1 /*- 2 * Copyright (c) 2009 Bruce Simpson. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 3. The name of the author may not be used to endorse or promote 13 * products derived from this software without specific prior written 14 * permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $KAME: mld6.c,v 1.27 2001/04/04 05:17:30 itojun Exp $ 29 */ 30 31 /*- 32 * Copyright (c) 1988 Stephen Deering. 33 * Copyright (c) 1992, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * This code is derived from software contributed to Berkeley by 37 * Stephen Deering of Stanford University. 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 1. Redistributions of source code must retain the above copyright 43 * notice, this list of conditions and the following disclaimer. 44 * 2. Redistributions in binary form must reproduce the above copyright 45 * notice, this list of conditions and the following disclaimer in the 46 * documentation and/or other materials provided with the distribution. 47 * 4. Neither the name of the University nor the names of its contributors 48 * may be used to endorse or promote products derived from this software 49 * without specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 61 * SUCH DAMAGE. 62 * 63 * @(#)igmp.c 8.1 (Berkeley) 7/19/93 64 */ 65 66 #include <sys/cdefs.h> 67 __FBSDID("$FreeBSD$"); 68 69 #include "opt_inet.h" 70 #include "opt_inet6.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/mbuf.h> 75 #include <sys/socket.h> 76 #include <sys/protosw.h> 77 #include <sys/sysctl.h> 78 #include <sys/kernel.h> 79 #include <sys/callout.h> 80 #include <sys/malloc.h> 81 #include <sys/module.h> 82 #include <sys/ktr.h> 83 84 #include <net/if.h> 85 #include <net/route.h> 86 #include <net/vnet.h> 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet6/in6_var.h> 91 #include <netinet/ip6.h> 92 #include <netinet6/ip6_var.h> 93 #include <netinet6/scope6_var.h> 94 #include <netinet/icmp6.h> 95 #include <netinet6/mld6.h> 96 #include <netinet6/mld6_var.h> 97 98 #include <security/mac/mac_framework.h> 99 100 #ifndef KTR_MLD 101 #define KTR_MLD KTR_INET6 102 #endif 103 104 static struct mld_ifinfo * 105 mli_alloc_locked(struct ifnet *); 106 static void mli_delete_locked(const struct ifnet *); 107 static void mld_dispatch_packet(struct mbuf *); 108 static void mld_dispatch_queue(struct ifqueue *, int); 109 static void mld_final_leave(struct in6_multi *, struct mld_ifinfo *); 110 static void mld_fasttimo_vnet(void); 111 static int mld_handle_state_change(struct in6_multi *, 112 struct mld_ifinfo *); 113 static int mld_initial_join(struct in6_multi *, struct mld_ifinfo *, 114 const int); 115 #ifdef KTR 116 static char * mld_rec_type_to_str(const int); 117 #endif 118 static void mld_set_version(struct mld_ifinfo *, const int); 119 static void mld_slowtimo_vnet(void); 120 static int mld_v1_input_query(struct ifnet *, const struct ip6_hdr *, 121 /*const*/ struct mld_hdr *); 122 static int mld_v1_input_report(struct ifnet *, const struct ip6_hdr *, 123 /*const*/ struct mld_hdr *); 124 static void mld_v1_process_group_timer(struct in6_multi *, const int); 125 static void mld_v1_process_querier_timers(struct mld_ifinfo *); 126 static int mld_v1_transmit_report(struct in6_multi *, const int); 127 static void mld_v1_update_group(struct in6_multi *, const int); 128 static void mld_v2_cancel_link_timers(struct mld_ifinfo *); 129 static void mld_v2_dispatch_general_query(struct mld_ifinfo *); 130 static struct mbuf * 131 mld_v2_encap_report(struct ifnet *, struct mbuf *); 132 static int mld_v2_enqueue_filter_change(struct ifqueue *, 133 struct in6_multi *); 134 static int mld_v2_enqueue_group_record(struct ifqueue *, 135 struct in6_multi *, const int, const int, const int, 136 const int); 137 static int mld_v2_input_query(struct ifnet *, const struct ip6_hdr *, 138 struct mbuf *, const int, const int); 139 static int mld_v2_merge_state_changes(struct in6_multi *, 140 struct ifqueue *); 141 static void mld_v2_process_group_timers(struct mld_ifinfo *, 142 struct ifqueue *, struct ifqueue *, 143 struct in6_multi *, const int); 144 static int mld_v2_process_group_query(struct in6_multi *, 145 struct mld_ifinfo *mli, int, struct mbuf *, const int); 146 static int sysctl_mld_gsr(SYSCTL_HANDLER_ARGS); 147 static int sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS); 148 149 /* 150 * Normative references: RFC 2710, RFC 3590, RFC 3810. 151 * 152 * Locking: 153 * * The MLD subsystem lock ends up being system-wide for the moment, 154 * but could be per-VIMAGE later on. 155 * * The permitted lock order is: IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK. 156 * Any may be taken independently; if any are held at the same 157 * time, the above lock order must be followed. 158 * * IN6_MULTI_LOCK covers in_multi. 159 * * MLD_LOCK covers per-link state and any global variables in this file. 160 * * IF_ADDR_LOCK covers if_multiaddrs, which is used for a variety of 161 * per-link state iterators. 162 * 163 * XXX LOR PREVENTION 164 * A special case for IPv6 is the in6_setscope() routine. ip6_output() 165 * will not accept an ifp; it wants an embedded scope ID, unlike 166 * ip_output(), which happily takes the ifp given to it. The embedded 167 * scope ID is only used by MLD to select the outgoing interface. 168 * 169 * During interface attach and detach, MLD will take MLD_LOCK *after* 170 * the IF_AFDATA_LOCK. 171 * As in6_setscope() takes IF_AFDATA_LOCK then SCOPE_LOCK, we can't call 172 * it with MLD_LOCK held without triggering an LOR. A netisr with indirect 173 * dispatch could work around this, but we'd rather not do that, as it 174 * can introduce other races. 175 * 176 * As such, we exploit the fact that the scope ID is just the interface 177 * index, and embed it in the IPv6 destination address accordingly. 178 * This is potentially NOT VALID for MLDv1 reports, as they 179 * are always sent to the multicast group itself; as MLDv2 180 * reports are always sent to ff02::16, this is not an issue 181 * when MLDv2 is in use. 182 * 183 * This does not however eliminate the LOR when ip6_output() itself 184 * calls in6_setscope() internally whilst MLD_LOCK is held. This will 185 * trigger a LOR warning in WITNESS when the ifnet is detached. 186 * 187 * The right answer is probably to make IF_AFDATA_LOCK an rwlock, given 188 * how it's used across the network stack. Here we're simply exploiting 189 * the fact that MLD runs at a similar layer in the stack to scope6.c. 190 * 191 * VIMAGE: 192 * * Each in6_multi corresponds to an ifp, and each ifp corresponds 193 * to a vnet in ifp->if_vnet. 194 */ 195 static struct mtx mld_mtx; 196 MALLOC_DEFINE(M_MLD, "mld", "mld state"); 197 198 #define MLD_EMBEDSCOPE(pin6, zoneid) \ 199 if (IN6_IS_SCOPE_LINKLOCAL(pin6) || \ 200 IN6_IS_ADDR_MC_INTFACELOCAL(pin6)) \ 201 (pin6)->s6_addr16[1] = htons((zoneid) & 0xFFFF) \ 202 203 /* 204 * VIMAGE-wide globals. 205 */ 206 static VNET_DEFINE(struct timeval, mld_gsrdelay) = {10, 0}; 207 static VNET_DEFINE(LIST_HEAD(, mld_ifinfo), mli_head); 208 static VNET_DEFINE(int, interface_timers_running6); 209 static VNET_DEFINE(int, state_change_timers_running6); 210 static VNET_DEFINE(int, current_state_timers_running6); 211 212 #define V_mld_gsrdelay VNET(mld_gsrdelay) 213 #define V_mli_head VNET(mli_head) 214 #define V_interface_timers_running6 VNET(interface_timers_running6) 215 #define V_state_change_timers_running6 VNET(state_change_timers_running6) 216 #define V_current_state_timers_running6 VNET(current_state_timers_running6) 217 218 SYSCTL_DECL(_net_inet6); /* Note: Not in any common header. */ 219 220 SYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW, 0, 221 "IPv6 Multicast Listener Discovery"); 222 223 /* 224 * Virtualized sysctls. 225 */ 226 SYSCTL_VNET_PROC(_net_inet6_mld, OID_AUTO, gsrdelay, 227 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 228 &VNET_NAME(mld_gsrdelay.tv_sec), 0, sysctl_mld_gsr, "I", 229 "Rate limit for MLDv2 Group-and-Source queries in seconds"); 230 231 /* 232 * Non-virtualized sysctls. 233 */ 234 SYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo, CTLFLAG_RD | CTLFLAG_MPSAFE, 235 sysctl_mld_ifinfo, "Per-interface MLDv2 state"); 236 237 static int mld_v1enable = 1; 238 SYSCTL_INT(_net_inet6_mld, OID_AUTO, v1enable, CTLFLAG_RW, 239 &mld_v1enable, 0, "Enable fallback to MLDv1"); 240 TUNABLE_INT("net.inet6.mld.v1enable", &mld_v1enable); 241 242 static int mld_use_allow = 1; 243 SYSCTL_INT(_net_inet6_mld, OID_AUTO, use_allow, CTLFLAG_RW, 244 &mld_use_allow, 0, "Use ALLOW/BLOCK for RFC 4604 SSM joins/leaves"); 245 TUNABLE_INT("net.inet6.mld.use_allow", &mld_use_allow); 246 247 /* 248 * Packed Router Alert option structure declaration. 249 */ 250 struct mld_raopt { 251 struct ip6_hbh hbh; 252 struct ip6_opt pad; 253 struct ip6_opt_router ra; 254 } __packed; 255 256 /* 257 * Router Alert hop-by-hop option header. 258 */ 259 static struct mld_raopt mld_ra = { 260 .hbh = { 0, 0 }, 261 .pad = { .ip6o_type = IP6OPT_PADN, 0 }, 262 .ra = { 263 .ip6or_type = IP6OPT_ROUTER_ALERT, 264 .ip6or_len = IP6OPT_RTALERT_LEN - 2, 265 .ip6or_value[0] = ((IP6OPT_RTALERT_MLD >> 8) & 0xFF), 266 .ip6or_value[1] = (IP6OPT_RTALERT_MLD & 0xFF) 267 } 268 }; 269 static struct ip6_pktopts mld_po; 270 271 static __inline void 272 mld_save_context(struct mbuf *m, struct ifnet *ifp) 273 { 274 275 #ifdef VIMAGE 276 m->m_pkthdr.header = ifp->if_vnet; 277 #endif /* VIMAGE */ 278 m->m_pkthdr.flowid = ifp->if_index; 279 } 280 281 static __inline void 282 mld_scrub_context(struct mbuf *m) 283 { 284 285 m->m_pkthdr.header = NULL; 286 m->m_pkthdr.flowid = 0; 287 } 288 289 /* 290 * Restore context from a queued output chain. 291 * Return saved ifindex. 292 * 293 * VIMAGE: The assertion is there to make sure that we 294 * actually called CURVNET_SET() with what's in the mbuf chain. 295 */ 296 static __inline uint32_t 297 mld_restore_context(struct mbuf *m) 298 { 299 300 #if defined(VIMAGE) && defined(INVARIANTS) 301 KASSERT(curvnet == m->m_pkthdr.header, 302 ("%s: called when curvnet was not restored", __func__)); 303 #endif 304 return (m->m_pkthdr.flowid); 305 } 306 307 /* 308 * Retrieve or set threshold between group-source queries in seconds. 309 * 310 * VIMAGE: Assume curvnet set by caller. 311 * SMPng: NOTE: Serialized by MLD lock. 312 */ 313 static int 314 sysctl_mld_gsr(SYSCTL_HANDLER_ARGS) 315 { 316 int error; 317 int i; 318 319 error = sysctl_wire_old_buffer(req, sizeof(int)); 320 if (error) 321 return (error); 322 323 MLD_LOCK(); 324 325 i = V_mld_gsrdelay.tv_sec; 326 327 error = sysctl_handle_int(oidp, &i, 0, req); 328 if (error || !req->newptr) 329 goto out_locked; 330 331 if (i < -1 || i >= 60) { 332 error = EINVAL; 333 goto out_locked; 334 } 335 336 CTR2(KTR_MLD, "change mld_gsrdelay from %d to %d", 337 V_mld_gsrdelay.tv_sec, i); 338 V_mld_gsrdelay.tv_sec = i; 339 340 out_locked: 341 MLD_UNLOCK(); 342 return (error); 343 } 344 345 /* 346 * Expose struct mld_ifinfo to userland, keyed by ifindex. 347 * For use by ifmcstat(8). 348 * 349 * SMPng: NOTE: Does an unlocked ifindex space read. 350 * VIMAGE: Assume curvnet set by caller. The node handler itself 351 * is not directly virtualized. 352 */ 353 static int 354 sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS) 355 { 356 int *name; 357 int error; 358 u_int namelen; 359 struct ifnet *ifp; 360 struct mld_ifinfo *mli; 361 362 name = (int *)arg1; 363 namelen = arg2; 364 365 if (req->newptr != NULL) 366 return (EPERM); 367 368 if (namelen != 1) 369 return (EINVAL); 370 371 error = sysctl_wire_old_buffer(req, sizeof(struct mld_ifinfo)); 372 if (error) 373 return (error); 374 375 IN6_MULTI_LOCK(); 376 MLD_LOCK(); 377 378 if (name[0] <= 0 || name[0] > V_if_index) { 379 error = ENOENT; 380 goto out_locked; 381 } 382 383 error = ENOENT; 384 385 ifp = ifnet_byindex(name[0]); 386 if (ifp == NULL) 387 goto out_locked; 388 389 LIST_FOREACH(mli, &V_mli_head, mli_link) { 390 if (ifp == mli->mli_ifp) { 391 error = SYSCTL_OUT(req, mli, 392 sizeof(struct mld_ifinfo)); 393 break; 394 } 395 } 396 397 out_locked: 398 MLD_UNLOCK(); 399 IN6_MULTI_UNLOCK(); 400 return (error); 401 } 402 403 /* 404 * Dispatch an entire queue of pending packet chains. 405 * VIMAGE: Assumes the vnet pointer has been set. 406 */ 407 static void 408 mld_dispatch_queue(struct ifqueue *ifq, int limit) 409 { 410 struct mbuf *m; 411 412 for (;;) { 413 _IF_DEQUEUE(ifq, m); 414 if (m == NULL) 415 break; 416 CTR3(KTR_MLD, "%s: dispatch %p from %p", __func__, ifq, m); 417 mld_dispatch_packet(m); 418 if (--limit == 0) 419 break; 420 } 421 } 422 423 /* 424 * Filter outgoing MLD report state by group. 425 * 426 * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1) 427 * and node-local addresses. However, kernel and socket consumers 428 * always embed the KAME scope ID in the address provided, so strip it 429 * when performing comparison. 430 * Note: This is not the same as the *multicast* scope. 431 * 432 * Return zero if the given group is one for which MLD reports 433 * should be suppressed, or non-zero if reports should be issued. 434 */ 435 static __inline int 436 mld_is_addr_reported(const struct in6_addr *addr) 437 { 438 439 KASSERT(IN6_IS_ADDR_MULTICAST(addr), ("%s: not multicast", __func__)); 440 441 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL) 442 return (0); 443 444 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL) { 445 struct in6_addr tmp = *addr; 446 in6_clearscope(&tmp); 447 if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes)) 448 return (0); 449 } 450 451 return (1); 452 } 453 454 /* 455 * Attach MLD when PF_INET6 is attached to an interface. 456 * 457 * SMPng: Normally called with IF_AFDATA_LOCK held. 458 */ 459 struct mld_ifinfo * 460 mld_domifattach(struct ifnet *ifp) 461 { 462 struct mld_ifinfo *mli; 463 464 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 465 __func__, ifp, ifp->if_xname); 466 467 MLD_LOCK(); 468 469 mli = mli_alloc_locked(ifp); 470 if (!(ifp->if_flags & IFF_MULTICAST)) 471 mli->mli_flags |= MLIF_SILENT; 472 if (mld_use_allow) 473 mli->mli_flags |= MLIF_USEALLOW; 474 475 MLD_UNLOCK(); 476 477 return (mli); 478 } 479 480 /* 481 * VIMAGE: assume curvnet set by caller. 482 */ 483 static struct mld_ifinfo * 484 mli_alloc_locked(/*const*/ struct ifnet *ifp) 485 { 486 struct mld_ifinfo *mli; 487 488 MLD_LOCK_ASSERT(); 489 490 mli = malloc(sizeof(struct mld_ifinfo), M_MLD, M_NOWAIT|M_ZERO); 491 if (mli == NULL) 492 goto out; 493 494 mli->mli_ifp = ifp; 495 mli->mli_version = MLD_VERSION_2; 496 mli->mli_flags = 0; 497 mli->mli_rv = MLD_RV_INIT; 498 mli->mli_qi = MLD_QI_INIT; 499 mli->mli_qri = MLD_QRI_INIT; 500 mli->mli_uri = MLD_URI_INIT; 501 502 SLIST_INIT(&mli->mli_relinmhead); 503 504 /* 505 * Responses to general queries are subject to bounds. 506 */ 507 IFQ_SET_MAXLEN(&mli->mli_gq, MLD_MAX_RESPONSE_PACKETS); 508 509 LIST_INSERT_HEAD(&V_mli_head, mli, mli_link); 510 511 CTR2(KTR_MLD, "allocate mld_ifinfo for ifp %p(%s)", 512 ifp, ifp->if_xname); 513 514 out: 515 return (mli); 516 } 517 518 /* 519 * Hook for ifdetach. 520 * 521 * NOTE: Some finalization tasks need to run before the protocol domain 522 * is detached, but also before the link layer does its cleanup. 523 * Run before link-layer cleanup; cleanup groups, but do not free MLD state. 524 * 525 * SMPng: Caller must hold IN6_MULTI_LOCK(). 526 * Must take IF_ADDR_LOCK() to cover if_multiaddrs iterator. 527 * XXX This routine is also bitten by unlocked ifma_protospec access. 528 */ 529 void 530 mld_ifdetach(struct ifnet *ifp) 531 { 532 struct mld_ifinfo *mli; 533 struct ifmultiaddr *ifma; 534 struct in6_multi *inm, *tinm; 535 536 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", __func__, ifp, 537 ifp->if_xname); 538 539 IN6_MULTI_LOCK_ASSERT(); 540 MLD_LOCK(); 541 542 mli = MLD_IFINFO(ifp); 543 if (mli->mli_version == MLD_VERSION_2) { 544 IF_ADDR_LOCK(ifp); 545 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 546 if (ifma->ifma_addr->sa_family != AF_INET6 || 547 ifma->ifma_protospec == NULL) 548 continue; 549 inm = (struct in6_multi *)ifma->ifma_protospec; 550 if (inm->in6m_state == MLD_LEAVING_MEMBER) { 551 SLIST_INSERT_HEAD(&mli->mli_relinmhead, 552 inm, in6m_nrele); 553 } 554 in6m_clear_recorded(inm); 555 } 556 IF_ADDR_UNLOCK(ifp); 557 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele, 558 tinm) { 559 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele); 560 in6m_release_locked(inm); 561 } 562 } 563 564 MLD_UNLOCK(); 565 } 566 567 /* 568 * Hook for domifdetach. 569 * Runs after link-layer cleanup; free MLD state. 570 * 571 * SMPng: Normally called with IF_AFDATA_LOCK held. 572 */ 573 void 574 mld_domifdetach(struct ifnet *ifp) 575 { 576 577 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 578 __func__, ifp, ifp->if_xname); 579 580 MLD_LOCK(); 581 mli_delete_locked(ifp); 582 MLD_UNLOCK(); 583 } 584 585 static void 586 mli_delete_locked(const struct ifnet *ifp) 587 { 588 struct mld_ifinfo *mli, *tmli; 589 590 CTR3(KTR_MLD, "%s: freeing mld_ifinfo for ifp %p(%s)", 591 __func__, ifp, ifp->if_xname); 592 593 MLD_LOCK_ASSERT(); 594 595 LIST_FOREACH_SAFE(mli, &V_mli_head, mli_link, tmli) { 596 if (mli->mli_ifp == ifp) { 597 /* 598 * Free deferred General Query responses. 599 */ 600 _IF_DRAIN(&mli->mli_gq); 601 602 LIST_REMOVE(mli, mli_link); 603 604 KASSERT(SLIST_EMPTY(&mli->mli_relinmhead), 605 ("%s: there are dangling in_multi references", 606 __func__)); 607 608 free(mli, M_MLD); 609 return; 610 } 611 } 612 #ifdef INVARIANTS 613 panic("%s: mld_ifinfo not found for ifp %p\n", __func__, ifp); 614 #endif 615 } 616 617 /* 618 * Process a received MLDv1 general or address-specific query. 619 * Assumes that the query header has been pulled up to sizeof(mld_hdr). 620 * 621 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 622 * mld_addr. This is OK as we own the mbuf chain. 623 */ 624 static int 625 mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 626 /*const*/ struct mld_hdr *mld) 627 { 628 struct ifmultiaddr *ifma; 629 struct mld_ifinfo *mli; 630 struct in6_multi *inm; 631 int is_general_query; 632 uint16_t timer; 633 #ifdef KTR 634 char ip6tbuf[INET6_ADDRSTRLEN]; 635 #endif 636 637 is_general_query = 0; 638 639 if (!mld_v1enable) { 640 CTR3(KTR_MLD, "ignore v1 query %s on ifp %p(%s)", 641 ip6_sprintf(ip6tbuf, &mld->mld_addr), 642 ifp, ifp->if_xname); 643 return (0); 644 } 645 646 /* 647 * RFC3810 Section 6.2: MLD queries must originate from 648 * a router's link-local address. 649 */ 650 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 651 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 652 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 653 ifp, ifp->if_xname); 654 return (0); 655 } 656 657 /* 658 * Do address field validation upfront before we accept 659 * the query. 660 */ 661 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 662 /* 663 * MLDv1 General Query. 664 * If this was not sent to the all-nodes group, ignore it. 665 */ 666 struct in6_addr dst; 667 668 dst = ip6->ip6_dst; 669 in6_clearscope(&dst); 670 if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes)) 671 return (EINVAL); 672 is_general_query = 1; 673 } else { 674 /* 675 * Embed scope ID of receiving interface in MLD query for 676 * lookup whilst we don't hold other locks. 677 */ 678 in6_setscope(&mld->mld_addr, ifp, NULL); 679 } 680 681 IN6_MULTI_LOCK(); 682 MLD_LOCK(); 683 684 /* 685 * Switch to MLDv1 host compatibility mode. 686 */ 687 mli = MLD_IFINFO(ifp); 688 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 689 mld_set_version(mli, MLD_VERSION_1); 690 691 timer = (ntohs(mld->mld_maxdelay) * PR_FASTHZ) / MLD_TIMER_SCALE; 692 if (timer == 0) 693 timer = 1; 694 695 IF_ADDR_LOCK(ifp); 696 if (is_general_query) { 697 /* 698 * For each reporting group joined on this 699 * interface, kick the report timer. 700 */ 701 CTR2(KTR_MLD, "process v1 general query on ifp %p(%s)", 702 ifp, ifp->if_xname); 703 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 704 if (ifma->ifma_addr->sa_family != AF_INET6 || 705 ifma->ifma_protospec == NULL) 706 continue; 707 inm = (struct in6_multi *)ifma->ifma_protospec; 708 mld_v1_update_group(inm, timer); 709 } 710 } else { 711 /* 712 * MLDv1 Group-Specific Query. 713 * If this is a group-specific MLDv1 query, we need only 714 * look up the single group to process it. 715 */ 716 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 717 if (inm != NULL) { 718 CTR3(KTR_MLD, "process v1 query %s on ifp %p(%s)", 719 ip6_sprintf(ip6tbuf, &mld->mld_addr), 720 ifp, ifp->if_xname); 721 mld_v1_update_group(inm, timer); 722 } 723 /* XXX Clear embedded scope ID as userland won't expect it. */ 724 in6_clearscope(&mld->mld_addr); 725 } 726 727 IF_ADDR_UNLOCK(ifp); 728 MLD_UNLOCK(); 729 IN6_MULTI_UNLOCK(); 730 731 return (0); 732 } 733 734 /* 735 * Update the report timer on a group in response to an MLDv1 query. 736 * 737 * If we are becoming the reporting member for this group, start the timer. 738 * If we already are the reporting member for this group, and timer is 739 * below the threshold, reset it. 740 * 741 * We may be updating the group for the first time since we switched 742 * to MLDv2. If we are, then we must clear any recorded source lists, 743 * and transition to REPORTING state; the group timer is overloaded 744 * for group and group-source query responses. 745 * 746 * Unlike MLDv2, the delay per group should be jittered 747 * to avoid bursts of MLDv1 reports. 748 */ 749 static void 750 mld_v1_update_group(struct in6_multi *inm, const int timer) 751 { 752 #ifdef KTR 753 char ip6tbuf[INET6_ADDRSTRLEN]; 754 #endif 755 756 CTR4(KTR_MLD, "%s: %s/%s timer=%d", __func__, 757 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 758 inm->in6m_ifp->if_xname, timer); 759 760 IN6_MULTI_LOCK_ASSERT(); 761 762 switch (inm->in6m_state) { 763 case MLD_NOT_MEMBER: 764 case MLD_SILENT_MEMBER: 765 break; 766 case MLD_REPORTING_MEMBER: 767 if (inm->in6m_timer != 0 && 768 inm->in6m_timer <= timer) { 769 CTR1(KTR_MLD, "%s: REPORTING and timer running, " 770 "skipping.", __func__); 771 break; 772 } 773 /* FALLTHROUGH */ 774 case MLD_SG_QUERY_PENDING_MEMBER: 775 case MLD_G_QUERY_PENDING_MEMBER: 776 case MLD_IDLE_MEMBER: 777 case MLD_LAZY_MEMBER: 778 case MLD_AWAKENING_MEMBER: 779 CTR1(KTR_MLD, "%s: ->REPORTING", __func__); 780 inm->in6m_state = MLD_REPORTING_MEMBER; 781 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 782 V_current_state_timers_running6 = 1; 783 break; 784 case MLD_SLEEPING_MEMBER: 785 CTR1(KTR_MLD, "%s: ->AWAKENING", __func__); 786 inm->in6m_state = MLD_AWAKENING_MEMBER; 787 break; 788 case MLD_LEAVING_MEMBER: 789 break; 790 } 791 } 792 793 /* 794 * Process a received MLDv2 general, group-specific or 795 * group-and-source-specific query. 796 * 797 * Assumes that the query header has been pulled up to sizeof(mldv2_query). 798 * 799 * Return 0 if successful, otherwise an appropriate error code is returned. 800 */ 801 static int 802 mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 803 struct mbuf *m, const int off, const int icmp6len) 804 { 805 struct mld_ifinfo *mli; 806 struct mldv2_query *mld; 807 struct in6_multi *inm; 808 uint32_t maxdelay, nsrc, qqi; 809 int is_general_query; 810 uint16_t timer; 811 uint8_t qrv; 812 #ifdef KTR 813 char ip6tbuf[INET6_ADDRSTRLEN]; 814 #endif 815 816 is_general_query = 0; 817 818 /* 819 * RFC3810 Section 6.2: MLD queries must originate from 820 * a router's link-local address. 821 */ 822 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 823 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 824 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 825 ifp, ifp->if_xname); 826 return (0); 827 } 828 829 CTR2(KTR_MLD, "input v2 query on ifp %p(%s)", ifp, ifp->if_xname); 830 831 mld = (struct mldv2_query *)(mtod(m, uint8_t *) + off); 832 833 maxdelay = ntohs(mld->mld_maxdelay); /* in 1/10ths of a second */ 834 if (maxdelay >= 32678) { 835 maxdelay = (MLD_MRC_MANT(maxdelay) | 0x1000) << 836 (MLD_MRC_EXP(maxdelay) + 3); 837 } 838 timer = (maxdelay * PR_FASTHZ) / MLD_TIMER_SCALE; 839 if (timer == 0) 840 timer = 1; 841 842 qrv = MLD_QRV(mld->mld_misc); 843 if (qrv < 2) { 844 CTR3(KTR_MLD, "%s: clamping qrv %d to %d", __func__, 845 qrv, MLD_RV_INIT); 846 qrv = MLD_RV_INIT; 847 } 848 849 qqi = mld->mld_qqi; 850 if (qqi >= 128) { 851 qqi = MLD_QQIC_MANT(mld->mld_qqi) << 852 (MLD_QQIC_EXP(mld->mld_qqi) + 3); 853 } 854 855 nsrc = ntohs(mld->mld_numsrc); 856 if (nsrc > MLD_MAX_GS_SOURCES) 857 return (EMSGSIZE); 858 if (icmp6len < sizeof(struct mldv2_query) + 859 (nsrc * sizeof(struct in6_addr))) 860 return (EMSGSIZE); 861 862 /* 863 * Do further input validation upfront to avoid resetting timers 864 * should we need to discard this query. 865 */ 866 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 867 /* 868 * General Queries SHOULD be directed to ff02::1. 869 * A general query with a source list has undefined 870 * behaviour; discard it. 871 */ 872 struct in6_addr dst; 873 874 dst = ip6->ip6_dst; 875 in6_clearscope(&dst); 876 if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes) || 877 nsrc > 0) 878 return (EINVAL); 879 is_general_query = 1; 880 } else { 881 /* 882 * Embed scope ID of receiving interface in MLD query for 883 * lookup whilst we don't hold other locks (due to KAME 884 * locking lameness). We own this mbuf chain just now. 885 */ 886 in6_setscope(&mld->mld_addr, ifp, NULL); 887 } 888 889 IN6_MULTI_LOCK(); 890 MLD_LOCK(); 891 892 mli = MLD_IFINFO(ifp); 893 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 894 895 /* 896 * Discard the v2 query if we're in Compatibility Mode. 897 * The RFC is pretty clear that hosts need to stay in MLDv1 mode 898 * until the Old Version Querier Present timer expires. 899 */ 900 if (mli->mli_version != MLD_VERSION_2) 901 goto out_locked; 902 903 mld_set_version(mli, MLD_VERSION_2); 904 mli->mli_rv = qrv; 905 mli->mli_qi = qqi; 906 mli->mli_qri = maxdelay; 907 908 CTR4(KTR_MLD, "%s: qrv %d qi %d maxdelay %d", __func__, qrv, qqi, 909 maxdelay); 910 911 if (is_general_query) { 912 /* 913 * MLDv2 General Query. 914 * 915 * Schedule a current-state report on this ifp for 916 * all groups, possibly containing source lists. 917 * 918 * If there is a pending General Query response 919 * scheduled earlier than the selected delay, do 920 * not schedule any other reports. 921 * Otherwise, reset the interface timer. 922 */ 923 CTR2(KTR_MLD, "process v2 general query on ifp %p(%s)", 924 ifp, ifp->if_xname); 925 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) { 926 mli->mli_v2_timer = MLD_RANDOM_DELAY(timer); 927 V_interface_timers_running6 = 1; 928 } 929 } else { 930 /* 931 * MLDv2 Group-specific or Group-and-source-specific Query. 932 * 933 * Group-source-specific queries are throttled on 934 * a per-group basis to defeat denial-of-service attempts. 935 * Queries for groups we are not a member of on this 936 * link are simply ignored. 937 */ 938 IF_ADDR_LOCK(ifp); 939 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 940 if (inm == NULL) { 941 IF_ADDR_UNLOCK(ifp); 942 goto out_locked; 943 } 944 if (nsrc > 0) { 945 if (!ratecheck(&inm->in6m_lastgsrtv, 946 &V_mld_gsrdelay)) { 947 CTR1(KTR_MLD, "%s: GS query throttled.", 948 __func__); 949 IF_ADDR_UNLOCK(ifp); 950 goto out_locked; 951 } 952 } 953 CTR2(KTR_MLD, "process v2 group query on ifp %p(%s)", 954 ifp, ifp->if_xname); 955 /* 956 * If there is a pending General Query response 957 * scheduled sooner than the selected delay, no 958 * further report need be scheduled. 959 * Otherwise, prepare to respond to the 960 * group-specific or group-and-source query. 961 */ 962 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) 963 mld_v2_process_group_query(inm, mli, timer, m, off); 964 965 /* XXX Clear embedded scope ID as userland won't expect it. */ 966 in6_clearscope(&mld->mld_addr); 967 IF_ADDR_UNLOCK(ifp); 968 } 969 970 out_locked: 971 MLD_UNLOCK(); 972 IN6_MULTI_UNLOCK(); 973 974 return (0); 975 } 976 977 /* 978 * Process a recieved MLDv2 group-specific or group-and-source-specific 979 * query. 980 * Return <0 if any error occured. Currently this is ignored. 981 */ 982 static int 983 mld_v2_process_group_query(struct in6_multi *inm, struct mld_ifinfo *mli, 984 int timer, struct mbuf *m0, const int off) 985 { 986 struct mldv2_query *mld; 987 int retval; 988 uint16_t nsrc; 989 990 IN6_MULTI_LOCK_ASSERT(); 991 MLD_LOCK_ASSERT(); 992 993 retval = 0; 994 mld = (struct mldv2_query *)(mtod(m0, uint8_t *) + off); 995 996 switch (inm->in6m_state) { 997 case MLD_NOT_MEMBER: 998 case MLD_SILENT_MEMBER: 999 case MLD_SLEEPING_MEMBER: 1000 case MLD_LAZY_MEMBER: 1001 case MLD_AWAKENING_MEMBER: 1002 case MLD_IDLE_MEMBER: 1003 case MLD_LEAVING_MEMBER: 1004 return (retval); 1005 break; 1006 case MLD_REPORTING_MEMBER: 1007 case MLD_G_QUERY_PENDING_MEMBER: 1008 case MLD_SG_QUERY_PENDING_MEMBER: 1009 break; 1010 } 1011 1012 nsrc = ntohs(mld->mld_numsrc); 1013 1014 /* 1015 * Deal with group-specific queries upfront. 1016 * If any group query is already pending, purge any recorded 1017 * source-list state if it exists, and schedule a query response 1018 * for this group-specific query. 1019 */ 1020 if (nsrc == 0) { 1021 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 1022 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) { 1023 in6m_clear_recorded(inm); 1024 timer = min(inm->in6m_timer, timer); 1025 } 1026 inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER; 1027 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1028 V_current_state_timers_running6 = 1; 1029 return (retval); 1030 } 1031 1032 /* 1033 * Deal with the case where a group-and-source-specific query has 1034 * been received but a group-specific query is already pending. 1035 */ 1036 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) { 1037 timer = min(inm->in6m_timer, timer); 1038 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1039 V_current_state_timers_running6 = 1; 1040 return (retval); 1041 } 1042 1043 /* 1044 * Finally, deal with the case where a group-and-source-specific 1045 * query has been received, where a response to a previous g-s-r 1046 * query exists, or none exists. 1047 * In this case, we need to parse the source-list which the Querier 1048 * has provided us with and check if we have any source list filter 1049 * entries at T1 for these sources. If we do not, there is no need 1050 * schedule a report and the query may be dropped. 1051 * If we do, we must record them and schedule a current-state 1052 * report for those sources. 1053 */ 1054 if (inm->in6m_nsrc > 0) { 1055 struct mbuf *m; 1056 uint8_t *sp; 1057 int i, nrecorded; 1058 int soff; 1059 1060 m = m0; 1061 soff = off + sizeof(struct mldv2_query); 1062 nrecorded = 0; 1063 for (i = 0; i < nsrc; i++) { 1064 sp = mtod(m, uint8_t *) + soff; 1065 retval = in6m_record_source(inm, 1066 (const struct in6_addr *)sp); 1067 if (retval < 0) 1068 break; 1069 nrecorded += retval; 1070 soff += sizeof(struct in6_addr); 1071 if (soff >= m->m_len) { 1072 soff = soff - m->m_len; 1073 m = m->m_next; 1074 if (m == NULL) 1075 break; 1076 } 1077 } 1078 if (nrecorded > 0) { 1079 CTR1(KTR_MLD, 1080 "%s: schedule response to SG query", __func__); 1081 inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER; 1082 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1083 V_current_state_timers_running6 = 1; 1084 } 1085 } 1086 1087 return (retval); 1088 } 1089 1090 /* 1091 * Process a received MLDv1 host membership report. 1092 * Assumes mld points to mld_hdr in pulled up mbuf chain. 1093 * 1094 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 1095 * mld_addr. This is OK as we own the mbuf chain. 1096 */ 1097 static int 1098 mld_v1_input_report(struct ifnet *ifp, const struct ip6_hdr *ip6, 1099 /*const*/ struct mld_hdr *mld) 1100 { 1101 struct in6_addr src, dst; 1102 struct in6_ifaddr *ia; 1103 struct in6_multi *inm; 1104 #ifdef KTR 1105 char ip6tbuf[INET6_ADDRSTRLEN]; 1106 #endif 1107 1108 if (!mld_v1enable) { 1109 CTR3(KTR_MLD, "ignore v1 report %s on ifp %p(%s)", 1110 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1111 ifp, ifp->if_xname); 1112 return (0); 1113 } 1114 1115 if (ifp->if_flags & IFF_LOOPBACK) 1116 return (0); 1117 1118 /* 1119 * MLDv1 reports must originate from a host's link-local address, 1120 * or the unspecified address (when booting). 1121 */ 1122 src = ip6->ip6_src; 1123 in6_clearscope(&src); 1124 if (!IN6_IS_SCOPE_LINKLOCAL(&src) && !IN6_IS_ADDR_UNSPECIFIED(&src)) { 1125 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 1126 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 1127 ifp, ifp->if_xname); 1128 return (EINVAL); 1129 } 1130 1131 /* 1132 * RFC2710 Section 4: MLDv1 reports must pertain to a multicast 1133 * group, and must be directed to the group itself. 1134 */ 1135 dst = ip6->ip6_dst; 1136 in6_clearscope(&dst); 1137 if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) || 1138 !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &dst)) { 1139 CTR3(KTR_MLD, "ignore v1 query dst %s on ifp %p(%s)", 1140 ip6_sprintf(ip6tbuf, &ip6->ip6_dst), 1141 ifp, ifp->if_xname); 1142 return (EINVAL); 1143 } 1144 1145 /* 1146 * Make sure we don't hear our own membership report, as fast 1147 * leave requires knowing that we are the only member of a 1148 * group. Assume we used the link-local address if available, 1149 * otherwise look for ::. 1150 * 1151 * XXX Note that scope ID comparison is needed for the address 1152 * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be 1153 * performed for the on-wire address. 1154 */ 1155 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1156 if ((ia && IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia))) || 1157 (ia == NULL && IN6_IS_ADDR_UNSPECIFIED(&src))) { 1158 if (ia != NULL) 1159 ifa_free(&ia->ia_ifa); 1160 return (0); 1161 } 1162 if (ia != NULL) 1163 ifa_free(&ia->ia_ifa); 1164 1165 CTR3(KTR_MLD, "process v1 report %s on ifp %p(%s)", 1166 ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, ifp->if_xname); 1167 1168 /* 1169 * Embed scope ID of receiving interface in MLD query for lookup 1170 * whilst we don't hold other locks (due to KAME locking lameness). 1171 */ 1172 if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) 1173 in6_setscope(&mld->mld_addr, ifp, NULL); 1174 1175 IN6_MULTI_LOCK(); 1176 MLD_LOCK(); 1177 IF_ADDR_LOCK(ifp); 1178 1179 /* 1180 * MLDv1 report suppression. 1181 * If we are a member of this group, and our membership should be 1182 * reported, and our group timer is pending or about to be reset, 1183 * stop our group timer by transitioning to the 'lazy' state. 1184 */ 1185 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 1186 if (inm != NULL) { 1187 struct mld_ifinfo *mli; 1188 1189 mli = inm->in6m_mli; 1190 KASSERT(mli != NULL, 1191 ("%s: no mli for ifp %p", __func__, ifp)); 1192 1193 /* 1194 * If we are in MLDv2 host mode, do not allow the 1195 * other host's MLDv1 report to suppress our reports. 1196 */ 1197 if (mli->mli_version == MLD_VERSION_2) 1198 goto out_locked; 1199 1200 inm->in6m_timer = 0; 1201 1202 switch (inm->in6m_state) { 1203 case MLD_NOT_MEMBER: 1204 case MLD_SILENT_MEMBER: 1205 case MLD_SLEEPING_MEMBER: 1206 break; 1207 case MLD_REPORTING_MEMBER: 1208 case MLD_IDLE_MEMBER: 1209 case MLD_AWAKENING_MEMBER: 1210 CTR3(KTR_MLD, 1211 "report suppressed for %s on ifp %p(%s)", 1212 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1213 ifp, ifp->if_xname); 1214 case MLD_LAZY_MEMBER: 1215 inm->in6m_state = MLD_LAZY_MEMBER; 1216 break; 1217 case MLD_G_QUERY_PENDING_MEMBER: 1218 case MLD_SG_QUERY_PENDING_MEMBER: 1219 case MLD_LEAVING_MEMBER: 1220 break; 1221 } 1222 } 1223 1224 out_locked: 1225 MLD_UNLOCK(); 1226 IF_ADDR_UNLOCK(ifp); 1227 IN6_MULTI_UNLOCK(); 1228 1229 /* XXX Clear embedded scope ID as userland won't expect it. */ 1230 in6_clearscope(&mld->mld_addr); 1231 1232 return (0); 1233 } 1234 1235 /* 1236 * MLD input path. 1237 * 1238 * Assume query messages which fit in a single ICMPv6 message header 1239 * have been pulled up. 1240 * Assume that userland will want to see the message, even if it 1241 * otherwise fails kernel input validation; do not free it. 1242 * Pullup may however free the mbuf chain m if it fails. 1243 * 1244 * Return IPPROTO_DONE if we freed m. Otherwise, return 0. 1245 */ 1246 int 1247 mld_input(struct mbuf *m, int off, int icmp6len) 1248 { 1249 struct ifnet *ifp; 1250 struct ip6_hdr *ip6; 1251 struct mld_hdr *mld; 1252 int mldlen; 1253 1254 CTR3(KTR_MLD, "%s: called w/mbuf (%p,%d)", __func__, m, off); 1255 1256 ifp = m->m_pkthdr.rcvif; 1257 1258 ip6 = mtod(m, struct ip6_hdr *); 1259 1260 /* Pullup to appropriate size. */ 1261 mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off); 1262 if (mld->mld_type == MLD_LISTENER_QUERY && 1263 icmp6len >= sizeof(struct mldv2_query)) { 1264 mldlen = sizeof(struct mldv2_query); 1265 } else { 1266 mldlen = sizeof(struct mld_hdr); 1267 } 1268 IP6_EXTHDR_GET(mld, struct mld_hdr *, m, off, mldlen); 1269 if (mld == NULL) { 1270 ICMP6STAT_INC(icp6s_badlen); 1271 return (IPPROTO_DONE); 1272 } 1273 1274 /* 1275 * Userland needs to see all of this traffic for implementing 1276 * the endpoint discovery portion of multicast routing. 1277 */ 1278 switch (mld->mld_type) { 1279 case MLD_LISTENER_QUERY: 1280 icmp6_ifstat_inc(ifp, ifs6_in_mldquery); 1281 if (icmp6len == sizeof(struct mld_hdr)) { 1282 if (mld_v1_input_query(ifp, ip6, mld) != 0) 1283 return (0); 1284 } else if (icmp6len >= sizeof(struct mldv2_query)) { 1285 if (mld_v2_input_query(ifp, ip6, m, off, 1286 icmp6len) != 0) 1287 return (0); 1288 } 1289 break; 1290 case MLD_LISTENER_REPORT: 1291 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1292 if (mld_v1_input_report(ifp, ip6, mld) != 0) 1293 return (0); 1294 break; 1295 case MLDV2_LISTENER_REPORT: 1296 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1297 break; 1298 case MLD_LISTENER_DONE: 1299 icmp6_ifstat_inc(ifp, ifs6_in_mlddone); 1300 break; 1301 default: 1302 break; 1303 } 1304 1305 return (0); 1306 } 1307 1308 /* 1309 * Fast timeout handler (global). 1310 * VIMAGE: Timeout handlers are expected to service all vimages. 1311 */ 1312 void 1313 mld_fasttimo(void) 1314 { 1315 VNET_ITERATOR_DECL(vnet_iter); 1316 1317 VNET_LIST_RLOCK_NOSLEEP(); 1318 VNET_FOREACH(vnet_iter) { 1319 CURVNET_SET(vnet_iter); 1320 mld_fasttimo_vnet(); 1321 CURVNET_RESTORE(); 1322 } 1323 VNET_LIST_RUNLOCK_NOSLEEP(); 1324 } 1325 1326 /* 1327 * Fast timeout handler (per-vnet). 1328 * 1329 * VIMAGE: Assume caller has set up our curvnet. 1330 */ 1331 static void 1332 mld_fasttimo_vnet(void) 1333 { 1334 struct ifqueue scq; /* State-change packets */ 1335 struct ifqueue qrq; /* Query response packets */ 1336 struct ifnet *ifp; 1337 struct mld_ifinfo *mli; 1338 struct ifmultiaddr *ifma, *tifma; 1339 struct in6_multi *inm; 1340 int uri_fasthz; 1341 1342 uri_fasthz = 0; 1343 1344 /* 1345 * Quick check to see if any work needs to be done, in order to 1346 * minimize the overhead of fasttimo processing. 1347 * SMPng: XXX Unlocked reads. 1348 */ 1349 if (!V_current_state_timers_running6 && 1350 !V_interface_timers_running6 && 1351 !V_state_change_timers_running6) 1352 return; 1353 1354 IN6_MULTI_LOCK(); 1355 MLD_LOCK(); 1356 1357 /* 1358 * MLDv2 General Query response timer processing. 1359 */ 1360 if (V_interface_timers_running6) { 1361 CTR1(KTR_MLD, "%s: interface timers running", __func__); 1362 1363 V_interface_timers_running6 = 0; 1364 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1365 if (mli->mli_v2_timer == 0) { 1366 /* Do nothing. */ 1367 } else if (--mli->mli_v2_timer == 0) { 1368 mld_v2_dispatch_general_query(mli); 1369 } else { 1370 V_interface_timers_running6 = 1; 1371 } 1372 } 1373 } 1374 1375 if (!V_current_state_timers_running6 && 1376 !V_state_change_timers_running6) 1377 goto out_locked; 1378 1379 V_current_state_timers_running6 = 0; 1380 V_state_change_timers_running6 = 0; 1381 1382 CTR1(KTR_MLD, "%s: state change timers running", __func__); 1383 1384 /* 1385 * MLD host report and state-change timer processing. 1386 * Note: Processing a v2 group timer may remove a node. 1387 */ 1388 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1389 ifp = mli->mli_ifp; 1390 1391 if (mli->mli_version == MLD_VERSION_2) { 1392 uri_fasthz = MLD_RANDOM_DELAY(mli->mli_uri * 1393 PR_FASTHZ); 1394 1395 memset(&qrq, 0, sizeof(struct ifqueue)); 1396 IFQ_SET_MAXLEN(&qrq, MLD_MAX_G_GS_PACKETS); 1397 1398 memset(&scq, 0, sizeof(struct ifqueue)); 1399 IFQ_SET_MAXLEN(&scq, MLD_MAX_STATE_CHANGE_PACKETS); 1400 } 1401 1402 IF_ADDR_LOCK(ifp); 1403 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, 1404 tifma) { 1405 if (ifma->ifma_addr->sa_family != AF_INET6 || 1406 ifma->ifma_protospec == NULL) 1407 continue; 1408 inm = (struct in6_multi *)ifma->ifma_protospec; 1409 switch (mli->mli_version) { 1410 case MLD_VERSION_1: 1411 /* 1412 * XXX Drop IF_ADDR lock temporarily to 1413 * avoid recursion caused by a potential 1414 * call by in6ifa_ifpforlinklocal(). 1415 * rwlock candidate? 1416 */ 1417 IF_ADDR_UNLOCK(ifp); 1418 mld_v1_process_group_timer(inm, 1419 mli->mli_version); 1420 IF_ADDR_LOCK(ifp); 1421 break; 1422 case MLD_VERSION_2: 1423 mld_v2_process_group_timers(mli, &qrq, 1424 &scq, inm, uri_fasthz); 1425 break; 1426 } 1427 } 1428 IF_ADDR_UNLOCK(ifp); 1429 1430 if (mli->mli_version == MLD_VERSION_2) { 1431 struct in6_multi *tinm; 1432 1433 mld_dispatch_queue(&qrq, 0); 1434 mld_dispatch_queue(&scq, 0); 1435 1436 /* 1437 * Free the in_multi reference(s) for 1438 * this lifecycle. 1439 */ 1440 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, 1441 in6m_nrele, tinm) { 1442 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, 1443 in6m_nrele); 1444 in6m_release_locked(inm); 1445 } 1446 } 1447 } 1448 1449 out_locked: 1450 MLD_UNLOCK(); 1451 IN6_MULTI_UNLOCK(); 1452 } 1453 1454 /* 1455 * Update host report group timer. 1456 * Will update the global pending timer flags. 1457 */ 1458 static void 1459 mld_v1_process_group_timer(struct in6_multi *inm, const int version) 1460 { 1461 int report_timer_expired; 1462 1463 IN6_MULTI_LOCK_ASSERT(); 1464 MLD_LOCK_ASSERT(); 1465 1466 if (inm->in6m_timer == 0) { 1467 report_timer_expired = 0; 1468 } else if (--inm->in6m_timer == 0) { 1469 report_timer_expired = 1; 1470 } else { 1471 V_current_state_timers_running6 = 1; 1472 return; 1473 } 1474 1475 switch (inm->in6m_state) { 1476 case MLD_NOT_MEMBER: 1477 case MLD_SILENT_MEMBER: 1478 case MLD_IDLE_MEMBER: 1479 case MLD_LAZY_MEMBER: 1480 case MLD_SLEEPING_MEMBER: 1481 case MLD_AWAKENING_MEMBER: 1482 break; 1483 case MLD_REPORTING_MEMBER: 1484 if (report_timer_expired) { 1485 inm->in6m_state = MLD_IDLE_MEMBER; 1486 (void)mld_v1_transmit_report(inm, 1487 MLD_LISTENER_REPORT); 1488 } 1489 break; 1490 case MLD_G_QUERY_PENDING_MEMBER: 1491 case MLD_SG_QUERY_PENDING_MEMBER: 1492 case MLD_LEAVING_MEMBER: 1493 break; 1494 } 1495 } 1496 1497 /* 1498 * Update a group's timers for MLDv2. 1499 * Will update the global pending timer flags. 1500 * Note: Unlocked read from mli. 1501 */ 1502 static void 1503 mld_v2_process_group_timers(struct mld_ifinfo *mli, 1504 struct ifqueue *qrq, struct ifqueue *scq, 1505 struct in6_multi *inm, const int uri_fasthz) 1506 { 1507 int query_response_timer_expired; 1508 int state_change_retransmit_timer_expired; 1509 #ifdef KTR 1510 char ip6tbuf[INET6_ADDRSTRLEN]; 1511 #endif 1512 1513 IN6_MULTI_LOCK_ASSERT(); 1514 MLD_LOCK_ASSERT(); 1515 1516 query_response_timer_expired = 0; 1517 state_change_retransmit_timer_expired = 0; 1518 1519 /* 1520 * During a transition from compatibility mode back to MLDv2, 1521 * a group record in REPORTING state may still have its group 1522 * timer active. This is a no-op in this function; it is easier 1523 * to deal with it here than to complicate the slow-timeout path. 1524 */ 1525 if (inm->in6m_timer == 0) { 1526 query_response_timer_expired = 0; 1527 } else if (--inm->in6m_timer == 0) { 1528 query_response_timer_expired = 1; 1529 } else { 1530 V_current_state_timers_running6 = 1; 1531 } 1532 1533 if (inm->in6m_sctimer == 0) { 1534 state_change_retransmit_timer_expired = 0; 1535 } else if (--inm->in6m_sctimer == 0) { 1536 state_change_retransmit_timer_expired = 1; 1537 } else { 1538 V_state_change_timers_running6 = 1; 1539 } 1540 1541 /* We are in fasttimo, so be quick about it. */ 1542 if (!state_change_retransmit_timer_expired && 1543 !query_response_timer_expired) 1544 return; 1545 1546 switch (inm->in6m_state) { 1547 case MLD_NOT_MEMBER: 1548 case MLD_SILENT_MEMBER: 1549 case MLD_SLEEPING_MEMBER: 1550 case MLD_LAZY_MEMBER: 1551 case MLD_AWAKENING_MEMBER: 1552 case MLD_IDLE_MEMBER: 1553 break; 1554 case MLD_G_QUERY_PENDING_MEMBER: 1555 case MLD_SG_QUERY_PENDING_MEMBER: 1556 /* 1557 * Respond to a previously pending Group-Specific 1558 * or Group-and-Source-Specific query by enqueueing 1559 * the appropriate Current-State report for 1560 * immediate transmission. 1561 */ 1562 if (query_response_timer_expired) { 1563 int retval; 1564 1565 retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1, 1566 (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER), 1567 0); 1568 CTR2(KTR_MLD, "%s: enqueue record = %d", 1569 __func__, retval); 1570 inm->in6m_state = MLD_REPORTING_MEMBER; 1571 in6m_clear_recorded(inm); 1572 } 1573 /* FALLTHROUGH */ 1574 case MLD_REPORTING_MEMBER: 1575 case MLD_LEAVING_MEMBER: 1576 if (state_change_retransmit_timer_expired) { 1577 /* 1578 * State-change retransmission timer fired. 1579 * If there are any further pending retransmissions, 1580 * set the global pending state-change flag, and 1581 * reset the timer. 1582 */ 1583 if (--inm->in6m_scrv > 0) { 1584 inm->in6m_sctimer = uri_fasthz; 1585 V_state_change_timers_running6 = 1; 1586 } 1587 /* 1588 * Retransmit the previously computed state-change 1589 * report. If there are no further pending 1590 * retransmissions, the mbuf queue will be consumed. 1591 * Update T0 state to T1 as we have now sent 1592 * a state-change. 1593 */ 1594 (void)mld_v2_merge_state_changes(inm, scq); 1595 1596 in6m_commit(inm); 1597 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 1598 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1599 inm->in6m_ifp->if_xname); 1600 1601 /* 1602 * If we are leaving the group for good, make sure 1603 * we release MLD's reference to it. 1604 * This release must be deferred using a SLIST, 1605 * as we are called from a loop which traverses 1606 * the in_ifmultiaddr TAILQ. 1607 */ 1608 if (inm->in6m_state == MLD_LEAVING_MEMBER && 1609 inm->in6m_scrv == 0) { 1610 inm->in6m_state = MLD_NOT_MEMBER; 1611 SLIST_INSERT_HEAD(&mli->mli_relinmhead, 1612 inm, in6m_nrele); 1613 } 1614 } 1615 break; 1616 } 1617 } 1618 1619 /* 1620 * Switch to a different version on the given interface, 1621 * as per Section 9.12. 1622 */ 1623 static void 1624 mld_set_version(struct mld_ifinfo *mli, const int version) 1625 { 1626 int old_version_timer; 1627 1628 MLD_LOCK_ASSERT(); 1629 1630 CTR4(KTR_MLD, "%s: switching to v%d on ifp %p(%s)", __func__, 1631 version, mli->mli_ifp, mli->mli_ifp->if_xname); 1632 1633 if (version == MLD_VERSION_1) { 1634 /* 1635 * Compute the "Older Version Querier Present" timer as per 1636 * Section 9.12. 1637 */ 1638 old_version_timer = (mli->mli_rv * mli->mli_qi) + mli->mli_qri; 1639 old_version_timer *= PR_SLOWHZ; 1640 mli->mli_v1_timer = old_version_timer; 1641 } 1642 1643 if (mli->mli_v1_timer > 0 && mli->mli_version != MLD_VERSION_1) { 1644 mli->mli_version = MLD_VERSION_1; 1645 mld_v2_cancel_link_timers(mli); 1646 } 1647 } 1648 1649 /* 1650 * Cancel pending MLDv2 timers for the given link and all groups 1651 * joined on it; state-change, general-query, and group-query timers. 1652 */ 1653 static void 1654 mld_v2_cancel_link_timers(struct mld_ifinfo *mli) 1655 { 1656 struct ifmultiaddr *ifma; 1657 struct ifnet *ifp; 1658 struct in6_multi *inm; 1659 1660 CTR3(KTR_MLD, "%s: cancel v2 timers on ifp %p(%s)", __func__, 1661 mli->mli_ifp, mli->mli_ifp->if_xname); 1662 1663 IN6_MULTI_LOCK_ASSERT(); 1664 MLD_LOCK_ASSERT(); 1665 1666 /* 1667 * Fast-track this potentially expensive operation 1668 * by checking all the global 'timer pending' flags. 1669 */ 1670 if (!V_interface_timers_running6 && 1671 !V_state_change_timers_running6 && 1672 !V_current_state_timers_running6) 1673 return; 1674 1675 mli->mli_v2_timer = 0; 1676 1677 ifp = mli->mli_ifp; 1678 1679 IF_ADDR_LOCK(ifp); 1680 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1681 if (ifma->ifma_addr->sa_family != AF_INET6) 1682 continue; 1683 inm = (struct in6_multi *)ifma->ifma_protospec; 1684 switch (inm->in6m_state) { 1685 case MLD_NOT_MEMBER: 1686 case MLD_SILENT_MEMBER: 1687 case MLD_IDLE_MEMBER: 1688 case MLD_LAZY_MEMBER: 1689 case MLD_SLEEPING_MEMBER: 1690 case MLD_AWAKENING_MEMBER: 1691 break; 1692 case MLD_LEAVING_MEMBER: 1693 /* 1694 * If we are leaving the group and switching 1695 * version, we need to release the final 1696 * reference held for issuing the INCLUDE {}. 1697 * 1698 * SMPNG: Must drop and re-acquire IF_ADDR_LOCK 1699 * around in6m_release_locked(), as it is not 1700 * a recursive mutex. 1701 */ 1702 IF_ADDR_UNLOCK(ifp); 1703 in6m_release_locked(inm); 1704 IF_ADDR_LOCK(ifp); 1705 /* FALLTHROUGH */ 1706 case MLD_G_QUERY_PENDING_MEMBER: 1707 case MLD_SG_QUERY_PENDING_MEMBER: 1708 in6m_clear_recorded(inm); 1709 /* FALLTHROUGH */ 1710 case MLD_REPORTING_MEMBER: 1711 inm->in6m_sctimer = 0; 1712 inm->in6m_timer = 0; 1713 inm->in6m_state = MLD_REPORTING_MEMBER; 1714 /* 1715 * Free any pending MLDv2 state-change records. 1716 */ 1717 _IF_DRAIN(&inm->in6m_scq); 1718 break; 1719 } 1720 } 1721 IF_ADDR_UNLOCK(ifp); 1722 } 1723 1724 /* 1725 * Global slowtimo handler. 1726 * VIMAGE: Timeout handlers are expected to service all vimages. 1727 */ 1728 void 1729 mld_slowtimo(void) 1730 { 1731 VNET_ITERATOR_DECL(vnet_iter); 1732 1733 VNET_LIST_RLOCK_NOSLEEP(); 1734 VNET_FOREACH(vnet_iter) { 1735 CURVNET_SET(vnet_iter); 1736 mld_slowtimo_vnet(); 1737 CURVNET_RESTORE(); 1738 } 1739 VNET_LIST_RUNLOCK_NOSLEEP(); 1740 } 1741 1742 /* 1743 * Per-vnet slowtimo handler. 1744 */ 1745 static void 1746 mld_slowtimo_vnet(void) 1747 { 1748 struct mld_ifinfo *mli; 1749 1750 MLD_LOCK(); 1751 1752 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1753 mld_v1_process_querier_timers(mli); 1754 } 1755 1756 MLD_UNLOCK(); 1757 } 1758 1759 /* 1760 * Update the Older Version Querier Present timers for a link. 1761 * See Section 9.12 of RFC 3810. 1762 */ 1763 static void 1764 mld_v1_process_querier_timers(struct mld_ifinfo *mli) 1765 { 1766 1767 MLD_LOCK_ASSERT(); 1768 1769 if (mli->mli_version != MLD_VERSION_2 && --mli->mli_v1_timer == 0) { 1770 /* 1771 * MLDv1 Querier Present timer expired; revert to MLDv2. 1772 */ 1773 CTR5(KTR_MLD, 1774 "%s: transition from v%d -> v%d on %p(%s)", 1775 __func__, mli->mli_version, MLD_VERSION_2, 1776 mli->mli_ifp, mli->mli_ifp->if_xname); 1777 mli->mli_version = MLD_VERSION_2; 1778 } 1779 } 1780 1781 /* 1782 * Transmit an MLDv1 report immediately. 1783 */ 1784 static int 1785 mld_v1_transmit_report(struct in6_multi *in6m, const int type) 1786 { 1787 struct ifnet *ifp; 1788 struct in6_ifaddr *ia; 1789 struct ip6_hdr *ip6; 1790 struct mbuf *mh, *md; 1791 struct mld_hdr *mld; 1792 1793 IN6_MULTI_LOCK_ASSERT(); 1794 MLD_LOCK_ASSERT(); 1795 1796 ifp = in6m->in6m_ifp; 1797 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1798 /* ia may be NULL if link-local address is tentative. */ 1799 1800 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 1801 if (mh == NULL) { 1802 if (ia != NULL) 1803 ifa_free(&ia->ia_ifa); 1804 return (ENOMEM); 1805 } 1806 MGET(md, M_DONTWAIT, MT_DATA); 1807 if (md == NULL) { 1808 m_free(mh); 1809 if (ia != NULL) 1810 ifa_free(&ia->ia_ifa); 1811 return (ENOMEM); 1812 } 1813 mh->m_next = md; 1814 1815 /* 1816 * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so 1817 * that ether_output() does not need to allocate another mbuf 1818 * for the header in the most common case. 1819 */ 1820 MH_ALIGN(mh, sizeof(struct ip6_hdr)); 1821 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr); 1822 mh->m_len = sizeof(struct ip6_hdr); 1823 1824 ip6 = mtod(mh, struct ip6_hdr *); 1825 ip6->ip6_flow = 0; 1826 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 1827 ip6->ip6_vfc |= IPV6_VERSION; 1828 ip6->ip6_nxt = IPPROTO_ICMPV6; 1829 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 1830 ip6->ip6_dst = in6m->in6m_addr; 1831 1832 md->m_len = sizeof(struct mld_hdr); 1833 mld = mtod(md, struct mld_hdr *); 1834 mld->mld_type = type; 1835 mld->mld_code = 0; 1836 mld->mld_cksum = 0; 1837 mld->mld_maxdelay = 0; 1838 mld->mld_reserved = 0; 1839 mld->mld_addr = in6m->in6m_addr; 1840 in6_clearscope(&mld->mld_addr); 1841 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 1842 sizeof(struct ip6_hdr), sizeof(struct mld_hdr)); 1843 1844 mld_save_context(mh, ifp); 1845 mh->m_flags |= M_MLDV1; 1846 1847 mld_dispatch_packet(mh); 1848 1849 if (ia != NULL) 1850 ifa_free(&ia->ia_ifa); 1851 return (0); 1852 } 1853 1854 /* 1855 * Process a state change from the upper layer for the given IPv6 group. 1856 * 1857 * Each socket holds a reference on the in_multi in its own ip_moptions. 1858 * The socket layer will have made the necessary updates to.the group 1859 * state, it is now up to MLD to issue a state change report if there 1860 * has been any change between T0 (when the last state-change was issued) 1861 * and T1 (now). 1862 * 1863 * We use the MLDv2 state machine at group level. The MLd module 1864 * however makes the decision as to which MLD protocol version to speak. 1865 * A state change *from* INCLUDE {} always means an initial join. 1866 * A state change *to* INCLUDE {} always means a final leave. 1867 * 1868 * If delay is non-zero, and the state change is an initial multicast 1869 * join, the state change report will be delayed by 'delay' ticks 1870 * in units of PR_FASTHZ if MLDv1 is active on the link; otherwise 1871 * the initial MLDv2 state change report will be delayed by whichever 1872 * is sooner, a pending state-change timer or delay itself. 1873 * 1874 * VIMAGE: curvnet should have been set by caller, as this routine 1875 * is called from the socket option handlers. 1876 */ 1877 int 1878 mld_change_state(struct in6_multi *inm, const int delay) 1879 { 1880 struct mld_ifinfo *mli; 1881 struct ifnet *ifp; 1882 int error; 1883 1884 IN6_MULTI_LOCK_ASSERT(); 1885 1886 error = 0; 1887 1888 /* 1889 * Try to detect if the upper layer just asked us to change state 1890 * for an interface which has now gone away. 1891 */ 1892 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); 1893 ifp = inm->in6m_ifma->ifma_ifp; 1894 if (ifp != NULL) { 1895 /* 1896 * Sanity check that netinet6's notion of ifp is the 1897 * same as net's. 1898 */ 1899 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); 1900 } 1901 1902 MLD_LOCK(); 1903 1904 mli = MLD_IFINFO(ifp); 1905 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 1906 1907 /* 1908 * If we detect a state transition to or from MCAST_UNDEFINED 1909 * for this group, then we are starting or finishing an MLD 1910 * life cycle for this group. 1911 */ 1912 if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) { 1913 CTR3(KTR_MLD, "%s: inm transition %d -> %d", __func__, 1914 inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode); 1915 if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) { 1916 CTR1(KTR_MLD, "%s: initial join", __func__); 1917 error = mld_initial_join(inm, mli, delay); 1918 goto out_locked; 1919 } else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) { 1920 CTR1(KTR_MLD, "%s: final leave", __func__); 1921 mld_final_leave(inm, mli); 1922 goto out_locked; 1923 } 1924 } else { 1925 CTR1(KTR_MLD, "%s: filter set change", __func__); 1926 } 1927 1928 error = mld_handle_state_change(inm, mli); 1929 1930 out_locked: 1931 MLD_UNLOCK(); 1932 return (error); 1933 } 1934 1935 /* 1936 * Perform the initial join for an MLD group. 1937 * 1938 * When joining a group: 1939 * If the group should have its MLD traffic suppressed, do nothing. 1940 * MLDv1 starts sending MLDv1 host membership reports. 1941 * MLDv2 will schedule an MLDv2 state-change report containing the 1942 * initial state of the membership. 1943 * 1944 * If the delay argument is non-zero, then we must delay sending the 1945 * initial state change for delay ticks (in units of PR_FASTHZ). 1946 */ 1947 static int 1948 mld_initial_join(struct in6_multi *inm, struct mld_ifinfo *mli, 1949 const int delay) 1950 { 1951 struct ifnet *ifp; 1952 struct ifqueue *ifq; 1953 int error, retval, syncstates; 1954 int odelay; 1955 #ifdef KTR 1956 char ip6tbuf[INET6_ADDRSTRLEN]; 1957 #endif 1958 1959 CTR4(KTR_MLD, "%s: initial join %s on ifp %p(%s)", 1960 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1961 inm->in6m_ifp, inm->in6m_ifp->if_xname); 1962 1963 error = 0; 1964 syncstates = 1; 1965 1966 ifp = inm->in6m_ifp; 1967 1968 IN6_MULTI_LOCK_ASSERT(); 1969 MLD_LOCK_ASSERT(); 1970 1971 KASSERT(mli && mli->mli_ifp == ifp, ("%s: inconsistent ifp", __func__)); 1972 1973 /* 1974 * Groups joined on loopback or marked as 'not reported', 1975 * enter the MLD_SILENT_MEMBER state and 1976 * are never reported in any protocol exchanges. 1977 * All other groups enter the appropriate state machine 1978 * for the version in use on this link. 1979 * A link marked as MLIF_SILENT causes MLD to be completely 1980 * disabled for the link. 1981 */ 1982 if ((ifp->if_flags & IFF_LOOPBACK) || 1983 (mli->mli_flags & MLIF_SILENT) || 1984 !mld_is_addr_reported(&inm->in6m_addr)) { 1985 CTR1(KTR_MLD, 1986 "%s: not kicking state machine for silent group", __func__); 1987 inm->in6m_state = MLD_SILENT_MEMBER; 1988 inm->in6m_timer = 0; 1989 } else { 1990 /* 1991 * Deal with overlapping in_multi lifecycle. 1992 * If this group was LEAVING, then make sure 1993 * we drop the reference we picked up to keep the 1994 * group around for the final INCLUDE {} enqueue. 1995 */ 1996 if (mli->mli_version == MLD_VERSION_2 && 1997 inm->in6m_state == MLD_LEAVING_MEMBER) 1998 in6m_release_locked(inm); 1999 2000 inm->in6m_state = MLD_REPORTING_MEMBER; 2001 2002 switch (mli->mli_version) { 2003 case MLD_VERSION_1: 2004 /* 2005 * If a delay was provided, only use it if 2006 * it is greater than the delay normally 2007 * used for an MLDv1 state change report, 2008 * and delay sending the initial MLDv1 report 2009 * by not transitioning to the IDLE state. 2010 */ 2011 odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI * PR_FASTHZ); 2012 if (delay) { 2013 inm->in6m_timer = max(delay, odelay); 2014 V_current_state_timers_running6 = 1; 2015 } else { 2016 inm->in6m_state = MLD_IDLE_MEMBER; 2017 error = mld_v1_transmit_report(inm, 2018 MLD_LISTENER_REPORT); 2019 if (error == 0) { 2020 inm->in6m_timer = odelay; 2021 V_current_state_timers_running6 = 1; 2022 } 2023 } 2024 break; 2025 2026 case MLD_VERSION_2: 2027 /* 2028 * Defer update of T0 to T1, until the first copy 2029 * of the state change has been transmitted. 2030 */ 2031 syncstates = 0; 2032 2033 /* 2034 * Immediately enqueue a State-Change Report for 2035 * this interface, freeing any previous reports. 2036 * Don't kick the timers if there is nothing to do, 2037 * or if an error occurred. 2038 */ 2039 ifq = &inm->in6m_scq; 2040 _IF_DRAIN(ifq); 2041 retval = mld_v2_enqueue_group_record(ifq, inm, 1, 2042 0, 0, (mli->mli_flags & MLIF_USEALLOW)); 2043 CTR2(KTR_MLD, "%s: enqueue record = %d", 2044 __func__, retval); 2045 if (retval <= 0) { 2046 error = retval * -1; 2047 break; 2048 } 2049 2050 /* 2051 * Schedule transmission of pending state-change 2052 * report up to RV times for this link. The timer 2053 * will fire at the next mld_fasttimo (~200ms), 2054 * giving us an opportunity to merge the reports. 2055 * 2056 * If a delay was provided to this function, only 2057 * use this delay if sooner than the existing one. 2058 */ 2059 KASSERT(mli->mli_rv > 1, 2060 ("%s: invalid robustness %d", __func__, 2061 mli->mli_rv)); 2062 inm->in6m_scrv = mli->mli_rv; 2063 if (delay) { 2064 if (inm->in6m_sctimer > 1) { 2065 inm->in6m_sctimer = 2066 min(inm->in6m_sctimer, delay); 2067 } else 2068 inm->in6m_sctimer = delay; 2069 } else 2070 inm->in6m_sctimer = 1; 2071 V_state_change_timers_running6 = 1; 2072 2073 error = 0; 2074 break; 2075 } 2076 } 2077 2078 /* 2079 * Only update the T0 state if state change is atomic, 2080 * i.e. we don't need to wait for a timer to fire before we 2081 * can consider the state change to have been communicated. 2082 */ 2083 if (syncstates) { 2084 in6m_commit(inm); 2085 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2086 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2087 inm->in6m_ifp->if_xname); 2088 } 2089 2090 return (error); 2091 } 2092 2093 /* 2094 * Issue an intermediate state change during the life-cycle. 2095 */ 2096 static int 2097 mld_handle_state_change(struct in6_multi *inm, struct mld_ifinfo *mli) 2098 { 2099 struct ifnet *ifp; 2100 int retval; 2101 #ifdef KTR 2102 char ip6tbuf[INET6_ADDRSTRLEN]; 2103 #endif 2104 2105 CTR4(KTR_MLD, "%s: state change for %s on ifp %p(%s)", 2106 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2107 inm->in6m_ifp, inm->in6m_ifp->if_xname); 2108 2109 ifp = inm->in6m_ifp; 2110 2111 IN6_MULTI_LOCK_ASSERT(); 2112 MLD_LOCK_ASSERT(); 2113 2114 KASSERT(mli && mli->mli_ifp == ifp, 2115 ("%s: inconsistent ifp", __func__)); 2116 2117 if ((ifp->if_flags & IFF_LOOPBACK) || 2118 (mli->mli_flags & MLIF_SILENT) || 2119 !mld_is_addr_reported(&inm->in6m_addr) || 2120 (mli->mli_version != MLD_VERSION_2)) { 2121 if (!mld_is_addr_reported(&inm->in6m_addr)) { 2122 CTR1(KTR_MLD, 2123 "%s: not kicking state machine for silent group", __func__); 2124 } 2125 CTR1(KTR_MLD, "%s: nothing to do", __func__); 2126 in6m_commit(inm); 2127 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2128 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2129 inm->in6m_ifp->if_xname); 2130 return (0); 2131 } 2132 2133 _IF_DRAIN(&inm->in6m_scq); 2134 2135 retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0, 2136 (mli->mli_flags & MLIF_USEALLOW)); 2137 CTR2(KTR_MLD, "%s: enqueue record = %d", __func__, retval); 2138 if (retval <= 0) 2139 return (-retval); 2140 2141 /* 2142 * If record(s) were enqueued, start the state-change 2143 * report timer for this group. 2144 */ 2145 inm->in6m_scrv = mli->mli_rv; 2146 inm->in6m_sctimer = 1; 2147 V_state_change_timers_running6 = 1; 2148 2149 return (0); 2150 } 2151 2152 /* 2153 * Perform the final leave for a multicast address. 2154 * 2155 * When leaving a group: 2156 * MLDv1 sends a DONE message, if and only if we are the reporter. 2157 * MLDv2 enqueues a state-change report containing a transition 2158 * to INCLUDE {} for immediate transmission. 2159 */ 2160 static void 2161 mld_final_leave(struct in6_multi *inm, struct mld_ifinfo *mli) 2162 { 2163 int syncstates; 2164 #ifdef KTR 2165 char ip6tbuf[INET6_ADDRSTRLEN]; 2166 #endif 2167 2168 syncstates = 1; 2169 2170 CTR4(KTR_MLD, "%s: final leave %s on ifp %p(%s)", 2171 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2172 inm->in6m_ifp, inm->in6m_ifp->if_xname); 2173 2174 IN6_MULTI_LOCK_ASSERT(); 2175 MLD_LOCK_ASSERT(); 2176 2177 switch (inm->in6m_state) { 2178 case MLD_NOT_MEMBER: 2179 case MLD_SILENT_MEMBER: 2180 case MLD_LEAVING_MEMBER: 2181 /* Already leaving or left; do nothing. */ 2182 CTR1(KTR_MLD, 2183 "%s: not kicking state machine for silent group", __func__); 2184 break; 2185 case MLD_REPORTING_MEMBER: 2186 case MLD_IDLE_MEMBER: 2187 case MLD_G_QUERY_PENDING_MEMBER: 2188 case MLD_SG_QUERY_PENDING_MEMBER: 2189 if (mli->mli_version == MLD_VERSION_1) { 2190 #ifdef INVARIANTS 2191 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 2192 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) 2193 panic("%s: MLDv2 state reached, not MLDv2 mode", 2194 __func__); 2195 #endif 2196 mld_v1_transmit_report(inm, MLD_LISTENER_DONE); 2197 inm->in6m_state = MLD_NOT_MEMBER; 2198 } else if (mli->mli_version == MLD_VERSION_2) { 2199 /* 2200 * Stop group timer and all pending reports. 2201 * Immediately enqueue a state-change report 2202 * TO_IN {} to be sent on the next fast timeout, 2203 * giving us an opportunity to merge reports. 2204 */ 2205 _IF_DRAIN(&inm->in6m_scq); 2206 inm->in6m_timer = 0; 2207 inm->in6m_scrv = mli->mli_rv; 2208 CTR4(KTR_MLD, "%s: Leaving %s/%s with %d " 2209 "pending retransmissions.", __func__, 2210 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2211 inm->in6m_ifp->if_xname, inm->in6m_scrv); 2212 if (inm->in6m_scrv == 0) { 2213 inm->in6m_state = MLD_NOT_MEMBER; 2214 inm->in6m_sctimer = 0; 2215 } else { 2216 int retval; 2217 2218 in6m_acquire_locked(inm); 2219 2220 retval = mld_v2_enqueue_group_record( 2221 &inm->in6m_scq, inm, 1, 0, 0, 2222 (mli->mli_flags & MLIF_USEALLOW)); 2223 KASSERT(retval != 0, 2224 ("%s: enqueue record = %d", __func__, 2225 retval)); 2226 2227 inm->in6m_state = MLD_LEAVING_MEMBER; 2228 inm->in6m_sctimer = 1; 2229 V_state_change_timers_running6 = 1; 2230 syncstates = 0; 2231 } 2232 break; 2233 } 2234 break; 2235 case MLD_LAZY_MEMBER: 2236 case MLD_SLEEPING_MEMBER: 2237 case MLD_AWAKENING_MEMBER: 2238 /* Our reports are suppressed; do nothing. */ 2239 break; 2240 } 2241 2242 if (syncstates) { 2243 in6m_commit(inm); 2244 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2245 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2246 inm->in6m_ifp->if_xname); 2247 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 2248 CTR3(KTR_MLD, "%s: T1 now MCAST_UNDEFINED for %p/%s", 2249 __func__, &inm->in6m_addr, inm->in6m_ifp->if_xname); 2250 } 2251 } 2252 2253 /* 2254 * Enqueue an MLDv2 group record to the given output queue. 2255 * 2256 * If is_state_change is zero, a current-state record is appended. 2257 * If is_state_change is non-zero, a state-change report is appended. 2258 * 2259 * If is_group_query is non-zero, an mbuf packet chain is allocated. 2260 * If is_group_query is zero, and if there is a packet with free space 2261 * at the tail of the queue, it will be appended to providing there 2262 * is enough free space. 2263 * Otherwise a new mbuf packet chain is allocated. 2264 * 2265 * If is_source_query is non-zero, each source is checked to see if 2266 * it was recorded for a Group-Source query, and will be omitted if 2267 * it is not both in-mode and recorded. 2268 * 2269 * If use_block_allow is non-zero, state change reports for initial join 2270 * and final leave, on an inclusive mode group with a source list, will be 2271 * rewritten to use the ALLOW_NEW and BLOCK_OLD record types, respectively. 2272 * 2273 * The function will attempt to allocate leading space in the packet 2274 * for the IPv6+ICMP headers to be prepended without fragmenting the chain. 2275 * 2276 * If successful the size of all data appended to the queue is returned, 2277 * otherwise an error code less than zero is returned, or zero if 2278 * no record(s) were appended. 2279 */ 2280 static int 2281 mld_v2_enqueue_group_record(struct ifqueue *ifq, struct in6_multi *inm, 2282 const int is_state_change, const int is_group_query, 2283 const int is_source_query, const int use_block_allow) 2284 { 2285 struct mldv2_record mr; 2286 struct mldv2_record *pmr; 2287 struct ifnet *ifp; 2288 struct ip6_msource *ims, *nims; 2289 struct mbuf *m0, *m, *md; 2290 int error, is_filter_list_change; 2291 int minrec0len, m0srcs, msrcs, nbytes, off; 2292 int record_has_sources; 2293 int now; 2294 int type; 2295 uint8_t mode; 2296 #ifdef KTR 2297 char ip6tbuf[INET6_ADDRSTRLEN]; 2298 #endif 2299 2300 IN6_MULTI_LOCK_ASSERT(); 2301 2302 error = 0; 2303 ifp = inm->in6m_ifp; 2304 is_filter_list_change = 0; 2305 m = NULL; 2306 m0 = NULL; 2307 m0srcs = 0; 2308 msrcs = 0; 2309 nbytes = 0; 2310 nims = NULL; 2311 record_has_sources = 1; 2312 pmr = NULL; 2313 type = MLD_DO_NOTHING; 2314 mode = inm->in6m_st[1].iss_fmode; 2315 2316 /* 2317 * If we did not transition out of ASM mode during t0->t1, 2318 * and there are no source nodes to process, we can skip 2319 * the generation of source records. 2320 */ 2321 if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 && 2322 inm->in6m_nsrc == 0) 2323 record_has_sources = 0; 2324 2325 if (is_state_change) { 2326 /* 2327 * Queue a state change record. 2328 * If the mode did not change, and there are non-ASM 2329 * listeners or source filters present, 2330 * we potentially need to issue two records for the group. 2331 * If there are ASM listeners, and there was no filter 2332 * mode transition of any kind, do nothing. 2333 * 2334 * If we are transitioning to MCAST_UNDEFINED, we need 2335 * not send any sources. A transition to/from this state is 2336 * considered inclusive with some special treatment. 2337 * 2338 * If we are rewriting initial joins/leaves to use 2339 * ALLOW/BLOCK, and the group's membership is inclusive, 2340 * we need to send sources in all cases. 2341 */ 2342 if (mode != inm->in6m_st[0].iss_fmode) { 2343 if (mode == MCAST_EXCLUDE) { 2344 CTR1(KTR_MLD, "%s: change to EXCLUDE", 2345 __func__); 2346 type = MLD_CHANGE_TO_EXCLUDE_MODE; 2347 } else { 2348 CTR1(KTR_MLD, "%s: change to INCLUDE", 2349 __func__); 2350 if (use_block_allow) { 2351 /* 2352 * XXX 2353 * Here we're interested in state 2354 * edges either direction between 2355 * MCAST_UNDEFINED and MCAST_INCLUDE. 2356 * Perhaps we should just check 2357 * the group state, rather than 2358 * the filter mode. 2359 */ 2360 if (mode == MCAST_UNDEFINED) { 2361 type = MLD_BLOCK_OLD_SOURCES; 2362 } else { 2363 type = MLD_ALLOW_NEW_SOURCES; 2364 } 2365 } else { 2366 type = MLD_CHANGE_TO_INCLUDE_MODE; 2367 if (mode == MCAST_UNDEFINED) 2368 record_has_sources = 0; 2369 } 2370 } 2371 } else { 2372 if (record_has_sources) { 2373 is_filter_list_change = 1; 2374 } else { 2375 type = MLD_DO_NOTHING; 2376 } 2377 } 2378 } else { 2379 /* 2380 * Queue a current state record. 2381 */ 2382 if (mode == MCAST_EXCLUDE) { 2383 type = MLD_MODE_IS_EXCLUDE; 2384 } else if (mode == MCAST_INCLUDE) { 2385 type = MLD_MODE_IS_INCLUDE; 2386 KASSERT(inm->in6m_st[1].iss_asm == 0, 2387 ("%s: inm %p is INCLUDE but ASM count is %d", 2388 __func__, inm, inm->in6m_st[1].iss_asm)); 2389 } 2390 } 2391 2392 /* 2393 * Generate the filter list changes using a separate function. 2394 */ 2395 if (is_filter_list_change) 2396 return (mld_v2_enqueue_filter_change(ifq, inm)); 2397 2398 if (type == MLD_DO_NOTHING) { 2399 CTR3(KTR_MLD, "%s: nothing to do for %s/%s", 2400 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2401 inm->in6m_ifp->if_xname); 2402 return (0); 2403 } 2404 2405 /* 2406 * If any sources are present, we must be able to fit at least 2407 * one in the trailing space of the tail packet's mbuf, 2408 * ideally more. 2409 */ 2410 minrec0len = sizeof(struct mldv2_record); 2411 if (record_has_sources) 2412 minrec0len += sizeof(struct in6_addr); 2413 2414 CTR4(KTR_MLD, "%s: queueing %s for %s/%s", __func__, 2415 mld_rec_type_to_str(type), 2416 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2417 inm->in6m_ifp->if_xname); 2418 2419 /* 2420 * Check if we have a packet in the tail of the queue for this 2421 * group into which the first group record for this group will fit. 2422 * Otherwise allocate a new packet. 2423 * Always allocate leading space for IP6+RA+ICMPV6+REPORT. 2424 * Note: Group records for G/GSR query responses MUST be sent 2425 * in their own packet. 2426 */ 2427 m0 = ifq->ifq_tail; 2428 if (!is_group_query && 2429 m0 != NULL && 2430 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) && 2431 (m0->m_pkthdr.len + minrec0len) < 2432 (ifp->if_mtu - MLD_MTUSPACE)) { 2433 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2434 sizeof(struct mldv2_record)) / 2435 sizeof(struct in6_addr); 2436 m = m0; 2437 CTR1(KTR_MLD, "%s: use existing packet", __func__); 2438 } else { 2439 if (_IF_QFULL(ifq)) { 2440 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2441 return (-ENOMEM); 2442 } 2443 m = NULL; 2444 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2445 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2446 if (!is_state_change && !is_group_query) 2447 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2448 if (m == NULL) 2449 m = m_gethdr(M_DONTWAIT, MT_DATA); 2450 if (m == NULL) 2451 return (-ENOMEM); 2452 2453 mld_save_context(m, ifp); 2454 2455 CTR1(KTR_MLD, "%s: allocated first packet", __func__); 2456 } 2457 2458 /* 2459 * Append group record. 2460 * If we have sources, we don't know how many yet. 2461 */ 2462 mr.mr_type = type; 2463 mr.mr_datalen = 0; 2464 mr.mr_numsrc = 0; 2465 mr.mr_addr = inm->in6m_addr; 2466 in6_clearscope(&mr.mr_addr); 2467 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2468 if (m != m0) 2469 m_freem(m); 2470 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2471 return (-ENOMEM); 2472 } 2473 nbytes += sizeof(struct mldv2_record); 2474 2475 /* 2476 * Append as many sources as will fit in the first packet. 2477 * If we are appending to a new packet, the chain allocation 2478 * may potentially use clusters; use m_getptr() in this case. 2479 * If we are appending to an existing packet, we need to obtain 2480 * a pointer to the group record after m_append(), in case a new 2481 * mbuf was allocated. 2482 * 2483 * Only append sources which are in-mode at t1. If we are 2484 * transitioning to MCAST_UNDEFINED state on the group, and 2485 * use_block_allow is zero, do not include source entries. 2486 * Otherwise, we need to include this source in the report. 2487 * 2488 * Only report recorded sources in our filter set when responding 2489 * to a group-source query. 2490 */ 2491 if (record_has_sources) { 2492 if (m == m0) { 2493 md = m_last(m); 2494 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2495 md->m_len - nbytes); 2496 } else { 2497 md = m_getptr(m, 0, &off); 2498 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2499 off); 2500 } 2501 msrcs = 0; 2502 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, 2503 nims) { 2504 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2505 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2506 now = im6s_get_mode(inm, ims, 1); 2507 CTR2(KTR_MLD, "%s: node is %d", __func__, now); 2508 if ((now != mode) || 2509 (now == mode && 2510 (!use_block_allow && mode == MCAST_UNDEFINED))) { 2511 CTR1(KTR_MLD, "%s: skip node", __func__); 2512 continue; 2513 } 2514 if (is_source_query && ims->im6s_stp == 0) { 2515 CTR1(KTR_MLD, "%s: skip unrecorded node", 2516 __func__); 2517 continue; 2518 } 2519 CTR1(KTR_MLD, "%s: append node", __func__); 2520 if (!m_append(m, sizeof(struct in6_addr), 2521 (void *)&ims->im6s_addr)) { 2522 if (m != m0) 2523 m_freem(m); 2524 CTR1(KTR_MLD, "%s: m_append() failed.", 2525 __func__); 2526 return (-ENOMEM); 2527 } 2528 nbytes += sizeof(struct in6_addr); 2529 ++msrcs; 2530 if (msrcs == m0srcs) 2531 break; 2532 } 2533 CTR2(KTR_MLD, "%s: msrcs is %d this packet", __func__, 2534 msrcs); 2535 pmr->mr_numsrc = htons(msrcs); 2536 nbytes += (msrcs * sizeof(struct in6_addr)); 2537 } 2538 2539 if (is_source_query && msrcs == 0) { 2540 CTR1(KTR_MLD, "%s: no recorded sources to report", __func__); 2541 if (m != m0) 2542 m_freem(m); 2543 return (0); 2544 } 2545 2546 /* 2547 * We are good to go with first packet. 2548 */ 2549 if (m != m0) { 2550 CTR1(KTR_MLD, "%s: enqueueing first packet", __func__); 2551 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2552 _IF_ENQUEUE(ifq, m); 2553 } else 2554 m->m_pkthdr.PH_vt.vt_nrecs++; 2555 2556 /* 2557 * No further work needed if no source list in packet(s). 2558 */ 2559 if (!record_has_sources) 2560 return (nbytes); 2561 2562 /* 2563 * Whilst sources remain to be announced, we need to allocate 2564 * a new packet and fill out as many sources as will fit. 2565 * Always try for a cluster first. 2566 */ 2567 while (nims != NULL) { 2568 if (_IF_QFULL(ifq)) { 2569 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2570 return (-ENOMEM); 2571 } 2572 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2573 if (m == NULL) 2574 m = m_gethdr(M_DONTWAIT, MT_DATA); 2575 if (m == NULL) 2576 return (-ENOMEM); 2577 mld_save_context(m, ifp); 2578 md = m_getptr(m, 0, &off); 2579 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off); 2580 CTR1(KTR_MLD, "%s: allocated next packet", __func__); 2581 2582 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2583 if (m != m0) 2584 m_freem(m); 2585 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2586 return (-ENOMEM); 2587 } 2588 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2589 nbytes += sizeof(struct mldv2_record); 2590 2591 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2592 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2593 2594 msrcs = 0; 2595 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2596 CTR2(KTR_MLD, "%s: visit node %s", 2597 __func__, ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2598 now = im6s_get_mode(inm, ims, 1); 2599 if ((now != mode) || 2600 (now == mode && 2601 (!use_block_allow && mode == MCAST_UNDEFINED))) { 2602 CTR1(KTR_MLD, "%s: skip node", __func__); 2603 continue; 2604 } 2605 if (is_source_query && ims->im6s_stp == 0) { 2606 CTR1(KTR_MLD, "%s: skip unrecorded node", 2607 __func__); 2608 continue; 2609 } 2610 CTR1(KTR_MLD, "%s: append node", __func__); 2611 if (!m_append(m, sizeof(struct in6_addr), 2612 (void *)&ims->im6s_addr)) { 2613 if (m != m0) 2614 m_freem(m); 2615 CTR1(KTR_MLD, "%s: m_append() failed.", 2616 __func__); 2617 return (-ENOMEM); 2618 } 2619 ++msrcs; 2620 if (msrcs == m0srcs) 2621 break; 2622 } 2623 pmr->mr_numsrc = htons(msrcs); 2624 nbytes += (msrcs * sizeof(struct in6_addr)); 2625 2626 CTR1(KTR_MLD, "%s: enqueueing next packet", __func__); 2627 _IF_ENQUEUE(ifq, m); 2628 } 2629 2630 return (nbytes); 2631 } 2632 2633 /* 2634 * Type used to mark record pass completion. 2635 * We exploit the fact we can cast to this easily from the 2636 * current filter modes on each ip_msource node. 2637 */ 2638 typedef enum { 2639 REC_NONE = 0x00, /* MCAST_UNDEFINED */ 2640 REC_ALLOW = 0x01, /* MCAST_INCLUDE */ 2641 REC_BLOCK = 0x02, /* MCAST_EXCLUDE */ 2642 REC_FULL = REC_ALLOW | REC_BLOCK 2643 } rectype_t; 2644 2645 /* 2646 * Enqueue an MLDv2 filter list change to the given output queue. 2647 * 2648 * Source list filter state is held in an RB-tree. When the filter list 2649 * for a group is changed without changing its mode, we need to compute 2650 * the deltas between T0 and T1 for each source in the filter set, 2651 * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records. 2652 * 2653 * As we may potentially queue two record types, and the entire R-B tree 2654 * needs to be walked at once, we break this out into its own function 2655 * so we can generate a tightly packed queue of packets. 2656 * 2657 * XXX This could be written to only use one tree walk, although that makes 2658 * serializing into the mbuf chains a bit harder. For now we do two walks 2659 * which makes things easier on us, and it may or may not be harder on 2660 * the L2 cache. 2661 * 2662 * If successful the size of all data appended to the queue is returned, 2663 * otherwise an error code less than zero is returned, or zero if 2664 * no record(s) were appended. 2665 */ 2666 static int 2667 mld_v2_enqueue_filter_change(struct ifqueue *ifq, struct in6_multi *inm) 2668 { 2669 static const int MINRECLEN = 2670 sizeof(struct mldv2_record) + sizeof(struct in6_addr); 2671 struct ifnet *ifp; 2672 struct mldv2_record mr; 2673 struct mldv2_record *pmr; 2674 struct ip6_msource *ims, *nims; 2675 struct mbuf *m, *m0, *md; 2676 int m0srcs, nbytes, npbytes, off, rsrcs, schanged; 2677 int nallow, nblock; 2678 uint8_t mode, now, then; 2679 rectype_t crt, drt, nrt; 2680 #ifdef KTR 2681 char ip6tbuf[INET6_ADDRSTRLEN]; 2682 #endif 2683 2684 IN6_MULTI_LOCK_ASSERT(); 2685 2686 if (inm->in6m_nsrc == 0 || 2687 (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0)) 2688 return (0); 2689 2690 ifp = inm->in6m_ifp; /* interface */ 2691 mode = inm->in6m_st[1].iss_fmode; /* filter mode at t1 */ 2692 crt = REC_NONE; /* current group record type */ 2693 drt = REC_NONE; /* mask of completed group record types */ 2694 nrt = REC_NONE; /* record type for current node */ 2695 m0srcs = 0; /* # source which will fit in current mbuf chain */ 2696 npbytes = 0; /* # of bytes appended this packet */ 2697 nbytes = 0; /* # of bytes appended to group's state-change queue */ 2698 rsrcs = 0; /* # sources encoded in current record */ 2699 schanged = 0; /* # nodes encoded in overall filter change */ 2700 nallow = 0; /* # of source entries in ALLOW_NEW */ 2701 nblock = 0; /* # of source entries in BLOCK_OLD */ 2702 nims = NULL; /* next tree node pointer */ 2703 2704 /* 2705 * For each possible filter record mode. 2706 * The first kind of source we encounter tells us which 2707 * is the first kind of record we start appending. 2708 * If a node transitioned to UNDEFINED at t1, its mode is treated 2709 * as the inverse of the group's filter mode. 2710 */ 2711 while (drt != REC_FULL) { 2712 do { 2713 m0 = ifq->ifq_tail; 2714 if (m0 != NULL && 2715 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= 2716 MLD_V2_REPORT_MAXRECS) && 2717 (m0->m_pkthdr.len + MINRECLEN) < 2718 (ifp->if_mtu - MLD_MTUSPACE)) { 2719 m = m0; 2720 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2721 sizeof(struct mldv2_record)) / 2722 sizeof(struct in6_addr); 2723 CTR1(KTR_MLD, 2724 "%s: use previous packet", __func__); 2725 } else { 2726 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2727 if (m == NULL) 2728 m = m_gethdr(M_DONTWAIT, MT_DATA); 2729 if (m == NULL) { 2730 CTR1(KTR_MLD, 2731 "%s: m_get*() failed", __func__); 2732 return (-ENOMEM); 2733 } 2734 m->m_pkthdr.PH_vt.vt_nrecs = 0; 2735 mld_save_context(m, ifp); 2736 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2737 sizeof(struct mldv2_record)) / 2738 sizeof(struct in6_addr); 2739 npbytes = 0; 2740 CTR1(KTR_MLD, 2741 "%s: allocated new packet", __func__); 2742 } 2743 /* 2744 * Append the MLD group record header to the 2745 * current packet's data area. 2746 * Recalculate pointer to free space for next 2747 * group record, in case m_append() allocated 2748 * a new mbuf or cluster. 2749 */ 2750 memset(&mr, 0, sizeof(mr)); 2751 mr.mr_addr = inm->in6m_addr; 2752 in6_clearscope(&mr.mr_addr); 2753 if (!m_append(m, sizeof(mr), (void *)&mr)) { 2754 if (m != m0) 2755 m_freem(m); 2756 CTR1(KTR_MLD, 2757 "%s: m_append() failed", __func__); 2758 return (-ENOMEM); 2759 } 2760 npbytes += sizeof(struct mldv2_record); 2761 if (m != m0) { 2762 /* new packet; offset in chain */ 2763 md = m_getptr(m, npbytes - 2764 sizeof(struct mldv2_record), &off); 2765 pmr = (struct mldv2_record *)(mtod(md, 2766 uint8_t *) + off); 2767 } else { 2768 /* current packet; offset from last append */ 2769 md = m_last(m); 2770 pmr = (struct mldv2_record *)(mtod(md, 2771 uint8_t *) + md->m_len - 2772 sizeof(struct mldv2_record)); 2773 } 2774 /* 2775 * Begin walking the tree for this record type 2776 * pass, or continue from where we left off 2777 * previously if we had to allocate a new packet. 2778 * Only report deltas in-mode at t1. 2779 * We need not report included sources as allowed 2780 * if we are in inclusive mode on the group, 2781 * however the converse is not true. 2782 */ 2783 rsrcs = 0; 2784 if (nims == NULL) { 2785 nims = RB_MIN(ip6_msource_tree, 2786 &inm->in6m_srcs); 2787 } 2788 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2789 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2790 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2791 now = im6s_get_mode(inm, ims, 1); 2792 then = im6s_get_mode(inm, ims, 0); 2793 CTR3(KTR_MLD, "%s: mode: t0 %d, t1 %d", 2794 __func__, then, now); 2795 if (now == then) { 2796 CTR1(KTR_MLD, 2797 "%s: skip unchanged", __func__); 2798 continue; 2799 } 2800 if (mode == MCAST_EXCLUDE && 2801 now == MCAST_INCLUDE) { 2802 CTR1(KTR_MLD, 2803 "%s: skip IN src on EX group", 2804 __func__); 2805 continue; 2806 } 2807 nrt = (rectype_t)now; 2808 if (nrt == REC_NONE) 2809 nrt = (rectype_t)(~mode & REC_FULL); 2810 if (schanged++ == 0) { 2811 crt = nrt; 2812 } else if (crt != nrt) 2813 continue; 2814 if (!m_append(m, sizeof(struct in6_addr), 2815 (void *)&ims->im6s_addr)) { 2816 if (m != m0) 2817 m_freem(m); 2818 CTR1(KTR_MLD, 2819 "%s: m_append() failed", __func__); 2820 return (-ENOMEM); 2821 } 2822 nallow += !!(crt == REC_ALLOW); 2823 nblock += !!(crt == REC_BLOCK); 2824 if (++rsrcs == m0srcs) 2825 break; 2826 } 2827 /* 2828 * If we did not append any tree nodes on this 2829 * pass, back out of allocations. 2830 */ 2831 if (rsrcs == 0) { 2832 npbytes -= sizeof(struct mldv2_record); 2833 if (m != m0) { 2834 CTR1(KTR_MLD, 2835 "%s: m_free(m)", __func__); 2836 m_freem(m); 2837 } else { 2838 CTR1(KTR_MLD, 2839 "%s: m_adj(m, -mr)", __func__); 2840 m_adj(m, -((int)sizeof( 2841 struct mldv2_record))); 2842 } 2843 continue; 2844 } 2845 npbytes += (rsrcs * sizeof(struct in6_addr)); 2846 if (crt == REC_ALLOW) 2847 pmr->mr_type = MLD_ALLOW_NEW_SOURCES; 2848 else if (crt == REC_BLOCK) 2849 pmr->mr_type = MLD_BLOCK_OLD_SOURCES; 2850 pmr->mr_numsrc = htons(rsrcs); 2851 /* 2852 * Count the new group record, and enqueue this 2853 * packet if it wasn't already queued. 2854 */ 2855 m->m_pkthdr.PH_vt.vt_nrecs++; 2856 if (m != m0) 2857 _IF_ENQUEUE(ifq, m); 2858 nbytes += npbytes; 2859 } while (nims != NULL); 2860 drt |= crt; 2861 crt = (~crt & REC_FULL); 2862 } 2863 2864 CTR3(KTR_MLD, "%s: queued %d ALLOW_NEW, %d BLOCK_OLD", __func__, 2865 nallow, nblock); 2866 2867 return (nbytes); 2868 } 2869 2870 static int 2871 mld_v2_merge_state_changes(struct in6_multi *inm, struct ifqueue *ifscq) 2872 { 2873 struct ifqueue *gq; 2874 struct mbuf *m; /* pending state-change */ 2875 struct mbuf *m0; /* copy of pending state-change */ 2876 struct mbuf *mt; /* last state-change in packet */ 2877 int docopy, domerge; 2878 u_int recslen; 2879 2880 docopy = 0; 2881 domerge = 0; 2882 recslen = 0; 2883 2884 IN6_MULTI_LOCK_ASSERT(); 2885 MLD_LOCK_ASSERT(); 2886 2887 /* 2888 * If there are further pending retransmissions, make a writable 2889 * copy of each queued state-change message before merging. 2890 */ 2891 if (inm->in6m_scrv > 0) 2892 docopy = 1; 2893 2894 gq = &inm->in6m_scq; 2895 #ifdef KTR 2896 if (gq->ifq_head == NULL) { 2897 CTR2(KTR_MLD, "%s: WARNING: queue for inm %p is empty", 2898 __func__, inm); 2899 } 2900 #endif 2901 2902 m = gq->ifq_head; 2903 while (m != NULL) { 2904 /* 2905 * Only merge the report into the current packet if 2906 * there is sufficient space to do so; an MLDv2 report 2907 * packet may only contain 65,535 group records. 2908 * Always use a simple mbuf chain concatentation to do this, 2909 * as large state changes for single groups may have 2910 * allocated clusters. 2911 */ 2912 domerge = 0; 2913 mt = ifscq->ifq_tail; 2914 if (mt != NULL) { 2915 recslen = m_length(m, NULL); 2916 2917 if ((mt->m_pkthdr.PH_vt.vt_nrecs + 2918 m->m_pkthdr.PH_vt.vt_nrecs <= 2919 MLD_V2_REPORT_MAXRECS) && 2920 (mt->m_pkthdr.len + recslen <= 2921 (inm->in6m_ifp->if_mtu - MLD_MTUSPACE))) 2922 domerge = 1; 2923 } 2924 2925 if (!domerge && _IF_QFULL(gq)) { 2926 CTR2(KTR_MLD, 2927 "%s: outbound queue full, skipping whole packet %p", 2928 __func__, m); 2929 mt = m->m_nextpkt; 2930 if (!docopy) 2931 m_freem(m); 2932 m = mt; 2933 continue; 2934 } 2935 2936 if (!docopy) { 2937 CTR2(KTR_MLD, "%s: dequeueing %p", __func__, m); 2938 _IF_DEQUEUE(gq, m0); 2939 m = m0->m_nextpkt; 2940 } else { 2941 CTR2(KTR_MLD, "%s: copying %p", __func__, m); 2942 m0 = m_dup(m, M_NOWAIT); 2943 if (m0 == NULL) 2944 return (ENOMEM); 2945 m0->m_nextpkt = NULL; 2946 m = m->m_nextpkt; 2947 } 2948 2949 if (!domerge) { 2950 CTR3(KTR_MLD, "%s: queueing %p to ifscq %p)", 2951 __func__, m0, ifscq); 2952 _IF_ENQUEUE(ifscq, m0); 2953 } else { 2954 struct mbuf *mtl; /* last mbuf of packet mt */ 2955 2956 CTR3(KTR_MLD, "%s: merging %p with ifscq tail %p)", 2957 __func__, m0, mt); 2958 2959 mtl = m_last(mt); 2960 m0->m_flags &= ~M_PKTHDR; 2961 mt->m_pkthdr.len += recslen; 2962 mt->m_pkthdr.PH_vt.vt_nrecs += 2963 m0->m_pkthdr.PH_vt.vt_nrecs; 2964 2965 mtl->m_next = m0; 2966 } 2967 } 2968 2969 return (0); 2970 } 2971 2972 /* 2973 * Respond to a pending MLDv2 General Query. 2974 */ 2975 static void 2976 mld_v2_dispatch_general_query(struct mld_ifinfo *mli) 2977 { 2978 struct ifmultiaddr *ifma, *tifma; 2979 struct ifnet *ifp; 2980 struct in6_multi *inm; 2981 int retval; 2982 2983 IN6_MULTI_LOCK_ASSERT(); 2984 MLD_LOCK_ASSERT(); 2985 2986 KASSERT(mli->mli_version == MLD_VERSION_2, 2987 ("%s: called when version %d", __func__, mli->mli_version)); 2988 2989 ifp = mli->mli_ifp; 2990 2991 IF_ADDR_LOCK(ifp); 2992 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, tifma) { 2993 if (ifma->ifma_addr->sa_family != AF_INET6 || 2994 ifma->ifma_protospec == NULL) 2995 continue; 2996 2997 inm = (struct in6_multi *)ifma->ifma_protospec; 2998 KASSERT(ifp == inm->in6m_ifp, 2999 ("%s: inconsistent ifp", __func__)); 3000 3001 switch (inm->in6m_state) { 3002 case MLD_NOT_MEMBER: 3003 case MLD_SILENT_MEMBER: 3004 break; 3005 case MLD_REPORTING_MEMBER: 3006 case MLD_IDLE_MEMBER: 3007 case MLD_LAZY_MEMBER: 3008 case MLD_SLEEPING_MEMBER: 3009 case MLD_AWAKENING_MEMBER: 3010 inm->in6m_state = MLD_REPORTING_MEMBER; 3011 retval = mld_v2_enqueue_group_record(&mli->mli_gq, 3012 inm, 0, 0, 0, 0); 3013 CTR2(KTR_MLD, "%s: enqueue record = %d", 3014 __func__, retval); 3015 break; 3016 case MLD_G_QUERY_PENDING_MEMBER: 3017 case MLD_SG_QUERY_PENDING_MEMBER: 3018 case MLD_LEAVING_MEMBER: 3019 break; 3020 } 3021 } 3022 IF_ADDR_UNLOCK(ifp); 3023 3024 mld_dispatch_queue(&mli->mli_gq, MLD_MAX_RESPONSE_BURST); 3025 3026 /* 3027 * Slew transmission of bursts over 500ms intervals. 3028 */ 3029 if (mli->mli_gq.ifq_head != NULL) { 3030 mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY( 3031 MLD_RESPONSE_BURST_INTERVAL); 3032 V_interface_timers_running6 = 1; 3033 } 3034 } 3035 3036 /* 3037 * Transmit the next pending message in the output queue. 3038 * 3039 * VIMAGE: Needs to store/restore vnet pointer on a per-mbuf-chain basis. 3040 * MRT: Nothing needs to be done, as MLD traffic is always local to 3041 * a link and uses a link-scope multicast address. 3042 */ 3043 static void 3044 mld_dispatch_packet(struct mbuf *m) 3045 { 3046 struct ip6_moptions im6o; 3047 struct ifnet *ifp; 3048 struct ifnet *oifp; 3049 struct mbuf *m0; 3050 struct mbuf *md; 3051 struct ip6_hdr *ip6; 3052 struct mld_hdr *mld; 3053 int error; 3054 int off; 3055 int type; 3056 uint32_t ifindex; 3057 3058 CTR2(KTR_MLD, "%s: transmit %p", __func__, m); 3059 3060 /* 3061 * Set VNET image pointer from enqueued mbuf chain 3062 * before doing anything else. Whilst we use interface 3063 * indexes to guard against interface detach, they are 3064 * unique to each VIMAGE and must be retrieved. 3065 */ 3066 ifindex = mld_restore_context(m); 3067 3068 /* 3069 * Check if the ifnet still exists. This limits the scope of 3070 * any race in the absence of a global ifp lock for low cost 3071 * (an array lookup). 3072 */ 3073 ifp = ifnet_byindex(ifindex); 3074 if (ifp == NULL) { 3075 CTR3(KTR_MLD, "%s: dropped %p as ifindex %u went away.", 3076 __func__, m, ifindex); 3077 m_freem(m); 3078 IP6STAT_INC(ip6s_noroute); 3079 goto out; 3080 } 3081 3082 im6o.im6o_multicast_hlim = 1; 3083 im6o.im6o_multicast_loop = (V_ip6_mrouter != NULL); 3084 im6o.im6o_multicast_ifp = ifp; 3085 3086 if (m->m_flags & M_MLDV1) { 3087 m0 = m; 3088 } else { 3089 m0 = mld_v2_encap_report(ifp, m); 3090 if (m0 == NULL) { 3091 CTR2(KTR_MLD, "%s: dropped %p", __func__, m); 3092 m_freem(m); 3093 IP6STAT_INC(ip6s_odropped); 3094 goto out; 3095 } 3096 } 3097 3098 mld_scrub_context(m0); 3099 m->m_flags &= ~(M_PROTOFLAGS); 3100 m0->m_pkthdr.rcvif = V_loif; 3101 3102 ip6 = mtod(m0, struct ip6_hdr *); 3103 #if 0 3104 (void)in6_setscope(&ip6->ip6_dst, ifp, NULL); /* XXX LOR */ 3105 #else 3106 /* 3107 * XXX XXX Break some KPI rules to prevent an LOR which would 3108 * occur if we called in6_setscope() at transmission. 3109 * See comments at top of file. 3110 */ 3111 MLD_EMBEDSCOPE(&ip6->ip6_dst, ifp->if_index); 3112 #endif 3113 3114 /* 3115 * Retrieve the ICMPv6 type before handoff to ip6_output(), 3116 * so we can bump the stats. 3117 */ 3118 md = m_getptr(m0, sizeof(struct ip6_hdr), &off); 3119 mld = (struct mld_hdr *)(mtod(md, uint8_t *) + off); 3120 type = mld->mld_type; 3121 3122 error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, &im6o, 3123 &oifp, NULL); 3124 if (error) { 3125 CTR3(KTR_MLD, "%s: ip6_output(%p) = %d", __func__, m0, error); 3126 goto out; 3127 } 3128 ICMP6STAT_INC(icp6s_outhist[type]); 3129 if (oifp != NULL) { 3130 icmp6_ifstat_inc(oifp, ifs6_out_msg); 3131 switch (type) { 3132 case MLD_LISTENER_REPORT: 3133 case MLDV2_LISTENER_REPORT: 3134 icmp6_ifstat_inc(oifp, ifs6_out_mldreport); 3135 break; 3136 case MLD_LISTENER_DONE: 3137 icmp6_ifstat_inc(oifp, ifs6_out_mlddone); 3138 break; 3139 } 3140 } 3141 out: 3142 return; 3143 } 3144 3145 /* 3146 * Encapsulate an MLDv2 report. 3147 * 3148 * KAME IPv6 requires that hop-by-hop options be passed separately, 3149 * and that the IPv6 header be prepended in a separate mbuf. 3150 * 3151 * Returns a pointer to the new mbuf chain head, or NULL if the 3152 * allocation failed. 3153 */ 3154 static struct mbuf * 3155 mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m) 3156 { 3157 struct mbuf *mh; 3158 struct mldv2_report *mld; 3159 struct ip6_hdr *ip6; 3160 struct in6_ifaddr *ia; 3161 int mldreclen; 3162 3163 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 3164 KASSERT((m->m_flags & M_PKTHDR), 3165 ("%s: mbuf chain %p is !M_PKTHDR", __func__, m)); 3166 3167 /* 3168 * RFC3590: OK to send as :: or tentative during DAD. 3169 */ 3170 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 3171 if (ia == NULL) 3172 CTR1(KTR_MLD, "%s: warning: ia is NULL", __func__); 3173 3174 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3175 if (mh == NULL) { 3176 if (ia != NULL) 3177 ifa_free(&ia->ia_ifa); 3178 m_freem(m); 3179 return (NULL); 3180 } 3181 MH_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report)); 3182 3183 mldreclen = m_length(m, NULL); 3184 CTR2(KTR_MLD, "%s: mldreclen is %d", __func__, mldreclen); 3185 3186 mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report); 3187 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + 3188 sizeof(struct mldv2_report) + mldreclen; 3189 3190 ip6 = mtod(mh, struct ip6_hdr *); 3191 ip6->ip6_flow = 0; 3192 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 3193 ip6->ip6_vfc |= IPV6_VERSION; 3194 ip6->ip6_nxt = IPPROTO_ICMPV6; 3195 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 3196 if (ia != NULL) 3197 ifa_free(&ia->ia_ifa); 3198 ip6->ip6_dst = in6addr_linklocal_allv2routers; 3199 /* scope ID will be set in netisr */ 3200 3201 mld = (struct mldv2_report *)(ip6 + 1); 3202 mld->mld_type = MLDV2_LISTENER_REPORT; 3203 mld->mld_code = 0; 3204 mld->mld_cksum = 0; 3205 mld->mld_v2_reserved = 0; 3206 mld->mld_v2_numrecs = htons(m->m_pkthdr.PH_vt.vt_nrecs); 3207 m->m_pkthdr.PH_vt.vt_nrecs = 0; 3208 3209 mh->m_next = m; 3210 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 3211 sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen); 3212 return (mh); 3213 } 3214 3215 #ifdef KTR 3216 static char * 3217 mld_rec_type_to_str(const int type) 3218 { 3219 3220 switch (type) { 3221 case MLD_CHANGE_TO_EXCLUDE_MODE: 3222 return "TO_EX"; 3223 break; 3224 case MLD_CHANGE_TO_INCLUDE_MODE: 3225 return "TO_IN"; 3226 break; 3227 case MLD_MODE_IS_EXCLUDE: 3228 return "MODE_EX"; 3229 break; 3230 case MLD_MODE_IS_INCLUDE: 3231 return "MODE_IN"; 3232 break; 3233 case MLD_ALLOW_NEW_SOURCES: 3234 return "ALLOW_NEW"; 3235 break; 3236 case MLD_BLOCK_OLD_SOURCES: 3237 return "BLOCK_OLD"; 3238 break; 3239 default: 3240 break; 3241 } 3242 return "unknown"; 3243 } 3244 #endif 3245 3246 static void 3247 mld_init(void *unused __unused) 3248 { 3249 3250 CTR1(KTR_MLD, "%s: initializing", __func__); 3251 MLD_LOCK_INIT(); 3252 3253 ip6_initpktopts(&mld_po); 3254 mld_po.ip6po_hlim = 1; 3255 mld_po.ip6po_hbh = &mld_ra.hbh; 3256 mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER; 3257 mld_po.ip6po_flags = IP6PO_DONTFRAG; 3258 } 3259 SYSINIT(mld_init, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, mld_init, NULL); 3260 3261 static void 3262 mld_uninit(void *unused __unused) 3263 { 3264 3265 CTR1(KTR_MLD, "%s: tearing down", __func__); 3266 MLD_LOCK_DESTROY(); 3267 } 3268 SYSUNINIT(mld_uninit, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, mld_uninit, NULL); 3269 3270 static void 3271 vnet_mld_init(const void *unused __unused) 3272 { 3273 3274 CTR1(KTR_MLD, "%s: initializing", __func__); 3275 3276 LIST_INIT(&V_mli_head); 3277 } 3278 VNET_SYSINIT(vnet_mld_init, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mld_init, 3279 NULL); 3280 3281 static void 3282 vnet_mld_uninit(const void *unused __unused) 3283 { 3284 3285 CTR1(KTR_MLD, "%s: tearing down", __func__); 3286 3287 KASSERT(LIST_EMPTY(&V_mli_head), 3288 ("%s: mli list not empty; ifnets not detached?", __func__)); 3289 } 3290 VNET_SYSUNINIT(vnet_mld_uninit, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mld_uninit, 3291 NULL); 3292 3293 static int 3294 mld_modevent(module_t mod, int type, void *unused __unused) 3295 { 3296 3297 switch (type) { 3298 case MOD_LOAD: 3299 case MOD_UNLOAD: 3300 break; 3301 default: 3302 return (EOPNOTSUPP); 3303 } 3304 return (0); 3305 } 3306 3307 static moduledata_t mld_mod = { 3308 "mld", 3309 mld_modevent, 3310 0 3311 }; 3312 DECLARE_MODULE(mld, mld_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); 3313