1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2009 Bruce Simpson. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. The name of the author may not be used to endorse or promote 15 * products derived from this software without specific prior written 16 * permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * $KAME: mld6.c,v 1.27 2001/04/04 05:17:30 itojun Exp $ 31 */ 32 33 /*- 34 * Copyright (c) 1988 Stephen Deering. 35 * Copyright (c) 1992, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * This code is derived from software contributed to Berkeley by 39 * Stephen Deering of Stanford University. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)igmp.c 8.1 (Berkeley) 7/19/93 66 */ 67 68 #include <sys/cdefs.h> 69 __FBSDID("$FreeBSD$"); 70 71 #include "opt_inet.h" 72 #include "opt_inet6.h" 73 74 #include <sys/param.h> 75 #include <sys/systm.h> 76 #include <sys/mbuf.h> 77 #include <sys/socket.h> 78 #include <sys/protosw.h> 79 #include <sys/sysctl.h> 80 #include <sys/kernel.h> 81 #include <sys/callout.h> 82 #include <sys/malloc.h> 83 #include <sys/module.h> 84 #include <sys/ktr.h> 85 86 #include <net/if.h> 87 #include <net/if_var.h> 88 #include <net/route.h> 89 #include <net/vnet.h> 90 91 #include <netinet/in.h> 92 #include <netinet/in_var.h> 93 #include <netinet6/in6_var.h> 94 #include <netinet/ip6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/scope6_var.h> 97 #include <netinet/icmp6.h> 98 #include <netinet6/mld6.h> 99 #include <netinet6/mld6_var.h> 100 101 #include <security/mac/mac_framework.h> 102 103 #ifndef KTR_MLD 104 #define KTR_MLD KTR_INET6 105 #endif 106 107 static struct mld_ifsoftc * 108 mli_alloc_locked(struct ifnet *); 109 static void mli_delete_locked(const struct ifnet *); 110 static void mld_dispatch_packet(struct mbuf *); 111 static void mld_dispatch_queue(struct mbufq *, int); 112 static void mld_final_leave(struct in6_multi *, struct mld_ifsoftc *); 113 static void mld_fasttimo_vnet(struct in6_multi_head *inmh); 114 static int mld_handle_state_change(struct in6_multi *, 115 struct mld_ifsoftc *); 116 static int mld_initial_join(struct in6_multi *, struct mld_ifsoftc *, 117 const int); 118 #ifdef KTR 119 static char * mld_rec_type_to_str(const int); 120 #endif 121 static void mld_set_version(struct mld_ifsoftc *, const int); 122 static void mld_slowtimo_vnet(void); 123 static int mld_v1_input_query(struct ifnet *, const struct ip6_hdr *, 124 /*const*/ struct mld_hdr *); 125 static int mld_v1_input_report(struct ifnet *, const struct ip6_hdr *, 126 /*const*/ struct mld_hdr *); 127 static void mld_v1_process_group_timer(struct in6_multi_head *, 128 struct in6_multi *); 129 static void mld_v1_process_querier_timers(struct mld_ifsoftc *); 130 static int mld_v1_transmit_report(struct in6_multi *, const int); 131 static void mld_v1_update_group(struct in6_multi *, const int); 132 static void mld_v2_cancel_link_timers(struct mld_ifsoftc *); 133 static void mld_v2_dispatch_general_query(struct mld_ifsoftc *); 134 static struct mbuf * 135 mld_v2_encap_report(struct ifnet *, struct mbuf *); 136 static int mld_v2_enqueue_filter_change(struct mbufq *, 137 struct in6_multi *); 138 static int mld_v2_enqueue_group_record(struct mbufq *, 139 struct in6_multi *, const int, const int, const int, 140 const int); 141 static int mld_v2_input_query(struct ifnet *, const struct ip6_hdr *, 142 struct mbuf *, struct mldv2_query *, const int, const int); 143 static int mld_v2_merge_state_changes(struct in6_multi *, 144 struct mbufq *); 145 static void mld_v2_process_group_timers(struct in6_multi_head *, 146 struct mbufq *, struct mbufq *, 147 struct in6_multi *, const int); 148 static int mld_v2_process_group_query(struct in6_multi *, 149 struct mld_ifsoftc *mli, int, struct mbuf *, 150 struct mldv2_query *, const int); 151 static int sysctl_mld_gsr(SYSCTL_HANDLER_ARGS); 152 static int sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS); 153 154 /* 155 * Normative references: RFC 2710, RFC 3590, RFC 3810. 156 * 157 * Locking: 158 * * The MLD subsystem lock ends up being system-wide for the moment, 159 * but could be per-VIMAGE later on. 160 * * The permitted lock order is: IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK. 161 * Any may be taken independently; if any are held at the same 162 * time, the above lock order must be followed. 163 * * IN6_MULTI_LOCK covers in_multi. 164 * * MLD_LOCK covers per-link state and any global variables in this file. 165 * * IF_ADDR_LOCK covers if_multiaddrs, which is used for a variety of 166 * per-link state iterators. 167 * 168 * XXX LOR PREVENTION 169 * A special case for IPv6 is the in6_setscope() routine. ip6_output() 170 * will not accept an ifp; it wants an embedded scope ID, unlike 171 * ip_output(), which happily takes the ifp given to it. The embedded 172 * scope ID is only used by MLD to select the outgoing interface. 173 * 174 * During interface attach and detach, MLD will take MLD_LOCK *after* 175 * the IF_AFDATA_LOCK. 176 * As in6_setscope() takes IF_AFDATA_LOCK then SCOPE_LOCK, we can't call 177 * it with MLD_LOCK held without triggering an LOR. A netisr with indirect 178 * dispatch could work around this, but we'd rather not do that, as it 179 * can introduce other races. 180 * 181 * As such, we exploit the fact that the scope ID is just the interface 182 * index, and embed it in the IPv6 destination address accordingly. 183 * This is potentially NOT VALID for MLDv1 reports, as they 184 * are always sent to the multicast group itself; as MLDv2 185 * reports are always sent to ff02::16, this is not an issue 186 * when MLDv2 is in use. 187 * 188 * This does not however eliminate the LOR when ip6_output() itself 189 * calls in6_setscope() internally whilst MLD_LOCK is held. This will 190 * trigger a LOR warning in WITNESS when the ifnet is detached. 191 * 192 * The right answer is probably to make IF_AFDATA_LOCK an rwlock, given 193 * how it's used across the network stack. Here we're simply exploiting 194 * the fact that MLD runs at a similar layer in the stack to scope6.c. 195 * 196 * VIMAGE: 197 * * Each in6_multi corresponds to an ifp, and each ifp corresponds 198 * to a vnet in ifp->if_vnet. 199 */ 200 static struct mtx mld_mtx; 201 static MALLOC_DEFINE(M_MLD, "mld", "mld state"); 202 203 #define MLD_EMBEDSCOPE(pin6, zoneid) \ 204 if (IN6_IS_SCOPE_LINKLOCAL(pin6) || \ 205 IN6_IS_ADDR_MC_INTFACELOCAL(pin6)) \ 206 (pin6)->s6_addr16[1] = htons((zoneid) & 0xFFFF) \ 207 208 /* 209 * VIMAGE-wide globals. 210 */ 211 VNET_DEFINE_STATIC(struct timeval, mld_gsrdelay) = {10, 0}; 212 VNET_DEFINE_STATIC(LIST_HEAD(, mld_ifsoftc), mli_head); 213 VNET_DEFINE_STATIC(int, interface_timers_running6); 214 VNET_DEFINE_STATIC(int, state_change_timers_running6); 215 VNET_DEFINE_STATIC(int, current_state_timers_running6); 216 217 #define V_mld_gsrdelay VNET(mld_gsrdelay) 218 #define V_mli_head VNET(mli_head) 219 #define V_interface_timers_running6 VNET(interface_timers_running6) 220 #define V_state_change_timers_running6 VNET(state_change_timers_running6) 221 #define V_current_state_timers_running6 VNET(current_state_timers_running6) 222 223 SYSCTL_DECL(_net_inet6); /* Note: Not in any common header. */ 224 225 SYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW, 0, 226 "IPv6 Multicast Listener Discovery"); 227 228 /* 229 * Virtualized sysctls. 230 */ 231 SYSCTL_PROC(_net_inet6_mld, OID_AUTO, gsrdelay, 232 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 233 &VNET_NAME(mld_gsrdelay.tv_sec), 0, sysctl_mld_gsr, "I", 234 "Rate limit for MLDv2 Group-and-Source queries in seconds"); 235 236 /* 237 * Non-virtualized sysctls. 238 */ 239 static SYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo, 240 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mld_ifinfo, 241 "Per-interface MLDv2 state"); 242 243 static int mld_v1enable = 1; 244 SYSCTL_INT(_net_inet6_mld, OID_AUTO, v1enable, CTLFLAG_RWTUN, 245 &mld_v1enable, 0, "Enable fallback to MLDv1"); 246 247 static int mld_v2enable = 1; 248 SYSCTL_INT(_net_inet6_mld, OID_AUTO, v2enable, CTLFLAG_RWTUN, 249 &mld_v2enable, 0, "Enable MLDv2"); 250 251 static int mld_use_allow = 1; 252 SYSCTL_INT(_net_inet6_mld, OID_AUTO, use_allow, CTLFLAG_RWTUN, 253 &mld_use_allow, 0, "Use ALLOW/BLOCK for RFC 4604 SSM joins/leaves"); 254 255 /* 256 * Packed Router Alert option structure declaration. 257 */ 258 struct mld_raopt { 259 struct ip6_hbh hbh; 260 struct ip6_opt pad; 261 struct ip6_opt_router ra; 262 } __packed; 263 264 /* 265 * Router Alert hop-by-hop option header. 266 */ 267 static struct mld_raopt mld_ra = { 268 .hbh = { 0, 0 }, 269 .pad = { .ip6o_type = IP6OPT_PADN, 0 }, 270 .ra = { 271 .ip6or_type = IP6OPT_ROUTER_ALERT, 272 .ip6or_len = IP6OPT_RTALERT_LEN - 2, 273 .ip6or_value[0] = ((IP6OPT_RTALERT_MLD >> 8) & 0xFF), 274 .ip6or_value[1] = (IP6OPT_RTALERT_MLD & 0xFF) 275 } 276 }; 277 static struct ip6_pktopts mld_po; 278 279 static __inline void 280 mld_save_context(struct mbuf *m, struct ifnet *ifp) 281 { 282 283 #ifdef VIMAGE 284 m->m_pkthdr.PH_loc.ptr = ifp->if_vnet; 285 #endif /* VIMAGE */ 286 m->m_pkthdr.flowid = ifp->if_index; 287 } 288 289 static __inline void 290 mld_scrub_context(struct mbuf *m) 291 { 292 293 m->m_pkthdr.PH_loc.ptr = NULL; 294 m->m_pkthdr.flowid = 0; 295 } 296 297 /* 298 * Restore context from a queued output chain. 299 * Return saved ifindex. 300 * 301 * VIMAGE: The assertion is there to make sure that we 302 * actually called CURVNET_SET() with what's in the mbuf chain. 303 */ 304 static __inline uint32_t 305 mld_restore_context(struct mbuf *m) 306 { 307 308 #if defined(VIMAGE) && defined(INVARIANTS) 309 KASSERT(curvnet == m->m_pkthdr.PH_loc.ptr, 310 ("%s: called when curvnet was not restored: cuvnet %p m ptr %p", 311 __func__, curvnet, m->m_pkthdr.PH_loc.ptr)); 312 #endif 313 return (m->m_pkthdr.flowid); 314 } 315 316 /* 317 * Retrieve or set threshold between group-source queries in seconds. 318 * 319 * VIMAGE: Assume curvnet set by caller. 320 * SMPng: NOTE: Serialized by MLD lock. 321 */ 322 static int 323 sysctl_mld_gsr(SYSCTL_HANDLER_ARGS) 324 { 325 int error; 326 int i; 327 328 error = sysctl_wire_old_buffer(req, sizeof(int)); 329 if (error) 330 return (error); 331 332 MLD_LOCK(); 333 334 i = V_mld_gsrdelay.tv_sec; 335 336 error = sysctl_handle_int(oidp, &i, 0, req); 337 if (error || !req->newptr) 338 goto out_locked; 339 340 if (i < -1 || i >= 60) { 341 error = EINVAL; 342 goto out_locked; 343 } 344 345 CTR2(KTR_MLD, "change mld_gsrdelay from %d to %d", 346 V_mld_gsrdelay.tv_sec, i); 347 V_mld_gsrdelay.tv_sec = i; 348 349 out_locked: 350 MLD_UNLOCK(); 351 return (error); 352 } 353 354 /* 355 * Expose struct mld_ifsoftc to userland, keyed by ifindex. 356 * For use by ifmcstat(8). 357 * 358 * SMPng: NOTE: Does an unlocked ifindex space read. 359 * VIMAGE: Assume curvnet set by caller. The node handler itself 360 * is not directly virtualized. 361 */ 362 static int 363 sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS) 364 { 365 int *name; 366 int error; 367 u_int namelen; 368 struct ifnet *ifp; 369 struct mld_ifsoftc *mli; 370 371 name = (int *)arg1; 372 namelen = arg2; 373 374 if (req->newptr != NULL) 375 return (EPERM); 376 377 if (namelen != 1) 378 return (EINVAL); 379 380 error = sysctl_wire_old_buffer(req, sizeof(struct mld_ifinfo)); 381 if (error) 382 return (error); 383 384 IN6_MULTI_LOCK(); 385 IN6_MULTI_LIST_LOCK(); 386 MLD_LOCK(); 387 388 if (name[0] <= 0 || name[0] > V_if_index) { 389 error = ENOENT; 390 goto out_locked; 391 } 392 393 error = ENOENT; 394 395 ifp = ifnet_byindex(name[0]); 396 if (ifp == NULL) 397 goto out_locked; 398 399 LIST_FOREACH(mli, &V_mli_head, mli_link) { 400 if (ifp == mli->mli_ifp) { 401 struct mld_ifinfo info; 402 403 info.mli_version = mli->mli_version; 404 info.mli_v1_timer = mli->mli_v1_timer; 405 info.mli_v2_timer = mli->mli_v2_timer; 406 info.mli_flags = mli->mli_flags; 407 info.mli_rv = mli->mli_rv; 408 info.mli_qi = mli->mli_qi; 409 info.mli_qri = mli->mli_qri; 410 info.mli_uri = mli->mli_uri; 411 error = SYSCTL_OUT(req, &info, sizeof(info)); 412 break; 413 } 414 } 415 416 out_locked: 417 MLD_UNLOCK(); 418 IN6_MULTI_LIST_UNLOCK(); 419 IN6_MULTI_UNLOCK(); 420 return (error); 421 } 422 423 /* 424 * Dispatch an entire queue of pending packet chains. 425 * VIMAGE: Assumes the vnet pointer has been set. 426 */ 427 static void 428 mld_dispatch_queue(struct mbufq *mq, int limit) 429 { 430 struct mbuf *m; 431 432 while ((m = mbufq_dequeue(mq)) != NULL) { 433 CTR3(KTR_MLD, "%s: dispatch %p from %p", __func__, mq, m); 434 mld_dispatch_packet(m); 435 if (--limit == 0) 436 break; 437 } 438 } 439 440 /* 441 * Filter outgoing MLD report state by group. 442 * 443 * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1) 444 * and node-local addresses. However, kernel and socket consumers 445 * always embed the KAME scope ID in the address provided, so strip it 446 * when performing comparison. 447 * Note: This is not the same as the *multicast* scope. 448 * 449 * Return zero if the given group is one for which MLD reports 450 * should be suppressed, or non-zero if reports should be issued. 451 */ 452 static __inline int 453 mld_is_addr_reported(const struct in6_addr *addr) 454 { 455 456 KASSERT(IN6_IS_ADDR_MULTICAST(addr), ("%s: not multicast", __func__)); 457 458 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL) 459 return (0); 460 461 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL) { 462 struct in6_addr tmp = *addr; 463 in6_clearscope(&tmp); 464 if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes)) 465 return (0); 466 } 467 468 return (1); 469 } 470 471 /* 472 * Attach MLD when PF_INET6 is attached to an interface. 473 * 474 * SMPng: Normally called with IF_AFDATA_LOCK held. 475 */ 476 struct mld_ifsoftc * 477 mld_domifattach(struct ifnet *ifp) 478 { 479 struct mld_ifsoftc *mli; 480 481 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 482 __func__, ifp, if_name(ifp)); 483 484 MLD_LOCK(); 485 486 mli = mli_alloc_locked(ifp); 487 if (!(ifp->if_flags & IFF_MULTICAST)) 488 mli->mli_flags |= MLIF_SILENT; 489 if (mld_use_allow) 490 mli->mli_flags |= MLIF_USEALLOW; 491 492 MLD_UNLOCK(); 493 494 return (mli); 495 } 496 497 /* 498 * VIMAGE: assume curvnet set by caller. 499 */ 500 static struct mld_ifsoftc * 501 mli_alloc_locked(/*const*/ struct ifnet *ifp) 502 { 503 struct mld_ifsoftc *mli; 504 505 MLD_LOCK_ASSERT(); 506 507 mli = malloc(sizeof(struct mld_ifsoftc), M_MLD, M_NOWAIT|M_ZERO); 508 if (mli == NULL) 509 goto out; 510 511 mli->mli_ifp = ifp; 512 mli->mli_version = MLD_VERSION_2; 513 mli->mli_flags = 0; 514 mli->mli_rv = MLD_RV_INIT; 515 mli->mli_qi = MLD_QI_INIT; 516 mli->mli_qri = MLD_QRI_INIT; 517 mli->mli_uri = MLD_URI_INIT; 518 mbufq_init(&mli->mli_gq, MLD_MAX_RESPONSE_PACKETS); 519 520 LIST_INSERT_HEAD(&V_mli_head, mli, mli_link); 521 522 CTR2(KTR_MLD, "allocate mld_ifsoftc for ifp %p(%s)", 523 ifp, if_name(ifp)); 524 525 out: 526 return (mli); 527 } 528 529 /* 530 * Hook for ifdetach. 531 * 532 * NOTE: Some finalization tasks need to run before the protocol domain 533 * is detached, but also before the link layer does its cleanup. 534 * Run before link-layer cleanup; cleanup groups, but do not free MLD state. 535 * 536 * SMPng: Caller must hold IN6_MULTI_LOCK(). 537 * Must take IF_ADDR_LOCK() to cover if_multiaddrs iterator. 538 * XXX This routine is also bitten by unlocked ifma_protospec access. 539 */ 540 void 541 mld_ifdetach(struct ifnet *ifp, struct in6_multi_head *inmh) 542 { 543 struct epoch_tracker et; 544 struct mld_ifsoftc *mli; 545 struct ifmultiaddr *ifma; 546 struct in6_multi *inm; 547 548 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", __func__, ifp, 549 if_name(ifp)); 550 551 IN6_MULTI_LIST_LOCK_ASSERT(); 552 MLD_LOCK(); 553 554 mli = MLD_IFINFO(ifp); 555 IF_ADDR_WLOCK(ifp); 556 /* 557 * Extract list of in6_multi associated with the detaching ifp 558 * which the PF_INET6 layer is about to release. 559 */ 560 NET_EPOCH_ENTER(et); 561 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 562 inm = in6m_ifmultiaddr_get_inm(ifma); 563 if (inm == NULL) 564 continue; 565 in6m_disconnect_locked(inmh, inm); 566 567 if (mli->mli_version == MLD_VERSION_2) { 568 in6m_clear_recorded(inm); 569 570 /* 571 * We need to release the final reference held 572 * for issuing the INCLUDE {}. 573 */ 574 if (inm->in6m_state == MLD_LEAVING_MEMBER) { 575 inm->in6m_state = MLD_NOT_MEMBER; 576 in6m_rele_locked(inmh, inm); 577 } 578 } 579 } 580 NET_EPOCH_EXIT(et); 581 IF_ADDR_WUNLOCK(ifp); 582 MLD_UNLOCK(); 583 } 584 585 /* 586 * Hook for domifdetach. 587 * Runs after link-layer cleanup; free MLD state. 588 * 589 * SMPng: Normally called with IF_AFDATA_LOCK held. 590 */ 591 void 592 mld_domifdetach(struct ifnet *ifp) 593 { 594 595 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 596 __func__, ifp, if_name(ifp)); 597 598 MLD_LOCK(); 599 mli_delete_locked(ifp); 600 MLD_UNLOCK(); 601 } 602 603 static void 604 mli_delete_locked(const struct ifnet *ifp) 605 { 606 struct mld_ifsoftc *mli, *tmli; 607 608 CTR3(KTR_MLD, "%s: freeing mld_ifsoftc for ifp %p(%s)", 609 __func__, ifp, if_name(ifp)); 610 611 MLD_LOCK_ASSERT(); 612 613 LIST_FOREACH_SAFE(mli, &V_mli_head, mli_link, tmli) { 614 if (mli->mli_ifp == ifp) { 615 /* 616 * Free deferred General Query responses. 617 */ 618 mbufq_drain(&mli->mli_gq); 619 620 LIST_REMOVE(mli, mli_link); 621 622 free(mli, M_MLD); 623 return; 624 } 625 } 626 } 627 628 /* 629 * Process a received MLDv1 general or address-specific query. 630 * Assumes that the query header has been pulled up to sizeof(mld_hdr). 631 * 632 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 633 * mld_addr. This is OK as we own the mbuf chain. 634 */ 635 static int 636 mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 637 /*const*/ struct mld_hdr *mld) 638 { 639 struct ifmultiaddr *ifma; 640 struct mld_ifsoftc *mli; 641 struct in6_multi *inm; 642 int is_general_query; 643 uint16_t timer; 644 #ifdef KTR 645 char ip6tbuf[INET6_ADDRSTRLEN]; 646 #endif 647 648 NET_EPOCH_ASSERT(); 649 650 is_general_query = 0; 651 652 if (!mld_v1enable) { 653 CTR3(KTR_MLD, "ignore v1 query %s on ifp %p(%s)", 654 ip6_sprintf(ip6tbuf, &mld->mld_addr), 655 ifp, if_name(ifp)); 656 return (0); 657 } 658 659 /* 660 * RFC3810 Section 6.2: MLD queries must originate from 661 * a router's link-local address. 662 */ 663 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 664 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 665 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 666 ifp, if_name(ifp)); 667 return (0); 668 } 669 670 /* 671 * Do address field validation upfront before we accept 672 * the query. 673 */ 674 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 675 /* 676 * MLDv1 General Query. 677 * If this was not sent to the all-nodes group, ignore it. 678 */ 679 struct in6_addr dst; 680 681 dst = ip6->ip6_dst; 682 in6_clearscope(&dst); 683 if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes)) 684 return (EINVAL); 685 is_general_query = 1; 686 } else { 687 /* 688 * Embed scope ID of receiving interface in MLD query for 689 * lookup whilst we don't hold other locks. 690 */ 691 in6_setscope(&mld->mld_addr, ifp, NULL); 692 } 693 694 IN6_MULTI_LIST_LOCK(); 695 MLD_LOCK(); 696 697 /* 698 * Switch to MLDv1 host compatibility mode. 699 */ 700 mli = MLD_IFINFO(ifp); 701 KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp)); 702 mld_set_version(mli, MLD_VERSION_1); 703 704 timer = (ntohs(mld->mld_maxdelay) * PR_FASTHZ) / MLD_TIMER_SCALE; 705 if (timer == 0) 706 timer = 1; 707 708 if (is_general_query) { 709 /* 710 * For each reporting group joined on this 711 * interface, kick the report timer. 712 */ 713 CTR2(KTR_MLD, "process v1 general query on ifp %p(%s)", 714 ifp, if_name(ifp)); 715 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 716 inm = in6m_ifmultiaddr_get_inm(ifma); 717 if (inm == NULL) 718 continue; 719 mld_v1_update_group(inm, timer); 720 } 721 } else { 722 /* 723 * MLDv1 Group-Specific Query. 724 * If this is a group-specific MLDv1 query, we need only 725 * look up the single group to process it. 726 */ 727 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 728 if (inm != NULL) { 729 CTR3(KTR_MLD, "process v1 query %s on ifp %p(%s)", 730 ip6_sprintf(ip6tbuf, &mld->mld_addr), 731 ifp, if_name(ifp)); 732 mld_v1_update_group(inm, timer); 733 } 734 /* XXX Clear embedded scope ID as userland won't expect it. */ 735 in6_clearscope(&mld->mld_addr); 736 } 737 738 MLD_UNLOCK(); 739 IN6_MULTI_LIST_UNLOCK(); 740 741 return (0); 742 } 743 744 /* 745 * Update the report timer on a group in response to an MLDv1 query. 746 * 747 * If we are becoming the reporting member for this group, start the timer. 748 * If we already are the reporting member for this group, and timer is 749 * below the threshold, reset it. 750 * 751 * We may be updating the group for the first time since we switched 752 * to MLDv2. If we are, then we must clear any recorded source lists, 753 * and transition to REPORTING state; the group timer is overloaded 754 * for group and group-source query responses. 755 * 756 * Unlike MLDv2, the delay per group should be jittered 757 * to avoid bursts of MLDv1 reports. 758 */ 759 static void 760 mld_v1_update_group(struct in6_multi *inm, const int timer) 761 { 762 #ifdef KTR 763 char ip6tbuf[INET6_ADDRSTRLEN]; 764 #endif 765 766 CTR4(KTR_MLD, "%s: %s/%s timer=%d", __func__, 767 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 768 if_name(inm->in6m_ifp), timer); 769 770 IN6_MULTI_LIST_LOCK_ASSERT(); 771 772 switch (inm->in6m_state) { 773 case MLD_NOT_MEMBER: 774 case MLD_SILENT_MEMBER: 775 break; 776 case MLD_REPORTING_MEMBER: 777 if (inm->in6m_timer != 0 && 778 inm->in6m_timer <= timer) { 779 CTR1(KTR_MLD, "%s: REPORTING and timer running, " 780 "skipping.", __func__); 781 break; 782 } 783 /* FALLTHROUGH */ 784 case MLD_SG_QUERY_PENDING_MEMBER: 785 case MLD_G_QUERY_PENDING_MEMBER: 786 case MLD_IDLE_MEMBER: 787 case MLD_LAZY_MEMBER: 788 case MLD_AWAKENING_MEMBER: 789 CTR1(KTR_MLD, "%s: ->REPORTING", __func__); 790 inm->in6m_state = MLD_REPORTING_MEMBER; 791 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 792 V_current_state_timers_running6 = 1; 793 break; 794 case MLD_SLEEPING_MEMBER: 795 CTR1(KTR_MLD, "%s: ->AWAKENING", __func__); 796 inm->in6m_state = MLD_AWAKENING_MEMBER; 797 break; 798 case MLD_LEAVING_MEMBER: 799 break; 800 } 801 } 802 803 /* 804 * Process a received MLDv2 general, group-specific or 805 * group-and-source-specific query. 806 * 807 * Assumes that mld points to a struct mldv2_query which is stored in 808 * contiguous memory. 809 * 810 * Return 0 if successful, otherwise an appropriate error code is returned. 811 */ 812 static int 813 mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 814 struct mbuf *m, struct mldv2_query *mld, const int off, const int icmp6len) 815 { 816 struct mld_ifsoftc *mli; 817 struct in6_multi *inm; 818 uint32_t maxdelay, nsrc, qqi; 819 int is_general_query; 820 uint16_t timer; 821 uint8_t qrv; 822 #ifdef KTR 823 char ip6tbuf[INET6_ADDRSTRLEN]; 824 #endif 825 826 NET_EPOCH_ASSERT(); 827 828 if (!mld_v2enable) { 829 CTR3(KTR_MLD, "ignore v2 query src %s on ifp %p(%s)", 830 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 831 ifp, if_name(ifp)); 832 return (0); 833 } 834 835 /* 836 * RFC3810 Section 6.2: MLD queries must originate from 837 * a router's link-local address. 838 */ 839 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 840 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 841 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 842 ifp, if_name(ifp)); 843 return (0); 844 } 845 846 is_general_query = 0; 847 848 CTR2(KTR_MLD, "input v2 query on ifp %p(%s)", ifp, if_name(ifp)); 849 850 maxdelay = ntohs(mld->mld_maxdelay); /* in 1/10ths of a second */ 851 if (maxdelay >= 32768) { 852 maxdelay = (MLD_MRC_MANT(maxdelay) | 0x1000) << 853 (MLD_MRC_EXP(maxdelay) + 3); 854 } 855 timer = (maxdelay * PR_FASTHZ) / MLD_TIMER_SCALE; 856 if (timer == 0) 857 timer = 1; 858 859 qrv = MLD_QRV(mld->mld_misc); 860 if (qrv < 2) { 861 CTR3(KTR_MLD, "%s: clamping qrv %d to %d", __func__, 862 qrv, MLD_RV_INIT); 863 qrv = MLD_RV_INIT; 864 } 865 866 qqi = mld->mld_qqi; 867 if (qqi >= 128) { 868 qqi = MLD_QQIC_MANT(mld->mld_qqi) << 869 (MLD_QQIC_EXP(mld->mld_qqi) + 3); 870 } 871 872 nsrc = ntohs(mld->mld_numsrc); 873 if (nsrc > MLD_MAX_GS_SOURCES) 874 return (EMSGSIZE); 875 if (icmp6len < sizeof(struct mldv2_query) + 876 (nsrc * sizeof(struct in6_addr))) 877 return (EMSGSIZE); 878 879 /* 880 * Do further input validation upfront to avoid resetting timers 881 * should we need to discard this query. 882 */ 883 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 884 /* 885 * A general query with a source list has undefined 886 * behaviour; discard it. 887 */ 888 if (nsrc > 0) 889 return (EINVAL); 890 is_general_query = 1; 891 } else { 892 /* 893 * Embed scope ID of receiving interface in MLD query for 894 * lookup whilst we don't hold other locks (due to KAME 895 * locking lameness). We own this mbuf chain just now. 896 */ 897 in6_setscope(&mld->mld_addr, ifp, NULL); 898 } 899 900 IN6_MULTI_LIST_LOCK(); 901 MLD_LOCK(); 902 903 mli = MLD_IFINFO(ifp); 904 KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp)); 905 906 /* 907 * Discard the v2 query if we're in Compatibility Mode. 908 * The RFC is pretty clear that hosts need to stay in MLDv1 mode 909 * until the Old Version Querier Present timer expires. 910 */ 911 if (mli->mli_version != MLD_VERSION_2) 912 goto out_locked; 913 914 mld_set_version(mli, MLD_VERSION_2); 915 mli->mli_rv = qrv; 916 mli->mli_qi = qqi; 917 mli->mli_qri = maxdelay; 918 919 CTR4(KTR_MLD, "%s: qrv %d qi %d maxdelay %d", __func__, qrv, qqi, 920 maxdelay); 921 922 if (is_general_query) { 923 /* 924 * MLDv2 General Query. 925 * 926 * Schedule a current-state report on this ifp for 927 * all groups, possibly containing source lists. 928 * 929 * If there is a pending General Query response 930 * scheduled earlier than the selected delay, do 931 * not schedule any other reports. 932 * Otherwise, reset the interface timer. 933 */ 934 CTR2(KTR_MLD, "process v2 general query on ifp %p(%s)", 935 ifp, if_name(ifp)); 936 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) { 937 mli->mli_v2_timer = MLD_RANDOM_DELAY(timer); 938 V_interface_timers_running6 = 1; 939 } 940 } else { 941 /* 942 * MLDv2 Group-specific or Group-and-source-specific Query. 943 * 944 * Group-source-specific queries are throttled on 945 * a per-group basis to defeat denial-of-service attempts. 946 * Queries for groups we are not a member of on this 947 * link are simply ignored. 948 */ 949 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 950 if (inm == NULL) 951 goto out_locked; 952 if (nsrc > 0) { 953 if (!ratecheck(&inm->in6m_lastgsrtv, 954 &V_mld_gsrdelay)) { 955 CTR1(KTR_MLD, "%s: GS query throttled.", 956 __func__); 957 goto out_locked; 958 } 959 } 960 CTR2(KTR_MLD, "process v2 group query on ifp %p(%s)", 961 ifp, if_name(ifp)); 962 /* 963 * If there is a pending General Query response 964 * scheduled sooner than the selected delay, no 965 * further report need be scheduled. 966 * Otherwise, prepare to respond to the 967 * group-specific or group-and-source query. 968 */ 969 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) 970 mld_v2_process_group_query(inm, mli, timer, m, mld, off); 971 972 /* XXX Clear embedded scope ID as userland won't expect it. */ 973 in6_clearscope(&mld->mld_addr); 974 } 975 976 out_locked: 977 MLD_UNLOCK(); 978 IN6_MULTI_LIST_UNLOCK(); 979 980 return (0); 981 } 982 983 /* 984 * Process a received MLDv2 group-specific or group-and-source-specific 985 * query. 986 * Return <0 if any error occurred. Currently this is ignored. 987 */ 988 static int 989 mld_v2_process_group_query(struct in6_multi *inm, struct mld_ifsoftc *mli, 990 int timer, struct mbuf *m0, struct mldv2_query *mld, const int off) 991 { 992 int retval; 993 uint16_t nsrc; 994 995 IN6_MULTI_LIST_LOCK_ASSERT(); 996 MLD_LOCK_ASSERT(); 997 998 retval = 0; 999 1000 switch (inm->in6m_state) { 1001 case MLD_NOT_MEMBER: 1002 case MLD_SILENT_MEMBER: 1003 case MLD_SLEEPING_MEMBER: 1004 case MLD_LAZY_MEMBER: 1005 case MLD_AWAKENING_MEMBER: 1006 case MLD_IDLE_MEMBER: 1007 case MLD_LEAVING_MEMBER: 1008 return (retval); 1009 break; 1010 case MLD_REPORTING_MEMBER: 1011 case MLD_G_QUERY_PENDING_MEMBER: 1012 case MLD_SG_QUERY_PENDING_MEMBER: 1013 break; 1014 } 1015 1016 nsrc = ntohs(mld->mld_numsrc); 1017 1018 /* Length should be checked by calling function. */ 1019 KASSERT((m0->m_flags & M_PKTHDR) == 0 || 1020 m0->m_pkthdr.len >= off + sizeof(struct mldv2_query) + 1021 nsrc * sizeof(struct in6_addr), 1022 ("mldv2 packet is too short: (%d bytes < %zd bytes, m=%p)", 1023 m0->m_pkthdr.len, off + sizeof(struct mldv2_query) + 1024 nsrc * sizeof(struct in6_addr), m0)); 1025 1026 1027 /* 1028 * Deal with group-specific queries upfront. 1029 * If any group query is already pending, purge any recorded 1030 * source-list state if it exists, and schedule a query response 1031 * for this group-specific query. 1032 */ 1033 if (nsrc == 0) { 1034 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 1035 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) { 1036 in6m_clear_recorded(inm); 1037 timer = min(inm->in6m_timer, timer); 1038 } 1039 inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER; 1040 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1041 V_current_state_timers_running6 = 1; 1042 return (retval); 1043 } 1044 1045 /* 1046 * Deal with the case where a group-and-source-specific query has 1047 * been received but a group-specific query is already pending. 1048 */ 1049 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) { 1050 timer = min(inm->in6m_timer, timer); 1051 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1052 V_current_state_timers_running6 = 1; 1053 return (retval); 1054 } 1055 1056 /* 1057 * Finally, deal with the case where a group-and-source-specific 1058 * query has been received, where a response to a previous g-s-r 1059 * query exists, or none exists. 1060 * In this case, we need to parse the source-list which the Querier 1061 * has provided us with and check if we have any source list filter 1062 * entries at T1 for these sources. If we do not, there is no need 1063 * schedule a report and the query may be dropped. 1064 * If we do, we must record them and schedule a current-state 1065 * report for those sources. 1066 */ 1067 if (inm->in6m_nsrc > 0) { 1068 struct in6_addr srcaddr; 1069 int i, nrecorded; 1070 int soff; 1071 1072 soff = off + sizeof(struct mldv2_query); 1073 nrecorded = 0; 1074 for (i = 0; i < nsrc; i++) { 1075 m_copydata(m0, soff, sizeof(struct in6_addr), 1076 (caddr_t)&srcaddr); 1077 retval = in6m_record_source(inm, &srcaddr); 1078 if (retval < 0) 1079 break; 1080 nrecorded += retval; 1081 soff += sizeof(struct in6_addr); 1082 } 1083 if (nrecorded > 0) { 1084 CTR1(KTR_MLD, 1085 "%s: schedule response to SG query", __func__); 1086 inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER; 1087 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1088 V_current_state_timers_running6 = 1; 1089 } 1090 } 1091 1092 return (retval); 1093 } 1094 1095 /* 1096 * Process a received MLDv1 host membership report. 1097 * Assumes mld points to mld_hdr in pulled up mbuf chain. 1098 * 1099 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 1100 * mld_addr. This is OK as we own the mbuf chain. 1101 */ 1102 static int 1103 mld_v1_input_report(struct ifnet *ifp, const struct ip6_hdr *ip6, 1104 /*const*/ struct mld_hdr *mld) 1105 { 1106 struct in6_addr src, dst; 1107 struct in6_ifaddr *ia; 1108 struct in6_multi *inm; 1109 #ifdef KTR 1110 char ip6tbuf[INET6_ADDRSTRLEN]; 1111 #endif 1112 1113 NET_EPOCH_ASSERT(); 1114 1115 if (!mld_v1enable) { 1116 CTR3(KTR_MLD, "ignore v1 report %s on ifp %p(%s)", 1117 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1118 ifp, if_name(ifp)); 1119 return (0); 1120 } 1121 1122 if (ifp->if_flags & IFF_LOOPBACK) 1123 return (0); 1124 1125 /* 1126 * MLDv1 reports must originate from a host's link-local address, 1127 * or the unspecified address (when booting). 1128 */ 1129 src = ip6->ip6_src; 1130 in6_clearscope(&src); 1131 if (!IN6_IS_SCOPE_LINKLOCAL(&src) && !IN6_IS_ADDR_UNSPECIFIED(&src)) { 1132 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 1133 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 1134 ifp, if_name(ifp)); 1135 return (EINVAL); 1136 } 1137 1138 /* 1139 * RFC2710 Section 4: MLDv1 reports must pertain to a multicast 1140 * group, and must be directed to the group itself. 1141 */ 1142 dst = ip6->ip6_dst; 1143 in6_clearscope(&dst); 1144 if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) || 1145 !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &dst)) { 1146 CTR3(KTR_MLD, "ignore v1 query dst %s on ifp %p(%s)", 1147 ip6_sprintf(ip6tbuf, &ip6->ip6_dst), 1148 ifp, if_name(ifp)); 1149 return (EINVAL); 1150 } 1151 1152 /* 1153 * Make sure we don't hear our own membership report, as fast 1154 * leave requires knowing that we are the only member of a 1155 * group. Assume we used the link-local address if available, 1156 * otherwise look for ::. 1157 * 1158 * XXX Note that scope ID comparison is needed for the address 1159 * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be 1160 * performed for the on-wire address. 1161 */ 1162 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1163 if ((ia && IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia))) || 1164 (ia == NULL && IN6_IS_ADDR_UNSPECIFIED(&src))) { 1165 if (ia != NULL) 1166 ifa_free(&ia->ia_ifa); 1167 return (0); 1168 } 1169 if (ia != NULL) 1170 ifa_free(&ia->ia_ifa); 1171 1172 CTR3(KTR_MLD, "process v1 report %s on ifp %p(%s)", 1173 ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, if_name(ifp)); 1174 1175 /* 1176 * Embed scope ID of receiving interface in MLD query for lookup 1177 * whilst we don't hold other locks (due to KAME locking lameness). 1178 */ 1179 if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) 1180 in6_setscope(&mld->mld_addr, ifp, NULL); 1181 1182 IN6_MULTI_LIST_LOCK(); 1183 MLD_LOCK(); 1184 1185 /* 1186 * MLDv1 report suppression. 1187 * If we are a member of this group, and our membership should be 1188 * reported, and our group timer is pending or about to be reset, 1189 * stop our group timer by transitioning to the 'lazy' state. 1190 */ 1191 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 1192 if (inm != NULL) { 1193 struct mld_ifsoftc *mli; 1194 1195 mli = inm->in6m_mli; 1196 KASSERT(mli != NULL, 1197 ("%s: no mli for ifp %p", __func__, ifp)); 1198 1199 /* 1200 * If we are in MLDv2 host mode, do not allow the 1201 * other host's MLDv1 report to suppress our reports. 1202 */ 1203 if (mli->mli_version == MLD_VERSION_2) 1204 goto out_locked; 1205 1206 inm->in6m_timer = 0; 1207 1208 switch (inm->in6m_state) { 1209 case MLD_NOT_MEMBER: 1210 case MLD_SILENT_MEMBER: 1211 case MLD_SLEEPING_MEMBER: 1212 break; 1213 case MLD_REPORTING_MEMBER: 1214 case MLD_IDLE_MEMBER: 1215 case MLD_AWAKENING_MEMBER: 1216 CTR3(KTR_MLD, 1217 "report suppressed for %s on ifp %p(%s)", 1218 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1219 ifp, if_name(ifp)); 1220 case MLD_LAZY_MEMBER: 1221 inm->in6m_state = MLD_LAZY_MEMBER; 1222 break; 1223 case MLD_G_QUERY_PENDING_MEMBER: 1224 case MLD_SG_QUERY_PENDING_MEMBER: 1225 case MLD_LEAVING_MEMBER: 1226 break; 1227 } 1228 } 1229 1230 out_locked: 1231 MLD_UNLOCK(); 1232 IN6_MULTI_LIST_UNLOCK(); 1233 1234 /* XXX Clear embedded scope ID as userland won't expect it. */ 1235 in6_clearscope(&mld->mld_addr); 1236 1237 return (0); 1238 } 1239 1240 /* 1241 * MLD input path. 1242 * 1243 * Assume query messages which fit in a single ICMPv6 message header 1244 * have been pulled up. 1245 * Assume that userland will want to see the message, even if it 1246 * otherwise fails kernel input validation; do not free it. 1247 * Pullup may however free the mbuf chain m if it fails. 1248 * 1249 * Return IPPROTO_DONE if we freed m. Otherwise, return 0. 1250 */ 1251 int 1252 mld_input(struct mbuf **mp, int off, int icmp6len) 1253 { 1254 struct ifnet *ifp; 1255 struct ip6_hdr *ip6; 1256 struct mbuf *m; 1257 struct mld_hdr *mld; 1258 int mldlen; 1259 1260 m = *mp; 1261 CTR3(KTR_MLD, "%s: called w/mbuf (%p,%d)", __func__, m, off); 1262 1263 ifp = m->m_pkthdr.rcvif; 1264 1265 /* Pullup to appropriate size. */ 1266 if (m->m_len < off + sizeof(*mld)) { 1267 m = m_pullup(m, off + sizeof(*mld)); 1268 if (m == NULL) { 1269 ICMP6STAT_INC(icp6s_badlen); 1270 return (IPPROTO_DONE); 1271 } 1272 } 1273 mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off); 1274 if (mld->mld_type == MLD_LISTENER_QUERY && 1275 icmp6len >= sizeof(struct mldv2_query)) { 1276 mldlen = sizeof(struct mldv2_query); 1277 } else { 1278 mldlen = sizeof(struct mld_hdr); 1279 } 1280 if (m->m_len < off + mldlen) { 1281 m = m_pullup(m, off + mldlen); 1282 if (m == NULL) { 1283 ICMP6STAT_INC(icp6s_badlen); 1284 return (IPPROTO_DONE); 1285 } 1286 } 1287 *mp = m; 1288 ip6 = mtod(m, struct ip6_hdr *); 1289 mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off); 1290 1291 /* 1292 * Userland needs to see all of this traffic for implementing 1293 * the endpoint discovery portion of multicast routing. 1294 */ 1295 switch (mld->mld_type) { 1296 case MLD_LISTENER_QUERY: 1297 icmp6_ifstat_inc(ifp, ifs6_in_mldquery); 1298 if (icmp6len == sizeof(struct mld_hdr)) { 1299 if (mld_v1_input_query(ifp, ip6, mld) != 0) 1300 return (0); 1301 } else if (icmp6len >= sizeof(struct mldv2_query)) { 1302 if (mld_v2_input_query(ifp, ip6, m, 1303 (struct mldv2_query *)mld, off, icmp6len) != 0) 1304 return (0); 1305 } 1306 break; 1307 case MLD_LISTENER_REPORT: 1308 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1309 if (mld_v1_input_report(ifp, ip6, mld) != 0) 1310 return (0); 1311 break; 1312 case MLDV2_LISTENER_REPORT: 1313 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1314 break; 1315 case MLD_LISTENER_DONE: 1316 icmp6_ifstat_inc(ifp, ifs6_in_mlddone); 1317 break; 1318 default: 1319 break; 1320 } 1321 1322 return (0); 1323 } 1324 1325 /* 1326 * Fast timeout handler (global). 1327 * VIMAGE: Timeout handlers are expected to service all vimages. 1328 */ 1329 void 1330 mld_fasttimo(void) 1331 { 1332 struct in6_multi_head inmh; 1333 VNET_ITERATOR_DECL(vnet_iter); 1334 1335 SLIST_INIT(&inmh); 1336 1337 VNET_LIST_RLOCK_NOSLEEP(); 1338 VNET_FOREACH(vnet_iter) { 1339 CURVNET_SET(vnet_iter); 1340 mld_fasttimo_vnet(&inmh); 1341 CURVNET_RESTORE(); 1342 } 1343 VNET_LIST_RUNLOCK_NOSLEEP(); 1344 in6m_release_list_deferred(&inmh); 1345 } 1346 1347 /* 1348 * Fast timeout handler (per-vnet). 1349 * 1350 * VIMAGE: Assume caller has set up our curvnet. 1351 */ 1352 static void 1353 mld_fasttimo_vnet(struct in6_multi_head *inmh) 1354 { 1355 struct epoch_tracker et; 1356 struct mbufq scq; /* State-change packets */ 1357 struct mbufq qrq; /* Query response packets */ 1358 struct ifnet *ifp; 1359 struct mld_ifsoftc *mli; 1360 struct ifmultiaddr *ifma; 1361 struct in6_multi *inm; 1362 int uri_fasthz; 1363 1364 uri_fasthz = 0; 1365 1366 /* 1367 * Quick check to see if any work needs to be done, in order to 1368 * minimize the overhead of fasttimo processing. 1369 * SMPng: XXX Unlocked reads. 1370 */ 1371 if (!V_current_state_timers_running6 && 1372 !V_interface_timers_running6 && 1373 !V_state_change_timers_running6) 1374 return; 1375 1376 IN6_MULTI_LIST_LOCK(); 1377 MLD_LOCK(); 1378 1379 /* 1380 * MLDv2 General Query response timer processing. 1381 */ 1382 if (V_interface_timers_running6) { 1383 CTR1(KTR_MLD, "%s: interface timers running", __func__); 1384 1385 V_interface_timers_running6 = 0; 1386 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1387 if (mli->mli_v2_timer == 0) { 1388 /* Do nothing. */ 1389 } else if (--mli->mli_v2_timer == 0) { 1390 mld_v2_dispatch_general_query(mli); 1391 } else { 1392 V_interface_timers_running6 = 1; 1393 } 1394 } 1395 } 1396 1397 if (!V_current_state_timers_running6 && 1398 !V_state_change_timers_running6) 1399 goto out_locked; 1400 1401 V_current_state_timers_running6 = 0; 1402 V_state_change_timers_running6 = 0; 1403 1404 CTR1(KTR_MLD, "%s: state change timers running", __func__); 1405 1406 /* 1407 * MLD host report and state-change timer processing. 1408 * Note: Processing a v2 group timer may remove a node. 1409 */ 1410 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1411 ifp = mli->mli_ifp; 1412 1413 if (mli->mli_version == MLD_VERSION_2) { 1414 uri_fasthz = MLD_RANDOM_DELAY(mli->mli_uri * 1415 PR_FASTHZ); 1416 mbufq_init(&qrq, MLD_MAX_G_GS_PACKETS); 1417 mbufq_init(&scq, MLD_MAX_STATE_CHANGE_PACKETS); 1418 } 1419 1420 NET_EPOCH_ENTER(et); 1421 IF_ADDR_WLOCK(ifp); 1422 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1423 inm = in6m_ifmultiaddr_get_inm(ifma); 1424 if (inm == NULL) 1425 continue; 1426 switch (mli->mli_version) { 1427 case MLD_VERSION_1: 1428 mld_v1_process_group_timer(inmh, inm); 1429 break; 1430 case MLD_VERSION_2: 1431 mld_v2_process_group_timers(inmh, &qrq, 1432 &scq, inm, uri_fasthz); 1433 break; 1434 } 1435 } 1436 IF_ADDR_WUNLOCK(ifp); 1437 1438 switch (mli->mli_version) { 1439 case MLD_VERSION_1: 1440 /* 1441 * Transmit reports for this lifecycle. This 1442 * is done while not holding IF_ADDR_LOCK 1443 * since this can call 1444 * in6ifa_ifpforlinklocal() which locks 1445 * IF_ADDR_LOCK internally as well as 1446 * ip6_output() to transmit a packet. 1447 */ 1448 while ((inm = SLIST_FIRST(inmh)) != NULL) { 1449 SLIST_REMOVE_HEAD(inmh, in6m_defer); 1450 (void)mld_v1_transmit_report(inm, 1451 MLD_LISTENER_REPORT); 1452 } 1453 break; 1454 case MLD_VERSION_2: 1455 mld_dispatch_queue(&qrq, 0); 1456 mld_dispatch_queue(&scq, 0); 1457 break; 1458 } 1459 NET_EPOCH_EXIT(et); 1460 } 1461 1462 out_locked: 1463 MLD_UNLOCK(); 1464 IN6_MULTI_LIST_UNLOCK(); 1465 } 1466 1467 /* 1468 * Update host report group timer. 1469 * Will update the global pending timer flags. 1470 */ 1471 static void 1472 mld_v1_process_group_timer(struct in6_multi_head *inmh, struct in6_multi *inm) 1473 { 1474 int report_timer_expired; 1475 1476 IN6_MULTI_LIST_LOCK_ASSERT(); 1477 MLD_LOCK_ASSERT(); 1478 1479 if (inm->in6m_timer == 0) { 1480 report_timer_expired = 0; 1481 } else if (--inm->in6m_timer == 0) { 1482 report_timer_expired = 1; 1483 } else { 1484 V_current_state_timers_running6 = 1; 1485 return; 1486 } 1487 1488 switch (inm->in6m_state) { 1489 case MLD_NOT_MEMBER: 1490 case MLD_SILENT_MEMBER: 1491 case MLD_IDLE_MEMBER: 1492 case MLD_LAZY_MEMBER: 1493 case MLD_SLEEPING_MEMBER: 1494 case MLD_AWAKENING_MEMBER: 1495 break; 1496 case MLD_REPORTING_MEMBER: 1497 if (report_timer_expired) { 1498 inm->in6m_state = MLD_IDLE_MEMBER; 1499 SLIST_INSERT_HEAD(inmh, inm, in6m_defer); 1500 } 1501 break; 1502 case MLD_G_QUERY_PENDING_MEMBER: 1503 case MLD_SG_QUERY_PENDING_MEMBER: 1504 case MLD_LEAVING_MEMBER: 1505 break; 1506 } 1507 } 1508 1509 /* 1510 * Update a group's timers for MLDv2. 1511 * Will update the global pending timer flags. 1512 * Note: Unlocked read from mli. 1513 */ 1514 static void 1515 mld_v2_process_group_timers(struct in6_multi_head *inmh, 1516 struct mbufq *qrq, struct mbufq *scq, 1517 struct in6_multi *inm, const int uri_fasthz) 1518 { 1519 int query_response_timer_expired; 1520 int state_change_retransmit_timer_expired; 1521 #ifdef KTR 1522 char ip6tbuf[INET6_ADDRSTRLEN]; 1523 #endif 1524 1525 IN6_MULTI_LIST_LOCK_ASSERT(); 1526 MLD_LOCK_ASSERT(); 1527 1528 query_response_timer_expired = 0; 1529 state_change_retransmit_timer_expired = 0; 1530 1531 /* 1532 * During a transition from compatibility mode back to MLDv2, 1533 * a group record in REPORTING state may still have its group 1534 * timer active. This is a no-op in this function; it is easier 1535 * to deal with it here than to complicate the slow-timeout path. 1536 */ 1537 if (inm->in6m_timer == 0) { 1538 query_response_timer_expired = 0; 1539 } else if (--inm->in6m_timer == 0) { 1540 query_response_timer_expired = 1; 1541 } else { 1542 V_current_state_timers_running6 = 1; 1543 } 1544 1545 if (inm->in6m_sctimer == 0) { 1546 state_change_retransmit_timer_expired = 0; 1547 } else if (--inm->in6m_sctimer == 0) { 1548 state_change_retransmit_timer_expired = 1; 1549 } else { 1550 V_state_change_timers_running6 = 1; 1551 } 1552 1553 /* We are in fasttimo, so be quick about it. */ 1554 if (!state_change_retransmit_timer_expired && 1555 !query_response_timer_expired) 1556 return; 1557 1558 switch (inm->in6m_state) { 1559 case MLD_NOT_MEMBER: 1560 case MLD_SILENT_MEMBER: 1561 case MLD_SLEEPING_MEMBER: 1562 case MLD_LAZY_MEMBER: 1563 case MLD_AWAKENING_MEMBER: 1564 case MLD_IDLE_MEMBER: 1565 break; 1566 case MLD_G_QUERY_PENDING_MEMBER: 1567 case MLD_SG_QUERY_PENDING_MEMBER: 1568 /* 1569 * Respond to a previously pending Group-Specific 1570 * or Group-and-Source-Specific query by enqueueing 1571 * the appropriate Current-State report for 1572 * immediate transmission. 1573 */ 1574 if (query_response_timer_expired) { 1575 int retval; 1576 1577 retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1, 1578 (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER), 1579 0); 1580 CTR2(KTR_MLD, "%s: enqueue record = %d", 1581 __func__, retval); 1582 inm->in6m_state = MLD_REPORTING_MEMBER; 1583 in6m_clear_recorded(inm); 1584 } 1585 /* FALLTHROUGH */ 1586 case MLD_REPORTING_MEMBER: 1587 case MLD_LEAVING_MEMBER: 1588 if (state_change_retransmit_timer_expired) { 1589 /* 1590 * State-change retransmission timer fired. 1591 * If there are any further pending retransmissions, 1592 * set the global pending state-change flag, and 1593 * reset the timer. 1594 */ 1595 if (--inm->in6m_scrv > 0) { 1596 inm->in6m_sctimer = uri_fasthz; 1597 V_state_change_timers_running6 = 1; 1598 } 1599 /* 1600 * Retransmit the previously computed state-change 1601 * report. If there are no further pending 1602 * retransmissions, the mbuf queue will be consumed. 1603 * Update T0 state to T1 as we have now sent 1604 * a state-change. 1605 */ 1606 (void)mld_v2_merge_state_changes(inm, scq); 1607 1608 in6m_commit(inm); 1609 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 1610 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1611 if_name(inm->in6m_ifp)); 1612 1613 /* 1614 * If we are leaving the group for good, make sure 1615 * we release MLD's reference to it. 1616 * This release must be deferred using a SLIST, 1617 * as we are called from a loop which traverses 1618 * the in_ifmultiaddr TAILQ. 1619 */ 1620 if (inm->in6m_state == MLD_LEAVING_MEMBER && 1621 inm->in6m_scrv == 0) { 1622 inm->in6m_state = MLD_NOT_MEMBER; 1623 in6m_disconnect_locked(inmh, inm); 1624 in6m_rele_locked(inmh, inm); 1625 } 1626 } 1627 break; 1628 } 1629 } 1630 1631 /* 1632 * Switch to a different version on the given interface, 1633 * as per Section 9.12. 1634 */ 1635 static void 1636 mld_set_version(struct mld_ifsoftc *mli, const int version) 1637 { 1638 int old_version_timer; 1639 1640 MLD_LOCK_ASSERT(); 1641 1642 CTR4(KTR_MLD, "%s: switching to v%d on ifp %p(%s)", __func__, 1643 version, mli->mli_ifp, if_name(mli->mli_ifp)); 1644 1645 if (version == MLD_VERSION_1) { 1646 /* 1647 * Compute the "Older Version Querier Present" timer as per 1648 * Section 9.12. 1649 */ 1650 old_version_timer = (mli->mli_rv * mli->mli_qi) + mli->mli_qri; 1651 old_version_timer *= PR_SLOWHZ; 1652 mli->mli_v1_timer = old_version_timer; 1653 } 1654 1655 if (mli->mli_v1_timer > 0 && mli->mli_version != MLD_VERSION_1) { 1656 mli->mli_version = MLD_VERSION_1; 1657 mld_v2_cancel_link_timers(mli); 1658 } 1659 } 1660 1661 /* 1662 * Cancel pending MLDv2 timers for the given link and all groups 1663 * joined on it; state-change, general-query, and group-query timers. 1664 */ 1665 static void 1666 mld_v2_cancel_link_timers(struct mld_ifsoftc *mli) 1667 { 1668 struct epoch_tracker et; 1669 struct in6_multi_head inmh; 1670 struct ifmultiaddr *ifma; 1671 struct ifnet *ifp; 1672 struct in6_multi *inm; 1673 1674 CTR3(KTR_MLD, "%s: cancel v2 timers on ifp %p(%s)", __func__, 1675 mli->mli_ifp, if_name(mli->mli_ifp)); 1676 1677 SLIST_INIT(&inmh); 1678 IN6_MULTI_LIST_LOCK_ASSERT(); 1679 MLD_LOCK_ASSERT(); 1680 1681 /* 1682 * Fast-track this potentially expensive operation 1683 * by checking all the global 'timer pending' flags. 1684 */ 1685 if (!V_interface_timers_running6 && 1686 !V_state_change_timers_running6 && 1687 !V_current_state_timers_running6) 1688 return; 1689 1690 mli->mli_v2_timer = 0; 1691 1692 ifp = mli->mli_ifp; 1693 1694 IF_ADDR_WLOCK(ifp); 1695 NET_EPOCH_ENTER(et); 1696 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1697 inm = in6m_ifmultiaddr_get_inm(ifma); 1698 if (inm == NULL) 1699 continue; 1700 switch (inm->in6m_state) { 1701 case MLD_NOT_MEMBER: 1702 case MLD_SILENT_MEMBER: 1703 case MLD_IDLE_MEMBER: 1704 case MLD_LAZY_MEMBER: 1705 case MLD_SLEEPING_MEMBER: 1706 case MLD_AWAKENING_MEMBER: 1707 break; 1708 case MLD_LEAVING_MEMBER: 1709 /* 1710 * If we are leaving the group and switching 1711 * version, we need to release the final 1712 * reference held for issuing the INCLUDE {}. 1713 */ 1714 if (inm->in6m_refcount == 1) 1715 in6m_disconnect_locked(&inmh, inm); 1716 in6m_rele_locked(&inmh, inm); 1717 /* FALLTHROUGH */ 1718 case MLD_G_QUERY_PENDING_MEMBER: 1719 case MLD_SG_QUERY_PENDING_MEMBER: 1720 in6m_clear_recorded(inm); 1721 /* FALLTHROUGH */ 1722 case MLD_REPORTING_MEMBER: 1723 inm->in6m_sctimer = 0; 1724 inm->in6m_timer = 0; 1725 inm->in6m_state = MLD_REPORTING_MEMBER; 1726 /* 1727 * Free any pending MLDv2 state-change records. 1728 */ 1729 mbufq_drain(&inm->in6m_scq); 1730 break; 1731 } 1732 } 1733 NET_EPOCH_EXIT(et); 1734 IF_ADDR_WUNLOCK(ifp); 1735 in6m_release_list_deferred(&inmh); 1736 } 1737 1738 /* 1739 * Global slowtimo handler. 1740 * VIMAGE: Timeout handlers are expected to service all vimages. 1741 */ 1742 void 1743 mld_slowtimo(void) 1744 { 1745 VNET_ITERATOR_DECL(vnet_iter); 1746 1747 VNET_LIST_RLOCK_NOSLEEP(); 1748 VNET_FOREACH(vnet_iter) { 1749 CURVNET_SET(vnet_iter); 1750 mld_slowtimo_vnet(); 1751 CURVNET_RESTORE(); 1752 } 1753 VNET_LIST_RUNLOCK_NOSLEEP(); 1754 } 1755 1756 /* 1757 * Per-vnet slowtimo handler. 1758 */ 1759 static void 1760 mld_slowtimo_vnet(void) 1761 { 1762 struct mld_ifsoftc *mli; 1763 1764 MLD_LOCK(); 1765 1766 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1767 mld_v1_process_querier_timers(mli); 1768 } 1769 1770 MLD_UNLOCK(); 1771 } 1772 1773 /* 1774 * Update the Older Version Querier Present timers for a link. 1775 * See Section 9.12 of RFC 3810. 1776 */ 1777 static void 1778 mld_v1_process_querier_timers(struct mld_ifsoftc *mli) 1779 { 1780 1781 MLD_LOCK_ASSERT(); 1782 1783 if (mli->mli_version != MLD_VERSION_2 && --mli->mli_v1_timer == 0) { 1784 /* 1785 * MLDv1 Querier Present timer expired; revert to MLDv2. 1786 */ 1787 CTR5(KTR_MLD, 1788 "%s: transition from v%d -> v%d on %p(%s)", 1789 __func__, mli->mli_version, MLD_VERSION_2, 1790 mli->mli_ifp, if_name(mli->mli_ifp)); 1791 mli->mli_version = MLD_VERSION_2; 1792 } 1793 } 1794 1795 /* 1796 * Transmit an MLDv1 report immediately. 1797 */ 1798 static int 1799 mld_v1_transmit_report(struct in6_multi *in6m, const int type) 1800 { 1801 struct ifnet *ifp; 1802 struct in6_ifaddr *ia; 1803 struct ip6_hdr *ip6; 1804 struct mbuf *mh, *md; 1805 struct mld_hdr *mld; 1806 1807 NET_EPOCH_ASSERT(); 1808 IN6_MULTI_LIST_LOCK_ASSERT(); 1809 MLD_LOCK_ASSERT(); 1810 1811 ifp = in6m->in6m_ifp; 1812 /* in process of being freed */ 1813 if (ifp == NULL) 1814 return (0); 1815 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1816 /* ia may be NULL if link-local address is tentative. */ 1817 1818 mh = m_gethdr(M_NOWAIT, MT_DATA); 1819 if (mh == NULL) { 1820 if (ia != NULL) 1821 ifa_free(&ia->ia_ifa); 1822 return (ENOMEM); 1823 } 1824 md = m_get(M_NOWAIT, MT_DATA); 1825 if (md == NULL) { 1826 m_free(mh); 1827 if (ia != NULL) 1828 ifa_free(&ia->ia_ifa); 1829 return (ENOMEM); 1830 } 1831 mh->m_next = md; 1832 1833 /* 1834 * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so 1835 * that ether_output() does not need to allocate another mbuf 1836 * for the header in the most common case. 1837 */ 1838 M_ALIGN(mh, sizeof(struct ip6_hdr)); 1839 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr); 1840 mh->m_len = sizeof(struct ip6_hdr); 1841 1842 ip6 = mtod(mh, struct ip6_hdr *); 1843 ip6->ip6_flow = 0; 1844 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 1845 ip6->ip6_vfc |= IPV6_VERSION; 1846 ip6->ip6_nxt = IPPROTO_ICMPV6; 1847 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 1848 ip6->ip6_dst = in6m->in6m_addr; 1849 1850 md->m_len = sizeof(struct mld_hdr); 1851 mld = mtod(md, struct mld_hdr *); 1852 mld->mld_type = type; 1853 mld->mld_code = 0; 1854 mld->mld_cksum = 0; 1855 mld->mld_maxdelay = 0; 1856 mld->mld_reserved = 0; 1857 mld->mld_addr = in6m->in6m_addr; 1858 in6_clearscope(&mld->mld_addr); 1859 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 1860 sizeof(struct ip6_hdr), sizeof(struct mld_hdr)); 1861 1862 mld_save_context(mh, ifp); 1863 mh->m_flags |= M_MLDV1; 1864 1865 mld_dispatch_packet(mh); 1866 1867 if (ia != NULL) 1868 ifa_free(&ia->ia_ifa); 1869 return (0); 1870 } 1871 1872 /* 1873 * Process a state change from the upper layer for the given IPv6 group. 1874 * 1875 * Each socket holds a reference on the in_multi in its own ip_moptions. 1876 * The socket layer will have made the necessary updates to.the group 1877 * state, it is now up to MLD to issue a state change report if there 1878 * has been any change between T0 (when the last state-change was issued) 1879 * and T1 (now). 1880 * 1881 * We use the MLDv2 state machine at group level. The MLd module 1882 * however makes the decision as to which MLD protocol version to speak. 1883 * A state change *from* INCLUDE {} always means an initial join. 1884 * A state change *to* INCLUDE {} always means a final leave. 1885 * 1886 * If delay is non-zero, and the state change is an initial multicast 1887 * join, the state change report will be delayed by 'delay' ticks 1888 * in units of PR_FASTHZ if MLDv1 is active on the link; otherwise 1889 * the initial MLDv2 state change report will be delayed by whichever 1890 * is sooner, a pending state-change timer or delay itself. 1891 * 1892 * VIMAGE: curvnet should have been set by caller, as this routine 1893 * is called from the socket option handlers. 1894 */ 1895 int 1896 mld_change_state(struct in6_multi *inm, const int delay) 1897 { 1898 struct mld_ifsoftc *mli; 1899 struct ifnet *ifp; 1900 int error; 1901 1902 IN6_MULTI_LIST_LOCK_ASSERT(); 1903 1904 error = 0; 1905 1906 /* 1907 * Check if the in6_multi has already been disconnected. 1908 */ 1909 if (inm->in6m_ifp == NULL) { 1910 CTR1(KTR_MLD, "%s: inm is disconnected", __func__); 1911 return (0); 1912 } 1913 1914 /* 1915 * Try to detect if the upper layer just asked us to change state 1916 * for an interface which has now gone away. 1917 */ 1918 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); 1919 ifp = inm->in6m_ifma->ifma_ifp; 1920 if (ifp == NULL) 1921 return (0); 1922 /* 1923 * Sanity check that netinet6's notion of ifp is the 1924 * same as net's. 1925 */ 1926 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); 1927 1928 MLD_LOCK(); 1929 mli = MLD_IFINFO(ifp); 1930 KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp)); 1931 1932 /* 1933 * If we detect a state transition to or from MCAST_UNDEFINED 1934 * for this group, then we are starting or finishing an MLD 1935 * life cycle for this group. 1936 */ 1937 if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) { 1938 CTR3(KTR_MLD, "%s: inm transition %d -> %d", __func__, 1939 inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode); 1940 if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) { 1941 CTR1(KTR_MLD, "%s: initial join", __func__); 1942 error = mld_initial_join(inm, mli, delay); 1943 goto out_locked; 1944 } else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) { 1945 CTR1(KTR_MLD, "%s: final leave", __func__); 1946 mld_final_leave(inm, mli); 1947 goto out_locked; 1948 } 1949 } else { 1950 CTR1(KTR_MLD, "%s: filter set change", __func__); 1951 } 1952 1953 error = mld_handle_state_change(inm, mli); 1954 1955 out_locked: 1956 MLD_UNLOCK(); 1957 return (error); 1958 } 1959 1960 /* 1961 * Perform the initial join for an MLD group. 1962 * 1963 * When joining a group: 1964 * If the group should have its MLD traffic suppressed, do nothing. 1965 * MLDv1 starts sending MLDv1 host membership reports. 1966 * MLDv2 will schedule an MLDv2 state-change report containing the 1967 * initial state of the membership. 1968 * 1969 * If the delay argument is non-zero, then we must delay sending the 1970 * initial state change for delay ticks (in units of PR_FASTHZ). 1971 */ 1972 static int 1973 mld_initial_join(struct in6_multi *inm, struct mld_ifsoftc *mli, 1974 const int delay) 1975 { 1976 struct epoch_tracker et; 1977 struct ifnet *ifp; 1978 struct mbufq *mq; 1979 int error, retval, syncstates; 1980 int odelay; 1981 #ifdef KTR 1982 char ip6tbuf[INET6_ADDRSTRLEN]; 1983 #endif 1984 1985 CTR4(KTR_MLD, "%s: initial join %s on ifp %p(%s)", 1986 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1987 inm->in6m_ifp, if_name(inm->in6m_ifp)); 1988 1989 error = 0; 1990 syncstates = 1; 1991 1992 ifp = inm->in6m_ifp; 1993 1994 IN6_MULTI_LIST_LOCK_ASSERT(); 1995 MLD_LOCK_ASSERT(); 1996 1997 KASSERT(mli && mli->mli_ifp == ifp, ("%s: inconsistent ifp", __func__)); 1998 1999 /* 2000 * Groups joined on loopback or marked as 'not reported', 2001 * enter the MLD_SILENT_MEMBER state and 2002 * are never reported in any protocol exchanges. 2003 * All other groups enter the appropriate state machine 2004 * for the version in use on this link. 2005 * A link marked as MLIF_SILENT causes MLD to be completely 2006 * disabled for the link. 2007 */ 2008 if ((ifp->if_flags & IFF_LOOPBACK) || 2009 (mli->mli_flags & MLIF_SILENT) || 2010 !mld_is_addr_reported(&inm->in6m_addr)) { 2011 CTR1(KTR_MLD, 2012 "%s: not kicking state machine for silent group", __func__); 2013 inm->in6m_state = MLD_SILENT_MEMBER; 2014 inm->in6m_timer = 0; 2015 } else { 2016 /* 2017 * Deal with overlapping in_multi lifecycle. 2018 * If this group was LEAVING, then make sure 2019 * we drop the reference we picked up to keep the 2020 * group around for the final INCLUDE {} enqueue. 2021 */ 2022 if (mli->mli_version == MLD_VERSION_2 && 2023 inm->in6m_state == MLD_LEAVING_MEMBER) { 2024 inm->in6m_refcount--; 2025 MPASS(inm->in6m_refcount > 0); 2026 } 2027 inm->in6m_state = MLD_REPORTING_MEMBER; 2028 2029 switch (mli->mli_version) { 2030 case MLD_VERSION_1: 2031 /* 2032 * If a delay was provided, only use it if 2033 * it is greater than the delay normally 2034 * used for an MLDv1 state change report, 2035 * and delay sending the initial MLDv1 report 2036 * by not transitioning to the IDLE state. 2037 */ 2038 odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI * PR_FASTHZ); 2039 if (delay) { 2040 inm->in6m_timer = max(delay, odelay); 2041 V_current_state_timers_running6 = 1; 2042 } else { 2043 inm->in6m_state = MLD_IDLE_MEMBER; 2044 NET_EPOCH_ENTER(et); 2045 error = mld_v1_transmit_report(inm, 2046 MLD_LISTENER_REPORT); 2047 NET_EPOCH_EXIT(et); 2048 if (error == 0) { 2049 inm->in6m_timer = odelay; 2050 V_current_state_timers_running6 = 1; 2051 } 2052 } 2053 break; 2054 2055 case MLD_VERSION_2: 2056 /* 2057 * Defer update of T0 to T1, until the first copy 2058 * of the state change has been transmitted. 2059 */ 2060 syncstates = 0; 2061 2062 /* 2063 * Immediately enqueue a State-Change Report for 2064 * this interface, freeing any previous reports. 2065 * Don't kick the timers if there is nothing to do, 2066 * or if an error occurred. 2067 */ 2068 mq = &inm->in6m_scq; 2069 mbufq_drain(mq); 2070 retval = mld_v2_enqueue_group_record(mq, inm, 1, 2071 0, 0, (mli->mli_flags & MLIF_USEALLOW)); 2072 CTR2(KTR_MLD, "%s: enqueue record = %d", 2073 __func__, retval); 2074 if (retval <= 0) { 2075 error = retval * -1; 2076 break; 2077 } 2078 2079 /* 2080 * Schedule transmission of pending state-change 2081 * report up to RV times for this link. The timer 2082 * will fire at the next mld_fasttimo (~200ms), 2083 * giving us an opportunity to merge the reports. 2084 * 2085 * If a delay was provided to this function, only 2086 * use this delay if sooner than the existing one. 2087 */ 2088 KASSERT(mli->mli_rv > 1, 2089 ("%s: invalid robustness %d", __func__, 2090 mli->mli_rv)); 2091 inm->in6m_scrv = mli->mli_rv; 2092 if (delay) { 2093 if (inm->in6m_sctimer > 1) { 2094 inm->in6m_sctimer = 2095 min(inm->in6m_sctimer, delay); 2096 } else 2097 inm->in6m_sctimer = delay; 2098 } else 2099 inm->in6m_sctimer = 1; 2100 V_state_change_timers_running6 = 1; 2101 2102 error = 0; 2103 break; 2104 } 2105 } 2106 2107 /* 2108 * Only update the T0 state if state change is atomic, 2109 * i.e. we don't need to wait for a timer to fire before we 2110 * can consider the state change to have been communicated. 2111 */ 2112 if (syncstates) { 2113 in6m_commit(inm); 2114 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2115 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2116 if_name(inm->in6m_ifp)); 2117 } 2118 2119 return (error); 2120 } 2121 2122 /* 2123 * Issue an intermediate state change during the life-cycle. 2124 */ 2125 static int 2126 mld_handle_state_change(struct in6_multi *inm, struct mld_ifsoftc *mli) 2127 { 2128 struct ifnet *ifp; 2129 int retval; 2130 #ifdef KTR 2131 char ip6tbuf[INET6_ADDRSTRLEN]; 2132 #endif 2133 2134 CTR4(KTR_MLD, "%s: state change for %s on ifp %p(%s)", 2135 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2136 inm->in6m_ifp, if_name(inm->in6m_ifp)); 2137 2138 ifp = inm->in6m_ifp; 2139 2140 IN6_MULTI_LIST_LOCK_ASSERT(); 2141 MLD_LOCK_ASSERT(); 2142 2143 KASSERT(mli && mli->mli_ifp == ifp, 2144 ("%s: inconsistent ifp", __func__)); 2145 2146 if ((ifp->if_flags & IFF_LOOPBACK) || 2147 (mli->mli_flags & MLIF_SILENT) || 2148 !mld_is_addr_reported(&inm->in6m_addr) || 2149 (mli->mli_version != MLD_VERSION_2)) { 2150 if (!mld_is_addr_reported(&inm->in6m_addr)) { 2151 CTR1(KTR_MLD, 2152 "%s: not kicking state machine for silent group", __func__); 2153 } 2154 CTR1(KTR_MLD, "%s: nothing to do", __func__); 2155 in6m_commit(inm); 2156 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2157 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2158 if_name(inm->in6m_ifp)); 2159 return (0); 2160 } 2161 2162 mbufq_drain(&inm->in6m_scq); 2163 2164 retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0, 2165 (mli->mli_flags & MLIF_USEALLOW)); 2166 CTR2(KTR_MLD, "%s: enqueue record = %d", __func__, retval); 2167 if (retval <= 0) 2168 return (-retval); 2169 2170 /* 2171 * If record(s) were enqueued, start the state-change 2172 * report timer for this group. 2173 */ 2174 inm->in6m_scrv = mli->mli_rv; 2175 inm->in6m_sctimer = 1; 2176 V_state_change_timers_running6 = 1; 2177 2178 return (0); 2179 } 2180 2181 /* 2182 * Perform the final leave for a multicast address. 2183 * 2184 * When leaving a group: 2185 * MLDv1 sends a DONE message, if and only if we are the reporter. 2186 * MLDv2 enqueues a state-change report containing a transition 2187 * to INCLUDE {} for immediate transmission. 2188 */ 2189 static void 2190 mld_final_leave(struct in6_multi *inm, struct mld_ifsoftc *mli) 2191 { 2192 struct epoch_tracker et; 2193 int syncstates; 2194 #ifdef KTR 2195 char ip6tbuf[INET6_ADDRSTRLEN]; 2196 #endif 2197 2198 syncstates = 1; 2199 2200 CTR4(KTR_MLD, "%s: final leave %s on ifp %p(%s)", 2201 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2202 inm->in6m_ifp, if_name(inm->in6m_ifp)); 2203 2204 IN6_MULTI_LIST_LOCK_ASSERT(); 2205 MLD_LOCK_ASSERT(); 2206 2207 switch (inm->in6m_state) { 2208 case MLD_NOT_MEMBER: 2209 case MLD_SILENT_MEMBER: 2210 case MLD_LEAVING_MEMBER: 2211 /* Already leaving or left; do nothing. */ 2212 CTR1(KTR_MLD, 2213 "%s: not kicking state machine for silent group", __func__); 2214 break; 2215 case MLD_REPORTING_MEMBER: 2216 case MLD_IDLE_MEMBER: 2217 case MLD_G_QUERY_PENDING_MEMBER: 2218 case MLD_SG_QUERY_PENDING_MEMBER: 2219 if (mli->mli_version == MLD_VERSION_1) { 2220 #ifdef INVARIANTS 2221 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 2222 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) 2223 panic("%s: MLDv2 state reached, not MLDv2 mode", 2224 __func__); 2225 #endif 2226 NET_EPOCH_ENTER(et); 2227 mld_v1_transmit_report(inm, MLD_LISTENER_DONE); 2228 NET_EPOCH_EXIT(et); 2229 inm->in6m_state = MLD_NOT_MEMBER; 2230 V_current_state_timers_running6 = 1; 2231 } else if (mli->mli_version == MLD_VERSION_2) { 2232 /* 2233 * Stop group timer and all pending reports. 2234 * Immediately enqueue a state-change report 2235 * TO_IN {} to be sent on the next fast timeout, 2236 * giving us an opportunity to merge reports. 2237 */ 2238 mbufq_drain(&inm->in6m_scq); 2239 inm->in6m_timer = 0; 2240 inm->in6m_scrv = mli->mli_rv; 2241 CTR4(KTR_MLD, "%s: Leaving %s/%s with %d " 2242 "pending retransmissions.", __func__, 2243 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2244 if_name(inm->in6m_ifp), inm->in6m_scrv); 2245 if (inm->in6m_scrv == 0) { 2246 inm->in6m_state = MLD_NOT_MEMBER; 2247 inm->in6m_sctimer = 0; 2248 } else { 2249 int retval; 2250 2251 in6m_acquire_locked(inm); 2252 2253 retval = mld_v2_enqueue_group_record( 2254 &inm->in6m_scq, inm, 1, 0, 0, 2255 (mli->mli_flags & MLIF_USEALLOW)); 2256 KASSERT(retval != 0, 2257 ("%s: enqueue record = %d", __func__, 2258 retval)); 2259 2260 inm->in6m_state = MLD_LEAVING_MEMBER; 2261 inm->in6m_sctimer = 1; 2262 V_state_change_timers_running6 = 1; 2263 syncstates = 0; 2264 } 2265 break; 2266 } 2267 break; 2268 case MLD_LAZY_MEMBER: 2269 case MLD_SLEEPING_MEMBER: 2270 case MLD_AWAKENING_MEMBER: 2271 /* Our reports are suppressed; do nothing. */ 2272 break; 2273 } 2274 2275 if (syncstates) { 2276 in6m_commit(inm); 2277 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2278 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2279 if_name(inm->in6m_ifp)); 2280 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 2281 CTR3(KTR_MLD, "%s: T1 now MCAST_UNDEFINED for %p/%s", 2282 __func__, &inm->in6m_addr, if_name(inm->in6m_ifp)); 2283 } 2284 } 2285 2286 /* 2287 * Enqueue an MLDv2 group record to the given output queue. 2288 * 2289 * If is_state_change is zero, a current-state record is appended. 2290 * If is_state_change is non-zero, a state-change report is appended. 2291 * 2292 * If is_group_query is non-zero, an mbuf packet chain is allocated. 2293 * If is_group_query is zero, and if there is a packet with free space 2294 * at the tail of the queue, it will be appended to providing there 2295 * is enough free space. 2296 * Otherwise a new mbuf packet chain is allocated. 2297 * 2298 * If is_source_query is non-zero, each source is checked to see if 2299 * it was recorded for a Group-Source query, and will be omitted if 2300 * it is not both in-mode and recorded. 2301 * 2302 * If use_block_allow is non-zero, state change reports for initial join 2303 * and final leave, on an inclusive mode group with a source list, will be 2304 * rewritten to use the ALLOW_NEW and BLOCK_OLD record types, respectively. 2305 * 2306 * The function will attempt to allocate leading space in the packet 2307 * for the IPv6+ICMP headers to be prepended without fragmenting the chain. 2308 * 2309 * If successful the size of all data appended to the queue is returned, 2310 * otherwise an error code less than zero is returned, or zero if 2311 * no record(s) were appended. 2312 */ 2313 static int 2314 mld_v2_enqueue_group_record(struct mbufq *mq, struct in6_multi *inm, 2315 const int is_state_change, const int is_group_query, 2316 const int is_source_query, const int use_block_allow) 2317 { 2318 struct mldv2_record mr; 2319 struct mldv2_record *pmr; 2320 struct ifnet *ifp; 2321 struct ip6_msource *ims, *nims; 2322 struct mbuf *m0, *m, *md; 2323 int is_filter_list_change; 2324 int minrec0len, m0srcs, msrcs, nbytes, off; 2325 int record_has_sources; 2326 int now; 2327 int type; 2328 uint8_t mode; 2329 #ifdef KTR 2330 char ip6tbuf[INET6_ADDRSTRLEN]; 2331 #endif 2332 2333 IN6_MULTI_LIST_LOCK_ASSERT(); 2334 2335 ifp = inm->in6m_ifp; 2336 is_filter_list_change = 0; 2337 m = NULL; 2338 m0 = NULL; 2339 m0srcs = 0; 2340 msrcs = 0; 2341 nbytes = 0; 2342 nims = NULL; 2343 record_has_sources = 1; 2344 pmr = NULL; 2345 type = MLD_DO_NOTHING; 2346 mode = inm->in6m_st[1].iss_fmode; 2347 2348 /* 2349 * If we did not transition out of ASM mode during t0->t1, 2350 * and there are no source nodes to process, we can skip 2351 * the generation of source records. 2352 */ 2353 if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 && 2354 inm->in6m_nsrc == 0) 2355 record_has_sources = 0; 2356 2357 if (is_state_change) { 2358 /* 2359 * Queue a state change record. 2360 * If the mode did not change, and there are non-ASM 2361 * listeners or source filters present, 2362 * we potentially need to issue two records for the group. 2363 * If there are ASM listeners, and there was no filter 2364 * mode transition of any kind, do nothing. 2365 * 2366 * If we are transitioning to MCAST_UNDEFINED, we need 2367 * not send any sources. A transition to/from this state is 2368 * considered inclusive with some special treatment. 2369 * 2370 * If we are rewriting initial joins/leaves to use 2371 * ALLOW/BLOCK, and the group's membership is inclusive, 2372 * we need to send sources in all cases. 2373 */ 2374 if (mode != inm->in6m_st[0].iss_fmode) { 2375 if (mode == MCAST_EXCLUDE) { 2376 CTR1(KTR_MLD, "%s: change to EXCLUDE", 2377 __func__); 2378 type = MLD_CHANGE_TO_EXCLUDE_MODE; 2379 } else { 2380 CTR1(KTR_MLD, "%s: change to INCLUDE", 2381 __func__); 2382 if (use_block_allow) { 2383 /* 2384 * XXX 2385 * Here we're interested in state 2386 * edges either direction between 2387 * MCAST_UNDEFINED and MCAST_INCLUDE. 2388 * Perhaps we should just check 2389 * the group state, rather than 2390 * the filter mode. 2391 */ 2392 if (mode == MCAST_UNDEFINED) { 2393 type = MLD_BLOCK_OLD_SOURCES; 2394 } else { 2395 type = MLD_ALLOW_NEW_SOURCES; 2396 } 2397 } else { 2398 type = MLD_CHANGE_TO_INCLUDE_MODE; 2399 if (mode == MCAST_UNDEFINED) 2400 record_has_sources = 0; 2401 } 2402 } 2403 } else { 2404 if (record_has_sources) { 2405 is_filter_list_change = 1; 2406 } else { 2407 type = MLD_DO_NOTHING; 2408 } 2409 } 2410 } else { 2411 /* 2412 * Queue a current state record. 2413 */ 2414 if (mode == MCAST_EXCLUDE) { 2415 type = MLD_MODE_IS_EXCLUDE; 2416 } else if (mode == MCAST_INCLUDE) { 2417 type = MLD_MODE_IS_INCLUDE; 2418 KASSERT(inm->in6m_st[1].iss_asm == 0, 2419 ("%s: inm %p is INCLUDE but ASM count is %d", 2420 __func__, inm, inm->in6m_st[1].iss_asm)); 2421 } 2422 } 2423 2424 /* 2425 * Generate the filter list changes using a separate function. 2426 */ 2427 if (is_filter_list_change) 2428 return (mld_v2_enqueue_filter_change(mq, inm)); 2429 2430 if (type == MLD_DO_NOTHING) { 2431 CTR3(KTR_MLD, "%s: nothing to do for %s/%s", 2432 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2433 if_name(inm->in6m_ifp)); 2434 return (0); 2435 } 2436 2437 /* 2438 * If any sources are present, we must be able to fit at least 2439 * one in the trailing space of the tail packet's mbuf, 2440 * ideally more. 2441 */ 2442 minrec0len = sizeof(struct mldv2_record); 2443 if (record_has_sources) 2444 minrec0len += sizeof(struct in6_addr); 2445 2446 CTR4(KTR_MLD, "%s: queueing %s for %s/%s", __func__, 2447 mld_rec_type_to_str(type), 2448 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2449 if_name(inm->in6m_ifp)); 2450 2451 /* 2452 * Check if we have a packet in the tail of the queue for this 2453 * group into which the first group record for this group will fit. 2454 * Otherwise allocate a new packet. 2455 * Always allocate leading space for IP6+RA+ICMPV6+REPORT. 2456 * Note: Group records for G/GSR query responses MUST be sent 2457 * in their own packet. 2458 */ 2459 m0 = mbufq_last(mq); 2460 if (!is_group_query && 2461 m0 != NULL && 2462 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) && 2463 (m0->m_pkthdr.len + minrec0len) < 2464 (ifp->if_mtu - MLD_MTUSPACE)) { 2465 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2466 sizeof(struct mldv2_record)) / 2467 sizeof(struct in6_addr); 2468 m = m0; 2469 CTR1(KTR_MLD, "%s: use existing packet", __func__); 2470 } else { 2471 if (mbufq_full(mq)) { 2472 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2473 return (-ENOMEM); 2474 } 2475 m = NULL; 2476 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2477 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2478 if (!is_state_change && !is_group_query) 2479 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2480 if (m == NULL) 2481 m = m_gethdr(M_NOWAIT, MT_DATA); 2482 if (m == NULL) 2483 return (-ENOMEM); 2484 2485 mld_save_context(m, ifp); 2486 2487 CTR1(KTR_MLD, "%s: allocated first packet", __func__); 2488 } 2489 2490 /* 2491 * Append group record. 2492 * If we have sources, we don't know how many yet. 2493 */ 2494 mr.mr_type = type; 2495 mr.mr_datalen = 0; 2496 mr.mr_numsrc = 0; 2497 mr.mr_addr = inm->in6m_addr; 2498 in6_clearscope(&mr.mr_addr); 2499 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2500 if (m != m0) 2501 m_freem(m); 2502 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2503 return (-ENOMEM); 2504 } 2505 nbytes += sizeof(struct mldv2_record); 2506 2507 /* 2508 * Append as many sources as will fit in the first packet. 2509 * If we are appending to a new packet, the chain allocation 2510 * may potentially use clusters; use m_getptr() in this case. 2511 * If we are appending to an existing packet, we need to obtain 2512 * a pointer to the group record after m_append(), in case a new 2513 * mbuf was allocated. 2514 * 2515 * Only append sources which are in-mode at t1. If we are 2516 * transitioning to MCAST_UNDEFINED state on the group, and 2517 * use_block_allow is zero, do not include source entries. 2518 * Otherwise, we need to include this source in the report. 2519 * 2520 * Only report recorded sources in our filter set when responding 2521 * to a group-source query. 2522 */ 2523 if (record_has_sources) { 2524 if (m == m0) { 2525 md = m_last(m); 2526 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2527 md->m_len - nbytes); 2528 } else { 2529 md = m_getptr(m, 0, &off); 2530 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2531 off); 2532 } 2533 msrcs = 0; 2534 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, 2535 nims) { 2536 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2537 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2538 now = im6s_get_mode(inm, ims, 1); 2539 CTR2(KTR_MLD, "%s: node is %d", __func__, now); 2540 if ((now != mode) || 2541 (now == mode && 2542 (!use_block_allow && mode == MCAST_UNDEFINED))) { 2543 CTR1(KTR_MLD, "%s: skip node", __func__); 2544 continue; 2545 } 2546 if (is_source_query && ims->im6s_stp == 0) { 2547 CTR1(KTR_MLD, "%s: skip unrecorded node", 2548 __func__); 2549 continue; 2550 } 2551 CTR1(KTR_MLD, "%s: append node", __func__); 2552 if (!m_append(m, sizeof(struct in6_addr), 2553 (void *)&ims->im6s_addr)) { 2554 if (m != m0) 2555 m_freem(m); 2556 CTR1(KTR_MLD, "%s: m_append() failed.", 2557 __func__); 2558 return (-ENOMEM); 2559 } 2560 nbytes += sizeof(struct in6_addr); 2561 ++msrcs; 2562 if (msrcs == m0srcs) 2563 break; 2564 } 2565 CTR2(KTR_MLD, "%s: msrcs is %d this packet", __func__, 2566 msrcs); 2567 pmr->mr_numsrc = htons(msrcs); 2568 nbytes += (msrcs * sizeof(struct in6_addr)); 2569 } 2570 2571 if (is_source_query && msrcs == 0) { 2572 CTR1(KTR_MLD, "%s: no recorded sources to report", __func__); 2573 if (m != m0) 2574 m_freem(m); 2575 return (0); 2576 } 2577 2578 /* 2579 * We are good to go with first packet. 2580 */ 2581 if (m != m0) { 2582 CTR1(KTR_MLD, "%s: enqueueing first packet", __func__); 2583 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2584 mbufq_enqueue(mq, m); 2585 } else 2586 m->m_pkthdr.PH_vt.vt_nrecs++; 2587 2588 /* 2589 * No further work needed if no source list in packet(s). 2590 */ 2591 if (!record_has_sources) 2592 return (nbytes); 2593 2594 /* 2595 * Whilst sources remain to be announced, we need to allocate 2596 * a new packet and fill out as many sources as will fit. 2597 * Always try for a cluster first. 2598 */ 2599 while (nims != NULL) { 2600 if (mbufq_full(mq)) { 2601 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2602 return (-ENOMEM); 2603 } 2604 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2605 if (m == NULL) 2606 m = m_gethdr(M_NOWAIT, MT_DATA); 2607 if (m == NULL) 2608 return (-ENOMEM); 2609 mld_save_context(m, ifp); 2610 md = m_getptr(m, 0, &off); 2611 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off); 2612 CTR1(KTR_MLD, "%s: allocated next packet", __func__); 2613 2614 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2615 if (m != m0) 2616 m_freem(m); 2617 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2618 return (-ENOMEM); 2619 } 2620 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2621 nbytes += sizeof(struct mldv2_record); 2622 2623 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2624 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2625 2626 msrcs = 0; 2627 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2628 CTR2(KTR_MLD, "%s: visit node %s", 2629 __func__, ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2630 now = im6s_get_mode(inm, ims, 1); 2631 if ((now != mode) || 2632 (now == mode && 2633 (!use_block_allow && mode == MCAST_UNDEFINED))) { 2634 CTR1(KTR_MLD, "%s: skip node", __func__); 2635 continue; 2636 } 2637 if (is_source_query && ims->im6s_stp == 0) { 2638 CTR1(KTR_MLD, "%s: skip unrecorded node", 2639 __func__); 2640 continue; 2641 } 2642 CTR1(KTR_MLD, "%s: append node", __func__); 2643 if (!m_append(m, sizeof(struct in6_addr), 2644 (void *)&ims->im6s_addr)) { 2645 if (m != m0) 2646 m_freem(m); 2647 CTR1(KTR_MLD, "%s: m_append() failed.", 2648 __func__); 2649 return (-ENOMEM); 2650 } 2651 ++msrcs; 2652 if (msrcs == m0srcs) 2653 break; 2654 } 2655 pmr->mr_numsrc = htons(msrcs); 2656 nbytes += (msrcs * sizeof(struct in6_addr)); 2657 2658 CTR1(KTR_MLD, "%s: enqueueing next packet", __func__); 2659 mbufq_enqueue(mq, m); 2660 } 2661 2662 return (nbytes); 2663 } 2664 2665 /* 2666 * Type used to mark record pass completion. 2667 * We exploit the fact we can cast to this easily from the 2668 * current filter modes on each ip_msource node. 2669 */ 2670 typedef enum { 2671 REC_NONE = 0x00, /* MCAST_UNDEFINED */ 2672 REC_ALLOW = 0x01, /* MCAST_INCLUDE */ 2673 REC_BLOCK = 0x02, /* MCAST_EXCLUDE */ 2674 REC_FULL = REC_ALLOW | REC_BLOCK 2675 } rectype_t; 2676 2677 /* 2678 * Enqueue an MLDv2 filter list change to the given output queue. 2679 * 2680 * Source list filter state is held in an RB-tree. When the filter list 2681 * for a group is changed without changing its mode, we need to compute 2682 * the deltas between T0 and T1 for each source in the filter set, 2683 * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records. 2684 * 2685 * As we may potentially queue two record types, and the entire R-B tree 2686 * needs to be walked at once, we break this out into its own function 2687 * so we can generate a tightly packed queue of packets. 2688 * 2689 * XXX This could be written to only use one tree walk, although that makes 2690 * serializing into the mbuf chains a bit harder. For now we do two walks 2691 * which makes things easier on us, and it may or may not be harder on 2692 * the L2 cache. 2693 * 2694 * If successful the size of all data appended to the queue is returned, 2695 * otherwise an error code less than zero is returned, or zero if 2696 * no record(s) were appended. 2697 */ 2698 static int 2699 mld_v2_enqueue_filter_change(struct mbufq *mq, struct in6_multi *inm) 2700 { 2701 static const int MINRECLEN = 2702 sizeof(struct mldv2_record) + sizeof(struct in6_addr); 2703 struct ifnet *ifp; 2704 struct mldv2_record mr; 2705 struct mldv2_record *pmr; 2706 struct ip6_msource *ims, *nims; 2707 struct mbuf *m, *m0, *md; 2708 int m0srcs, nbytes, npbytes, off, rsrcs, schanged; 2709 int nallow, nblock; 2710 uint8_t mode, now, then; 2711 rectype_t crt, drt, nrt; 2712 #ifdef KTR 2713 char ip6tbuf[INET6_ADDRSTRLEN]; 2714 #endif 2715 2716 IN6_MULTI_LIST_LOCK_ASSERT(); 2717 2718 if (inm->in6m_nsrc == 0 || 2719 (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0)) 2720 return (0); 2721 2722 ifp = inm->in6m_ifp; /* interface */ 2723 mode = inm->in6m_st[1].iss_fmode; /* filter mode at t1 */ 2724 crt = REC_NONE; /* current group record type */ 2725 drt = REC_NONE; /* mask of completed group record types */ 2726 nrt = REC_NONE; /* record type for current node */ 2727 m0srcs = 0; /* # source which will fit in current mbuf chain */ 2728 npbytes = 0; /* # of bytes appended this packet */ 2729 nbytes = 0; /* # of bytes appended to group's state-change queue */ 2730 rsrcs = 0; /* # sources encoded in current record */ 2731 schanged = 0; /* # nodes encoded in overall filter change */ 2732 nallow = 0; /* # of source entries in ALLOW_NEW */ 2733 nblock = 0; /* # of source entries in BLOCK_OLD */ 2734 nims = NULL; /* next tree node pointer */ 2735 2736 /* 2737 * For each possible filter record mode. 2738 * The first kind of source we encounter tells us which 2739 * is the first kind of record we start appending. 2740 * If a node transitioned to UNDEFINED at t1, its mode is treated 2741 * as the inverse of the group's filter mode. 2742 */ 2743 while (drt != REC_FULL) { 2744 do { 2745 m0 = mbufq_last(mq); 2746 if (m0 != NULL && 2747 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= 2748 MLD_V2_REPORT_MAXRECS) && 2749 (m0->m_pkthdr.len + MINRECLEN) < 2750 (ifp->if_mtu - MLD_MTUSPACE)) { 2751 m = m0; 2752 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2753 sizeof(struct mldv2_record)) / 2754 sizeof(struct in6_addr); 2755 CTR1(KTR_MLD, 2756 "%s: use previous packet", __func__); 2757 } else { 2758 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2759 if (m == NULL) 2760 m = m_gethdr(M_NOWAIT, MT_DATA); 2761 if (m == NULL) { 2762 CTR1(KTR_MLD, 2763 "%s: m_get*() failed", __func__); 2764 return (-ENOMEM); 2765 } 2766 m->m_pkthdr.PH_vt.vt_nrecs = 0; 2767 mld_save_context(m, ifp); 2768 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2769 sizeof(struct mldv2_record)) / 2770 sizeof(struct in6_addr); 2771 npbytes = 0; 2772 CTR1(KTR_MLD, 2773 "%s: allocated new packet", __func__); 2774 } 2775 /* 2776 * Append the MLD group record header to the 2777 * current packet's data area. 2778 * Recalculate pointer to free space for next 2779 * group record, in case m_append() allocated 2780 * a new mbuf or cluster. 2781 */ 2782 memset(&mr, 0, sizeof(mr)); 2783 mr.mr_addr = inm->in6m_addr; 2784 in6_clearscope(&mr.mr_addr); 2785 if (!m_append(m, sizeof(mr), (void *)&mr)) { 2786 if (m != m0) 2787 m_freem(m); 2788 CTR1(KTR_MLD, 2789 "%s: m_append() failed", __func__); 2790 return (-ENOMEM); 2791 } 2792 npbytes += sizeof(struct mldv2_record); 2793 if (m != m0) { 2794 /* new packet; offset in chain */ 2795 md = m_getptr(m, npbytes - 2796 sizeof(struct mldv2_record), &off); 2797 pmr = (struct mldv2_record *)(mtod(md, 2798 uint8_t *) + off); 2799 } else { 2800 /* current packet; offset from last append */ 2801 md = m_last(m); 2802 pmr = (struct mldv2_record *)(mtod(md, 2803 uint8_t *) + md->m_len - 2804 sizeof(struct mldv2_record)); 2805 } 2806 /* 2807 * Begin walking the tree for this record type 2808 * pass, or continue from where we left off 2809 * previously if we had to allocate a new packet. 2810 * Only report deltas in-mode at t1. 2811 * We need not report included sources as allowed 2812 * if we are in inclusive mode on the group, 2813 * however the converse is not true. 2814 */ 2815 rsrcs = 0; 2816 if (nims == NULL) { 2817 nims = RB_MIN(ip6_msource_tree, 2818 &inm->in6m_srcs); 2819 } 2820 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2821 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2822 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2823 now = im6s_get_mode(inm, ims, 1); 2824 then = im6s_get_mode(inm, ims, 0); 2825 CTR3(KTR_MLD, "%s: mode: t0 %d, t1 %d", 2826 __func__, then, now); 2827 if (now == then) { 2828 CTR1(KTR_MLD, 2829 "%s: skip unchanged", __func__); 2830 continue; 2831 } 2832 if (mode == MCAST_EXCLUDE && 2833 now == MCAST_INCLUDE) { 2834 CTR1(KTR_MLD, 2835 "%s: skip IN src on EX group", 2836 __func__); 2837 continue; 2838 } 2839 nrt = (rectype_t)now; 2840 if (nrt == REC_NONE) 2841 nrt = (rectype_t)(~mode & REC_FULL); 2842 if (schanged++ == 0) { 2843 crt = nrt; 2844 } else if (crt != nrt) 2845 continue; 2846 if (!m_append(m, sizeof(struct in6_addr), 2847 (void *)&ims->im6s_addr)) { 2848 if (m != m0) 2849 m_freem(m); 2850 CTR1(KTR_MLD, 2851 "%s: m_append() failed", __func__); 2852 return (-ENOMEM); 2853 } 2854 nallow += !!(crt == REC_ALLOW); 2855 nblock += !!(crt == REC_BLOCK); 2856 if (++rsrcs == m0srcs) 2857 break; 2858 } 2859 /* 2860 * If we did not append any tree nodes on this 2861 * pass, back out of allocations. 2862 */ 2863 if (rsrcs == 0) { 2864 npbytes -= sizeof(struct mldv2_record); 2865 if (m != m0) { 2866 CTR1(KTR_MLD, 2867 "%s: m_free(m)", __func__); 2868 m_freem(m); 2869 } else { 2870 CTR1(KTR_MLD, 2871 "%s: m_adj(m, -mr)", __func__); 2872 m_adj(m, -((int)sizeof( 2873 struct mldv2_record))); 2874 } 2875 continue; 2876 } 2877 npbytes += (rsrcs * sizeof(struct in6_addr)); 2878 if (crt == REC_ALLOW) 2879 pmr->mr_type = MLD_ALLOW_NEW_SOURCES; 2880 else if (crt == REC_BLOCK) 2881 pmr->mr_type = MLD_BLOCK_OLD_SOURCES; 2882 pmr->mr_numsrc = htons(rsrcs); 2883 /* 2884 * Count the new group record, and enqueue this 2885 * packet if it wasn't already queued. 2886 */ 2887 m->m_pkthdr.PH_vt.vt_nrecs++; 2888 if (m != m0) 2889 mbufq_enqueue(mq, m); 2890 nbytes += npbytes; 2891 } while (nims != NULL); 2892 drt |= crt; 2893 crt = (~crt & REC_FULL); 2894 } 2895 2896 CTR3(KTR_MLD, "%s: queued %d ALLOW_NEW, %d BLOCK_OLD", __func__, 2897 nallow, nblock); 2898 2899 return (nbytes); 2900 } 2901 2902 static int 2903 mld_v2_merge_state_changes(struct in6_multi *inm, struct mbufq *scq) 2904 { 2905 struct mbufq *gq; 2906 struct mbuf *m; /* pending state-change */ 2907 struct mbuf *m0; /* copy of pending state-change */ 2908 struct mbuf *mt; /* last state-change in packet */ 2909 int docopy, domerge; 2910 u_int recslen; 2911 2912 docopy = 0; 2913 domerge = 0; 2914 recslen = 0; 2915 2916 IN6_MULTI_LIST_LOCK_ASSERT(); 2917 MLD_LOCK_ASSERT(); 2918 2919 /* 2920 * If there are further pending retransmissions, make a writable 2921 * copy of each queued state-change message before merging. 2922 */ 2923 if (inm->in6m_scrv > 0) 2924 docopy = 1; 2925 2926 gq = &inm->in6m_scq; 2927 #ifdef KTR 2928 if (mbufq_first(gq) == NULL) { 2929 CTR2(KTR_MLD, "%s: WARNING: queue for inm %p is empty", 2930 __func__, inm); 2931 } 2932 #endif 2933 2934 m = mbufq_first(gq); 2935 while (m != NULL) { 2936 /* 2937 * Only merge the report into the current packet if 2938 * there is sufficient space to do so; an MLDv2 report 2939 * packet may only contain 65,535 group records. 2940 * Always use a simple mbuf chain concatentation to do this, 2941 * as large state changes for single groups may have 2942 * allocated clusters. 2943 */ 2944 domerge = 0; 2945 mt = mbufq_last(scq); 2946 if (mt != NULL) { 2947 recslen = m_length(m, NULL); 2948 2949 if ((mt->m_pkthdr.PH_vt.vt_nrecs + 2950 m->m_pkthdr.PH_vt.vt_nrecs <= 2951 MLD_V2_REPORT_MAXRECS) && 2952 (mt->m_pkthdr.len + recslen <= 2953 (inm->in6m_ifp->if_mtu - MLD_MTUSPACE))) 2954 domerge = 1; 2955 } 2956 2957 if (!domerge && mbufq_full(gq)) { 2958 CTR2(KTR_MLD, 2959 "%s: outbound queue full, skipping whole packet %p", 2960 __func__, m); 2961 mt = m->m_nextpkt; 2962 if (!docopy) 2963 m_freem(m); 2964 m = mt; 2965 continue; 2966 } 2967 2968 if (!docopy) { 2969 CTR2(KTR_MLD, "%s: dequeueing %p", __func__, m); 2970 m0 = mbufq_dequeue(gq); 2971 m = m0->m_nextpkt; 2972 } else { 2973 CTR2(KTR_MLD, "%s: copying %p", __func__, m); 2974 m0 = m_dup(m, M_NOWAIT); 2975 if (m0 == NULL) 2976 return (ENOMEM); 2977 m0->m_nextpkt = NULL; 2978 m = m->m_nextpkt; 2979 } 2980 2981 if (!domerge) { 2982 CTR3(KTR_MLD, "%s: queueing %p to scq %p)", 2983 __func__, m0, scq); 2984 mbufq_enqueue(scq, m0); 2985 } else { 2986 struct mbuf *mtl; /* last mbuf of packet mt */ 2987 2988 CTR3(KTR_MLD, "%s: merging %p with ifscq tail %p)", 2989 __func__, m0, mt); 2990 2991 mtl = m_last(mt); 2992 m0->m_flags &= ~M_PKTHDR; 2993 mt->m_pkthdr.len += recslen; 2994 mt->m_pkthdr.PH_vt.vt_nrecs += 2995 m0->m_pkthdr.PH_vt.vt_nrecs; 2996 2997 mtl->m_next = m0; 2998 } 2999 } 3000 3001 return (0); 3002 } 3003 3004 /* 3005 * Respond to a pending MLDv2 General Query. 3006 */ 3007 static void 3008 mld_v2_dispatch_general_query(struct mld_ifsoftc *mli) 3009 { 3010 struct ifmultiaddr *ifma; 3011 struct ifnet *ifp; 3012 struct in6_multi *inm; 3013 int retval; 3014 3015 NET_EPOCH_ASSERT(); 3016 IN6_MULTI_LIST_LOCK_ASSERT(); 3017 MLD_LOCK_ASSERT(); 3018 3019 KASSERT(mli->mli_version == MLD_VERSION_2, 3020 ("%s: called when version %d", __func__, mli->mli_version)); 3021 3022 /* 3023 * Check that there are some packets queued. If so, send them first. 3024 * For large number of groups the reply to general query can take 3025 * many packets, we should finish sending them before starting of 3026 * queuing the new reply. 3027 */ 3028 if (mbufq_len(&mli->mli_gq) != 0) 3029 goto send; 3030 3031 ifp = mli->mli_ifp; 3032 3033 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3034 inm = in6m_ifmultiaddr_get_inm(ifma); 3035 if (inm == NULL) 3036 continue; 3037 KASSERT(ifp == inm->in6m_ifp, 3038 ("%s: inconsistent ifp", __func__)); 3039 3040 switch (inm->in6m_state) { 3041 case MLD_NOT_MEMBER: 3042 case MLD_SILENT_MEMBER: 3043 break; 3044 case MLD_REPORTING_MEMBER: 3045 case MLD_IDLE_MEMBER: 3046 case MLD_LAZY_MEMBER: 3047 case MLD_SLEEPING_MEMBER: 3048 case MLD_AWAKENING_MEMBER: 3049 inm->in6m_state = MLD_REPORTING_MEMBER; 3050 retval = mld_v2_enqueue_group_record(&mli->mli_gq, 3051 inm, 0, 0, 0, 0); 3052 CTR2(KTR_MLD, "%s: enqueue record = %d", 3053 __func__, retval); 3054 break; 3055 case MLD_G_QUERY_PENDING_MEMBER: 3056 case MLD_SG_QUERY_PENDING_MEMBER: 3057 case MLD_LEAVING_MEMBER: 3058 break; 3059 } 3060 } 3061 3062 send: 3063 mld_dispatch_queue(&mli->mli_gq, MLD_MAX_RESPONSE_BURST); 3064 3065 /* 3066 * Slew transmission of bursts over 500ms intervals. 3067 */ 3068 if (mbufq_first(&mli->mli_gq) != NULL) { 3069 mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY( 3070 MLD_RESPONSE_BURST_INTERVAL); 3071 V_interface_timers_running6 = 1; 3072 } 3073 } 3074 3075 /* 3076 * Transmit the next pending message in the output queue. 3077 * 3078 * VIMAGE: Needs to store/restore vnet pointer on a per-mbuf-chain basis. 3079 * MRT: Nothing needs to be done, as MLD traffic is always local to 3080 * a link and uses a link-scope multicast address. 3081 */ 3082 static void 3083 mld_dispatch_packet(struct mbuf *m) 3084 { 3085 struct ip6_moptions im6o; 3086 struct ifnet *ifp; 3087 struct ifnet *oifp; 3088 struct mbuf *m0; 3089 struct mbuf *md; 3090 struct ip6_hdr *ip6; 3091 struct mld_hdr *mld; 3092 int error; 3093 int off; 3094 int type; 3095 uint32_t ifindex; 3096 3097 CTR2(KTR_MLD, "%s: transmit %p", __func__, m); 3098 3099 /* 3100 * Set VNET image pointer from enqueued mbuf chain 3101 * before doing anything else. Whilst we use interface 3102 * indexes to guard against interface detach, they are 3103 * unique to each VIMAGE and must be retrieved. 3104 */ 3105 ifindex = mld_restore_context(m); 3106 3107 /* 3108 * Check if the ifnet still exists. This limits the scope of 3109 * any race in the absence of a global ifp lock for low cost 3110 * (an array lookup). 3111 */ 3112 ifp = ifnet_byindex(ifindex); 3113 if (ifp == NULL) { 3114 CTR3(KTR_MLD, "%s: dropped %p as ifindex %u went away.", 3115 __func__, m, ifindex); 3116 m_freem(m); 3117 IP6STAT_INC(ip6s_noroute); 3118 goto out; 3119 } 3120 3121 im6o.im6o_multicast_hlim = 1; 3122 im6o.im6o_multicast_loop = (V_ip6_mrouter != NULL); 3123 im6o.im6o_multicast_ifp = ifp; 3124 3125 if (m->m_flags & M_MLDV1) { 3126 m0 = m; 3127 } else { 3128 m0 = mld_v2_encap_report(ifp, m); 3129 if (m0 == NULL) { 3130 CTR2(KTR_MLD, "%s: dropped %p", __func__, m); 3131 IP6STAT_INC(ip6s_odropped); 3132 goto out; 3133 } 3134 } 3135 3136 mld_scrub_context(m0); 3137 m_clrprotoflags(m); 3138 m0->m_pkthdr.rcvif = V_loif; 3139 3140 ip6 = mtod(m0, struct ip6_hdr *); 3141 #if 0 3142 (void)in6_setscope(&ip6->ip6_dst, ifp, NULL); /* XXX LOR */ 3143 #else 3144 /* 3145 * XXX XXX Break some KPI rules to prevent an LOR which would 3146 * occur if we called in6_setscope() at transmission. 3147 * See comments at top of file. 3148 */ 3149 MLD_EMBEDSCOPE(&ip6->ip6_dst, ifp->if_index); 3150 #endif 3151 3152 /* 3153 * Retrieve the ICMPv6 type before handoff to ip6_output(), 3154 * so we can bump the stats. 3155 */ 3156 md = m_getptr(m0, sizeof(struct ip6_hdr), &off); 3157 mld = (struct mld_hdr *)(mtod(md, uint8_t *) + off); 3158 type = mld->mld_type; 3159 3160 error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, &im6o, 3161 &oifp, NULL); 3162 if (error) { 3163 CTR3(KTR_MLD, "%s: ip6_output(%p) = %d", __func__, m0, error); 3164 goto out; 3165 } 3166 ICMP6STAT_INC(icp6s_outhist[type]); 3167 if (oifp != NULL) { 3168 icmp6_ifstat_inc(oifp, ifs6_out_msg); 3169 switch (type) { 3170 case MLD_LISTENER_REPORT: 3171 case MLDV2_LISTENER_REPORT: 3172 icmp6_ifstat_inc(oifp, ifs6_out_mldreport); 3173 break; 3174 case MLD_LISTENER_DONE: 3175 icmp6_ifstat_inc(oifp, ifs6_out_mlddone); 3176 break; 3177 } 3178 } 3179 out: 3180 return; 3181 } 3182 3183 /* 3184 * Encapsulate an MLDv2 report. 3185 * 3186 * KAME IPv6 requires that hop-by-hop options be passed separately, 3187 * and that the IPv6 header be prepended in a separate mbuf. 3188 * 3189 * Returns a pointer to the new mbuf chain head, or NULL if the 3190 * allocation failed. 3191 */ 3192 static struct mbuf * 3193 mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m) 3194 { 3195 struct mbuf *mh; 3196 struct mldv2_report *mld; 3197 struct ip6_hdr *ip6; 3198 struct in6_ifaddr *ia; 3199 int mldreclen; 3200 3201 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 3202 KASSERT((m->m_flags & M_PKTHDR), 3203 ("%s: mbuf chain %p is !M_PKTHDR", __func__, m)); 3204 3205 /* 3206 * RFC3590: OK to send as :: or tentative during DAD. 3207 */ 3208 NET_EPOCH_ASSERT(); 3209 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 3210 if (ia == NULL) 3211 CTR1(KTR_MLD, "%s: warning: ia is NULL", __func__); 3212 3213 mh = m_gethdr(M_NOWAIT, MT_DATA); 3214 if (mh == NULL) { 3215 if (ia != NULL) 3216 ifa_free(&ia->ia_ifa); 3217 m_freem(m); 3218 return (NULL); 3219 } 3220 M_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report)); 3221 3222 mldreclen = m_length(m, NULL); 3223 CTR2(KTR_MLD, "%s: mldreclen is %d", __func__, mldreclen); 3224 3225 mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report); 3226 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + 3227 sizeof(struct mldv2_report) + mldreclen; 3228 3229 ip6 = mtod(mh, struct ip6_hdr *); 3230 ip6->ip6_flow = 0; 3231 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 3232 ip6->ip6_vfc |= IPV6_VERSION; 3233 ip6->ip6_nxt = IPPROTO_ICMPV6; 3234 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 3235 if (ia != NULL) 3236 ifa_free(&ia->ia_ifa); 3237 ip6->ip6_dst = in6addr_linklocal_allv2routers; 3238 /* scope ID will be set in netisr */ 3239 3240 mld = (struct mldv2_report *)(ip6 + 1); 3241 mld->mld_type = MLDV2_LISTENER_REPORT; 3242 mld->mld_code = 0; 3243 mld->mld_cksum = 0; 3244 mld->mld_v2_reserved = 0; 3245 mld->mld_v2_numrecs = htons(m->m_pkthdr.PH_vt.vt_nrecs); 3246 m->m_pkthdr.PH_vt.vt_nrecs = 0; 3247 3248 mh->m_next = m; 3249 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 3250 sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen); 3251 return (mh); 3252 } 3253 3254 #ifdef KTR 3255 static char * 3256 mld_rec_type_to_str(const int type) 3257 { 3258 3259 switch (type) { 3260 case MLD_CHANGE_TO_EXCLUDE_MODE: 3261 return "TO_EX"; 3262 break; 3263 case MLD_CHANGE_TO_INCLUDE_MODE: 3264 return "TO_IN"; 3265 break; 3266 case MLD_MODE_IS_EXCLUDE: 3267 return "MODE_EX"; 3268 break; 3269 case MLD_MODE_IS_INCLUDE: 3270 return "MODE_IN"; 3271 break; 3272 case MLD_ALLOW_NEW_SOURCES: 3273 return "ALLOW_NEW"; 3274 break; 3275 case MLD_BLOCK_OLD_SOURCES: 3276 return "BLOCK_OLD"; 3277 break; 3278 default: 3279 break; 3280 } 3281 return "unknown"; 3282 } 3283 #endif 3284 3285 static void 3286 mld_init(void *unused __unused) 3287 { 3288 3289 CTR1(KTR_MLD, "%s: initializing", __func__); 3290 MLD_LOCK_INIT(); 3291 3292 ip6_initpktopts(&mld_po); 3293 mld_po.ip6po_hlim = 1; 3294 mld_po.ip6po_hbh = &mld_ra.hbh; 3295 mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER; 3296 mld_po.ip6po_flags = IP6PO_DONTFRAG; 3297 } 3298 SYSINIT(mld_init, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, mld_init, NULL); 3299 3300 static void 3301 mld_uninit(void *unused __unused) 3302 { 3303 3304 CTR1(KTR_MLD, "%s: tearing down", __func__); 3305 MLD_LOCK_DESTROY(); 3306 } 3307 SYSUNINIT(mld_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, mld_uninit, NULL); 3308 3309 static void 3310 vnet_mld_init(const void *unused __unused) 3311 { 3312 3313 CTR1(KTR_MLD, "%s: initializing", __func__); 3314 3315 LIST_INIT(&V_mli_head); 3316 } 3317 VNET_SYSINIT(vnet_mld_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mld_init, 3318 NULL); 3319 3320 static void 3321 vnet_mld_uninit(const void *unused __unused) 3322 { 3323 3324 /* This can happen if we shutdown the network stack. */ 3325 CTR1(KTR_MLD, "%s: tearing down", __func__); 3326 } 3327 VNET_SYSUNINIT(vnet_mld_uninit, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mld_uninit, 3328 NULL); 3329 3330 static int 3331 mld_modevent(module_t mod, int type, void *unused __unused) 3332 { 3333 3334 switch (type) { 3335 case MOD_LOAD: 3336 case MOD_UNLOAD: 3337 break; 3338 default: 3339 return (EOPNOTSUPP); 3340 } 3341 return (0); 3342 } 3343 3344 static moduledata_t mld_mod = { 3345 "mld", 3346 mld_modevent, 3347 0 3348 }; 3349 DECLARE_MODULE(mld, mld_mod, SI_SUB_PROTO_MC, SI_ORDER_ANY); 3350