1 /*- 2 * Copyright (c) 2009 Bruce Simpson. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 3. The name of the author may not be used to endorse or promote 13 * products derived from this software without specific prior written 14 * permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $KAME: mld6.c,v 1.27 2001/04/04 05:17:30 itojun Exp $ 29 */ 30 31 /*- 32 * Copyright (c) 1988 Stephen Deering. 33 * Copyright (c) 1992, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * This code is derived from software contributed to Berkeley by 37 * Stephen Deering of Stanford University. 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 1. Redistributions of source code must retain the above copyright 43 * notice, this list of conditions and the following disclaimer. 44 * 2. Redistributions in binary form must reproduce the above copyright 45 * notice, this list of conditions and the following disclaimer in the 46 * documentation and/or other materials provided with the distribution. 47 * 4. Neither the name of the University nor the names of its contributors 48 * may be used to endorse or promote products derived from this software 49 * without specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 61 * SUCH DAMAGE. 62 * 63 * @(#)igmp.c 8.1 (Berkeley) 7/19/93 64 */ 65 66 #include <sys/cdefs.h> 67 __FBSDID("$FreeBSD$"); 68 69 #include "opt_inet.h" 70 #include "opt_inet6.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/mbuf.h> 75 #include <sys/socket.h> 76 #include <sys/protosw.h> 77 #include <sys/sysctl.h> 78 #include <sys/kernel.h> 79 #include <sys/callout.h> 80 #include <sys/malloc.h> 81 #include <sys/module.h> 82 #include <sys/vimage.h> 83 84 #include <net/if.h> 85 #include <net/route.h> 86 #include <net/vnet.h> 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet6/in6_var.h> 91 #include <netinet/ip6.h> 92 #include <netinet6/ip6_var.h> 93 #include <netinet6/scope6_var.h> 94 #include <netinet/icmp6.h> 95 #include <netinet6/mld6.h> 96 #include <netinet6/mld6_var.h> 97 #include <netinet/vinet.h> 98 #include <netinet6/vinet6.h> 99 100 #include <security/mac/mac_framework.h> 101 102 #ifndef KTR_MLD 103 #define KTR_MLD KTR_INET6 104 #endif 105 106 static struct mld_ifinfo * 107 mli_alloc_locked(struct ifnet *); 108 static void mli_delete_locked(const struct ifnet *); 109 static void mld_dispatch_packet(struct mbuf *); 110 static void mld_dispatch_queue(struct ifqueue *, int); 111 static void mld_final_leave(struct in6_multi *, struct mld_ifinfo *); 112 static void mld_fasttimo_vnet(void); 113 static int mld_handle_state_change(struct in6_multi *, 114 struct mld_ifinfo *); 115 static int mld_initial_join(struct in6_multi *, struct mld_ifinfo *, 116 const int); 117 #ifdef KTR 118 static char * mld_rec_type_to_str(const int); 119 #endif 120 static void mld_set_version(struct mld_ifinfo *, const int); 121 static void mld_slowtimo_vnet(void); 122 static void mld_sysinit(void); 123 static void mld_sysuninit(void); 124 static int mld_v1_input_query(struct ifnet *, const struct ip6_hdr *, 125 /*const*/ struct mld_hdr *); 126 static int mld_v1_input_report(struct ifnet *, const struct ip6_hdr *, 127 /*const*/ struct mld_hdr *); 128 static void mld_v1_process_group_timer(struct in6_multi *, const int); 129 static void mld_v1_process_querier_timers(struct mld_ifinfo *); 130 static int mld_v1_transmit_report(struct in6_multi *, const int); 131 static void mld_v1_update_group(struct in6_multi *, const int); 132 static void mld_v2_cancel_link_timers(struct mld_ifinfo *); 133 static void mld_v2_dispatch_general_query(struct mld_ifinfo *); 134 static struct mbuf * 135 mld_v2_encap_report(struct ifnet *, struct mbuf *); 136 static int mld_v2_enqueue_filter_change(struct ifqueue *, 137 struct in6_multi *); 138 static int mld_v2_enqueue_group_record(struct ifqueue *, 139 struct in6_multi *, const int, const int, const int); 140 static int mld_v2_input_query(struct ifnet *, const struct ip6_hdr *, 141 struct mbuf *, const int, const int); 142 static int mld_v2_merge_state_changes(struct in6_multi *, 143 struct ifqueue *); 144 static void mld_v2_process_group_timers(struct mld_ifinfo *, 145 struct ifqueue *, struct ifqueue *, 146 struct in6_multi *, const int); 147 static int mld_v2_process_group_query(struct in6_multi *, 148 struct mld_ifinfo *mli, int, struct mbuf *, const int); 149 static int sysctl_mld_gsr(SYSCTL_HANDLER_ARGS); 150 static int sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS); 151 152 static vnet_attach_fn vnet_mld_iattach; 153 static vnet_detach_fn vnet_mld_idetach; 154 155 /* 156 * Normative references: RFC 2710, RFC 3590, RFC 3810. 157 * 158 * Locking: 159 * * The MLD subsystem lock ends up being system-wide for the moment, 160 * but could be per-VIMAGE later on. 161 * * The permitted lock order is: IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK. 162 * Any may be taken independently; if any are held at the same 163 * time, the above lock order must be followed. 164 * * IN6_MULTI_LOCK covers in_multi. 165 * * MLD_LOCK covers per-link state and any global variables in this file. 166 * * IF_ADDR_LOCK covers if_multiaddrs, which is used for a variety of 167 * per-link state iterators. 168 * 169 * XXX LOR PREVENTION 170 * A special case for IPv6 is the in6_setscope() routine. ip6_output() 171 * will not accept an ifp; it wants an embedded scope ID, unlike 172 * ip_output(), which happily takes the ifp given to it. The embedded 173 * scope ID is only used by MLD to select the outgoing interface. 174 * 175 * During interface attach and detach, MLD will take MLD_LOCK *after* 176 * the IF_AFDATA_LOCK. 177 * As in6_setscope() takes IF_AFDATA_LOCK then SCOPE_LOCK, we can't call 178 * it with MLD_LOCK held without triggering an LOR. A netisr with indirect 179 * dispatch could work around this, but we'd rather not do that, as it 180 * can introduce other races. 181 * 182 * As such, we exploit the fact that the scope ID is just the interface 183 * index, and embed it in the IPv6 destination address accordingly. 184 * This is potentially NOT VALID for MLDv1 reports, as they 185 * are always sent to the multicast group itself; as MLDv2 186 * reports are always sent to ff02::16, this is not an issue 187 * when MLDv2 is in use. 188 * 189 * This does not however eliminate the LOR when ip6_output() itself 190 * calls in6_setscope() internally whilst MLD_LOCK is held. This will 191 * trigger a LOR warning in WITNESS when the ifnet is detached. 192 * 193 * The right answer is probably to make IF_AFDATA_LOCK an rwlock, given 194 * how it's used across the network stack. Here we're simply exploiting 195 * the fact that MLD runs at a similar layer in the stack to scope6.c. 196 * 197 * VIMAGE: 198 * * Each in6_multi corresponds to an ifp, and each ifp corresponds 199 * to a vnet in ifp->if_vnet. 200 */ 201 static struct mtx mld_mtx; 202 MALLOC_DEFINE(M_MLD, "mld", "mld state"); 203 204 #define MLD_EMBEDSCOPE(pin6, zoneid) \ 205 (pin6)->s6_addr16[1] = htons((zoneid) & 0xFFFF) 206 207 /* 208 * VIMAGE-wide globals. 209 */ 210 #ifdef VIMAGE_GLOBALS 211 struct timeval mld_gsrdelay; 212 LIST_HEAD(, mld_ifinfo) mli_head; 213 int interface_timers_running6; 214 int state_change_timers_running6; 215 int current_state_timers_running6; 216 #endif /* VIMAGE_GLOBALS */ 217 218 SYSCTL_DECL(_net_inet6); /* Note: Not in any common header. */ 219 220 SYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW, 0, 221 "IPv6 Multicast Listener Discovery"); 222 223 /* 224 * Virtualized sysctls. 225 */ 226 SYSCTL_V_PROC(V_NET, vnet_inet6, _net_inet6_mld, OID_AUTO, gsrdelay, 227 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, mld_gsrdelay.tv_sec, 0, 228 sysctl_mld_gsr, "I", 229 "Rate limit for MLDv2 Group-and-Source queries in seconds"); 230 231 /* 232 * Non-virtualized sysctls. 233 */ 234 SYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo, CTLFLAG_RD | CTLFLAG_MPSAFE, 235 sysctl_mld_ifinfo, "Per-interface MLDv2 state"); 236 237 static int mld_v1enable = 1; 238 SYSCTL_INT(_net_inet6_mld, OID_AUTO, v1enable, CTLFLAG_RW, 239 &mld_v1enable, 0, "Enable fallback to MLDv1"); 240 TUNABLE_INT("net.inet6.mld.v1enable", &mld_v1enable); 241 242 /* 243 * Packed Router Alert option structure declaration. 244 */ 245 struct mld_raopt { 246 struct ip6_hbh hbh; 247 struct ip6_opt pad; 248 struct ip6_opt_router ra; 249 } __packed; 250 251 /* 252 * Router Alert hop-by-hop option header. 253 */ 254 static struct mld_raopt mld_ra = { 255 .hbh = { 0, 0 }, 256 .pad = { .ip6o_type = IP6OPT_PADN, 0 }, 257 .ra = { 258 .ip6or_type = IP6OPT_ROUTER_ALERT, 259 .ip6or_len = IP6OPT_RTALERT_LEN - 2, 260 .ip6or_value[0] = ((IP6OPT_RTALERT_MLD >> 8) & 0xFF), 261 .ip6or_value[1] = (IP6OPT_RTALERT_MLD & 0xFF) 262 } 263 }; 264 static struct ip6_pktopts mld_po; 265 266 static __inline void 267 mld_save_context(struct mbuf *m, struct ifnet *ifp) 268 { 269 270 #ifdef VIMAGE 271 m->m_pkthdr.header = ifp->if_vnet; 272 #endif /* VIMAGE */ 273 m->m_pkthdr.flowid = ifp->if_index; 274 } 275 276 static __inline void 277 mld_scrub_context(struct mbuf *m) 278 { 279 280 m->m_pkthdr.header = NULL; 281 m->m_pkthdr.flowid = 0; 282 } 283 284 /* 285 * Restore context from a queued output chain. 286 * Return saved ifindex. 287 * 288 * VIMAGE: The assertion is there to make sure that we 289 * actually called CURVNET_SET() with what's in the mbuf chain. 290 */ 291 static __inline uint32_t 292 mld_restore_context(struct mbuf *m) 293 { 294 295 #if defined(VIMAGE) && defined(INVARIANTS) 296 KASSERT(curvnet == m->m_pkthdr.header, 297 ("%s: called when curvnet was not restored", __func__)); 298 #endif 299 return (m->m_pkthdr.flowid); 300 } 301 302 /* 303 * Retrieve or set threshold between group-source queries in seconds. 304 * 305 * VIMAGE: Assume curvnet set by caller. 306 * SMPng: NOTE: Serialized by MLD lock. 307 */ 308 static int 309 sysctl_mld_gsr(SYSCTL_HANDLER_ARGS) 310 { 311 INIT_VNET_INET6(curvnet); 312 int error; 313 int i; 314 315 error = sysctl_wire_old_buffer(req, sizeof(int)); 316 if (error) 317 return (error); 318 319 MLD_LOCK(); 320 321 i = V_mld_gsrdelay.tv_sec; 322 323 error = sysctl_handle_int(oidp, &i, 0, req); 324 if (error || !req->newptr) 325 goto out_locked; 326 327 if (i < -1 || i >= 60) { 328 error = EINVAL; 329 goto out_locked; 330 } 331 332 CTR2(KTR_MLD, "change mld_gsrdelay from %d to %d", 333 V_mld_gsrdelay.tv_sec, i); 334 V_mld_gsrdelay.tv_sec = i; 335 336 out_locked: 337 MLD_UNLOCK(); 338 return (error); 339 } 340 341 /* 342 * Expose struct mld_ifinfo to userland, keyed by ifindex. 343 * For use by ifmcstat(8). 344 * 345 * SMPng: NOTE: Does an unlocked ifindex space read. 346 * VIMAGE: Assume curvnet set by caller. The node handler itself 347 * is not directly virtualized. 348 */ 349 static int 350 sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS) 351 { 352 INIT_VNET_NET(curvnet); 353 INIT_VNET_INET6(curvnet); 354 int *name; 355 int error; 356 u_int namelen; 357 struct ifnet *ifp; 358 struct mld_ifinfo *mli; 359 360 name = (int *)arg1; 361 namelen = arg2; 362 363 if (req->newptr != NULL) 364 return (EPERM); 365 366 if (namelen != 1) 367 return (EINVAL); 368 369 error = sysctl_wire_old_buffer(req, sizeof(struct mld_ifinfo)); 370 if (error) 371 return (error); 372 373 IN6_MULTI_LOCK(); 374 MLD_LOCK(); 375 376 if (name[0] <= 0 || name[0] > V_if_index) { 377 error = ENOENT; 378 goto out_locked; 379 } 380 381 error = ENOENT; 382 383 ifp = ifnet_byindex(name[0]); 384 if (ifp == NULL) 385 goto out_locked; 386 387 LIST_FOREACH(mli, &V_mli_head, mli_link) { 388 if (ifp == mli->mli_ifp) { 389 error = SYSCTL_OUT(req, mli, 390 sizeof(struct mld_ifinfo)); 391 break; 392 } 393 } 394 395 out_locked: 396 MLD_UNLOCK(); 397 IN6_MULTI_UNLOCK(); 398 return (error); 399 } 400 401 /* 402 * Dispatch an entire queue of pending packet chains. 403 * VIMAGE: Assumes the vnet pointer has been set. 404 */ 405 static void 406 mld_dispatch_queue(struct ifqueue *ifq, int limit) 407 { 408 struct mbuf *m; 409 410 for (;;) { 411 _IF_DEQUEUE(ifq, m); 412 if (m == NULL) 413 break; 414 CTR3(KTR_MLD, "%s: dispatch %p from %p", __func__, ifq, m); 415 mld_dispatch_packet(m); 416 if (--limit == 0) 417 break; 418 } 419 } 420 421 /* 422 * Filter outgoing MLD report state by group. 423 * 424 * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1) 425 * and node-local addresses. However, kernel and socket consumers 426 * always embed the KAME scope ID in the address provided, so strip it 427 * when performing comparison. 428 * Note: This is not the same as the *multicast* scope. 429 * 430 * Return zero if the given group is one for which MLD reports 431 * should be suppressed, or non-zero if reports should be issued. 432 */ 433 static __inline int 434 mld_is_addr_reported(const struct in6_addr *addr) 435 { 436 437 KASSERT(IN6_IS_ADDR_MULTICAST(addr), ("%s: not multicast", __func__)); 438 439 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL) 440 return (0); 441 442 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL) { 443 struct in6_addr tmp = *addr; 444 in6_clearscope(&tmp); 445 if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes)) 446 return (0); 447 } 448 449 return (1); 450 } 451 452 /* 453 * Attach MLD when PF_INET6 is attached to an interface. 454 * 455 * SMPng: Normally called with IF_AFDATA_LOCK held. 456 */ 457 struct mld_ifinfo * 458 mld_domifattach(struct ifnet *ifp) 459 { 460 struct mld_ifinfo *mli; 461 462 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 463 __func__, ifp, ifp->if_xname); 464 465 MLD_LOCK(); 466 467 mli = mli_alloc_locked(ifp); 468 if (!(ifp->if_flags & IFF_MULTICAST)) 469 mli->mli_flags |= MLIF_SILENT; 470 471 MLD_UNLOCK(); 472 473 return (mli); 474 } 475 476 /* 477 * VIMAGE: assume curvnet set by caller. 478 */ 479 static struct mld_ifinfo * 480 mli_alloc_locked(/*const*/ struct ifnet *ifp) 481 { 482 INIT_VNET_INET6(ifp->if_vnet); 483 struct mld_ifinfo *mli; 484 485 MLD_LOCK_ASSERT(); 486 487 mli = malloc(sizeof(struct mld_ifinfo), M_MLD, M_NOWAIT|M_ZERO); 488 if (mli == NULL) 489 goto out; 490 491 mli->mli_ifp = ifp; 492 mli->mli_version = MLD_VERSION_2; 493 mli->mli_flags = 0; 494 mli->mli_rv = MLD_RV_INIT; 495 mli->mli_qi = MLD_QI_INIT; 496 mli->mli_qri = MLD_QRI_INIT; 497 mli->mli_uri = MLD_URI_INIT; 498 499 SLIST_INIT(&mli->mli_relinmhead); 500 501 /* 502 * Responses to general queries are subject to bounds. 503 */ 504 IFQ_SET_MAXLEN(&mli->mli_gq, MLD_MAX_RESPONSE_PACKETS); 505 506 LIST_INSERT_HEAD(&V_mli_head, mli, mli_link); 507 508 CTR2(KTR_MLD, "allocate mld_ifinfo for ifp %p(%s)", 509 ifp, ifp->if_xname); 510 511 out: 512 return (mli); 513 } 514 515 /* 516 * Hook for ifdetach. 517 * 518 * NOTE: Some finalization tasks need to run before the protocol domain 519 * is detached, but also before the link layer does its cleanup. 520 * Run before link-layer cleanup; cleanup groups, but do not free MLD state. 521 * 522 * SMPng: Caller must hold IN6_MULTI_LOCK(). 523 * Must take IF_ADDR_LOCK() to cover if_multiaddrs iterator. 524 * XXX This routine is also bitten by unlocked ifma_protospec access. 525 */ 526 void 527 mld_ifdetach(struct ifnet *ifp) 528 { 529 struct mld_ifinfo *mli; 530 struct ifmultiaddr *ifma; 531 struct in6_multi *inm, *tinm; 532 533 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", __func__, ifp, 534 ifp->if_xname); 535 536 IN6_MULTI_LOCK_ASSERT(); 537 MLD_LOCK(); 538 539 mli = MLD_IFINFO(ifp); 540 if (mli->mli_version == MLD_VERSION_2) { 541 IF_ADDR_LOCK(ifp); 542 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 543 if (ifma->ifma_addr->sa_family != AF_INET6 || 544 ifma->ifma_protospec == NULL) 545 continue; 546 inm = (struct in6_multi *)ifma->ifma_protospec; 547 if (inm->in6m_state == MLD_LEAVING_MEMBER) { 548 SLIST_INSERT_HEAD(&mli->mli_relinmhead, 549 inm, in6m_nrele); 550 } 551 in6m_clear_recorded(inm); 552 } 553 IF_ADDR_UNLOCK(ifp); 554 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele, 555 tinm) { 556 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele); 557 in6m_release_locked(inm); 558 } 559 } 560 561 MLD_UNLOCK(); 562 } 563 564 /* 565 * Hook for domifdetach. 566 * Runs after link-layer cleanup; free MLD state. 567 * 568 * SMPng: Normally called with IF_AFDATA_LOCK held. 569 */ 570 void 571 mld_domifdetach(struct ifnet *ifp) 572 { 573 574 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 575 __func__, ifp, ifp->if_xname); 576 577 MLD_LOCK(); 578 mli_delete_locked(ifp); 579 MLD_UNLOCK(); 580 } 581 582 static void 583 mli_delete_locked(const struct ifnet *ifp) 584 { 585 INIT_VNET_INET6(ifp->if_vnet); 586 struct mld_ifinfo *mli, *tmli; 587 588 CTR3(KTR_MLD, "%s: freeing mld_ifinfo for ifp %p(%s)", 589 __func__, ifp, ifp->if_xname); 590 591 MLD_LOCK_ASSERT(); 592 593 LIST_FOREACH_SAFE(mli, &V_mli_head, mli_link, tmli) { 594 if (mli->mli_ifp == ifp) { 595 /* 596 * Free deferred General Query responses. 597 */ 598 _IF_DRAIN(&mli->mli_gq); 599 600 LIST_REMOVE(mli, mli_link); 601 602 KASSERT(SLIST_EMPTY(&mli->mli_relinmhead), 603 ("%s: there are dangling in_multi references", 604 __func__)); 605 606 free(mli, M_MLD); 607 return; 608 } 609 } 610 #ifdef INVARIANTS 611 panic("%s: mld_ifinfo not found for ifp %p\n", __func__, ifp); 612 #endif 613 } 614 615 /* 616 * Process a received MLDv1 general or address-specific query. 617 * Assumes that the query header has been pulled up to sizeof(mld_hdr). 618 * 619 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 620 * mld_addr. This is OK as we own the mbuf chain. 621 */ 622 static int 623 mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 624 /*const*/ struct mld_hdr *mld) 625 { 626 struct ifmultiaddr *ifma; 627 struct mld_ifinfo *mli; 628 struct in6_multi *inm; 629 int is_general_query; 630 uint16_t timer; 631 #ifdef KTR 632 char ip6tbuf[INET6_ADDRSTRLEN]; 633 #endif 634 635 is_general_query = 0; 636 637 if (!mld_v1enable) { 638 CTR3(KTR_MLD, "ignore v1 query %s on ifp %p(%s)", 639 ip6_sprintf(ip6tbuf, &mld->mld_addr), 640 ifp, ifp->if_xname); 641 return (0); 642 } 643 644 /* 645 * RFC3810 Section 6.2: MLD queries must originate from 646 * a router's link-local address. 647 */ 648 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 649 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 650 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 651 ifp, ifp->if_xname); 652 return (0); 653 } 654 655 /* 656 * Do address field validation upfront before we accept 657 * the query. 658 */ 659 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 660 /* 661 * MLDv1 General Query. 662 * If this was not sent to the all-nodes group, ignore it. 663 */ 664 struct in6_addr dst; 665 666 dst = ip6->ip6_dst; 667 in6_clearscope(&dst); 668 if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes)) 669 return (EINVAL); 670 is_general_query = 1; 671 } else { 672 /* 673 * Embed scope ID of receiving interface in MLD query for 674 * lookup whilst we don't hold other locks. 675 */ 676 in6_setscope(&mld->mld_addr, ifp, NULL); 677 } 678 679 IN6_MULTI_LOCK(); 680 MLD_LOCK(); 681 IF_ADDR_LOCK(ifp); 682 683 /* 684 * Switch to MLDv1 host compatibility mode. 685 */ 686 mli = MLD_IFINFO(ifp); 687 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 688 mld_set_version(mli, MLD_VERSION_1); 689 690 timer = (ntohs(mld->mld_maxdelay) * PR_FASTHZ) / MLD_TIMER_SCALE; 691 if (timer == 0) 692 timer = 1; 693 694 if (is_general_query) { 695 /* 696 * For each reporting group joined on this 697 * interface, kick the report timer. 698 */ 699 CTR2(KTR_MLD, "process v1 general query on ifp %p(%s)", 700 ifp, ifp->if_xname); 701 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 702 if (ifma->ifma_addr->sa_family != AF_INET6 || 703 ifma->ifma_protospec == NULL) 704 continue; 705 inm = (struct in6_multi *)ifma->ifma_protospec; 706 mld_v1_update_group(inm, timer); 707 } 708 } else { 709 /* 710 * MLDv1 Group-Specific Query. 711 * If this is a group-specific MLDv1 query, we need only 712 * look up the single group to process it. 713 */ 714 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 715 if (inm != NULL) { 716 CTR3(KTR_MLD, "process v1 query %s on ifp %p(%s)", 717 ip6_sprintf(ip6tbuf, &mld->mld_addr), 718 ifp, ifp->if_xname); 719 mld_v1_update_group(inm, timer); 720 } 721 /* XXX Clear embedded scope ID as userland won't expect it. */ 722 in6_clearscope(&mld->mld_addr); 723 } 724 725 IF_ADDR_UNLOCK(ifp); 726 MLD_UNLOCK(); 727 IN6_MULTI_UNLOCK(); 728 729 return (0); 730 } 731 732 /* 733 * Update the report timer on a group in response to an MLDv1 query. 734 * 735 * If we are becoming the reporting member for this group, start the timer. 736 * If we already are the reporting member for this group, and timer is 737 * below the threshold, reset it. 738 * 739 * We may be updating the group for the first time since we switched 740 * to MLDv2. If we are, then we must clear any recorded source lists, 741 * and transition to REPORTING state; the group timer is overloaded 742 * for group and group-source query responses. 743 * 744 * Unlike MLDv2, the delay per group should be jittered 745 * to avoid bursts of MLDv1 reports. 746 */ 747 static void 748 mld_v1_update_group(struct in6_multi *inm, const int timer) 749 { 750 INIT_VNET_INET6(curvnet); 751 #ifdef KTR 752 char ip6tbuf[INET6_ADDRSTRLEN]; 753 #endif 754 755 CTR4(KTR_MLD, "%s: %s/%s timer=%d", __func__, 756 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 757 inm->in6m_ifp->if_xname, timer); 758 759 IN6_MULTI_LOCK_ASSERT(); 760 761 switch (inm->in6m_state) { 762 case MLD_NOT_MEMBER: 763 case MLD_SILENT_MEMBER: 764 break; 765 case MLD_REPORTING_MEMBER: 766 if (inm->in6m_timer != 0 && 767 inm->in6m_timer <= timer) { 768 CTR1(KTR_MLD, "%s: REPORTING and timer running, " 769 "skipping.", __func__); 770 break; 771 } 772 /* FALLTHROUGH */ 773 case MLD_SG_QUERY_PENDING_MEMBER: 774 case MLD_G_QUERY_PENDING_MEMBER: 775 case MLD_IDLE_MEMBER: 776 case MLD_LAZY_MEMBER: 777 case MLD_AWAKENING_MEMBER: 778 CTR1(KTR_MLD, "%s: ->REPORTING", __func__); 779 inm->in6m_state = MLD_REPORTING_MEMBER; 780 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 781 V_current_state_timers_running6 = 1; 782 break; 783 case MLD_SLEEPING_MEMBER: 784 CTR1(KTR_MLD, "%s: ->AWAKENING", __func__); 785 inm->in6m_state = MLD_AWAKENING_MEMBER; 786 break; 787 case MLD_LEAVING_MEMBER: 788 break; 789 } 790 } 791 792 /* 793 * Process a received MLDv2 general, group-specific or 794 * group-and-source-specific query. 795 * 796 * Assumes that the query header has been pulled up to sizeof(mldv2_query). 797 * 798 * Return 0 if successful, otherwise an appropriate error code is returned. 799 */ 800 static int 801 mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 802 struct mbuf *m, const int off, const int icmp6len) 803 { 804 INIT_VNET_INET6(curvnet); 805 struct mld_ifinfo *mli; 806 struct mldv2_query *mld; 807 struct in6_multi *inm; 808 uint32_t maxdelay, nsrc, qqi; 809 int is_general_query; 810 uint16_t timer; 811 uint8_t qrv; 812 #ifdef KTR 813 char ip6tbuf[INET6_ADDRSTRLEN]; 814 #endif 815 816 is_general_query = 0; 817 818 /* 819 * RFC3810 Section 6.2: MLD queries must originate from 820 * a router's link-local address. 821 */ 822 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 823 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 824 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 825 ifp, ifp->if_xname); 826 return (0); 827 } 828 829 CTR2(KTR_MLD, "input v2 query on ifp %p(%s)", ifp, ifp->if_xname); 830 831 mld = (struct mldv2_query *)(mtod(m, uint8_t *) + off); 832 833 maxdelay = ntohs(mld->mld_maxdelay); /* in 1/10ths of a second */ 834 if (maxdelay >= 32678) { 835 maxdelay = (MLD_MRC_MANT(maxdelay) | 0x1000) << 836 (MLD_MRC_EXP(maxdelay) + 3); 837 } 838 timer = (maxdelay * PR_FASTHZ) / MLD_TIMER_SCALE; 839 if (timer == 0) 840 timer = 1; 841 842 qrv = MLD_QRV(mld->mld_misc); 843 if (qrv < 2) { 844 CTR3(KTR_MLD, "%s: clamping qrv %d to %d", __func__, 845 qrv, MLD_RV_INIT); 846 qrv = MLD_RV_INIT; 847 } 848 849 qqi = mld->mld_qqi; 850 if (qqi >= 128) { 851 qqi = MLD_QQIC_MANT(mld->mld_qqi) << 852 (MLD_QQIC_EXP(mld->mld_qqi) + 3); 853 } 854 855 nsrc = ntohs(mld->mld_numsrc); 856 if (nsrc > MLD_MAX_GS_SOURCES) 857 return (EMSGSIZE); 858 if (icmp6len < sizeof(struct mldv2_query) + 859 (nsrc * sizeof(struct in6_addr))) 860 return (EMSGSIZE); 861 862 /* 863 * Do further input validation upfront to avoid resetting timers 864 * should we need to discard this query. 865 */ 866 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 867 /* 868 * General Queries SHOULD be directed to ff02::1. 869 * A general query with a source list has undefined 870 * behaviour; discard it. 871 */ 872 struct in6_addr dst; 873 874 dst = ip6->ip6_dst; 875 in6_clearscope(&dst); 876 if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes) || 877 nsrc > 0) 878 return (EINVAL); 879 is_general_query = 1; 880 } else { 881 /* 882 * Embed scope ID of receiving interface in MLD query for 883 * lookup whilst we don't hold other locks (due to KAME 884 * locking lameness). We own this mbuf chain just now. 885 */ 886 in6_setscope(&mld->mld_addr, ifp, NULL); 887 } 888 889 IN6_MULTI_LOCK(); 890 MLD_LOCK(); 891 IF_ADDR_LOCK(ifp); 892 893 mli = MLD_IFINFO(ifp); 894 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 895 896 /* 897 * Discard the v2 query if we're in Compatibility Mode. 898 * The RFC is pretty clear that hosts need to stay in MLDv1 mode 899 * until the Old Version Querier Present timer expires. 900 */ 901 if (mli->mli_version != MLD_VERSION_2) 902 goto out_locked; 903 904 mld_set_version(mli, MLD_VERSION_2); 905 mli->mli_rv = qrv; 906 mli->mli_qi = qqi; 907 mli->mli_qri = maxdelay; 908 909 CTR4(KTR_MLD, "%s: qrv %d qi %d maxdelay %d", __func__, qrv, qqi, 910 maxdelay); 911 912 if (is_general_query) { 913 /* 914 * MLDv2 General Query. 915 * 916 * Schedule a current-state report on this ifp for 917 * all groups, possibly containing source lists. 918 * 919 * If there is a pending General Query response 920 * scheduled earlier than the selected delay, do 921 * not schedule any other reports. 922 * Otherwise, reset the interface timer. 923 */ 924 CTR2(KTR_MLD, "process v2 general query on ifp %p(%s)", 925 ifp, ifp->if_xname); 926 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) { 927 mli->mli_v2_timer = MLD_RANDOM_DELAY(timer); 928 V_interface_timers_running6 = 1; 929 } 930 } else { 931 /* 932 * MLDv2 Group-specific or Group-and-source-specific Query. 933 * 934 * Group-source-specific queries are throttled on 935 * a per-group basis to defeat denial-of-service attempts. 936 * Queries for groups we are not a member of on this 937 * link are simply ignored. 938 */ 939 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 940 if (inm == NULL) 941 goto out_locked; 942 if (nsrc > 0) { 943 if (!ratecheck(&inm->in6m_lastgsrtv, 944 &V_mld_gsrdelay)) { 945 CTR1(KTR_MLD, "%s: GS query throttled.", 946 __func__); 947 goto out_locked; 948 } 949 } 950 CTR2(KTR_MLD, "process v2 group query on ifp %p(%s)", 951 ifp, ifp->if_xname); 952 /* 953 * If there is a pending General Query response 954 * scheduled sooner than the selected delay, no 955 * further report need be scheduled. 956 * Otherwise, prepare to respond to the 957 * group-specific or group-and-source query. 958 */ 959 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) 960 mld_v2_process_group_query(inm, mli, timer, m, off); 961 962 /* XXX Clear embedded scope ID as userland won't expect it. */ 963 in6_clearscope(&mld->mld_addr); 964 } 965 966 out_locked: 967 IF_ADDR_UNLOCK(ifp); 968 MLD_UNLOCK(); 969 IN6_MULTI_UNLOCK(); 970 971 return (0); 972 } 973 974 /* 975 * Process a recieved MLDv2 group-specific or group-and-source-specific 976 * query. 977 * Return <0 if any error occured. Currently this is ignored. 978 */ 979 static int 980 mld_v2_process_group_query(struct in6_multi *inm, struct mld_ifinfo *mli, 981 int timer, struct mbuf *m0, const int off) 982 { 983 INIT_VNET_INET6(curvnet); 984 struct mldv2_query *mld; 985 int retval; 986 uint16_t nsrc; 987 988 IN6_MULTI_LOCK_ASSERT(); 989 MLD_LOCK_ASSERT(); 990 991 retval = 0; 992 mld = (struct mldv2_query *)(mtod(m0, uint8_t *) + off); 993 994 switch (inm->in6m_state) { 995 case MLD_NOT_MEMBER: 996 case MLD_SILENT_MEMBER: 997 case MLD_SLEEPING_MEMBER: 998 case MLD_LAZY_MEMBER: 999 case MLD_AWAKENING_MEMBER: 1000 case MLD_IDLE_MEMBER: 1001 case MLD_LEAVING_MEMBER: 1002 return (retval); 1003 break; 1004 case MLD_REPORTING_MEMBER: 1005 case MLD_G_QUERY_PENDING_MEMBER: 1006 case MLD_SG_QUERY_PENDING_MEMBER: 1007 break; 1008 } 1009 1010 nsrc = ntohs(mld->mld_numsrc); 1011 1012 /* 1013 * Deal with group-specific queries upfront. 1014 * If any group query is already pending, purge any recorded 1015 * source-list state if it exists, and schedule a query response 1016 * for this group-specific query. 1017 */ 1018 if (nsrc == 0) { 1019 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 1020 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) { 1021 in6m_clear_recorded(inm); 1022 timer = min(inm->in6m_timer, timer); 1023 } 1024 inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER; 1025 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1026 V_current_state_timers_running6 = 1; 1027 return (retval); 1028 } 1029 1030 /* 1031 * Deal with the case where a group-and-source-specific query has 1032 * been received but a group-specific query is already pending. 1033 */ 1034 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) { 1035 timer = min(inm->in6m_timer, timer); 1036 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1037 V_current_state_timers_running6 = 1; 1038 return (retval); 1039 } 1040 1041 /* 1042 * Finally, deal with the case where a group-and-source-specific 1043 * query has been received, where a response to a previous g-s-r 1044 * query exists, or none exists. 1045 * In this case, we need to parse the source-list which the Querier 1046 * has provided us with and check if we have any source list filter 1047 * entries at T1 for these sources. If we do not, there is no need 1048 * schedule a report and the query may be dropped. 1049 * If we do, we must record them and schedule a current-state 1050 * report for those sources. 1051 */ 1052 if (inm->in6m_nsrc > 0) { 1053 struct mbuf *m; 1054 uint8_t *sp; 1055 int i, nrecorded; 1056 int soff; 1057 1058 m = m0; 1059 soff = off + sizeof(struct mldv2_query); 1060 nrecorded = 0; 1061 for (i = 0; i < nsrc; i++) { 1062 sp = mtod(m, uint8_t *) + soff; 1063 retval = in6m_record_source(inm, 1064 (const struct in6_addr *)sp); 1065 if (retval < 0) 1066 break; 1067 nrecorded += retval; 1068 soff += sizeof(struct in6_addr); 1069 if (soff >= m->m_len) { 1070 soff = soff - m->m_len; 1071 m = m->m_next; 1072 if (m == NULL) 1073 break; 1074 } 1075 } 1076 if (nrecorded > 0) { 1077 CTR1(KTR_MLD, 1078 "%s: schedule response to SG query", __func__); 1079 inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER; 1080 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1081 V_current_state_timers_running6 = 1; 1082 } 1083 } 1084 1085 return (retval); 1086 } 1087 1088 /* 1089 * Process a received MLDv1 host membership report. 1090 * Assumes mld points to mld_hdr in pulled up mbuf chain. 1091 * 1092 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 1093 * mld_addr. This is OK as we own the mbuf chain. 1094 */ 1095 static int 1096 mld_v1_input_report(struct ifnet *ifp, const struct ip6_hdr *ip6, 1097 /*const*/ struct mld_hdr *mld) 1098 { 1099 struct in6_addr src, dst; 1100 struct in6_ifaddr *ia; 1101 struct in6_multi *inm; 1102 #ifdef KTR 1103 char ip6tbuf[INET6_ADDRSTRLEN]; 1104 #endif 1105 1106 if (!mld_v1enable) { 1107 CTR3(KTR_MLD, "ignore v1 report %s on ifp %p(%s)", 1108 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1109 ifp, ifp->if_xname); 1110 return (0); 1111 } 1112 1113 if (ifp->if_flags & IFF_LOOPBACK) 1114 return (0); 1115 1116 /* 1117 * MLDv1 reports must originate from a host's link-local address, 1118 * or the unspecified address (when booting). 1119 */ 1120 src = ip6->ip6_src; 1121 in6_clearscope(&src); 1122 if (!IN6_IS_SCOPE_LINKLOCAL(&src) && !IN6_IS_ADDR_UNSPECIFIED(&src)) { 1123 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 1124 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 1125 ifp, ifp->if_xname); 1126 return (EINVAL); 1127 } 1128 1129 /* 1130 * RFC2710 Section 4: MLDv1 reports must pertain to a multicast 1131 * group, and must be directed to the group itself. 1132 */ 1133 dst = ip6->ip6_dst; 1134 in6_clearscope(&dst); 1135 if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) || 1136 !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &dst)) { 1137 CTR3(KTR_MLD, "ignore v1 query dst %s on ifp %p(%s)", 1138 ip6_sprintf(ip6tbuf, &ip6->ip6_dst), 1139 ifp, ifp->if_xname); 1140 return (EINVAL); 1141 } 1142 1143 /* 1144 * Make sure we don't hear our own membership report, as fast 1145 * leave requires knowing that we are the only member of a 1146 * group. Assume we used the link-local address if available, 1147 * otherwise look for ::. 1148 * 1149 * XXX Note that scope ID comparison is needed for the address 1150 * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be 1151 * performed for the on-wire address. 1152 */ 1153 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1154 if ((ia && IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia))) || 1155 (ia == NULL && IN6_IS_ADDR_UNSPECIFIED(&src))) { 1156 if (ia != NULL) 1157 ifa_free(&ia->ia_ifa); 1158 return (0); 1159 } 1160 if (ia != NULL) 1161 ifa_free(&ia->ia_ifa); 1162 1163 CTR3(KTR_MLD, "process v1 report %s on ifp %p(%s)", 1164 ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, ifp->if_xname); 1165 1166 /* 1167 * Embed scope ID of receiving interface in MLD query for lookup 1168 * whilst we don't hold other locks (due to KAME locking lameness). 1169 */ 1170 if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) 1171 in6_setscope(&mld->mld_addr, ifp, NULL); 1172 1173 IN6_MULTI_LOCK(); 1174 MLD_LOCK(); 1175 IF_ADDR_LOCK(ifp); 1176 1177 /* 1178 * MLDv1 report suppression. 1179 * If we are a member of this group, and our membership should be 1180 * reported, and our group timer is pending or about to be reset, 1181 * stop our group timer by transitioning to the 'lazy' state. 1182 */ 1183 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 1184 if (inm != NULL) { 1185 struct mld_ifinfo *mli; 1186 1187 mli = inm->in6m_mli; 1188 KASSERT(mli != NULL, 1189 ("%s: no mli for ifp %p", __func__, ifp)); 1190 1191 /* 1192 * If we are in MLDv2 host mode, do not allow the 1193 * other host's MLDv1 report to suppress our reports. 1194 */ 1195 if (mli->mli_version == MLD_VERSION_2) 1196 goto out_locked; 1197 1198 inm->in6m_timer = 0; 1199 1200 switch (inm->in6m_state) { 1201 case MLD_NOT_MEMBER: 1202 case MLD_SILENT_MEMBER: 1203 case MLD_SLEEPING_MEMBER: 1204 break; 1205 case MLD_REPORTING_MEMBER: 1206 case MLD_IDLE_MEMBER: 1207 case MLD_AWAKENING_MEMBER: 1208 CTR3(KTR_MLD, 1209 "report suppressed for %s on ifp %p(%s)", 1210 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1211 ifp, ifp->if_xname); 1212 case MLD_LAZY_MEMBER: 1213 inm->in6m_state = MLD_LAZY_MEMBER; 1214 break; 1215 case MLD_G_QUERY_PENDING_MEMBER: 1216 case MLD_SG_QUERY_PENDING_MEMBER: 1217 case MLD_LEAVING_MEMBER: 1218 break; 1219 } 1220 } 1221 1222 out_locked: 1223 MLD_UNLOCK(); 1224 IF_ADDR_UNLOCK(ifp); 1225 IN6_MULTI_UNLOCK(); 1226 1227 /* XXX Clear embedded scope ID as userland won't expect it. */ 1228 in6_clearscope(&mld->mld_addr); 1229 1230 return (0); 1231 } 1232 1233 /* 1234 * MLD input path. 1235 * 1236 * Assume query messages which fit in a single ICMPv6 message header 1237 * have been pulled up. 1238 * Assume that userland will want to see the message, even if it 1239 * otherwise fails kernel input validation; do not free it. 1240 * Pullup may however free the mbuf chain m if it fails. 1241 * 1242 * Return IPPROTO_DONE if we freed m. Otherwise, return 0. 1243 */ 1244 int 1245 mld_input(struct mbuf *m, int off, int icmp6len) 1246 { 1247 struct ifnet *ifp; 1248 struct ip6_hdr *ip6; 1249 struct mld_hdr *mld; 1250 int mldlen; 1251 1252 CTR3(KTR_MLD, "%s: called w/mbuf (%p,%d)", __func__, m, off); 1253 1254 ifp = m->m_pkthdr.rcvif; 1255 INIT_VNET_INET6(ifp->if_vnet); 1256 1257 ip6 = mtod(m, struct ip6_hdr *); 1258 1259 /* Pullup to appropriate size. */ 1260 mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off); 1261 if (mld->mld_type == MLD_LISTENER_QUERY && 1262 icmp6len >= sizeof(struct mldv2_query)) { 1263 mldlen = sizeof(struct mldv2_query); 1264 } else { 1265 mldlen = sizeof(struct mld_hdr); 1266 } 1267 IP6_EXTHDR_GET(mld, struct mld_hdr *, m, off, mldlen); 1268 if (mld == NULL) { 1269 ICMP6STAT_INC(icp6s_badlen); 1270 return (IPPROTO_DONE); 1271 } 1272 1273 /* 1274 * Userland needs to see all of this traffic for implementing 1275 * the endpoint discovery portion of multicast routing. 1276 */ 1277 switch (mld->mld_type) { 1278 case MLD_LISTENER_QUERY: 1279 icmp6_ifstat_inc(ifp, ifs6_in_mldquery); 1280 if (icmp6len == sizeof(struct mld_hdr)) { 1281 if (mld_v1_input_query(ifp, ip6, mld) != 0) 1282 return (0); 1283 } else if (icmp6len >= sizeof(struct mldv2_query)) { 1284 if (mld_v2_input_query(ifp, ip6, m, off, 1285 icmp6len) != 0) 1286 return (0); 1287 } 1288 break; 1289 case MLD_LISTENER_REPORT: 1290 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1291 if (mld_v1_input_report(ifp, ip6, mld) != 0) 1292 return (0); 1293 break; 1294 case MLDV2_LISTENER_REPORT: 1295 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1296 break; 1297 case MLD_LISTENER_DONE: 1298 icmp6_ifstat_inc(ifp, ifs6_in_mlddone); 1299 break; 1300 default: 1301 break; 1302 } 1303 1304 return (0); 1305 } 1306 1307 /* 1308 * Fast timeout handler (global). 1309 * VIMAGE: Timeout handlers are expected to service all vimages. 1310 */ 1311 void 1312 mld_fasttimo(void) 1313 { 1314 VNET_ITERATOR_DECL(vnet_iter); 1315 1316 VNET_LIST_RLOCK(); 1317 VNET_FOREACH(vnet_iter) { 1318 CURVNET_SET(vnet_iter); 1319 mld_fasttimo_vnet(); 1320 CURVNET_RESTORE(); 1321 } 1322 VNET_LIST_RUNLOCK(); 1323 } 1324 1325 /* 1326 * Fast timeout handler (per-vnet). 1327 * 1328 * VIMAGE: Assume caller has set up our curvnet. 1329 */ 1330 static void 1331 mld_fasttimo_vnet(void) 1332 { 1333 INIT_VNET_INET6(curvnet); 1334 struct ifqueue scq; /* State-change packets */ 1335 struct ifqueue qrq; /* Query response packets */ 1336 struct ifnet *ifp; 1337 struct mld_ifinfo *mli; 1338 struct ifmultiaddr *ifma, *tifma; 1339 struct in6_multi *inm; 1340 int uri_fasthz; 1341 1342 uri_fasthz = 0; 1343 1344 /* 1345 * Quick check to see if any work needs to be done, in order to 1346 * minimize the overhead of fasttimo processing. 1347 * SMPng: XXX Unlocked reads. 1348 */ 1349 if (!V_current_state_timers_running6 && 1350 !V_interface_timers_running6 && 1351 !V_state_change_timers_running6) 1352 return; 1353 1354 IN6_MULTI_LOCK(); 1355 MLD_LOCK(); 1356 1357 /* 1358 * MLDv2 General Query response timer processing. 1359 */ 1360 if (V_interface_timers_running6) { 1361 CTR1(KTR_MLD, "%s: interface timers running", __func__); 1362 1363 V_interface_timers_running6 = 0; 1364 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1365 if (mli->mli_v2_timer == 0) { 1366 /* Do nothing. */ 1367 } else if (--mli->mli_v2_timer == 0) { 1368 mld_v2_dispatch_general_query(mli); 1369 } else { 1370 V_interface_timers_running6 = 1; 1371 } 1372 } 1373 } 1374 1375 if (!V_current_state_timers_running6 && 1376 !V_state_change_timers_running6) 1377 goto out_locked; 1378 1379 V_current_state_timers_running6 = 0; 1380 V_state_change_timers_running6 = 0; 1381 1382 CTR1(KTR_MLD, "%s: state change timers running", __func__); 1383 1384 /* 1385 * MLD host report and state-change timer processing. 1386 * Note: Processing a v2 group timer may remove a node. 1387 */ 1388 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1389 ifp = mli->mli_ifp; 1390 1391 if (mli->mli_version == MLD_VERSION_2) { 1392 uri_fasthz = MLD_RANDOM_DELAY(mli->mli_uri * 1393 PR_FASTHZ); 1394 1395 memset(&qrq, 0, sizeof(struct ifqueue)); 1396 IFQ_SET_MAXLEN(&qrq, MLD_MAX_G_GS_PACKETS); 1397 1398 memset(&scq, 0, sizeof(struct ifqueue)); 1399 IFQ_SET_MAXLEN(&scq, MLD_MAX_STATE_CHANGE_PACKETS); 1400 } 1401 1402 IF_ADDR_LOCK(ifp); 1403 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, 1404 tifma) { 1405 if (ifma->ifma_addr->sa_family != AF_INET6 || 1406 ifma->ifma_protospec == NULL) 1407 continue; 1408 inm = (struct in6_multi *)ifma->ifma_protospec; 1409 switch (mli->mli_version) { 1410 case MLD_VERSION_1: 1411 /* 1412 * XXX Drop IF_ADDR lock temporarily to 1413 * avoid recursion caused by a potential 1414 * call by in6ifa_ifpforlinklocal(). 1415 * rwlock candidate? 1416 */ 1417 IF_ADDR_UNLOCK(ifp); 1418 mld_v1_process_group_timer(inm, 1419 mli->mli_version); 1420 IF_ADDR_LOCK(ifp); 1421 break; 1422 case MLD_VERSION_2: 1423 mld_v2_process_group_timers(mli, &qrq, 1424 &scq, inm, uri_fasthz); 1425 break; 1426 } 1427 } 1428 IF_ADDR_UNLOCK(ifp); 1429 1430 if (mli->mli_version == MLD_VERSION_2) { 1431 struct in6_multi *tinm; 1432 1433 mld_dispatch_queue(&qrq, 0); 1434 mld_dispatch_queue(&scq, 0); 1435 1436 /* 1437 * Free the in_multi reference(s) for 1438 * this lifecycle. 1439 */ 1440 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, 1441 in6m_nrele, tinm) { 1442 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, 1443 in6m_nrele); 1444 in6m_release_locked(inm); 1445 } 1446 } 1447 } 1448 1449 out_locked: 1450 MLD_UNLOCK(); 1451 IN6_MULTI_UNLOCK(); 1452 } 1453 1454 /* 1455 * Update host report group timer. 1456 * Will update the global pending timer flags. 1457 */ 1458 static void 1459 mld_v1_process_group_timer(struct in6_multi *inm, const int version) 1460 { 1461 INIT_VNET_INET6(curvnet); 1462 int report_timer_expired; 1463 1464 IN6_MULTI_LOCK_ASSERT(); 1465 MLD_LOCK_ASSERT(); 1466 1467 if (inm->in6m_timer == 0) { 1468 report_timer_expired = 0; 1469 } else if (--inm->in6m_timer == 0) { 1470 report_timer_expired = 1; 1471 } else { 1472 V_current_state_timers_running6 = 1; 1473 return; 1474 } 1475 1476 switch (inm->in6m_state) { 1477 case MLD_NOT_MEMBER: 1478 case MLD_SILENT_MEMBER: 1479 case MLD_IDLE_MEMBER: 1480 case MLD_LAZY_MEMBER: 1481 case MLD_SLEEPING_MEMBER: 1482 case MLD_AWAKENING_MEMBER: 1483 break; 1484 case MLD_REPORTING_MEMBER: 1485 if (report_timer_expired) { 1486 inm->in6m_state = MLD_IDLE_MEMBER; 1487 (void)mld_v1_transmit_report(inm, 1488 MLD_LISTENER_REPORT); 1489 } 1490 break; 1491 case MLD_G_QUERY_PENDING_MEMBER: 1492 case MLD_SG_QUERY_PENDING_MEMBER: 1493 case MLD_LEAVING_MEMBER: 1494 break; 1495 } 1496 } 1497 1498 /* 1499 * Update a group's timers for MLDv2. 1500 * Will update the global pending timer flags. 1501 * Note: Unlocked read from mli. 1502 */ 1503 static void 1504 mld_v2_process_group_timers(struct mld_ifinfo *mli, 1505 struct ifqueue *qrq, struct ifqueue *scq, 1506 struct in6_multi *inm, const int uri_fasthz) 1507 { 1508 INIT_VNET_INET6(curvnet); 1509 int query_response_timer_expired; 1510 int state_change_retransmit_timer_expired; 1511 #ifdef KTR 1512 char ip6tbuf[INET6_ADDRSTRLEN]; 1513 #endif 1514 1515 IN6_MULTI_LOCK_ASSERT(); 1516 MLD_LOCK_ASSERT(); 1517 1518 query_response_timer_expired = 0; 1519 state_change_retransmit_timer_expired = 0; 1520 1521 /* 1522 * During a transition from compatibility mode back to MLDv2, 1523 * a group record in REPORTING state may still have its group 1524 * timer active. This is a no-op in this function; it is easier 1525 * to deal with it here than to complicate the slow-timeout path. 1526 */ 1527 if (inm->in6m_timer == 0) { 1528 query_response_timer_expired = 0; 1529 } else if (--inm->in6m_timer == 0) { 1530 query_response_timer_expired = 1; 1531 } else { 1532 V_current_state_timers_running6 = 1; 1533 } 1534 1535 if (inm->in6m_sctimer == 0) { 1536 state_change_retransmit_timer_expired = 0; 1537 } else if (--inm->in6m_sctimer == 0) { 1538 state_change_retransmit_timer_expired = 1; 1539 } else { 1540 V_state_change_timers_running6 = 1; 1541 } 1542 1543 /* We are in fasttimo, so be quick about it. */ 1544 if (!state_change_retransmit_timer_expired && 1545 !query_response_timer_expired) 1546 return; 1547 1548 switch (inm->in6m_state) { 1549 case MLD_NOT_MEMBER: 1550 case MLD_SILENT_MEMBER: 1551 case MLD_SLEEPING_MEMBER: 1552 case MLD_LAZY_MEMBER: 1553 case MLD_AWAKENING_MEMBER: 1554 case MLD_IDLE_MEMBER: 1555 break; 1556 case MLD_G_QUERY_PENDING_MEMBER: 1557 case MLD_SG_QUERY_PENDING_MEMBER: 1558 /* 1559 * Respond to a previously pending Group-Specific 1560 * or Group-and-Source-Specific query by enqueueing 1561 * the appropriate Current-State report for 1562 * immediate transmission. 1563 */ 1564 if (query_response_timer_expired) { 1565 int retval; 1566 1567 retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1, 1568 (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER)); 1569 CTR2(KTR_MLD, "%s: enqueue record = %d", 1570 __func__, retval); 1571 inm->in6m_state = MLD_REPORTING_MEMBER; 1572 in6m_clear_recorded(inm); 1573 } 1574 /* FALLTHROUGH */ 1575 case MLD_REPORTING_MEMBER: 1576 case MLD_LEAVING_MEMBER: 1577 if (state_change_retransmit_timer_expired) { 1578 /* 1579 * State-change retransmission timer fired. 1580 * If there are any further pending retransmissions, 1581 * set the global pending state-change flag, and 1582 * reset the timer. 1583 */ 1584 if (--inm->in6m_scrv > 0) { 1585 inm->in6m_sctimer = uri_fasthz; 1586 V_state_change_timers_running6 = 1; 1587 } 1588 /* 1589 * Retransmit the previously computed state-change 1590 * report. If there are no further pending 1591 * retransmissions, the mbuf queue will be consumed. 1592 * Update T0 state to T1 as we have now sent 1593 * a state-change. 1594 */ 1595 (void)mld_v2_merge_state_changes(inm, scq); 1596 1597 in6m_commit(inm); 1598 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 1599 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1600 inm->in6m_ifp->if_xname); 1601 1602 /* 1603 * If we are leaving the group for good, make sure 1604 * we release MLD's reference to it. 1605 * This release must be deferred using a SLIST, 1606 * as we are called from a loop which traverses 1607 * the in_ifmultiaddr TAILQ. 1608 */ 1609 if (inm->in6m_state == MLD_LEAVING_MEMBER && 1610 inm->in6m_scrv == 0) { 1611 inm->in6m_state = MLD_NOT_MEMBER; 1612 SLIST_INSERT_HEAD(&mli->mli_relinmhead, 1613 inm, in6m_nrele); 1614 } 1615 } 1616 break; 1617 } 1618 } 1619 1620 /* 1621 * Switch to a different version on the given interface, 1622 * as per Section 9.12. 1623 */ 1624 static void 1625 mld_set_version(struct mld_ifinfo *mli, const int version) 1626 { 1627 int old_version_timer; 1628 1629 MLD_LOCK_ASSERT(); 1630 1631 CTR4(KTR_MLD, "%s: switching to v%d on ifp %p(%s)", __func__, 1632 version, mli->mli_ifp, mli->mli_ifp->if_xname); 1633 1634 if (version == MLD_VERSION_1) { 1635 /* 1636 * Compute the "Older Version Querier Present" timer as per 1637 * Section 9.12. 1638 */ 1639 old_version_timer = (mli->mli_rv * mli->mli_qi) + mli->mli_qri; 1640 old_version_timer *= PR_SLOWHZ; 1641 mli->mli_v1_timer = old_version_timer; 1642 } 1643 1644 if (mli->mli_v1_timer > 0 && mli->mli_version != MLD_VERSION_1) { 1645 mli->mli_version = MLD_VERSION_1; 1646 mld_v2_cancel_link_timers(mli); 1647 } 1648 } 1649 1650 /* 1651 * Cancel pending MLDv2 timers for the given link and all groups 1652 * joined on it; state-change, general-query, and group-query timers. 1653 */ 1654 static void 1655 mld_v2_cancel_link_timers(struct mld_ifinfo *mli) 1656 { 1657 INIT_VNET_INET6(curvnet); 1658 struct ifmultiaddr *ifma; 1659 struct ifnet *ifp; 1660 struct in6_multi *inm; 1661 1662 CTR3(KTR_MLD, "%s: cancel v2 timers on ifp %p(%s)", __func__, 1663 mli->mli_ifp, mli->mli_ifp->if_xname); 1664 1665 IN6_MULTI_LOCK_ASSERT(); 1666 MLD_LOCK_ASSERT(); 1667 1668 /* 1669 * Fast-track this potentially expensive operation 1670 * by checking all the global 'timer pending' flags. 1671 */ 1672 if (!V_interface_timers_running6 && 1673 !V_state_change_timers_running6 && 1674 !V_current_state_timers_running6) 1675 return; 1676 1677 mli->mli_v2_timer = 0; 1678 1679 ifp = mli->mli_ifp; 1680 1681 IF_ADDR_LOCK(ifp); 1682 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1683 if (ifma->ifma_addr->sa_family != AF_INET6) 1684 continue; 1685 inm = (struct in6_multi *)ifma->ifma_protospec; 1686 switch (inm->in6m_state) { 1687 case MLD_NOT_MEMBER: 1688 case MLD_SILENT_MEMBER: 1689 case MLD_IDLE_MEMBER: 1690 case MLD_LAZY_MEMBER: 1691 case MLD_SLEEPING_MEMBER: 1692 case MLD_AWAKENING_MEMBER: 1693 break; 1694 case MLD_LEAVING_MEMBER: 1695 /* 1696 * If we are leaving the group and switching 1697 * version, we need to release the final 1698 * reference held for issuing the INCLUDE {}. 1699 * 1700 * SMPNG: Must drop and re-acquire IF_ADDR_LOCK 1701 * around in6m_release_locked(), as it is not 1702 * a recursive mutex. 1703 */ 1704 IF_ADDR_UNLOCK(ifp); 1705 in6m_release_locked(inm); 1706 IF_ADDR_LOCK(ifp); 1707 /* FALLTHROUGH */ 1708 case MLD_G_QUERY_PENDING_MEMBER: 1709 case MLD_SG_QUERY_PENDING_MEMBER: 1710 in6m_clear_recorded(inm); 1711 /* FALLTHROUGH */ 1712 case MLD_REPORTING_MEMBER: 1713 inm->in6m_sctimer = 0; 1714 inm->in6m_timer = 0; 1715 inm->in6m_state = MLD_REPORTING_MEMBER; 1716 /* 1717 * Free any pending MLDv2 state-change records. 1718 */ 1719 _IF_DRAIN(&inm->in6m_scq); 1720 break; 1721 } 1722 } 1723 IF_ADDR_UNLOCK(ifp); 1724 } 1725 1726 /* 1727 * Global slowtimo handler. 1728 * VIMAGE: Timeout handlers are expected to service all vimages. 1729 */ 1730 void 1731 mld_slowtimo(void) 1732 { 1733 VNET_ITERATOR_DECL(vnet_iter); 1734 1735 VNET_LIST_RLOCK(); 1736 VNET_FOREACH(vnet_iter) { 1737 CURVNET_SET(vnet_iter); 1738 mld_slowtimo_vnet(); 1739 CURVNET_RESTORE(); 1740 } 1741 VNET_LIST_RUNLOCK(); 1742 } 1743 1744 /* 1745 * Per-vnet slowtimo handler. 1746 */ 1747 static void 1748 mld_slowtimo_vnet(void) 1749 { 1750 INIT_VNET_INET6(curvnet); 1751 struct mld_ifinfo *mli; 1752 1753 MLD_LOCK(); 1754 1755 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1756 mld_v1_process_querier_timers(mli); 1757 } 1758 1759 MLD_UNLOCK(); 1760 } 1761 1762 /* 1763 * Update the Older Version Querier Present timers for a link. 1764 * See Section 9.12 of RFC 3810. 1765 */ 1766 static void 1767 mld_v1_process_querier_timers(struct mld_ifinfo *mli) 1768 { 1769 1770 MLD_LOCK_ASSERT(); 1771 1772 if (mli->mli_version != MLD_VERSION_2 && --mli->mli_v1_timer == 0) { 1773 /* 1774 * MLDv1 Querier Present timer expired; revert to MLDv2. 1775 */ 1776 CTR5(KTR_MLD, 1777 "%s: transition from v%d -> v%d on %p(%s)", 1778 __func__, mli->mli_version, MLD_VERSION_2, 1779 mli->mli_ifp, mli->mli_ifp->if_xname); 1780 mli->mli_version = MLD_VERSION_2; 1781 } 1782 } 1783 1784 /* 1785 * Transmit an MLDv1 report immediately. 1786 */ 1787 static int 1788 mld_v1_transmit_report(struct in6_multi *in6m, const int type) 1789 { 1790 struct ifnet *ifp; 1791 struct in6_ifaddr *ia; 1792 struct ip6_hdr *ip6; 1793 struct mbuf *mh, *md; 1794 struct mld_hdr *mld; 1795 1796 IN6_MULTI_LOCK_ASSERT(); 1797 MLD_LOCK_ASSERT(); 1798 1799 ifp = in6m->in6m_ifp; 1800 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1801 /* ia may be NULL if link-local address is tentative. */ 1802 1803 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 1804 if (mh == NULL) { 1805 if (ia != NULL) 1806 ifa_free(&ia->ia_ifa); 1807 return (ENOMEM); 1808 } 1809 MGET(md, M_DONTWAIT, MT_DATA); 1810 if (md == NULL) { 1811 m_free(mh); 1812 if (ia != NULL) 1813 ifa_free(&ia->ia_ifa); 1814 return (ENOMEM); 1815 } 1816 mh->m_next = md; 1817 1818 /* 1819 * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so 1820 * that ether_output() does not need to allocate another mbuf 1821 * for the header in the most common case. 1822 */ 1823 MH_ALIGN(mh, sizeof(struct ip6_hdr)); 1824 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr); 1825 mh->m_len = sizeof(struct ip6_hdr); 1826 1827 ip6 = mtod(mh, struct ip6_hdr *); 1828 ip6->ip6_flow = 0; 1829 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 1830 ip6->ip6_vfc |= IPV6_VERSION; 1831 ip6->ip6_nxt = IPPROTO_ICMPV6; 1832 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 1833 ip6->ip6_dst = in6m->in6m_addr; 1834 1835 md->m_len = sizeof(struct mld_hdr); 1836 mld = mtod(md, struct mld_hdr *); 1837 mld->mld_type = type; 1838 mld->mld_code = 0; 1839 mld->mld_cksum = 0; 1840 mld->mld_maxdelay = 0; 1841 mld->mld_reserved = 0; 1842 mld->mld_addr = in6m->in6m_addr; 1843 in6_clearscope(&mld->mld_addr); 1844 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 1845 sizeof(struct ip6_hdr), sizeof(struct mld_hdr)); 1846 1847 mld_save_context(mh, ifp); 1848 mh->m_flags |= M_MLDV1; 1849 1850 mld_dispatch_packet(mh); 1851 1852 if (ia != NULL) 1853 ifa_free(&ia->ia_ifa); 1854 return (0); 1855 } 1856 1857 /* 1858 * Process a state change from the upper layer for the given IPv6 group. 1859 * 1860 * Each socket holds a reference on the in_multi in its own ip_moptions. 1861 * The socket layer will have made the necessary updates to.the group 1862 * state, it is now up to MLD to issue a state change report if there 1863 * has been any change between T0 (when the last state-change was issued) 1864 * and T1 (now). 1865 * 1866 * We use the MLDv2 state machine at group level. The MLd module 1867 * however makes the decision as to which MLD protocol version to speak. 1868 * A state change *from* INCLUDE {} always means an initial join. 1869 * A state change *to* INCLUDE {} always means a final leave. 1870 * 1871 * If delay is non-zero, and the state change is an initial multicast 1872 * join, the state change report will be delayed by 'delay' ticks 1873 * in units of PR_FASTHZ if MLDv1 is active on the link; otherwise 1874 * the initial MLDv2 state change report will be delayed by whichever 1875 * is sooner, a pending state-change timer or delay itself. 1876 * 1877 * VIMAGE: curvnet should have been set by caller, as this routine 1878 * is called from the socket option handlers. 1879 */ 1880 int 1881 mld_change_state(struct in6_multi *inm, const int delay) 1882 { 1883 struct mld_ifinfo *mli; 1884 struct ifnet *ifp; 1885 int error; 1886 1887 IN6_MULTI_LOCK_ASSERT(); 1888 1889 error = 0; 1890 1891 /* 1892 * Try to detect if the upper layer just asked us to change state 1893 * for an interface which has now gone away. 1894 */ 1895 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); 1896 ifp = inm->in6m_ifma->ifma_ifp; 1897 if (ifp != NULL) { 1898 /* 1899 * Sanity check that netinet6's notion of ifp is the 1900 * same as net's. 1901 */ 1902 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); 1903 } 1904 1905 MLD_LOCK(); 1906 1907 mli = MLD_IFINFO(ifp); 1908 KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp)); 1909 1910 /* 1911 * If we detect a state transition to or from MCAST_UNDEFINED 1912 * for this group, then we are starting or finishing an MLD 1913 * life cycle for this group. 1914 */ 1915 if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) { 1916 CTR3(KTR_MLD, "%s: inm transition %d -> %d", __func__, 1917 inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode); 1918 if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) { 1919 CTR1(KTR_MLD, "%s: initial join", __func__); 1920 error = mld_initial_join(inm, mli, delay); 1921 goto out_locked; 1922 } else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) { 1923 CTR1(KTR_MLD, "%s: final leave", __func__); 1924 mld_final_leave(inm, mli); 1925 goto out_locked; 1926 } 1927 } else { 1928 CTR1(KTR_MLD, "%s: filter set change", __func__); 1929 } 1930 1931 error = mld_handle_state_change(inm, mli); 1932 1933 out_locked: 1934 MLD_UNLOCK(); 1935 return (error); 1936 } 1937 1938 /* 1939 * Perform the initial join for an MLD group. 1940 * 1941 * When joining a group: 1942 * If the group should have its MLD traffic suppressed, do nothing. 1943 * MLDv1 starts sending MLDv1 host membership reports. 1944 * MLDv2 will schedule an MLDv2 state-change report containing the 1945 * initial state of the membership. 1946 * 1947 * If the delay argument is non-zero, then we must delay sending the 1948 * initial state change for delay ticks (in units of PR_FASTHZ). 1949 */ 1950 static int 1951 mld_initial_join(struct in6_multi *inm, struct mld_ifinfo *mli, 1952 const int delay) 1953 { 1954 INIT_VNET_INET6(curvnet); 1955 struct ifnet *ifp; 1956 struct ifqueue *ifq; 1957 int error, retval, syncstates; 1958 int odelay; 1959 #ifdef KTR 1960 char ip6tbuf[INET6_ADDRSTRLEN]; 1961 #endif 1962 1963 CTR4(KTR_MLD, "%s: initial join %s on ifp %p(%s)", 1964 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1965 inm->in6m_ifp, inm->in6m_ifp->if_xname); 1966 1967 error = 0; 1968 syncstates = 1; 1969 1970 ifp = inm->in6m_ifp; 1971 1972 IN6_MULTI_LOCK_ASSERT(); 1973 MLD_LOCK_ASSERT(); 1974 1975 KASSERT(mli && mli->mli_ifp == ifp, ("%s: inconsistent ifp", __func__)); 1976 1977 /* 1978 * Groups joined on loopback or marked as 'not reported', 1979 * enter the MLD_SILENT_MEMBER state and 1980 * are never reported in any protocol exchanges. 1981 * All other groups enter the appropriate state machine 1982 * for the version in use on this link. 1983 * A link marked as MLIF_SILENT causes MLD to be completely 1984 * disabled for the link. 1985 */ 1986 if ((ifp->if_flags & IFF_LOOPBACK) || 1987 (mli->mli_flags & MLIF_SILENT) || 1988 !mld_is_addr_reported(&inm->in6m_addr)) { 1989 CTR1(KTR_MLD, 1990 "%s: not kicking state machine for silent group", __func__); 1991 inm->in6m_state = MLD_SILENT_MEMBER; 1992 inm->in6m_timer = 0; 1993 } else { 1994 /* 1995 * Deal with overlapping in_multi lifecycle. 1996 * If this group was LEAVING, then make sure 1997 * we drop the reference we picked up to keep the 1998 * group around for the final INCLUDE {} enqueue. 1999 */ 2000 if (mli->mli_version == MLD_VERSION_2 && 2001 inm->in6m_state == MLD_LEAVING_MEMBER) 2002 in6m_release_locked(inm); 2003 2004 inm->in6m_state = MLD_REPORTING_MEMBER; 2005 2006 switch (mli->mli_version) { 2007 case MLD_VERSION_1: 2008 /* 2009 * If a delay was provided, only use it if 2010 * it is greater than the delay normally 2011 * used for an MLDv1 state change report, 2012 * and delay sending the initial MLDv1 report 2013 * by not transitioning to the IDLE state. 2014 */ 2015 odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI * PR_FASTHZ); 2016 if (delay) { 2017 inm->in6m_timer = max(delay, odelay); 2018 V_current_state_timers_running6 = 1; 2019 } else { 2020 inm->in6m_state = MLD_IDLE_MEMBER; 2021 error = mld_v1_transmit_report(inm, 2022 MLD_LISTENER_REPORT); 2023 if (error == 0) { 2024 inm->in6m_timer = odelay; 2025 V_current_state_timers_running6 = 1; 2026 } 2027 } 2028 break; 2029 2030 case MLD_VERSION_2: 2031 /* 2032 * Defer update of T0 to T1, until the first copy 2033 * of the state change has been transmitted. 2034 */ 2035 syncstates = 0; 2036 2037 /* 2038 * Immediately enqueue a State-Change Report for 2039 * this interface, freeing any previous reports. 2040 * Don't kick the timers if there is nothing to do, 2041 * or if an error occurred. 2042 */ 2043 ifq = &inm->in6m_scq; 2044 _IF_DRAIN(ifq); 2045 retval = mld_v2_enqueue_group_record(ifq, inm, 1, 2046 0, 0); 2047 CTR2(KTR_MLD, "%s: enqueue record = %d", 2048 __func__, retval); 2049 if (retval <= 0) { 2050 error = retval * -1; 2051 break; 2052 } 2053 2054 /* 2055 * Schedule transmission of pending state-change 2056 * report up to RV times for this link. The timer 2057 * will fire at the next mld_fasttimo (~200ms), 2058 * giving us an opportunity to merge the reports. 2059 * 2060 * If a delay was provided to this function, only 2061 * use this delay if sooner than the existing one. 2062 */ 2063 KASSERT(mli->mli_rv > 1, 2064 ("%s: invalid robustness %d", __func__, 2065 mli->mli_rv)); 2066 inm->in6m_scrv = mli->mli_rv; 2067 if (delay) { 2068 if (inm->in6m_sctimer > 1) { 2069 inm->in6m_sctimer = 2070 min(inm->in6m_sctimer, delay); 2071 } else 2072 inm->in6m_sctimer = delay; 2073 } else 2074 inm->in6m_sctimer = 1; 2075 V_state_change_timers_running6 = 1; 2076 2077 error = 0; 2078 break; 2079 } 2080 } 2081 2082 /* 2083 * Only update the T0 state if state change is atomic, 2084 * i.e. we don't need to wait for a timer to fire before we 2085 * can consider the state change to have been communicated. 2086 */ 2087 if (syncstates) { 2088 in6m_commit(inm); 2089 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2090 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2091 inm->in6m_ifp->if_xname); 2092 } 2093 2094 return (error); 2095 } 2096 2097 /* 2098 * Issue an intermediate state change during the life-cycle. 2099 */ 2100 static int 2101 mld_handle_state_change(struct in6_multi *inm, struct mld_ifinfo *mli) 2102 { 2103 INIT_VNET_INET6(curvnet); 2104 struct ifnet *ifp; 2105 int retval; 2106 #ifdef KTR 2107 char ip6tbuf[INET6_ADDRSTRLEN]; 2108 #endif 2109 2110 CTR4(KTR_MLD, "%s: state change for %s on ifp %p(%s)", 2111 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2112 inm->in6m_ifp, inm->in6m_ifp->if_xname); 2113 2114 ifp = inm->in6m_ifp; 2115 2116 IN6_MULTI_LOCK_ASSERT(); 2117 MLD_LOCK_ASSERT(); 2118 2119 KASSERT(mli && mli->mli_ifp == ifp, 2120 ("%s: inconsistent ifp", __func__)); 2121 2122 if ((ifp->if_flags & IFF_LOOPBACK) || 2123 (mli->mli_flags & MLIF_SILENT) || 2124 !mld_is_addr_reported(&inm->in6m_addr) || 2125 (mli->mli_version != MLD_VERSION_2)) { 2126 if (!mld_is_addr_reported(&inm->in6m_addr)) { 2127 CTR1(KTR_MLD, 2128 "%s: not kicking state machine for silent group", __func__); 2129 } 2130 CTR1(KTR_MLD, "%s: nothing to do", __func__); 2131 in6m_commit(inm); 2132 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2133 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2134 inm->in6m_ifp->if_xname); 2135 return (0); 2136 } 2137 2138 _IF_DRAIN(&inm->in6m_scq); 2139 2140 retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0); 2141 CTR2(KTR_MLD, "%s: enqueue record = %d", __func__, retval); 2142 if (retval <= 0) 2143 return (-retval); 2144 2145 /* 2146 * If record(s) were enqueued, start the state-change 2147 * report timer for this group. 2148 */ 2149 inm->in6m_scrv = mli->mli_rv; 2150 inm->in6m_sctimer = 1; 2151 V_state_change_timers_running6 = 1; 2152 2153 return (0); 2154 } 2155 2156 /* 2157 * Perform the final leave for a multicast address. 2158 * 2159 * When leaving a group: 2160 * MLDv1 sends a DONE message, if and only if we are the reporter. 2161 * MLDv2 enqueues a state-change report containing a transition 2162 * to INCLUDE {} for immediate transmission. 2163 */ 2164 static void 2165 mld_final_leave(struct in6_multi *inm, struct mld_ifinfo *mli) 2166 { 2167 INIT_VNET_INET6(curvnet); 2168 int syncstates; 2169 #ifdef KTR 2170 char ip6tbuf[INET6_ADDRSTRLEN]; 2171 #endif 2172 2173 syncstates = 1; 2174 2175 CTR4(KTR_MLD, "%s: final leave %s on ifp %p(%s)", 2176 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2177 inm->in6m_ifp, inm->in6m_ifp->if_xname); 2178 2179 IN6_MULTI_LOCK_ASSERT(); 2180 MLD_LOCK_ASSERT(); 2181 2182 switch (inm->in6m_state) { 2183 case MLD_NOT_MEMBER: 2184 case MLD_SILENT_MEMBER: 2185 case MLD_LEAVING_MEMBER: 2186 /* Already leaving or left; do nothing. */ 2187 CTR1(KTR_MLD, 2188 "%s: not kicking state machine for silent group", __func__); 2189 break; 2190 case MLD_REPORTING_MEMBER: 2191 case MLD_IDLE_MEMBER: 2192 case MLD_G_QUERY_PENDING_MEMBER: 2193 case MLD_SG_QUERY_PENDING_MEMBER: 2194 if (mli->mli_version == MLD_VERSION_1) { 2195 #ifdef INVARIANTS 2196 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 2197 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) 2198 panic("%s: MLDv2 state reached, not MLDv2 mode", 2199 __func__); 2200 #endif 2201 mld_v1_transmit_report(inm, MLD_LISTENER_DONE); 2202 inm->in6m_state = MLD_NOT_MEMBER; 2203 } else if (mli->mli_version == MLD_VERSION_2) { 2204 /* 2205 * Stop group timer and all pending reports. 2206 * Immediately enqueue a state-change report 2207 * TO_IN {} to be sent on the next fast timeout, 2208 * giving us an opportunity to merge reports. 2209 */ 2210 _IF_DRAIN(&inm->in6m_scq); 2211 inm->in6m_timer = 0; 2212 inm->in6m_scrv = mli->mli_rv; 2213 CTR4(KTR_MLD, "%s: Leaving %s/%s with %d " 2214 "pending retransmissions.", __func__, 2215 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2216 inm->in6m_ifp->if_xname, inm->in6m_scrv); 2217 if (inm->in6m_scrv == 0) { 2218 inm->in6m_state = MLD_NOT_MEMBER; 2219 inm->in6m_sctimer = 0; 2220 } else { 2221 int retval; 2222 2223 in6m_acquire_locked(inm); 2224 2225 retval = mld_v2_enqueue_group_record( 2226 &inm->in6m_scq, inm, 1, 0, 0); 2227 KASSERT(retval != 0, 2228 ("%s: enqueue record = %d", __func__, 2229 retval)); 2230 2231 inm->in6m_state = MLD_LEAVING_MEMBER; 2232 inm->in6m_sctimer = 1; 2233 V_state_change_timers_running6 = 1; 2234 syncstates = 0; 2235 } 2236 break; 2237 } 2238 break; 2239 case MLD_LAZY_MEMBER: 2240 case MLD_SLEEPING_MEMBER: 2241 case MLD_AWAKENING_MEMBER: 2242 /* Our reports are suppressed; do nothing. */ 2243 break; 2244 } 2245 2246 if (syncstates) { 2247 in6m_commit(inm); 2248 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2249 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2250 inm->in6m_ifp->if_xname); 2251 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 2252 CTR3(KTR_MLD, "%s: T1 now MCAST_UNDEFINED for %p/%s", 2253 __func__, &inm->in6m_addr, inm->in6m_ifp->if_xname); 2254 } 2255 } 2256 2257 /* 2258 * Enqueue an MLDv2 group record to the given output queue. 2259 * 2260 * If is_state_change is zero, a current-state record is appended. 2261 * If is_state_change is non-zero, a state-change report is appended. 2262 * 2263 * If is_group_query is non-zero, an mbuf packet chain is allocated. 2264 * If is_group_query is zero, and if there is a packet with free space 2265 * at the tail of the queue, it will be appended to providing there 2266 * is enough free space. 2267 * Otherwise a new mbuf packet chain is allocated. 2268 * 2269 * If is_source_query is non-zero, each source is checked to see if 2270 * it was recorded for a Group-Source query, and will be omitted if 2271 * it is not both in-mode and recorded. 2272 * 2273 * The function will attempt to allocate leading space in the packet 2274 * for the IPv6+ICMP headers to be prepended without fragmenting the chain. 2275 * 2276 * If successful the size of all data appended to the queue is returned, 2277 * otherwise an error code less than zero is returned, or zero if 2278 * no record(s) were appended. 2279 */ 2280 static int 2281 mld_v2_enqueue_group_record(struct ifqueue *ifq, struct in6_multi *inm, 2282 const int is_state_change, const int is_group_query, 2283 const int is_source_query) 2284 { 2285 struct mldv2_record mr; 2286 struct mldv2_record *pmr; 2287 struct ifnet *ifp; 2288 struct ip6_msource *ims, *nims; 2289 struct mbuf *m0, *m, *md; 2290 int error, is_filter_list_change; 2291 int minrec0len, m0srcs, msrcs, nbytes, off; 2292 int record_has_sources; 2293 int now; 2294 int type; 2295 uint8_t mode; 2296 #ifdef KTR 2297 char ip6tbuf[INET6_ADDRSTRLEN]; 2298 #endif 2299 2300 IN6_MULTI_LOCK_ASSERT(); 2301 2302 error = 0; 2303 ifp = inm->in6m_ifp; 2304 is_filter_list_change = 0; 2305 m = NULL; 2306 m0 = NULL; 2307 m0srcs = 0; 2308 msrcs = 0; 2309 nbytes = 0; 2310 nims = NULL; 2311 record_has_sources = 1; 2312 pmr = NULL; 2313 type = MLD_DO_NOTHING; 2314 mode = inm->in6m_st[1].iss_fmode; 2315 2316 /* 2317 * If we did not transition out of ASM mode during t0->t1, 2318 * and there are no source nodes to process, we can skip 2319 * the generation of source records. 2320 */ 2321 if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 && 2322 inm->in6m_nsrc == 0) 2323 record_has_sources = 0; 2324 2325 if (is_state_change) { 2326 /* 2327 * Queue a state change record. 2328 * If the mode did not change, and there are non-ASM 2329 * listeners or source filters present, 2330 * we potentially need to issue two records for the group. 2331 * If we are transitioning to MCAST_UNDEFINED, we need 2332 * not send any sources. 2333 * If there are ASM listeners, and there was no filter 2334 * mode transition of any kind, do nothing. 2335 */ 2336 if (mode != inm->in6m_st[0].iss_fmode) { 2337 if (mode == MCAST_EXCLUDE) { 2338 CTR1(KTR_MLD, "%s: change to EXCLUDE", 2339 __func__); 2340 type = MLD_CHANGE_TO_EXCLUDE_MODE; 2341 } else { 2342 CTR1(KTR_MLD, "%s: change to INCLUDE", 2343 __func__); 2344 type = MLD_CHANGE_TO_INCLUDE_MODE; 2345 if (mode == MCAST_UNDEFINED) 2346 record_has_sources = 0; 2347 } 2348 } else { 2349 if (record_has_sources) { 2350 is_filter_list_change = 1; 2351 } else { 2352 type = MLD_DO_NOTHING; 2353 } 2354 } 2355 } else { 2356 /* 2357 * Queue a current state record. 2358 */ 2359 if (mode == MCAST_EXCLUDE) { 2360 type = MLD_MODE_IS_EXCLUDE; 2361 } else if (mode == MCAST_INCLUDE) { 2362 type = MLD_MODE_IS_INCLUDE; 2363 KASSERT(inm->in6m_st[1].iss_asm == 0, 2364 ("%s: inm %p is INCLUDE but ASM count is %d", 2365 __func__, inm, inm->in6m_st[1].iss_asm)); 2366 } 2367 } 2368 2369 /* 2370 * Generate the filter list changes using a separate function. 2371 */ 2372 if (is_filter_list_change) 2373 return (mld_v2_enqueue_filter_change(ifq, inm)); 2374 2375 if (type == MLD_DO_NOTHING) { 2376 CTR3(KTR_MLD, "%s: nothing to do for %s/%s", 2377 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2378 inm->in6m_ifp->if_xname); 2379 return (0); 2380 } 2381 2382 /* 2383 * If any sources are present, we must be able to fit at least 2384 * one in the trailing space of the tail packet's mbuf, 2385 * ideally more. 2386 */ 2387 minrec0len = sizeof(struct mldv2_record); 2388 if (record_has_sources) 2389 minrec0len += sizeof(struct in6_addr); 2390 2391 CTR4(KTR_MLD, "%s: queueing %s for %s/%s", __func__, 2392 mld_rec_type_to_str(type), 2393 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2394 inm->in6m_ifp->if_xname); 2395 2396 /* 2397 * Check if we have a packet in the tail of the queue for this 2398 * group into which the first group record for this group will fit. 2399 * Otherwise allocate a new packet. 2400 * Always allocate leading space for IP6+RA+ICMPV6+REPORT. 2401 * Note: Group records for G/GSR query responses MUST be sent 2402 * in their own packet. 2403 */ 2404 m0 = ifq->ifq_tail; 2405 if (!is_group_query && 2406 m0 != NULL && 2407 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) && 2408 (m0->m_pkthdr.len + minrec0len) < 2409 (ifp->if_mtu - MLD_MTUSPACE)) { 2410 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2411 sizeof(struct mldv2_record)) / 2412 sizeof(struct in6_addr); 2413 m = m0; 2414 CTR1(KTR_MLD, "%s: use existing packet", __func__); 2415 } else { 2416 if (_IF_QFULL(ifq)) { 2417 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2418 return (-ENOMEM); 2419 } 2420 m = NULL; 2421 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2422 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2423 if (!is_state_change && !is_group_query) 2424 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2425 if (m == NULL) 2426 m = m_gethdr(M_DONTWAIT, MT_DATA); 2427 if (m == NULL) 2428 return (-ENOMEM); 2429 2430 mld_save_context(m, ifp); 2431 2432 CTR1(KTR_MLD, "%s: allocated first packet", __func__); 2433 } 2434 2435 /* 2436 * Append group record. 2437 * If we have sources, we don't know how many yet. 2438 */ 2439 mr.mr_type = type; 2440 mr.mr_datalen = 0; 2441 mr.mr_numsrc = 0; 2442 mr.mr_addr = inm->in6m_addr; 2443 in6_clearscope(&mr.mr_addr); 2444 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2445 if (m != m0) 2446 m_freem(m); 2447 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2448 return (-ENOMEM); 2449 } 2450 nbytes += sizeof(struct mldv2_record); 2451 2452 /* 2453 * Append as many sources as will fit in the first packet. 2454 * If we are appending to a new packet, the chain allocation 2455 * may potentially use clusters; use m_getptr() in this case. 2456 * If we are appending to an existing packet, we need to obtain 2457 * a pointer to the group record after m_append(), in case a new 2458 * mbuf was allocated. 2459 * Only append sources which are in-mode at t1. If we are 2460 * transitioning to MCAST_UNDEFINED state on the group, do not 2461 * include source entries. 2462 * Only report recorded sources in our filter set when responding 2463 * to a group-source query. 2464 */ 2465 if (record_has_sources) { 2466 if (m == m0) { 2467 md = m_last(m); 2468 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2469 md->m_len - nbytes); 2470 } else { 2471 md = m_getptr(m, 0, &off); 2472 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2473 off); 2474 } 2475 msrcs = 0; 2476 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, 2477 nims) { 2478 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2479 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2480 now = im6s_get_mode(inm, ims, 1); 2481 CTR2(KTR_MLD, "%s: node is %d", __func__, now); 2482 if ((now != mode) || 2483 (now == mode && mode == MCAST_UNDEFINED)) { 2484 CTR1(KTR_MLD, "%s: skip node", __func__); 2485 continue; 2486 } 2487 if (is_source_query && ims->im6s_stp == 0) { 2488 CTR1(KTR_MLD, "%s: skip unrecorded node", 2489 __func__); 2490 continue; 2491 } 2492 CTR1(KTR_MLD, "%s: append node", __func__); 2493 if (!m_append(m, sizeof(struct in6_addr), 2494 (void *)&ims->im6s_addr)) { 2495 if (m != m0) 2496 m_freem(m); 2497 CTR1(KTR_MLD, "%s: m_append() failed.", 2498 __func__); 2499 return (-ENOMEM); 2500 } 2501 nbytes += sizeof(struct in6_addr); 2502 ++msrcs; 2503 if (msrcs == m0srcs) 2504 break; 2505 } 2506 CTR2(KTR_MLD, "%s: msrcs is %d this packet", __func__, 2507 msrcs); 2508 pmr->mr_numsrc = htons(msrcs); 2509 nbytes += (msrcs * sizeof(struct in6_addr)); 2510 } 2511 2512 if (is_source_query && msrcs == 0) { 2513 CTR1(KTR_MLD, "%s: no recorded sources to report", __func__); 2514 if (m != m0) 2515 m_freem(m); 2516 return (0); 2517 } 2518 2519 /* 2520 * We are good to go with first packet. 2521 */ 2522 if (m != m0) { 2523 CTR1(KTR_MLD, "%s: enqueueing first packet", __func__); 2524 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2525 _IF_ENQUEUE(ifq, m); 2526 } else 2527 m->m_pkthdr.PH_vt.vt_nrecs++; 2528 2529 /* 2530 * No further work needed if no source list in packet(s). 2531 */ 2532 if (!record_has_sources) 2533 return (nbytes); 2534 2535 /* 2536 * Whilst sources remain to be announced, we need to allocate 2537 * a new packet and fill out as many sources as will fit. 2538 * Always try for a cluster first. 2539 */ 2540 while (nims != NULL) { 2541 if (_IF_QFULL(ifq)) { 2542 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2543 return (-ENOMEM); 2544 } 2545 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2546 if (m == NULL) 2547 m = m_gethdr(M_DONTWAIT, MT_DATA); 2548 if (m == NULL) 2549 return (-ENOMEM); 2550 mld_save_context(m, ifp); 2551 md = m_getptr(m, 0, &off); 2552 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off); 2553 CTR1(KTR_MLD, "%s: allocated next packet", __func__); 2554 2555 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2556 if (m != m0) 2557 m_freem(m); 2558 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2559 return (-ENOMEM); 2560 } 2561 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2562 nbytes += sizeof(struct mldv2_record); 2563 2564 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2565 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2566 2567 msrcs = 0; 2568 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2569 CTR2(KTR_MLD, "%s: visit node %s", 2570 __func__, ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2571 now = im6s_get_mode(inm, ims, 1); 2572 if ((now != mode) || 2573 (now == mode && mode == MCAST_UNDEFINED)) { 2574 CTR1(KTR_MLD, "%s: skip node", __func__); 2575 continue; 2576 } 2577 if (is_source_query && ims->im6s_stp == 0) { 2578 CTR1(KTR_MLD, "%s: skip unrecorded node", 2579 __func__); 2580 continue; 2581 } 2582 CTR1(KTR_MLD, "%s: append node", __func__); 2583 if (!m_append(m, sizeof(struct in6_addr), 2584 (void *)&ims->im6s_addr)) { 2585 if (m != m0) 2586 m_freem(m); 2587 CTR1(KTR_MLD, "%s: m_append() failed.", 2588 __func__); 2589 return (-ENOMEM); 2590 } 2591 ++msrcs; 2592 if (msrcs == m0srcs) 2593 break; 2594 } 2595 pmr->mr_numsrc = htons(msrcs); 2596 nbytes += (msrcs * sizeof(struct in6_addr)); 2597 2598 CTR1(KTR_MLD, "%s: enqueueing next packet", __func__); 2599 _IF_ENQUEUE(ifq, m); 2600 } 2601 2602 return (nbytes); 2603 } 2604 2605 /* 2606 * Type used to mark record pass completion. 2607 * We exploit the fact we can cast to this easily from the 2608 * current filter modes on each ip_msource node. 2609 */ 2610 typedef enum { 2611 REC_NONE = 0x00, /* MCAST_UNDEFINED */ 2612 REC_ALLOW = 0x01, /* MCAST_INCLUDE */ 2613 REC_BLOCK = 0x02, /* MCAST_EXCLUDE */ 2614 REC_FULL = REC_ALLOW | REC_BLOCK 2615 } rectype_t; 2616 2617 /* 2618 * Enqueue an MLDv2 filter list change to the given output queue. 2619 * 2620 * Source list filter state is held in an RB-tree. When the filter list 2621 * for a group is changed without changing its mode, we need to compute 2622 * the deltas between T0 and T1 for each source in the filter set, 2623 * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records. 2624 * 2625 * As we may potentially queue two record types, and the entire R-B tree 2626 * needs to be walked at once, we break this out into its own function 2627 * so we can generate a tightly packed queue of packets. 2628 * 2629 * XXX This could be written to only use one tree walk, although that makes 2630 * serializing into the mbuf chains a bit harder. For now we do two walks 2631 * which makes things easier on us, and it may or may not be harder on 2632 * the L2 cache. 2633 * 2634 * If successful the size of all data appended to the queue is returned, 2635 * otherwise an error code less than zero is returned, or zero if 2636 * no record(s) were appended. 2637 */ 2638 static int 2639 mld_v2_enqueue_filter_change(struct ifqueue *ifq, struct in6_multi *inm) 2640 { 2641 static const int MINRECLEN = 2642 sizeof(struct mldv2_record) + sizeof(struct in6_addr); 2643 struct ifnet *ifp; 2644 struct mldv2_record mr; 2645 struct mldv2_record *pmr; 2646 struct ip6_msource *ims, *nims; 2647 struct mbuf *m, *m0, *md; 2648 int m0srcs, nbytes, npbytes, off, rsrcs, schanged; 2649 int nallow, nblock; 2650 uint8_t mode, now, then; 2651 rectype_t crt, drt, nrt; 2652 #ifdef KTR 2653 char ip6tbuf[INET6_ADDRSTRLEN]; 2654 #endif 2655 2656 IN6_MULTI_LOCK_ASSERT(); 2657 2658 if (inm->in6m_nsrc == 0 || 2659 (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0)) 2660 return (0); 2661 2662 ifp = inm->in6m_ifp; /* interface */ 2663 mode = inm->in6m_st[1].iss_fmode; /* filter mode at t1 */ 2664 crt = REC_NONE; /* current group record type */ 2665 drt = REC_NONE; /* mask of completed group record types */ 2666 nrt = REC_NONE; /* record type for current node */ 2667 m0srcs = 0; /* # source which will fit in current mbuf chain */ 2668 npbytes = 0; /* # of bytes appended this packet */ 2669 nbytes = 0; /* # of bytes appended to group's state-change queue */ 2670 rsrcs = 0; /* # sources encoded in current record */ 2671 schanged = 0; /* # nodes encoded in overall filter change */ 2672 nallow = 0; /* # of source entries in ALLOW_NEW */ 2673 nblock = 0; /* # of source entries in BLOCK_OLD */ 2674 nims = NULL; /* next tree node pointer */ 2675 2676 /* 2677 * For each possible filter record mode. 2678 * The first kind of source we encounter tells us which 2679 * is the first kind of record we start appending. 2680 * If a node transitioned to UNDEFINED at t1, its mode is treated 2681 * as the inverse of the group's filter mode. 2682 */ 2683 while (drt != REC_FULL) { 2684 do { 2685 m0 = ifq->ifq_tail; 2686 if (m0 != NULL && 2687 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= 2688 MLD_V2_REPORT_MAXRECS) && 2689 (m0->m_pkthdr.len + MINRECLEN) < 2690 (ifp->if_mtu - MLD_MTUSPACE)) { 2691 m = m0; 2692 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2693 sizeof(struct mldv2_record)) / 2694 sizeof(struct in6_addr); 2695 CTR1(KTR_MLD, 2696 "%s: use previous packet", __func__); 2697 } else { 2698 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2699 if (m == NULL) 2700 m = m_gethdr(M_DONTWAIT, MT_DATA); 2701 if (m == NULL) { 2702 CTR1(KTR_MLD, 2703 "%s: m_get*() failed", __func__); 2704 return (-ENOMEM); 2705 } 2706 m->m_pkthdr.PH_vt.vt_nrecs = 0; 2707 mld_save_context(m, ifp); 2708 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2709 sizeof(struct mldv2_record)) / 2710 sizeof(struct in6_addr); 2711 npbytes = 0; 2712 CTR1(KTR_MLD, 2713 "%s: allocated new packet", __func__); 2714 } 2715 /* 2716 * Append the MLD group record header to the 2717 * current packet's data area. 2718 * Recalculate pointer to free space for next 2719 * group record, in case m_append() allocated 2720 * a new mbuf or cluster. 2721 */ 2722 memset(&mr, 0, sizeof(mr)); 2723 mr.mr_addr = inm->in6m_addr; 2724 in6_clearscope(&mr.mr_addr); 2725 if (!m_append(m, sizeof(mr), (void *)&mr)) { 2726 if (m != m0) 2727 m_freem(m); 2728 CTR1(KTR_MLD, 2729 "%s: m_append() failed", __func__); 2730 return (-ENOMEM); 2731 } 2732 npbytes += sizeof(struct mldv2_record); 2733 if (m != m0) { 2734 /* new packet; offset in chain */ 2735 md = m_getptr(m, npbytes - 2736 sizeof(struct mldv2_record), &off); 2737 pmr = (struct mldv2_record *)(mtod(md, 2738 uint8_t *) + off); 2739 } else { 2740 /* current packet; offset from last append */ 2741 md = m_last(m); 2742 pmr = (struct mldv2_record *)(mtod(md, 2743 uint8_t *) + md->m_len - 2744 sizeof(struct mldv2_record)); 2745 } 2746 /* 2747 * Begin walking the tree for this record type 2748 * pass, or continue from where we left off 2749 * previously if we had to allocate a new packet. 2750 * Only report deltas in-mode at t1. 2751 * We need not report included sources as allowed 2752 * if we are in inclusive mode on the group, 2753 * however the converse is not true. 2754 */ 2755 rsrcs = 0; 2756 if (nims == NULL) { 2757 nims = RB_MIN(ip6_msource_tree, 2758 &inm->in6m_srcs); 2759 } 2760 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2761 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2762 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2763 now = im6s_get_mode(inm, ims, 1); 2764 then = im6s_get_mode(inm, ims, 0); 2765 CTR3(KTR_MLD, "%s: mode: t0 %d, t1 %d", 2766 __func__, then, now); 2767 if (now == then) { 2768 CTR1(KTR_MLD, 2769 "%s: skip unchanged", __func__); 2770 continue; 2771 } 2772 if (mode == MCAST_EXCLUDE && 2773 now == MCAST_INCLUDE) { 2774 CTR1(KTR_MLD, 2775 "%s: skip IN src on EX group", 2776 __func__); 2777 continue; 2778 } 2779 nrt = (rectype_t)now; 2780 if (nrt == REC_NONE) 2781 nrt = (rectype_t)(~mode & REC_FULL); 2782 if (schanged++ == 0) { 2783 crt = nrt; 2784 } else if (crt != nrt) 2785 continue; 2786 if (!m_append(m, sizeof(struct in6_addr), 2787 (void *)&ims->im6s_addr)) { 2788 if (m != m0) 2789 m_freem(m); 2790 CTR1(KTR_MLD, 2791 "%s: m_append() failed", __func__); 2792 return (-ENOMEM); 2793 } 2794 nallow += !!(crt == REC_ALLOW); 2795 nblock += !!(crt == REC_BLOCK); 2796 if (++rsrcs == m0srcs) 2797 break; 2798 } 2799 /* 2800 * If we did not append any tree nodes on this 2801 * pass, back out of allocations. 2802 */ 2803 if (rsrcs == 0) { 2804 npbytes -= sizeof(struct mldv2_record); 2805 if (m != m0) { 2806 CTR1(KTR_MLD, 2807 "%s: m_free(m)", __func__); 2808 m_freem(m); 2809 } else { 2810 CTR1(KTR_MLD, 2811 "%s: m_adj(m, -mr)", __func__); 2812 m_adj(m, -((int)sizeof( 2813 struct mldv2_record))); 2814 } 2815 continue; 2816 } 2817 npbytes += (rsrcs * sizeof(struct in6_addr)); 2818 if (crt == REC_ALLOW) 2819 pmr->mr_type = MLD_ALLOW_NEW_SOURCES; 2820 else if (crt == REC_BLOCK) 2821 pmr->mr_type = MLD_BLOCK_OLD_SOURCES; 2822 pmr->mr_numsrc = htons(rsrcs); 2823 /* 2824 * Count the new group record, and enqueue this 2825 * packet if it wasn't already queued. 2826 */ 2827 m->m_pkthdr.PH_vt.vt_nrecs++; 2828 if (m != m0) 2829 _IF_ENQUEUE(ifq, m); 2830 nbytes += npbytes; 2831 } while (nims != NULL); 2832 drt |= crt; 2833 crt = (~crt & REC_FULL); 2834 } 2835 2836 CTR3(KTR_MLD, "%s: queued %d ALLOW_NEW, %d BLOCK_OLD", __func__, 2837 nallow, nblock); 2838 2839 return (nbytes); 2840 } 2841 2842 static int 2843 mld_v2_merge_state_changes(struct in6_multi *inm, struct ifqueue *ifscq) 2844 { 2845 struct ifqueue *gq; 2846 struct mbuf *m; /* pending state-change */ 2847 struct mbuf *m0; /* copy of pending state-change */ 2848 struct mbuf *mt; /* last state-change in packet */ 2849 int docopy, domerge; 2850 u_int recslen; 2851 2852 docopy = 0; 2853 domerge = 0; 2854 recslen = 0; 2855 2856 IN6_MULTI_LOCK_ASSERT(); 2857 MLD_LOCK_ASSERT(); 2858 2859 /* 2860 * If there are further pending retransmissions, make a writable 2861 * copy of each queued state-change message before merging. 2862 */ 2863 if (inm->in6m_scrv > 0) 2864 docopy = 1; 2865 2866 gq = &inm->in6m_scq; 2867 #ifdef KTR 2868 if (gq->ifq_head == NULL) { 2869 CTR2(KTR_MLD, "%s: WARNING: queue for inm %p is empty", 2870 __func__, inm); 2871 } 2872 #endif 2873 2874 m = gq->ifq_head; 2875 while (m != NULL) { 2876 /* 2877 * Only merge the report into the current packet if 2878 * there is sufficient space to do so; an MLDv2 report 2879 * packet may only contain 65,535 group records. 2880 * Always use a simple mbuf chain concatentation to do this, 2881 * as large state changes for single groups may have 2882 * allocated clusters. 2883 */ 2884 domerge = 0; 2885 mt = ifscq->ifq_tail; 2886 if (mt != NULL) { 2887 recslen = m_length(m, NULL); 2888 2889 if ((mt->m_pkthdr.PH_vt.vt_nrecs + 2890 m->m_pkthdr.PH_vt.vt_nrecs <= 2891 MLD_V2_REPORT_MAXRECS) && 2892 (mt->m_pkthdr.len + recslen <= 2893 (inm->in6m_ifp->if_mtu - MLD_MTUSPACE))) 2894 domerge = 1; 2895 } 2896 2897 if (!domerge && _IF_QFULL(gq)) { 2898 CTR2(KTR_MLD, 2899 "%s: outbound queue full, skipping whole packet %p", 2900 __func__, m); 2901 mt = m->m_nextpkt; 2902 if (!docopy) 2903 m_freem(m); 2904 m = mt; 2905 continue; 2906 } 2907 2908 if (!docopy) { 2909 CTR2(KTR_MLD, "%s: dequeueing %p", __func__, m); 2910 _IF_DEQUEUE(gq, m0); 2911 m = m0->m_nextpkt; 2912 } else { 2913 CTR2(KTR_MLD, "%s: copying %p", __func__, m); 2914 m0 = m_dup(m, M_NOWAIT); 2915 if (m0 == NULL) 2916 return (ENOMEM); 2917 m0->m_nextpkt = NULL; 2918 m = m->m_nextpkt; 2919 } 2920 2921 if (!domerge) { 2922 CTR3(KTR_MLD, "%s: queueing %p to ifscq %p)", 2923 __func__, m0, ifscq); 2924 _IF_ENQUEUE(ifscq, m0); 2925 } else { 2926 struct mbuf *mtl; /* last mbuf of packet mt */ 2927 2928 CTR3(KTR_MLD, "%s: merging %p with ifscq tail %p)", 2929 __func__, m0, mt); 2930 2931 mtl = m_last(mt); 2932 m0->m_flags &= ~M_PKTHDR; 2933 mt->m_pkthdr.len += recslen; 2934 mt->m_pkthdr.PH_vt.vt_nrecs += 2935 m0->m_pkthdr.PH_vt.vt_nrecs; 2936 2937 mtl->m_next = m0; 2938 } 2939 } 2940 2941 return (0); 2942 } 2943 2944 /* 2945 * Respond to a pending MLDv2 General Query. 2946 */ 2947 static void 2948 mld_v2_dispatch_general_query(struct mld_ifinfo *mli) 2949 { 2950 INIT_VNET_INET6(curvnet); 2951 struct ifmultiaddr *ifma, *tifma; 2952 struct ifnet *ifp; 2953 struct in6_multi *inm; 2954 int retval; 2955 2956 IN6_MULTI_LOCK_ASSERT(); 2957 MLD_LOCK_ASSERT(); 2958 2959 KASSERT(mli->mli_version == MLD_VERSION_2, 2960 ("%s: called when version %d", __func__, mli->mli_version)); 2961 2962 ifp = mli->mli_ifp; 2963 2964 IF_ADDR_LOCK(ifp); 2965 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, tifma) { 2966 if (ifma->ifma_addr->sa_family != AF_INET6 || 2967 ifma->ifma_protospec == NULL) 2968 continue; 2969 2970 inm = (struct in6_multi *)ifma->ifma_protospec; 2971 KASSERT(ifp == inm->in6m_ifp, 2972 ("%s: inconsistent ifp", __func__)); 2973 2974 switch (inm->in6m_state) { 2975 case MLD_NOT_MEMBER: 2976 case MLD_SILENT_MEMBER: 2977 break; 2978 case MLD_REPORTING_MEMBER: 2979 case MLD_IDLE_MEMBER: 2980 case MLD_LAZY_MEMBER: 2981 case MLD_SLEEPING_MEMBER: 2982 case MLD_AWAKENING_MEMBER: 2983 inm->in6m_state = MLD_REPORTING_MEMBER; 2984 retval = mld_v2_enqueue_group_record(&mli->mli_gq, 2985 inm, 0, 0, 0); 2986 CTR2(KTR_MLD, "%s: enqueue record = %d", 2987 __func__, retval); 2988 break; 2989 case MLD_G_QUERY_PENDING_MEMBER: 2990 case MLD_SG_QUERY_PENDING_MEMBER: 2991 case MLD_LEAVING_MEMBER: 2992 break; 2993 } 2994 } 2995 IF_ADDR_UNLOCK(ifp); 2996 2997 mld_dispatch_queue(&mli->mli_gq, MLD_MAX_RESPONSE_BURST); 2998 2999 /* 3000 * Slew transmission of bursts over 500ms intervals. 3001 */ 3002 if (mli->mli_gq.ifq_head != NULL) { 3003 mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY( 3004 MLD_RESPONSE_BURST_INTERVAL); 3005 V_interface_timers_running6 = 1; 3006 } 3007 } 3008 3009 /* 3010 * Transmit the next pending message in the output queue. 3011 * 3012 * VIMAGE: Needs to store/restore vnet pointer on a per-mbuf-chain basis. 3013 * MRT: Nothing needs to be done, as MLD traffic is always local to 3014 * a link and uses a link-scope multicast address. 3015 */ 3016 static void 3017 mld_dispatch_packet(struct mbuf *m) 3018 { 3019 struct ip6_moptions im6o; 3020 struct ifnet *ifp; 3021 struct ifnet *oifp; 3022 struct mbuf *m0; 3023 struct mbuf *md; 3024 struct ip6_hdr *ip6; 3025 struct mld_hdr *mld; 3026 int error; 3027 int off; 3028 int type; 3029 uint32_t ifindex; 3030 3031 CTR2(KTR_MLD, "%s: transmit %p", __func__, m); 3032 3033 /* 3034 * Set VNET image pointer from enqueued mbuf chain 3035 * before doing anything else. Whilst we use interface 3036 * indexes to guard against interface detach, they are 3037 * unique to each VIMAGE and must be retrieved. 3038 */ 3039 INIT_VNET_NET(curvnet); 3040 INIT_VNET_INET6(curvnet); 3041 ifindex = mld_restore_context(m); 3042 3043 /* 3044 * Check if the ifnet still exists. This limits the scope of 3045 * any race in the absence of a global ifp lock for low cost 3046 * (an array lookup). 3047 */ 3048 ifp = ifnet_byindex(ifindex); 3049 if (ifp == NULL) { 3050 CTR3(KTR_MLD, "%s: dropped %p as ifindex %u went away.", 3051 __func__, m, ifindex); 3052 m_freem(m); 3053 IP6STAT_INC(ip6s_noroute); 3054 goto out; 3055 } 3056 3057 im6o.im6o_multicast_hlim = 1; 3058 im6o.im6o_multicast_loop = (V_ip6_mrouter != NULL); 3059 im6o.im6o_multicast_ifp = ifp; 3060 3061 if (m->m_flags & M_MLDV1) { 3062 m0 = m; 3063 } else { 3064 m0 = mld_v2_encap_report(ifp, m); 3065 if (m0 == NULL) { 3066 CTR2(KTR_MLD, "%s: dropped %p", __func__, m); 3067 m_freem(m); 3068 IP6STAT_INC(ip6s_odropped); 3069 goto out; 3070 } 3071 } 3072 3073 mld_scrub_context(m0); 3074 m->m_flags &= ~(M_PROTOFLAGS); 3075 m0->m_pkthdr.rcvif = V_loif; 3076 3077 ip6 = mtod(m0, struct ip6_hdr *); 3078 #if 0 3079 (void)in6_setscope(&ip6->ip6_dst, ifp, NULL); /* XXX LOR */ 3080 #else 3081 /* 3082 * XXX XXX Break some KPI rules to prevent an LOR which would 3083 * occur if we called in6_setscope() at transmission. 3084 * See comments at top of file. 3085 */ 3086 MLD_EMBEDSCOPE(&ip6->ip6_dst, ifp->if_index); 3087 #endif 3088 3089 /* 3090 * Retrieve the ICMPv6 type before handoff to ip6_output(), 3091 * so we can bump the stats. 3092 */ 3093 md = m_getptr(m0, sizeof(struct ip6_hdr), &off); 3094 mld = (struct mld_hdr *)(mtod(md, uint8_t *) + off); 3095 type = mld->mld_type; 3096 3097 error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, &im6o, 3098 &oifp, NULL); 3099 if (error) { 3100 CTR3(KTR_MLD, "%s: ip6_output(%p) = %d", __func__, m0, error); 3101 goto out; 3102 } 3103 ICMP6STAT_INC(icp6s_outhist[type]); 3104 if (oifp != NULL) { 3105 icmp6_ifstat_inc(oifp, ifs6_out_msg); 3106 switch (type) { 3107 case MLD_LISTENER_REPORT: 3108 case MLDV2_LISTENER_REPORT: 3109 icmp6_ifstat_inc(oifp, ifs6_out_mldreport); 3110 break; 3111 case MLD_LISTENER_DONE: 3112 icmp6_ifstat_inc(oifp, ifs6_out_mlddone); 3113 break; 3114 } 3115 } 3116 out: 3117 return; 3118 } 3119 3120 /* 3121 * Encapsulate an MLDv2 report. 3122 * 3123 * KAME IPv6 requires that hop-by-hop options be passed separately, 3124 * and that the IPv6 header be prepended in a separate mbuf. 3125 * 3126 * Returns a pointer to the new mbuf chain head, or NULL if the 3127 * allocation failed. 3128 */ 3129 static struct mbuf * 3130 mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m) 3131 { 3132 struct mbuf *mh; 3133 struct mldv2_report *mld; 3134 struct ip6_hdr *ip6; 3135 struct in6_ifaddr *ia; 3136 int mldreclen; 3137 3138 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 3139 KASSERT((m->m_flags & M_PKTHDR), 3140 ("%s: mbuf chain %p is !M_PKTHDR", __func__, m)); 3141 3142 /* 3143 * RFC3590: OK to send as :: or tentative during DAD. 3144 */ 3145 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 3146 if (ia == NULL) 3147 CTR1(KTR_MLD, "%s: warning: ia is NULL", __func__); 3148 3149 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3150 if (mh == NULL) { 3151 if (ia != NULL) 3152 ifa_free(&ia->ia_ifa); 3153 m_freem(m); 3154 return (NULL); 3155 } 3156 MH_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report)); 3157 3158 mldreclen = m_length(m, NULL); 3159 CTR2(KTR_MLD, "%s: mldreclen is %d", __func__, mldreclen); 3160 3161 mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report); 3162 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + 3163 sizeof(struct mldv2_report) + mldreclen; 3164 3165 ip6 = mtod(mh, struct ip6_hdr *); 3166 ip6->ip6_flow = 0; 3167 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 3168 ip6->ip6_vfc |= IPV6_VERSION; 3169 ip6->ip6_nxt = IPPROTO_ICMPV6; 3170 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 3171 if (ia != NULL) 3172 ifa_free(&ia->ia_ifa); 3173 ip6->ip6_dst = in6addr_linklocal_allv2routers; 3174 /* scope ID will be set in netisr */ 3175 3176 mld = (struct mldv2_report *)(ip6 + 1); 3177 mld->mld_type = MLDV2_LISTENER_REPORT; 3178 mld->mld_code = 0; 3179 mld->mld_cksum = 0; 3180 mld->mld_v2_reserved = 0; 3181 mld->mld_v2_numrecs = htons(m->m_pkthdr.PH_vt.vt_nrecs); 3182 m->m_pkthdr.PH_vt.vt_nrecs = 0; 3183 3184 mh->m_next = m; 3185 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 3186 sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen); 3187 return (mh); 3188 } 3189 3190 #ifdef KTR 3191 static char * 3192 mld_rec_type_to_str(const int type) 3193 { 3194 3195 switch (type) { 3196 case MLD_CHANGE_TO_EXCLUDE_MODE: 3197 return "TO_EX"; 3198 break; 3199 case MLD_CHANGE_TO_INCLUDE_MODE: 3200 return "TO_IN"; 3201 break; 3202 case MLD_MODE_IS_EXCLUDE: 3203 return "MODE_EX"; 3204 break; 3205 case MLD_MODE_IS_INCLUDE: 3206 return "MODE_IN"; 3207 break; 3208 case MLD_ALLOW_NEW_SOURCES: 3209 return "ALLOW_NEW"; 3210 break; 3211 case MLD_BLOCK_OLD_SOURCES: 3212 return "BLOCK_OLD"; 3213 break; 3214 default: 3215 break; 3216 } 3217 return "unknown"; 3218 } 3219 #endif 3220 3221 static void 3222 mld_sysinit(void) 3223 { 3224 3225 CTR1(KTR_MLD, "%s: initializing", __func__); 3226 MLD_LOCK_INIT(); 3227 3228 ip6_initpktopts(&mld_po); 3229 mld_po.ip6po_hlim = 1; 3230 mld_po.ip6po_hbh = &mld_ra.hbh; 3231 mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER; 3232 mld_po.ip6po_flags = IP6PO_DONTFRAG; 3233 } 3234 3235 static void 3236 mld_sysuninit(void) 3237 { 3238 3239 CTR1(KTR_MLD, "%s: tearing down", __func__); 3240 MLD_LOCK_DESTROY(); 3241 } 3242 3243 /* 3244 * Initialize an MLDv2 instance. 3245 * VIMAGE: Assumes curvnet set by caller and called per vimage. 3246 */ 3247 static int 3248 vnet_mld_iattach(const void *unused __unused) 3249 { 3250 INIT_VNET_INET6(curvnet); 3251 3252 CTR1(KTR_MLD, "%s: initializing", __func__); 3253 3254 LIST_INIT(&V_mli_head); 3255 3256 V_current_state_timers_running6 = 0; 3257 V_interface_timers_running6 = 0; 3258 V_state_change_timers_running6 = 0; 3259 3260 /* 3261 * Initialize sysctls to default values. 3262 */ 3263 V_mld_gsrdelay.tv_sec = 10; 3264 V_mld_gsrdelay.tv_usec = 0; 3265 3266 return (0); 3267 } 3268 3269 static int 3270 vnet_mld_idetach(const void *unused __unused) 3271 { 3272 #ifdef INVARIANTS 3273 INIT_VNET_INET6(curvnet); 3274 #endif 3275 3276 CTR1(KTR_MLD, "%s: tearing down", __func__); 3277 3278 KASSERT(LIST_EMPTY(&V_mli_head), 3279 ("%s: mli list not empty; ifnets not detached?", __func__)); 3280 3281 return (0); 3282 } 3283 3284 #ifndef VIMAGE_GLOBALS 3285 static vnet_modinfo_t vnet_mld_modinfo = { 3286 .vmi_id = VNET_MOD_MLD, 3287 .vmi_name = "mld", 3288 .vmi_dependson = VNET_MOD_INET6, 3289 .vmi_iattach = vnet_mld_iattach, 3290 .vmi_idetach = vnet_mld_idetach 3291 }; 3292 #endif 3293 3294 static int 3295 mld_modevent(module_t mod, int type, void *unused __unused) 3296 { 3297 3298 switch (type) { 3299 case MOD_LOAD: 3300 mld_sysinit(); 3301 #ifndef VIMAGE_GLOBALS 3302 vnet_mod_register(&vnet_mld_modinfo); 3303 #else 3304 vnet_mld_iattach(NULL); 3305 #endif 3306 break; 3307 case MOD_UNLOAD: 3308 #ifndef VIMAGE_GLOBALS 3309 vnet_mod_deregister(&vnet_mld_modinfo); 3310 #else 3311 vnet_mld_idetach(NULL); 3312 #endif 3313 mld_sysuninit(); 3314 break; 3315 default: 3316 return (EOPNOTSUPP); 3317 } 3318 return (0); 3319 } 3320 3321 static moduledata_t mld_mod = { 3322 "mld", 3323 mld_modevent, 3324 0 3325 }; 3326 DECLARE_MODULE(mld, mld_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); 3327