1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2009 Bruce Simpson. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. The name of the author may not be used to endorse or promote 15 * products derived from this software without specific prior written 16 * permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * $KAME: mld6.c,v 1.27 2001/04/04 05:17:30 itojun Exp $ 31 */ 32 33 /*- 34 * Copyright (c) 1988 Stephen Deering. 35 * Copyright (c) 1992, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * This code is derived from software contributed to Berkeley by 39 * Stephen Deering of Stanford University. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)igmp.c 8.1 (Berkeley) 7/19/93 66 */ 67 68 #include <sys/cdefs.h> 69 __FBSDID("$FreeBSD$"); 70 71 #include "opt_inet.h" 72 #include "opt_inet6.h" 73 74 #include <sys/param.h> 75 #include <sys/systm.h> 76 #include <sys/mbuf.h> 77 #include <sys/socket.h> 78 #include <sys/protosw.h> 79 #include <sys/sysctl.h> 80 #include <sys/kernel.h> 81 #include <sys/callout.h> 82 #include <sys/malloc.h> 83 #include <sys/module.h> 84 #include <sys/ktr.h> 85 86 #include <net/if.h> 87 #include <net/if_var.h> 88 #include <net/route.h> 89 #include <net/vnet.h> 90 91 #include <netinet/in.h> 92 #include <netinet/in_var.h> 93 #include <netinet6/in6_var.h> 94 #include <netinet/ip6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/scope6_var.h> 97 #include <netinet/icmp6.h> 98 #include <netinet6/mld6.h> 99 #include <netinet6/mld6_var.h> 100 101 #include <security/mac/mac_framework.h> 102 103 #ifndef KTR_MLD 104 #define KTR_MLD KTR_INET6 105 #endif 106 107 static struct mld_ifsoftc * 108 mli_alloc_locked(struct ifnet *); 109 static void mli_delete_locked(const struct ifnet *); 110 static void mld_dispatch_packet(struct mbuf *); 111 static void mld_dispatch_queue(struct mbufq *, int); 112 static void mld_final_leave(struct in6_multi *, struct mld_ifsoftc *); 113 static void mld_fasttimo_vnet(struct in6_multi_head *inmh); 114 static int mld_handle_state_change(struct in6_multi *, 115 struct mld_ifsoftc *); 116 static int mld_initial_join(struct in6_multi *, struct mld_ifsoftc *, 117 const int); 118 #ifdef KTR 119 static char * mld_rec_type_to_str(const int); 120 #endif 121 static void mld_set_version(struct mld_ifsoftc *, const int); 122 static void mld_slowtimo_vnet(void); 123 static int mld_v1_input_query(struct ifnet *, const struct ip6_hdr *, 124 /*const*/ struct mld_hdr *); 125 static int mld_v1_input_report(struct ifnet *, const struct ip6_hdr *, 126 /*const*/ struct mld_hdr *); 127 static void mld_v1_process_group_timer(struct in6_multi_head *, 128 struct in6_multi *); 129 static void mld_v1_process_querier_timers(struct mld_ifsoftc *); 130 static int mld_v1_transmit_report(struct in6_multi *, const int); 131 static void mld_v1_update_group(struct in6_multi *, const int); 132 static void mld_v2_cancel_link_timers(struct mld_ifsoftc *); 133 static void mld_v2_dispatch_general_query(struct mld_ifsoftc *); 134 static struct mbuf * 135 mld_v2_encap_report(struct ifnet *, struct mbuf *); 136 static int mld_v2_enqueue_filter_change(struct mbufq *, 137 struct in6_multi *); 138 static int mld_v2_enqueue_group_record(struct mbufq *, 139 struct in6_multi *, const int, const int, const int, 140 const int); 141 static int mld_v2_input_query(struct ifnet *, const struct ip6_hdr *, 142 struct mbuf *, struct mldv2_query *, const int, const int); 143 static int mld_v2_merge_state_changes(struct in6_multi *, 144 struct mbufq *); 145 static void mld_v2_process_group_timers(struct in6_multi_head *, 146 struct mbufq *, struct mbufq *, 147 struct in6_multi *, const int); 148 static int mld_v2_process_group_query(struct in6_multi *, 149 struct mld_ifsoftc *mli, int, struct mbuf *, 150 struct mldv2_query *, const int); 151 static int sysctl_mld_gsr(SYSCTL_HANDLER_ARGS); 152 static int sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS); 153 154 /* 155 * Normative references: RFC 2710, RFC 3590, RFC 3810. 156 * 157 * Locking: 158 * * The MLD subsystem lock ends up being system-wide for the moment, 159 * but could be per-VIMAGE later on. 160 * * The permitted lock order is: IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK. 161 * Any may be taken independently; if any are held at the same 162 * time, the above lock order must be followed. 163 * * IN6_MULTI_LOCK covers in_multi. 164 * * MLD_LOCK covers per-link state and any global variables in this file. 165 * * IF_ADDR_LOCK covers if_multiaddrs, which is used for a variety of 166 * per-link state iterators. 167 * 168 * XXX LOR PREVENTION 169 * A special case for IPv6 is the in6_setscope() routine. ip6_output() 170 * will not accept an ifp; it wants an embedded scope ID, unlike 171 * ip_output(), which happily takes the ifp given to it. The embedded 172 * scope ID is only used by MLD to select the outgoing interface. 173 * 174 * During interface attach and detach, MLD will take MLD_LOCK *after* 175 * the IF_AFDATA_LOCK. 176 * As in6_setscope() takes IF_AFDATA_LOCK then SCOPE_LOCK, we can't call 177 * it with MLD_LOCK held without triggering an LOR. A netisr with indirect 178 * dispatch could work around this, but we'd rather not do that, as it 179 * can introduce other races. 180 * 181 * As such, we exploit the fact that the scope ID is just the interface 182 * index, and embed it in the IPv6 destination address accordingly. 183 * This is potentially NOT VALID for MLDv1 reports, as they 184 * are always sent to the multicast group itself; as MLDv2 185 * reports are always sent to ff02::16, this is not an issue 186 * when MLDv2 is in use. 187 * 188 * This does not however eliminate the LOR when ip6_output() itself 189 * calls in6_setscope() internally whilst MLD_LOCK is held. This will 190 * trigger a LOR warning in WITNESS when the ifnet is detached. 191 * 192 * The right answer is probably to make IF_AFDATA_LOCK an rwlock, given 193 * how it's used across the network stack. Here we're simply exploiting 194 * the fact that MLD runs at a similar layer in the stack to scope6.c. 195 * 196 * VIMAGE: 197 * * Each in6_multi corresponds to an ifp, and each ifp corresponds 198 * to a vnet in ifp->if_vnet. 199 */ 200 static struct mtx mld_mtx; 201 static MALLOC_DEFINE(M_MLD, "mld", "mld state"); 202 203 #define MLD_EMBEDSCOPE(pin6, zoneid) \ 204 if (IN6_IS_SCOPE_LINKLOCAL(pin6) || \ 205 IN6_IS_ADDR_MC_INTFACELOCAL(pin6)) \ 206 (pin6)->s6_addr16[1] = htons((zoneid) & 0xFFFF) \ 207 208 /* 209 * VIMAGE-wide globals. 210 */ 211 VNET_DEFINE_STATIC(struct timeval, mld_gsrdelay) = {10, 0}; 212 VNET_DEFINE_STATIC(LIST_HEAD(, mld_ifsoftc), mli_head); 213 VNET_DEFINE_STATIC(int, interface_timers_running6); 214 VNET_DEFINE_STATIC(int, state_change_timers_running6); 215 VNET_DEFINE_STATIC(int, current_state_timers_running6); 216 217 #define V_mld_gsrdelay VNET(mld_gsrdelay) 218 #define V_mli_head VNET(mli_head) 219 #define V_interface_timers_running6 VNET(interface_timers_running6) 220 #define V_state_change_timers_running6 VNET(state_change_timers_running6) 221 #define V_current_state_timers_running6 VNET(current_state_timers_running6) 222 223 SYSCTL_DECL(_net_inet6); /* Note: Not in any common header. */ 224 225 SYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW, 0, 226 "IPv6 Multicast Listener Discovery"); 227 228 /* 229 * Virtualized sysctls. 230 */ 231 SYSCTL_PROC(_net_inet6_mld, OID_AUTO, gsrdelay, 232 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 233 &VNET_NAME(mld_gsrdelay.tv_sec), 0, sysctl_mld_gsr, "I", 234 "Rate limit for MLDv2 Group-and-Source queries in seconds"); 235 236 /* 237 * Non-virtualized sysctls. 238 */ 239 static SYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo, 240 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mld_ifinfo, 241 "Per-interface MLDv2 state"); 242 243 static int mld_v1enable = 1; 244 SYSCTL_INT(_net_inet6_mld, OID_AUTO, v1enable, CTLFLAG_RWTUN, 245 &mld_v1enable, 0, "Enable fallback to MLDv1"); 246 247 static int mld_v2enable = 1; 248 SYSCTL_INT(_net_inet6_mld, OID_AUTO, v2enable, CTLFLAG_RWTUN, 249 &mld_v2enable, 0, "Enable MLDv2"); 250 251 static int mld_use_allow = 1; 252 SYSCTL_INT(_net_inet6_mld, OID_AUTO, use_allow, CTLFLAG_RWTUN, 253 &mld_use_allow, 0, "Use ALLOW/BLOCK for RFC 4604 SSM joins/leaves"); 254 255 /* 256 * Packed Router Alert option structure declaration. 257 */ 258 struct mld_raopt { 259 struct ip6_hbh hbh; 260 struct ip6_opt pad; 261 struct ip6_opt_router ra; 262 } __packed; 263 264 /* 265 * Router Alert hop-by-hop option header. 266 */ 267 static struct mld_raopt mld_ra = { 268 .hbh = { 0, 0 }, 269 .pad = { .ip6o_type = IP6OPT_PADN, 0 }, 270 .ra = { 271 .ip6or_type = IP6OPT_ROUTER_ALERT, 272 .ip6or_len = IP6OPT_RTALERT_LEN - 2, 273 .ip6or_value[0] = ((IP6OPT_RTALERT_MLD >> 8) & 0xFF), 274 .ip6or_value[1] = (IP6OPT_RTALERT_MLD & 0xFF) 275 } 276 }; 277 static struct ip6_pktopts mld_po; 278 279 static __inline void 280 mld_save_context(struct mbuf *m, struct ifnet *ifp) 281 { 282 283 #ifdef VIMAGE 284 m->m_pkthdr.PH_loc.ptr = ifp->if_vnet; 285 #endif /* VIMAGE */ 286 m->m_pkthdr.flowid = ifp->if_index; 287 } 288 289 static __inline void 290 mld_scrub_context(struct mbuf *m) 291 { 292 293 m->m_pkthdr.PH_loc.ptr = NULL; 294 m->m_pkthdr.flowid = 0; 295 } 296 297 /* 298 * Restore context from a queued output chain. 299 * Return saved ifindex. 300 * 301 * VIMAGE: The assertion is there to make sure that we 302 * actually called CURVNET_SET() with what's in the mbuf chain. 303 */ 304 static __inline uint32_t 305 mld_restore_context(struct mbuf *m) 306 { 307 308 #if defined(VIMAGE) && defined(INVARIANTS) 309 KASSERT(curvnet == m->m_pkthdr.PH_loc.ptr, 310 ("%s: called when curvnet was not restored: cuvnet %p m ptr %p", 311 __func__, curvnet, m->m_pkthdr.PH_loc.ptr)); 312 #endif 313 return (m->m_pkthdr.flowid); 314 } 315 316 /* 317 * Retrieve or set threshold between group-source queries in seconds. 318 * 319 * VIMAGE: Assume curvnet set by caller. 320 * SMPng: NOTE: Serialized by MLD lock. 321 */ 322 static int 323 sysctl_mld_gsr(SYSCTL_HANDLER_ARGS) 324 { 325 int error; 326 int i; 327 328 error = sysctl_wire_old_buffer(req, sizeof(int)); 329 if (error) 330 return (error); 331 332 MLD_LOCK(); 333 334 i = V_mld_gsrdelay.tv_sec; 335 336 error = sysctl_handle_int(oidp, &i, 0, req); 337 if (error || !req->newptr) 338 goto out_locked; 339 340 if (i < -1 || i >= 60) { 341 error = EINVAL; 342 goto out_locked; 343 } 344 345 CTR2(KTR_MLD, "change mld_gsrdelay from %d to %d", 346 V_mld_gsrdelay.tv_sec, i); 347 V_mld_gsrdelay.tv_sec = i; 348 349 out_locked: 350 MLD_UNLOCK(); 351 return (error); 352 } 353 354 /* 355 * Expose struct mld_ifsoftc to userland, keyed by ifindex. 356 * For use by ifmcstat(8). 357 * 358 * SMPng: NOTE: Does an unlocked ifindex space read. 359 * VIMAGE: Assume curvnet set by caller. The node handler itself 360 * is not directly virtualized. 361 */ 362 static int 363 sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS) 364 { 365 int *name; 366 int error; 367 u_int namelen; 368 struct ifnet *ifp; 369 struct mld_ifsoftc *mli; 370 371 name = (int *)arg1; 372 namelen = arg2; 373 374 if (req->newptr != NULL) 375 return (EPERM); 376 377 if (namelen != 1) 378 return (EINVAL); 379 380 error = sysctl_wire_old_buffer(req, sizeof(struct mld_ifinfo)); 381 if (error) 382 return (error); 383 384 IN6_MULTI_LOCK(); 385 IN6_MULTI_LIST_LOCK(); 386 MLD_LOCK(); 387 388 if (name[0] <= 0 || name[0] > V_if_index) { 389 error = ENOENT; 390 goto out_locked; 391 } 392 393 error = ENOENT; 394 395 ifp = ifnet_byindex(name[0]); 396 if (ifp == NULL) 397 goto out_locked; 398 399 LIST_FOREACH(mli, &V_mli_head, mli_link) { 400 if (ifp == mli->mli_ifp) { 401 struct mld_ifinfo info; 402 403 info.mli_version = mli->mli_version; 404 info.mli_v1_timer = mli->mli_v1_timer; 405 info.mli_v2_timer = mli->mli_v2_timer; 406 info.mli_flags = mli->mli_flags; 407 info.mli_rv = mli->mli_rv; 408 info.mli_qi = mli->mli_qi; 409 info.mli_qri = mli->mli_qri; 410 info.mli_uri = mli->mli_uri; 411 error = SYSCTL_OUT(req, &info, sizeof(info)); 412 break; 413 } 414 } 415 416 out_locked: 417 MLD_UNLOCK(); 418 IN6_MULTI_LIST_UNLOCK(); 419 IN6_MULTI_UNLOCK(); 420 return (error); 421 } 422 423 /* 424 * Dispatch an entire queue of pending packet chains. 425 * VIMAGE: Assumes the vnet pointer has been set. 426 */ 427 static void 428 mld_dispatch_queue(struct mbufq *mq, int limit) 429 { 430 struct mbuf *m; 431 432 while ((m = mbufq_dequeue(mq)) != NULL) { 433 CTR3(KTR_MLD, "%s: dispatch %p from %p", __func__, mq, m); 434 mld_dispatch_packet(m); 435 if (--limit == 0) 436 break; 437 } 438 } 439 440 /* 441 * Filter outgoing MLD report state by group. 442 * 443 * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1) 444 * and node-local addresses. However, kernel and socket consumers 445 * always embed the KAME scope ID in the address provided, so strip it 446 * when performing comparison. 447 * Note: This is not the same as the *multicast* scope. 448 * 449 * Return zero if the given group is one for which MLD reports 450 * should be suppressed, or non-zero if reports should be issued. 451 */ 452 static __inline int 453 mld_is_addr_reported(const struct in6_addr *addr) 454 { 455 456 KASSERT(IN6_IS_ADDR_MULTICAST(addr), ("%s: not multicast", __func__)); 457 458 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL) 459 return (0); 460 461 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL) { 462 struct in6_addr tmp = *addr; 463 in6_clearscope(&tmp); 464 if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes)) 465 return (0); 466 } 467 468 return (1); 469 } 470 471 /* 472 * Attach MLD when PF_INET6 is attached to an interface. 473 * 474 * SMPng: Normally called with IF_AFDATA_LOCK held. 475 */ 476 struct mld_ifsoftc * 477 mld_domifattach(struct ifnet *ifp) 478 { 479 struct mld_ifsoftc *mli; 480 481 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 482 __func__, ifp, if_name(ifp)); 483 484 MLD_LOCK(); 485 486 mli = mli_alloc_locked(ifp); 487 if (!(ifp->if_flags & IFF_MULTICAST)) 488 mli->mli_flags |= MLIF_SILENT; 489 if (mld_use_allow) 490 mli->mli_flags |= MLIF_USEALLOW; 491 492 MLD_UNLOCK(); 493 494 return (mli); 495 } 496 497 /* 498 * VIMAGE: assume curvnet set by caller. 499 */ 500 static struct mld_ifsoftc * 501 mli_alloc_locked(/*const*/ struct ifnet *ifp) 502 { 503 struct mld_ifsoftc *mli; 504 505 MLD_LOCK_ASSERT(); 506 507 mli = malloc(sizeof(struct mld_ifsoftc), M_MLD, M_NOWAIT|M_ZERO); 508 if (mli == NULL) 509 goto out; 510 511 mli->mli_ifp = ifp; 512 mli->mli_version = MLD_VERSION_2; 513 mli->mli_flags = 0; 514 mli->mli_rv = MLD_RV_INIT; 515 mli->mli_qi = MLD_QI_INIT; 516 mli->mli_qri = MLD_QRI_INIT; 517 mli->mli_uri = MLD_URI_INIT; 518 mbufq_init(&mli->mli_gq, MLD_MAX_RESPONSE_PACKETS); 519 520 LIST_INSERT_HEAD(&V_mli_head, mli, mli_link); 521 522 CTR2(KTR_MLD, "allocate mld_ifsoftc for ifp %p(%s)", 523 ifp, if_name(ifp)); 524 525 out: 526 return (mli); 527 } 528 529 /* 530 * Hook for ifdetach. 531 * 532 * NOTE: Some finalization tasks need to run before the protocol domain 533 * is detached, but also before the link layer does its cleanup. 534 * Run before link-layer cleanup; cleanup groups, but do not free MLD state. 535 * 536 * SMPng: Caller must hold IN6_MULTI_LOCK(). 537 * Must take IF_ADDR_LOCK() to cover if_multiaddrs iterator. 538 * XXX This routine is also bitten by unlocked ifma_protospec access. 539 */ 540 void 541 mld_ifdetach(struct ifnet *ifp, struct in6_multi_head *inmh) 542 { 543 struct epoch_tracker et; 544 struct mld_ifsoftc *mli; 545 struct ifmultiaddr *ifma; 546 struct in6_multi *inm; 547 548 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", __func__, ifp, 549 if_name(ifp)); 550 551 IN6_MULTI_LIST_LOCK_ASSERT(); 552 MLD_LOCK(); 553 554 mli = MLD_IFINFO(ifp); 555 IF_ADDR_WLOCK(ifp); 556 /* 557 * Extract list of in6_multi associated with the detaching ifp 558 * which the PF_INET6 layer is about to release. 559 */ 560 NET_EPOCH_ENTER(et); 561 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 562 inm = in6m_ifmultiaddr_get_inm(ifma); 563 if (inm == NULL) 564 continue; 565 in6m_disconnect_locked(inmh, inm); 566 567 if (mli->mli_version == MLD_VERSION_2) { 568 in6m_clear_recorded(inm); 569 570 /* 571 * We need to release the final reference held 572 * for issuing the INCLUDE {}. 573 */ 574 if (inm->in6m_state == MLD_LEAVING_MEMBER) { 575 inm->in6m_state = MLD_NOT_MEMBER; 576 in6m_rele_locked(inmh, inm); 577 } 578 } 579 } 580 NET_EPOCH_EXIT(et); 581 IF_ADDR_WUNLOCK(ifp); 582 MLD_UNLOCK(); 583 } 584 585 /* 586 * Hook for domifdetach. 587 * Runs after link-layer cleanup; free MLD state. 588 * 589 * SMPng: Normally called with IF_AFDATA_LOCK held. 590 */ 591 void 592 mld_domifdetach(struct ifnet *ifp) 593 { 594 595 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 596 __func__, ifp, if_name(ifp)); 597 598 MLD_LOCK(); 599 mli_delete_locked(ifp); 600 MLD_UNLOCK(); 601 } 602 603 static void 604 mli_delete_locked(const struct ifnet *ifp) 605 { 606 struct mld_ifsoftc *mli, *tmli; 607 608 CTR3(KTR_MLD, "%s: freeing mld_ifsoftc for ifp %p(%s)", 609 __func__, ifp, if_name(ifp)); 610 611 MLD_LOCK_ASSERT(); 612 613 LIST_FOREACH_SAFE(mli, &V_mli_head, mli_link, tmli) { 614 if (mli->mli_ifp == ifp) { 615 /* 616 * Free deferred General Query responses. 617 */ 618 mbufq_drain(&mli->mli_gq); 619 620 LIST_REMOVE(mli, mli_link); 621 622 free(mli, M_MLD); 623 return; 624 } 625 } 626 } 627 628 /* 629 * Process a received MLDv1 general or address-specific query. 630 * Assumes that the query header has been pulled up to sizeof(mld_hdr). 631 * 632 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 633 * mld_addr. This is OK as we own the mbuf chain. 634 */ 635 static int 636 mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 637 /*const*/ struct mld_hdr *mld) 638 { 639 struct ifmultiaddr *ifma; 640 struct mld_ifsoftc *mli; 641 struct in6_multi *inm; 642 int is_general_query; 643 uint16_t timer; 644 #ifdef KTR 645 char ip6tbuf[INET6_ADDRSTRLEN]; 646 #endif 647 648 NET_EPOCH_ASSERT(); 649 650 is_general_query = 0; 651 652 if (!mld_v1enable) { 653 CTR3(KTR_MLD, "ignore v1 query %s on ifp %p(%s)", 654 ip6_sprintf(ip6tbuf, &mld->mld_addr), 655 ifp, if_name(ifp)); 656 return (0); 657 } 658 659 /* 660 * RFC3810 Section 6.2: MLD queries must originate from 661 * a router's link-local address. 662 */ 663 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 664 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 665 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 666 ifp, if_name(ifp)); 667 return (0); 668 } 669 670 /* 671 * Do address field validation upfront before we accept 672 * the query. 673 */ 674 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 675 /* 676 * MLDv1 General Query. 677 * If this was not sent to the all-nodes group, ignore it. 678 */ 679 struct in6_addr dst; 680 681 dst = ip6->ip6_dst; 682 in6_clearscope(&dst); 683 if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes)) 684 return (EINVAL); 685 is_general_query = 1; 686 } else { 687 /* 688 * Embed scope ID of receiving interface in MLD query for 689 * lookup whilst we don't hold other locks. 690 */ 691 in6_setscope(&mld->mld_addr, ifp, NULL); 692 } 693 694 IN6_MULTI_LIST_LOCK(); 695 MLD_LOCK(); 696 697 /* 698 * Switch to MLDv1 host compatibility mode. 699 */ 700 mli = MLD_IFINFO(ifp); 701 KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp)); 702 mld_set_version(mli, MLD_VERSION_1); 703 704 timer = (ntohs(mld->mld_maxdelay) * PR_FASTHZ) / MLD_TIMER_SCALE; 705 if (timer == 0) 706 timer = 1; 707 708 if (is_general_query) { 709 /* 710 * For each reporting group joined on this 711 * interface, kick the report timer. 712 */ 713 CTR2(KTR_MLD, "process v1 general query on ifp %p(%s)", 714 ifp, if_name(ifp)); 715 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 716 inm = in6m_ifmultiaddr_get_inm(ifma); 717 if (inm == NULL) 718 continue; 719 mld_v1_update_group(inm, timer); 720 } 721 } else { 722 /* 723 * MLDv1 Group-Specific Query. 724 * If this is a group-specific MLDv1 query, we need only 725 * look up the single group to process it. 726 */ 727 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 728 if (inm != NULL) { 729 CTR3(KTR_MLD, "process v1 query %s on ifp %p(%s)", 730 ip6_sprintf(ip6tbuf, &mld->mld_addr), 731 ifp, if_name(ifp)); 732 mld_v1_update_group(inm, timer); 733 } 734 /* XXX Clear embedded scope ID as userland won't expect it. */ 735 in6_clearscope(&mld->mld_addr); 736 } 737 738 MLD_UNLOCK(); 739 IN6_MULTI_LIST_UNLOCK(); 740 741 return (0); 742 } 743 744 /* 745 * Update the report timer on a group in response to an MLDv1 query. 746 * 747 * If we are becoming the reporting member for this group, start the timer. 748 * If we already are the reporting member for this group, and timer is 749 * below the threshold, reset it. 750 * 751 * We may be updating the group for the first time since we switched 752 * to MLDv2. If we are, then we must clear any recorded source lists, 753 * and transition to REPORTING state; the group timer is overloaded 754 * for group and group-source query responses. 755 * 756 * Unlike MLDv2, the delay per group should be jittered 757 * to avoid bursts of MLDv1 reports. 758 */ 759 static void 760 mld_v1_update_group(struct in6_multi *inm, const int timer) 761 { 762 #ifdef KTR 763 char ip6tbuf[INET6_ADDRSTRLEN]; 764 #endif 765 766 CTR4(KTR_MLD, "%s: %s/%s timer=%d", __func__, 767 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 768 if_name(inm->in6m_ifp), timer); 769 770 IN6_MULTI_LIST_LOCK_ASSERT(); 771 772 switch (inm->in6m_state) { 773 case MLD_NOT_MEMBER: 774 case MLD_SILENT_MEMBER: 775 break; 776 case MLD_REPORTING_MEMBER: 777 if (inm->in6m_timer != 0 && 778 inm->in6m_timer <= timer) { 779 CTR1(KTR_MLD, "%s: REPORTING and timer running, " 780 "skipping.", __func__); 781 break; 782 } 783 /* FALLTHROUGH */ 784 case MLD_SG_QUERY_PENDING_MEMBER: 785 case MLD_G_QUERY_PENDING_MEMBER: 786 case MLD_IDLE_MEMBER: 787 case MLD_LAZY_MEMBER: 788 case MLD_AWAKENING_MEMBER: 789 CTR1(KTR_MLD, "%s: ->REPORTING", __func__); 790 inm->in6m_state = MLD_REPORTING_MEMBER; 791 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 792 V_current_state_timers_running6 = 1; 793 break; 794 case MLD_SLEEPING_MEMBER: 795 CTR1(KTR_MLD, "%s: ->AWAKENING", __func__); 796 inm->in6m_state = MLD_AWAKENING_MEMBER; 797 break; 798 case MLD_LEAVING_MEMBER: 799 break; 800 } 801 } 802 803 /* 804 * Process a received MLDv2 general, group-specific or 805 * group-and-source-specific query. 806 * 807 * Assumes that mld points to a struct mldv2_query which is stored in 808 * contiguous memory. 809 * 810 * Return 0 if successful, otherwise an appropriate error code is returned. 811 */ 812 static int 813 mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 814 struct mbuf *m, struct mldv2_query *mld, const int off, const int icmp6len) 815 { 816 struct mld_ifsoftc *mli; 817 struct in6_multi *inm; 818 uint32_t maxdelay, nsrc, qqi; 819 int is_general_query; 820 uint16_t timer; 821 uint8_t qrv; 822 #ifdef KTR 823 char ip6tbuf[INET6_ADDRSTRLEN]; 824 #endif 825 826 NET_EPOCH_ASSERT(); 827 828 if (!mld_v2enable) { 829 CTR3(KTR_MLD, "ignore v2 query src %s on ifp %p(%s)", 830 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 831 ifp, if_name(ifp)); 832 return (0); 833 } 834 835 /* 836 * RFC3810 Section 6.2: MLD queries must originate from 837 * a router's link-local address. 838 */ 839 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 840 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 841 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 842 ifp, if_name(ifp)); 843 return (0); 844 } 845 846 is_general_query = 0; 847 848 CTR2(KTR_MLD, "input v2 query on ifp %p(%s)", ifp, if_name(ifp)); 849 850 maxdelay = ntohs(mld->mld_maxdelay); /* in 1/10ths of a second */ 851 if (maxdelay >= 32768) { 852 maxdelay = (MLD_MRC_MANT(maxdelay) | 0x1000) << 853 (MLD_MRC_EXP(maxdelay) + 3); 854 } 855 timer = (maxdelay * PR_FASTHZ) / MLD_TIMER_SCALE; 856 if (timer == 0) 857 timer = 1; 858 859 qrv = MLD_QRV(mld->mld_misc); 860 if (qrv < 2) { 861 CTR3(KTR_MLD, "%s: clamping qrv %d to %d", __func__, 862 qrv, MLD_RV_INIT); 863 qrv = MLD_RV_INIT; 864 } 865 866 qqi = mld->mld_qqi; 867 if (qqi >= 128) { 868 qqi = MLD_QQIC_MANT(mld->mld_qqi) << 869 (MLD_QQIC_EXP(mld->mld_qqi) + 3); 870 } 871 872 nsrc = ntohs(mld->mld_numsrc); 873 if (nsrc > MLD_MAX_GS_SOURCES) 874 return (EMSGSIZE); 875 if (icmp6len < sizeof(struct mldv2_query) + 876 (nsrc * sizeof(struct in6_addr))) 877 return (EMSGSIZE); 878 879 /* 880 * Do further input validation upfront to avoid resetting timers 881 * should we need to discard this query. 882 */ 883 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 884 /* 885 * A general query with a source list has undefined 886 * behaviour; discard it. 887 */ 888 if (nsrc > 0) 889 return (EINVAL); 890 is_general_query = 1; 891 } else { 892 /* 893 * Embed scope ID of receiving interface in MLD query for 894 * lookup whilst we don't hold other locks (due to KAME 895 * locking lameness). We own this mbuf chain just now. 896 */ 897 in6_setscope(&mld->mld_addr, ifp, NULL); 898 } 899 900 IN6_MULTI_LIST_LOCK(); 901 MLD_LOCK(); 902 903 mli = MLD_IFINFO(ifp); 904 KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp)); 905 906 /* 907 * Discard the v2 query if we're in Compatibility Mode. 908 * The RFC is pretty clear that hosts need to stay in MLDv1 mode 909 * until the Old Version Querier Present timer expires. 910 */ 911 if (mli->mli_version != MLD_VERSION_2) 912 goto out_locked; 913 914 mld_set_version(mli, MLD_VERSION_2); 915 mli->mli_rv = qrv; 916 mli->mli_qi = qqi; 917 mli->mli_qri = maxdelay; 918 919 CTR4(KTR_MLD, "%s: qrv %d qi %d maxdelay %d", __func__, qrv, qqi, 920 maxdelay); 921 922 if (is_general_query) { 923 /* 924 * MLDv2 General Query. 925 * 926 * Schedule a current-state report on this ifp for 927 * all groups, possibly containing source lists. 928 * 929 * If there is a pending General Query response 930 * scheduled earlier than the selected delay, do 931 * not schedule any other reports. 932 * Otherwise, reset the interface timer. 933 */ 934 CTR2(KTR_MLD, "process v2 general query on ifp %p(%s)", 935 ifp, if_name(ifp)); 936 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) { 937 mli->mli_v2_timer = MLD_RANDOM_DELAY(timer); 938 V_interface_timers_running6 = 1; 939 } 940 } else { 941 /* 942 * MLDv2 Group-specific or Group-and-source-specific Query. 943 * 944 * Group-source-specific queries are throttled on 945 * a per-group basis to defeat denial-of-service attempts. 946 * Queries for groups we are not a member of on this 947 * link are simply ignored. 948 */ 949 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 950 if (inm == NULL) 951 goto out_locked; 952 if (nsrc > 0) { 953 if (!ratecheck(&inm->in6m_lastgsrtv, 954 &V_mld_gsrdelay)) { 955 CTR1(KTR_MLD, "%s: GS query throttled.", 956 __func__); 957 goto out_locked; 958 } 959 } 960 CTR2(KTR_MLD, "process v2 group query on ifp %p(%s)", 961 ifp, if_name(ifp)); 962 /* 963 * If there is a pending General Query response 964 * scheduled sooner than the selected delay, no 965 * further report need be scheduled. 966 * Otherwise, prepare to respond to the 967 * group-specific or group-and-source query. 968 */ 969 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) 970 mld_v2_process_group_query(inm, mli, timer, m, mld, off); 971 972 /* XXX Clear embedded scope ID as userland won't expect it. */ 973 in6_clearscope(&mld->mld_addr); 974 } 975 976 out_locked: 977 MLD_UNLOCK(); 978 IN6_MULTI_LIST_UNLOCK(); 979 980 return (0); 981 } 982 983 /* 984 * Process a received MLDv2 group-specific or group-and-source-specific 985 * query. 986 * Return <0 if any error occurred. Currently this is ignored. 987 */ 988 static int 989 mld_v2_process_group_query(struct in6_multi *inm, struct mld_ifsoftc *mli, 990 int timer, struct mbuf *m0, struct mldv2_query *mld, const int off) 991 { 992 int retval; 993 uint16_t nsrc; 994 995 IN6_MULTI_LIST_LOCK_ASSERT(); 996 MLD_LOCK_ASSERT(); 997 998 retval = 0; 999 1000 switch (inm->in6m_state) { 1001 case MLD_NOT_MEMBER: 1002 case MLD_SILENT_MEMBER: 1003 case MLD_SLEEPING_MEMBER: 1004 case MLD_LAZY_MEMBER: 1005 case MLD_AWAKENING_MEMBER: 1006 case MLD_IDLE_MEMBER: 1007 case MLD_LEAVING_MEMBER: 1008 return (retval); 1009 break; 1010 case MLD_REPORTING_MEMBER: 1011 case MLD_G_QUERY_PENDING_MEMBER: 1012 case MLD_SG_QUERY_PENDING_MEMBER: 1013 break; 1014 } 1015 1016 nsrc = ntohs(mld->mld_numsrc); 1017 1018 /* Length should be checked by calling function. */ 1019 KASSERT((m0->m_flags & M_PKTHDR) == 0 || 1020 m0->m_pkthdr.len >= off + sizeof(struct mldv2_query) + 1021 nsrc * sizeof(struct in6_addr), 1022 ("mldv2 packet is too short: (%d bytes < %zd bytes, m=%p)", 1023 m0->m_pkthdr.len, off + sizeof(struct mldv2_query) + 1024 nsrc * sizeof(struct in6_addr), m0)); 1025 1026 1027 /* 1028 * Deal with group-specific queries upfront. 1029 * If any group query is already pending, purge any recorded 1030 * source-list state if it exists, and schedule a query response 1031 * for this group-specific query. 1032 */ 1033 if (nsrc == 0) { 1034 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 1035 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) { 1036 in6m_clear_recorded(inm); 1037 timer = min(inm->in6m_timer, timer); 1038 } 1039 inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER; 1040 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1041 V_current_state_timers_running6 = 1; 1042 return (retval); 1043 } 1044 1045 /* 1046 * Deal with the case where a group-and-source-specific query has 1047 * been received but a group-specific query is already pending. 1048 */ 1049 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) { 1050 timer = min(inm->in6m_timer, timer); 1051 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1052 V_current_state_timers_running6 = 1; 1053 return (retval); 1054 } 1055 1056 /* 1057 * Finally, deal with the case where a group-and-source-specific 1058 * query has been received, where a response to a previous g-s-r 1059 * query exists, or none exists. 1060 * In this case, we need to parse the source-list which the Querier 1061 * has provided us with and check if we have any source list filter 1062 * entries at T1 for these sources. If we do not, there is no need 1063 * schedule a report and the query may be dropped. 1064 * If we do, we must record them and schedule a current-state 1065 * report for those sources. 1066 */ 1067 if (inm->in6m_nsrc > 0) { 1068 struct in6_addr srcaddr; 1069 int i, nrecorded; 1070 int soff; 1071 1072 soff = off + sizeof(struct mldv2_query); 1073 nrecorded = 0; 1074 for (i = 0; i < nsrc; i++) { 1075 m_copydata(m0, soff, sizeof(struct in6_addr), 1076 (caddr_t)&srcaddr); 1077 retval = in6m_record_source(inm, &srcaddr); 1078 if (retval < 0) 1079 break; 1080 nrecorded += retval; 1081 soff += sizeof(struct in6_addr); 1082 } 1083 if (nrecorded > 0) { 1084 CTR1(KTR_MLD, 1085 "%s: schedule response to SG query", __func__); 1086 inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER; 1087 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1088 V_current_state_timers_running6 = 1; 1089 } 1090 } 1091 1092 return (retval); 1093 } 1094 1095 /* 1096 * Process a received MLDv1 host membership report. 1097 * Assumes mld points to mld_hdr in pulled up mbuf chain. 1098 * 1099 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 1100 * mld_addr. This is OK as we own the mbuf chain. 1101 */ 1102 static int 1103 mld_v1_input_report(struct ifnet *ifp, const struct ip6_hdr *ip6, 1104 /*const*/ struct mld_hdr *mld) 1105 { 1106 struct in6_addr src, dst; 1107 struct in6_ifaddr *ia; 1108 struct in6_multi *inm; 1109 #ifdef KTR 1110 char ip6tbuf[INET6_ADDRSTRLEN]; 1111 #endif 1112 1113 NET_EPOCH_ASSERT(); 1114 1115 if (!mld_v1enable) { 1116 CTR3(KTR_MLD, "ignore v1 report %s on ifp %p(%s)", 1117 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1118 ifp, if_name(ifp)); 1119 return (0); 1120 } 1121 1122 if (ifp->if_flags & IFF_LOOPBACK) 1123 return (0); 1124 1125 /* 1126 * MLDv1 reports must originate from a host's link-local address, 1127 * or the unspecified address (when booting). 1128 */ 1129 src = ip6->ip6_src; 1130 in6_clearscope(&src); 1131 if (!IN6_IS_SCOPE_LINKLOCAL(&src) && !IN6_IS_ADDR_UNSPECIFIED(&src)) { 1132 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 1133 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 1134 ifp, if_name(ifp)); 1135 return (EINVAL); 1136 } 1137 1138 /* 1139 * RFC2710 Section 4: MLDv1 reports must pertain to a multicast 1140 * group, and must be directed to the group itself. 1141 */ 1142 dst = ip6->ip6_dst; 1143 in6_clearscope(&dst); 1144 if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) || 1145 !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &dst)) { 1146 CTR3(KTR_MLD, "ignore v1 query dst %s on ifp %p(%s)", 1147 ip6_sprintf(ip6tbuf, &ip6->ip6_dst), 1148 ifp, if_name(ifp)); 1149 return (EINVAL); 1150 } 1151 1152 /* 1153 * Make sure we don't hear our own membership report, as fast 1154 * leave requires knowing that we are the only member of a 1155 * group. Assume we used the link-local address if available, 1156 * otherwise look for ::. 1157 * 1158 * XXX Note that scope ID comparison is needed for the address 1159 * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be 1160 * performed for the on-wire address. 1161 */ 1162 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1163 if ((ia && IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia))) || 1164 (ia == NULL && IN6_IS_ADDR_UNSPECIFIED(&src))) { 1165 if (ia != NULL) 1166 ifa_free(&ia->ia_ifa); 1167 return (0); 1168 } 1169 if (ia != NULL) 1170 ifa_free(&ia->ia_ifa); 1171 1172 CTR3(KTR_MLD, "process v1 report %s on ifp %p(%s)", 1173 ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, if_name(ifp)); 1174 1175 /* 1176 * Embed scope ID of receiving interface in MLD query for lookup 1177 * whilst we don't hold other locks (due to KAME locking lameness). 1178 */ 1179 if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) 1180 in6_setscope(&mld->mld_addr, ifp, NULL); 1181 1182 IN6_MULTI_LIST_LOCK(); 1183 MLD_LOCK(); 1184 1185 /* 1186 * MLDv1 report suppression. 1187 * If we are a member of this group, and our membership should be 1188 * reported, and our group timer is pending or about to be reset, 1189 * stop our group timer by transitioning to the 'lazy' state. 1190 */ 1191 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 1192 if (inm != NULL) { 1193 struct mld_ifsoftc *mli; 1194 1195 mli = inm->in6m_mli; 1196 KASSERT(mli != NULL, 1197 ("%s: no mli for ifp %p", __func__, ifp)); 1198 1199 /* 1200 * If we are in MLDv2 host mode, do not allow the 1201 * other host's MLDv1 report to suppress our reports. 1202 */ 1203 if (mli->mli_version == MLD_VERSION_2) 1204 goto out_locked; 1205 1206 inm->in6m_timer = 0; 1207 1208 switch (inm->in6m_state) { 1209 case MLD_NOT_MEMBER: 1210 case MLD_SILENT_MEMBER: 1211 case MLD_SLEEPING_MEMBER: 1212 break; 1213 case MLD_REPORTING_MEMBER: 1214 case MLD_IDLE_MEMBER: 1215 case MLD_AWAKENING_MEMBER: 1216 CTR3(KTR_MLD, 1217 "report suppressed for %s on ifp %p(%s)", 1218 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1219 ifp, if_name(ifp)); 1220 case MLD_LAZY_MEMBER: 1221 inm->in6m_state = MLD_LAZY_MEMBER; 1222 break; 1223 case MLD_G_QUERY_PENDING_MEMBER: 1224 case MLD_SG_QUERY_PENDING_MEMBER: 1225 case MLD_LEAVING_MEMBER: 1226 break; 1227 } 1228 } 1229 1230 out_locked: 1231 MLD_UNLOCK(); 1232 IN6_MULTI_LIST_UNLOCK(); 1233 1234 /* XXX Clear embedded scope ID as userland won't expect it. */ 1235 in6_clearscope(&mld->mld_addr); 1236 1237 return (0); 1238 } 1239 1240 /* 1241 * MLD input path. 1242 * 1243 * Assume query messages which fit in a single ICMPv6 message header 1244 * have been pulled up. 1245 * Assume that userland will want to see the message, even if it 1246 * otherwise fails kernel input validation; do not free it. 1247 * Pullup may however free the mbuf chain m if it fails. 1248 * 1249 * Return IPPROTO_DONE if we freed m. Otherwise, return 0. 1250 */ 1251 int 1252 mld_input(struct mbuf *m, int off, int icmp6len) 1253 { 1254 struct ifnet *ifp; 1255 struct ip6_hdr *ip6; 1256 struct mld_hdr *mld; 1257 int mldlen; 1258 1259 CTR3(KTR_MLD, "%s: called w/mbuf (%p,%d)", __func__, m, off); 1260 1261 ifp = m->m_pkthdr.rcvif; 1262 1263 /* Pullup to appropriate size. */ 1264 mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off); 1265 if (mld->mld_type == MLD_LISTENER_QUERY && 1266 icmp6len >= sizeof(struct mldv2_query)) { 1267 mldlen = sizeof(struct mldv2_query); 1268 } else { 1269 mldlen = sizeof(struct mld_hdr); 1270 } 1271 IP6_EXTHDR_GET(mld, struct mld_hdr *, m, off, mldlen); 1272 if (mld == NULL) { 1273 ICMP6STAT_INC(icp6s_badlen); 1274 return (IPPROTO_DONE); 1275 } 1276 ip6 = mtod(m, struct ip6_hdr *); 1277 1278 /* 1279 * Userland needs to see all of this traffic for implementing 1280 * the endpoint discovery portion of multicast routing. 1281 */ 1282 switch (mld->mld_type) { 1283 case MLD_LISTENER_QUERY: 1284 icmp6_ifstat_inc(ifp, ifs6_in_mldquery); 1285 if (icmp6len == sizeof(struct mld_hdr)) { 1286 if (mld_v1_input_query(ifp, ip6, mld) != 0) 1287 return (0); 1288 } else if (icmp6len >= sizeof(struct mldv2_query)) { 1289 if (mld_v2_input_query(ifp, ip6, m, 1290 (struct mldv2_query *)mld, off, icmp6len) != 0) 1291 return (0); 1292 } 1293 break; 1294 case MLD_LISTENER_REPORT: 1295 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1296 if (mld_v1_input_report(ifp, ip6, mld) != 0) 1297 return (0); 1298 break; 1299 case MLDV2_LISTENER_REPORT: 1300 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1301 break; 1302 case MLD_LISTENER_DONE: 1303 icmp6_ifstat_inc(ifp, ifs6_in_mlddone); 1304 break; 1305 default: 1306 break; 1307 } 1308 1309 return (0); 1310 } 1311 1312 /* 1313 * Fast timeout handler (global). 1314 * VIMAGE: Timeout handlers are expected to service all vimages. 1315 */ 1316 void 1317 mld_fasttimo(void) 1318 { 1319 struct in6_multi_head inmh; 1320 VNET_ITERATOR_DECL(vnet_iter); 1321 1322 SLIST_INIT(&inmh); 1323 1324 VNET_LIST_RLOCK_NOSLEEP(); 1325 VNET_FOREACH(vnet_iter) { 1326 CURVNET_SET(vnet_iter); 1327 mld_fasttimo_vnet(&inmh); 1328 CURVNET_RESTORE(); 1329 } 1330 VNET_LIST_RUNLOCK_NOSLEEP(); 1331 in6m_release_list_deferred(&inmh); 1332 } 1333 1334 /* 1335 * Fast timeout handler (per-vnet). 1336 * 1337 * VIMAGE: Assume caller has set up our curvnet. 1338 */ 1339 static void 1340 mld_fasttimo_vnet(struct in6_multi_head *inmh) 1341 { 1342 struct epoch_tracker et; 1343 struct mbufq scq; /* State-change packets */ 1344 struct mbufq qrq; /* Query response packets */ 1345 struct ifnet *ifp; 1346 struct mld_ifsoftc *mli; 1347 struct ifmultiaddr *ifma; 1348 struct in6_multi *inm; 1349 int uri_fasthz; 1350 1351 uri_fasthz = 0; 1352 1353 /* 1354 * Quick check to see if any work needs to be done, in order to 1355 * minimize the overhead of fasttimo processing. 1356 * SMPng: XXX Unlocked reads. 1357 */ 1358 if (!V_current_state_timers_running6 && 1359 !V_interface_timers_running6 && 1360 !V_state_change_timers_running6) 1361 return; 1362 1363 IN6_MULTI_LIST_LOCK(); 1364 MLD_LOCK(); 1365 1366 /* 1367 * MLDv2 General Query response timer processing. 1368 */ 1369 if (V_interface_timers_running6) { 1370 CTR1(KTR_MLD, "%s: interface timers running", __func__); 1371 1372 V_interface_timers_running6 = 0; 1373 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1374 if (mli->mli_v2_timer == 0) { 1375 /* Do nothing. */ 1376 } else if (--mli->mli_v2_timer == 0) { 1377 mld_v2_dispatch_general_query(mli); 1378 } else { 1379 V_interface_timers_running6 = 1; 1380 } 1381 } 1382 } 1383 1384 if (!V_current_state_timers_running6 && 1385 !V_state_change_timers_running6) 1386 goto out_locked; 1387 1388 V_current_state_timers_running6 = 0; 1389 V_state_change_timers_running6 = 0; 1390 1391 CTR1(KTR_MLD, "%s: state change timers running", __func__); 1392 1393 /* 1394 * MLD host report and state-change timer processing. 1395 * Note: Processing a v2 group timer may remove a node. 1396 */ 1397 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1398 ifp = mli->mli_ifp; 1399 1400 if (mli->mli_version == MLD_VERSION_2) { 1401 uri_fasthz = MLD_RANDOM_DELAY(mli->mli_uri * 1402 PR_FASTHZ); 1403 mbufq_init(&qrq, MLD_MAX_G_GS_PACKETS); 1404 mbufq_init(&scq, MLD_MAX_STATE_CHANGE_PACKETS); 1405 } 1406 1407 NET_EPOCH_ENTER(et); 1408 IF_ADDR_WLOCK(ifp); 1409 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1410 inm = in6m_ifmultiaddr_get_inm(ifma); 1411 if (inm == NULL) 1412 continue; 1413 switch (mli->mli_version) { 1414 case MLD_VERSION_1: 1415 mld_v1_process_group_timer(inmh, inm); 1416 break; 1417 case MLD_VERSION_2: 1418 mld_v2_process_group_timers(inmh, &qrq, 1419 &scq, inm, uri_fasthz); 1420 break; 1421 } 1422 } 1423 IF_ADDR_WUNLOCK(ifp); 1424 1425 switch (mli->mli_version) { 1426 case MLD_VERSION_1: 1427 /* 1428 * Transmit reports for this lifecycle. This 1429 * is done while not holding IF_ADDR_LOCK 1430 * since this can call 1431 * in6ifa_ifpforlinklocal() which locks 1432 * IF_ADDR_LOCK internally as well as 1433 * ip6_output() to transmit a packet. 1434 */ 1435 while ((inm = SLIST_FIRST(inmh)) != NULL) { 1436 SLIST_REMOVE_HEAD(inmh, in6m_defer); 1437 (void)mld_v1_transmit_report(inm, 1438 MLD_LISTENER_REPORT); 1439 } 1440 break; 1441 case MLD_VERSION_2: 1442 mld_dispatch_queue(&qrq, 0); 1443 mld_dispatch_queue(&scq, 0); 1444 break; 1445 } 1446 NET_EPOCH_EXIT(et); 1447 } 1448 1449 out_locked: 1450 MLD_UNLOCK(); 1451 IN6_MULTI_LIST_UNLOCK(); 1452 } 1453 1454 /* 1455 * Update host report group timer. 1456 * Will update the global pending timer flags. 1457 */ 1458 static void 1459 mld_v1_process_group_timer(struct in6_multi_head *inmh, struct in6_multi *inm) 1460 { 1461 int report_timer_expired; 1462 1463 IN6_MULTI_LIST_LOCK_ASSERT(); 1464 MLD_LOCK_ASSERT(); 1465 1466 if (inm->in6m_timer == 0) { 1467 report_timer_expired = 0; 1468 } else if (--inm->in6m_timer == 0) { 1469 report_timer_expired = 1; 1470 } else { 1471 V_current_state_timers_running6 = 1; 1472 return; 1473 } 1474 1475 switch (inm->in6m_state) { 1476 case MLD_NOT_MEMBER: 1477 case MLD_SILENT_MEMBER: 1478 case MLD_IDLE_MEMBER: 1479 case MLD_LAZY_MEMBER: 1480 case MLD_SLEEPING_MEMBER: 1481 case MLD_AWAKENING_MEMBER: 1482 break; 1483 case MLD_REPORTING_MEMBER: 1484 if (report_timer_expired) { 1485 inm->in6m_state = MLD_IDLE_MEMBER; 1486 SLIST_INSERT_HEAD(inmh, inm, in6m_defer); 1487 } 1488 break; 1489 case MLD_G_QUERY_PENDING_MEMBER: 1490 case MLD_SG_QUERY_PENDING_MEMBER: 1491 case MLD_LEAVING_MEMBER: 1492 break; 1493 } 1494 } 1495 1496 /* 1497 * Update a group's timers for MLDv2. 1498 * Will update the global pending timer flags. 1499 * Note: Unlocked read from mli. 1500 */ 1501 static void 1502 mld_v2_process_group_timers(struct in6_multi_head *inmh, 1503 struct mbufq *qrq, struct mbufq *scq, 1504 struct in6_multi *inm, const int uri_fasthz) 1505 { 1506 int query_response_timer_expired; 1507 int state_change_retransmit_timer_expired; 1508 #ifdef KTR 1509 char ip6tbuf[INET6_ADDRSTRLEN]; 1510 #endif 1511 1512 IN6_MULTI_LIST_LOCK_ASSERT(); 1513 MLD_LOCK_ASSERT(); 1514 1515 query_response_timer_expired = 0; 1516 state_change_retransmit_timer_expired = 0; 1517 1518 /* 1519 * During a transition from compatibility mode back to MLDv2, 1520 * a group record in REPORTING state may still have its group 1521 * timer active. This is a no-op in this function; it is easier 1522 * to deal with it here than to complicate the slow-timeout path. 1523 */ 1524 if (inm->in6m_timer == 0) { 1525 query_response_timer_expired = 0; 1526 } else if (--inm->in6m_timer == 0) { 1527 query_response_timer_expired = 1; 1528 } else { 1529 V_current_state_timers_running6 = 1; 1530 } 1531 1532 if (inm->in6m_sctimer == 0) { 1533 state_change_retransmit_timer_expired = 0; 1534 } else if (--inm->in6m_sctimer == 0) { 1535 state_change_retransmit_timer_expired = 1; 1536 } else { 1537 V_state_change_timers_running6 = 1; 1538 } 1539 1540 /* We are in fasttimo, so be quick about it. */ 1541 if (!state_change_retransmit_timer_expired && 1542 !query_response_timer_expired) 1543 return; 1544 1545 switch (inm->in6m_state) { 1546 case MLD_NOT_MEMBER: 1547 case MLD_SILENT_MEMBER: 1548 case MLD_SLEEPING_MEMBER: 1549 case MLD_LAZY_MEMBER: 1550 case MLD_AWAKENING_MEMBER: 1551 case MLD_IDLE_MEMBER: 1552 break; 1553 case MLD_G_QUERY_PENDING_MEMBER: 1554 case MLD_SG_QUERY_PENDING_MEMBER: 1555 /* 1556 * Respond to a previously pending Group-Specific 1557 * or Group-and-Source-Specific query by enqueueing 1558 * the appropriate Current-State report for 1559 * immediate transmission. 1560 */ 1561 if (query_response_timer_expired) { 1562 int retval; 1563 1564 retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1, 1565 (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER), 1566 0); 1567 CTR2(KTR_MLD, "%s: enqueue record = %d", 1568 __func__, retval); 1569 inm->in6m_state = MLD_REPORTING_MEMBER; 1570 in6m_clear_recorded(inm); 1571 } 1572 /* FALLTHROUGH */ 1573 case MLD_REPORTING_MEMBER: 1574 case MLD_LEAVING_MEMBER: 1575 if (state_change_retransmit_timer_expired) { 1576 /* 1577 * State-change retransmission timer fired. 1578 * If there are any further pending retransmissions, 1579 * set the global pending state-change flag, and 1580 * reset the timer. 1581 */ 1582 if (--inm->in6m_scrv > 0) { 1583 inm->in6m_sctimer = uri_fasthz; 1584 V_state_change_timers_running6 = 1; 1585 } 1586 /* 1587 * Retransmit the previously computed state-change 1588 * report. If there are no further pending 1589 * retransmissions, the mbuf queue will be consumed. 1590 * Update T0 state to T1 as we have now sent 1591 * a state-change. 1592 */ 1593 (void)mld_v2_merge_state_changes(inm, scq); 1594 1595 in6m_commit(inm); 1596 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 1597 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1598 if_name(inm->in6m_ifp)); 1599 1600 /* 1601 * If we are leaving the group for good, make sure 1602 * we release MLD's reference to it. 1603 * This release must be deferred using a SLIST, 1604 * as we are called from a loop which traverses 1605 * the in_ifmultiaddr TAILQ. 1606 */ 1607 if (inm->in6m_state == MLD_LEAVING_MEMBER && 1608 inm->in6m_scrv == 0) { 1609 inm->in6m_state = MLD_NOT_MEMBER; 1610 in6m_disconnect_locked(inmh, inm); 1611 in6m_rele_locked(inmh, inm); 1612 } 1613 } 1614 break; 1615 } 1616 } 1617 1618 /* 1619 * Switch to a different version on the given interface, 1620 * as per Section 9.12. 1621 */ 1622 static void 1623 mld_set_version(struct mld_ifsoftc *mli, const int version) 1624 { 1625 int old_version_timer; 1626 1627 MLD_LOCK_ASSERT(); 1628 1629 CTR4(KTR_MLD, "%s: switching to v%d on ifp %p(%s)", __func__, 1630 version, mli->mli_ifp, if_name(mli->mli_ifp)); 1631 1632 if (version == MLD_VERSION_1) { 1633 /* 1634 * Compute the "Older Version Querier Present" timer as per 1635 * Section 9.12. 1636 */ 1637 old_version_timer = (mli->mli_rv * mli->mli_qi) + mli->mli_qri; 1638 old_version_timer *= PR_SLOWHZ; 1639 mli->mli_v1_timer = old_version_timer; 1640 } 1641 1642 if (mli->mli_v1_timer > 0 && mli->mli_version != MLD_VERSION_1) { 1643 mli->mli_version = MLD_VERSION_1; 1644 mld_v2_cancel_link_timers(mli); 1645 } 1646 } 1647 1648 /* 1649 * Cancel pending MLDv2 timers for the given link and all groups 1650 * joined on it; state-change, general-query, and group-query timers. 1651 */ 1652 static void 1653 mld_v2_cancel_link_timers(struct mld_ifsoftc *mli) 1654 { 1655 struct epoch_tracker et; 1656 struct in6_multi_head inmh; 1657 struct ifmultiaddr *ifma; 1658 struct ifnet *ifp; 1659 struct in6_multi *inm; 1660 1661 CTR3(KTR_MLD, "%s: cancel v2 timers on ifp %p(%s)", __func__, 1662 mli->mli_ifp, if_name(mli->mli_ifp)); 1663 1664 SLIST_INIT(&inmh); 1665 IN6_MULTI_LIST_LOCK_ASSERT(); 1666 MLD_LOCK_ASSERT(); 1667 1668 /* 1669 * Fast-track this potentially expensive operation 1670 * by checking all the global 'timer pending' flags. 1671 */ 1672 if (!V_interface_timers_running6 && 1673 !V_state_change_timers_running6 && 1674 !V_current_state_timers_running6) 1675 return; 1676 1677 mli->mli_v2_timer = 0; 1678 1679 ifp = mli->mli_ifp; 1680 1681 IF_ADDR_WLOCK(ifp); 1682 NET_EPOCH_ENTER(et); 1683 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1684 inm = in6m_ifmultiaddr_get_inm(ifma); 1685 if (inm == NULL) 1686 continue; 1687 switch (inm->in6m_state) { 1688 case MLD_NOT_MEMBER: 1689 case MLD_SILENT_MEMBER: 1690 case MLD_IDLE_MEMBER: 1691 case MLD_LAZY_MEMBER: 1692 case MLD_SLEEPING_MEMBER: 1693 case MLD_AWAKENING_MEMBER: 1694 break; 1695 case MLD_LEAVING_MEMBER: 1696 /* 1697 * If we are leaving the group and switching 1698 * version, we need to release the final 1699 * reference held for issuing the INCLUDE {}. 1700 */ 1701 if (inm->in6m_refcount == 1) 1702 in6m_disconnect_locked(&inmh, inm); 1703 in6m_rele_locked(&inmh, inm); 1704 /* FALLTHROUGH */ 1705 case MLD_G_QUERY_PENDING_MEMBER: 1706 case MLD_SG_QUERY_PENDING_MEMBER: 1707 in6m_clear_recorded(inm); 1708 /* FALLTHROUGH */ 1709 case MLD_REPORTING_MEMBER: 1710 inm->in6m_sctimer = 0; 1711 inm->in6m_timer = 0; 1712 inm->in6m_state = MLD_REPORTING_MEMBER; 1713 /* 1714 * Free any pending MLDv2 state-change records. 1715 */ 1716 mbufq_drain(&inm->in6m_scq); 1717 break; 1718 } 1719 } 1720 NET_EPOCH_EXIT(et); 1721 IF_ADDR_WUNLOCK(ifp); 1722 in6m_release_list_deferred(&inmh); 1723 } 1724 1725 /* 1726 * Global slowtimo handler. 1727 * VIMAGE: Timeout handlers are expected to service all vimages. 1728 */ 1729 void 1730 mld_slowtimo(void) 1731 { 1732 VNET_ITERATOR_DECL(vnet_iter); 1733 1734 VNET_LIST_RLOCK_NOSLEEP(); 1735 VNET_FOREACH(vnet_iter) { 1736 CURVNET_SET(vnet_iter); 1737 mld_slowtimo_vnet(); 1738 CURVNET_RESTORE(); 1739 } 1740 VNET_LIST_RUNLOCK_NOSLEEP(); 1741 } 1742 1743 /* 1744 * Per-vnet slowtimo handler. 1745 */ 1746 static void 1747 mld_slowtimo_vnet(void) 1748 { 1749 struct mld_ifsoftc *mli; 1750 1751 MLD_LOCK(); 1752 1753 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1754 mld_v1_process_querier_timers(mli); 1755 } 1756 1757 MLD_UNLOCK(); 1758 } 1759 1760 /* 1761 * Update the Older Version Querier Present timers for a link. 1762 * See Section 9.12 of RFC 3810. 1763 */ 1764 static void 1765 mld_v1_process_querier_timers(struct mld_ifsoftc *mli) 1766 { 1767 1768 MLD_LOCK_ASSERT(); 1769 1770 if (mli->mli_version != MLD_VERSION_2 && --mli->mli_v1_timer == 0) { 1771 /* 1772 * MLDv1 Querier Present timer expired; revert to MLDv2. 1773 */ 1774 CTR5(KTR_MLD, 1775 "%s: transition from v%d -> v%d on %p(%s)", 1776 __func__, mli->mli_version, MLD_VERSION_2, 1777 mli->mli_ifp, if_name(mli->mli_ifp)); 1778 mli->mli_version = MLD_VERSION_2; 1779 } 1780 } 1781 1782 /* 1783 * Transmit an MLDv1 report immediately. 1784 */ 1785 static int 1786 mld_v1_transmit_report(struct in6_multi *in6m, const int type) 1787 { 1788 struct ifnet *ifp; 1789 struct in6_ifaddr *ia; 1790 struct ip6_hdr *ip6; 1791 struct mbuf *mh, *md; 1792 struct mld_hdr *mld; 1793 1794 IN6_MULTI_LIST_LOCK_ASSERT(); 1795 MLD_LOCK_ASSERT(); 1796 1797 ifp = in6m->in6m_ifp; 1798 /* in process of being freed */ 1799 if (ifp == NULL) 1800 return (0); 1801 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1802 /* ia may be NULL if link-local address is tentative. */ 1803 1804 mh = m_gethdr(M_NOWAIT, MT_DATA); 1805 if (mh == NULL) { 1806 if (ia != NULL) 1807 ifa_free(&ia->ia_ifa); 1808 return (ENOMEM); 1809 } 1810 md = m_get(M_NOWAIT, MT_DATA); 1811 if (md == NULL) { 1812 m_free(mh); 1813 if (ia != NULL) 1814 ifa_free(&ia->ia_ifa); 1815 return (ENOMEM); 1816 } 1817 mh->m_next = md; 1818 1819 /* 1820 * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so 1821 * that ether_output() does not need to allocate another mbuf 1822 * for the header in the most common case. 1823 */ 1824 M_ALIGN(mh, sizeof(struct ip6_hdr)); 1825 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr); 1826 mh->m_len = sizeof(struct ip6_hdr); 1827 1828 ip6 = mtod(mh, struct ip6_hdr *); 1829 ip6->ip6_flow = 0; 1830 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 1831 ip6->ip6_vfc |= IPV6_VERSION; 1832 ip6->ip6_nxt = IPPROTO_ICMPV6; 1833 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 1834 ip6->ip6_dst = in6m->in6m_addr; 1835 1836 md->m_len = sizeof(struct mld_hdr); 1837 mld = mtod(md, struct mld_hdr *); 1838 mld->mld_type = type; 1839 mld->mld_code = 0; 1840 mld->mld_cksum = 0; 1841 mld->mld_maxdelay = 0; 1842 mld->mld_reserved = 0; 1843 mld->mld_addr = in6m->in6m_addr; 1844 in6_clearscope(&mld->mld_addr); 1845 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 1846 sizeof(struct ip6_hdr), sizeof(struct mld_hdr)); 1847 1848 mld_save_context(mh, ifp); 1849 mh->m_flags |= M_MLDV1; 1850 1851 mld_dispatch_packet(mh); 1852 1853 if (ia != NULL) 1854 ifa_free(&ia->ia_ifa); 1855 return (0); 1856 } 1857 1858 /* 1859 * Process a state change from the upper layer for the given IPv6 group. 1860 * 1861 * Each socket holds a reference on the in_multi in its own ip_moptions. 1862 * The socket layer will have made the necessary updates to.the group 1863 * state, it is now up to MLD to issue a state change report if there 1864 * has been any change between T0 (when the last state-change was issued) 1865 * and T1 (now). 1866 * 1867 * We use the MLDv2 state machine at group level. The MLd module 1868 * however makes the decision as to which MLD protocol version to speak. 1869 * A state change *from* INCLUDE {} always means an initial join. 1870 * A state change *to* INCLUDE {} always means a final leave. 1871 * 1872 * If delay is non-zero, and the state change is an initial multicast 1873 * join, the state change report will be delayed by 'delay' ticks 1874 * in units of PR_FASTHZ if MLDv1 is active on the link; otherwise 1875 * the initial MLDv2 state change report will be delayed by whichever 1876 * is sooner, a pending state-change timer or delay itself. 1877 * 1878 * VIMAGE: curvnet should have been set by caller, as this routine 1879 * is called from the socket option handlers. 1880 */ 1881 int 1882 mld_change_state(struct in6_multi *inm, const int delay) 1883 { 1884 struct mld_ifsoftc *mli; 1885 struct ifnet *ifp; 1886 int error; 1887 1888 IN6_MULTI_LIST_LOCK_ASSERT(); 1889 1890 error = 0; 1891 1892 /* 1893 * Check if the in6_multi has already been disconnected. 1894 */ 1895 if (inm->in6m_ifp == NULL) { 1896 CTR1(KTR_MLD, "%s: inm is disconnected", __func__); 1897 return (0); 1898 } 1899 1900 /* 1901 * Try to detect if the upper layer just asked us to change state 1902 * for an interface which has now gone away. 1903 */ 1904 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); 1905 ifp = inm->in6m_ifma->ifma_ifp; 1906 if (ifp == NULL) 1907 return (0); 1908 /* 1909 * Sanity check that netinet6's notion of ifp is the 1910 * same as net's. 1911 */ 1912 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); 1913 1914 MLD_LOCK(); 1915 mli = MLD_IFINFO(ifp); 1916 KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp)); 1917 1918 /* 1919 * If we detect a state transition to or from MCAST_UNDEFINED 1920 * for this group, then we are starting or finishing an MLD 1921 * life cycle for this group. 1922 */ 1923 if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) { 1924 CTR3(KTR_MLD, "%s: inm transition %d -> %d", __func__, 1925 inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode); 1926 if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) { 1927 CTR1(KTR_MLD, "%s: initial join", __func__); 1928 error = mld_initial_join(inm, mli, delay); 1929 goto out_locked; 1930 } else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) { 1931 CTR1(KTR_MLD, "%s: final leave", __func__); 1932 mld_final_leave(inm, mli); 1933 goto out_locked; 1934 } 1935 } else { 1936 CTR1(KTR_MLD, "%s: filter set change", __func__); 1937 } 1938 1939 error = mld_handle_state_change(inm, mli); 1940 1941 out_locked: 1942 MLD_UNLOCK(); 1943 return (error); 1944 } 1945 1946 /* 1947 * Perform the initial join for an MLD group. 1948 * 1949 * When joining a group: 1950 * If the group should have its MLD traffic suppressed, do nothing. 1951 * MLDv1 starts sending MLDv1 host membership reports. 1952 * MLDv2 will schedule an MLDv2 state-change report containing the 1953 * initial state of the membership. 1954 * 1955 * If the delay argument is non-zero, then we must delay sending the 1956 * initial state change for delay ticks (in units of PR_FASTHZ). 1957 */ 1958 static int 1959 mld_initial_join(struct in6_multi *inm, struct mld_ifsoftc *mli, 1960 const int delay) 1961 { 1962 struct ifnet *ifp; 1963 struct mbufq *mq; 1964 int error, retval, syncstates; 1965 int odelay; 1966 #ifdef KTR 1967 char ip6tbuf[INET6_ADDRSTRLEN]; 1968 #endif 1969 1970 CTR4(KTR_MLD, "%s: initial join %s on ifp %p(%s)", 1971 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1972 inm->in6m_ifp, if_name(inm->in6m_ifp)); 1973 1974 error = 0; 1975 syncstates = 1; 1976 1977 ifp = inm->in6m_ifp; 1978 1979 IN6_MULTI_LIST_LOCK_ASSERT(); 1980 MLD_LOCK_ASSERT(); 1981 1982 KASSERT(mli && mli->mli_ifp == ifp, ("%s: inconsistent ifp", __func__)); 1983 1984 /* 1985 * Groups joined on loopback or marked as 'not reported', 1986 * enter the MLD_SILENT_MEMBER state and 1987 * are never reported in any protocol exchanges. 1988 * All other groups enter the appropriate state machine 1989 * for the version in use on this link. 1990 * A link marked as MLIF_SILENT causes MLD to be completely 1991 * disabled for the link. 1992 */ 1993 if ((ifp->if_flags & IFF_LOOPBACK) || 1994 (mli->mli_flags & MLIF_SILENT) || 1995 !mld_is_addr_reported(&inm->in6m_addr)) { 1996 CTR1(KTR_MLD, 1997 "%s: not kicking state machine for silent group", __func__); 1998 inm->in6m_state = MLD_SILENT_MEMBER; 1999 inm->in6m_timer = 0; 2000 } else { 2001 /* 2002 * Deal with overlapping in_multi lifecycle. 2003 * If this group was LEAVING, then make sure 2004 * we drop the reference we picked up to keep the 2005 * group around for the final INCLUDE {} enqueue. 2006 */ 2007 if (mli->mli_version == MLD_VERSION_2 && 2008 inm->in6m_state == MLD_LEAVING_MEMBER) { 2009 inm->in6m_refcount--; 2010 MPASS(inm->in6m_refcount > 0); 2011 } 2012 inm->in6m_state = MLD_REPORTING_MEMBER; 2013 2014 switch (mli->mli_version) { 2015 case MLD_VERSION_1: 2016 /* 2017 * If a delay was provided, only use it if 2018 * it is greater than the delay normally 2019 * used for an MLDv1 state change report, 2020 * and delay sending the initial MLDv1 report 2021 * by not transitioning to the IDLE state. 2022 */ 2023 odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI * PR_FASTHZ); 2024 if (delay) { 2025 inm->in6m_timer = max(delay, odelay); 2026 V_current_state_timers_running6 = 1; 2027 } else { 2028 inm->in6m_state = MLD_IDLE_MEMBER; 2029 error = mld_v1_transmit_report(inm, 2030 MLD_LISTENER_REPORT); 2031 if (error == 0) { 2032 inm->in6m_timer = odelay; 2033 V_current_state_timers_running6 = 1; 2034 } 2035 } 2036 break; 2037 2038 case MLD_VERSION_2: 2039 /* 2040 * Defer update of T0 to T1, until the first copy 2041 * of the state change has been transmitted. 2042 */ 2043 syncstates = 0; 2044 2045 /* 2046 * Immediately enqueue a State-Change Report for 2047 * this interface, freeing any previous reports. 2048 * Don't kick the timers if there is nothing to do, 2049 * or if an error occurred. 2050 */ 2051 mq = &inm->in6m_scq; 2052 mbufq_drain(mq); 2053 retval = mld_v2_enqueue_group_record(mq, inm, 1, 2054 0, 0, (mli->mli_flags & MLIF_USEALLOW)); 2055 CTR2(KTR_MLD, "%s: enqueue record = %d", 2056 __func__, retval); 2057 if (retval <= 0) { 2058 error = retval * -1; 2059 break; 2060 } 2061 2062 /* 2063 * Schedule transmission of pending state-change 2064 * report up to RV times for this link. The timer 2065 * will fire at the next mld_fasttimo (~200ms), 2066 * giving us an opportunity to merge the reports. 2067 * 2068 * If a delay was provided to this function, only 2069 * use this delay if sooner than the existing one. 2070 */ 2071 KASSERT(mli->mli_rv > 1, 2072 ("%s: invalid robustness %d", __func__, 2073 mli->mli_rv)); 2074 inm->in6m_scrv = mli->mli_rv; 2075 if (delay) { 2076 if (inm->in6m_sctimer > 1) { 2077 inm->in6m_sctimer = 2078 min(inm->in6m_sctimer, delay); 2079 } else 2080 inm->in6m_sctimer = delay; 2081 } else 2082 inm->in6m_sctimer = 1; 2083 V_state_change_timers_running6 = 1; 2084 2085 error = 0; 2086 break; 2087 } 2088 } 2089 2090 /* 2091 * Only update the T0 state if state change is atomic, 2092 * i.e. we don't need to wait for a timer to fire before we 2093 * can consider the state change to have been communicated. 2094 */ 2095 if (syncstates) { 2096 in6m_commit(inm); 2097 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2098 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2099 if_name(inm->in6m_ifp)); 2100 } 2101 2102 return (error); 2103 } 2104 2105 /* 2106 * Issue an intermediate state change during the life-cycle. 2107 */ 2108 static int 2109 mld_handle_state_change(struct in6_multi *inm, struct mld_ifsoftc *mli) 2110 { 2111 struct ifnet *ifp; 2112 int retval; 2113 #ifdef KTR 2114 char ip6tbuf[INET6_ADDRSTRLEN]; 2115 #endif 2116 2117 CTR4(KTR_MLD, "%s: state change for %s on ifp %p(%s)", 2118 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2119 inm->in6m_ifp, if_name(inm->in6m_ifp)); 2120 2121 ifp = inm->in6m_ifp; 2122 2123 IN6_MULTI_LIST_LOCK_ASSERT(); 2124 MLD_LOCK_ASSERT(); 2125 2126 KASSERT(mli && mli->mli_ifp == ifp, 2127 ("%s: inconsistent ifp", __func__)); 2128 2129 if ((ifp->if_flags & IFF_LOOPBACK) || 2130 (mli->mli_flags & MLIF_SILENT) || 2131 !mld_is_addr_reported(&inm->in6m_addr) || 2132 (mli->mli_version != MLD_VERSION_2)) { 2133 if (!mld_is_addr_reported(&inm->in6m_addr)) { 2134 CTR1(KTR_MLD, 2135 "%s: not kicking state machine for silent group", __func__); 2136 } 2137 CTR1(KTR_MLD, "%s: nothing to do", __func__); 2138 in6m_commit(inm); 2139 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2140 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2141 if_name(inm->in6m_ifp)); 2142 return (0); 2143 } 2144 2145 mbufq_drain(&inm->in6m_scq); 2146 2147 retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0, 2148 (mli->mli_flags & MLIF_USEALLOW)); 2149 CTR2(KTR_MLD, "%s: enqueue record = %d", __func__, retval); 2150 if (retval <= 0) 2151 return (-retval); 2152 2153 /* 2154 * If record(s) were enqueued, start the state-change 2155 * report timer for this group. 2156 */ 2157 inm->in6m_scrv = mli->mli_rv; 2158 inm->in6m_sctimer = 1; 2159 V_state_change_timers_running6 = 1; 2160 2161 return (0); 2162 } 2163 2164 /* 2165 * Perform the final leave for a multicast address. 2166 * 2167 * When leaving a group: 2168 * MLDv1 sends a DONE message, if and only if we are the reporter. 2169 * MLDv2 enqueues a state-change report containing a transition 2170 * to INCLUDE {} for immediate transmission. 2171 */ 2172 static void 2173 mld_final_leave(struct in6_multi *inm, struct mld_ifsoftc *mli) 2174 { 2175 int syncstates; 2176 #ifdef KTR 2177 char ip6tbuf[INET6_ADDRSTRLEN]; 2178 #endif 2179 2180 syncstates = 1; 2181 2182 CTR4(KTR_MLD, "%s: final leave %s on ifp %p(%s)", 2183 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2184 inm->in6m_ifp, if_name(inm->in6m_ifp)); 2185 2186 IN6_MULTI_LIST_LOCK_ASSERT(); 2187 MLD_LOCK_ASSERT(); 2188 2189 switch (inm->in6m_state) { 2190 case MLD_NOT_MEMBER: 2191 case MLD_SILENT_MEMBER: 2192 case MLD_LEAVING_MEMBER: 2193 /* Already leaving or left; do nothing. */ 2194 CTR1(KTR_MLD, 2195 "%s: not kicking state machine for silent group", __func__); 2196 break; 2197 case MLD_REPORTING_MEMBER: 2198 case MLD_IDLE_MEMBER: 2199 case MLD_G_QUERY_PENDING_MEMBER: 2200 case MLD_SG_QUERY_PENDING_MEMBER: 2201 if (mli->mli_version == MLD_VERSION_1) { 2202 #ifdef INVARIANTS 2203 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 2204 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) 2205 panic("%s: MLDv2 state reached, not MLDv2 mode", 2206 __func__); 2207 #endif 2208 mld_v1_transmit_report(inm, MLD_LISTENER_DONE); 2209 inm->in6m_state = MLD_NOT_MEMBER; 2210 V_current_state_timers_running6 = 1; 2211 } else if (mli->mli_version == MLD_VERSION_2) { 2212 /* 2213 * Stop group timer and all pending reports. 2214 * Immediately enqueue a state-change report 2215 * TO_IN {} to be sent on the next fast timeout, 2216 * giving us an opportunity to merge reports. 2217 */ 2218 mbufq_drain(&inm->in6m_scq); 2219 inm->in6m_timer = 0; 2220 inm->in6m_scrv = mli->mli_rv; 2221 CTR4(KTR_MLD, "%s: Leaving %s/%s with %d " 2222 "pending retransmissions.", __func__, 2223 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2224 if_name(inm->in6m_ifp), inm->in6m_scrv); 2225 if (inm->in6m_scrv == 0) { 2226 inm->in6m_state = MLD_NOT_MEMBER; 2227 inm->in6m_sctimer = 0; 2228 } else { 2229 int retval; 2230 2231 in6m_acquire_locked(inm); 2232 2233 retval = mld_v2_enqueue_group_record( 2234 &inm->in6m_scq, inm, 1, 0, 0, 2235 (mli->mli_flags & MLIF_USEALLOW)); 2236 KASSERT(retval != 0, 2237 ("%s: enqueue record = %d", __func__, 2238 retval)); 2239 2240 inm->in6m_state = MLD_LEAVING_MEMBER; 2241 inm->in6m_sctimer = 1; 2242 V_state_change_timers_running6 = 1; 2243 syncstates = 0; 2244 } 2245 break; 2246 } 2247 break; 2248 case MLD_LAZY_MEMBER: 2249 case MLD_SLEEPING_MEMBER: 2250 case MLD_AWAKENING_MEMBER: 2251 /* Our reports are suppressed; do nothing. */ 2252 break; 2253 } 2254 2255 if (syncstates) { 2256 in6m_commit(inm); 2257 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2258 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2259 if_name(inm->in6m_ifp)); 2260 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 2261 CTR3(KTR_MLD, "%s: T1 now MCAST_UNDEFINED for %p/%s", 2262 __func__, &inm->in6m_addr, if_name(inm->in6m_ifp)); 2263 } 2264 } 2265 2266 /* 2267 * Enqueue an MLDv2 group record to the given output queue. 2268 * 2269 * If is_state_change is zero, a current-state record is appended. 2270 * If is_state_change is non-zero, a state-change report is appended. 2271 * 2272 * If is_group_query is non-zero, an mbuf packet chain is allocated. 2273 * If is_group_query is zero, and if there is a packet with free space 2274 * at the tail of the queue, it will be appended to providing there 2275 * is enough free space. 2276 * Otherwise a new mbuf packet chain is allocated. 2277 * 2278 * If is_source_query is non-zero, each source is checked to see if 2279 * it was recorded for a Group-Source query, and will be omitted if 2280 * it is not both in-mode and recorded. 2281 * 2282 * If use_block_allow is non-zero, state change reports for initial join 2283 * and final leave, on an inclusive mode group with a source list, will be 2284 * rewritten to use the ALLOW_NEW and BLOCK_OLD record types, respectively. 2285 * 2286 * The function will attempt to allocate leading space in the packet 2287 * for the IPv6+ICMP headers to be prepended without fragmenting the chain. 2288 * 2289 * If successful the size of all data appended to the queue is returned, 2290 * otherwise an error code less than zero is returned, or zero if 2291 * no record(s) were appended. 2292 */ 2293 static int 2294 mld_v2_enqueue_group_record(struct mbufq *mq, struct in6_multi *inm, 2295 const int is_state_change, const int is_group_query, 2296 const int is_source_query, const int use_block_allow) 2297 { 2298 struct mldv2_record mr; 2299 struct mldv2_record *pmr; 2300 struct ifnet *ifp; 2301 struct ip6_msource *ims, *nims; 2302 struct mbuf *m0, *m, *md; 2303 int is_filter_list_change; 2304 int minrec0len, m0srcs, msrcs, nbytes, off; 2305 int record_has_sources; 2306 int now; 2307 int type; 2308 uint8_t mode; 2309 #ifdef KTR 2310 char ip6tbuf[INET6_ADDRSTRLEN]; 2311 #endif 2312 2313 IN6_MULTI_LIST_LOCK_ASSERT(); 2314 2315 ifp = inm->in6m_ifp; 2316 is_filter_list_change = 0; 2317 m = NULL; 2318 m0 = NULL; 2319 m0srcs = 0; 2320 msrcs = 0; 2321 nbytes = 0; 2322 nims = NULL; 2323 record_has_sources = 1; 2324 pmr = NULL; 2325 type = MLD_DO_NOTHING; 2326 mode = inm->in6m_st[1].iss_fmode; 2327 2328 /* 2329 * If we did not transition out of ASM mode during t0->t1, 2330 * and there are no source nodes to process, we can skip 2331 * the generation of source records. 2332 */ 2333 if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 && 2334 inm->in6m_nsrc == 0) 2335 record_has_sources = 0; 2336 2337 if (is_state_change) { 2338 /* 2339 * Queue a state change record. 2340 * If the mode did not change, and there are non-ASM 2341 * listeners or source filters present, 2342 * we potentially need to issue two records for the group. 2343 * If there are ASM listeners, and there was no filter 2344 * mode transition of any kind, do nothing. 2345 * 2346 * If we are transitioning to MCAST_UNDEFINED, we need 2347 * not send any sources. A transition to/from this state is 2348 * considered inclusive with some special treatment. 2349 * 2350 * If we are rewriting initial joins/leaves to use 2351 * ALLOW/BLOCK, and the group's membership is inclusive, 2352 * we need to send sources in all cases. 2353 */ 2354 if (mode != inm->in6m_st[0].iss_fmode) { 2355 if (mode == MCAST_EXCLUDE) { 2356 CTR1(KTR_MLD, "%s: change to EXCLUDE", 2357 __func__); 2358 type = MLD_CHANGE_TO_EXCLUDE_MODE; 2359 } else { 2360 CTR1(KTR_MLD, "%s: change to INCLUDE", 2361 __func__); 2362 if (use_block_allow) { 2363 /* 2364 * XXX 2365 * Here we're interested in state 2366 * edges either direction between 2367 * MCAST_UNDEFINED and MCAST_INCLUDE. 2368 * Perhaps we should just check 2369 * the group state, rather than 2370 * the filter mode. 2371 */ 2372 if (mode == MCAST_UNDEFINED) { 2373 type = MLD_BLOCK_OLD_SOURCES; 2374 } else { 2375 type = MLD_ALLOW_NEW_SOURCES; 2376 } 2377 } else { 2378 type = MLD_CHANGE_TO_INCLUDE_MODE; 2379 if (mode == MCAST_UNDEFINED) 2380 record_has_sources = 0; 2381 } 2382 } 2383 } else { 2384 if (record_has_sources) { 2385 is_filter_list_change = 1; 2386 } else { 2387 type = MLD_DO_NOTHING; 2388 } 2389 } 2390 } else { 2391 /* 2392 * Queue a current state record. 2393 */ 2394 if (mode == MCAST_EXCLUDE) { 2395 type = MLD_MODE_IS_EXCLUDE; 2396 } else if (mode == MCAST_INCLUDE) { 2397 type = MLD_MODE_IS_INCLUDE; 2398 KASSERT(inm->in6m_st[1].iss_asm == 0, 2399 ("%s: inm %p is INCLUDE but ASM count is %d", 2400 __func__, inm, inm->in6m_st[1].iss_asm)); 2401 } 2402 } 2403 2404 /* 2405 * Generate the filter list changes using a separate function. 2406 */ 2407 if (is_filter_list_change) 2408 return (mld_v2_enqueue_filter_change(mq, inm)); 2409 2410 if (type == MLD_DO_NOTHING) { 2411 CTR3(KTR_MLD, "%s: nothing to do for %s/%s", 2412 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2413 if_name(inm->in6m_ifp)); 2414 return (0); 2415 } 2416 2417 /* 2418 * If any sources are present, we must be able to fit at least 2419 * one in the trailing space of the tail packet's mbuf, 2420 * ideally more. 2421 */ 2422 minrec0len = sizeof(struct mldv2_record); 2423 if (record_has_sources) 2424 minrec0len += sizeof(struct in6_addr); 2425 2426 CTR4(KTR_MLD, "%s: queueing %s for %s/%s", __func__, 2427 mld_rec_type_to_str(type), 2428 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2429 if_name(inm->in6m_ifp)); 2430 2431 /* 2432 * Check if we have a packet in the tail of the queue for this 2433 * group into which the first group record for this group will fit. 2434 * Otherwise allocate a new packet. 2435 * Always allocate leading space for IP6+RA+ICMPV6+REPORT. 2436 * Note: Group records for G/GSR query responses MUST be sent 2437 * in their own packet. 2438 */ 2439 m0 = mbufq_last(mq); 2440 if (!is_group_query && 2441 m0 != NULL && 2442 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) && 2443 (m0->m_pkthdr.len + minrec0len) < 2444 (ifp->if_mtu - MLD_MTUSPACE)) { 2445 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2446 sizeof(struct mldv2_record)) / 2447 sizeof(struct in6_addr); 2448 m = m0; 2449 CTR1(KTR_MLD, "%s: use existing packet", __func__); 2450 } else { 2451 if (mbufq_full(mq)) { 2452 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2453 return (-ENOMEM); 2454 } 2455 m = NULL; 2456 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2457 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2458 if (!is_state_change && !is_group_query) 2459 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2460 if (m == NULL) 2461 m = m_gethdr(M_NOWAIT, MT_DATA); 2462 if (m == NULL) 2463 return (-ENOMEM); 2464 2465 mld_save_context(m, ifp); 2466 2467 CTR1(KTR_MLD, "%s: allocated first packet", __func__); 2468 } 2469 2470 /* 2471 * Append group record. 2472 * If we have sources, we don't know how many yet. 2473 */ 2474 mr.mr_type = type; 2475 mr.mr_datalen = 0; 2476 mr.mr_numsrc = 0; 2477 mr.mr_addr = inm->in6m_addr; 2478 in6_clearscope(&mr.mr_addr); 2479 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2480 if (m != m0) 2481 m_freem(m); 2482 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2483 return (-ENOMEM); 2484 } 2485 nbytes += sizeof(struct mldv2_record); 2486 2487 /* 2488 * Append as many sources as will fit in the first packet. 2489 * If we are appending to a new packet, the chain allocation 2490 * may potentially use clusters; use m_getptr() in this case. 2491 * If we are appending to an existing packet, we need to obtain 2492 * a pointer to the group record after m_append(), in case a new 2493 * mbuf was allocated. 2494 * 2495 * Only append sources which are in-mode at t1. If we are 2496 * transitioning to MCAST_UNDEFINED state on the group, and 2497 * use_block_allow is zero, do not include source entries. 2498 * Otherwise, we need to include this source in the report. 2499 * 2500 * Only report recorded sources in our filter set when responding 2501 * to a group-source query. 2502 */ 2503 if (record_has_sources) { 2504 if (m == m0) { 2505 md = m_last(m); 2506 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2507 md->m_len - nbytes); 2508 } else { 2509 md = m_getptr(m, 0, &off); 2510 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2511 off); 2512 } 2513 msrcs = 0; 2514 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, 2515 nims) { 2516 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2517 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2518 now = im6s_get_mode(inm, ims, 1); 2519 CTR2(KTR_MLD, "%s: node is %d", __func__, now); 2520 if ((now != mode) || 2521 (now == mode && 2522 (!use_block_allow && mode == MCAST_UNDEFINED))) { 2523 CTR1(KTR_MLD, "%s: skip node", __func__); 2524 continue; 2525 } 2526 if (is_source_query && ims->im6s_stp == 0) { 2527 CTR1(KTR_MLD, "%s: skip unrecorded node", 2528 __func__); 2529 continue; 2530 } 2531 CTR1(KTR_MLD, "%s: append node", __func__); 2532 if (!m_append(m, sizeof(struct in6_addr), 2533 (void *)&ims->im6s_addr)) { 2534 if (m != m0) 2535 m_freem(m); 2536 CTR1(KTR_MLD, "%s: m_append() failed.", 2537 __func__); 2538 return (-ENOMEM); 2539 } 2540 nbytes += sizeof(struct in6_addr); 2541 ++msrcs; 2542 if (msrcs == m0srcs) 2543 break; 2544 } 2545 CTR2(KTR_MLD, "%s: msrcs is %d this packet", __func__, 2546 msrcs); 2547 pmr->mr_numsrc = htons(msrcs); 2548 nbytes += (msrcs * sizeof(struct in6_addr)); 2549 } 2550 2551 if (is_source_query && msrcs == 0) { 2552 CTR1(KTR_MLD, "%s: no recorded sources to report", __func__); 2553 if (m != m0) 2554 m_freem(m); 2555 return (0); 2556 } 2557 2558 /* 2559 * We are good to go with first packet. 2560 */ 2561 if (m != m0) { 2562 CTR1(KTR_MLD, "%s: enqueueing first packet", __func__); 2563 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2564 mbufq_enqueue(mq, m); 2565 } else 2566 m->m_pkthdr.PH_vt.vt_nrecs++; 2567 2568 /* 2569 * No further work needed if no source list in packet(s). 2570 */ 2571 if (!record_has_sources) 2572 return (nbytes); 2573 2574 /* 2575 * Whilst sources remain to be announced, we need to allocate 2576 * a new packet and fill out as many sources as will fit. 2577 * Always try for a cluster first. 2578 */ 2579 while (nims != NULL) { 2580 if (mbufq_full(mq)) { 2581 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2582 return (-ENOMEM); 2583 } 2584 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2585 if (m == NULL) 2586 m = m_gethdr(M_NOWAIT, MT_DATA); 2587 if (m == NULL) 2588 return (-ENOMEM); 2589 mld_save_context(m, ifp); 2590 md = m_getptr(m, 0, &off); 2591 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off); 2592 CTR1(KTR_MLD, "%s: allocated next packet", __func__); 2593 2594 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2595 if (m != m0) 2596 m_freem(m); 2597 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2598 return (-ENOMEM); 2599 } 2600 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2601 nbytes += sizeof(struct mldv2_record); 2602 2603 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2604 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2605 2606 msrcs = 0; 2607 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2608 CTR2(KTR_MLD, "%s: visit node %s", 2609 __func__, ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2610 now = im6s_get_mode(inm, ims, 1); 2611 if ((now != mode) || 2612 (now == mode && 2613 (!use_block_allow && mode == MCAST_UNDEFINED))) { 2614 CTR1(KTR_MLD, "%s: skip node", __func__); 2615 continue; 2616 } 2617 if (is_source_query && ims->im6s_stp == 0) { 2618 CTR1(KTR_MLD, "%s: skip unrecorded node", 2619 __func__); 2620 continue; 2621 } 2622 CTR1(KTR_MLD, "%s: append node", __func__); 2623 if (!m_append(m, sizeof(struct in6_addr), 2624 (void *)&ims->im6s_addr)) { 2625 if (m != m0) 2626 m_freem(m); 2627 CTR1(KTR_MLD, "%s: m_append() failed.", 2628 __func__); 2629 return (-ENOMEM); 2630 } 2631 ++msrcs; 2632 if (msrcs == m0srcs) 2633 break; 2634 } 2635 pmr->mr_numsrc = htons(msrcs); 2636 nbytes += (msrcs * sizeof(struct in6_addr)); 2637 2638 CTR1(KTR_MLD, "%s: enqueueing next packet", __func__); 2639 mbufq_enqueue(mq, m); 2640 } 2641 2642 return (nbytes); 2643 } 2644 2645 /* 2646 * Type used to mark record pass completion. 2647 * We exploit the fact we can cast to this easily from the 2648 * current filter modes on each ip_msource node. 2649 */ 2650 typedef enum { 2651 REC_NONE = 0x00, /* MCAST_UNDEFINED */ 2652 REC_ALLOW = 0x01, /* MCAST_INCLUDE */ 2653 REC_BLOCK = 0x02, /* MCAST_EXCLUDE */ 2654 REC_FULL = REC_ALLOW | REC_BLOCK 2655 } rectype_t; 2656 2657 /* 2658 * Enqueue an MLDv2 filter list change to the given output queue. 2659 * 2660 * Source list filter state is held in an RB-tree. When the filter list 2661 * for a group is changed without changing its mode, we need to compute 2662 * the deltas between T0 and T1 for each source in the filter set, 2663 * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records. 2664 * 2665 * As we may potentially queue two record types, and the entire R-B tree 2666 * needs to be walked at once, we break this out into its own function 2667 * so we can generate a tightly packed queue of packets. 2668 * 2669 * XXX This could be written to only use one tree walk, although that makes 2670 * serializing into the mbuf chains a bit harder. For now we do two walks 2671 * which makes things easier on us, and it may or may not be harder on 2672 * the L2 cache. 2673 * 2674 * If successful the size of all data appended to the queue is returned, 2675 * otherwise an error code less than zero is returned, or zero if 2676 * no record(s) were appended. 2677 */ 2678 static int 2679 mld_v2_enqueue_filter_change(struct mbufq *mq, struct in6_multi *inm) 2680 { 2681 static const int MINRECLEN = 2682 sizeof(struct mldv2_record) + sizeof(struct in6_addr); 2683 struct ifnet *ifp; 2684 struct mldv2_record mr; 2685 struct mldv2_record *pmr; 2686 struct ip6_msource *ims, *nims; 2687 struct mbuf *m, *m0, *md; 2688 int m0srcs, nbytes, npbytes, off, rsrcs, schanged; 2689 int nallow, nblock; 2690 uint8_t mode, now, then; 2691 rectype_t crt, drt, nrt; 2692 #ifdef KTR 2693 char ip6tbuf[INET6_ADDRSTRLEN]; 2694 #endif 2695 2696 IN6_MULTI_LIST_LOCK_ASSERT(); 2697 2698 if (inm->in6m_nsrc == 0 || 2699 (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0)) 2700 return (0); 2701 2702 ifp = inm->in6m_ifp; /* interface */ 2703 mode = inm->in6m_st[1].iss_fmode; /* filter mode at t1 */ 2704 crt = REC_NONE; /* current group record type */ 2705 drt = REC_NONE; /* mask of completed group record types */ 2706 nrt = REC_NONE; /* record type for current node */ 2707 m0srcs = 0; /* # source which will fit in current mbuf chain */ 2708 npbytes = 0; /* # of bytes appended this packet */ 2709 nbytes = 0; /* # of bytes appended to group's state-change queue */ 2710 rsrcs = 0; /* # sources encoded in current record */ 2711 schanged = 0; /* # nodes encoded in overall filter change */ 2712 nallow = 0; /* # of source entries in ALLOW_NEW */ 2713 nblock = 0; /* # of source entries in BLOCK_OLD */ 2714 nims = NULL; /* next tree node pointer */ 2715 2716 /* 2717 * For each possible filter record mode. 2718 * The first kind of source we encounter tells us which 2719 * is the first kind of record we start appending. 2720 * If a node transitioned to UNDEFINED at t1, its mode is treated 2721 * as the inverse of the group's filter mode. 2722 */ 2723 while (drt != REC_FULL) { 2724 do { 2725 m0 = mbufq_last(mq); 2726 if (m0 != NULL && 2727 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= 2728 MLD_V2_REPORT_MAXRECS) && 2729 (m0->m_pkthdr.len + MINRECLEN) < 2730 (ifp->if_mtu - MLD_MTUSPACE)) { 2731 m = m0; 2732 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2733 sizeof(struct mldv2_record)) / 2734 sizeof(struct in6_addr); 2735 CTR1(KTR_MLD, 2736 "%s: use previous packet", __func__); 2737 } else { 2738 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2739 if (m == NULL) 2740 m = m_gethdr(M_NOWAIT, MT_DATA); 2741 if (m == NULL) { 2742 CTR1(KTR_MLD, 2743 "%s: m_get*() failed", __func__); 2744 return (-ENOMEM); 2745 } 2746 m->m_pkthdr.PH_vt.vt_nrecs = 0; 2747 mld_save_context(m, ifp); 2748 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2749 sizeof(struct mldv2_record)) / 2750 sizeof(struct in6_addr); 2751 npbytes = 0; 2752 CTR1(KTR_MLD, 2753 "%s: allocated new packet", __func__); 2754 } 2755 /* 2756 * Append the MLD group record header to the 2757 * current packet's data area. 2758 * Recalculate pointer to free space for next 2759 * group record, in case m_append() allocated 2760 * a new mbuf or cluster. 2761 */ 2762 memset(&mr, 0, sizeof(mr)); 2763 mr.mr_addr = inm->in6m_addr; 2764 in6_clearscope(&mr.mr_addr); 2765 if (!m_append(m, sizeof(mr), (void *)&mr)) { 2766 if (m != m0) 2767 m_freem(m); 2768 CTR1(KTR_MLD, 2769 "%s: m_append() failed", __func__); 2770 return (-ENOMEM); 2771 } 2772 npbytes += sizeof(struct mldv2_record); 2773 if (m != m0) { 2774 /* new packet; offset in chain */ 2775 md = m_getptr(m, npbytes - 2776 sizeof(struct mldv2_record), &off); 2777 pmr = (struct mldv2_record *)(mtod(md, 2778 uint8_t *) + off); 2779 } else { 2780 /* current packet; offset from last append */ 2781 md = m_last(m); 2782 pmr = (struct mldv2_record *)(mtod(md, 2783 uint8_t *) + md->m_len - 2784 sizeof(struct mldv2_record)); 2785 } 2786 /* 2787 * Begin walking the tree for this record type 2788 * pass, or continue from where we left off 2789 * previously if we had to allocate a new packet. 2790 * Only report deltas in-mode at t1. 2791 * We need not report included sources as allowed 2792 * if we are in inclusive mode on the group, 2793 * however the converse is not true. 2794 */ 2795 rsrcs = 0; 2796 if (nims == NULL) { 2797 nims = RB_MIN(ip6_msource_tree, 2798 &inm->in6m_srcs); 2799 } 2800 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2801 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2802 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2803 now = im6s_get_mode(inm, ims, 1); 2804 then = im6s_get_mode(inm, ims, 0); 2805 CTR3(KTR_MLD, "%s: mode: t0 %d, t1 %d", 2806 __func__, then, now); 2807 if (now == then) { 2808 CTR1(KTR_MLD, 2809 "%s: skip unchanged", __func__); 2810 continue; 2811 } 2812 if (mode == MCAST_EXCLUDE && 2813 now == MCAST_INCLUDE) { 2814 CTR1(KTR_MLD, 2815 "%s: skip IN src on EX group", 2816 __func__); 2817 continue; 2818 } 2819 nrt = (rectype_t)now; 2820 if (nrt == REC_NONE) 2821 nrt = (rectype_t)(~mode & REC_FULL); 2822 if (schanged++ == 0) { 2823 crt = nrt; 2824 } else if (crt != nrt) 2825 continue; 2826 if (!m_append(m, sizeof(struct in6_addr), 2827 (void *)&ims->im6s_addr)) { 2828 if (m != m0) 2829 m_freem(m); 2830 CTR1(KTR_MLD, 2831 "%s: m_append() failed", __func__); 2832 return (-ENOMEM); 2833 } 2834 nallow += !!(crt == REC_ALLOW); 2835 nblock += !!(crt == REC_BLOCK); 2836 if (++rsrcs == m0srcs) 2837 break; 2838 } 2839 /* 2840 * If we did not append any tree nodes on this 2841 * pass, back out of allocations. 2842 */ 2843 if (rsrcs == 0) { 2844 npbytes -= sizeof(struct mldv2_record); 2845 if (m != m0) { 2846 CTR1(KTR_MLD, 2847 "%s: m_free(m)", __func__); 2848 m_freem(m); 2849 } else { 2850 CTR1(KTR_MLD, 2851 "%s: m_adj(m, -mr)", __func__); 2852 m_adj(m, -((int)sizeof( 2853 struct mldv2_record))); 2854 } 2855 continue; 2856 } 2857 npbytes += (rsrcs * sizeof(struct in6_addr)); 2858 if (crt == REC_ALLOW) 2859 pmr->mr_type = MLD_ALLOW_NEW_SOURCES; 2860 else if (crt == REC_BLOCK) 2861 pmr->mr_type = MLD_BLOCK_OLD_SOURCES; 2862 pmr->mr_numsrc = htons(rsrcs); 2863 /* 2864 * Count the new group record, and enqueue this 2865 * packet if it wasn't already queued. 2866 */ 2867 m->m_pkthdr.PH_vt.vt_nrecs++; 2868 if (m != m0) 2869 mbufq_enqueue(mq, m); 2870 nbytes += npbytes; 2871 } while (nims != NULL); 2872 drt |= crt; 2873 crt = (~crt & REC_FULL); 2874 } 2875 2876 CTR3(KTR_MLD, "%s: queued %d ALLOW_NEW, %d BLOCK_OLD", __func__, 2877 nallow, nblock); 2878 2879 return (nbytes); 2880 } 2881 2882 static int 2883 mld_v2_merge_state_changes(struct in6_multi *inm, struct mbufq *scq) 2884 { 2885 struct mbufq *gq; 2886 struct mbuf *m; /* pending state-change */ 2887 struct mbuf *m0; /* copy of pending state-change */ 2888 struct mbuf *mt; /* last state-change in packet */ 2889 int docopy, domerge; 2890 u_int recslen; 2891 2892 docopy = 0; 2893 domerge = 0; 2894 recslen = 0; 2895 2896 IN6_MULTI_LIST_LOCK_ASSERT(); 2897 MLD_LOCK_ASSERT(); 2898 2899 /* 2900 * If there are further pending retransmissions, make a writable 2901 * copy of each queued state-change message before merging. 2902 */ 2903 if (inm->in6m_scrv > 0) 2904 docopy = 1; 2905 2906 gq = &inm->in6m_scq; 2907 #ifdef KTR 2908 if (mbufq_first(gq) == NULL) { 2909 CTR2(KTR_MLD, "%s: WARNING: queue for inm %p is empty", 2910 __func__, inm); 2911 } 2912 #endif 2913 2914 m = mbufq_first(gq); 2915 while (m != NULL) { 2916 /* 2917 * Only merge the report into the current packet if 2918 * there is sufficient space to do so; an MLDv2 report 2919 * packet may only contain 65,535 group records. 2920 * Always use a simple mbuf chain concatentation to do this, 2921 * as large state changes for single groups may have 2922 * allocated clusters. 2923 */ 2924 domerge = 0; 2925 mt = mbufq_last(scq); 2926 if (mt != NULL) { 2927 recslen = m_length(m, NULL); 2928 2929 if ((mt->m_pkthdr.PH_vt.vt_nrecs + 2930 m->m_pkthdr.PH_vt.vt_nrecs <= 2931 MLD_V2_REPORT_MAXRECS) && 2932 (mt->m_pkthdr.len + recslen <= 2933 (inm->in6m_ifp->if_mtu - MLD_MTUSPACE))) 2934 domerge = 1; 2935 } 2936 2937 if (!domerge && mbufq_full(gq)) { 2938 CTR2(KTR_MLD, 2939 "%s: outbound queue full, skipping whole packet %p", 2940 __func__, m); 2941 mt = m->m_nextpkt; 2942 if (!docopy) 2943 m_freem(m); 2944 m = mt; 2945 continue; 2946 } 2947 2948 if (!docopy) { 2949 CTR2(KTR_MLD, "%s: dequeueing %p", __func__, m); 2950 m0 = mbufq_dequeue(gq); 2951 m = m0->m_nextpkt; 2952 } else { 2953 CTR2(KTR_MLD, "%s: copying %p", __func__, m); 2954 m0 = m_dup(m, M_NOWAIT); 2955 if (m0 == NULL) 2956 return (ENOMEM); 2957 m0->m_nextpkt = NULL; 2958 m = m->m_nextpkt; 2959 } 2960 2961 if (!domerge) { 2962 CTR3(KTR_MLD, "%s: queueing %p to scq %p)", 2963 __func__, m0, scq); 2964 mbufq_enqueue(scq, m0); 2965 } else { 2966 struct mbuf *mtl; /* last mbuf of packet mt */ 2967 2968 CTR3(KTR_MLD, "%s: merging %p with ifscq tail %p)", 2969 __func__, m0, mt); 2970 2971 mtl = m_last(mt); 2972 m0->m_flags &= ~M_PKTHDR; 2973 mt->m_pkthdr.len += recslen; 2974 mt->m_pkthdr.PH_vt.vt_nrecs += 2975 m0->m_pkthdr.PH_vt.vt_nrecs; 2976 2977 mtl->m_next = m0; 2978 } 2979 } 2980 2981 return (0); 2982 } 2983 2984 /* 2985 * Respond to a pending MLDv2 General Query. 2986 */ 2987 static void 2988 mld_v2_dispatch_general_query(struct mld_ifsoftc *mli) 2989 { 2990 struct ifmultiaddr *ifma; 2991 struct ifnet *ifp; 2992 struct in6_multi *inm; 2993 int retval; 2994 2995 NET_EPOCH_ASSERT(); 2996 IN6_MULTI_LIST_LOCK_ASSERT(); 2997 MLD_LOCK_ASSERT(); 2998 2999 KASSERT(mli->mli_version == MLD_VERSION_2, 3000 ("%s: called when version %d", __func__, mli->mli_version)); 3001 3002 /* 3003 * Check that there are some packets queued. If so, send them first. 3004 * For large number of groups the reply to general query can take 3005 * many packets, we should finish sending them before starting of 3006 * queuing the new reply. 3007 */ 3008 if (mbufq_len(&mli->mli_gq) != 0) 3009 goto send; 3010 3011 ifp = mli->mli_ifp; 3012 3013 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3014 inm = in6m_ifmultiaddr_get_inm(ifma); 3015 if (inm == NULL) 3016 continue; 3017 KASSERT(ifp == inm->in6m_ifp, 3018 ("%s: inconsistent ifp", __func__)); 3019 3020 switch (inm->in6m_state) { 3021 case MLD_NOT_MEMBER: 3022 case MLD_SILENT_MEMBER: 3023 break; 3024 case MLD_REPORTING_MEMBER: 3025 case MLD_IDLE_MEMBER: 3026 case MLD_LAZY_MEMBER: 3027 case MLD_SLEEPING_MEMBER: 3028 case MLD_AWAKENING_MEMBER: 3029 inm->in6m_state = MLD_REPORTING_MEMBER; 3030 retval = mld_v2_enqueue_group_record(&mli->mli_gq, 3031 inm, 0, 0, 0, 0); 3032 CTR2(KTR_MLD, "%s: enqueue record = %d", 3033 __func__, retval); 3034 break; 3035 case MLD_G_QUERY_PENDING_MEMBER: 3036 case MLD_SG_QUERY_PENDING_MEMBER: 3037 case MLD_LEAVING_MEMBER: 3038 break; 3039 } 3040 } 3041 3042 send: 3043 mld_dispatch_queue(&mli->mli_gq, MLD_MAX_RESPONSE_BURST); 3044 3045 /* 3046 * Slew transmission of bursts over 500ms intervals. 3047 */ 3048 if (mbufq_first(&mli->mli_gq) != NULL) { 3049 mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY( 3050 MLD_RESPONSE_BURST_INTERVAL); 3051 V_interface_timers_running6 = 1; 3052 } 3053 } 3054 3055 /* 3056 * Transmit the next pending message in the output queue. 3057 * 3058 * VIMAGE: Needs to store/restore vnet pointer on a per-mbuf-chain basis. 3059 * MRT: Nothing needs to be done, as MLD traffic is always local to 3060 * a link and uses a link-scope multicast address. 3061 */ 3062 static void 3063 mld_dispatch_packet(struct mbuf *m) 3064 { 3065 struct ip6_moptions im6o; 3066 struct ifnet *ifp; 3067 struct ifnet *oifp; 3068 struct mbuf *m0; 3069 struct mbuf *md; 3070 struct ip6_hdr *ip6; 3071 struct mld_hdr *mld; 3072 int error; 3073 int off; 3074 int type; 3075 uint32_t ifindex; 3076 3077 CTR2(KTR_MLD, "%s: transmit %p", __func__, m); 3078 3079 /* 3080 * Set VNET image pointer from enqueued mbuf chain 3081 * before doing anything else. Whilst we use interface 3082 * indexes to guard against interface detach, they are 3083 * unique to each VIMAGE and must be retrieved. 3084 */ 3085 ifindex = mld_restore_context(m); 3086 3087 /* 3088 * Check if the ifnet still exists. This limits the scope of 3089 * any race in the absence of a global ifp lock for low cost 3090 * (an array lookup). 3091 */ 3092 ifp = ifnet_byindex(ifindex); 3093 if (ifp == NULL) { 3094 CTR3(KTR_MLD, "%s: dropped %p as ifindex %u went away.", 3095 __func__, m, ifindex); 3096 m_freem(m); 3097 IP6STAT_INC(ip6s_noroute); 3098 goto out; 3099 } 3100 3101 im6o.im6o_multicast_hlim = 1; 3102 im6o.im6o_multicast_loop = (V_ip6_mrouter != NULL); 3103 im6o.im6o_multicast_ifp = ifp; 3104 3105 if (m->m_flags & M_MLDV1) { 3106 m0 = m; 3107 } else { 3108 m0 = mld_v2_encap_report(ifp, m); 3109 if (m0 == NULL) { 3110 CTR2(KTR_MLD, "%s: dropped %p", __func__, m); 3111 IP6STAT_INC(ip6s_odropped); 3112 goto out; 3113 } 3114 } 3115 3116 mld_scrub_context(m0); 3117 m_clrprotoflags(m); 3118 m0->m_pkthdr.rcvif = V_loif; 3119 3120 ip6 = mtod(m0, struct ip6_hdr *); 3121 #if 0 3122 (void)in6_setscope(&ip6->ip6_dst, ifp, NULL); /* XXX LOR */ 3123 #else 3124 /* 3125 * XXX XXX Break some KPI rules to prevent an LOR which would 3126 * occur if we called in6_setscope() at transmission. 3127 * See comments at top of file. 3128 */ 3129 MLD_EMBEDSCOPE(&ip6->ip6_dst, ifp->if_index); 3130 #endif 3131 3132 /* 3133 * Retrieve the ICMPv6 type before handoff to ip6_output(), 3134 * so we can bump the stats. 3135 */ 3136 md = m_getptr(m0, sizeof(struct ip6_hdr), &off); 3137 mld = (struct mld_hdr *)(mtod(md, uint8_t *) + off); 3138 type = mld->mld_type; 3139 3140 error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, &im6o, 3141 &oifp, NULL); 3142 if (error) { 3143 CTR3(KTR_MLD, "%s: ip6_output(%p) = %d", __func__, m0, error); 3144 goto out; 3145 } 3146 ICMP6STAT_INC(icp6s_outhist[type]); 3147 if (oifp != NULL) { 3148 icmp6_ifstat_inc(oifp, ifs6_out_msg); 3149 switch (type) { 3150 case MLD_LISTENER_REPORT: 3151 case MLDV2_LISTENER_REPORT: 3152 icmp6_ifstat_inc(oifp, ifs6_out_mldreport); 3153 break; 3154 case MLD_LISTENER_DONE: 3155 icmp6_ifstat_inc(oifp, ifs6_out_mlddone); 3156 break; 3157 } 3158 } 3159 out: 3160 return; 3161 } 3162 3163 /* 3164 * Encapsulate an MLDv2 report. 3165 * 3166 * KAME IPv6 requires that hop-by-hop options be passed separately, 3167 * and that the IPv6 header be prepended in a separate mbuf. 3168 * 3169 * Returns a pointer to the new mbuf chain head, or NULL if the 3170 * allocation failed. 3171 */ 3172 static struct mbuf * 3173 mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m) 3174 { 3175 struct mbuf *mh; 3176 struct mldv2_report *mld; 3177 struct ip6_hdr *ip6; 3178 struct in6_ifaddr *ia; 3179 int mldreclen; 3180 3181 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 3182 KASSERT((m->m_flags & M_PKTHDR), 3183 ("%s: mbuf chain %p is !M_PKTHDR", __func__, m)); 3184 3185 /* 3186 * RFC3590: OK to send as :: or tentative during DAD. 3187 */ 3188 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 3189 if (ia == NULL) 3190 CTR1(KTR_MLD, "%s: warning: ia is NULL", __func__); 3191 3192 mh = m_gethdr(M_NOWAIT, MT_DATA); 3193 if (mh == NULL) { 3194 if (ia != NULL) 3195 ifa_free(&ia->ia_ifa); 3196 m_freem(m); 3197 return (NULL); 3198 } 3199 M_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report)); 3200 3201 mldreclen = m_length(m, NULL); 3202 CTR2(KTR_MLD, "%s: mldreclen is %d", __func__, mldreclen); 3203 3204 mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report); 3205 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + 3206 sizeof(struct mldv2_report) + mldreclen; 3207 3208 ip6 = mtod(mh, struct ip6_hdr *); 3209 ip6->ip6_flow = 0; 3210 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 3211 ip6->ip6_vfc |= IPV6_VERSION; 3212 ip6->ip6_nxt = IPPROTO_ICMPV6; 3213 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 3214 if (ia != NULL) 3215 ifa_free(&ia->ia_ifa); 3216 ip6->ip6_dst = in6addr_linklocal_allv2routers; 3217 /* scope ID will be set in netisr */ 3218 3219 mld = (struct mldv2_report *)(ip6 + 1); 3220 mld->mld_type = MLDV2_LISTENER_REPORT; 3221 mld->mld_code = 0; 3222 mld->mld_cksum = 0; 3223 mld->mld_v2_reserved = 0; 3224 mld->mld_v2_numrecs = htons(m->m_pkthdr.PH_vt.vt_nrecs); 3225 m->m_pkthdr.PH_vt.vt_nrecs = 0; 3226 3227 mh->m_next = m; 3228 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 3229 sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen); 3230 return (mh); 3231 } 3232 3233 #ifdef KTR 3234 static char * 3235 mld_rec_type_to_str(const int type) 3236 { 3237 3238 switch (type) { 3239 case MLD_CHANGE_TO_EXCLUDE_MODE: 3240 return "TO_EX"; 3241 break; 3242 case MLD_CHANGE_TO_INCLUDE_MODE: 3243 return "TO_IN"; 3244 break; 3245 case MLD_MODE_IS_EXCLUDE: 3246 return "MODE_EX"; 3247 break; 3248 case MLD_MODE_IS_INCLUDE: 3249 return "MODE_IN"; 3250 break; 3251 case MLD_ALLOW_NEW_SOURCES: 3252 return "ALLOW_NEW"; 3253 break; 3254 case MLD_BLOCK_OLD_SOURCES: 3255 return "BLOCK_OLD"; 3256 break; 3257 default: 3258 break; 3259 } 3260 return "unknown"; 3261 } 3262 #endif 3263 3264 static void 3265 mld_init(void *unused __unused) 3266 { 3267 3268 CTR1(KTR_MLD, "%s: initializing", __func__); 3269 MLD_LOCK_INIT(); 3270 3271 ip6_initpktopts(&mld_po); 3272 mld_po.ip6po_hlim = 1; 3273 mld_po.ip6po_hbh = &mld_ra.hbh; 3274 mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER; 3275 mld_po.ip6po_flags = IP6PO_DONTFRAG; 3276 } 3277 SYSINIT(mld_init, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, mld_init, NULL); 3278 3279 static void 3280 mld_uninit(void *unused __unused) 3281 { 3282 3283 CTR1(KTR_MLD, "%s: tearing down", __func__); 3284 MLD_LOCK_DESTROY(); 3285 } 3286 SYSUNINIT(mld_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, mld_uninit, NULL); 3287 3288 static void 3289 vnet_mld_init(const void *unused __unused) 3290 { 3291 3292 CTR1(KTR_MLD, "%s: initializing", __func__); 3293 3294 LIST_INIT(&V_mli_head); 3295 } 3296 VNET_SYSINIT(vnet_mld_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mld_init, 3297 NULL); 3298 3299 static void 3300 vnet_mld_uninit(const void *unused __unused) 3301 { 3302 3303 /* This can happen if we shutdown the network stack. */ 3304 CTR1(KTR_MLD, "%s: tearing down", __func__); 3305 } 3306 VNET_SYSUNINIT(vnet_mld_uninit, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mld_uninit, 3307 NULL); 3308 3309 static int 3310 mld_modevent(module_t mod, int type, void *unused __unused) 3311 { 3312 3313 switch (type) { 3314 case MOD_LOAD: 3315 case MOD_UNLOAD: 3316 break; 3317 default: 3318 return (EOPNOTSUPP); 3319 } 3320 return (0); 3321 } 3322 3323 static moduledata_t mld_mod = { 3324 "mld", 3325 mld_modevent, 3326 0 3327 }; 3328 DECLARE_MODULE(mld, mld_mod, SI_SUB_PROTO_MC, SI_ORDER_ANY); 3329