_MULTI_UNLOCK(); 415 return (error); 416 } 417 418 /* 419 * Dispatch an entire queue of pending packet chains. 420 * VIMAGE: Assumes the vnet pointer has been set. 421 */ 422 static void 423 mld_dispatch_queue(struct mbufq *mq, int limit) 424 { 425 struct mbuf *m; 426 427 while ((m = mbufq_dequeue(mq)) != NULL) { 428 CTR3(KTR_MLD, "%s: dispatch %p from %p", __func__, mq, m); 429 mld_dispatch_packet(m); 430 if (--limit == 0) 431 break; 432 } 433 } 434 435 /* 436 * Filter outgoing MLD report state by group. 437 * 438 * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1) 439 * and node-local addresses. However, kernel and socket consumers 440 * always embed the KAME scope ID in the address provided, so strip it 441 * when performing comparison. 442 * Note: This is not the same as the *multicast* scope. 443 * 444 * Return zero if the given group is one for which MLD reports 445 * should be suppressed, or non-zero if reports should be issued. 446 */ 447 static __inline int 448 mld_is_addr_reported(const struct in6_addr *addr) 449 { 450 451 KASSERT(IN6_IS_ADDR_MULTICAST(addr), ("%s: not multicast", __func__)); 452 453 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL) 454 return (0); 455 456 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL) { 457 struct in6_addr tmp = *addr; 458 in6_clearscope(&tmp); 459 if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes)) 460 return (0); 461 } 462 463 return (1); 464 } 465 466 /* 467 * Attach MLD when PF_INET6 is attached to an interface. 468 * 469 * SMPng: Normally called with IF_AFDATA_LOCK held. 470 */ 471 struct mld_ifsoftc * 472 mld_domifattach(struct ifnet *ifp) 473 { 474 struct mld_ifsoftc *mli; 475 476 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 477 __func__, ifp, if_name(ifp)); 478 479 MLD_LOCK(); 480 481 mli = mli_alloc_locked(ifp); 482 if (!(ifp->if_flags & IFF_MULTICAST)) 483 mli->mli_flags |= MLIF_SILENT; 484 if (mld_use_allow) 485 mli->mli_flags |= MLIF_USEALLOW; 486 487 MLD_UNLOCK(); 488 489 return (mli); 490 } 491 492 /* 493 * VIMAGE: assume curvnet set by caller. 494 */ 495 static struct mld_ifsoftc * 496 mli_alloc_locked(/*const*/ struct ifnet *ifp) 497 { 498 struct mld_ifsoftc *mli; 499 500 MLD_LOCK_ASSERT(); 501 502 mli = malloc(sizeof(struct mld_ifsoftc), M_MLD, M_NOWAIT|M_ZERO); 503 if (mli == NULL) 504 goto out; 505 506 mli->mli_ifp = ifp; 507 mli->mli_version = MLD_VERSION_2; 508 mli->mli_flags = 0; 509 mli->mli_rv = MLD_RV_INIT; 510 mli->mli_qi = MLD_QI_INIT; 511 mli->mli_qri = MLD_QRI_INIT; 512 mli->mli_uri = MLD_URI_INIT; 513 mbufq_init(&mli->mli_gq, MLD_MAX_RESPONSE_PACKETS); 514 515 LIST_INSERT_HEAD(&V_mli_head, mli, mli_link); 516 517 CTR2(KTR_MLD, "allocate mld_ifsoftc for ifp %p(%s)", 518 ifp, if_name(ifp)); 519 520 out: 521 return (mli); 522 } 523 524 /* 525 * Hook for ifdetach. 526 * 527 * NOTE: Some finalization tasks need to run before the protocol domain 528 * is detached, but also before the link layer does its cleanup. 529 * Run before link-layer cleanup; cleanup groups, but do not free MLD state. 530 * 531 * SMPng: Caller must hold IN6_MULTI_LOCK(). 532 * Must take IF_ADDR_LOCK() to cover if_multiaddrs iterator. 533 * XXX This routine is also bitten by unlocked ifma_protospec access. 534 */ 535 void 536 mld_ifdetach(struct ifnet *ifp) 537 { 538 struct mld_ifsoftc *mli; 539 struct ifmultiaddr *ifma, *next; 540 struct in6_multi *inm; 541 struct in6_multi_head inmh; 542 543 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", __func__, ifp, 544 if_name(ifp)); 545 546 SLIST_INIT(&inmh); 547 IN6_MULTI_LIST_LOCK_ASSERT(); 548 MLD_LOCK(); 549 550 mli = MLD_IFINFO(ifp); 551 if (mli->mli_version == MLD_VERSION_2) { 552 IF_ADDR_WLOCK(ifp); 553 restart: 554 CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) { 555 if (ifma->ifma_addr->sa_family != AF_INET6 || 556 ifma->ifma_protospec == NULL) 557 continue; 558 inm = (struct in6_multi *)ifma->ifma_protospec; 559 if (inm->in6m_state == MLD_LEAVING_MEMBER) { 560 in6m_disconnect(inm); 561 in6m_rele_locked(&inmh, inm); 562 ifma->ifma_protospec = NULL; 563 } 564 in6m_clear_recorded(inm); 565 if (__predict_false(ifma6_restart)) { 566 ifma6_restart = false; 567 goto restart; 568 } 569 } 570 IF_ADDR_WUNLOCK(ifp); 571 } 572 573 MLD_UNLOCK(); 574 in6m_release_list_deferred(&inmh); 575 } 576 577 /* 578 * Hook for domifdetach. 579 * Runs after link-layer cleanup; free MLD state. 580 * 581 * SMPng: Normally called with IF_AFDATA_LOCK held. 582 */ 583 void 584 mld_domifdetach(struct ifnet *ifp) 585 { 586 587 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 588 __func__, ifp, if_name(ifp)); 589 590 MLD_LOCK(); 591 mli_delete_locked(ifp); 592 MLD_UNLOCK(); 593 } 594 595 static void 596 mli_delete_locked(const struct ifnet *ifp) 597 { 598 struct mld_ifsoftc *mli, *tmli; 599 600 CTR3(KTR_MLD, "%s: freeing mld_ifsoftc for ifp %p(%s)", 601 __func__, ifp, if_name(ifp)); 602 603 MLD_LOCK_ASSERT(); 604 605 LIST_FOREACH_SAFE(mli, &V_mli_head, mli_link, tmli) { 606 if (mli->mli_ifp == ifp) { 607 /* 608 * Free deferred General Query responses. 609 */ 610 mbufq_drain(&mli->mli_gq); 611 612 LIST_REMOVE(mli, mli_link); 613 614 free(mli, M_MLD); 615 return; 616 } 617 } 618 } 619 620 /* 621 * Process a received MLDv1 general or address-specific query. 622 * Assumes that the query header has been pulled up to sizeof(mld_hdr). 623 * 624 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 625 * mld_addr. This is OK as we own the mbuf chain. 626 */ 627 static int 628 mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 629 /*const*/ struct mld_hdr *mld) 630 { 631 struct ifmultiaddr *ifma; 632 struct mld_ifsoftc *mli; 633 struct in6_multi *inm; 634 int is_general_query; 635 uint16_t timer; 636 #ifdef KTR 637 char ip6tbuf[INET6_ADDRSTRLEN]; 638 #endif 639 640 is_general_query = 0; 641 642 if (!mld_v1enable) { 643 CTR3(KTR_MLD, "ignore v1 query %s on ifp %p(%s)", 644 ip6_sprintf(ip6tbuf, &mld->mld_addr), 645 ifp, if_name(ifp)); 646 return (0); 647 } 648 649 /* 650 * RFC3810 Section 6.2: MLD queries must originate from 651 * a router's link-local address. 652 */ 653 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 654 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 655 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 656 ifp, if_name(ifp)); 657 return (0); 658 } 659 660 /* 661 * Do address field validation upfront before we accept 662 * the query. 663 */ 664 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 665 /* 666 * MLDv1 General Query. 667 * If this was not sent to the all-nodes group, ignore it. 668 */ 669 struct in6_addr dst; 670 671 dst = ip6->ip6_dst; 672 in6_clearscope(&dst); 673 if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes)) 674 return (EINVAL); 675 is_general_query = 1; 676 } else { 677 /* 678 * Embed scope ID of receiving interface in MLD query for 679 * lookup whilst we don't hold other locks. 680 */ 681 in6_setscope(&mld->mld_addr, ifp, NULL); 682 } 683 684 IN6_MULTI_LIST_LOCK(); 685 MLD_LOCK(); 686 687 /* 688 * Switch to MLDv1 host compatibility mode. 689 */ 690 mli = MLD_IFINFO(ifp); 691 KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp)); 692 mld_set_version(mli, MLD_VERSION_1); 693 694 timer = (ntohs(mld->mld_maxdelay) * PR_FASTHZ) / MLD_TIMER_SCALE; 695 if (timer == 0) 696 timer = 1; 697 698 IF_ADDR_RLOCK(ifp); 699 if (is_general_query) { 700 /* 701 * For each reporting group joined on this 702 * interface, kick the report timer. 703 */ 704 CTR2(KTR_MLD, "process v1 general query on ifp %p(%s)", 705 ifp, if_name(ifp)); 706 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 707 if (ifma->ifma_addr->sa_family != AF_INET6 || 708 ifma->ifma_protospec == NULL) 709 continue; 710 inm = (struct in6_multi *)ifma->ifma_protospec; 711 mld_v1_update_group(inm, timer); 712 } 713 } else { 714 /* 715 * MLDv1 Group-Specific Query. 716 * If this is a group-specific MLDv1 query, we need only 717 * look up the single group to process it. 718 */ 719 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 720 if (inm != NULL) { 721 CTR3(KTR_MLD, "process v1 query %s on ifp %p(%s)", 722 ip6_sprintf(ip6tbuf, &mld->mld_addr), 723 ifp, if_name(ifp)); 724 mld_v1_update_group(inm, timer); 725 } 726 /* XXX Clear embedded scope ID as userland won't expect it. */ 727 in6_clearscope(&mld->mld_addr); 728 } 729 730 IF_ADDR_RUNLOCK(ifp); 731 MLD_UNLOCK(); 732 IN6_MULTI_LIST_UNLOCK(); 733 734 return (0); 735 } 736 737 /* 738 * Update the report timer on a group in response to an MLDv1 query. 739 * 740 * If we are becoming the reporting member for this group, start the timer. 741 * If we already are the reporting member for this group, and timer is 742 * below the threshold, reset it. 743 * 744 * We may be updating the group for the first time since we switched 745 * to MLDv2. If we are, then we must clear any recorded source lists, 746 * and transition to REPORTING state; the group timer is overloaded 747 * for group and group-source query responses. 748 * 749 * Unlike MLDv2, the delay per group should be jittered 750 * to avoid bursts of MLDv1 reports. 751 */ 752 static void 753 mld_v1_update_group(struct in6_multi *inm, const int timer) 754 { 755 #ifdef KTR 756 char ip6tbuf[INET6_ADDRSTRLEN]; 757 #endif 758 759 CTR4(KTR_MLD, "%s: %s/%s timer=%d", __func__, 760 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 761 if_name(inm->in6m_ifp), timer); 762 763 IN6_MULTI_LIST_LOCK_ASSERT(); 764 765 switch (inm->in6m_state) { 766 case MLD_NOT_MEMBER: 767 case MLD_SILENT_MEMBER: 768 break; 769 case MLD_REPORTING_MEMBER: 770 if (inm->in6m_timer != 0 && 771 inm->in6m_timer <= timer) { 772 CTR1(KTR_MLD, "%s: REPORTING and timer running, " 773 "skipping.", __func__); 774 break; 775 } 776 /* FALLTHROUGH */ 777 case MLD_SG_QUERY_PENDING_MEMBER: 778 case MLD_G_QUERY_PENDING_MEMBER: 779 case MLD_IDLE_MEMBER: 780 case MLD_LAZY_MEMBER: 781 case MLD_AWAKENING_MEMBER: 782 CTR1(KTR_MLD, "%s: ->REPORTING", __func__); 783 inm->in6m_state = MLD_REPORTING_MEMBER; 784 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 785 V_current_state_timers_running6 = 1; 786 break; 787 case MLD_SLEEPING_MEMBER: 788 CTR1(KTR_MLD, "%s: ->AWAKENING", __func__); 789 inm->in6m_state = MLD_AWAKENING_MEMBER; 790 break; 791 case MLD_LEAVING_MEMBER: 792 break; 793 } 794 } 795 796 /* 797 * Process a received MLDv2 general, group-specific or 798 * group-and-source-specific query. 799 * 800 * Assumes that the query header has been pulled up to sizeof(mldv2_query). 801 * 802 * Return 0 if successful, otherwise an appropriate error code is returned. 803 */ 804 static int 805 mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 806 struct mbuf *m, const int off, const int icmp6len) 807 { 808 struct mld_ifsoftc *mli; 809 struct mldv2_query *mld; 810 struct in6_multi *inm; 811 uint32_t maxdelay, nsrc, qqi; 812 int is_general_query; 813 uint16_t timer; 814 uint8_t qrv; 815 #ifdef KTR 816 char ip6tbuf[INET6_ADDRSTRLEN]; 817 #endif 818 819 is_general_query = 0; 820 821 /* 822 * RFC3810 Section 6.2: MLD queries must originate from 823 * a router's link-local address. 824 */ 825 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 826 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 827 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 828 ifp, if_name(ifp)); 829 return (0); 830 } 831 832 CTR2(KTR_MLD, "input v2 query on ifp %p(%s)", ifp, if_name(ifp)); 833 834 mld = (struct mldv2_query *)(mtod(m, uint8_t *) + off); 835 836 maxdelay = ntohs(mld->mld_maxdelay); /* in 1/10ths of a second */ 837 if (maxdelay >= 32768) { 838 maxdelay = (MLD_MRC_MANT(maxdelay) | 0x1000) << 839 (MLD_MRC_EXP(maxdelay) + 3); 840 } 841 timer = (maxdelay * PR_FASTHZ) / MLD_TIMER_SCALE; 842 if (timer == 0) 843 timer = 1; 844 845 qrv = MLD_QRV(mld->mld_misc); 846 if (qrv < 2) { 847 CTR3(KTR_MLD, "%s: clamping qrv %d to %d", __func__, 848 qrv, MLD_RV_INIT); 849 qrv = MLD_RV_INIT; 850 } 851 852 qqi = mld->mld_qqi; 853 if (qqi >= 128) { 854 qqi = MLD_QQIC_MANT(mld->mld_qqi) << 855 (MLD_QQIC_EXP(mld->mld_qqi) + 3); 856 } 857 858 nsrc = ntohs(mld->mld_numsrc); 859 if (nsrc > MLD_MAX_GS_SOURCES) 860 return (EMSGSIZE); 861 if (icmp6len < sizeof(struct mldv2_query) + 862 (nsrc * sizeof(struct in6_addr))) 863 return (EMSGSIZE); 864 865 /* 866 * Do further input validation upfront to avoid resetting timers 867 * should we need to discard this query. 868 */ 869 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 870 /* 871 * A general query with a source list has undefined 872 * behaviour; discard it. 873 */ 874 if (nsrc > 0) 875 return (EINVAL); 876 is_general_query = 1; 877 } else { 878 /* 879 * Embed scope ID of receiving interface in MLD query for 880 * lookup whilst we don't hold other locks (due to KAME 881 * locking lameness). We own this mbuf chain just now. 882 */ 883 in6_setscope(&mld->mld_addr, ifp, NULL); 884 } 885 886 IN6_MULTI_LIST_LOCK(); 887 MLD_LOCK(); 888 889 mli = MLD_IFINFO(ifp); 890 KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp)); 891 892 /* 893 * Discard the v2 query if we're in Compatibility Mode. 894 * The RFC is pretty clear that hosts need to stay in MLDv1 mode 895 * until the Old Version Querier Present timer expires. 896 */ 897 if (mli->mli_version != MLD_VERSION_2) 898 goto out_locked; 899 900 mld_set_version(mli, MLD_VERSION_2); 901 mli->mli_rv = qrv; 902 mli->mli_qi = qqi; 903 mli->mli_qri = maxdelay; 904 905 CTR4(KTR_MLD, "%s: qrv %d qi %d maxdelay %d", __func__, qrv, qqi, 906 maxdelay); 907 908 if (is_general_query) { 909 /* 910 * MLDv2 General Query. 911 * 912 * Schedule a current-state report on this ifp for 913 * all groups, possibly containing source lists. 914 * 915 * If there is a pending General Query response 916 * scheduled earlier than the selected delay, do 917 * not schedule any other reports. 918 * Otherwise, reset the interface timer. 919 */ 920 CTR2(KTR_MLD, "process v2 general query on ifp %p(%s)", 921 ifp, if_name(ifp)); 922 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) { 923 mli->mli_v2_timer = MLD_RANDOM_DELAY(timer); 924 V_interface_timers_running6 = 1; 925 } 926 } else { 927 /* 928 * MLDv2 Group-specific or Group-and-source-specific Query. 929 * 930 * Group-source-specific queries are throttled on 931 * a per-group basis to defeat denial-of-service attempts. 932 * Queries for groups we are not a member of on this 933 * link are simply ignored. 934 */ 935 IF_ADDR_RLOCK(ifp); 936 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 937 if (inm == NULL) { 938 IF_ADDR_RUNLOCK(ifp); 939 goto out_locked; 940 } 941 if (nsrc > 0) { 942 if (!ratecheck(&inm->in6m_lastgsrtv, 943 &V_mld_gsrdelay)) { 944 CTR1(KTR_MLD, "%s: GS query throttled.", 945 __func__); 946 IF_ADDR_RUNLOCK(ifp); 947 goto out_locked; 948 } 949 } 950 CTR2(KTR_MLD, "process v2 group query on ifp %p(%s)", 951 ifp, if_name(ifp)); 952 /* 953 * If there is a pending General Query response 954 * scheduled sooner than the selected delay, no 955 * further report need be scheduled. 956 * Otherwise, prepare to respond to the 957 * group-specific or group-and-source query. 958 */ 959 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) 960 mld_v2_process_group_query(inm, mli, timer, m, off); 961 962 /* XXX Clear embedded scope ID as userland won't expect it. */ 963 in6_clearscope(&mld->mld_addr); 964 IF_ADDR_RUNLOCK(ifp); 965 } 966 967 out_locked: 968 MLD_UNLOCK(); 969 IN6_MULTI_LIST_UNLOCK(); 970 971 return (0); 972 } 973 974 /* 975 * Process a received MLDv2 group-specific or group-and-source-specific 976 * query. 977 * Return <0 if any error occurred. Currently this is ignored. 978 */ 979 static int 980 mld_v2_process_group_query(struct in6_multi *inm, struct mld_ifsoftc *mli, 981 int timer, struct mbuf *m0, const int off) 982 { 983 struct mldv2_query *mld; 984 int retval; 985 uint16_t nsrc; 986 987 IN6_MULTI_LIST_LOCK_ASSERT(); 988 MLD_LOCK_ASSERT(); 989 990 retval = 0; 991 mld = (struct mldv2_query *)(mtod(m0, uint8_t *) + off); 992 993 switch (inm->in6m_state) { 994 case MLD_NOT_MEMBER: 995 case MLD_SILENT_MEMBER: 996 case MLD_SLEEPING_MEMBER: 997 case MLD_LAZY_MEMBER: 998 case MLD_AWAKENING_MEMBER: 999 case MLD_IDLE_MEMBER: 1000 case MLD_LEAVING_MEMBER: 1001 return (retval); 1002 break; 1003 case MLD_REPORTING_MEMBER: 1004 case MLD_G_QUERY_PENDING_MEMBER: 1005 case MLD_SG_QUERY_PENDING_MEMBER: 1006 break; 1007 } 1008 1009 nsrc = ntohs(mld->mld_numsrc); 1010 1011 /* 1012 * Deal with group-specific queries upfront. 1013 * If any group query is already pending, purge any recorded 1014 * source-list state if it exists, and schedule a query response 1015 * for this group-specific query. 1016 */ 1017 if (nsrc == 0) { 1018 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 1019 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) { 1020 in6m_clear_recorded(inm); 1021 timer = min(inm->in6m_timer, timer); 1022 } 1023 inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER; 1024 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1025 V_current_state_timers_running6 = 1; 1026 return (retval); 1027 } 1028 1029 /* 1030 * Deal with the case where a group-and-source-specific query has 1031 * been received but a group-specific query is already pending. 1032 */ 1033 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) { 1034 timer = min(inm->in6m_timer, timer); 1035 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1036 V_current_state_timers_running6 = 1; 1037 return (retval); 1038 } 1039 1040 /* 1041 * Finally, deal with the case where a group-and-source-specific 1042 * query has been received, where a response to a previous g-s-r 1043 * query exists, or none exists. 1044 * In this case, we need to parse the source-list which the Querier 1045 * has provided us with and check if we have any source list filter 1046 * entries at T1 for these sources. If we do not, there is no need 1047 * schedule a report and the query may be dropped. 1048 * If we do, we must record them and schedule a current-state 1049 * report for those sources. 1050 */ 1051 if (inm->in6m_nsrc > 0) { 1052 struct mbuf *m; 1053 uint8_t *sp; 1054 int i, nrecorded; 1055 int soff; 1056 1057 m = m0; 1058 soff = off + sizeof(struct mldv2_query); 1059 nrecorded = 0; 1060 for (i = 0; i < nsrc; i++) { 1061 sp = mtod(m, uint8_t *) + soff; 1062 retval = in6m_record_source(inm, 1063 (const struct in6_addr *)sp); 1064 if (retval < 0) 1065 break; 1066 nrecorded += retval; 1067 soff += sizeof(struct in6_addr); 1068 if (soff >= m->m_len) { 1069 soff = soff - m->m_len; 1070 m = m->m_next; 1071 if (m == NULL) 1072 break; 1073 } 1074 } 1075 if (nrecorded > 0) { 1076 CTR1(KTR_MLD, 1077 "%s: schedule response to SG query", __func__); 1078 inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER; 1079 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1080 V_current_state_timers_running6 = 1; 1081 } 1082 } 1083 1084 return (retval); 1085 } 1086 1087 /* 1088 * Process a received MLDv1 host membership report. 1089 * Assumes mld points to mld_hdr in pulled up mbuf chain. 1090 * 1091 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 1092 * mld_addr. This is OK as we own the mbuf chain. 1093 */ 1094 static int 1095 mld_v1_input_report(struct ifnet *ifp, const struct ip6_hdr *ip6, 1096 /*const*/ struct mld_hdr *mld) 1097 { 1098 struct in6_addr src, dst; 1099 struct in6_ifaddr *ia; 1100 struct in6_multi *inm; 1101 #ifdef KTR 1102 char ip6tbuf[INET6_ADDRSTRLEN]; 1103 #endif 1104 1105 if (!mld_v1enable) { 1106 CTR3(KTR_MLD, "ignore v1 report %s on ifp %p(%s)", 1107 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1108 ifp, if_name(ifp)); 1109 return (0); 1110 } 1111 1112 if (ifp->if_flags & IFF_LOOPBACK) 1113 return (0); 1114 1115 /* 1116 * MLDv1 reports must originate from a host's link-local address, 1117 * or the unspecified address (when booting). 1118 */ 1119 src = ip6->ip6_src; 1120 in6_clearscope(&src); 1121 if (!IN6_IS_SCOPE_LINKLOCAL(&src) && !IN6_IS_ADDR_UNSPECIFIED(&src)) { 1122 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 1123 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 1124 ifp, if_name(ifp)); 1125 return (EINVAL); 1126 } 1127 1128 /* 1129 * RFC2710 Section 4: MLDv1 reports must pertain to a multicast 1130 * group, and must be directed to the group itself. 1131 */ 1132 dst = ip6->ip6_dst; 1133 in6_clearscope(&dst); 1134 if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) || 1135 !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &dst)) { 1136 CTR3(KTR_MLD, "ignore v1 query dst %s on ifp %p(%s)", 1137 ip6_sprintf(ip6tbuf, &ip6->ip6_dst), 1138 ifp, if_name(ifp)); 1139 return (EINVAL); 1140 } 1141 1142 /* 1143 * Make sure we don't hear our own membership report, as fast 1144 * leave requires knowing that we are the only member of a 1145 * group. Assume we used the link-local address if available, 1146 * otherwise look for ::. 1147 * 1148 * XXX Note that scope ID comparison is needed for the address 1149 * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be 1150 * performed for the on-wire address. 1151 */ 1152 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1153 if ((ia && IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia))) || 1154 (ia == NULL && IN6_IS_ADDR_UNSPECIFIED(&src))) { 1155 if (ia != NULL) 1156 ifa_free(&ia->ia_ifa); 1157 return (0); 1158 } 1159 if (ia != NULL) 1160 ifa_free(&ia->ia_ifa); 1161 1162 CTR3(KTR_MLD, "process v1 report %s on ifp %p(%s)", 1163 ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, if_name(ifp)); 1164 1165 /* 1166 * Embed scope ID of receiving interface in MLD query for lookup 1167 * whilst we don't hold other locks (due to KAME locking lameness). 1168 */ 1169 if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) 1170 in6_setscope(&mld->mld_addr, ifp, NULL); 1171 1172 IN6_MULTI_LIST_LOCK(); 1173 MLD_LOCK(); 1174 IF_ADDR_RLOCK(ifp); 1175 1176 /* 1177 * MLDv1 report suppression. 1178 * If we are a member of this group, and our membership should be 1179 * reported, and our group timer is pending or about to be reset, 1180 * stop our group timer by transitioning to the 'lazy' state. 1181 */ 1182 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 1183 if (inm != NULL) { 1184 struct mld_ifsoftc *mli; 1185 1186 mli = inm->in6m_mli; 1187 KASSERT(mli != NULL, 1188 ("%s: no mli for ifp %p", __func__, ifp)); 1189 1190 /* 1191 * If we are in MLDv2 host mode, do not allow the 1192 * other host's MLDv1 report to suppress our reports. 1193 */ 1194 if (mli->mli_version == MLD_VERSION_2) 1195 goto out_locked; 1196 1197 inm->in6m_timer = 0; 1198 1199 switch (inm->in6m_state) { 1200 case MLD_NOT_MEMBER: 1201 case MLD_SILENT_MEMBER: 1202 case MLD_SLEEPING_MEMBER: 1203 break; 1204 case MLD_REPORTING_MEMBER: 1205 case MLD_IDLE_MEMBER: 1206 case MLD_AWAKENING_MEMBER: 1207 CTR3(KTR_MLD, 1208 "report suppressed for %s on ifp %p(%s)", 1209 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1210 ifp, if_name(ifp)); 1211 case MLD_LAZY_MEMBER: 1212 inm->in6m_state = MLD_LAZY_MEMBER; 1213 break; 1214 case MLD_G_QUERY_PENDING_MEMBER: 1215 case MLD_SG_QUERY_PENDING_MEMBER: 1216 case MLD_LEAVING_MEMBER: 1217 break; 1218 } 1219 } 1220 1221 out_locked: 1222 IF_ADDR_RUNLOCK(ifp); 1223 MLD_UNLOCK(); 1224 IN6_MULTI_LIST_UNLOCK(); 1225 1226 /* XXX Clear embedded scope ID as userland won't expect it. */ 1227 in6_clearscope(&mld->mld_addr); 1228 1229 return (0); 1230 } 1231 1232 /* 1233 * MLD input path. 1234 * 1235 * Assume query messages which fit in a single ICMPv6 message header 1236 * have been pulled up. 1237 * Assume that userland will want to see the message, even if it 1238 * otherwise fails kernel input validation; do not free it. 1239 * Pullup may however free the mbuf chain m if it fails. 1240 * 1241 * Return IPPROTO_DONE if we freed m. Otherwise, return 0. 1242 */ 1243 int 1244 mld_input(struct mbuf *m, int off, int icmp6len) 1245 { 1246 struct ifnet *ifp; 1247 struct ip6_hdr *ip6; 1248 struct mld_hdr *mld; 1249 int mldlen; 1250 1251 CTR3(KTR_MLD, "%s: called w/mbuf (%p,%d)", __func__, m, off); 1252 1253 ifp = m->m_pkthdr.rcvif; 1254 1255 ip6 = mtod(m, struct ip6_hdr *); 1256 1257 /* Pullup to appropriate size. */ 1258 mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off); 1259 if (mld->mld_type == MLD_LISTENER_QUERY && 1260 icmp6len >= sizeof(struct mldv2_query)) { 1261 mldlen = sizeof(struct mldv2_query); 1262 } else { 1263 mldlen = sizeof(struct mld_hdr); 1264 } 1265 IP6_EXTHDR_GET(mld, struct mld_hdr *, m, off, mldlen); 1266 if (mld == NULL) { 1267 ICMP6STAT_INC(icp6s_badlen); 1268 return (IPPROTO_DONE); 1269 } 1270 1271 /* 1272 * Userland needs to see all of this traffic for implementing 1273 * the endpoint discovery portion of multicast routing. 1274 */ 1275 switch (mld->mld_type) { 1276 case MLD_LISTENER_QUERY: 1277 icmp6_ifstat_inc(ifp, ifs6_in_mldquery); 1278 if (icmp6len == sizeof(struct mld_hdr)) { 1279 if (mld_v1_input_query(ifp, ip6, mld) != 0) 1280 return (0); 1281 } else if (icmp6len >= sizeof(struct mldv2_query)) { 1282 if (mld_v2_input_query(ifp, ip6, m, off, 1283 icmp6len) != 0) 1284 return (0); 1285 } 1286 break; 1287 case MLD_LISTENER_REPORT: 1288 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1289 if (mld_v1_input_report(ifp, ip6, mld) != 0) 1290 return (0); 1291 break; 1292 case MLDV2_LISTENER_REPORT: 1293 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1294 break; 1295 case MLD_LISTENER_DONE: 1296 icmp6_ifstat_inc(ifp, ifs6_in_mlddone); 1297 break; 1298 default: 1299 break; 1300 } 1301 1302 return (0); 1303 } 1304 1305 /* 1306 * Fast timeout handler (global). 1307 * VIMAGE: Timeout handlers are expected to service all vimages. 1308 */ 1309 void 1310 mld_fasttimo(void) 1311 { 1312 VNET_ITERATOR_DECL(vnet_iter); 1313 1314 VNET_LIST_RLOCK_NOSLEEP(); 1315 VNET_FOREACH(vnet_iter) { 1316 CURVNET_SET(vnet_iter); 1317 mld_fasttimo_vnet(); 1318 CURVNET_RESTORE(); 1319 } 1320 VNET_LIST_RUNLOCK_NOSLEEP(); 1321 } 1322 1323 /* 1324 * Fast timeout handler (per-vnet). 1325 * 1326 * VIMAGE: Assume caller has set up our curvnet. 1327 */ 1328 static void 1329 mld_fasttimo_vnet(void) 1330 { 1331 struct mbufq scq; /* State-change packets */ 1332 struct mbufq qrq; /* Query response packets */ 1333 struct ifnet *ifp; 1334 struct mld_ifsoftc *mli; 1335 struct ifmultiaddr *ifma, *next; 1336 struct in6_multi *inm, *tinm; 1337 struct in6_multi_head inmh; 1338 int uri_fasthz; 1339 1340 uri_fasthz = 0; 1341 1342 /* 1343 * Quick check to see if any work needs to be done, in order to 1344 * minimize the overhead of fasttimo processing. 1345 * SMPng: XXX Unlocked reads. 1346 */ 1347 if (!V_current_state_timers_running6 && 1348 !V_interface_timers_running6 && 1349 !V_state_change_timers_running6) 1350 return; 1351 1352 SLIST_INIT(&inmh); 1353 IN6_MULTI_LIST_LOCK(); 1354 MLD_LOCK(); 1355 1356 /* 1357 * MLDv2 General Query response timer processing. 1358 */ 1359 if (V_interface_timers_running6) { 1360 CTR1(KTR_MLD, "%s: interface timers running", __func__); 1361 1362 V_interface_timers_running6 = 0; 1363 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1364 if (mli->mli_v2_timer == 0) { 1365 /* Do nothing. */ 1366 } else if (--mli->mli_v2_timer == 0) { 1367 mld_v2_dispatch_general_query(mli); 1368 } else { 1369 V_interface_timers_running6 = 1; 1370 } 1371 } 1372 } 1373 1374 if (!V_current_state_timers_running6 && 1375 !V_state_change_timers_running6) 1376 goto out_locked; 1377 1378 V_current_state_timers_running6 = 0; 1379 V_state_change_timers_running6 = 0; 1380 1381 CTR1(KTR_MLD, "%s: state change timers running", __func__); 1382 1383 /* 1384 * MLD host report and state-change timer processing. 1385 * Note: Processing a v2 group timer may remove a node. 1386 */ 1387 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1388 ifp = mli->mli_ifp; 1389 1390 if (mli->mli_version == MLD_VERSION_2) { 1391 uri_fasthz = MLD_RANDOM_DELAY(mli->mli_uri * 1392 PR_FASTHZ); 1393 mbufq_init(&qrq, MLD_MAX_G_GS_PACKETS); 1394 mbufq_init(&scq, MLD_MAX_STATE_CHANGE_PACKETS); 1395 } 1396 1397 IF_ADDR_WLOCK(ifp); 1398 restart: 1399 CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) { 1400 if (ifma->ifma_addr->sa_family != AF_INET6 || 1401 ifma->ifma_protospec == NULL) 1402 continue; 1403 inm = (struct in6_multi *)ifma->ifma_protospec; 1404 switch (mli->mli_version) { 1405 case MLD_VERSION_1: 1406 mld_v1_process_group_timer(&inmh, inm); 1407 break; 1408 case MLD_VERSION_2: 1409 mld_v2_process_group_timers(&inmh, &qrq, 1410 &scq, inm, uri_fasthz); 1411 break; 1412 } 1413 if (__predict_false(ifma6_restart)) { 1414 ifma6_restart = false; 1415 goto restart; 1416 } 1417 } 1418 IF_ADDR_WUNLOCK(ifp); 1419 1420 switch (mli->mli_version) { 1421 case MLD_VERSION_1: 1422 /* 1423 * Transmit reports for this lifecycle. This 1424 * is done while not holding IF_ADDR_LOCK 1425 * since this can call 1426 * in6ifa_ifpforlinklocal() which locks 1427 * IF_ADDR_LOCK internally as well as 1428 * ip6_output() to transmit a packet. 1429 */ 1430 SLIST_FOREACH_SAFE(inm, &inmh, in6m_nrele, tinm) { 1431 SLIST_REMOVE_HEAD(&inmh, 1432 in6m_nrele); 1433 (void)mld_v1_transmit_report(inm, 1434 MLD_LISTENER_REPORT); 1435 } 1436 break; 1437 case MLD_VERSION_2: 1438 mld_dispatch_queue(&qrq, 0); 1439 mld_dispatch_queue(&scq, 0); 1440 1441 /* 1442 * Free the in_multi reference(s) for 1443 * this lifecycle. 1444 */ 1445 in6m_release_list_deferred(&inmh); 1446 break; 1447 } 1448 } 1449 1450 out_locked: 1451 MLD_UNLOCK(); 1452 IN6_MULTI_LIST_UNLOCK(); 1453 } 1454 1455 /* 1456 * Update host report group timer. 1457 * Will update the global pending timer flags. 1458 */ 1459 static void 1460 mld_v1_process_group_timer(struct in6_multi_head *inmh, struct in6_multi *inm) 1461 { 1462 int report_timer_expired; 1463 1464 IN6_MULTI_LIST_LOCK_ASSERT(); 1465 MLD_LOCK_ASSERT(); 1466 1467 if (inm->in6m_timer == 0) { 1468 report_timer_expired = 0; 1469 } else if (--inm->in6m_timer == 0) { 1470 report_timer_expired = 1; 1471 } else { 1472 V_current_state_timers_running6 = 1; 1473 return; 1474 } 1475 1476 switch (inm->in6m_state) { 1477 case MLD_NOT_MEMBER: 1478 case MLD_SILENT_MEMBER: 1479 case MLD_IDLE_MEMBER: 1480 case MLD_LAZY_MEMBER: 1481 case MLD_SLEEPING_MEMBER: 1482 case MLD_AWAKENING_MEMBER: 1483 break; 1484 case MLD_REPORTING_MEMBER: 1485 if (report_timer_expired) { 1486 inm->in6m_state = MLD_IDLE_MEMBER; 1487 in6m_disconnect(inm); 1488 in6m_rele_locked(inmh, inm); 1489 } 1490 break; 1491 case MLD_G_QUERY_PENDING_MEMBER: 1492 case MLD_SG_QUERY_PENDING_MEMBER: 1493 case MLD_LEAVING_MEMBER: 1494 break; 1495 } 1496 } 1497 1498 /* 1499 * Update a group's timers for MLDv2. 1500 * Will update the global pending timer flags. 1501 * Note: Unlocked read from mli. 1502 */ 1503 static void 1504 mld_v2_process_group_timers(struct in6_multi_head *inmh, 1505 struct mbufq *qrq, struct mbufq *scq, 1506 struct in6_multi *inm, const int uri_fasthz) 1507 { 1508 int query_response_timer_expired; 1509 int state_change_retransmit_timer_expired; 1510 #ifdef KTR 1511 char ip6tbuf[INET6_ADDRSTRLEN]; 1512 #endif 1513 1514 IN6_MULTI_LIST_LOCK_ASSERT(); 1515 MLD_LOCK_ASSERT(); 1516 1517 query_response_timer_expired = 0; 1518 state_change_retransmit_timer_expired = 0; 1519 1520 /* 1521 * During a transition from compatibility mode back to MLDv2, 1522 * a group record in REPORTING state may still have its group 1523 * timer active. This is a no-op in this function; it is easier 1524 * to deal with it here than to complicate the slow-timeout path. 1525 */ 1526 if (inm->in6m_timer == 0) { 1527 query_response_timer_expired = 0; 1528 } else if (--inm->in6m_timer == 0) { 1529 query_response_timer_expired = 1; 1530 } else { 1531 V_current_state_timers_running6 = 1; 1532 } 1533 1534 if (inm->in6m_sctimer == 0) { 1535 state_change_retransmit_timer_expired = 0; 1536 } else if (--inm->in6m_sctimer == 0) { 1537 state_change_retransmit_timer_expired = 1; 1538 } else { 1539 V_state_change_timers_running6 = 1; 1540 } 1541 1542 /* We are in fasttimo, so be quick about it. */ 1543 if (!state_change_retransmit_timer_expired && 1544 !query_response_timer_expired) 1545 return; 1546 1547 switch (inm->in6m_state) { 1548 case MLD_NOT_MEMBER: 1549 case MLD_SILENT_MEMBER: 1550 case MLD_SLEEPING_MEMBER: 1551 case MLD_LAZY_MEMBER: 1552 case MLD_AWAKENING_MEMBER: 1553 case MLD_IDLE_MEMBER: 1554 break; 1555 case MLD_G_QUERY_PENDING_MEMBER: 1556 case MLD_SG_QUERY_PENDING_MEMBER: 1557 /* 1558 * Respond to a previously pending Group-Specific 1559 * or Group-and-Source-Specific query by enqueueing 1560 * the appropriate Current-State report for 1561 * immediate transmission. 1562 */ 1563 if (query_response_timer_expired) { 1564 int retval; 1565 1566 retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1, 1567 (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER), 1568 0); 1569 CTR2(KTR_MLD, "%s: enqueue record = %d", 1570 __func__, retval); 1571 inm->in6m_state = MLD_REPORTING_MEMBER; 1572 in6m_clear_recorded(inm); 1573 } 1574 /* FALLTHROUGH */ 1575 case MLD_REPORTING_MEMBER: 1576 case MLD_LEAVING_MEMBER: 1577 if (state_change_retransmit_timer_expired) { 1578 /* 1579 * State-change retransmission timer fired. 1580 * If there are any further pending retransmissions, 1581 * set the global pending state-change flag, and 1582 * reset the timer. 1583 */ 1584 if (--inm->in6m_scrv > 0) { 1585 inm->in6m_sctimer = uri_fasthz; 1586 V_state_change_timers_running6 = 1; 1587 } 1588 /* 1589 * Retransmit the previously computed state-change 1590 * report. If there are no further pending 1591 * retransmissions, the mbuf queue will be consumed. 1592 * Update T0 state to T1 as we have now sent 1593 * a state-change. 1594 */ 1595 (void)mld_v2_merge_state_changes(inm, scq); 1596 1597 in6m_commit(inm); 1598 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 1599 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1600 if_name(inm->in6m_ifp)); 1601 1602 /* 1603 * If we are leaving the group for good, make sure 1604 * we release MLD's reference to it. 1605 * This release must be deferred using a SLIST, 1606 * as we are called from a loop which traverses 1607 * the in_ifmultiaddr TAILQ. 1608 */ 1609 if (inm->in6m_state == MLD_LEAVING_MEMBER && 1610 inm->in6m_scrv == 0) { 1611 inm->in6m_state = MLD_NOT_MEMBER; 1612 in6m_disconnect(inm); 1613 in6m_rele_locked(inmh, inm); 1614 } 1615 } 1616 break; 1617 } 1618 } 1619 1620 /* 1621 * Switch to a different version on the given interface, 1622 * as per Section 9.12. 1623 */ 1624 static void 1625 mld_set_version(struct mld_ifsoftc *mli, const int version) 1626 { 1627 int old_version_timer; 1628 1629 MLD_LOCK_ASSERT(); 1630 1631 CTR4(KTR_MLD, "%s: switching to v%d on ifp %p(%s)", __func__, 1632 version, mli->mli_ifp, if_name(mli->mli_ifp)); 1633 1634 if (version == MLD_VERSION_1) { 1635 /* 1636 * Compute the "Older Version Querier Present" timer as per 1637 * Section 9.12. 1638 */ 1639 old_version_timer = (mli->mli_rv * mli->mli_qi) + mli->mli_qri; 1640 old_version_timer *= PR_SLOWHZ; 1641 mli->mli_v1_timer = old_version_timer; 1642 } 1643 1644 if (mli->mli_v1_timer > 0 && mli->mli_version != MLD_VERSION_1) { 1645 mli->mli_version = MLD_VERSION_1; 1646 mld_v2_cancel_link_timers(mli); 1647 } 1648 } 1649 1650 /* 1651 * Cancel pending MLDv2 timers for the given link and all groups 1652 * joined on it; state-change, general-query, and group-query timers. 1653 */ 1654 static void 1655 mld_v2_cancel_link_timers(struct mld_ifsoftc *mli) 1656 { 1657 struct ifmultiaddr *ifma, *next; 1658 struct ifnet *ifp; 1659 struct in6_multi *inm; 1660 struct in6_multi_head inmh; 1661 1662 CTR3(KTR_MLD, "%s: cancel v2 timers on ifp %p(%s)", __func__, 1663 mli->mli_ifp, if_name(mli->mli_ifp)); 1664 1665 SLIST_INIT(&inmh); 1666 IN6_MULTI_LIST_LOCK_ASSERT(); 1667 MLD_LOCK_ASSERT(); 1668 1669 /* 1670 * Fast-track this potentially expensive operation 1671 * by checking all the global 'timer pending' flags. 1672 */ 1673 if (!V_interface_timers_running6 && 1674 !V_state_change_timers_running6 && 1675 !V_current_state_timers_running6) 1676 return; 1677 1678 mli->mli_v2_timer = 0; 1679 1680 ifp = mli->mli_ifp; 1681 1682 IF_ADDR_WLOCK(ifp); 1683 restart: 1684 CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) { 1685 if (ifma->ifma_addr->sa_family != AF_INET6 || 1686 ifma->ifma_protospec == NULL) 1687 continue; 1688 inm = (struct in6_multi *)ifma->ifma_protospec; 1689 switch (inm->in6m_state) { 1690 case MLD_NOT_MEMBER: 1691 case MLD_SILENT_MEMBER: 1692 case MLD_IDLE_MEMBER: 1693 case MLD_LAZY_MEMBER: 1694 case MLD_SLEEPING_MEMBER: 1695 case MLD_AWAKENING_MEMBER: 1696 break; 1697 case MLD_LEAVING_MEMBER: 1698 /* 1699 * If we are leaving the group and switching 1700 * version, we need to release the final 1701 * reference held for issuing the INCLUDE {}. 1702 */ 1703 in6m_disconnect(inm); 1704 in6m_rele_locked(&inmh, inm); 1705 ifma->ifma_protospec = NULL; 1706 /* FALLTHROUGH */ 1707 case MLD_G_QUERY_PENDING_MEMBER: 1708 case MLD_SG_QUERY_PENDING_MEMBER: 1709 in6m_clear_recorded(inm); 1710 /* FALLTHROUGH */ 1711 case MLD_REPORTING_MEMBER: 1712 inm->in6m_sctimer = 0; 1713 inm->in6m_timer = 0; 1714 inm->in6m_state = MLD_REPORTING_MEMBER; 1715 /* 1716 * Free any pending MLDv2 state-change records. 1717 */ 1718 mbufq_drain(&inm->in6m_scq); 1719 break; 1720 } 1721 if (__predict_false(ifma6_restart)) { 1722 ifma6_restart = false; 1723 goto restart; 1724 } 1725 } 1726 IF_ADDR_WUNLOCK(ifp); 1727 in6m_release_list_deferred(&inmh); 1728 } 1729 1730 /* 1731 * Global slowtimo handler. 1732 * VIMAGE: Timeout handlers are expected to service all vimages. 1733 */ 1734 void 1735 mld_slowtimo(void) 1736 { 1737 VNET_ITERATOR_DECL(vnet_iter); 1738 1739 VNET_LIST_RLOCK_NOSLEEP(); 1740 VNET_FOREACH(vnet_iter) { 1741 CURVNET_SET(vnet_iter); 1742 mld_slowtimo_vnet(); 1743 CURVNET_RESTORE(); 1744 } 1745 VNET_LIST_RUNLOCK_NOSLEEP(); 1746 } 1747 1748 /* 1749 * Per-vnet slowtimo handler. 1750 */ 1751 static void 1752 mld_slowtimo_vnet(void) 1753 { 1754 struct mld_ifsoftc *mli; 1755 1756 MLD_LOCK(); 1757 1758 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1759 mld_v1_process_querier_timers(mli); 1760 } 1761 1762 MLD_UNLOCK(); 1763 } 1764 1765 /* 1766 * Update the Older Version Querier Present timers for a link. 1767 * See Section 9.12 of RFC 3810. 1768 */ 1769 static void 1770 mld_v1_process_querier_timers(struct mld_ifsoftc *mli) 1771 { 1772 1773 MLD_LOCK_ASSERT(); 1774 1775 if (mli->mli_version != MLD_VERSION_2 && --mli->mli_v1_timer == 0) { 1776 /* 1777 * MLDv1 Querier Present timer expired; revert to MLDv2. 1778 */ 1779 CTR5(KTR_MLD, 1780 "%s: transition from v%d -> v%d on %p(%s)", 1781 __func__, mli->mli_version, MLD_VERSION_2, 1782 mli->mli_ifp, if_name(mli->mli_ifp)); 1783 mli->mli_version = MLD_VERSION_2; 1784 } 1785 } 1786 1787 /* 1788 * Transmit an MLDv1 report immediately. 1789 */ 1790 static int 1791 mld_v1_transmit_report(struct in6_multi *in6m, const int type) 1792 { 1793 struct ifnet *ifp; 1794 struct in6_ifaddr *ia; 1795 struct ip6_hdr *ip6; 1796 struct mbuf *mh, *md; 1797 struct mld_hdr *mld; 1798 1799 IN6_MULTI_LIST_LOCK_ASSERT(); 1800 MLD_LOCK_ASSERT(); 1801 1802 ifp = in6m->in6m_ifp; 1803 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1804 /* ia may be NULL if link-local address is tentative. */ 1805 1806 mh = m_gethdr(M_NOWAIT, MT_DATA); 1807 if (mh == NULL) { 1808 if (ia != NULL) 1809 ifa_free(&ia->ia_ifa); 1810 return (ENOMEM); 1811 } 1812 md = m_get(M_NOWAIT, MT_DATA); 1813 if (md == NULL) { 1814 m_free(mh); 1815 if (ia != NULL) 1816 ifa_free(&ia->ia_ifa); 1817 return (ENOMEM); 1818 } 1819 mh->m_next = md; 1820 1821 /* 1822 * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so 1823 * that ether_output() does not need to allocate another mbuf 1824 * for the header in the most common case. 1825 */ 1826 M_ALIGN(mh, sizeof(struct ip6_hdr)); 1827 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr); 1828 mh->m_len = sizeof(struct ip6_hdr); 1829 1830 ip6 = mtod(mh, struct ip6_hdr *); 1831 ip6->ip6_flow = 0; 1832 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 1833 ip6->ip6_vfc |= IPV6_VERSION; 1834 ip6->ip6_nxt = IPPROTO_ICMPV6; 1835 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 1836 ip6->ip6_dst = in6m->in6m_addr; 1837 1838 md->m_len = sizeof(struct mld_hdr); 1839 mld = mtod(md, struct mld_hdr *); 1840 mld->mld_type = type; 1841 mld->mld_code = 0; 1842 mld->mld_cksum = 0; 1843 mld->mld_maxdelay = 0; 1844 mld->mld_reserved = 0; 1845 mld->mld_addr = in6m->in6m_addr; 1846 in6_clearscope(&mld->mld_addr); 1847 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 1848 sizeof(struct ip6_hdr), sizeof(struct mld_hdr)); 1849 1850 mld_save_context(mh, ifp); 1851 mh->m_flags |= M_MLDV1; 1852 1853 mld_dispatch_packet(mh); 1854 1855 if (ia != NULL) 1856 ifa_free(&ia->ia_ifa); 1857 return (0); 1858 } 1859 1860 /* 1861 * Process a state change from the upper layer for the given IPv6 group. 1862 * 1863 * Each socket holds a reference on the in_multi in its own ip_moptions. 1864 * The socket layer will have made the necessary updates to.the group 1865 * state, it is now up to MLD to issue a state change report if there 1866 * has been any change between T0 (when the last state-change was issued) 1867 * and T1 (now). 1868 * 1869 * We use the MLDv2 state machine at group level. The MLd module 1870 * however makes the decision as to which MLD protocol version to speak. 1871 * A state change *from* INCLUDE {} always means an initial join. 1872 * A state change *to* INCLUDE {} always means a final leave. 1873 * 1874 * If delay is non-zero, and the state change is an initial multicast 1875 * join, the state change report will be delayed by 'delay' ticks 1876 * in units of PR_FASTHZ if MLDv1 is active on the link; otherwise 1877 * the initial MLDv2 state change report will be delayed by whichever 1878 * is sooner, a pending state-change timer or delay itself. 1879 * 1880 * VIMAGE: curvnet should have been set by caller, as this routine 1881 * is called from the socket option handlers. 1882 */ 1883 int 1884 mld_change_state(struct in6_multi *inm, const int delay) 1885 { 1886 struct mld_ifsoftc *mli; 1887 struct ifnet *ifp; 1888 int error; 1889 1890 IN6_MULTI_LIST_LOCK_ASSERT(); 1891 1892 error = 0; 1893 1894 /* 1895 * Try to detect if the upper layer just asked us to change state 1896 * for an interface which has now gone away. 1897 */ 1898 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); 1899 ifp = inm->in6m_ifma->ifma_ifp; 1900 if (ifp == NULL) 1901 return (0); 1902 /* 1903 * Sanity check that netinet6's notion of ifp is the 1904 * same as net's. 1905 */ 1906 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); 1907 1908 MLD_LOCK(); 1909 mli = MLD_IFINFO(ifp); 1910 KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp)); 1911 1912 /* 1913 * If we detect a state transition to or from MCAST_UNDEFINED 1914 * for this group, then we are starting or finishing an MLD 1915 * life cycle for this group. 1916 */ 1917 if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) { 1918 CTR3(KTR_MLD, "%s: inm transition %d -> %d", __func__, 1919 inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode); 1920 if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) { 1921 CTR1(KTR_MLD, "%s: initial join", __func__); 1922 error = mld_initial_join(inm, mli, delay); 1923 goto out_locked; 1924 } else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) { 1925 CTR1(KTR_MLD, "%s: final leave", __func__); 1926 mld_final_leave(inm, mli); 1927 goto out_locked; 1928 } 1929 } else { 1930 CTR1(KTR_MLD, "%s: filter set change", __func__); 1931 } 1932 1933 error = mld_handle_state_change(inm, mli); 1934 1935 out_locked: 1936 MLD_UNLOCK(); 1937 return (error); 1938 } 1939 1940 /* 1941 * Perform the initial join for an MLD group. 1942 * 1943 * When joining a group: 1944 * If the group should have its MLD traffic suppressed, do nothing. 1945 * MLDv1 starts sending MLDv1 host membership reports. 1946 * MLDv2 will schedule an MLDv2 state-change report containing the 1947 * initial state of the membership. 1948 * 1949 * If the delay argument is non-zero, then we must delay sending the 1950 * initial state change for delay ticks (in units of PR_FASTHZ). 1951 */ 1952 static int 1953 mld_initial_join(struct in6_multi *inm, struct mld_ifsoftc *mli, 1954 const int delay) 1955 { 1956 struct ifnet *ifp; 1957 struct mbufq *mq; 1958 int error, retval, syncstates; 1959 int odelay; 1960 #ifdef KTR 1961 char ip6tbuf[INET6_ADDRSTRLEN]; 1962 #endif 1963 1964 CTR4(KTR_MLD, "%s: initial join %s on ifp %p(%s)", 1965 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1966 inm->in6m_ifp, if_name(inm->in6m_ifp)); 1967 1968 error = 0; 1969 syncstates = 1; 1970 1971 ifp = inm->in6m_ifp; 1972 1973 IN6_MULTI_LIST_LOCK_ASSERT(); 1974 MLD_LOCK_ASSERT(); 1975 1976 KASSERT(mli && mli->mli_ifp == ifp, ("%s: inconsistent ifp", __func__)); 1977 1978 /* 1979 * Groups joined on loopback or marked as 'not reported', 1980 * enter the MLD_SILENT_MEMBER state and 1981 * are never reported in any protocol exchanges. 1982 * All other groups enter the appropriate state machine 1983 * for the version in use on this link. 1984 * A link marked as MLIF_SILENT causes MLD to be completely 1985 * disabled for the link. 1986 */ 1987 if ((ifp->if_flags & IFF_LOOPBACK) || 1988 (mli->mli_flags & MLIF_SILENT) || 1989 !mld_is_addr_reported(&inm->in6m_addr)) { 1990 CTR1(KTR_MLD, 1991 "%s: not kicking state machine for silent group", __func__); 1992 inm->in6m_state = MLD_SILENT_MEMBER; 1993 inm->in6m_timer = 0; 1994 } else { 1995 /* 1996 * Deal with overlapping in_multi lifecycle. 1997 * If this group was LEAVING, then make sure 1998 * we drop the reference we picked up to keep the 1999 * group around for the final INCLUDE {} enqueue. 2000 */ 2001 if (mli->mli_version == MLD_VERSION_2 && 2002 inm->in6m_state == MLD_LEAVING_MEMBER) { 2003 inm->in6m_refcount--; 2004 } 2005 inm->in6m_state = MLD_REPORTING_MEMBER; 2006 2007 switch (mli->mli_version) { 2008 case MLD_VERSION_1: 2009 /* 2010 * If a delay was provided, only use it if 2011 * it is greater than the delay normally 2012 * used for an MLDv1 state change report, 2013 * and delay sending the initial MLDv1 report 2014 * by not transitioning to the IDLE state. 2015 */ 2016 odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI * PR_FASTHZ); 2017 if (delay) { 2018 inm->in6m_timer = max(delay, odelay); 2019 V_current_state_timers_running6 = 1; 2020 } else { 2021 inm->in6m_state = MLD_IDLE_MEMBER; 2022 error = mld_v1_transmit_report(inm, 2023 MLD_LISTENER_REPORT); 2024 if (error == 0) { 2025 inm->in6m_timer = odelay; 2026 V_current_state_timers_running6 = 1; 2027 } 2028 } 2029 break; 2030 2031 case MLD_VERSION_2: 2032 /* 2033 * Defer update of T0 to T1, until the first copy 2034 * of the state change has been transmitted. 2035 */ 2036 syncstates = 0; 2037 2038 /* 2039 * Immediately enqueue a State-Change Report for 2040 * this interface, freeing any previous reports. 2041 * Don't kick the timers if there is nothing to do, 2042 * or if an error occurred. 2043 */ 2044 mq = &inm->in6m_scq; 2045 mbufq_drain(mq); 2046 retval = mld_v2_enqueue_group_record(mq, inm, 1, 2047 0, 0, (mli->mli_flags & MLIF_USEALLOW)); 2048 CTR2(KTR_MLD, "%s: enqueue record = %d", 2049 __func__, retval); 2050 if (retval <= 0) { 2051 error = retval * -1; 2052 break; 2053 } 2054 2055 /* 2056 * Schedule transmission of pending state-change 2057 * report up to RV times for this link. The timer 2058 * will fire at the next mld_fasttimo (~200ms), 2059 * giving us an opportunity to merge the reports. 2060 * 2061 * If a delay was provided to this function, only 2062 * use this delay if sooner than the existing one. 2063 */ 2064 KASSERT(mli->mli_rv > 1, 2065 ("%s: invalid robustness %d", __func__, 2066 mli->mli_rv)); 2067 inm->in6m_scrv = mli->mli_rv; 2068 if (delay) { 2069 if (inm->in6m_sctimer > 1) { 2070 inm->in6m_sctimer = 2071 min(inm->in6m_sctimer, delay); 2072 } else 2073 inm->in6m_sctimer = delay; 2074 } else 2075 inm->in6m_sctimer = 1; 2076 V_state_change_timers_running6 = 1; 2077 2078 error = 0; 2079 break; 2080 } 2081 } 2082 2083 /* 2084 * Only update the T0 state if state change is atomic, 2085 * i.e. we don't need to wait for a timer to fire before we 2086 * can consider the state change to have been communicated. 2087 */ 2088 if (syncstates) { 2089 in6m_commit(inm); 2090 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2091 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2092 if_name(inm->in6m_ifp)); 2093 } 2094 2095 return (error); 2096 } 2097 2098 /* 2099 * Issue an intermediate state change during the life-cycle. 2100 */ 2101 static int 2102 mld_handle_state_change(struct in6_multi *inm, struct mld_ifsoftc *mli) 2103 { 2104 struct ifnet *ifp; 2105 int retval; 2106 #ifdef KTR 2107 char ip6tbuf[INET6_ADDRSTRLEN]; 2108 #endif 2109 2110 CTR4(KTR_MLD, "%s: state change for %s on ifp %p(%s)", 2111 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2112 inm->in6m_ifp, if_name(inm->in6m_ifp)); 2113 2114 ifp = inm->in6m_ifp; 2115 2116 IN6_MULTI_LIST_LOCK_ASSERT(); 2117 MLD_LOCK_ASSERT(); 2118 2119 KASSERT(mli && mli->mli_ifp == ifp, 2120 ("%s: inconsistent ifp", __func__)); 2121 2122 if ((ifp->if_flags & IFF_LOOPBACK) || 2123 (mli->mli_flags & MLIF_SILENT) || 2124 !mld_is_addr_reported(&inm->in6m_addr) || 2125 (mli->mli_version != MLD_VERSION_2)) { 2126 if (!mld_is_addr_reported(&inm->in6m_addr)) { 2127 CTR1(KTR_MLD, 2128 "%s: not kicking state machine for silent group", __func__); 2129 } 2130 CTR1(KTR_MLD, "%s: nothing to do", __func__); 2131 in6m_commit(inm); 2132 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2133 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2134 if_name(inm->in6m_ifp)); 2135 return (0); 2136 } 2137 2138 mbufq_drain(&inm->in6m_scq); 2139 2140 retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0, 2141 (mli->mli_flags & MLIF_USEALLOW)); 2142 CTR2(KTR_MLD, "%s: enqueue record = %d", __func__, retval); 2143 if (retval <= 0) 2144 return (-retval); 2145 2146 /* 2147 * If record(s) were enqueued, start the state-change 2148 * report timer for this group. 2149 */ 2150 inm->in6m_scrv = mli->mli_rv; 2151 inm->in6m_sctimer = 1; 2152 V_state_change_timers_running6 = 1; 2153 2154 return (0); 2155 } 2156 2157 /* 2158 * Perform the final leave for a multicast address. 2159 * 2160 * When leaving a group: 2161 * MLDv1 sends a DONE message, if and only if we are the reporter. 2162 * MLDv2 enqueues a state-change report containing a transition 2163 * to INCLUDE {} for immediate transmission. 2164 */ 2165 static void 2166 mld_final_leave(struct in6_multi *inm, struct mld_ifsoftc *mli) 2167 { 2168 int syncstates; 2169 #ifdef KTR 2170 char ip6tbuf[INET6_ADDRSTRLEN]; 2171 #endif 2172 2173 syncstates = 1; 2174 2175 CTR4(KTR_MLD, "%s: final leave %s on ifp %p(%s)", 2176 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2177 inm->in6m_ifp, if_name(inm->in6m_ifp)); 2178 2179 IN6_MULTI_LIST_LOCK_ASSERT(); 2180 MLD_LOCK_ASSERT(); 2181 2182 switch (inm->in6m_state) { 2183 case MLD_NOT_MEMBER: 2184 case MLD_SILENT_MEMBER: 2185 case MLD_LEAVING_MEMBER: 2186 /* Already leaving or left; do nothing. */ 2187 CTR1(KTR_MLD, 2188 "%s: not kicking state machine for silent group", __func__); 2189 break; 2190 case MLD_REPORTING_MEMBER: 2191 case MLD_IDLE_MEMBER: 2192 case MLD_G_QUERY_PENDING_MEMBER: 2193 case MLD_SG_QUERY_PENDING_MEMBER: 2194 if (mli->mli_version == MLD_VERSION_1) { 2195 #ifdef INVARIANTS 2196 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 2197 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) 2198 panic("%s: MLDv2 state reached, not MLDv2 mode", 2199 __func__); 2200 #endif 2201 mld_v1_transmit_report(inm, MLD_LISTENER_DONE); 2202 inm->in6m_state = MLD_NOT_MEMBER; 2203 V_current_state_timers_running6 = 1; 2204 } else if (mli->mli_version == MLD_VERSION_2) { 2205 /* 2206 * Stop group timer and all pending reports. 2207 * Immediately enqueue a state-change report 2208 * TO_IN {} to be sent on the next fast timeout, 2209 * giving us an opportunity to merge reports. 2210 */ 2211 mbufq_drain(&inm->in6m_scq); 2212 inm->in6m_timer = 0; 2213 inm->in6m_scrv = mli->mli_rv; 2214 CTR4(KTR_MLD, "%s: Leaving %s/%s with %d " 2215 "pending retransmissions.", __func__, 2216 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2217 if_name(inm->in6m_ifp), inm->in6m_scrv); 2218 if (inm->in6m_scrv == 0) { 2219 inm->in6m_state = MLD_NOT_MEMBER; 2220 inm->in6m_sctimer = 0; 2221 } else { 2222 int retval; 2223 2224 in6m_acquire_locked(inm); 2225 2226 retval = mld_v2_enqueue_group_record( 2227 &inm->in6m_scq, inm, 1, 0, 0, 2228 (mli->mli_flags & MLIF_USEALLOW)); 2229 KASSERT(retval != 0, 2230 ("%s: enqueue record = %d", __func__, 2231 retval)); 2232 2233 inm->in6m_state = MLD_LEAVING_MEMBER; 2234 inm->in6m_sctimer = 1; 2235 V_state_change_timers_running6 = 1; 2236 syncstates = 0; 2237 } 2238 break; 2239 } 2240 break; 2241 case MLD_LAZY_MEMBER: 2242 case MLD_SLEEPING_MEMBER: 2243 case MLD_AWAKENING_MEMBER: 2244 /* Our reports are suppressed; do nothing. */ 2245 break; 2246 } 2247 2248 if (syncstates) { 2249 in6m_commit(inm); 2250 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2251 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2252 if_name(inm->in6m_ifp)); 2253 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 2254 CTR3(KTR_MLD, "%s: T1 now MCAST_UNDEFINED for %p/%s", 2255 __func__, &inm->in6m_addr, if_name(inm->in6m_ifp)); 2256 } 2257 } 2258 2259 /* 2260 * Enqueue an MLDv2 group record to the given output queue. 2261 * 2262 * If is_state_change is zero, a current-state record is appended. 2263 * If is_state_change is non-zero, a state-change report is appended. 2264 * 2265 * If is_group_query is non-zero, an mbuf packet chain is allocated. 2266 * If is_group_query is zero, and if there is a packet with free space 2267 * at the tail of the queue, it will be appended to providing there 2268 * is enough free space. 2269 * Otherwise a new mbuf packet chain is allocated. 2270 * 2271 * If is_source_query is non-zero, each source is checked to see if 2272 * it was recorded for a Group-Source query, and will be omitted if 2273 * it is not both in-mode and recorded. 2274 * 2275 * If use_block_allow is non-zero, state change reports for initial join 2276 * and final leave, on an inclusive mode group with a source list, will be 2277 * rewritten to use the ALLOW_NEW and BLOCK_OLD record types, respectively. 2278 * 2279 * The function will attempt to allocate leading space in the packet 2280 * for the IPv6+ICMP headers to be prepended without fragmenting the chain. 2281 * 2282 * If successful the size of all data appended to the queue is returned, 2283 * otherwise an error code less than zero is returned, or zero if 2284 * no record(s) were appended. 2285 */ 2286 static int 2287 mld_v2_enqueue_group_record(struct mbufq *mq, struct in6_multi *inm, 2288 const int is_state_change, const int is_group_query, 2289 const int is_source_query, const int use_block_allow) 2290 { 2291 struct mldv2_record mr; 2292 struct mldv2_record *pmr; 2293 struct ifnet *ifp; 2294 struct ip6_msource *ims, *nims; 2295 struct mbuf *m0, *m, *md; 2296 int is_filter_list_change; 2297 int minrec0len, m0srcs, msrcs, nbytes, off; 2298 int record_has_sources; 2299 int now; 2300 int type; 2301 uint8_t mode; 2302 #ifdef KTR 2303 char ip6tbuf[INET6_ADDRSTRLEN]; 2304 #endif 2305 2306 IN6_MULTI_LIST_LOCK_ASSERT(); 2307 2308 ifp = inm->in6m_ifp; 2309 is_filter_list_change = 0; 2310 m = NULL; 2311 m0 = NULL; 2312 m0srcs = 0; 2313 msrcs = 0; 2314 nbytes = 0; 2315 nims = NULL; 2316 record_has_sources = 1; 2317 pmr = NULL; 2318 type = MLD_DO_NOTHING; 2319 mode = inm->in6m_st[1].iss_fmode; 2320 2321 /* 2322 * If we did not transition out of ASM mode during t0->t1, 2323 * and there are no source nodes to process, we can skip 2324 * the generation of source records. 2325 */ 2326 if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 && 2327 inm->in6m_nsrc == 0) 2328 record_has_sources = 0; 2329 2330 if (is_state_change) { 2331 /* 2332 * Queue a state change record. 2333 * If the mode did not change, and there are non-ASM 2334 * listeners or source filters present, 2335 * we potentially need to issue two records for the group. 2336 * If there are ASM listeners, and there was no filter 2337 * mode transition of any kind, do nothing. 2338 * 2339 * If we are transitioning to MCAST_UNDEFINED, we need 2340 * not send any sources. A transition to/from this state is 2341 * considered inclusive with some special treatment. 2342 * 2343 * If we are rewriting initial joins/leaves to use 2344 * ALLOW/BLOCK, and the group's membership is inclusive, 2345 * we need to send sources in all cases. 2346 */ 2347 if (mode != inm->in6m_st[0].iss_fmode) { 2348 if (mode == MCAST_EXCLUDE) { 2349 CTR1(KTR_MLD, "%s: change to EXCLUDE", 2350 __func__); 2351 type = MLD_CHANGE_TO_EXCLUDE_MODE; 2352 } else { 2353 CTR1(KTR_MLD, "%s: change to INCLUDE", 2354 __func__); 2355 if (use_block_allow) { 2356 /* 2357 * XXX 2358 * Here we're interested in state 2359 * edges either direction between 2360 * MCAST_UNDEFINED and MCAST_INCLUDE. 2361 * Perhaps we should just check 2362 * the group state, rather than 2363 * the filter mode. 2364 */ 2365 if (mode == MCAST_UNDEFINED) { 2366 type = MLD_BLOCK_OLD_SOURCES; 2367 } else { 2368 type = MLD_ALLOW_NEW_SOURCES; 2369 } 2370 } else { 2371 type = MLD_CHANGE_TO_INCLUDE_MODE; 2372 if (mode == MCAST_UNDEFINED) 2373 record_has_sources = 0; 2374 } 2375 } 2376 } else { 2377 if (record_has_sources) { 2378 is_filter_list_change = 1; 2379 } else { 2380 type = MLD_DO_NOTHING; 2381 } 2382 } 2383 } else { 2384 /* 2385 * Queue a current state record. 2386 */ 2387 if (mode == MCAST_EXCLUDE) { 2388 type = MLD_MODE_IS_EXCLUDE; 2389 } else if (mode == MCAST_INCLUDE) { 2390 type = MLD_MODE_IS_INCLUDE; 2391 KASSERT(inm->in6m_st[1].iss_asm == 0, 2392 ("%s: inm %p is INCLUDE but ASM count is %d", 2393 __func__, inm, inm->in6m_st[1].iss_asm)); 2394 } 2395 } 2396 2397 /* 2398 * Generate the filter list changes using a separate function. 2399 */ 2400 if (is_filter_list_change) 2401 return (mld_v2_enqueue_filter_change(mq, inm)); 2402 2403 if (type == MLD_DO_NOTHING) { 2404 CTR3(KTR_MLD, "%s: nothing to do for %s/%s", 2405 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2406 if_name(inm->in6m_ifp)); 2407 return (0); 2408 } 2409 2410 /* 2411 * If any sources are present, we must be able to fit at least 2412 * one in the trailing space of the tail packet's mbuf, 2413 * ideally more. 2414 */ 2415 minrec0len = sizeof(struct mldv2_record); 2416 if (record_has_sources) 2417 minrec0len += sizeof(struct in6_addr); 2418 2419 CTR4(KTR_MLD, "%s: queueing %s for %s/%s", __func__, 2420 mld_rec_type_to_str(type), 2421 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2422 if_name(inm->in6m_ifp)); 2423 2424 /* 2425 * Check if we have a packet in the tail of the queue for this 2426 * group into which the first group record for this group will fit. 2427 * Otherwise allocate a new packet. 2428 * Always allocate leading space for IP6+RA+ICMPV6+REPORT. 2429 * Note: Group records for G/GSR query responses MUST be sent 2430 * in their own packet. 2431 */ 2432 m0 = mbufq_last(mq); 2433 if (!is_group_query && 2434 m0 != NULL && 2435 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) && 2436 (m0->m_pkthdr.len + minrec0len) < 2437 (ifp->if_mtu - MLD_MTUSPACE)) { 2438 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2439 sizeof(struct mldv2_record)) / 2440 sizeof(struct in6_addr); 2441 m = m0; 2442 CTR1(KTR_MLD, "%s: use existing packet", __func__); 2443 } else { 2444 if (mbufq_full(mq)) { 2445 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2446 return (-ENOMEM); 2447 } 2448 m = NULL; 2449 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2450 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2451 if (!is_state_change && !is_group_query) 2452 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2453 if (m == NULL) 2454 m = m_gethdr(M_NOWAIT, MT_DATA); 2455 if (m == NULL) 2456 return (-ENOMEM); 2457 2458 mld_save_context(m, ifp); 2459 2460 CTR1(KTR_MLD, "%s: allocated first packet", __func__); 2461 } 2462 2463 /* 2464 * Append group record. 2465 * If we have sources, we don't know how many yet. 2466 */ 2467 mr.mr_type = type; 2468 mr.mr_datalen = 0; 2469 mr.mr_numsrc = 0; 2470 mr.mr_addr = inm->in6m_addr; 2471 in6_clearscope(&mr.mr_addr); 2472 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2473 if (m != m0) 2474 m_freem(m); 2475 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2476 return (-ENOMEM); 2477 } 2478 nbytes += sizeof(struct mldv2_record); 2479 2480 /* 2481 * Append as many sources as will fit in the first packet. 2482 * If we are appending to a new packet, the chain allocation 2483 * may potentially use clusters; use m_getptr() in this case. 2484 * If we are appending to an existing packet, we need to obtain 2485 * a pointer to the group record after m_append(), in case a new 2486 * mbuf was allocated. 2487 * 2488 * Only append sources which are in-mode at t1. If we are 2489 * transitioning to MCAST_UNDEFINED state on the group, and 2490 * use_block_allow is zero, do not include source entries. 2491 * Otherwise, we need to include this source in the report. 2492 * 2493 * Only report recorded sources in our filter set when responding 2494 * to a group-source query. 2495 */ 2496 if (record_has_sources) { 2497 if (m == m0) { 2498 md = m_last(m); 2499 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2500 md->m_len - nbytes); 2501 } else { 2502 md = m_getptr(m, 0, &off); 2503 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2504 off); 2505 } 2506 msrcs = 0; 2507 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, 2508 nims) { 2509 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2510 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2511 now = im6s_get_mode(inm, ims, 1); 2512 CTR2(KTR_MLD, "%s: node is %d", __func__, now); 2513 if ((now != mode) || 2514 (now == mode && 2515 (!use_block_allow && mode == MCAST_UNDEFINED))) { 2516 CTR1(KTR_MLD, "%s: skip node", __func__); 2517 continue; 2518 } 2519 if (is_source_query && ims->im6s_stp == 0) { 2520 CTR1(KTR_MLD, "%s: skip unrecorded node", 2521 __func__); 2522 continue; 2523 } 2524 CTR1(KTR_MLD, "%s: append node", __func__); 2525 if (!m_append(m, sizeof(struct in6_addr), 2526 (void *)&ims->im6s_addr)) { 2527 if (m != m0) 2528 m_freem(m); 2529 CTR1(KTR_MLD, "%s: m_append() failed.", 2530 __func__); 2531 return (-ENOMEM); 2532 } 2533 nbytes += sizeof(struct in6_addr); 2534 ++msrcs; 2535 if (msrcs == m0srcs) 2536 break; 2537 } 2538 CTR2(KTR_MLD, "%s: msrcs is %d this packet", __func__, 2539 msrcs); 2540 pmr->mr_numsrc = htons(msrcs); 2541 nbytes += (msrcs * sizeof(struct in6_addr)); 2542 } 2543 2544 if (is_source_query && msrcs == 0) { 2545 CTR1(KTR_MLD, "%s: no recorded sources to report", __func__); 2546 if (m != m0) 2547 m_freem(m); 2548 return (0); 2549 } 2550 2551 /* 2552 * We are good to go with first packet. 2553 */ 2554 if (m != m0) { 2555 CTR1(KTR_MLD, "%s: enqueueing first packet", __func__); 2556 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2557 mbufq_enqueue(mq, m); 2558 } else 2559 m->m_pkthdr.PH_vt.vt_nrecs++; 2560 2561 /* 2562 * No further work needed if no source list in packet(s). 2563 */ 2564 if (!record_has_sources) 2565 return (nbytes); 2566 2567 /* 2568 * Whilst sources remain to be announced, we need to allocate 2569 * a new packet and fill out as many sources as will fit. 2570 * Always try for a cluster first. 2571 */ 2572 while (nims != NULL) { 2573 if (mbufq_full(mq)) { 2574 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2575 return (-ENOMEM); 2576 } 2577 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2578 if (m == NULL) 2579 m = m_gethdr(M_NOWAIT, MT_DATA); 2580 if (m == NULL) 2581 return (-ENOMEM); 2582 mld_save_context(m, ifp); 2583 md = m_getptr(m, 0, &off); 2584 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off); 2585 CTR1(KTR_MLD, "%s: allocated next packet", __func__); 2586 2587 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2588 if (m != m0) 2589 m_freem(m); 2590 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2591 return (-ENOMEM); 2592 } 2593 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2594 nbytes += sizeof(struct mldv2_record); 2595 2596 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2597 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2598 2599 msrcs = 0; 2600 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2601 CTR2(KTR_MLD, "%s: visit node %s", 2602 __func__, ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2603 now = im6s_get_mode(inm, ims, 1); 2604 if ((now != mode) || 2605 (now == mode && 2606 (!use_block_allow && mode == MCAST_UNDEFINED))) { 2607 CTR1(KTR_MLD, "%s: skip node", __func__); 2608 continue; 2609 } 2610 if (is_source_query && ims->im6s_stp == 0) { 2611 CTR1(KTR_MLD, "%s: skip unrecorded node", 2612 __func__); 2613 continue; 2614 } 2615 CTR1(KTR_MLD, "%s: append node", __func__); 2616 if (!m_append(m, sizeof(struct in6_addr), 2617 (void *)&ims->im6s_addr)) { 2618 if (m != m0) 2619 m_freem(m); 2620 CTR1(KTR_MLD, "%s: m_append() failed.", 2621 __func__); 2622 return (-ENOMEM); 2623 } 2624 ++msrcs; 2625 if (msrcs == m0srcs) 2626 break; 2627 } 2628 pmr->mr_numsrc = htons(msrcs); 2629 nbytes += (msrcs * sizeof(struct in6_addr)); 2630 2631 CTR1(KTR_MLD, "%s: enqueueing next packet", __func__); 2632 mbufq_enqueue(mq, m); 2633 } 2634 2635 return (nbytes); 2636 } 2637 2638 /* 2639 * Type used to mark record pass completion. 2640 * We exploit the fact we can cast to this easily from the 2641 * current filter modes on each ip_msource node. 2642 */ 2643 typedef enum { 2644 REC_NONE = 0x00, /* MCAST_UNDEFINED */ 2645 REC_ALLOW = 0x01, /* MCAST_INCLUDE */ 2646 REC_BLOCK = 0x02, /* MCAST_EXCLUDE */ 2647 REC_FULL = REC_ALLOW | REC_BLOCK 2648 } rectype_t; 2649 2650 /* 2651 * Enqueue an MLDv2 filter list change to the given output queue. 2652 * 2653 * Source list filter state is held in an RB-tree. When the filter list 2654 * for a group is changed without changing its mode, we need to compute 2655 * the deltas between T0 and T1 for each source in the filter set, 2656 * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records. 2657 * 2658 * As we may potentially queue two record types, and the entire R-B tree 2659 * needs to be walked at once, we break this out into its own function 2660 * so we can generate a tightly packed queue of packets. 2661 * 2662 * XXX This could be written to only use one tree walk, although that makes 2663 * serializing into the mbuf chains a bit harder. For now we do two walks 2664 * which makes things easier on us, and it may or may not be harder on 2665 * the L2 cache. 2666 * 2667 * If successful the size of all data appended to the queue is returned, 2668 * otherwise an error code less than zero is returned, or zero if 2669 * no record(s) were appended. 2670 */ 2671 static int 2672 mld_v2_enqueue_filter_change(struct mbufq *mq, struct in6_multi *inm) 2673 { 2674 static const int MINRECLEN = 2675 sizeof(struct mldv2_record) + sizeof(struct in6_addr); 2676 struct ifnet *ifp; 2677 struct mldv2_record mr; 2678 struct mldv2_record *pmr; 2679 struct ip6_msource *ims, *nims; 2680 struct mbuf *m, *m0, *md; 2681 int m0srcs, nbytes, npbytes, off, rsrcs, schanged; 2682 int nallow, nblock; 2683 uint8_t mode, now, then; 2684 rectype_t crt, drt, nrt; 2685 #ifdef KTR 2686 char ip6tbuf[INET6_ADDRSTRLEN]; 2687 #endif 2688 2689 IN6_MULTI_LIST_LOCK_ASSERT(); 2690 2691 if (inm->in6m_nsrc == 0 || 2692 (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0)) 2693 return (0); 2694 2695 ifp = inm->in6m_ifp; /* interface */ 2696 mode = inm->in6m_st[1].iss_fmode; /* filter mode at t1 */ 2697 crt = REC_NONE; /* current group record type */ 2698 drt = REC_NONE; /* mask of completed group record types */ 2699 nrt = REC_NONE; /* record type for current node */ 2700 m0srcs = 0; /* # source which will fit in current mbuf chain */ 2701 npbytes = 0; /* # of bytes appended this packet */ 2702 nbytes = 0; /* # of bytes appended to group's state-change queue */ 2703 rsrcs = 0; /* # sources encoded in current record */ 2704 schanged = 0; /* # nodes encoded in overall filter change */ 2705 nallow = 0; /* # of source entries in ALLOW_NEW */ 2706 nblock = 0; /* # of source entries in BLOCK_OLD */ 2707 nims = NULL; /* next tree node pointer */ 2708 2709 /* 2710 * For each possible filter record mode. 2711 * The first kind of source we encounter tells us which 2712 * is the first kind of record we start appending. 2713 * If a node transitioned to UNDEFINED at t1, its mode is treated 2714 * as the inverse of the group's filter mode. 2715 */ 2716 while (drt != REC_FULL) { 2717 do { 2718 m0 = mbufq_last(mq); 2719 if (m0 != NULL && 2720 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= 2721 MLD_V2_REPORT_MAXRECS) && 2722 (m0->m_pkthdr.len + MINRECLEN) < 2723 (ifp->if_mtu - MLD_MTUSPACE)) { 2724 m = m0; 2725 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2726 sizeof(struct mldv2_record)) / 2727 sizeof(struct in6_addr); 2728 CTR1(KTR_MLD, 2729 "%s: use previous packet", __func__); 2730 } else { 2731 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2732 if (m == NULL) 2733 m = m_gethdr(M_NOWAIT, MT_DATA); 2734 if (m == NULL) { 2735 CTR1(KTR_MLD, 2736 "%s: m_get*() failed", __func__); 2737 return (-ENOMEM); 2738 } 2739 m->m_pkthdr.PH_vt.vt_nrecs = 0; 2740 mld_save_context(m, ifp); 2741 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2742 sizeof(struct mldv2_record)) / 2743 sizeof(struct in6_addr); 2744 npbytes = 0; 2745 CTR1(KTR_MLD, 2746 "%s: allocated new packet", __func__); 2747 } 2748 /* 2749 * Append the MLD group record header to the 2750 * current packet's data area. 2751 * Recalculate pointer to free space for next 2752 * group record, in case m_append() allocated 2753 * a new mbuf or cluster. 2754 */ 2755 memset(&mr, 0, sizeof(mr)); 2756 mr.mr_addr = inm->in6m_addr; 2757 in6_clearscope(&mr.mr_addr); 2758 if (!m_append(m, sizeof(mr), (void *)&mr)) { 2759 if (m != m0) 2760 m_freem(m); 2761 CTR1(KTR_MLD, 2762 "%s: m_append() failed", __func__); 2763 return (-ENOMEM); 2764 } 2765 npbytes += sizeof(struct mldv2_record); 2766 if (m != m0) { 2767 /* new packet; offset in chain */ 2768 md = m_getptr(m, npbytes - 2769 sizeof(struct mldv2_record), &off); 2770 pmr = (struct mldv2_record *)(mtod(md, 2771 uint8_t *) + off); 2772 } else { 2773 /* current packet; offset from last append */ 2774 md = m_last(m); 2775 pmr = (struct mldv2_record *)(mtod(md, 2776 uint8_t *) + md->m_len - 2777 sizeof(struct mldv2_record)); 2778 } 2779 /* 2780 * Begin walking the tree for this record type 2781 * pass, or continue from where we left off 2782 * previously if we had to allocate a new packet. 2783 * Only report deltas in-mode at t1. 2784 * We need not report included sources as allowed 2785 * if we are in inclusive mode on the group, 2786 * however the converse is not true. 2787 */ 2788 rsrcs = 0; 2789 if (nims == NULL) { 2790 nims = RB_MIN(ip6_msource_tree, 2791 &inm->in6m_srcs); 2792 } 2793 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2794 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2795 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2796 now = im6s_get_mode(inm, ims, 1); 2797 then = im6s_get_mode(inm, ims, 0); 2798 CTR3(KTR_MLD, "%s: mode: t0 %d, t1 %d", 2799 __func__, then, now); 2800 if (now == then) { 2801 CTR1(KTR_MLD, 2802 "%s: skip unchanged", __func__); 2803 continue; 2804 } 2805 if (mode == MCAST_EXCLUDE && 2806 now == MCAST_INCLUDE) { 2807 CTR1(KTR_MLD, 2808 "%s: skip IN src on EX group", 2809 __func__); 2810 continue; 2811 } 2812 nrt = (rectype_t)now; 2813 if (nrt == REC_NONE) 2814 nrt = (rectype_t)(~mode & REC_FULL); 2815 if (schanged++ == 0) { 2816 crt = nrt; 2817 } else if (crt != nrt) 2818 continue; 2819 if (!m_append(m, sizeof(struct in6_addr), 2820 (void *)&ims->im6s_addr)) { 2821 if (m != m0) 2822 m_freem(m); 2823 CTR1(KTR_MLD, 2824 "%s: m_append() failed", __func__); 2825 return (-ENOMEM); 2826 } 2827 nallow += !!(crt == REC_ALLOW); 2828 nblock += !!(crt == REC_BLOCK); 2829 if (++rsrcs == m0srcs) 2830 break; 2831 } 2832 /* 2833 * If we did not append any tree nodes on this 2834 * pass, back out of allocations. 2835 */ 2836 if (rsrcs == 0) { 2837 npbytes -= sizeof(struct mldv2_record); 2838 if (m != m0) { 2839 CTR1(KTR_MLD, 2840 "%s: m_free(m)", __func__); 2841 m_freem(m); 2842 } else { 2843 CTR1(KTR_MLD, 2844 "%s: m_adj(m, -mr)", __func__); 2845 m_adj(m, -((int)sizeof( 2846 struct mldv2_record))); 2847 } 2848 continue; 2849 } 2850 npbytes += (rsrcs * sizeof(struct in6_addr)); 2851 if (crt == REC_ALLOW) 2852 pmr->mr_type = MLD_ALLOW_NEW_SOURCES; 2853 else if (crt == REC_BLOCK) 2854 pmr->mr_type = MLD_BLOCK_OLD_SOURCES; 2855 pmr->mr_numsrc = htons(rsrcs); 2856 /* 2857 * Count the new group record, and enqueue this 2858 * packet if it wasn't already queued. 2859 */ 2860 m->m_pkthdr.PH_vt.vt_nrecs++; 2861 if (m != m0) 2862 mbufq_enqueue(mq, m); 2863 nbytes += npbytes; 2864 } while (nims != NULL); 2865 drt |= crt; 2866 crt = (~crt & REC_FULL); 2867 } 2868 2869 CTR3(KTR_MLD, "%s: queued %d ALLOW_NEW, %d BLOCK_OLD", __func__, 2870 nallow, nblock); 2871 2872 return (nbytes); 2873 } 2874 2875 static int 2876 mld_v2_merge_state_changes(struct in6_multi *inm, struct mbufq *scq) 2877 { 2878 struct mbufq *gq; 2879 struct mbuf *m; /* pending state-change */ 2880 struct mbuf *m0; /* copy of pending state-change */ 2881 struct mbuf *mt; /* last state-change in packet */ 2882 int docopy, domerge; 2883 u_int recslen; 2884 2885 docopy = 0; 2886 domerge = 0; 2887 recslen = 0; 2888 2889 IN6_MULTI_LIST_LOCK_ASSERT(); 2890 MLD_LOCK_ASSERT(); 2891 2892 /* 2893 * If there are further pending retransmissions, make a writable 2894 * copy of each queued state-change message before merging. 2895 */ 2896 if (inm->in6m_scrv > 0) 2897 docopy = 1; 2898 2899 gq = &inm->in6m_scq; 2900 #ifdef KTR 2901 if (mbufq_first(gq) == NULL) { 2902 CTR2(KTR_MLD, "%s: WARNING: queue for inm %p is empty", 2903 __func__, inm); 2904 } 2905 #endif 2906 2907 m = mbufq_first(gq); 2908 while (m != NULL) { 2909 /* 2910 * Only merge the report into the current packet if 2911 * there is sufficient space to do so; an MLDv2 report 2912 * packet may only contain 65,535 group records. 2913 * Always use a simple mbuf chain concatentation to do this, 2914 * as large state changes for single groups may have 2915 * allocated clusters. 2916 */ 2917 domerge = 0; 2918 mt = mbufq_last(scq); 2919 if (mt != NULL) { 2920 recslen = m_length(m, NULL); 2921 2922 if ((mt->m_pkthdr.PH_vt.vt_nrecs + 2923 m->m_pkthdr.PH_vt.vt_nrecs <= 2924 MLD_V2_REPORT_MAXRECS) && 2925 (mt->m_pkthdr.len + recslen <= 2926 (inm->in6m_ifp->if_mtu - MLD_MTUSPACE))) 2927 domerge = 1; 2928 } 2929 2930 if (!domerge && mbufq_full(gq)) { 2931 CTR2(KTR_MLD, 2932 "%s: outbound queue full, skipping whole packet %p", 2933 __func__, m); 2934 mt = m->m_nextpkt; 2935 if (!docopy) 2936 m_freem(m); 2937 m = mt; 2938 continue; 2939 } 2940 2941 if (!docopy) { 2942 CTR2(KTR_MLD, "%s: dequeueing %p", __func__, m); 2943 m0 = mbufq_dequeue(gq); 2944 m = m0->m_nextpkt; 2945 } else { 2946 CTR2(KTR_MLD, "%s: copying %p", __func__, m); 2947 m0 = m_dup(m, M_NOWAIT); 2948 if (m0 == NULL) 2949 return (ENOMEM); 2950 m0->m_nextpkt = NULL; 2951 m = m->m_nextpkt; 2952 } 2953 2954 if (!domerge) { 2955 CTR3(KTR_MLD, "%s: queueing %p to scq %p)", 2956 __func__, m0, scq); 2957 mbufq_enqueue(scq, m0); 2958 } else { 2959 struct mbuf *mtl; /* last mbuf of packet mt */ 2960 2961 CTR3(KTR_MLD, "%s: merging %p with ifscq tail %p)", 2962 __func__, m0, mt); 2963 2964 mtl = m_last(mt); 2965 m0->m_flags &= ~M_PKTHDR; 2966 mt->m_pkthdr.len += recslen; 2967 mt->m_pkthdr.PH_vt.vt_nrecs += 2968 m0->m_pkthdr.PH_vt.vt_nrecs; 2969 2970 mtl->m_next = m0; 2971 } 2972 } 2973 2974 return (0); 2975 } 2976 2977 /* 2978 * Respond to a pending MLDv2 General Query. 2979 */ 2980 static void 2981 mld_v2_dispatch_general_query(struct mld_ifsoftc *mli) 2982 { 2983 struct ifmultiaddr *ifma; 2984 struct ifnet *ifp; 2985 struct in6_multi *inm; 2986 int retval; 2987 2988 IN6_MULTI_LIST_LOCK_ASSERT(); 2989 MLD_LOCK_ASSERT(); 2990 2991 KASSERT(mli->mli_version == MLD_VERSION_2, 2992 ("%s: called when version %d", __func__, mli->mli_version)); 2993 2994 /* 2995 * Check that there are some packets queued. If so, send them first. 2996 * For large number of groups the reply to general query can take 2997 * many packets, we should finish sending them before starting of 2998 * queuing the new reply. 2999 */ 3000 if (mbufq_len(&mli->mli_gq) != 0) 3001 goto send; 3002 3003 ifp = mli->mli_ifp; 3004 3005 IF_ADDR_RLOCK(ifp); 3006 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3007 if (ifma->ifma_addr->sa_family != AF_INET6 || 3008 ifma->ifma_protospec == NULL) 3009 continue; 3010 3011 inm = (struct in6_multi *)ifma->ifma_protospec; 3012 KASSERT(ifp == inm->in6m_ifp, 3013 ("%s: inconsistent ifp", __func__)); 3014 3015 switch (inm->in6m_state) { 3016 case MLD_NOT_MEMBER: 3017 case MLD_SILENT_MEMBER: 3018 break; 3019 case MLD_REPORTING_MEMBER: 3020 case MLD_IDLE_MEMBER: 3021 case MLD_LAZY_MEMBER: 3022 case MLD_SLEEPING_MEMBER: 3023 case MLD_AWAKENING_MEMBER: 3024 inm->in6m_state = MLD_REPORTING_MEMBER; 3025 retval = mld_v2_enqueue_group_record(&mli->mli_gq, 3026 inm, 0, 0, 0, 0); 3027 CTR2(KTR_MLD, "%s: enqueue record = %d", 3028 __func__, retval); 3029 break; 3030 case MLD_G_QUERY_PENDING_MEMBER: 3031 case MLD_SG_QUERY_PENDING_MEMBER: 3032 case MLD_LEAVING_MEMBER: 3033 break; 3034 } 3035 } 3036 IF_ADDR_RUNLOCK(ifp); 3037 3038 send: 3039 mld_dispatch_queue(&mli->mli_gq, MLD_MAX_RESPONSE_BURST); 3040 3041 /* 3042 * Slew transmission of bursts over 500ms intervals. 3043 */ 3044 if (mbufq_first(&mli->mli_gq) != NULL) { 3045 mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY( 3046 MLD_RESPONSE_BURST_INTERVAL); 3047 V_interface_timers_running6 = 1; 3048 } 3049 } 3050 3051 /* 3052 * Transmit the next pending message in the output queue. 3053 * 3054 * VIMAGE: Needs to store/restore vnet pointer on a per-mbuf-chain basis. 3055 * MRT: Nothing needs to be done, as MLD traffic is always local to 3056 * a link and uses a link-scope multicast address. 3057 */ 3058 static void 3059 mld_dispatch_packet(struct mbuf *m) 3060 { 3061 struct ip6_moptions im6o; 3062 struct ifnet *ifp; 3063 struct ifnet *oifp; 3064 struct mbuf *m0; 3065 struct mbuf *md; 3066 struct ip6_hdr *ip6; 3067 struct mld_hdr *mld; 3068 int error; 3069 int off; 3070 int type; 3071 uint32_t ifindex; 3072 3073 CTR2(KTR_MLD, "%s: transmit %p", __func__, m); 3074 3075 /* 3076 * Set VNET image pointer from enqueued mbuf chain 3077 * before doing anything else. Whilst we use interface 3078 * indexes to guard against interface detach, they are 3079 * unique to each VIMAGE and must be retrieved. 3080 */ 3081 ifindex = mld_restore_context(m); 3082 3083 /* 3084 * Check if the ifnet still exists. This limits the scope of 3085 * any race in the absence of a global ifp lock for low cost 3086 * (an array lookup). 3087 */ 3088 ifp = ifnet_byindex(ifindex); 3089 if (ifp == NULL) { 3090 CTR3(KTR_MLD, "%s: dropped %p as ifindex %u went away.", 3091 __func__, m, ifindex); 3092 m_freem(m); 3093 IP6STAT_INC(ip6s_noroute); 3094 goto out; 3095 } 3096 3097 im6o.im6o_multicast_hlim = 1; 3098 im6o.im6o_multicast_loop = (V_ip6_mrouter != NULL); 3099 im6o.im6o_multicast_ifp = ifp; 3100 3101 if (m->m_flags & M_MLDV1) { 3102 m0 = m; 3103 } else { 3104 m0 = mld_v2_encap_report(ifp, m); 3105 if (m0 == NULL) { 3106 CTR2(KTR_MLD, "%s: dropped %p", __func__, m); 3107 IP6STAT_INC(ip6s_odropped); 3108 goto out; 3109 } 3110 } 3111 3112 mld_scrub_context(m0); 3113 m_clrprotoflags(m); 3114 m0->m_pkthdr.rcvif = V_loif; 3115 3116 ip6 = mtod(m0, struct ip6_hdr *); 3117 #if 0 3118 (void)in6_setscope(&ip6->ip6_dst, ifp, NULL); /* XXX LOR */ 3119 #else 3120 /* 3121 * XXX XXX Break some KPI rules to prevent an LOR which would 3122 * occur if we called in6_setscope() at transmission. 3123 * See comments at top of file. 3124 */ 3125 MLD_EMBEDSCOPE(&ip6->ip6_dst, ifp->if_index); 3126 #endif 3127 3128 /* 3129 * Retrieve the ICMPv6 type before handoff to ip6_output(), 3130 * so we can bump the stats. 3131 */ 3132 md = m_getptr(m0, sizeof(struct ip6_hdr), &off); 3133 mld = (struct mld_hdr *)(mtod(md, uint8_t *) + off); 3134 type = mld->mld_type; 3135 3136 error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, &im6o, 3137 &oifp, NULL); 3138 if (error) { 3139 CTR3(KTR_MLD, "%s: ip6_output(%p) = %d", __func__, m0, error); 3140 goto out; 3141 } 3142 ICMP6STAT_INC(icp6s_outhist[type]); 3143 if (oifp != NULL) { 3144 icmp6_ifstat_inc(oifp, ifs6_out_msg); 3145 switch (type) { 3146 case MLD_LISTENER_REPORT: 3147 case MLDV2_LISTENER_REPORT: 3148 icmp6_ifstat_inc(oifp, ifs6_out_mldreport); 3149 break; 3150 case MLD_LISTENER_DONE: 3151 icmp6_ifstat_inc(oifp, ifs6_out_mlddone); 3152 break; 3153 } 3154 } 3155 out: 3156 return; 3157 } 3158 3159 /* 3160 * Encapsulate an MLDv2 report. 3161 * 3162 * KAME IPv6 requires that hop-by-hop options be passed separately, 3163 * and that the IPv6 header be prepended in a separate mbuf. 3164 * 3165 * Returns a pointer to the new mbuf chain head, or NULL if the 3166 * allocation failed. 3167 */ 3168 static struct mbuf * 3169 mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m) 3170 { 3171 struct mbuf *mh; 3172 struct mldv2_report *mld; 3173 struct ip6_hdr *ip6; 3174 struct in6_ifaddr *ia; 3175 int mldreclen; 3176 3177 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 3178 KASSERT((m->m_flags & M_PKTHDR), 3179 ("%s: mbuf chain %p is !M_PKTHDR", __func__, m)); 3180 3181 /* 3182 * RFC3590: OK to send as :: or tentative during DAD. 3183 */ 3184 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 3185 if (ia == NULL) 3186 CTR1(KTR_MLD, "%s: warning: ia is NULL", __func__); 3187 3188 mh = m_gethdr(M_NOWAIT, MT_DATA); 3189 if (mh == NULL) { 3190 if (ia != NULL) 3191 ifa_free(&ia->ia_ifa); 3192 m_freem(m); 3193 return (NULL); 3194 } 3195 M_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report)); 3196 3197 mldreclen = m_length(m, NULL); 3198 CTR2(KTR_MLD, "%s: mldreclen is %d", __func__, mldreclen); 3199 3200 mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report); 3201 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + 3202 sizeof(struct mldv2_report) + mldreclen; 3203 3204 ip6 = mtod(mh, struct ip6_hdr *); 3205 ip6->ip6_flow = 0; 3206 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 3207 ip6->ip6_vfc |= IPV6_VERSION; 3208 ip6->ip6_nxt = IPPROTO_ICMPV6; 3209 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 3210 if (ia != NULL) 3211 ifa_free(&ia->ia_ifa); 3212 ip6->ip6_dst = in6addr_linklocal_allv2routers; 3213 /* scope ID will be set in netisr */ 3214 3215 mld = (struct mldv2_report *)(ip6 + 1); 3216 mld->mld_type = MLDV2_LISTENER_REPORT; 3217 mld->mld_code = 0; 3218 mld->mld_cksum = 0; 3219 mld->mld_v2_reserved = 0; 3220 mld->mld_v2_numrecs = htons(m->m_pkthdr.PH_vt.vt_nrecs); 3221 m->m_pkthdr.PH_vt.vt_nrecs = 0; 3222 3223 mh->m_next = m; 3224 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 3225 sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen); 3226 return (mh); 3227 } 3228 3229 #ifdef KTR 3230 static char * 3231 mld_rec_type_to_str(const int type) 3232 { 3233 3234 switch (type) { 3235 case MLD_CHANGE_TO_EXCLUDE_MODE: 3236 return "TO_EX"; 3237 break; 3238 case MLD_CHANGE_TO_INCLUDE_MODE: 3239 return "TO_IN"; 3240 break; 3241 case MLD_MODE_IS_EXCLUDE: 3242 return "MODE_EX"; 3243 break; 3244 case MLD_MODE_IS_INCLUDE: 3245 return "MODE_IN"; 3246 break; 3247 case MLD_ALLOW_NEW_SOURCES: 3248 return "ALLOW_NEW"; 3249 break; 3250 case MLD_BLOCK_OLD_SOURCES: 3251 return "BLOCK_OLD"; 3252 break; 3253 default: 3254 break; 3255 } 3256 return "unknown"; 3257 } 3258 #endif 3259 3260 static void 3261 mld_init(void *unused __unused) 3262 { 3263 3264 CTR1(KTR_MLD, "%s: initializing", __func__); 3265 MLD_LOCK_INIT(); 3266 3267 ip6_initpktopts(&mld_po); 3268 mld_po.ip6po_hlim = 1; 3269 mld_po.ip6po_hbh = &mld_ra.hbh; 3270 mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER; 3271 mld_po.ip6po_flags = IP6PO_DONTFRAG; 3272 } 3273 SYSINIT(mld_init, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, mld_init, NULL); 3274 3275 static void 3276 mld_uninit(void *unused __unused) 3277 { 3278 3279 CTR1(KTR_MLD, "%s: tearing down", __func__); 3280 MLD_LOCK_DESTROY(); 3281 } 3282 SYSUNINIT(mld_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, mld_uninit, NULL); 3283 3284 static void 3285 vnet_mld_init(const void *unused __unused) 3286 { 3287 3288 CTR1(KTR_MLD, "%s: initializing", __func__); 3289 3290 LIST_INIT(&V_mli_head); 3291 } 3292 VNET_SYSINIT(vnet_mld_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mld_init, 3293 NULL); 3294 3295 static void 3296 vnet_mld_uninit(const void *unused __unused) 3297 { 3298 3299 /* This can happen if we shutdown the network stack. */ 3300 CTR1(KTR_MLD, "%s: tearing down", __func__); 3301 } 3302 VNET_SYSUNINIT(vnet_mld_uninit, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mld_uninit, 3303 NULL); 3304 3305 static int 3306 mld_modevent(module_t mod, int type, void *unused __unused) 3307 { 3308 3309 switch (type) { 3310 case MOD_LOAD: 3311 case MOD_UNLOAD: 3312 break; 3313 default: 3314 return (EOPNOTSUPP); 3315 } 3316 return (0); 3317 } 3318 3319 static moduledata_t mld_mod = { 3320 "mld", 3321 mld_modevent, 3322 0 3323 }; 3324 DECLARE_MODULE(mld, mld_mod, SI_SUB_PROTO_MC, SI_ORDER_ANY); 3325