1 /*- 2 * Copyright (c) 2009 Bruce Simpson. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 3. The name of the author may not be used to endorse or promote 13 * products derived from this software without specific prior written 14 * permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $KAME: mld6.c,v 1.27 2001/04/04 05:17:30 itojun Exp $ 29 */ 30 31 /*- 32 * Copyright (c) 1988 Stephen Deering. 33 * Copyright (c) 1992, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * This code is derived from software contributed to Berkeley by 37 * Stephen Deering of Stanford University. 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 1. Redistributions of source code must retain the above copyright 43 * notice, this list of conditions and the following disclaimer. 44 * 2. Redistributions in binary form must reproduce the above copyright 45 * notice, this list of conditions and the following disclaimer in the 46 * documentation and/or other materials provided with the distribution. 47 * 4. Neither the name of the University nor the names of its contributors 48 * may be used to endorse or promote products derived from this software 49 * without specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 61 * SUCH DAMAGE. 62 * 63 * @(#)igmp.c 8.1 (Berkeley) 7/19/93 64 */ 65 66 #include <sys/cdefs.h> 67 __FBSDID("$FreeBSD$"); 68 69 #include "opt_inet.h" 70 #include "opt_inet6.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/mbuf.h> 75 #include <sys/socket.h> 76 #include <sys/protosw.h> 77 #include <sys/sysctl.h> 78 #include <sys/kernel.h> 79 #include <sys/callout.h> 80 #include <sys/malloc.h> 81 #include <sys/module.h> 82 #include <sys/ktr.h> 83 84 #include <net/if.h> 85 #include <net/route.h> 86 #include <net/vnet.h> 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet6/in6_var.h> 91 #include <netinet/ip6.h> 92 #include <netinet6/ip6_var.h> 93 #include <netinet6/scope6_var.h> 94 #include <netinet/icmp6.h> 95 #include <netinet6/mld6.h> 96 #include <netinet6/mld6_var.h> 97 98 #include <security/mac/mac_framework.h> 99 100 #ifndef KTR_MLD 101 #define KTR_MLD KTR_INET6 102 #endif 103 104 static struct mld_ifinfo * 105 mli_alloc_locked(struct ifnet *); 106 static void mli_delete_locked(const struct ifnet *); 107 static void mld_dispatch_packet(struct mbuf *); 108 static void mld_dispatch_queue(struct ifqueue *, int); 109 static void mld_final_leave(struct in6_multi *, struct mld_ifinfo *); 110 static void mld_fasttimo_vnet(void); 111 static int mld_handle_state_change(struct in6_multi *, 112 struct mld_ifinfo *); 113 static int mld_initial_join(struct in6_multi *, struct mld_ifinfo *, 114 const int); 115 #ifdef KTR 116 static char * mld_rec_type_to_str(const int); 117 #endif 118 static void mld_set_version(struct mld_ifinfo *, const int); 119 static void mld_slowtimo_vnet(void); 120 static int mld_v1_input_query(struct ifnet *, const struct ip6_hdr *, 121 /*const*/ struct mld_hdr *); 122 static int mld_v1_input_report(struct ifnet *, const struct ip6_hdr *, 123 /*const*/ struct mld_hdr *); 124 static void mld_v1_process_group_timer(struct in6_multi *, const int); 125 static void mld_v1_process_querier_timers(struct mld_ifinfo *); 126 static int mld_v1_transmit_report(struct in6_multi *, const int); 127 static void mld_v1_update_group(struct in6_multi *, const int); 128 static void mld_v2_cancel_link_timers(struct mld_ifinfo *); 129 static void mld_v2_dispatch_general_query(struct mld_ifinfo *); 130 static struct mbuf * 131 mld_v2_encap_report(struct ifnet *, struct mbuf *); 132 static int mld_v2_enqueue_filter_change(struct ifqueue *, 133 struct in6_multi *); 134 static int mld_v2_enqueue_group_record(struct ifqueue *, 135 struct in6_multi *, const int, const int, const int, 136 const int); 137 static int mld_v2_input_query(struct ifnet *, const struct ip6_hdr *, 138 struct mbuf *, const int, const int); 139 static int mld_v2_merge_state_changes(struct in6_multi *, 140 struct ifqueue *); 141 static void mld_v2_process_group_timers(struct mld_ifinfo *, 142 struct ifqueue *, struct ifqueue *, 143 struct in6_multi *, const int); 144 static int mld_v2_process_group_query(struct in6_multi *, 145 struct mld_ifinfo *mli, int, struct mbuf *, const int); 146 static int sysctl_mld_gsr(SYSCTL_HANDLER_ARGS); 147 static int sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS); 148 149 /* 150 * Normative references: RFC 2710, RFC 3590, RFC 3810. 151 * 152 * Locking: 153 * * The MLD subsystem lock ends up being system-wide for the moment, 154 * but could be per-VIMAGE later on. 155 * * The permitted lock order is: IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK. 156 * Any may be taken independently; if any are held at the same 157 * time, the above lock order must be followed. 158 * * IN6_MULTI_LOCK covers in_multi. 159 * * MLD_LOCK covers per-link state and any global variables in this file. 160 * * IF_ADDR_LOCK covers if_multiaddrs, which is used for a variety of 161 * per-link state iterators. 162 * 163 * XXX LOR PREVENTION 164 * A special case for IPv6 is the in6_setscope() routine. ip6_output() 165 * will not accept an ifp; it wants an embedded scope ID, unlike 166 * ip_output(), which happily takes the ifp given to it. The embedded 167 * scope ID is only used by MLD to select the outgoing interface. 168 * 169 * During interface attach and detach, MLD will take MLD_LOCK *after* 170 * the IF_AFDATA_LOCK. 171 * As in6_setscope() takes IF_AFDATA_LOCK then SCOPE_LOCK, we can't call 172 * it with MLD_LOCK held without triggering an LOR. A netisr with indirect 173 * dispatch could work around this, but we'd rather not do that, as it 174 * can introduce other races. 175 * 176 * As such, we exploit the fact that the scope ID is just the interface 177 * index, and embed it in the IPv6 destination address accordingly. 178 * This is potentially NOT VALID for MLDv1 reports, as they 179 * are always sent to the multicast group itself; as MLDv2 180 * reports are always sent to ff02::16, this is not an issue 181 * when MLDv2 is in use. 182 * 183 * This does not however eliminate the LOR when ip6_output() itself 184 * calls in6_setscope() internally whilst MLD_LOCK is held. This will 185 * trigger a LOR warning in WITNESS when the ifnet is detached. 186 * 187 * The right answer is probably to make IF_AFDATA_LOCK an rwlock, given 188 * how it's used across the network stack. Here we're simply exploiting 189 * the fact that MLD runs at a similar layer in the stack to scope6.c. 190 * 191 * VIMAGE: 192 * * Each in6_multi corresponds to an ifp, and each ifp corresponds 193 * to a vnet in ifp->if_vnet. 194 */ 195 static struct mtx mld_mtx; 196 static MALLOC_DEFINE(M_MLD, "mld", "mld state"); 197 198 #define MLD_EMBEDSCOPE(pin6, zoneid) \ 199 if (IN6_IS_SCOPE_LINKLOCAL(pin6) || \ 200 IN6_IS_ADDR_MC_INTFACELOCAL(pin6)) \ 201 (pin6)->s6_addr16[1] = htons((zoneid) & 0xFFFF) \ 202 203 /* 204 * VIMAGE-wide globals. 205 */ 206 static VNET_DEFINE(struct timeval, mld_gsrdelay) = {10, 0}; 207 static VNET_DEFINE(LIST_HEAD(, mld_ifinfo), mli_head); 208 static VNET_DEFINE(int, interface_timers_running6); 209 static VNET_DEFINE(int, state_change_timers_running6); 210 static VNET_DEFINE(int, current_state_timers_running6); 211 212 #define V_mld_gsrdelay VNET(mld_gsrdelay) 213 #define V_mli_head VNET(mli_head) 214 #define V_interface_timers_running6 VNET(interface_timers_running6) 215 #define V_state_change_timers_running6 VNET(state_change_timers_running6) 216 #define V_current_state_timers_running6 VNET(current_state_timers_running6) 217 218 SYSCTL_DECL(_net_inet6); /* Note: Not in any common header. */ 219 220 SYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW, 0, 221 "IPv6 Multicast Listener Discovery"); 222 223 /* 224 * Virtualized sysctls. 225 */ 226 SYSCTL_VNET_PROC(_net_inet6_mld, OID_AUTO, gsrdelay, 227 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 228 &VNET_NAME(mld_gsrdelay.tv_sec), 0, sysctl_mld_gsr, "I", 229 "Rate limit for MLDv2 Group-and-Source queries in seconds"); 230 231 /* 232 * Non-virtualized sysctls. 233 */ 234 static SYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo, 235 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mld_ifinfo, 236 "Per-interface MLDv2 state"); 237 238 static int mld_v1enable = 1; 239 SYSCTL_INT(_net_inet6_mld, OID_AUTO, v1enable, CTLFLAG_RW, 240 &mld_v1enable, 0, "Enable fallback to MLDv1"); 241 TUNABLE_INT("net.inet6.mld.v1enable", &mld_v1enable); 242 243 static int mld_use_allow = 1; 244 SYSCTL_INT(_net_inet6_mld, OID_AUTO, use_allow, CTLFLAG_RW, 245 &mld_use_allow, 0, "Use ALLOW/BLOCK for RFC 4604 SSM joins/leaves"); 246 TUNABLE_INT("net.inet6.mld.use_allow", &mld_use_allow); 247 248 /* 249 * Packed Router Alert option structure declaration. 250 */ 251 struct mld_raopt { 252 struct ip6_hbh hbh; 253 struct ip6_opt pad; 254 struct ip6_opt_router ra; 255 } __packed; 256 257 /* 258 * Router Alert hop-by-hop option header. 259 */ 260 static struct mld_raopt mld_ra = { 261 .hbh = { 0, 0 }, 262 .pad = { .ip6o_type = IP6OPT_PADN, 0 }, 263 .ra = { 264 .ip6or_type = IP6OPT_ROUTER_ALERT, 265 .ip6or_len = IP6OPT_RTALERT_LEN - 2, 266 .ip6or_value[0] = ((IP6OPT_RTALERT_MLD >> 8) & 0xFF), 267 .ip6or_value[1] = (IP6OPT_RTALERT_MLD & 0xFF) 268 } 269 }; 270 static struct ip6_pktopts mld_po; 271 272 static __inline void 273 mld_save_context(struct mbuf *m, struct ifnet *ifp) 274 { 275 276 #ifdef VIMAGE 277 m->m_pkthdr.header = ifp->if_vnet; 278 #endif /* VIMAGE */ 279 m->m_pkthdr.flowid = ifp->if_index; 280 } 281 282 static __inline void 283 mld_scrub_context(struct mbuf *m) 284 { 285 286 m->m_pkthdr.header = NULL; 287 m->m_pkthdr.flowid = 0; 288 } 289 290 /* 291 * Restore context from a queued output chain. 292 * Return saved ifindex. 293 * 294 * VIMAGE: The assertion is there to make sure that we 295 * actually called CURVNET_SET() with what's in the mbuf chain. 296 */ 297 static __inline uint32_t 298 mld_restore_context(struct mbuf *m) 299 { 300 301 #if defined(VIMAGE) && defined(INVARIANTS) 302 KASSERT(curvnet == m->m_pkthdr.header, 303 ("%s: called when curvnet was not restored", __func__)); 304 #endif 305 return (m->m_pkthdr.flowid); 306 } 307 308 /* 309 * Retrieve or set threshold between group-source queries in seconds. 310 * 311 * VIMAGE: Assume curvnet set by caller. 312 * SMPng: NOTE: Serialized by MLD lock. 313 */ 314 static int 315 sysctl_mld_gsr(SYSCTL_HANDLER_ARGS) 316 { 317 int error; 318 int i; 319 320 error = sysctl_wire_old_buffer(req, sizeof(int)); 321 if (error) 322 return (error); 323 324 MLD_LOCK(); 325 326 i = V_mld_gsrdelay.tv_sec; 327 328 error = sysctl_handle_int(oidp, &i, 0, req); 329 if (error || !req->newptr) 330 goto out_locked; 331 332 if (i < -1 || i >= 60) { 333 error = EINVAL; 334 goto out_locked; 335 } 336 337 CTR2(KTR_MLD, "change mld_gsrdelay from %d to %d", 338 V_mld_gsrdelay.tv_sec, i); 339 V_mld_gsrdelay.tv_sec = i; 340 341 out_locked: 342 MLD_UNLOCK(); 343 return (error); 344 } 345 346 /* 347 * Expose struct mld_ifinfo to userland, keyed by ifindex. 348 * For use by ifmcstat(8). 349 * 350 * SMPng: NOTE: Does an unlocked ifindex space read. 351 * VIMAGE: Assume curvnet set by caller. The node handler itself 352 * is not directly virtualized. 353 */ 354 static int 355 sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS) 356 { 357 int *name; 358 int error; 359 u_int namelen; 360 struct ifnet *ifp; 361 struct mld_ifinfo *mli; 362 363 name = (int *)arg1; 364 namelen = arg2; 365 366 if (req->newptr != NULL) 367 return (EPERM); 368 369 if (namelen != 1) 370 return (EINVAL); 371 372 error = sysctl_wire_old_buffer(req, sizeof(struct mld_ifinfo)); 373 if (error) 374 return (error); 375 376 IN6_MULTI_LOCK(); 377 MLD_LOCK(); 378 379 if (name[0] <= 0 || name[0] > V_if_index) { 380 error = ENOENT; 381 goto out_locked; 382 } 383 384 error = ENOENT; 385 386 ifp = ifnet_byindex(name[0]); 387 if (ifp == NULL) 388 goto out_locked; 389 390 LIST_FOREACH(mli, &V_mli_head, mli_link) { 391 if (ifp == mli->mli_ifp) { 392 error = SYSCTL_OUT(req, mli, 393 sizeof(struct mld_ifinfo)); 394 break; 395 } 396 } 397 398 out_locked: 399 MLD_UNLOCK(); 400 IN6_MULTI_UNLOCK(); 401 return (error); 402 } 403 404 /* 405 * Dispatch an entire queue of pending packet chains. 406 * VIMAGE: Assumes the vnet pointer has been set. 407 */ 408 static void 409 mld_dispatch_queue(struct ifqueue *ifq, int limit) 410 { 411 struct mbuf *m; 412 413 for (;;) { 414 _IF_DEQUEUE(ifq, m); 415 if (m == NULL) 416 break; 417 CTR3(KTR_MLD, "%s: dispatch %p from %p", __func__, ifq, m); 418 mld_dispatch_packet(m); 419 if (--limit == 0) 420 break; 421 } 422 } 423 424 /* 425 * Filter outgoing MLD report state by group. 426 * 427 * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1) 428 * and node-local addresses. However, kernel and socket consumers 429 * always embed the KAME scope ID in the address provided, so strip it 430 * when performing comparison. 431 * Note: This is not the same as the *multicast* scope. 432 * 433 * Return zero if the given group is one for which MLD reports 434 * should be suppressed, or non-zero if reports should be issued. 435 */ 436 static __inline int 437 mld_is_addr_reported(const struct in6_addr *addr) 438 { 439 440 KASSERT(IN6_IS_ADDR_MULTICAST(addr), ("%s: not multicast", __func__)); 441 442 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL) 443 return (0); 444 445 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL) { 446 struct in6_addr tmp = *addr; 447 in6_clearscope(&tmp); 448 if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes)) 449 return (0); 450 } 451 452 return (1); 453 } 454 455 /* 456 * Attach MLD when PF_INET6 is attached to an interface. 457 * 458 * SMPng: Normally called with IF_AFDATA_LOCK held. 459 */ 460 struct mld_ifinfo * 461 mld_domifattach(struct ifnet *ifp) 462 { 463 struct mld_ifinfo *mli; 464 465 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 466 __func__, ifp, ifp->if_xname); 467 468 MLD_LOCK(); 469 470 mli = mli_alloc_locked(ifp); 471 if (!(ifp->if_flags & IFF_MULTICAST)) 472 mli->mli_flags |= MLIF_SILENT; 473 if (mld_use_allow) 474 mli->mli_flags |= MLIF_USEALLOW; 475 476 MLD_UNLOCK(); 477 478 return (mli); 479 } 480 481 /* 482 * VIMAGE: assume curvnet set by caller. 483 */ 484 static struct mld_ifinfo * 485 mli_alloc_locked(/*const*/ struct ifnet *ifp) 486 { 487 struct mld_ifinfo *mli; 488 489 MLD_LOCK_ASSERT(); 490 491 mli = malloc(sizeof(struct mld_ifinfo), M_MLD, M_NOWAIT|M_ZERO); 492 if (mli == NULL) 493 goto out; 494 495 mli->mli_ifp = ifp; 496 mli->mli_version = MLD_VERSION_2; 497 mli->mli_flags = 0; 498 mli->mli_rv = MLD_RV_INIT; 499 mli->mli_qi = MLD_QI_INIT; 500 mli->mli_qri = MLD_QRI_INIT; 501 mli->mli_uri = MLD_URI_INIT; 502 503 SLIST_INIT(&mli->mli_relinmhead); 504 505 /* 506 * Responses to general queries are subject to bounds. 507 */ 508 IFQ_SET_MAXLEN(&mli->mli_gq, MLD_MAX_RESPONSE_PACKETS); 509 510 LIST_INSERT_HEAD(&V_mli_head, mli, mli_link); 511 512 CTR2(KTR_MLD, "allocate mld_ifinfo for ifp %p(%s)", 513 ifp, ifp->if_xname); 514 515 out: 516 return (mli); 517 } 518 519 /* 520 * Hook for ifdetach. 521 * 522 * NOTE: Some finalization tasks need to run before the protocol domain 523 * is detached, but also before the link layer does its cleanup. 524 * Run before link-layer cleanup; cleanup groups, but do not free MLD state. 525 * 526 * SMPng: Caller must hold IN6_MULTI_LOCK(). 527 * Must take IF_ADDR_LOCK() to cover if_multiaddrs iterator. 528 * XXX This routine is also bitten by unlocked ifma_protospec access. 529 */ 530 void 531 mld_ifdetach(struct ifnet *ifp) 532 { 533 struct mld_ifinfo *mli; 534 struct ifmultiaddr *ifma; 535 struct in6_multi *inm, *tinm; 536 537 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", __func__, ifp, 538 ifp->if_xname); 539 540 IN6_MULTI_LOCK_ASSERT(); 541 MLD_LOCK(); 542 543 mli = MLD_IFINFO(ifp); 544 if (mli->mli_version == MLD_VERSION_2) { 545 IF_ADDR_LOCK(ifp); 546 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 547 if (ifma->ifma_addr->sa_family != AF_INET6 || 548 ifma->ifma_protospec == NULL) 549 continue; 550 inm = (struct in6_multi *)ifma->ifma_protospec; 551 if (inm->in6m_state == MLD_LEAVING_MEMBER) { 552 SLIST_INSERT_HEAD(&mli->mli_relinmhead, 553 inm, in6m_nrele); 554 } 555 in6m_clear_recorded(inm); 556 } 557 IF_ADDR_UNLOCK(ifp); 558 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele, 559 tinm) { 560 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele); 561 in6m_release_locked(inm); 562 } 563 } 564 565 MLD_UNLOCK(); 566 } 567 568 /* 569 * Hook for domifdetach. 570 * Runs after link-layer cleanup; free MLD state. 571 * 572 * SMPng: Normally called with IF_AFDATA_LOCK held. 573 */ 574 void 575 mld_domifdetach(struct ifnet *ifp) 576 { 577 578 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 579 __func__, ifp, ifp->if_xname); 580 581 MLD_LOCK(); 582 mli_delete_locked(ifp); 583 MLD_UNLOCK(); 584 } 585 586 static void 587 mli_delete_locked(const struct ifnet *ifp) 588 { 589 struct mld_ifinfo *mli, *tmli; 590 591 CTR3(KTR_MLD, "%s: freeing mld_ifinfo for ifp %p(%s)", 592 __func__, ifp, ifp->if_xname); 593 594 MLD_LOCK_ASSERT(); 595 596 LIST_FOREACH_SAFE(mli, &V_mli_head, mli_link, tmli) { 597 if (mli->mli_ifp == ifp) { 598 /* 599 * Free deferred General Query responses. 600 */ 601 _IF_DRAIN(&mli->mli_gq); 602 603 LIST_REMOVE(mli, mli_link); 604 605 KASSERT(SLIST_EMPTY(&mli->mli_relinmhead), 606 ("%s: there are dangling in_multi references", 607 __func__)); 608 609 free(mli, M_MLD); 610 return; 611 } 612 } 613 #ifdef INVARIANTS 614 panic("%s: mld_ifinfo not found for ifp %p\n", __func__, ifp); 615 #endif 616 } 617 618 /* 619 * Process a received MLDv1 general or address-specific query. 620 * Assumes that the query header has been pulled up to sizeof(mld_hdr). 621 * 622 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 623 * mld_addr. This is OK as we own the mbuf chain. 624 */ 625 static int 626 mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 627 /*const*/ struct mld_hdr *mld) 628 { 629 struct ifmultiaddr *ifma; 630 struct mld_ifinfo *mli; 631 struct in6_multi *inm; 632 int is_general_query; 633 uint16_t timer; 634 #ifdef KTR 635 char ip6tbuf[INET6_ADDRSTRLEN]; 636 #endif 637 638 is_general_query = 0; 639 640 if (!mld_v1enable) { 641 CTR3(KTR_MLD, "ignore v1 query %s on ifp %p(%s)", 642 ip6_sprintf(ip6tbuf, &mld->mld_addr), 643 ifp, ifp->if_xname); 644 return (0); 645 } 646 647 /* 648 * RFC3810 Section 6.2: MLD queries must originate from 649 * a router's link-local address. 650 */ 651 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 652 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 653 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 654 ifp, ifp->if_xname); 655 return (0); 656 } 657 658 /* 659 * Do address field validation upfront before we accept 660 * the query. 661 */ 662 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 663 /* 664 * MLDv1 General Query. 665 * If this was not sent to the all-nodes group, ignore it. 666 */ 667 struct in6_addr dst; 668 669 dst = ip6->ip6_dst; 670 in6_clearscope(&dst); 671 if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes)) 672 return (EINVAL); 673 is_general_query = 1; 674 } else { 675 /* 676 * Embed scope ID of receiving interface in MLD query for 677 * lookup whilst we don't hold other locks. 678 */ 679 in6_setscope(&mld->mld_addr, ifp, NULL); 680 } 681 682 IN6_MULTI_LOCK(); 683 MLD_LOCK(); 684 685 /* 686 * Switch to MLDv1 host compatibility mode. 687 */ 688 mli = MLD_IFINFO(ifp); 689 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 690 mld_set_version(mli, MLD_VERSION_1); 691 692 timer = (ntohs(mld->mld_maxdelay) * PR_FASTHZ) / MLD_TIMER_SCALE; 693 if (timer == 0) 694 timer = 1; 695 696 IF_ADDR_LOCK(ifp); 697 if (is_general_query) { 698 /* 699 * For each reporting group joined on this 700 * interface, kick the report timer. 701 */ 702 CTR2(KTR_MLD, "process v1 general query on ifp %p(%s)", 703 ifp, ifp->if_xname); 704 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 705 if (ifma->ifma_addr->sa_family != AF_INET6 || 706 ifma->ifma_protospec == NULL) 707 continue; 708 inm = (struct in6_multi *)ifma->ifma_protospec; 709 mld_v1_update_group(inm, timer); 710 } 711 } else { 712 /* 713 * MLDv1 Group-Specific Query. 714 * If this is a group-specific MLDv1 query, we need only 715 * look up the single group to process it. 716 */ 717 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 718 if (inm != NULL) { 719 CTR3(KTR_MLD, "process v1 query %s on ifp %p(%s)", 720 ip6_sprintf(ip6tbuf, &mld->mld_addr), 721 ifp, ifp->if_xname); 722 mld_v1_update_group(inm, timer); 723 } 724 /* XXX Clear embedded scope ID as userland won't expect it. */ 725 in6_clearscope(&mld->mld_addr); 726 } 727 728 IF_ADDR_UNLOCK(ifp); 729 MLD_UNLOCK(); 730 IN6_MULTI_UNLOCK(); 731 732 return (0); 733 } 734 735 /* 736 * Update the report timer on a group in response to an MLDv1 query. 737 * 738 * If we are becoming the reporting member for this group, start the timer. 739 * If we already are the reporting member for this group, and timer is 740 * below the threshold, reset it. 741 * 742 * We may be updating the group for the first time since we switched 743 * to MLDv2. If we are, then we must clear any recorded source lists, 744 * and transition to REPORTING state; the group timer is overloaded 745 * for group and group-source query responses. 746 * 747 * Unlike MLDv2, the delay per group should be jittered 748 * to avoid bursts of MLDv1 reports. 749 */ 750 static void 751 mld_v1_update_group(struct in6_multi *inm, const int timer) 752 { 753 #ifdef KTR 754 char ip6tbuf[INET6_ADDRSTRLEN]; 755 #endif 756 757 CTR4(KTR_MLD, "%s: %s/%s timer=%d", __func__, 758 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 759 inm->in6m_ifp->if_xname, timer); 760 761 IN6_MULTI_LOCK_ASSERT(); 762 763 switch (inm->in6m_state) { 764 case MLD_NOT_MEMBER: 765 case MLD_SILENT_MEMBER: 766 break; 767 case MLD_REPORTING_MEMBER: 768 if (inm->in6m_timer != 0 && 769 inm->in6m_timer <= timer) { 770 CTR1(KTR_MLD, "%s: REPORTING and timer running, " 771 "skipping.", __func__); 772 break; 773 } 774 /* FALLTHROUGH */ 775 case MLD_SG_QUERY_PENDING_MEMBER: 776 case MLD_G_QUERY_PENDING_MEMBER: 777 case MLD_IDLE_MEMBER: 778 case MLD_LAZY_MEMBER: 779 case MLD_AWAKENING_MEMBER: 780 CTR1(KTR_MLD, "%s: ->REPORTING", __func__); 781 inm->in6m_state = MLD_REPORTING_MEMBER; 782 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 783 V_current_state_timers_running6 = 1; 784 break; 785 case MLD_SLEEPING_MEMBER: 786 CTR1(KTR_MLD, "%s: ->AWAKENING", __func__); 787 inm->in6m_state = MLD_AWAKENING_MEMBER; 788 break; 789 case MLD_LEAVING_MEMBER: 790 break; 791 } 792 } 793 794 /* 795 * Process a received MLDv2 general, group-specific or 796 * group-and-source-specific query. 797 * 798 * Assumes that the query header has been pulled up to sizeof(mldv2_query). 799 * 800 * Return 0 if successful, otherwise an appropriate error code is returned. 801 */ 802 static int 803 mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 804 struct mbuf *m, const int off, const int icmp6len) 805 { 806 struct mld_ifinfo *mli; 807 struct mldv2_query *mld; 808 struct in6_multi *inm; 809 uint32_t maxdelay, nsrc, qqi; 810 int is_general_query; 811 uint16_t timer; 812 uint8_t qrv; 813 #ifdef KTR 814 char ip6tbuf[INET6_ADDRSTRLEN]; 815 #endif 816 817 is_general_query = 0; 818 819 /* 820 * RFC3810 Section 6.2: MLD queries must originate from 821 * a router's link-local address. 822 */ 823 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 824 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 825 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 826 ifp, ifp->if_xname); 827 return (0); 828 } 829 830 CTR2(KTR_MLD, "input v2 query on ifp %p(%s)", ifp, ifp->if_xname); 831 832 mld = (struct mldv2_query *)(mtod(m, uint8_t *) + off); 833 834 maxdelay = ntohs(mld->mld_maxdelay); /* in 1/10ths of a second */ 835 if (maxdelay >= 32678) { 836 maxdelay = (MLD_MRC_MANT(maxdelay) | 0x1000) << 837 (MLD_MRC_EXP(maxdelay) + 3); 838 } 839 timer = (maxdelay * PR_FASTHZ) / MLD_TIMER_SCALE; 840 if (timer == 0) 841 timer = 1; 842 843 qrv = MLD_QRV(mld->mld_misc); 844 if (qrv < 2) { 845 CTR3(KTR_MLD, "%s: clamping qrv %d to %d", __func__, 846 qrv, MLD_RV_INIT); 847 qrv = MLD_RV_INIT; 848 } 849 850 qqi = mld->mld_qqi; 851 if (qqi >= 128) { 852 qqi = MLD_QQIC_MANT(mld->mld_qqi) << 853 (MLD_QQIC_EXP(mld->mld_qqi) + 3); 854 } 855 856 nsrc = ntohs(mld->mld_numsrc); 857 if (nsrc > MLD_MAX_GS_SOURCES) 858 return (EMSGSIZE); 859 if (icmp6len < sizeof(struct mldv2_query) + 860 (nsrc * sizeof(struct in6_addr))) 861 return (EMSGSIZE); 862 863 /* 864 * Do further input validation upfront to avoid resetting timers 865 * should we need to discard this query. 866 */ 867 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 868 /* 869 * General Queries SHOULD be directed to ff02::1. 870 * A general query with a source list has undefined 871 * behaviour; discard it. 872 */ 873 struct in6_addr dst; 874 875 dst = ip6->ip6_dst; 876 in6_clearscope(&dst); 877 if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes) || 878 nsrc > 0) 879 return (EINVAL); 880 is_general_query = 1; 881 } else { 882 /* 883 * Embed scope ID of receiving interface in MLD query for 884 * lookup whilst we don't hold other locks (due to KAME 885 * locking lameness). We own this mbuf chain just now. 886 */ 887 in6_setscope(&mld->mld_addr, ifp, NULL); 888 } 889 890 IN6_MULTI_LOCK(); 891 MLD_LOCK(); 892 893 mli = MLD_IFINFO(ifp); 894 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 895 896 /* 897 * Discard the v2 query if we're in Compatibility Mode. 898 * The RFC is pretty clear that hosts need to stay in MLDv1 mode 899 * until the Old Version Querier Present timer expires. 900 */ 901 if (mli->mli_version != MLD_VERSION_2) 902 goto out_locked; 903 904 mld_set_version(mli, MLD_VERSION_2); 905 mli->mli_rv = qrv; 906 mli->mli_qi = qqi; 907 mli->mli_qri = maxdelay; 908 909 CTR4(KTR_MLD, "%s: qrv %d qi %d maxdelay %d", __func__, qrv, qqi, 910 maxdelay); 911 912 if (is_general_query) { 913 /* 914 * MLDv2 General Query. 915 * 916 * Schedule a current-state report on this ifp for 917 * all groups, possibly containing source lists. 918 * 919 * If there is a pending General Query response 920 * scheduled earlier than the selected delay, do 921 * not schedule any other reports. 922 * Otherwise, reset the interface timer. 923 */ 924 CTR2(KTR_MLD, "process v2 general query on ifp %p(%s)", 925 ifp, ifp->if_xname); 926 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) { 927 mli->mli_v2_timer = MLD_RANDOM_DELAY(timer); 928 V_interface_timers_running6 = 1; 929 } 930 } else { 931 /* 932 * MLDv2 Group-specific or Group-and-source-specific Query. 933 * 934 * Group-source-specific queries are throttled on 935 * a per-group basis to defeat denial-of-service attempts. 936 * Queries for groups we are not a member of on this 937 * link are simply ignored. 938 */ 939 IF_ADDR_LOCK(ifp); 940 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 941 if (inm == NULL) { 942 IF_ADDR_UNLOCK(ifp); 943 goto out_locked; 944 } 945 if (nsrc > 0) { 946 if (!ratecheck(&inm->in6m_lastgsrtv, 947 &V_mld_gsrdelay)) { 948 CTR1(KTR_MLD, "%s: GS query throttled.", 949 __func__); 950 IF_ADDR_UNLOCK(ifp); 951 goto out_locked; 952 } 953 } 954 CTR2(KTR_MLD, "process v2 group query on ifp %p(%s)", 955 ifp, ifp->if_xname); 956 /* 957 * If there is a pending General Query response 958 * scheduled sooner than the selected delay, no 959 * further report need be scheduled. 960 * Otherwise, prepare to respond to the 961 * group-specific or group-and-source query. 962 */ 963 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) 964 mld_v2_process_group_query(inm, mli, timer, m, off); 965 966 /* XXX Clear embedded scope ID as userland won't expect it. */ 967 in6_clearscope(&mld->mld_addr); 968 IF_ADDR_UNLOCK(ifp); 969 } 970 971 out_locked: 972 MLD_UNLOCK(); 973 IN6_MULTI_UNLOCK(); 974 975 return (0); 976 } 977 978 /* 979 * Process a recieved MLDv2 group-specific or group-and-source-specific 980 * query. 981 * Return <0 if any error occured. Currently this is ignored. 982 */ 983 static int 984 mld_v2_process_group_query(struct in6_multi *inm, struct mld_ifinfo *mli, 985 int timer, struct mbuf *m0, const int off) 986 { 987 struct mldv2_query *mld; 988 int retval; 989 uint16_t nsrc; 990 991 IN6_MULTI_LOCK_ASSERT(); 992 MLD_LOCK_ASSERT(); 993 994 retval = 0; 995 mld = (struct mldv2_query *)(mtod(m0, uint8_t *) + off); 996 997 switch (inm->in6m_state) { 998 case MLD_NOT_MEMBER: 999 case MLD_SILENT_MEMBER: 1000 case MLD_SLEEPING_MEMBER: 1001 case MLD_LAZY_MEMBER: 1002 case MLD_AWAKENING_MEMBER: 1003 case MLD_IDLE_MEMBER: 1004 case MLD_LEAVING_MEMBER: 1005 return (retval); 1006 break; 1007 case MLD_REPORTING_MEMBER: 1008 case MLD_G_QUERY_PENDING_MEMBER: 1009 case MLD_SG_QUERY_PENDING_MEMBER: 1010 break; 1011 } 1012 1013 nsrc = ntohs(mld->mld_numsrc); 1014 1015 /* 1016 * Deal with group-specific queries upfront. 1017 * If any group query is already pending, purge any recorded 1018 * source-list state if it exists, and schedule a query response 1019 * for this group-specific query. 1020 */ 1021 if (nsrc == 0) { 1022 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 1023 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) { 1024 in6m_clear_recorded(inm); 1025 timer = min(inm->in6m_timer, timer); 1026 } 1027 inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER; 1028 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1029 V_current_state_timers_running6 = 1; 1030 return (retval); 1031 } 1032 1033 /* 1034 * Deal with the case where a group-and-source-specific query has 1035 * been received but a group-specific query is already pending. 1036 */ 1037 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) { 1038 timer = min(inm->in6m_timer, timer); 1039 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1040 V_current_state_timers_running6 = 1; 1041 return (retval); 1042 } 1043 1044 /* 1045 * Finally, deal with the case where a group-and-source-specific 1046 * query has been received, where a response to a previous g-s-r 1047 * query exists, or none exists. 1048 * In this case, we need to parse the source-list which the Querier 1049 * has provided us with and check if we have any source list filter 1050 * entries at T1 for these sources. If we do not, there is no need 1051 * schedule a report and the query may be dropped. 1052 * If we do, we must record them and schedule a current-state 1053 * report for those sources. 1054 */ 1055 if (inm->in6m_nsrc > 0) { 1056 struct mbuf *m; 1057 uint8_t *sp; 1058 int i, nrecorded; 1059 int soff; 1060 1061 m = m0; 1062 soff = off + sizeof(struct mldv2_query); 1063 nrecorded = 0; 1064 for (i = 0; i < nsrc; i++) { 1065 sp = mtod(m, uint8_t *) + soff; 1066 retval = in6m_record_source(inm, 1067 (const struct in6_addr *)sp); 1068 if (retval < 0) 1069 break; 1070 nrecorded += retval; 1071 soff += sizeof(struct in6_addr); 1072 if (soff >= m->m_len) { 1073 soff = soff - m->m_len; 1074 m = m->m_next; 1075 if (m == NULL) 1076 break; 1077 } 1078 } 1079 if (nrecorded > 0) { 1080 CTR1(KTR_MLD, 1081 "%s: schedule response to SG query", __func__); 1082 inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER; 1083 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1084 V_current_state_timers_running6 = 1; 1085 } 1086 } 1087 1088 return (retval); 1089 } 1090 1091 /* 1092 * Process a received MLDv1 host membership report. 1093 * Assumes mld points to mld_hdr in pulled up mbuf chain. 1094 * 1095 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 1096 * mld_addr. This is OK as we own the mbuf chain. 1097 */ 1098 static int 1099 mld_v1_input_report(struct ifnet *ifp, const struct ip6_hdr *ip6, 1100 /*const*/ struct mld_hdr *mld) 1101 { 1102 struct in6_addr src, dst; 1103 struct in6_ifaddr *ia; 1104 struct in6_multi *inm; 1105 #ifdef KTR 1106 char ip6tbuf[INET6_ADDRSTRLEN]; 1107 #endif 1108 1109 if (!mld_v1enable) { 1110 CTR3(KTR_MLD, "ignore v1 report %s on ifp %p(%s)", 1111 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1112 ifp, ifp->if_xname); 1113 return (0); 1114 } 1115 1116 if (ifp->if_flags & IFF_LOOPBACK) 1117 return (0); 1118 1119 /* 1120 * MLDv1 reports must originate from a host's link-local address, 1121 * or the unspecified address (when booting). 1122 */ 1123 src = ip6->ip6_src; 1124 in6_clearscope(&src); 1125 if (!IN6_IS_SCOPE_LINKLOCAL(&src) && !IN6_IS_ADDR_UNSPECIFIED(&src)) { 1126 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 1127 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 1128 ifp, ifp->if_xname); 1129 return (EINVAL); 1130 } 1131 1132 /* 1133 * RFC2710 Section 4: MLDv1 reports must pertain to a multicast 1134 * group, and must be directed to the group itself. 1135 */ 1136 dst = ip6->ip6_dst; 1137 in6_clearscope(&dst); 1138 if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) || 1139 !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &dst)) { 1140 CTR3(KTR_MLD, "ignore v1 query dst %s on ifp %p(%s)", 1141 ip6_sprintf(ip6tbuf, &ip6->ip6_dst), 1142 ifp, ifp->if_xname); 1143 return (EINVAL); 1144 } 1145 1146 /* 1147 * Make sure we don't hear our own membership report, as fast 1148 * leave requires knowing that we are the only member of a 1149 * group. Assume we used the link-local address if available, 1150 * otherwise look for ::. 1151 * 1152 * XXX Note that scope ID comparison is needed for the address 1153 * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be 1154 * performed for the on-wire address. 1155 */ 1156 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1157 if ((ia && IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia))) || 1158 (ia == NULL && IN6_IS_ADDR_UNSPECIFIED(&src))) { 1159 if (ia != NULL) 1160 ifa_free(&ia->ia_ifa); 1161 return (0); 1162 } 1163 if (ia != NULL) 1164 ifa_free(&ia->ia_ifa); 1165 1166 CTR3(KTR_MLD, "process v1 report %s on ifp %p(%s)", 1167 ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, ifp->if_xname); 1168 1169 /* 1170 * Embed scope ID of receiving interface in MLD query for lookup 1171 * whilst we don't hold other locks (due to KAME locking lameness). 1172 */ 1173 if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) 1174 in6_setscope(&mld->mld_addr, ifp, NULL); 1175 1176 IN6_MULTI_LOCK(); 1177 MLD_LOCK(); 1178 IF_ADDR_LOCK(ifp); 1179 1180 /* 1181 * MLDv1 report suppression. 1182 * If we are a member of this group, and our membership should be 1183 * reported, and our group timer is pending or about to be reset, 1184 * stop our group timer by transitioning to the 'lazy' state. 1185 */ 1186 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 1187 if (inm != NULL) { 1188 struct mld_ifinfo *mli; 1189 1190 mli = inm->in6m_mli; 1191 KASSERT(mli != NULL, 1192 ("%s: no mli for ifp %p", __func__, ifp)); 1193 1194 /* 1195 * If we are in MLDv2 host mode, do not allow the 1196 * other host's MLDv1 report to suppress our reports. 1197 */ 1198 if (mli->mli_version == MLD_VERSION_2) 1199 goto out_locked; 1200 1201 inm->in6m_timer = 0; 1202 1203 switch (inm->in6m_state) { 1204 case MLD_NOT_MEMBER: 1205 case MLD_SILENT_MEMBER: 1206 case MLD_SLEEPING_MEMBER: 1207 break; 1208 case MLD_REPORTING_MEMBER: 1209 case MLD_IDLE_MEMBER: 1210 case MLD_AWAKENING_MEMBER: 1211 CTR3(KTR_MLD, 1212 "report suppressed for %s on ifp %p(%s)", 1213 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1214 ifp, ifp->if_xname); 1215 case MLD_LAZY_MEMBER: 1216 inm->in6m_state = MLD_LAZY_MEMBER; 1217 break; 1218 case MLD_G_QUERY_PENDING_MEMBER: 1219 case MLD_SG_QUERY_PENDING_MEMBER: 1220 case MLD_LEAVING_MEMBER: 1221 break; 1222 } 1223 } 1224 1225 out_locked: 1226 MLD_UNLOCK(); 1227 IF_ADDR_UNLOCK(ifp); 1228 IN6_MULTI_UNLOCK(); 1229 1230 /* XXX Clear embedded scope ID as userland won't expect it. */ 1231 in6_clearscope(&mld->mld_addr); 1232 1233 return (0); 1234 } 1235 1236 /* 1237 * MLD input path. 1238 * 1239 * Assume query messages which fit in a single ICMPv6 message header 1240 * have been pulled up. 1241 * Assume that userland will want to see the message, even if it 1242 * otherwise fails kernel input validation; do not free it. 1243 * Pullup may however free the mbuf chain m if it fails. 1244 * 1245 * Return IPPROTO_DONE if we freed m. Otherwise, return 0. 1246 */ 1247 int 1248 mld_input(struct mbuf *m, int off, int icmp6len) 1249 { 1250 struct ifnet *ifp; 1251 struct ip6_hdr *ip6; 1252 struct mld_hdr *mld; 1253 int mldlen; 1254 1255 CTR3(KTR_MLD, "%s: called w/mbuf (%p,%d)", __func__, m, off); 1256 1257 ifp = m->m_pkthdr.rcvif; 1258 1259 ip6 = mtod(m, struct ip6_hdr *); 1260 1261 /* Pullup to appropriate size. */ 1262 mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off); 1263 if (mld->mld_type == MLD_LISTENER_QUERY && 1264 icmp6len >= sizeof(struct mldv2_query)) { 1265 mldlen = sizeof(struct mldv2_query); 1266 } else { 1267 mldlen = sizeof(struct mld_hdr); 1268 } 1269 IP6_EXTHDR_GET(mld, struct mld_hdr *, m, off, mldlen); 1270 if (mld == NULL) { 1271 ICMP6STAT_INC(icp6s_badlen); 1272 return (IPPROTO_DONE); 1273 } 1274 1275 /* 1276 * Userland needs to see all of this traffic for implementing 1277 * the endpoint discovery portion of multicast routing. 1278 */ 1279 switch (mld->mld_type) { 1280 case MLD_LISTENER_QUERY: 1281 icmp6_ifstat_inc(ifp, ifs6_in_mldquery); 1282 if (icmp6len == sizeof(struct mld_hdr)) { 1283 if (mld_v1_input_query(ifp, ip6, mld) != 0) 1284 return (0); 1285 } else if (icmp6len >= sizeof(struct mldv2_query)) { 1286 if (mld_v2_input_query(ifp, ip6, m, off, 1287 icmp6len) != 0) 1288 return (0); 1289 } 1290 break; 1291 case MLD_LISTENER_REPORT: 1292 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1293 if (mld_v1_input_report(ifp, ip6, mld) != 0) 1294 return (0); 1295 break; 1296 case MLDV2_LISTENER_REPORT: 1297 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1298 break; 1299 case MLD_LISTENER_DONE: 1300 icmp6_ifstat_inc(ifp, ifs6_in_mlddone); 1301 break; 1302 default: 1303 break; 1304 } 1305 1306 return (0); 1307 } 1308 1309 /* 1310 * Fast timeout handler (global). 1311 * VIMAGE: Timeout handlers are expected to service all vimages. 1312 */ 1313 void 1314 mld_fasttimo(void) 1315 { 1316 VNET_ITERATOR_DECL(vnet_iter); 1317 1318 VNET_LIST_RLOCK_NOSLEEP(); 1319 VNET_FOREACH(vnet_iter) { 1320 CURVNET_SET(vnet_iter); 1321 mld_fasttimo_vnet(); 1322 CURVNET_RESTORE(); 1323 } 1324 VNET_LIST_RUNLOCK_NOSLEEP(); 1325 } 1326 1327 /* 1328 * Fast timeout handler (per-vnet). 1329 * 1330 * VIMAGE: Assume caller has set up our curvnet. 1331 */ 1332 static void 1333 mld_fasttimo_vnet(void) 1334 { 1335 struct ifqueue scq; /* State-change packets */ 1336 struct ifqueue qrq; /* Query response packets */ 1337 struct ifnet *ifp; 1338 struct mld_ifinfo *mli; 1339 struct ifmultiaddr *ifma, *tifma; 1340 struct in6_multi *inm; 1341 int uri_fasthz; 1342 1343 uri_fasthz = 0; 1344 1345 /* 1346 * Quick check to see if any work needs to be done, in order to 1347 * minimize the overhead of fasttimo processing. 1348 * SMPng: XXX Unlocked reads. 1349 */ 1350 if (!V_current_state_timers_running6 && 1351 !V_interface_timers_running6 && 1352 !V_state_change_timers_running6) 1353 return; 1354 1355 IN6_MULTI_LOCK(); 1356 MLD_LOCK(); 1357 1358 /* 1359 * MLDv2 General Query response timer processing. 1360 */ 1361 if (V_interface_timers_running6) { 1362 CTR1(KTR_MLD, "%s: interface timers running", __func__); 1363 1364 V_interface_timers_running6 = 0; 1365 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1366 if (mli->mli_v2_timer == 0) { 1367 /* Do nothing. */ 1368 } else if (--mli->mli_v2_timer == 0) { 1369 mld_v2_dispatch_general_query(mli); 1370 } else { 1371 V_interface_timers_running6 = 1; 1372 } 1373 } 1374 } 1375 1376 if (!V_current_state_timers_running6 && 1377 !V_state_change_timers_running6) 1378 goto out_locked; 1379 1380 V_current_state_timers_running6 = 0; 1381 V_state_change_timers_running6 = 0; 1382 1383 CTR1(KTR_MLD, "%s: state change timers running", __func__); 1384 1385 /* 1386 * MLD host report and state-change timer processing. 1387 * Note: Processing a v2 group timer may remove a node. 1388 */ 1389 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1390 ifp = mli->mli_ifp; 1391 1392 if (mli->mli_version == MLD_VERSION_2) { 1393 uri_fasthz = MLD_RANDOM_DELAY(mli->mli_uri * 1394 PR_FASTHZ); 1395 1396 memset(&qrq, 0, sizeof(struct ifqueue)); 1397 IFQ_SET_MAXLEN(&qrq, MLD_MAX_G_GS_PACKETS); 1398 1399 memset(&scq, 0, sizeof(struct ifqueue)); 1400 IFQ_SET_MAXLEN(&scq, MLD_MAX_STATE_CHANGE_PACKETS); 1401 } 1402 1403 IF_ADDR_LOCK(ifp); 1404 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, 1405 tifma) { 1406 if (ifma->ifma_addr->sa_family != AF_INET6 || 1407 ifma->ifma_protospec == NULL) 1408 continue; 1409 inm = (struct in6_multi *)ifma->ifma_protospec; 1410 switch (mli->mli_version) { 1411 case MLD_VERSION_1: 1412 /* 1413 * XXX Drop IF_ADDR lock temporarily to 1414 * avoid recursion caused by a potential 1415 * call by in6ifa_ifpforlinklocal(). 1416 * rwlock candidate? 1417 */ 1418 IF_ADDR_UNLOCK(ifp); 1419 mld_v1_process_group_timer(inm, 1420 mli->mli_version); 1421 IF_ADDR_LOCK(ifp); 1422 break; 1423 case MLD_VERSION_2: 1424 mld_v2_process_group_timers(mli, &qrq, 1425 &scq, inm, uri_fasthz); 1426 break; 1427 } 1428 } 1429 IF_ADDR_UNLOCK(ifp); 1430 1431 if (mli->mli_version == MLD_VERSION_2) { 1432 struct in6_multi *tinm; 1433 1434 mld_dispatch_queue(&qrq, 0); 1435 mld_dispatch_queue(&scq, 0); 1436 1437 /* 1438 * Free the in_multi reference(s) for 1439 * this lifecycle. 1440 */ 1441 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, 1442 in6m_nrele, tinm) { 1443 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, 1444 in6m_nrele); 1445 in6m_release_locked(inm); 1446 } 1447 } 1448 } 1449 1450 out_locked: 1451 MLD_UNLOCK(); 1452 IN6_MULTI_UNLOCK(); 1453 } 1454 1455 /* 1456 * Update host report group timer. 1457 * Will update the global pending timer flags. 1458 */ 1459 static void 1460 mld_v1_process_group_timer(struct in6_multi *inm, const int version) 1461 { 1462 int report_timer_expired; 1463 1464 IN6_MULTI_LOCK_ASSERT(); 1465 MLD_LOCK_ASSERT(); 1466 1467 if (inm->in6m_timer == 0) { 1468 report_timer_expired = 0; 1469 } else if (--inm->in6m_timer == 0) { 1470 report_timer_expired = 1; 1471 } else { 1472 V_current_state_timers_running6 = 1; 1473 return; 1474 } 1475 1476 switch (inm->in6m_state) { 1477 case MLD_NOT_MEMBER: 1478 case MLD_SILENT_MEMBER: 1479 case MLD_IDLE_MEMBER: 1480 case MLD_LAZY_MEMBER: 1481 case MLD_SLEEPING_MEMBER: 1482 case MLD_AWAKENING_MEMBER: 1483 break; 1484 case MLD_REPORTING_MEMBER: 1485 if (report_timer_expired) { 1486 inm->in6m_state = MLD_IDLE_MEMBER; 1487 (void)mld_v1_transmit_report(inm, 1488 MLD_LISTENER_REPORT); 1489 } 1490 break; 1491 case MLD_G_QUERY_PENDING_MEMBER: 1492 case MLD_SG_QUERY_PENDING_MEMBER: 1493 case MLD_LEAVING_MEMBER: 1494 break; 1495 } 1496 } 1497 1498 /* 1499 * Update a group's timers for MLDv2. 1500 * Will update the global pending timer flags. 1501 * Note: Unlocked read from mli. 1502 */ 1503 static void 1504 mld_v2_process_group_timers(struct mld_ifinfo *mli, 1505 struct ifqueue *qrq, struct ifqueue *scq, 1506 struct in6_multi *inm, const int uri_fasthz) 1507 { 1508 int query_response_timer_expired; 1509 int state_change_retransmit_timer_expired; 1510 #ifdef KTR 1511 char ip6tbuf[INET6_ADDRSTRLEN]; 1512 #endif 1513 1514 IN6_MULTI_LOCK_ASSERT(); 1515 MLD_LOCK_ASSERT(); 1516 1517 query_response_timer_expired = 0; 1518 state_change_retransmit_timer_expired = 0; 1519 1520 /* 1521 * During a transition from compatibility mode back to MLDv2, 1522 * a group record in REPORTING state may still have its group 1523 * timer active. This is a no-op in this function; it is easier 1524 * to deal with it here than to complicate the slow-timeout path. 1525 */ 1526 if (inm->in6m_timer == 0) { 1527 query_response_timer_expired = 0; 1528 } else if (--inm->in6m_timer == 0) { 1529 query_response_timer_expired = 1; 1530 } else { 1531 V_current_state_timers_running6 = 1; 1532 } 1533 1534 if (inm->in6m_sctimer == 0) { 1535 state_change_retransmit_timer_expired = 0; 1536 } else if (--inm->in6m_sctimer == 0) { 1537 state_change_retransmit_timer_expired = 1; 1538 } else { 1539 V_state_change_timers_running6 = 1; 1540 } 1541 1542 /* We are in fasttimo, so be quick about it. */ 1543 if (!state_change_retransmit_timer_expired && 1544 !query_response_timer_expired) 1545 return; 1546 1547 switch (inm->in6m_state) { 1548 case MLD_NOT_MEMBER: 1549 case MLD_SILENT_MEMBER: 1550 case MLD_SLEEPING_MEMBER: 1551 case MLD_LAZY_MEMBER: 1552 case MLD_AWAKENING_MEMBER: 1553 case MLD_IDLE_MEMBER: 1554 break; 1555 case MLD_G_QUERY_PENDING_MEMBER: 1556 case MLD_SG_QUERY_PENDING_MEMBER: 1557 /* 1558 * Respond to a previously pending Group-Specific 1559 * or Group-and-Source-Specific query by enqueueing 1560 * the appropriate Current-State report for 1561 * immediate transmission. 1562 */ 1563 if (query_response_timer_expired) { 1564 int retval; 1565 1566 retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1, 1567 (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER), 1568 0); 1569 CTR2(KTR_MLD, "%s: enqueue record = %d", 1570 __func__, retval); 1571 inm->in6m_state = MLD_REPORTING_MEMBER; 1572 in6m_clear_recorded(inm); 1573 } 1574 /* FALLTHROUGH */ 1575 case MLD_REPORTING_MEMBER: 1576 case MLD_LEAVING_MEMBER: 1577 if (state_change_retransmit_timer_expired) { 1578 /* 1579 * State-change retransmission timer fired. 1580 * If there are any further pending retransmissions, 1581 * set the global pending state-change flag, and 1582 * reset the timer. 1583 */ 1584 if (--inm->in6m_scrv > 0) { 1585 inm->in6m_sctimer = uri_fasthz; 1586 V_state_change_timers_running6 = 1; 1587 } 1588 /* 1589 * Retransmit the previously computed state-change 1590 * report. If there are no further pending 1591 * retransmissions, the mbuf queue will be consumed. 1592 * Update T0 state to T1 as we have now sent 1593 * a state-change. 1594 */ 1595 (void)mld_v2_merge_state_changes(inm, scq); 1596 1597 in6m_commit(inm); 1598 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 1599 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1600 inm->in6m_ifp->if_xname); 1601 1602 /* 1603 * If we are leaving the group for good, make sure 1604 * we release MLD's reference to it. 1605 * This release must be deferred using a SLIST, 1606 * as we are called from a loop which traverses 1607 * the in_ifmultiaddr TAILQ. 1608 */ 1609 if (inm->in6m_state == MLD_LEAVING_MEMBER && 1610 inm->in6m_scrv == 0) { 1611 inm->in6m_state = MLD_NOT_MEMBER; 1612 SLIST_INSERT_HEAD(&mli->mli_relinmhead, 1613 inm, in6m_nrele); 1614 } 1615 } 1616 break; 1617 } 1618 } 1619 1620 /* 1621 * Switch to a different version on the given interface, 1622 * as per Section 9.12. 1623 */ 1624 static void 1625 mld_set_version(struct mld_ifinfo *mli, const int version) 1626 { 1627 int old_version_timer; 1628 1629 MLD_LOCK_ASSERT(); 1630 1631 CTR4(KTR_MLD, "%s: switching to v%d on ifp %p(%s)", __func__, 1632 version, mli->mli_ifp, mli->mli_ifp->if_xname); 1633 1634 if (version == MLD_VERSION_1) { 1635 /* 1636 * Compute the "Older Version Querier Present" timer as per 1637 * Section 9.12. 1638 */ 1639 old_version_timer = (mli->mli_rv * mli->mli_qi) + mli->mli_qri; 1640 old_version_timer *= PR_SLOWHZ; 1641 mli->mli_v1_timer = old_version_timer; 1642 } 1643 1644 if (mli->mli_v1_timer > 0 && mli->mli_version != MLD_VERSION_1) { 1645 mli->mli_version = MLD_VERSION_1; 1646 mld_v2_cancel_link_timers(mli); 1647 } 1648 } 1649 1650 /* 1651 * Cancel pending MLDv2 timers for the given link and all groups 1652 * joined on it; state-change, general-query, and group-query timers. 1653 */ 1654 static void 1655 mld_v2_cancel_link_timers(struct mld_ifinfo *mli) 1656 { 1657 struct ifmultiaddr *ifma; 1658 struct ifnet *ifp; 1659 struct in6_multi *inm; 1660 1661 CTR3(KTR_MLD, "%s: cancel v2 timers on ifp %p(%s)", __func__, 1662 mli->mli_ifp, mli->mli_ifp->if_xname); 1663 1664 IN6_MULTI_LOCK_ASSERT(); 1665 MLD_LOCK_ASSERT(); 1666 1667 /* 1668 * Fast-track this potentially expensive operation 1669 * by checking all the global 'timer pending' flags. 1670 */ 1671 if (!V_interface_timers_running6 && 1672 !V_state_change_timers_running6 && 1673 !V_current_state_timers_running6) 1674 return; 1675 1676 mli->mli_v2_timer = 0; 1677 1678 ifp = mli->mli_ifp; 1679 1680 IF_ADDR_LOCK(ifp); 1681 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1682 if (ifma->ifma_addr->sa_family != AF_INET6) 1683 continue; 1684 inm = (struct in6_multi *)ifma->ifma_protospec; 1685 switch (inm->in6m_state) { 1686 case MLD_NOT_MEMBER: 1687 case MLD_SILENT_MEMBER: 1688 case MLD_IDLE_MEMBER: 1689 case MLD_LAZY_MEMBER: 1690 case MLD_SLEEPING_MEMBER: 1691 case MLD_AWAKENING_MEMBER: 1692 break; 1693 case MLD_LEAVING_MEMBER: 1694 /* 1695 * If we are leaving the group and switching 1696 * version, we need to release the final 1697 * reference held for issuing the INCLUDE {}. 1698 * 1699 * SMPNG: Must drop and re-acquire IF_ADDR_LOCK 1700 * around in6m_release_locked(), as it is not 1701 * a recursive mutex. 1702 */ 1703 IF_ADDR_UNLOCK(ifp); 1704 in6m_release_locked(inm); 1705 IF_ADDR_LOCK(ifp); 1706 /* FALLTHROUGH */ 1707 case MLD_G_QUERY_PENDING_MEMBER: 1708 case MLD_SG_QUERY_PENDING_MEMBER: 1709 in6m_clear_recorded(inm); 1710 /* FALLTHROUGH */ 1711 case MLD_REPORTING_MEMBER: 1712 inm->in6m_sctimer = 0; 1713 inm->in6m_timer = 0; 1714 inm->in6m_state = MLD_REPORTING_MEMBER; 1715 /* 1716 * Free any pending MLDv2 state-change records. 1717 */ 1718 _IF_DRAIN(&inm->in6m_scq); 1719 break; 1720 } 1721 } 1722 IF_ADDR_UNLOCK(ifp); 1723 } 1724 1725 /* 1726 * Global slowtimo handler. 1727 * VIMAGE: Timeout handlers are expected to service all vimages. 1728 */ 1729 void 1730 mld_slowtimo(void) 1731 { 1732 VNET_ITERATOR_DECL(vnet_iter); 1733 1734 VNET_LIST_RLOCK_NOSLEEP(); 1735 VNET_FOREACH(vnet_iter) { 1736 CURVNET_SET(vnet_iter); 1737 mld_slowtimo_vnet(); 1738 CURVNET_RESTORE(); 1739 } 1740 VNET_LIST_RUNLOCK_NOSLEEP(); 1741 } 1742 1743 /* 1744 * Per-vnet slowtimo handler. 1745 */ 1746 static void 1747 mld_slowtimo_vnet(void) 1748 { 1749 struct mld_ifinfo *mli; 1750 1751 MLD_LOCK(); 1752 1753 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1754 mld_v1_process_querier_timers(mli); 1755 } 1756 1757 MLD_UNLOCK(); 1758 } 1759 1760 /* 1761 * Update the Older Version Querier Present timers for a link. 1762 * See Section 9.12 of RFC 3810. 1763 */ 1764 static void 1765 mld_v1_process_querier_timers(struct mld_ifinfo *mli) 1766 { 1767 1768 MLD_LOCK_ASSERT(); 1769 1770 if (mli->mli_version != MLD_VERSION_2 && --mli->mli_v1_timer == 0) { 1771 /* 1772 * MLDv1 Querier Present timer expired; revert to MLDv2. 1773 */ 1774 CTR5(KTR_MLD, 1775 "%s: transition from v%d -> v%d on %p(%s)", 1776 __func__, mli->mli_version, MLD_VERSION_2, 1777 mli->mli_ifp, mli->mli_ifp->if_xname); 1778 mli->mli_version = MLD_VERSION_2; 1779 } 1780 } 1781 1782 /* 1783 * Transmit an MLDv1 report immediately. 1784 */ 1785 static int 1786 mld_v1_transmit_report(struct in6_multi *in6m, const int type) 1787 { 1788 struct ifnet *ifp; 1789 struct in6_ifaddr *ia; 1790 struct ip6_hdr *ip6; 1791 struct mbuf *mh, *md; 1792 struct mld_hdr *mld; 1793 1794 IN6_MULTI_LOCK_ASSERT(); 1795 MLD_LOCK_ASSERT(); 1796 1797 ifp = in6m->in6m_ifp; 1798 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1799 /* ia may be NULL if link-local address is tentative. */ 1800 1801 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 1802 if (mh == NULL) { 1803 if (ia != NULL) 1804 ifa_free(&ia->ia_ifa); 1805 return (ENOMEM); 1806 } 1807 MGET(md, M_DONTWAIT, MT_DATA); 1808 if (md == NULL) { 1809 m_free(mh); 1810 if (ia != NULL) 1811 ifa_free(&ia->ia_ifa); 1812 return (ENOMEM); 1813 } 1814 mh->m_next = md; 1815 1816 /* 1817 * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so 1818 * that ether_output() does not need to allocate another mbuf 1819 * for the header in the most common case. 1820 */ 1821 MH_ALIGN(mh, sizeof(struct ip6_hdr)); 1822 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr); 1823 mh->m_len = sizeof(struct ip6_hdr); 1824 1825 ip6 = mtod(mh, struct ip6_hdr *); 1826 ip6->ip6_flow = 0; 1827 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 1828 ip6->ip6_vfc |= IPV6_VERSION; 1829 ip6->ip6_nxt = IPPROTO_ICMPV6; 1830 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 1831 ip6->ip6_dst = in6m->in6m_addr; 1832 1833 md->m_len = sizeof(struct mld_hdr); 1834 mld = mtod(md, struct mld_hdr *); 1835 mld->mld_type = type; 1836 mld->mld_code = 0; 1837 mld->mld_cksum = 0; 1838 mld->mld_maxdelay = 0; 1839 mld->mld_reserved = 0; 1840 mld->mld_addr = in6m->in6m_addr; 1841 in6_clearscope(&mld->mld_addr); 1842 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 1843 sizeof(struct ip6_hdr), sizeof(struct mld_hdr)); 1844 1845 mld_save_context(mh, ifp); 1846 mh->m_flags |= M_MLDV1; 1847 1848 mld_dispatch_packet(mh); 1849 1850 if (ia != NULL) 1851 ifa_free(&ia->ia_ifa); 1852 return (0); 1853 } 1854 1855 /* 1856 * Process a state change from the upper layer for the given IPv6 group. 1857 * 1858 * Each socket holds a reference on the in_multi in its own ip_moptions. 1859 * The socket layer will have made the necessary updates to.the group 1860 * state, it is now up to MLD to issue a state change report if there 1861 * has been any change between T0 (when the last state-change was issued) 1862 * and T1 (now). 1863 * 1864 * We use the MLDv2 state machine at group level. The MLd module 1865 * however makes the decision as to which MLD protocol version to speak. 1866 * A state change *from* INCLUDE {} always means an initial join. 1867 * A state change *to* INCLUDE {} always means a final leave. 1868 * 1869 * If delay is non-zero, and the state change is an initial multicast 1870 * join, the state change report will be delayed by 'delay' ticks 1871 * in units of PR_FASTHZ if MLDv1 is active on the link; otherwise 1872 * the initial MLDv2 state change report will be delayed by whichever 1873 * is sooner, a pending state-change timer or delay itself. 1874 * 1875 * VIMAGE: curvnet should have been set by caller, as this routine 1876 * is called from the socket option handlers. 1877 */ 1878 int 1879 mld_change_state(struct in6_multi *inm, const int delay) 1880 { 1881 struct mld_ifinfo *mli; 1882 struct ifnet *ifp; 1883 int error; 1884 1885 IN6_MULTI_LOCK_ASSERT(); 1886 1887 error = 0; 1888 1889 /* 1890 * Try to detect if the upper layer just asked us to change state 1891 * for an interface which has now gone away. 1892 */ 1893 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); 1894 ifp = inm->in6m_ifma->ifma_ifp; 1895 if (ifp != NULL) { 1896 /* 1897 * Sanity check that netinet6's notion of ifp is the 1898 * same as net's. 1899 */ 1900 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); 1901 } 1902 1903 MLD_LOCK(); 1904 1905 mli = MLD_IFINFO(ifp); 1906 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 1907 1908 /* 1909 * If we detect a state transition to or from MCAST_UNDEFINED 1910 * for this group, then we are starting or finishing an MLD 1911 * life cycle for this group. 1912 */ 1913 if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) { 1914 CTR3(KTR_MLD, "%s: inm transition %d -> %d", __func__, 1915 inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode); 1916 if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) { 1917 CTR1(KTR_MLD, "%s: initial join", __func__); 1918 error = mld_initial_join(inm, mli, delay); 1919 goto out_locked; 1920 } else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) { 1921 CTR1(KTR_MLD, "%s: final leave", __func__); 1922 mld_final_leave(inm, mli); 1923 goto out_locked; 1924 } 1925 } else { 1926 CTR1(KTR_MLD, "%s: filter set change", __func__); 1927 } 1928 1929 error = mld_handle_state_change(inm, mli); 1930 1931 out_locked: 1932 MLD_UNLOCK(); 1933 return (error); 1934 } 1935 1936 /* 1937 * Perform the initial join for an MLD group. 1938 * 1939 * When joining a group: 1940 * If the group should have its MLD traffic suppressed, do nothing. 1941 * MLDv1 starts sending MLDv1 host membership reports. 1942 * MLDv2 will schedule an MLDv2 state-change report containing the 1943 * initial state of the membership. 1944 * 1945 * If the delay argument is non-zero, then we must delay sending the 1946 * initial state change for delay ticks (in units of PR_FASTHZ). 1947 */ 1948 static int 1949 mld_initial_join(struct in6_multi *inm, struct mld_ifinfo *mli, 1950 const int delay) 1951 { 1952 struct ifnet *ifp; 1953 struct ifqueue *ifq; 1954 int error, retval, syncstates; 1955 int odelay; 1956 #ifdef KTR 1957 char ip6tbuf[INET6_ADDRSTRLEN]; 1958 #endif 1959 1960 CTR4(KTR_MLD, "%s: initial join %s on ifp %p(%s)", 1961 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1962 inm->in6m_ifp, inm->in6m_ifp->if_xname); 1963 1964 error = 0; 1965 syncstates = 1; 1966 1967 ifp = inm->in6m_ifp; 1968 1969 IN6_MULTI_LOCK_ASSERT(); 1970 MLD_LOCK_ASSERT(); 1971 1972 KASSERT(mli && mli->mli_ifp == ifp, ("%s: inconsistent ifp", __func__)); 1973 1974 /* 1975 * Groups joined on loopback or marked as 'not reported', 1976 * enter the MLD_SILENT_MEMBER state and 1977 * are never reported in any protocol exchanges. 1978 * All other groups enter the appropriate state machine 1979 * for the version in use on this link. 1980 * A link marked as MLIF_SILENT causes MLD to be completely 1981 * disabled for the link. 1982 */ 1983 if ((ifp->if_flags & IFF_LOOPBACK) || 1984 (mli->mli_flags & MLIF_SILENT) || 1985 !mld_is_addr_reported(&inm->in6m_addr)) { 1986 CTR1(KTR_MLD, 1987 "%s: not kicking state machine for silent group", __func__); 1988 inm->in6m_state = MLD_SILENT_MEMBER; 1989 inm->in6m_timer = 0; 1990 } else { 1991 /* 1992 * Deal with overlapping in_multi lifecycle. 1993 * If this group was LEAVING, then make sure 1994 * we drop the reference we picked up to keep the 1995 * group around for the final INCLUDE {} enqueue. 1996 */ 1997 if (mli->mli_version == MLD_VERSION_2 && 1998 inm->in6m_state == MLD_LEAVING_MEMBER) 1999 in6m_release_locked(inm); 2000 2001 inm->in6m_state = MLD_REPORTING_MEMBER; 2002 2003 switch (mli->mli_version) { 2004 case MLD_VERSION_1: 2005 /* 2006 * If a delay was provided, only use it if 2007 * it is greater than the delay normally 2008 * used for an MLDv1 state change report, 2009 * and delay sending the initial MLDv1 report 2010 * by not transitioning to the IDLE state. 2011 */ 2012 odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI * PR_FASTHZ); 2013 if (delay) { 2014 inm->in6m_timer = max(delay, odelay); 2015 V_current_state_timers_running6 = 1; 2016 } else { 2017 inm->in6m_state = MLD_IDLE_MEMBER; 2018 error = mld_v1_transmit_report(inm, 2019 MLD_LISTENER_REPORT); 2020 if (error == 0) { 2021 inm->in6m_timer = odelay; 2022 V_current_state_timers_running6 = 1; 2023 } 2024 } 2025 break; 2026 2027 case MLD_VERSION_2: 2028 /* 2029 * Defer update of T0 to T1, until the first copy 2030 * of the state change has been transmitted. 2031 */ 2032 syncstates = 0; 2033 2034 /* 2035 * Immediately enqueue a State-Change Report for 2036 * this interface, freeing any previous reports. 2037 * Don't kick the timers if there is nothing to do, 2038 * or if an error occurred. 2039 */ 2040 ifq = &inm->in6m_scq; 2041 _IF_DRAIN(ifq); 2042 retval = mld_v2_enqueue_group_record(ifq, inm, 1, 2043 0, 0, (mli->mli_flags & MLIF_USEALLOW)); 2044 CTR2(KTR_MLD, "%s: enqueue record = %d", 2045 __func__, retval); 2046 if (retval <= 0) { 2047 error = retval * -1; 2048 break; 2049 } 2050 2051 /* 2052 * Schedule transmission of pending state-change 2053 * report up to RV times for this link. The timer 2054 * will fire at the next mld_fasttimo (~200ms), 2055 * giving us an opportunity to merge the reports. 2056 * 2057 * If a delay was provided to this function, only 2058 * use this delay if sooner than the existing one. 2059 */ 2060 KASSERT(mli->mli_rv > 1, 2061 ("%s: invalid robustness %d", __func__, 2062 mli->mli_rv)); 2063 inm->in6m_scrv = mli->mli_rv; 2064 if (delay) { 2065 if (inm->in6m_sctimer > 1) { 2066 inm->in6m_sctimer = 2067 min(inm->in6m_sctimer, delay); 2068 } else 2069 inm->in6m_sctimer = delay; 2070 } else 2071 inm->in6m_sctimer = 1; 2072 V_state_change_timers_running6 = 1; 2073 2074 error = 0; 2075 break; 2076 } 2077 } 2078 2079 /* 2080 * Only update the T0 state if state change is atomic, 2081 * i.e. we don't need to wait for a timer to fire before we 2082 * can consider the state change to have been communicated. 2083 */ 2084 if (syncstates) { 2085 in6m_commit(inm); 2086 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2087 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2088 inm->in6m_ifp->if_xname); 2089 } 2090 2091 return (error); 2092 } 2093 2094 /* 2095 * Issue an intermediate state change during the life-cycle. 2096 */ 2097 static int 2098 mld_handle_state_change(struct in6_multi *inm, struct mld_ifinfo *mli) 2099 { 2100 struct ifnet *ifp; 2101 int retval; 2102 #ifdef KTR 2103 char ip6tbuf[INET6_ADDRSTRLEN]; 2104 #endif 2105 2106 CTR4(KTR_MLD, "%s: state change for %s on ifp %p(%s)", 2107 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2108 inm->in6m_ifp, inm->in6m_ifp->if_xname); 2109 2110 ifp = inm->in6m_ifp; 2111 2112 IN6_MULTI_LOCK_ASSERT(); 2113 MLD_LOCK_ASSERT(); 2114 2115 KASSERT(mli && mli->mli_ifp == ifp, 2116 ("%s: inconsistent ifp", __func__)); 2117 2118 if ((ifp->if_flags & IFF_LOOPBACK) || 2119 (mli->mli_flags & MLIF_SILENT) || 2120 !mld_is_addr_reported(&inm->in6m_addr) || 2121 (mli->mli_version != MLD_VERSION_2)) { 2122 if (!mld_is_addr_reported(&inm->in6m_addr)) { 2123 CTR1(KTR_MLD, 2124 "%s: not kicking state machine for silent group", __func__); 2125 } 2126 CTR1(KTR_MLD, "%s: nothing to do", __func__); 2127 in6m_commit(inm); 2128 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2129 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2130 inm->in6m_ifp->if_xname); 2131 return (0); 2132 } 2133 2134 _IF_DRAIN(&inm->in6m_scq); 2135 2136 retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0, 2137 (mli->mli_flags & MLIF_USEALLOW)); 2138 CTR2(KTR_MLD, "%s: enqueue record = %d", __func__, retval); 2139 if (retval <= 0) 2140 return (-retval); 2141 2142 /* 2143 * If record(s) were enqueued, start the state-change 2144 * report timer for this group. 2145 */ 2146 inm->in6m_scrv = mli->mli_rv; 2147 inm->in6m_sctimer = 1; 2148 V_state_change_timers_running6 = 1; 2149 2150 return (0); 2151 } 2152 2153 /* 2154 * Perform the final leave for a multicast address. 2155 * 2156 * When leaving a group: 2157 * MLDv1 sends a DONE message, if and only if we are the reporter. 2158 * MLDv2 enqueues a state-change report containing a transition 2159 * to INCLUDE {} for immediate transmission. 2160 */ 2161 static void 2162 mld_final_leave(struct in6_multi *inm, struct mld_ifinfo *mli) 2163 { 2164 int syncstates; 2165 #ifdef KTR 2166 char ip6tbuf[INET6_ADDRSTRLEN]; 2167 #endif 2168 2169 syncstates = 1; 2170 2171 CTR4(KTR_MLD, "%s: final leave %s on ifp %p(%s)", 2172 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2173 inm->in6m_ifp, inm->in6m_ifp->if_xname); 2174 2175 IN6_MULTI_LOCK_ASSERT(); 2176 MLD_LOCK_ASSERT(); 2177 2178 switch (inm->in6m_state) { 2179 case MLD_NOT_MEMBER: 2180 case MLD_SILENT_MEMBER: 2181 case MLD_LEAVING_MEMBER: 2182 /* Already leaving or left; do nothing. */ 2183 CTR1(KTR_MLD, 2184 "%s: not kicking state machine for silent group", __func__); 2185 break; 2186 case MLD_REPORTING_MEMBER: 2187 case MLD_IDLE_MEMBER: 2188 case MLD_G_QUERY_PENDING_MEMBER: 2189 case MLD_SG_QUERY_PENDING_MEMBER: 2190 if (mli->mli_version == MLD_VERSION_1) { 2191 #ifdef INVARIANTS 2192 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 2193 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) 2194 panic("%s: MLDv2 state reached, not MLDv2 mode", 2195 __func__); 2196 #endif 2197 mld_v1_transmit_report(inm, MLD_LISTENER_DONE); 2198 inm->in6m_state = MLD_NOT_MEMBER; 2199 } else if (mli->mli_version == MLD_VERSION_2) { 2200 /* 2201 * Stop group timer and all pending reports. 2202 * Immediately enqueue a state-change report 2203 * TO_IN {} to be sent on the next fast timeout, 2204 * giving us an opportunity to merge reports. 2205 */ 2206 _IF_DRAIN(&inm->in6m_scq); 2207 inm->in6m_timer = 0; 2208 inm->in6m_scrv = mli->mli_rv; 2209 CTR4(KTR_MLD, "%s: Leaving %s/%s with %d " 2210 "pending retransmissions.", __func__, 2211 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2212 inm->in6m_ifp->if_xname, inm->in6m_scrv); 2213 if (inm->in6m_scrv == 0) { 2214 inm->in6m_state = MLD_NOT_MEMBER; 2215 inm->in6m_sctimer = 0; 2216 } else { 2217 int retval; 2218 2219 in6m_acquire_locked(inm); 2220 2221 retval = mld_v2_enqueue_group_record( 2222 &inm->in6m_scq, inm, 1, 0, 0, 2223 (mli->mli_flags & MLIF_USEALLOW)); 2224 KASSERT(retval != 0, 2225 ("%s: enqueue record = %d", __func__, 2226 retval)); 2227 2228 inm->in6m_state = MLD_LEAVING_MEMBER; 2229 inm->in6m_sctimer = 1; 2230 V_state_change_timers_running6 = 1; 2231 syncstates = 0; 2232 } 2233 break; 2234 } 2235 break; 2236 case MLD_LAZY_MEMBER: 2237 case MLD_SLEEPING_MEMBER: 2238 case MLD_AWAKENING_MEMBER: 2239 /* Our reports are suppressed; do nothing. */ 2240 break; 2241 } 2242 2243 if (syncstates) { 2244 in6m_commit(inm); 2245 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2246 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2247 inm->in6m_ifp->if_xname); 2248 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 2249 CTR3(KTR_MLD, "%s: T1 now MCAST_UNDEFINED for %p/%s", 2250 __func__, &inm->in6m_addr, inm->in6m_ifp->if_xname); 2251 } 2252 } 2253 2254 /* 2255 * Enqueue an MLDv2 group record to the given output queue. 2256 * 2257 * If is_state_change is zero, a current-state record is appended. 2258 * If is_state_change is non-zero, a state-change report is appended. 2259 * 2260 * If is_group_query is non-zero, an mbuf packet chain is allocated. 2261 * If is_group_query is zero, and if there is a packet with free space 2262 * at the tail of the queue, it will be appended to providing there 2263 * is enough free space. 2264 * Otherwise a new mbuf packet chain is allocated. 2265 * 2266 * If is_source_query is non-zero, each source is checked to see if 2267 * it was recorded for a Group-Source query, and will be omitted if 2268 * it is not both in-mode and recorded. 2269 * 2270 * If use_block_allow is non-zero, state change reports for initial join 2271 * and final leave, on an inclusive mode group with a source list, will be 2272 * rewritten to use the ALLOW_NEW and BLOCK_OLD record types, respectively. 2273 * 2274 * The function will attempt to allocate leading space in the packet 2275 * for the IPv6+ICMP headers to be prepended without fragmenting the chain. 2276 * 2277 * If successful the size of all data appended to the queue is returned, 2278 * otherwise an error code less than zero is returned, or zero if 2279 * no record(s) were appended. 2280 */ 2281 static int 2282 mld_v2_enqueue_group_record(struct ifqueue *ifq, struct in6_multi *inm, 2283 const int is_state_change, const int is_group_query, 2284 const int is_source_query, const int use_block_allow) 2285 { 2286 struct mldv2_record mr; 2287 struct mldv2_record *pmr; 2288 struct ifnet *ifp; 2289 struct ip6_msource *ims, *nims; 2290 struct mbuf *m0, *m, *md; 2291 int error, is_filter_list_change; 2292 int minrec0len, m0srcs, msrcs, nbytes, off; 2293 int record_has_sources; 2294 int now; 2295 int type; 2296 uint8_t mode; 2297 #ifdef KTR 2298 char ip6tbuf[INET6_ADDRSTRLEN]; 2299 #endif 2300 2301 IN6_MULTI_LOCK_ASSERT(); 2302 2303 error = 0; 2304 ifp = inm->in6m_ifp; 2305 is_filter_list_change = 0; 2306 m = NULL; 2307 m0 = NULL; 2308 m0srcs = 0; 2309 msrcs = 0; 2310 nbytes = 0; 2311 nims = NULL; 2312 record_has_sources = 1; 2313 pmr = NULL; 2314 type = MLD_DO_NOTHING; 2315 mode = inm->in6m_st[1].iss_fmode; 2316 2317 /* 2318 * If we did not transition out of ASM mode during t0->t1, 2319 * and there are no source nodes to process, we can skip 2320 * the generation of source records. 2321 */ 2322 if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 && 2323 inm->in6m_nsrc == 0) 2324 record_has_sources = 0; 2325 2326 if (is_state_change) { 2327 /* 2328 * Queue a state change record. 2329 * If the mode did not change, and there are non-ASM 2330 * listeners or source filters present, 2331 * we potentially need to issue two records for the group. 2332 * If there are ASM listeners, and there was no filter 2333 * mode transition of any kind, do nothing. 2334 * 2335 * If we are transitioning to MCAST_UNDEFINED, we need 2336 * not send any sources. A transition to/from this state is 2337 * considered inclusive with some special treatment. 2338 * 2339 * If we are rewriting initial joins/leaves to use 2340 * ALLOW/BLOCK, and the group's membership is inclusive, 2341 * we need to send sources in all cases. 2342 */ 2343 if (mode != inm->in6m_st[0].iss_fmode) { 2344 if (mode == MCAST_EXCLUDE) { 2345 CTR1(KTR_MLD, "%s: change to EXCLUDE", 2346 __func__); 2347 type = MLD_CHANGE_TO_EXCLUDE_MODE; 2348 } else { 2349 CTR1(KTR_MLD, "%s: change to INCLUDE", 2350 __func__); 2351 if (use_block_allow) { 2352 /* 2353 * XXX 2354 * Here we're interested in state 2355 * edges either direction between 2356 * MCAST_UNDEFINED and MCAST_INCLUDE. 2357 * Perhaps we should just check 2358 * the group state, rather than 2359 * the filter mode. 2360 */ 2361 if (mode == MCAST_UNDEFINED) { 2362 type = MLD_BLOCK_OLD_SOURCES; 2363 } else { 2364 type = MLD_ALLOW_NEW_SOURCES; 2365 } 2366 } else { 2367 type = MLD_CHANGE_TO_INCLUDE_MODE; 2368 if (mode == MCAST_UNDEFINED) 2369 record_has_sources = 0; 2370 } 2371 } 2372 } else { 2373 if (record_has_sources) { 2374 is_filter_list_change = 1; 2375 } else { 2376 type = MLD_DO_NOTHING; 2377 } 2378 } 2379 } else { 2380 /* 2381 * Queue a current state record. 2382 */ 2383 if (mode == MCAST_EXCLUDE) { 2384 type = MLD_MODE_IS_EXCLUDE; 2385 } else if (mode == MCAST_INCLUDE) { 2386 type = MLD_MODE_IS_INCLUDE; 2387 KASSERT(inm->in6m_st[1].iss_asm == 0, 2388 ("%s: inm %p is INCLUDE but ASM count is %d", 2389 __func__, inm, inm->in6m_st[1].iss_asm)); 2390 } 2391 } 2392 2393 /* 2394 * Generate the filter list changes using a separate function. 2395 */ 2396 if (is_filter_list_change) 2397 return (mld_v2_enqueue_filter_change(ifq, inm)); 2398 2399 if (type == MLD_DO_NOTHING) { 2400 CTR3(KTR_MLD, "%s: nothing to do for %s/%s", 2401 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2402 inm->in6m_ifp->if_xname); 2403 return (0); 2404 } 2405 2406 /* 2407 * If any sources are present, we must be able to fit at least 2408 * one in the trailing space of the tail packet's mbuf, 2409 * ideally more. 2410 */ 2411 minrec0len = sizeof(struct mldv2_record); 2412 if (record_has_sources) 2413 minrec0len += sizeof(struct in6_addr); 2414 2415 CTR4(KTR_MLD, "%s: queueing %s for %s/%s", __func__, 2416 mld_rec_type_to_str(type), 2417 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2418 inm->in6m_ifp->if_xname); 2419 2420 /* 2421 * Check if we have a packet in the tail of the queue for this 2422 * group into which the first group record for this group will fit. 2423 * Otherwise allocate a new packet. 2424 * Always allocate leading space for IP6+RA+ICMPV6+REPORT. 2425 * Note: Group records for G/GSR query responses MUST be sent 2426 * in their own packet. 2427 */ 2428 m0 = ifq->ifq_tail; 2429 if (!is_group_query && 2430 m0 != NULL && 2431 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) && 2432 (m0->m_pkthdr.len + minrec0len) < 2433 (ifp->if_mtu - MLD_MTUSPACE)) { 2434 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2435 sizeof(struct mldv2_record)) / 2436 sizeof(struct in6_addr); 2437 m = m0; 2438 CTR1(KTR_MLD, "%s: use existing packet", __func__); 2439 } else { 2440 if (_IF_QFULL(ifq)) { 2441 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2442 return (-ENOMEM); 2443 } 2444 m = NULL; 2445 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2446 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2447 if (!is_state_change && !is_group_query) 2448 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2449 if (m == NULL) 2450 m = m_gethdr(M_DONTWAIT, MT_DATA); 2451 if (m == NULL) 2452 return (-ENOMEM); 2453 2454 mld_save_context(m, ifp); 2455 2456 CTR1(KTR_MLD, "%s: allocated first packet", __func__); 2457 } 2458 2459 /* 2460 * Append group record. 2461 * If we have sources, we don't know how many yet. 2462 */ 2463 mr.mr_type = type; 2464 mr.mr_datalen = 0; 2465 mr.mr_numsrc = 0; 2466 mr.mr_addr = inm->in6m_addr; 2467 in6_clearscope(&mr.mr_addr); 2468 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2469 if (m != m0) 2470 m_freem(m); 2471 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2472 return (-ENOMEM); 2473 } 2474 nbytes += sizeof(struct mldv2_record); 2475 2476 /* 2477 * Append as many sources as will fit in the first packet. 2478 * If we are appending to a new packet, the chain allocation 2479 * may potentially use clusters; use m_getptr() in this case. 2480 * If we are appending to an existing packet, we need to obtain 2481 * a pointer to the group record after m_append(), in case a new 2482 * mbuf was allocated. 2483 * 2484 * Only append sources which are in-mode at t1. If we are 2485 * transitioning to MCAST_UNDEFINED state on the group, and 2486 * use_block_allow is zero, do not include source entries. 2487 * Otherwise, we need to include this source in the report. 2488 * 2489 * Only report recorded sources in our filter set when responding 2490 * to a group-source query. 2491 */ 2492 if (record_has_sources) { 2493 if (m == m0) { 2494 md = m_last(m); 2495 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2496 md->m_len - nbytes); 2497 } else { 2498 md = m_getptr(m, 0, &off); 2499 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2500 off); 2501 } 2502 msrcs = 0; 2503 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, 2504 nims) { 2505 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2506 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2507 now = im6s_get_mode(inm, ims, 1); 2508 CTR2(KTR_MLD, "%s: node is %d", __func__, now); 2509 if ((now != mode) || 2510 (now == mode && 2511 (!use_block_allow && mode == MCAST_UNDEFINED))) { 2512 CTR1(KTR_MLD, "%s: skip node", __func__); 2513 continue; 2514 } 2515 if (is_source_query && ims->im6s_stp == 0) { 2516 CTR1(KTR_MLD, "%s: skip unrecorded node", 2517 __func__); 2518 continue; 2519 } 2520 CTR1(KTR_MLD, "%s: append node", __func__); 2521 if (!m_append(m, sizeof(struct in6_addr), 2522 (void *)&ims->im6s_addr)) { 2523 if (m != m0) 2524 m_freem(m); 2525 CTR1(KTR_MLD, "%s: m_append() failed.", 2526 __func__); 2527 return (-ENOMEM); 2528 } 2529 nbytes += sizeof(struct in6_addr); 2530 ++msrcs; 2531 if (msrcs == m0srcs) 2532 break; 2533 } 2534 CTR2(KTR_MLD, "%s: msrcs is %d this packet", __func__, 2535 msrcs); 2536 pmr->mr_numsrc = htons(msrcs); 2537 nbytes += (msrcs * sizeof(struct in6_addr)); 2538 } 2539 2540 if (is_source_query && msrcs == 0) { 2541 CTR1(KTR_MLD, "%s: no recorded sources to report", __func__); 2542 if (m != m0) 2543 m_freem(m); 2544 return (0); 2545 } 2546 2547 /* 2548 * We are good to go with first packet. 2549 */ 2550 if (m != m0) { 2551 CTR1(KTR_MLD, "%s: enqueueing first packet", __func__); 2552 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2553 _IF_ENQUEUE(ifq, m); 2554 } else 2555 m->m_pkthdr.PH_vt.vt_nrecs++; 2556 2557 /* 2558 * No further work needed if no source list in packet(s). 2559 */ 2560 if (!record_has_sources) 2561 return (nbytes); 2562 2563 /* 2564 * Whilst sources remain to be announced, we need to allocate 2565 * a new packet and fill out as many sources as will fit. 2566 * Always try for a cluster first. 2567 */ 2568 while (nims != NULL) { 2569 if (_IF_QFULL(ifq)) { 2570 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2571 return (-ENOMEM); 2572 } 2573 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2574 if (m == NULL) 2575 m = m_gethdr(M_DONTWAIT, MT_DATA); 2576 if (m == NULL) 2577 return (-ENOMEM); 2578 mld_save_context(m, ifp); 2579 md = m_getptr(m, 0, &off); 2580 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off); 2581 CTR1(KTR_MLD, "%s: allocated next packet", __func__); 2582 2583 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2584 if (m != m0) 2585 m_freem(m); 2586 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2587 return (-ENOMEM); 2588 } 2589 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2590 nbytes += sizeof(struct mldv2_record); 2591 2592 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2593 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2594 2595 msrcs = 0; 2596 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2597 CTR2(KTR_MLD, "%s: visit node %s", 2598 __func__, ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2599 now = im6s_get_mode(inm, ims, 1); 2600 if ((now != mode) || 2601 (now == mode && 2602 (!use_block_allow && mode == MCAST_UNDEFINED))) { 2603 CTR1(KTR_MLD, "%s: skip node", __func__); 2604 continue; 2605 } 2606 if (is_source_query && ims->im6s_stp == 0) { 2607 CTR1(KTR_MLD, "%s: skip unrecorded node", 2608 __func__); 2609 continue; 2610 } 2611 CTR1(KTR_MLD, "%s: append node", __func__); 2612 if (!m_append(m, sizeof(struct in6_addr), 2613 (void *)&ims->im6s_addr)) { 2614 if (m != m0) 2615 m_freem(m); 2616 CTR1(KTR_MLD, "%s: m_append() failed.", 2617 __func__); 2618 return (-ENOMEM); 2619 } 2620 ++msrcs; 2621 if (msrcs == m0srcs) 2622 break; 2623 } 2624 pmr->mr_numsrc = htons(msrcs); 2625 nbytes += (msrcs * sizeof(struct in6_addr)); 2626 2627 CTR1(KTR_MLD, "%s: enqueueing next packet", __func__); 2628 _IF_ENQUEUE(ifq, m); 2629 } 2630 2631 return (nbytes); 2632 } 2633 2634 /* 2635 * Type used to mark record pass completion. 2636 * We exploit the fact we can cast to this easily from the 2637 * current filter modes on each ip_msource node. 2638 */ 2639 typedef enum { 2640 REC_NONE = 0x00, /* MCAST_UNDEFINED */ 2641 REC_ALLOW = 0x01, /* MCAST_INCLUDE */ 2642 REC_BLOCK = 0x02, /* MCAST_EXCLUDE */ 2643 REC_FULL = REC_ALLOW | REC_BLOCK 2644 } rectype_t; 2645 2646 /* 2647 * Enqueue an MLDv2 filter list change to the given output queue. 2648 * 2649 * Source list filter state is held in an RB-tree. When the filter list 2650 * for a group is changed without changing its mode, we need to compute 2651 * the deltas between T0 and T1 for each source in the filter set, 2652 * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records. 2653 * 2654 * As we may potentially queue two record types, and the entire R-B tree 2655 * needs to be walked at once, we break this out into its own function 2656 * so we can generate a tightly packed queue of packets. 2657 * 2658 * XXX This could be written to only use one tree walk, although that makes 2659 * serializing into the mbuf chains a bit harder. For now we do two walks 2660 * which makes things easier on us, and it may or may not be harder on 2661 * the L2 cache. 2662 * 2663 * If successful the size of all data appended to the queue is returned, 2664 * otherwise an error code less than zero is returned, or zero if 2665 * no record(s) were appended. 2666 */ 2667 static int 2668 mld_v2_enqueue_filter_change(struct ifqueue *ifq, struct in6_multi *inm) 2669 { 2670 static const int MINRECLEN = 2671 sizeof(struct mldv2_record) + sizeof(struct in6_addr); 2672 struct ifnet *ifp; 2673 struct mldv2_record mr; 2674 struct mldv2_record *pmr; 2675 struct ip6_msource *ims, *nims; 2676 struct mbuf *m, *m0, *md; 2677 int m0srcs, nbytes, npbytes, off, rsrcs, schanged; 2678 int nallow, nblock; 2679 uint8_t mode, now, then; 2680 rectype_t crt, drt, nrt; 2681 #ifdef KTR 2682 char ip6tbuf[INET6_ADDRSTRLEN]; 2683 #endif 2684 2685 IN6_MULTI_LOCK_ASSERT(); 2686 2687 if (inm->in6m_nsrc == 0 || 2688 (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0)) 2689 return (0); 2690 2691 ifp = inm->in6m_ifp; /* interface */ 2692 mode = inm->in6m_st[1].iss_fmode; /* filter mode at t1 */ 2693 crt = REC_NONE; /* current group record type */ 2694 drt = REC_NONE; /* mask of completed group record types */ 2695 nrt = REC_NONE; /* record type for current node */ 2696 m0srcs = 0; /* # source which will fit in current mbuf chain */ 2697 npbytes = 0; /* # of bytes appended this packet */ 2698 nbytes = 0; /* # of bytes appended to group's state-change queue */ 2699 rsrcs = 0; /* # sources encoded in current record */ 2700 schanged = 0; /* # nodes encoded in overall filter change */ 2701 nallow = 0; /* # of source entries in ALLOW_NEW */ 2702 nblock = 0; /* # of source entries in BLOCK_OLD */ 2703 nims = NULL; /* next tree node pointer */ 2704 2705 /* 2706 * For each possible filter record mode. 2707 * The first kind of source we encounter tells us which 2708 * is the first kind of record we start appending. 2709 * If a node transitioned to UNDEFINED at t1, its mode is treated 2710 * as the inverse of the group's filter mode. 2711 */ 2712 while (drt != REC_FULL) { 2713 do { 2714 m0 = ifq->ifq_tail; 2715 if (m0 != NULL && 2716 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= 2717 MLD_V2_REPORT_MAXRECS) && 2718 (m0->m_pkthdr.len + MINRECLEN) < 2719 (ifp->if_mtu - MLD_MTUSPACE)) { 2720 m = m0; 2721 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2722 sizeof(struct mldv2_record)) / 2723 sizeof(struct in6_addr); 2724 CTR1(KTR_MLD, 2725 "%s: use previous packet", __func__); 2726 } else { 2727 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2728 if (m == NULL) 2729 m = m_gethdr(M_DONTWAIT, MT_DATA); 2730 if (m == NULL) { 2731 CTR1(KTR_MLD, 2732 "%s: m_get*() failed", __func__); 2733 return (-ENOMEM); 2734 } 2735 m->m_pkthdr.PH_vt.vt_nrecs = 0; 2736 mld_save_context(m, ifp); 2737 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2738 sizeof(struct mldv2_record)) / 2739 sizeof(struct in6_addr); 2740 npbytes = 0; 2741 CTR1(KTR_MLD, 2742 "%s: allocated new packet", __func__); 2743 } 2744 /* 2745 * Append the MLD group record header to the 2746 * current packet's data area. 2747 * Recalculate pointer to free space for next 2748 * group record, in case m_append() allocated 2749 * a new mbuf or cluster. 2750 */ 2751 memset(&mr, 0, sizeof(mr)); 2752 mr.mr_addr = inm->in6m_addr; 2753 in6_clearscope(&mr.mr_addr); 2754 if (!m_append(m, sizeof(mr), (void *)&mr)) { 2755 if (m != m0) 2756 m_freem(m); 2757 CTR1(KTR_MLD, 2758 "%s: m_append() failed", __func__); 2759 return (-ENOMEM); 2760 } 2761 npbytes += sizeof(struct mldv2_record); 2762 if (m != m0) { 2763 /* new packet; offset in chain */ 2764 md = m_getptr(m, npbytes - 2765 sizeof(struct mldv2_record), &off); 2766 pmr = (struct mldv2_record *)(mtod(md, 2767 uint8_t *) + off); 2768 } else { 2769 /* current packet; offset from last append */ 2770 md = m_last(m); 2771 pmr = (struct mldv2_record *)(mtod(md, 2772 uint8_t *) + md->m_len - 2773 sizeof(struct mldv2_record)); 2774 } 2775 /* 2776 * Begin walking the tree for this record type 2777 * pass, or continue from where we left off 2778 * previously if we had to allocate a new packet. 2779 * Only report deltas in-mode at t1. 2780 * We need not report included sources as allowed 2781 * if we are in inclusive mode on the group, 2782 * however the converse is not true. 2783 */ 2784 rsrcs = 0; 2785 if (nims == NULL) { 2786 nims = RB_MIN(ip6_msource_tree, 2787 &inm->in6m_srcs); 2788 } 2789 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2790 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2791 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2792 now = im6s_get_mode(inm, ims, 1); 2793 then = im6s_get_mode(inm, ims, 0); 2794 CTR3(KTR_MLD, "%s: mode: t0 %d, t1 %d", 2795 __func__, then, now); 2796 if (now == then) { 2797 CTR1(KTR_MLD, 2798 "%s: skip unchanged", __func__); 2799 continue; 2800 } 2801 if (mode == MCAST_EXCLUDE && 2802 now == MCAST_INCLUDE) { 2803 CTR1(KTR_MLD, 2804 "%s: skip IN src on EX group", 2805 __func__); 2806 continue; 2807 } 2808 nrt = (rectype_t)now; 2809 if (nrt == REC_NONE) 2810 nrt = (rectype_t)(~mode & REC_FULL); 2811 if (schanged++ == 0) { 2812 crt = nrt; 2813 } else if (crt != nrt) 2814 continue; 2815 if (!m_append(m, sizeof(struct in6_addr), 2816 (void *)&ims->im6s_addr)) { 2817 if (m != m0) 2818 m_freem(m); 2819 CTR1(KTR_MLD, 2820 "%s: m_append() failed", __func__); 2821 return (-ENOMEM); 2822 } 2823 nallow += !!(crt == REC_ALLOW); 2824 nblock += !!(crt == REC_BLOCK); 2825 if (++rsrcs == m0srcs) 2826 break; 2827 } 2828 /* 2829 * If we did not append any tree nodes on this 2830 * pass, back out of allocations. 2831 */ 2832 if (rsrcs == 0) { 2833 npbytes -= sizeof(struct mldv2_record); 2834 if (m != m0) { 2835 CTR1(KTR_MLD, 2836 "%s: m_free(m)", __func__); 2837 m_freem(m); 2838 } else { 2839 CTR1(KTR_MLD, 2840 "%s: m_adj(m, -mr)", __func__); 2841 m_adj(m, -((int)sizeof( 2842 struct mldv2_record))); 2843 } 2844 continue; 2845 } 2846 npbytes += (rsrcs * sizeof(struct in6_addr)); 2847 if (crt == REC_ALLOW) 2848 pmr->mr_type = MLD_ALLOW_NEW_SOURCES; 2849 else if (crt == REC_BLOCK) 2850 pmr->mr_type = MLD_BLOCK_OLD_SOURCES; 2851 pmr->mr_numsrc = htons(rsrcs); 2852 /* 2853 * Count the new group record, and enqueue this 2854 * packet if it wasn't already queued. 2855 */ 2856 m->m_pkthdr.PH_vt.vt_nrecs++; 2857 if (m != m0) 2858 _IF_ENQUEUE(ifq, m); 2859 nbytes += npbytes; 2860 } while (nims != NULL); 2861 drt |= crt; 2862 crt = (~crt & REC_FULL); 2863 } 2864 2865 CTR3(KTR_MLD, "%s: queued %d ALLOW_NEW, %d BLOCK_OLD", __func__, 2866 nallow, nblock); 2867 2868 return (nbytes); 2869 } 2870 2871 static int 2872 mld_v2_merge_state_changes(struct in6_multi *inm, struct ifqueue *ifscq) 2873 { 2874 struct ifqueue *gq; 2875 struct mbuf *m; /* pending state-change */ 2876 struct mbuf *m0; /* copy of pending state-change */ 2877 struct mbuf *mt; /* last state-change in packet */ 2878 int docopy, domerge; 2879 u_int recslen; 2880 2881 docopy = 0; 2882 domerge = 0; 2883 recslen = 0; 2884 2885 IN6_MULTI_LOCK_ASSERT(); 2886 MLD_LOCK_ASSERT(); 2887 2888 /* 2889 * If there are further pending retransmissions, make a writable 2890 * copy of each queued state-change message before merging. 2891 */ 2892 if (inm->in6m_scrv > 0) 2893 docopy = 1; 2894 2895 gq = &inm->in6m_scq; 2896 #ifdef KTR 2897 if (gq->ifq_head == NULL) { 2898 CTR2(KTR_MLD, "%s: WARNING: queue for inm %p is empty", 2899 __func__, inm); 2900 } 2901 #endif 2902 2903 m = gq->ifq_head; 2904 while (m != NULL) { 2905 /* 2906 * Only merge the report into the current packet if 2907 * there is sufficient space to do so; an MLDv2 report 2908 * packet may only contain 65,535 group records. 2909 * Always use a simple mbuf chain concatentation to do this, 2910 * as large state changes for single groups may have 2911 * allocated clusters. 2912 */ 2913 domerge = 0; 2914 mt = ifscq->ifq_tail; 2915 if (mt != NULL) { 2916 recslen = m_length(m, NULL); 2917 2918 if ((mt->m_pkthdr.PH_vt.vt_nrecs + 2919 m->m_pkthdr.PH_vt.vt_nrecs <= 2920 MLD_V2_REPORT_MAXRECS) && 2921 (mt->m_pkthdr.len + recslen <= 2922 (inm->in6m_ifp->if_mtu - MLD_MTUSPACE))) 2923 domerge = 1; 2924 } 2925 2926 if (!domerge && _IF_QFULL(gq)) { 2927 CTR2(KTR_MLD, 2928 "%s: outbound queue full, skipping whole packet %p", 2929 __func__, m); 2930 mt = m->m_nextpkt; 2931 if (!docopy) 2932 m_freem(m); 2933 m = mt; 2934 continue; 2935 } 2936 2937 if (!docopy) { 2938 CTR2(KTR_MLD, "%s: dequeueing %p", __func__, m); 2939 _IF_DEQUEUE(gq, m0); 2940 m = m0->m_nextpkt; 2941 } else { 2942 CTR2(KTR_MLD, "%s: copying %p", __func__, m); 2943 m0 = m_dup(m, M_NOWAIT); 2944 if (m0 == NULL) 2945 return (ENOMEM); 2946 m0->m_nextpkt = NULL; 2947 m = m->m_nextpkt; 2948 } 2949 2950 if (!domerge) { 2951 CTR3(KTR_MLD, "%s: queueing %p to ifscq %p)", 2952 __func__, m0, ifscq); 2953 _IF_ENQUEUE(ifscq, m0); 2954 } else { 2955 struct mbuf *mtl; /* last mbuf of packet mt */ 2956 2957 CTR3(KTR_MLD, "%s: merging %p with ifscq tail %p)", 2958 __func__, m0, mt); 2959 2960 mtl = m_last(mt); 2961 m0->m_flags &= ~M_PKTHDR; 2962 mt->m_pkthdr.len += recslen; 2963 mt->m_pkthdr.PH_vt.vt_nrecs += 2964 m0->m_pkthdr.PH_vt.vt_nrecs; 2965 2966 mtl->m_next = m0; 2967 } 2968 } 2969 2970 return (0); 2971 } 2972 2973 /* 2974 * Respond to a pending MLDv2 General Query. 2975 */ 2976 static void 2977 mld_v2_dispatch_general_query(struct mld_ifinfo *mli) 2978 { 2979 struct ifmultiaddr *ifma, *tifma; 2980 struct ifnet *ifp; 2981 struct in6_multi *inm; 2982 int retval; 2983 2984 IN6_MULTI_LOCK_ASSERT(); 2985 MLD_LOCK_ASSERT(); 2986 2987 KASSERT(mli->mli_version == MLD_VERSION_2, 2988 ("%s: called when version %d", __func__, mli->mli_version)); 2989 2990 ifp = mli->mli_ifp; 2991 2992 IF_ADDR_LOCK(ifp); 2993 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, tifma) { 2994 if (ifma->ifma_addr->sa_family != AF_INET6 || 2995 ifma->ifma_protospec == NULL) 2996 continue; 2997 2998 inm = (struct in6_multi *)ifma->ifma_protospec; 2999 KASSERT(ifp == inm->in6m_ifp, 3000 ("%s: inconsistent ifp", __func__)); 3001 3002 switch (inm->in6m_state) { 3003 case MLD_NOT_MEMBER: 3004 case MLD_SILENT_MEMBER: 3005 break; 3006 case MLD_REPORTING_MEMBER: 3007 case MLD_IDLE_MEMBER: 3008 case MLD_LAZY_MEMBER: 3009 case MLD_SLEEPING_MEMBER: 3010 case MLD_AWAKENING_MEMBER: 3011 inm->in6m_state = MLD_REPORTING_MEMBER; 3012 retval = mld_v2_enqueue_group_record(&mli->mli_gq, 3013 inm, 0, 0, 0, 0); 3014 CTR2(KTR_MLD, "%s: enqueue record = %d", 3015 __func__, retval); 3016 break; 3017 case MLD_G_QUERY_PENDING_MEMBER: 3018 case MLD_SG_QUERY_PENDING_MEMBER: 3019 case MLD_LEAVING_MEMBER: 3020 break; 3021 } 3022 } 3023 IF_ADDR_UNLOCK(ifp); 3024 3025 mld_dispatch_queue(&mli->mli_gq, MLD_MAX_RESPONSE_BURST); 3026 3027 /* 3028 * Slew transmission of bursts over 500ms intervals. 3029 */ 3030 if (mli->mli_gq.ifq_head != NULL) { 3031 mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY( 3032 MLD_RESPONSE_BURST_INTERVAL); 3033 V_interface_timers_running6 = 1; 3034 } 3035 } 3036 3037 /* 3038 * Transmit the next pending message in the output queue. 3039 * 3040 * VIMAGE: Needs to store/restore vnet pointer on a per-mbuf-chain basis. 3041 * MRT: Nothing needs to be done, as MLD traffic is always local to 3042 * a link and uses a link-scope multicast address. 3043 */ 3044 static void 3045 mld_dispatch_packet(struct mbuf *m) 3046 { 3047 struct ip6_moptions im6o; 3048 struct ifnet *ifp; 3049 struct ifnet *oifp; 3050 struct mbuf *m0; 3051 struct mbuf *md; 3052 struct ip6_hdr *ip6; 3053 struct mld_hdr *mld; 3054 int error; 3055 int off; 3056 int type; 3057 uint32_t ifindex; 3058 3059 CTR2(KTR_MLD, "%s: transmit %p", __func__, m); 3060 3061 /* 3062 * Set VNET image pointer from enqueued mbuf chain 3063 * before doing anything else. Whilst we use interface 3064 * indexes to guard against interface detach, they are 3065 * unique to each VIMAGE and must be retrieved. 3066 */ 3067 ifindex = mld_restore_context(m); 3068 3069 /* 3070 * Check if the ifnet still exists. This limits the scope of 3071 * any race in the absence of a global ifp lock for low cost 3072 * (an array lookup). 3073 */ 3074 ifp = ifnet_byindex(ifindex); 3075 if (ifp == NULL) { 3076 CTR3(KTR_MLD, "%s: dropped %p as ifindex %u went away.", 3077 __func__, m, ifindex); 3078 m_freem(m); 3079 IP6STAT_INC(ip6s_noroute); 3080 goto out; 3081 } 3082 3083 im6o.im6o_multicast_hlim = 1; 3084 im6o.im6o_multicast_loop = (V_ip6_mrouter != NULL); 3085 im6o.im6o_multicast_ifp = ifp; 3086 3087 if (m->m_flags & M_MLDV1) { 3088 m0 = m; 3089 } else { 3090 m0 = mld_v2_encap_report(ifp, m); 3091 if (m0 == NULL) { 3092 CTR2(KTR_MLD, "%s: dropped %p", __func__, m); 3093 IP6STAT_INC(ip6s_odropped); 3094 goto out; 3095 } 3096 } 3097 3098 mld_scrub_context(m0); 3099 m->m_flags &= ~(M_PROTOFLAGS); 3100 m0->m_pkthdr.rcvif = V_loif; 3101 3102 ip6 = mtod(m0, struct ip6_hdr *); 3103 #if 0 3104 (void)in6_setscope(&ip6->ip6_dst, ifp, NULL); /* XXX LOR */ 3105 #else 3106 /* 3107 * XXX XXX Break some KPI rules to prevent an LOR which would 3108 * occur if we called in6_setscope() at transmission. 3109 * See comments at top of file. 3110 */ 3111 MLD_EMBEDSCOPE(&ip6->ip6_dst, ifp->if_index); 3112 #endif 3113 3114 /* 3115 * Retrieve the ICMPv6 type before handoff to ip6_output(), 3116 * so we can bump the stats. 3117 */ 3118 md = m_getptr(m0, sizeof(struct ip6_hdr), &off); 3119 mld = (struct mld_hdr *)(mtod(md, uint8_t *) + off); 3120 type = mld->mld_type; 3121 3122 error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, &im6o, 3123 &oifp, NULL); 3124 if (error) { 3125 CTR3(KTR_MLD, "%s: ip6_output(%p) = %d", __func__, m0, error); 3126 goto out; 3127 } 3128 ICMP6STAT_INC(icp6s_outhist[type]); 3129 if (oifp != NULL) { 3130 icmp6_ifstat_inc(oifp, ifs6_out_msg); 3131 switch (type) { 3132 case MLD_LISTENER_REPORT: 3133 case MLDV2_LISTENER_REPORT: 3134 icmp6_ifstat_inc(oifp, ifs6_out_mldreport); 3135 break; 3136 case MLD_LISTENER_DONE: 3137 icmp6_ifstat_inc(oifp, ifs6_out_mlddone); 3138 break; 3139 } 3140 } 3141 out: 3142 return; 3143 } 3144 3145 /* 3146 * Encapsulate an MLDv2 report. 3147 * 3148 * KAME IPv6 requires that hop-by-hop options be passed separately, 3149 * and that the IPv6 header be prepended in a separate mbuf. 3150 * 3151 * Returns a pointer to the new mbuf chain head, or NULL if the 3152 * allocation failed. 3153 */ 3154 static struct mbuf * 3155 mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m) 3156 { 3157 struct mbuf *mh; 3158 struct mldv2_report *mld; 3159 struct ip6_hdr *ip6; 3160 struct in6_ifaddr *ia; 3161 int mldreclen; 3162 3163 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 3164 KASSERT((m->m_flags & M_PKTHDR), 3165 ("%s: mbuf chain %p is !M_PKTHDR", __func__, m)); 3166 3167 /* 3168 * RFC3590: OK to send as :: or tentative during DAD. 3169 */ 3170 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 3171 if (ia == NULL) 3172 CTR1(KTR_MLD, "%s: warning: ia is NULL", __func__); 3173 3174 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3175 if (mh == NULL) { 3176 if (ia != NULL) 3177 ifa_free(&ia->ia_ifa); 3178 m_freem(m); 3179 return (NULL); 3180 } 3181 MH_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report)); 3182 3183 mldreclen = m_length(m, NULL); 3184 CTR2(KTR_MLD, "%s: mldreclen is %d", __func__, mldreclen); 3185 3186 mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report); 3187 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + 3188 sizeof(struct mldv2_report) + mldreclen; 3189 3190 ip6 = mtod(mh, struct ip6_hdr *); 3191 ip6->ip6_flow = 0; 3192 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 3193 ip6->ip6_vfc |= IPV6_VERSION; 3194 ip6->ip6_nxt = IPPROTO_ICMPV6; 3195 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 3196 if (ia != NULL) 3197 ifa_free(&ia->ia_ifa); 3198 ip6->ip6_dst = in6addr_linklocal_allv2routers; 3199 /* scope ID will be set in netisr */ 3200 3201 mld = (struct mldv2_report *)(ip6 + 1); 3202 mld->mld_type = MLDV2_LISTENER_REPORT; 3203 mld->mld_code = 0; 3204 mld->mld_cksum = 0; 3205 mld->mld_v2_reserved = 0; 3206 mld->mld_v2_numrecs = htons(m->m_pkthdr.PH_vt.vt_nrecs); 3207 m->m_pkthdr.PH_vt.vt_nrecs = 0; 3208 3209 mh->m_next = m; 3210 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 3211 sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen); 3212 return (mh); 3213 } 3214 3215 #ifdef KTR 3216 static char * 3217 mld_rec_type_to_str(const int type) 3218 { 3219 3220 switch (type) { 3221 case MLD_CHANGE_TO_EXCLUDE_MODE: 3222 return "TO_EX"; 3223 break; 3224 case MLD_CHANGE_TO_INCLUDE_MODE: 3225 return "TO_IN"; 3226 break; 3227 case MLD_MODE_IS_EXCLUDE: 3228 return "MODE_EX"; 3229 break; 3230 case MLD_MODE_IS_INCLUDE: 3231 return "MODE_IN"; 3232 break; 3233 case MLD_ALLOW_NEW_SOURCES: 3234 return "ALLOW_NEW"; 3235 break; 3236 case MLD_BLOCK_OLD_SOURCES: 3237 return "BLOCK_OLD"; 3238 break; 3239 default: 3240 break; 3241 } 3242 return "unknown"; 3243 } 3244 #endif 3245 3246 static void 3247 mld_init(void *unused __unused) 3248 { 3249 3250 CTR1(KTR_MLD, "%s: initializing", __func__); 3251 MLD_LOCK_INIT(); 3252 3253 ip6_initpktopts(&mld_po); 3254 mld_po.ip6po_hlim = 1; 3255 mld_po.ip6po_hbh = &mld_ra.hbh; 3256 mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER; 3257 mld_po.ip6po_flags = IP6PO_DONTFRAG; 3258 } 3259 SYSINIT(mld_init, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, mld_init, NULL); 3260 3261 static void 3262 mld_uninit(void *unused __unused) 3263 { 3264 3265 CTR1(KTR_MLD, "%s: tearing down", __func__); 3266 MLD_LOCK_DESTROY(); 3267 } 3268 SYSUNINIT(mld_uninit, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, mld_uninit, NULL); 3269 3270 static void 3271 vnet_mld_init(const void *unused __unused) 3272 { 3273 3274 CTR1(KTR_MLD, "%s: initializing", __func__); 3275 3276 LIST_INIT(&V_mli_head); 3277 } 3278 VNET_SYSINIT(vnet_mld_init, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mld_init, 3279 NULL); 3280 3281 static void 3282 vnet_mld_uninit(const void *unused __unused) 3283 { 3284 3285 CTR1(KTR_MLD, "%s: tearing down", __func__); 3286 3287 KASSERT(LIST_EMPTY(&V_mli_head), 3288 ("%s: mli list not empty; ifnets not detached?", __func__)); 3289 } 3290 VNET_SYSUNINIT(vnet_mld_uninit, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mld_uninit, 3291 NULL); 3292 3293 static int 3294 mld_modevent(module_t mod, int type, void *unused __unused) 3295 { 3296 3297 switch (type) { 3298 case MOD_LOAD: 3299 case MOD_UNLOAD: 3300 break; 3301 default: 3302 return (EOPNOTSUPP); 3303 } 3304 return (0); 3305 } 3306 3307 static moduledata_t mld_mod = { 3308 "mld", 3309 mld_modevent, 3310 0 3311 }; 3312 DECLARE_MODULE(mld, mld_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); 3313