1 /*- 2 * Copyright (c) 2009 Bruce Simpson. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 3. The name of the author may not be used to endorse or promote 13 * products derived from this software without specific prior written 14 * permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $KAME: mld6.c,v 1.27 2001/04/04 05:17:30 itojun Exp $ 29 */ 30 31 /*- 32 * Copyright (c) 1988 Stephen Deering. 33 * Copyright (c) 1992, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * This code is derived from software contributed to Berkeley by 37 * Stephen Deering of Stanford University. 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 1. Redistributions of source code must retain the above copyright 43 * notice, this list of conditions and the following disclaimer. 44 * 2. Redistributions in binary form must reproduce the above copyright 45 * notice, this list of conditions and the following disclaimer in the 46 * documentation and/or other materials provided with the distribution. 47 * 4. Neither the name of the University nor the names of its contributors 48 * may be used to endorse or promote products derived from this software 49 * without specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 61 * SUCH DAMAGE. 62 * 63 * @(#)igmp.c 8.1 (Berkeley) 7/19/93 64 */ 65 66 #include <sys/cdefs.h> 67 __FBSDID("$FreeBSD$"); 68 69 #include "opt_inet.h" 70 #include "opt_inet6.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/mbuf.h> 75 #include <sys/socket.h> 76 #include <sys/protosw.h> 77 #include <sys/sysctl.h> 78 #include <sys/kernel.h> 79 #include <sys/callout.h> 80 #include <sys/malloc.h> 81 #include <sys/module.h> 82 #include <sys/ktr.h> 83 84 #include <net/if.h> 85 #include <net/if_var.h> 86 #include <net/route.h> 87 #include <net/vnet.h> 88 89 #include <netinet/in.h> 90 #include <netinet/in_var.h> 91 #include <netinet6/in6_var.h> 92 #include <netinet/ip6.h> 93 #include <netinet6/ip6_var.h> 94 #include <netinet6/scope6_var.h> 95 #include <netinet/icmp6.h> 96 #include <netinet6/mld6.h> 97 #include <netinet6/mld6_var.h> 98 99 #include <security/mac/mac_framework.h> 100 101 #ifndef KTR_MLD 102 #define KTR_MLD KTR_INET6 103 #endif 104 105 static struct mld_ifsoftc * 106 mli_alloc_locked(struct ifnet *); 107 static void mli_delete_locked(const struct ifnet *); 108 static void mld_dispatch_packet(struct mbuf *); 109 static void mld_dispatch_queue(struct mbufq *, int); 110 static void mld_final_leave(struct in6_multi *, struct mld_ifsoftc *); 111 static void mld_fasttimo_vnet(void); 112 static int mld_handle_state_change(struct in6_multi *, 113 struct mld_ifsoftc *); 114 static int mld_initial_join(struct in6_multi *, struct mld_ifsoftc *, 115 const int); 116 #ifdef KTR 117 static char * mld_rec_type_to_str(const int); 118 #endif 119 static void mld_set_version(struct mld_ifsoftc *, const int); 120 static void mld_slowtimo_vnet(void); 121 static int mld_v1_input_query(struct ifnet *, const struct ip6_hdr *, 122 /*const*/ struct mld_hdr *); 123 static int mld_v1_input_report(struct ifnet *, const struct ip6_hdr *, 124 /*const*/ struct mld_hdr *); 125 static void mld_v1_process_group_timer(struct mld_ifsoftc *, 126 struct in6_multi *); 127 static void mld_v1_process_querier_timers(struct mld_ifsoftc *); 128 static int mld_v1_transmit_report(struct in6_multi *, const int); 129 static void mld_v1_update_group(struct in6_multi *, const int); 130 static void mld_v2_cancel_link_timers(struct mld_ifsoftc *); 131 static void mld_v2_dispatch_general_query(struct mld_ifsoftc *); 132 static struct mbuf * 133 mld_v2_encap_report(struct ifnet *, struct mbuf *); 134 static int mld_v2_enqueue_filter_change(struct mbufq *, 135 struct in6_multi *); 136 static int mld_v2_enqueue_group_record(struct mbufq *, 137 struct in6_multi *, const int, const int, const int, 138 const int); 139 static int mld_v2_input_query(struct ifnet *, const struct ip6_hdr *, 140 struct mbuf *, const int, const int); 141 static int mld_v2_merge_state_changes(struct in6_multi *, 142 struct mbufq *); 143 static void mld_v2_process_group_timers(struct mld_ifsoftc *, 144 struct mbufq *, struct mbufq *, 145 struct in6_multi *, const int); 146 static int mld_v2_process_group_query(struct in6_multi *, 147 struct mld_ifsoftc *mli, int, struct mbuf *, const int); 148 static int sysctl_mld_gsr(SYSCTL_HANDLER_ARGS); 149 static int sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS); 150 151 /* 152 * Normative references: RFC 2710, RFC 3590, RFC 3810. 153 * 154 * Locking: 155 * * The MLD subsystem lock ends up being system-wide for the moment, 156 * but could be per-VIMAGE later on. 157 * * The permitted lock order is: IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK. 158 * Any may be taken independently; if any are held at the same 159 * time, the above lock order must be followed. 160 * * IN6_MULTI_LOCK covers in_multi. 161 * * MLD_LOCK covers per-link state and any global variables in this file. 162 * * IF_ADDR_LOCK covers if_multiaddrs, which is used for a variety of 163 * per-link state iterators. 164 * 165 * XXX LOR PREVENTION 166 * A special case for IPv6 is the in6_setscope() routine. ip6_output() 167 * will not accept an ifp; it wants an embedded scope ID, unlike 168 * ip_output(), which happily takes the ifp given to it. The embedded 169 * scope ID is only used by MLD to select the outgoing interface. 170 * 171 * During interface attach and detach, MLD will take MLD_LOCK *after* 172 * the IF_AFDATA_LOCK. 173 * As in6_setscope() takes IF_AFDATA_LOCK then SCOPE_LOCK, we can't call 174 * it with MLD_LOCK held without triggering an LOR. A netisr with indirect 175 * dispatch could work around this, but we'd rather not do that, as it 176 * can introduce other races. 177 * 178 * As such, we exploit the fact that the scope ID is just the interface 179 * index, and embed it in the IPv6 destination address accordingly. 180 * This is potentially NOT VALID for MLDv1 reports, as they 181 * are always sent to the multicast group itself; as MLDv2 182 * reports are always sent to ff02::16, this is not an issue 183 * when MLDv2 is in use. 184 * 185 * This does not however eliminate the LOR when ip6_output() itself 186 * calls in6_setscope() internally whilst MLD_LOCK is held. This will 187 * trigger a LOR warning in WITNESS when the ifnet is detached. 188 * 189 * The right answer is probably to make IF_AFDATA_LOCK an rwlock, given 190 * how it's used across the network stack. Here we're simply exploiting 191 * the fact that MLD runs at a similar layer in the stack to scope6.c. 192 * 193 * VIMAGE: 194 * * Each in6_multi corresponds to an ifp, and each ifp corresponds 195 * to a vnet in ifp->if_vnet. 196 */ 197 static struct mtx mld_mtx; 198 static MALLOC_DEFINE(M_MLD, "mld", "mld state"); 199 200 #define MLD_EMBEDSCOPE(pin6, zoneid) \ 201 if (IN6_IS_SCOPE_LINKLOCAL(pin6) || \ 202 IN6_IS_ADDR_MC_INTFACELOCAL(pin6)) \ 203 (pin6)->s6_addr16[1] = htons((zoneid) & 0xFFFF) \ 204 205 /* 206 * VIMAGE-wide globals. 207 */ 208 static VNET_DEFINE(struct timeval, mld_gsrdelay) = {10, 0}; 209 static VNET_DEFINE(LIST_HEAD(, mld_ifsoftc), mli_head); 210 static VNET_DEFINE(int, interface_timers_running6); 211 static VNET_DEFINE(int, state_change_timers_running6); 212 static VNET_DEFINE(int, current_state_timers_running6); 213 214 #define V_mld_gsrdelay VNET(mld_gsrdelay) 215 #define V_mli_head VNET(mli_head) 216 #define V_interface_timers_running6 VNET(interface_timers_running6) 217 #define V_state_change_timers_running6 VNET(state_change_timers_running6) 218 #define V_current_state_timers_running6 VNET(current_state_timers_running6) 219 220 SYSCTL_DECL(_net_inet6); /* Note: Not in any common header. */ 221 222 SYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW, 0, 223 "IPv6 Multicast Listener Discovery"); 224 225 /* 226 * Virtualized sysctls. 227 */ 228 SYSCTL_PROC(_net_inet6_mld, OID_AUTO, gsrdelay, 229 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 230 &VNET_NAME(mld_gsrdelay.tv_sec), 0, sysctl_mld_gsr, "I", 231 "Rate limit for MLDv2 Group-and-Source queries in seconds"); 232 233 /* 234 * Non-virtualized sysctls. 235 */ 236 static SYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo, 237 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mld_ifinfo, 238 "Per-interface MLDv2 state"); 239 240 static int mld_v1enable = 1; 241 SYSCTL_INT(_net_inet6_mld, OID_AUTO, v1enable, CTLFLAG_RWTUN, 242 &mld_v1enable, 0, "Enable fallback to MLDv1"); 243 244 static int mld_use_allow = 1; 245 SYSCTL_INT(_net_inet6_mld, OID_AUTO, use_allow, CTLFLAG_RWTUN, 246 &mld_use_allow, 0, "Use ALLOW/BLOCK for RFC 4604 SSM joins/leaves"); 247 248 /* 249 * Packed Router Alert option structure declaration. 250 */ 251 struct mld_raopt { 252 struct ip6_hbh hbh; 253 struct ip6_opt pad; 254 struct ip6_opt_router ra; 255 } __packed; 256 257 /* 258 * Router Alert hop-by-hop option header. 259 */ 260 static struct mld_raopt mld_ra = { 261 .hbh = { 0, 0 }, 262 .pad = { .ip6o_type = IP6OPT_PADN, 0 }, 263 .ra = { 264 .ip6or_type = IP6OPT_ROUTER_ALERT, 265 .ip6or_len = IP6OPT_RTALERT_LEN - 2, 266 .ip6or_value[0] = ((IP6OPT_RTALERT_MLD >> 8) & 0xFF), 267 .ip6or_value[1] = (IP6OPT_RTALERT_MLD & 0xFF) 268 } 269 }; 270 static struct ip6_pktopts mld_po; 271 272 static __inline void 273 mld_save_context(struct mbuf *m, struct ifnet *ifp) 274 { 275 276 #ifdef VIMAGE 277 m->m_pkthdr.PH_loc.ptr = ifp->if_vnet; 278 #endif /* VIMAGE */ 279 m->m_pkthdr.flowid = ifp->if_index; 280 } 281 282 static __inline void 283 mld_scrub_context(struct mbuf *m) 284 { 285 286 m->m_pkthdr.PH_loc.ptr = NULL; 287 m->m_pkthdr.flowid = 0; 288 } 289 290 /* 291 * Restore context from a queued output chain. 292 * Return saved ifindex. 293 * 294 * VIMAGE: The assertion is there to make sure that we 295 * actually called CURVNET_SET() with what's in the mbuf chain. 296 */ 297 static __inline uint32_t 298 mld_restore_context(struct mbuf *m) 299 { 300 301 #if defined(VIMAGE) && defined(INVARIANTS) 302 KASSERT(curvnet == m->m_pkthdr.PH_loc.ptr, 303 ("%s: called when curvnet was not restored: cuvnet %p m ptr %p", 304 __func__, curvnet, m->m_pkthdr.PH_loc.ptr)); 305 #endif 306 return (m->m_pkthdr.flowid); 307 } 308 309 /* 310 * Retrieve or set threshold between group-source queries in seconds. 311 * 312 * VIMAGE: Assume curvnet set by caller. 313 * SMPng: NOTE: Serialized by MLD lock. 314 */ 315 static int 316 sysctl_mld_gsr(SYSCTL_HANDLER_ARGS) 317 { 318 int error; 319 int i; 320 321 error = sysctl_wire_old_buffer(req, sizeof(int)); 322 if (error) 323 return (error); 324 325 MLD_LOCK(); 326 327 i = V_mld_gsrdelay.tv_sec; 328 329 error = sysctl_handle_int(oidp, &i, 0, req); 330 if (error || !req->newptr) 331 goto out_locked; 332 333 if (i < -1 || i >= 60) { 334 error = EINVAL; 335 goto out_locked; 336 } 337 338 CTR2(KTR_MLD, "change mld_gsrdelay from %d to %d", 339 V_mld_gsrdelay.tv_sec, i); 340 V_mld_gsrdelay.tv_sec = i; 341 342 out_locked: 343 MLD_UNLOCK(); 344 return (error); 345 } 346 347 /* 348 * Expose struct mld_ifsoftc to userland, keyed by ifindex. 349 * For use by ifmcstat(8). 350 * 351 * SMPng: NOTE: Does an unlocked ifindex space read. 352 * VIMAGE: Assume curvnet set by caller. The node handler itself 353 * is not directly virtualized. 354 */ 355 static int 356 sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS) 357 { 358 int *name; 359 int error; 360 u_int namelen; 361 struct ifnet *ifp; 362 struct mld_ifsoftc *mli; 363 364 name = (int *)arg1; 365 namelen = arg2; 366 367 if (req->newptr != NULL) 368 return (EPERM); 369 370 if (namelen != 1) 371 return (EINVAL); 372 373 error = sysctl_wire_old_buffer(req, sizeof(struct mld_ifinfo)); 374 if (error) 375 return (error); 376 377 IN6_MULTI_LOCK(); 378 MLD_LOCK(); 379 380 if (name[0] <= 0 || name[0] > V_if_index) { 381 error = ENOENT; 382 goto out_locked; 383 } 384 385 error = ENOENT; 386 387 ifp = ifnet_byindex(name[0]); 388 if (ifp == NULL) 389 goto out_locked; 390 391 LIST_FOREACH(mli, &V_mli_head, mli_link) { 392 if (ifp == mli->mli_ifp) { 393 struct mld_ifinfo info; 394 395 info.mli_version = mli->mli_version; 396 info.mli_v1_timer = mli->mli_v1_timer; 397 info.mli_v2_timer = mli->mli_v2_timer; 398 info.mli_flags = mli->mli_flags; 399 info.mli_rv = mli->mli_rv; 400 info.mli_qi = mli->mli_qi; 401 info.mli_qri = mli->mli_qri; 402 info.mli_uri = mli->mli_uri; 403 error = SYSCTL_OUT(req, &info, sizeof(info)); 404 break; 405 } 406 } 407 408 out_locked: 409 MLD_UNLOCK(); 410 IN6_MULTI_UNLOCK(); 411 return (error); 412 } 413 414 /* 415 * Dispatch an entire queue of pending packet chains. 416 * VIMAGE: Assumes the vnet pointer has been set. 417 */ 418 static void 419 mld_dispatch_queue(struct mbufq *mq, int limit) 420 { 421 struct mbuf *m; 422 423 while ((m = mbufq_dequeue(mq)) != NULL) { 424 CTR3(KTR_MLD, "%s: dispatch %p from %p", __func__, mq, m); 425 mld_dispatch_packet(m); 426 if (--limit == 0) 427 break; 428 } 429 } 430 431 /* 432 * Filter outgoing MLD report state by group. 433 * 434 * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1) 435 * and node-local addresses. However, kernel and socket consumers 436 * always embed the KAME scope ID in the address provided, so strip it 437 * when performing comparison. 438 * Note: This is not the same as the *multicast* scope. 439 * 440 * Return zero if the given group is one for which MLD reports 441 * should be suppressed, or non-zero if reports should be issued. 442 */ 443 static __inline int 444 mld_is_addr_reported(const struct in6_addr *addr) 445 { 446 447 KASSERT(IN6_IS_ADDR_MULTICAST(addr), ("%s: not multicast", __func__)); 448 449 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL) 450 return (0); 451 452 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL) { 453 struct in6_addr tmp = *addr; 454 in6_clearscope(&tmp); 455 if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes)) 456 return (0); 457 } 458 459 return (1); 460 } 461 462 /* 463 * Attach MLD when PF_INET6 is attached to an interface. 464 * 465 * SMPng: Normally called with IF_AFDATA_LOCK held. 466 */ 467 struct mld_ifsoftc * 468 mld_domifattach(struct ifnet *ifp) 469 { 470 struct mld_ifsoftc *mli; 471 472 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 473 __func__, ifp, if_name(ifp)); 474 475 MLD_LOCK(); 476 477 mli = mli_alloc_locked(ifp); 478 if (!(ifp->if_flags & IFF_MULTICAST)) 479 mli->mli_flags |= MLIF_SILENT; 480 if (mld_use_allow) 481 mli->mli_flags |= MLIF_USEALLOW; 482 483 MLD_UNLOCK(); 484 485 return (mli); 486 } 487 488 /* 489 * VIMAGE: assume curvnet set by caller. 490 */ 491 static struct mld_ifsoftc * 492 mli_alloc_locked(/*const*/ struct ifnet *ifp) 493 { 494 struct mld_ifsoftc *mli; 495 496 MLD_LOCK_ASSERT(); 497 498 mli = malloc(sizeof(struct mld_ifsoftc), M_MLD, M_NOWAIT|M_ZERO); 499 if (mli == NULL) 500 goto out; 501 502 mli->mli_ifp = ifp; 503 mli->mli_version = MLD_VERSION_2; 504 mli->mli_flags = 0; 505 mli->mli_rv = MLD_RV_INIT; 506 mli->mli_qi = MLD_QI_INIT; 507 mli->mli_qri = MLD_QRI_INIT; 508 mli->mli_uri = MLD_URI_INIT; 509 SLIST_INIT(&mli->mli_relinmhead); 510 mbufq_init(&mli->mli_gq, MLD_MAX_RESPONSE_PACKETS); 511 512 LIST_INSERT_HEAD(&V_mli_head, mli, mli_link); 513 514 CTR2(KTR_MLD, "allocate mld_ifsoftc for ifp %p(%s)", 515 ifp, if_name(ifp)); 516 517 out: 518 return (mli); 519 } 520 521 /* 522 * Hook for ifdetach. 523 * 524 * NOTE: Some finalization tasks need to run before the protocol domain 525 * is detached, but also before the link layer does its cleanup. 526 * Run before link-layer cleanup; cleanup groups, but do not free MLD state. 527 * 528 * SMPng: Caller must hold IN6_MULTI_LOCK(). 529 * Must take IF_ADDR_LOCK() to cover if_multiaddrs iterator. 530 * XXX This routine is also bitten by unlocked ifma_protospec access. 531 */ 532 void 533 mld_ifdetach(struct ifnet *ifp) 534 { 535 struct mld_ifsoftc *mli; 536 struct ifmultiaddr *ifma; 537 struct in6_multi *inm, *tinm; 538 539 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", __func__, ifp, 540 if_name(ifp)); 541 542 IN6_MULTI_LOCK_ASSERT(); 543 MLD_LOCK(); 544 545 mli = MLD_IFINFO(ifp); 546 if (mli->mli_version == MLD_VERSION_2) { 547 IF_ADDR_RLOCK(ifp); 548 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 549 if (ifma->ifma_addr->sa_family != AF_INET6 || 550 ifma->ifma_protospec == NULL) 551 continue; 552 inm = (struct in6_multi *)ifma->ifma_protospec; 553 if (inm->in6m_state == MLD_LEAVING_MEMBER) { 554 SLIST_INSERT_HEAD(&mli->mli_relinmhead, 555 inm, in6m_nrele); 556 } 557 in6m_clear_recorded(inm); 558 } 559 IF_ADDR_RUNLOCK(ifp); 560 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele, 561 tinm) { 562 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele); 563 in6m_release_locked(inm); 564 } 565 } 566 567 MLD_UNLOCK(); 568 } 569 570 /* 571 * Hook for domifdetach. 572 * Runs after link-layer cleanup; free MLD state. 573 * 574 * SMPng: Normally called with IF_AFDATA_LOCK held. 575 */ 576 void 577 mld_domifdetach(struct ifnet *ifp) 578 { 579 580 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 581 __func__, ifp, if_name(ifp)); 582 583 MLD_LOCK(); 584 mli_delete_locked(ifp); 585 MLD_UNLOCK(); 586 } 587 588 static void 589 mli_delete_locked(const struct ifnet *ifp) 590 { 591 struct mld_ifsoftc *mli, *tmli; 592 593 CTR3(KTR_MLD, "%s: freeing mld_ifsoftc for ifp %p(%s)", 594 __func__, ifp, if_name(ifp)); 595 596 MLD_LOCK_ASSERT(); 597 598 LIST_FOREACH_SAFE(mli, &V_mli_head, mli_link, tmli) { 599 if (mli->mli_ifp == ifp) { 600 /* 601 * Free deferred General Query responses. 602 */ 603 mbufq_drain(&mli->mli_gq); 604 605 LIST_REMOVE(mli, mli_link); 606 607 KASSERT(SLIST_EMPTY(&mli->mli_relinmhead), 608 ("%s: there are dangling in_multi references", 609 __func__)); 610 611 free(mli, M_MLD); 612 return; 613 } 614 } 615 } 616 617 /* 618 * Process a received MLDv1 general or address-specific query. 619 * Assumes that the query header has been pulled up to sizeof(mld_hdr). 620 * 621 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 622 * mld_addr. This is OK as we own the mbuf chain. 623 */ 624 static int 625 mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 626 /*const*/ struct mld_hdr *mld) 627 { 628 struct ifmultiaddr *ifma; 629 struct mld_ifsoftc *mli; 630 struct in6_multi *inm; 631 int is_general_query; 632 uint16_t timer; 633 #ifdef KTR 634 char ip6tbuf[INET6_ADDRSTRLEN]; 635 #endif 636 637 is_general_query = 0; 638 639 if (!mld_v1enable) { 640 CTR3(KTR_MLD, "ignore v1 query %s on ifp %p(%s)", 641 ip6_sprintf(ip6tbuf, &mld->mld_addr), 642 ifp, if_name(ifp)); 643 return (0); 644 } 645 646 /* 647 * RFC3810 Section 6.2: MLD queries must originate from 648 * a router's link-local address. 649 */ 650 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 651 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 652 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 653 ifp, if_name(ifp)); 654 return (0); 655 } 656 657 /* 658 * Do address field validation upfront before we accept 659 * the query. 660 */ 661 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 662 /* 663 * MLDv1 General Query. 664 * If this was not sent to the all-nodes group, ignore it. 665 */ 666 struct in6_addr dst; 667 668 dst = ip6->ip6_dst; 669 in6_clearscope(&dst); 670 if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes)) 671 return (EINVAL); 672 is_general_query = 1; 673 } else { 674 /* 675 * Embed scope ID of receiving interface in MLD query for 676 * lookup whilst we don't hold other locks. 677 */ 678 in6_setscope(&mld->mld_addr, ifp, NULL); 679 } 680 681 IN6_MULTI_LOCK(); 682 MLD_LOCK(); 683 684 /* 685 * Switch to MLDv1 host compatibility mode. 686 */ 687 mli = MLD_IFINFO(ifp); 688 KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp)); 689 mld_set_version(mli, MLD_VERSION_1); 690 691 timer = (ntohs(mld->mld_maxdelay) * PR_FASTHZ) / MLD_TIMER_SCALE; 692 if (timer == 0) 693 timer = 1; 694 695 IF_ADDR_RLOCK(ifp); 696 if (is_general_query) { 697 /* 698 * For each reporting group joined on this 699 * interface, kick the report timer. 700 */ 701 CTR2(KTR_MLD, "process v1 general query on ifp %p(%s)", 702 ifp, if_name(ifp)); 703 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 704 if (ifma->ifma_addr->sa_family != AF_INET6 || 705 ifma->ifma_protospec == NULL) 706 continue; 707 inm = (struct in6_multi *)ifma->ifma_protospec; 708 mld_v1_update_group(inm, timer); 709 } 710 } else { 711 /* 712 * MLDv1 Group-Specific Query. 713 * If this is a group-specific MLDv1 query, we need only 714 * look up the single group to process it. 715 */ 716 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 717 if (inm != NULL) { 718 CTR3(KTR_MLD, "process v1 query %s on ifp %p(%s)", 719 ip6_sprintf(ip6tbuf, &mld->mld_addr), 720 ifp, if_name(ifp)); 721 mld_v1_update_group(inm, timer); 722 } 723 /* XXX Clear embedded scope ID as userland won't expect it. */ 724 in6_clearscope(&mld->mld_addr); 725 } 726 727 IF_ADDR_RUNLOCK(ifp); 728 MLD_UNLOCK(); 729 IN6_MULTI_UNLOCK(); 730 731 return (0); 732 } 733 734 /* 735 * Update the report timer on a group in response to an MLDv1 query. 736 * 737 * If we are becoming the reporting member for this group, start the timer. 738 * If we already are the reporting member for this group, and timer is 739 * below the threshold, reset it. 740 * 741 * We may be updating the group for the first time since we switched 742 * to MLDv2. If we are, then we must clear any recorded source lists, 743 * and transition to REPORTING state; the group timer is overloaded 744 * for group and group-source query responses. 745 * 746 * Unlike MLDv2, the delay per group should be jittered 747 * to avoid bursts of MLDv1 reports. 748 */ 749 static void 750 mld_v1_update_group(struct in6_multi *inm, const int timer) 751 { 752 #ifdef KTR 753 char ip6tbuf[INET6_ADDRSTRLEN]; 754 #endif 755 756 CTR4(KTR_MLD, "%s: %s/%s timer=%d", __func__, 757 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 758 if_name(inm->in6m_ifp), timer); 759 760 IN6_MULTI_LOCK_ASSERT(); 761 762 switch (inm->in6m_state) { 763 case MLD_NOT_MEMBER: 764 case MLD_SILENT_MEMBER: 765 break; 766 case MLD_REPORTING_MEMBER: 767 if (inm->in6m_timer != 0 && 768 inm->in6m_timer <= timer) { 769 CTR1(KTR_MLD, "%s: REPORTING and timer running, " 770 "skipping.", __func__); 771 break; 772 } 773 /* FALLTHROUGH */ 774 case MLD_SG_QUERY_PENDING_MEMBER: 775 case MLD_G_QUERY_PENDING_MEMBER: 776 case MLD_IDLE_MEMBER: 777 case MLD_LAZY_MEMBER: 778 case MLD_AWAKENING_MEMBER: 779 CTR1(KTR_MLD, "%s: ->REPORTING", __func__); 780 inm->in6m_state = MLD_REPORTING_MEMBER; 781 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 782 V_current_state_timers_running6 = 1; 783 break; 784 case MLD_SLEEPING_MEMBER: 785 CTR1(KTR_MLD, "%s: ->AWAKENING", __func__); 786 inm->in6m_state = MLD_AWAKENING_MEMBER; 787 break; 788 case MLD_LEAVING_MEMBER: 789 break; 790 } 791 } 792 793 /* 794 * Process a received MLDv2 general, group-specific or 795 * group-and-source-specific query. 796 * 797 * Assumes that the query header has been pulled up to sizeof(mldv2_query). 798 * 799 * Return 0 if successful, otherwise an appropriate error code is returned. 800 */ 801 static int 802 mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 803 struct mbuf *m, const int off, const int icmp6len) 804 { 805 struct mld_ifsoftc *mli; 806 struct mldv2_query *mld; 807 struct in6_multi *inm; 808 uint32_t maxdelay, nsrc, qqi; 809 int is_general_query; 810 uint16_t timer; 811 uint8_t qrv; 812 #ifdef KTR 813 char ip6tbuf[INET6_ADDRSTRLEN]; 814 #endif 815 816 is_general_query = 0; 817 818 /* 819 * RFC3810 Section 6.2: MLD queries must originate from 820 * a router's link-local address. 821 */ 822 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 823 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 824 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 825 ifp, if_name(ifp)); 826 return (0); 827 } 828 829 CTR2(KTR_MLD, "input v2 query on ifp %p(%s)", ifp, if_name(ifp)); 830 831 mld = (struct mldv2_query *)(mtod(m, uint8_t *) + off); 832 833 maxdelay = ntohs(mld->mld_maxdelay); /* in 1/10ths of a second */ 834 if (maxdelay >= 32768) { 835 maxdelay = (MLD_MRC_MANT(maxdelay) | 0x1000) << 836 (MLD_MRC_EXP(maxdelay) + 3); 837 } 838 timer = (maxdelay * PR_FASTHZ) / MLD_TIMER_SCALE; 839 if (timer == 0) 840 timer = 1; 841 842 qrv = MLD_QRV(mld->mld_misc); 843 if (qrv < 2) { 844 CTR3(KTR_MLD, "%s: clamping qrv %d to %d", __func__, 845 qrv, MLD_RV_INIT); 846 qrv = MLD_RV_INIT; 847 } 848 849 qqi = mld->mld_qqi; 850 if (qqi >= 128) { 851 qqi = MLD_QQIC_MANT(mld->mld_qqi) << 852 (MLD_QQIC_EXP(mld->mld_qqi) + 3); 853 } 854 855 nsrc = ntohs(mld->mld_numsrc); 856 if (nsrc > MLD_MAX_GS_SOURCES) 857 return (EMSGSIZE); 858 if (icmp6len < sizeof(struct mldv2_query) + 859 (nsrc * sizeof(struct in6_addr))) 860 return (EMSGSIZE); 861 862 /* 863 * Do further input validation upfront to avoid resetting timers 864 * should we need to discard this query. 865 */ 866 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 867 /* 868 * A general query with a source list has undefined 869 * behaviour; discard it. 870 */ 871 if (nsrc > 0) 872 return (EINVAL); 873 is_general_query = 1; 874 } else { 875 /* 876 * Embed scope ID of receiving interface in MLD query for 877 * lookup whilst we don't hold other locks (due to KAME 878 * locking lameness). We own this mbuf chain just now. 879 */ 880 in6_setscope(&mld->mld_addr, ifp, NULL); 881 } 882 883 IN6_MULTI_LOCK(); 884 MLD_LOCK(); 885 886 mli = MLD_IFINFO(ifp); 887 KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp)); 888 889 /* 890 * Discard the v2 query if we're in Compatibility Mode. 891 * The RFC is pretty clear that hosts need to stay in MLDv1 mode 892 * until the Old Version Querier Present timer expires. 893 */ 894 if (mli->mli_version != MLD_VERSION_2) 895 goto out_locked; 896 897 mld_set_version(mli, MLD_VERSION_2); 898 mli->mli_rv = qrv; 899 mli->mli_qi = qqi; 900 mli->mli_qri = maxdelay; 901 902 CTR4(KTR_MLD, "%s: qrv %d qi %d maxdelay %d", __func__, qrv, qqi, 903 maxdelay); 904 905 if (is_general_query) { 906 /* 907 * MLDv2 General Query. 908 * 909 * Schedule a current-state report on this ifp for 910 * all groups, possibly containing source lists. 911 * 912 * If there is a pending General Query response 913 * scheduled earlier than the selected delay, do 914 * not schedule any other reports. 915 * Otherwise, reset the interface timer. 916 */ 917 CTR2(KTR_MLD, "process v2 general query on ifp %p(%s)", 918 ifp, if_name(ifp)); 919 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) { 920 mli->mli_v2_timer = MLD_RANDOM_DELAY(timer); 921 V_interface_timers_running6 = 1; 922 } 923 } else { 924 /* 925 * MLDv2 Group-specific or Group-and-source-specific Query. 926 * 927 * Group-source-specific queries are throttled on 928 * a per-group basis to defeat denial-of-service attempts. 929 * Queries for groups we are not a member of on this 930 * link are simply ignored. 931 */ 932 IF_ADDR_RLOCK(ifp); 933 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 934 if (inm == NULL) { 935 IF_ADDR_RUNLOCK(ifp); 936 goto out_locked; 937 } 938 if (nsrc > 0) { 939 if (!ratecheck(&inm->in6m_lastgsrtv, 940 &V_mld_gsrdelay)) { 941 CTR1(KTR_MLD, "%s: GS query throttled.", 942 __func__); 943 IF_ADDR_RUNLOCK(ifp); 944 goto out_locked; 945 } 946 } 947 CTR2(KTR_MLD, "process v2 group query on ifp %p(%s)", 948 ifp, if_name(ifp)); 949 /* 950 * If there is a pending General Query response 951 * scheduled sooner than the selected delay, no 952 * further report need be scheduled. 953 * Otherwise, prepare to respond to the 954 * group-specific or group-and-source query. 955 */ 956 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) 957 mld_v2_process_group_query(inm, mli, timer, m, off); 958 959 /* XXX Clear embedded scope ID as userland won't expect it. */ 960 in6_clearscope(&mld->mld_addr); 961 IF_ADDR_RUNLOCK(ifp); 962 } 963 964 out_locked: 965 MLD_UNLOCK(); 966 IN6_MULTI_UNLOCK(); 967 968 return (0); 969 } 970 971 /* 972 * Process a received MLDv2 group-specific or group-and-source-specific 973 * query. 974 * Return <0 if any error occurred. Currently this is ignored. 975 */ 976 static int 977 mld_v2_process_group_query(struct in6_multi *inm, struct mld_ifsoftc *mli, 978 int timer, struct mbuf *m0, const int off) 979 { 980 struct mldv2_query *mld; 981 int retval; 982 uint16_t nsrc; 983 984 IN6_MULTI_LOCK_ASSERT(); 985 MLD_LOCK_ASSERT(); 986 987 retval = 0; 988 mld = (struct mldv2_query *)(mtod(m0, uint8_t *) + off); 989 990 switch (inm->in6m_state) { 991 case MLD_NOT_MEMBER: 992 case MLD_SILENT_MEMBER: 993 case MLD_SLEEPING_MEMBER: 994 case MLD_LAZY_MEMBER: 995 case MLD_AWAKENING_MEMBER: 996 case MLD_IDLE_MEMBER: 997 case MLD_LEAVING_MEMBER: 998 return (retval); 999 break; 1000 case MLD_REPORTING_MEMBER: 1001 case MLD_G_QUERY_PENDING_MEMBER: 1002 case MLD_SG_QUERY_PENDING_MEMBER: 1003 break; 1004 } 1005 1006 nsrc = ntohs(mld->mld_numsrc); 1007 1008 /* 1009 * Deal with group-specific queries upfront. 1010 * If any group query is already pending, purge any recorded 1011 * source-list state if it exists, and schedule a query response 1012 * for this group-specific query. 1013 */ 1014 if (nsrc == 0) { 1015 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 1016 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) { 1017 in6m_clear_recorded(inm); 1018 timer = min(inm->in6m_timer, timer); 1019 } 1020 inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER; 1021 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1022 V_current_state_timers_running6 = 1; 1023 return (retval); 1024 } 1025 1026 /* 1027 * Deal with the case where a group-and-source-specific query has 1028 * been received but a group-specific query is already pending. 1029 */ 1030 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) { 1031 timer = min(inm->in6m_timer, timer); 1032 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1033 V_current_state_timers_running6 = 1; 1034 return (retval); 1035 } 1036 1037 /* 1038 * Finally, deal with the case where a group-and-source-specific 1039 * query has been received, where a response to a previous g-s-r 1040 * query exists, or none exists. 1041 * In this case, we need to parse the source-list which the Querier 1042 * has provided us with and check if we have any source list filter 1043 * entries at T1 for these sources. If we do not, there is no need 1044 * schedule a report and the query may be dropped. 1045 * If we do, we must record them and schedule a current-state 1046 * report for those sources. 1047 */ 1048 if (inm->in6m_nsrc > 0) { 1049 struct mbuf *m; 1050 uint8_t *sp; 1051 int i, nrecorded; 1052 int soff; 1053 1054 m = m0; 1055 soff = off + sizeof(struct mldv2_query); 1056 nrecorded = 0; 1057 for (i = 0; i < nsrc; i++) { 1058 sp = mtod(m, uint8_t *) + soff; 1059 retval = in6m_record_source(inm, 1060 (const struct in6_addr *)sp); 1061 if (retval < 0) 1062 break; 1063 nrecorded += retval; 1064 soff += sizeof(struct in6_addr); 1065 if (soff >= m->m_len) { 1066 soff = soff - m->m_len; 1067 m = m->m_next; 1068 if (m == NULL) 1069 break; 1070 } 1071 } 1072 if (nrecorded > 0) { 1073 CTR1(KTR_MLD, 1074 "%s: schedule response to SG query", __func__); 1075 inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER; 1076 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1077 V_current_state_timers_running6 = 1; 1078 } 1079 } 1080 1081 return (retval); 1082 } 1083 1084 /* 1085 * Process a received MLDv1 host membership report. 1086 * Assumes mld points to mld_hdr in pulled up mbuf chain. 1087 * 1088 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 1089 * mld_addr. This is OK as we own the mbuf chain. 1090 */ 1091 static int 1092 mld_v1_input_report(struct ifnet *ifp, const struct ip6_hdr *ip6, 1093 /*const*/ struct mld_hdr *mld) 1094 { 1095 struct in6_addr src, dst; 1096 struct in6_ifaddr *ia; 1097 struct in6_multi *inm; 1098 #ifdef KTR 1099 char ip6tbuf[INET6_ADDRSTRLEN]; 1100 #endif 1101 1102 if (!mld_v1enable) { 1103 CTR3(KTR_MLD, "ignore v1 report %s on ifp %p(%s)", 1104 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1105 ifp, if_name(ifp)); 1106 return (0); 1107 } 1108 1109 if (ifp->if_flags & IFF_LOOPBACK) 1110 return (0); 1111 1112 /* 1113 * MLDv1 reports must originate from a host's link-local address, 1114 * or the unspecified address (when booting). 1115 */ 1116 src = ip6->ip6_src; 1117 in6_clearscope(&src); 1118 if (!IN6_IS_SCOPE_LINKLOCAL(&src) && !IN6_IS_ADDR_UNSPECIFIED(&src)) { 1119 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 1120 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 1121 ifp, if_name(ifp)); 1122 return (EINVAL); 1123 } 1124 1125 /* 1126 * RFC2710 Section 4: MLDv1 reports must pertain to a multicast 1127 * group, and must be directed to the group itself. 1128 */ 1129 dst = ip6->ip6_dst; 1130 in6_clearscope(&dst); 1131 if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) || 1132 !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &dst)) { 1133 CTR3(KTR_MLD, "ignore v1 query dst %s on ifp %p(%s)", 1134 ip6_sprintf(ip6tbuf, &ip6->ip6_dst), 1135 ifp, if_name(ifp)); 1136 return (EINVAL); 1137 } 1138 1139 /* 1140 * Make sure we don't hear our own membership report, as fast 1141 * leave requires knowing that we are the only member of a 1142 * group. Assume we used the link-local address if available, 1143 * otherwise look for ::. 1144 * 1145 * XXX Note that scope ID comparison is needed for the address 1146 * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be 1147 * performed for the on-wire address. 1148 */ 1149 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1150 if ((ia && IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia))) || 1151 (ia == NULL && IN6_IS_ADDR_UNSPECIFIED(&src))) { 1152 if (ia != NULL) 1153 ifa_free(&ia->ia_ifa); 1154 return (0); 1155 } 1156 if (ia != NULL) 1157 ifa_free(&ia->ia_ifa); 1158 1159 CTR3(KTR_MLD, "process v1 report %s on ifp %p(%s)", 1160 ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, if_name(ifp)); 1161 1162 /* 1163 * Embed scope ID of receiving interface in MLD query for lookup 1164 * whilst we don't hold other locks (due to KAME locking lameness). 1165 */ 1166 if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) 1167 in6_setscope(&mld->mld_addr, ifp, NULL); 1168 1169 IN6_MULTI_LOCK(); 1170 MLD_LOCK(); 1171 IF_ADDR_RLOCK(ifp); 1172 1173 /* 1174 * MLDv1 report suppression. 1175 * If we are a member of this group, and our membership should be 1176 * reported, and our group timer is pending or about to be reset, 1177 * stop our group timer by transitioning to the 'lazy' state. 1178 */ 1179 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 1180 if (inm != NULL) { 1181 struct mld_ifsoftc *mli; 1182 1183 mli = inm->in6m_mli; 1184 KASSERT(mli != NULL, 1185 ("%s: no mli for ifp %p", __func__, ifp)); 1186 1187 /* 1188 * If we are in MLDv2 host mode, do not allow the 1189 * other host's MLDv1 report to suppress our reports. 1190 */ 1191 if (mli->mli_version == MLD_VERSION_2) 1192 goto out_locked; 1193 1194 inm->in6m_timer = 0; 1195 1196 switch (inm->in6m_state) { 1197 case MLD_NOT_MEMBER: 1198 case MLD_SILENT_MEMBER: 1199 case MLD_SLEEPING_MEMBER: 1200 break; 1201 case MLD_REPORTING_MEMBER: 1202 case MLD_IDLE_MEMBER: 1203 case MLD_AWAKENING_MEMBER: 1204 CTR3(KTR_MLD, 1205 "report suppressed for %s on ifp %p(%s)", 1206 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1207 ifp, if_name(ifp)); 1208 case MLD_LAZY_MEMBER: 1209 inm->in6m_state = MLD_LAZY_MEMBER; 1210 break; 1211 case MLD_G_QUERY_PENDING_MEMBER: 1212 case MLD_SG_QUERY_PENDING_MEMBER: 1213 case MLD_LEAVING_MEMBER: 1214 break; 1215 } 1216 } 1217 1218 out_locked: 1219 IF_ADDR_RUNLOCK(ifp); 1220 MLD_UNLOCK(); 1221 IN6_MULTI_UNLOCK(); 1222 1223 /* XXX Clear embedded scope ID as userland won't expect it. */ 1224 in6_clearscope(&mld->mld_addr); 1225 1226 return (0); 1227 } 1228 1229 /* 1230 * MLD input path. 1231 * 1232 * Assume query messages which fit in a single ICMPv6 message header 1233 * have been pulled up. 1234 * Assume that userland will want to see the message, even if it 1235 * otherwise fails kernel input validation; do not free it. 1236 * Pullup may however free the mbuf chain m if it fails. 1237 * 1238 * Return IPPROTO_DONE if we freed m. Otherwise, return 0. 1239 */ 1240 int 1241 mld_input(struct mbuf *m, int off, int icmp6len) 1242 { 1243 struct ifnet *ifp; 1244 struct ip6_hdr *ip6; 1245 struct mld_hdr *mld; 1246 int mldlen; 1247 1248 CTR3(KTR_MLD, "%s: called w/mbuf (%p,%d)", __func__, m, off); 1249 1250 ifp = m->m_pkthdr.rcvif; 1251 1252 ip6 = mtod(m, struct ip6_hdr *); 1253 1254 /* Pullup to appropriate size. */ 1255 mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off); 1256 if (mld->mld_type == MLD_LISTENER_QUERY && 1257 icmp6len >= sizeof(struct mldv2_query)) { 1258 mldlen = sizeof(struct mldv2_query); 1259 } else { 1260 mldlen = sizeof(struct mld_hdr); 1261 } 1262 IP6_EXTHDR_GET(mld, struct mld_hdr *, m, off, mldlen); 1263 if (mld == NULL) { 1264 ICMP6STAT_INC(icp6s_badlen); 1265 return (IPPROTO_DONE); 1266 } 1267 1268 /* 1269 * Userland needs to see all of this traffic for implementing 1270 * the endpoint discovery portion of multicast routing. 1271 */ 1272 switch (mld->mld_type) { 1273 case MLD_LISTENER_QUERY: 1274 icmp6_ifstat_inc(ifp, ifs6_in_mldquery); 1275 if (icmp6len == sizeof(struct mld_hdr)) { 1276 if (mld_v1_input_query(ifp, ip6, mld) != 0) 1277 return (0); 1278 } else if (icmp6len >= sizeof(struct mldv2_query)) { 1279 if (mld_v2_input_query(ifp, ip6, m, off, 1280 icmp6len) != 0) 1281 return (0); 1282 } 1283 break; 1284 case MLD_LISTENER_REPORT: 1285 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1286 if (mld_v1_input_report(ifp, ip6, mld) != 0) 1287 return (0); 1288 break; 1289 case MLDV2_LISTENER_REPORT: 1290 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1291 break; 1292 case MLD_LISTENER_DONE: 1293 icmp6_ifstat_inc(ifp, ifs6_in_mlddone); 1294 break; 1295 default: 1296 break; 1297 } 1298 1299 return (0); 1300 } 1301 1302 /* 1303 * Fast timeout handler (global). 1304 * VIMAGE: Timeout handlers are expected to service all vimages. 1305 */ 1306 void 1307 mld_fasttimo(void) 1308 { 1309 VNET_ITERATOR_DECL(vnet_iter); 1310 1311 VNET_LIST_RLOCK_NOSLEEP(); 1312 VNET_FOREACH(vnet_iter) { 1313 CURVNET_SET(vnet_iter); 1314 mld_fasttimo_vnet(); 1315 CURVNET_RESTORE(); 1316 } 1317 VNET_LIST_RUNLOCK_NOSLEEP(); 1318 } 1319 1320 /* 1321 * Fast timeout handler (per-vnet). 1322 * 1323 * VIMAGE: Assume caller has set up our curvnet. 1324 */ 1325 static void 1326 mld_fasttimo_vnet(void) 1327 { 1328 struct mbufq scq; /* State-change packets */ 1329 struct mbufq qrq; /* Query response packets */ 1330 struct ifnet *ifp; 1331 struct mld_ifsoftc *mli; 1332 struct ifmultiaddr *ifma; 1333 struct in6_multi *inm, *tinm; 1334 int uri_fasthz; 1335 1336 uri_fasthz = 0; 1337 1338 /* 1339 * Quick check to see if any work needs to be done, in order to 1340 * minimize the overhead of fasttimo processing. 1341 * SMPng: XXX Unlocked reads. 1342 */ 1343 if (!V_current_state_timers_running6 && 1344 !V_interface_timers_running6 && 1345 !V_state_change_timers_running6) 1346 return; 1347 1348 IN6_MULTI_LOCK(); 1349 MLD_LOCK(); 1350 1351 /* 1352 * MLDv2 General Query response timer processing. 1353 */ 1354 if (V_interface_timers_running6) { 1355 CTR1(KTR_MLD, "%s: interface timers running", __func__); 1356 1357 V_interface_timers_running6 = 0; 1358 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1359 if (mli->mli_v2_timer == 0) { 1360 /* Do nothing. */ 1361 } else if (--mli->mli_v2_timer == 0) { 1362 mld_v2_dispatch_general_query(mli); 1363 } else { 1364 V_interface_timers_running6 = 1; 1365 } 1366 } 1367 } 1368 1369 if (!V_current_state_timers_running6 && 1370 !V_state_change_timers_running6) 1371 goto out_locked; 1372 1373 V_current_state_timers_running6 = 0; 1374 V_state_change_timers_running6 = 0; 1375 1376 CTR1(KTR_MLD, "%s: state change timers running", __func__); 1377 1378 /* 1379 * MLD host report and state-change timer processing. 1380 * Note: Processing a v2 group timer may remove a node. 1381 */ 1382 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1383 ifp = mli->mli_ifp; 1384 1385 if (mli->mli_version == MLD_VERSION_2) { 1386 uri_fasthz = MLD_RANDOM_DELAY(mli->mli_uri * 1387 PR_FASTHZ); 1388 mbufq_init(&qrq, MLD_MAX_G_GS_PACKETS); 1389 mbufq_init(&scq, MLD_MAX_STATE_CHANGE_PACKETS); 1390 } 1391 1392 IF_ADDR_RLOCK(ifp); 1393 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1394 if (ifma->ifma_addr->sa_family != AF_INET6 || 1395 ifma->ifma_protospec == NULL) 1396 continue; 1397 inm = (struct in6_multi *)ifma->ifma_protospec; 1398 switch (mli->mli_version) { 1399 case MLD_VERSION_1: 1400 mld_v1_process_group_timer(mli, inm); 1401 break; 1402 case MLD_VERSION_2: 1403 mld_v2_process_group_timers(mli, &qrq, 1404 &scq, inm, uri_fasthz); 1405 break; 1406 } 1407 } 1408 IF_ADDR_RUNLOCK(ifp); 1409 1410 switch (mli->mli_version) { 1411 case MLD_VERSION_1: 1412 /* 1413 * Transmit reports for this lifecycle. This 1414 * is done while not holding IF_ADDR_LOCK 1415 * since this can call 1416 * in6ifa_ifpforlinklocal() which locks 1417 * IF_ADDR_LOCK internally as well as 1418 * ip6_output() to transmit a packet. 1419 */ 1420 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, 1421 in6m_nrele, tinm) { 1422 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, 1423 in6m_nrele); 1424 (void)mld_v1_transmit_report(inm, 1425 MLD_LISTENER_REPORT); 1426 } 1427 break; 1428 case MLD_VERSION_2: 1429 mld_dispatch_queue(&qrq, 0); 1430 mld_dispatch_queue(&scq, 0); 1431 1432 /* 1433 * Free the in_multi reference(s) for 1434 * this lifecycle. 1435 */ 1436 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, 1437 in6m_nrele, tinm) { 1438 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, 1439 in6m_nrele); 1440 in6m_release_locked(inm); 1441 } 1442 break; 1443 } 1444 } 1445 1446 out_locked: 1447 MLD_UNLOCK(); 1448 IN6_MULTI_UNLOCK(); 1449 } 1450 1451 /* 1452 * Update host report group timer. 1453 * Will update the global pending timer flags. 1454 */ 1455 static void 1456 mld_v1_process_group_timer(struct mld_ifsoftc *mli, struct in6_multi *inm) 1457 { 1458 int report_timer_expired; 1459 1460 IN6_MULTI_LOCK_ASSERT(); 1461 MLD_LOCK_ASSERT(); 1462 1463 if (inm->in6m_timer == 0) { 1464 report_timer_expired = 0; 1465 } else if (--inm->in6m_timer == 0) { 1466 report_timer_expired = 1; 1467 } else { 1468 V_current_state_timers_running6 = 1; 1469 return; 1470 } 1471 1472 switch (inm->in6m_state) { 1473 case MLD_NOT_MEMBER: 1474 case MLD_SILENT_MEMBER: 1475 case MLD_IDLE_MEMBER: 1476 case MLD_LAZY_MEMBER: 1477 case MLD_SLEEPING_MEMBER: 1478 case MLD_AWAKENING_MEMBER: 1479 break; 1480 case MLD_REPORTING_MEMBER: 1481 if (report_timer_expired) { 1482 inm->in6m_state = MLD_IDLE_MEMBER; 1483 SLIST_INSERT_HEAD(&mli->mli_relinmhead, inm, 1484 in6m_nrele); 1485 } 1486 break; 1487 case MLD_G_QUERY_PENDING_MEMBER: 1488 case MLD_SG_QUERY_PENDING_MEMBER: 1489 case MLD_LEAVING_MEMBER: 1490 break; 1491 } 1492 } 1493 1494 /* 1495 * Update a group's timers for MLDv2. 1496 * Will update the global pending timer flags. 1497 * Note: Unlocked read from mli. 1498 */ 1499 static void 1500 mld_v2_process_group_timers(struct mld_ifsoftc *mli, 1501 struct mbufq *qrq, struct mbufq *scq, 1502 struct in6_multi *inm, const int uri_fasthz) 1503 { 1504 int query_response_timer_expired; 1505 int state_change_retransmit_timer_expired; 1506 #ifdef KTR 1507 char ip6tbuf[INET6_ADDRSTRLEN]; 1508 #endif 1509 1510 IN6_MULTI_LOCK_ASSERT(); 1511 MLD_LOCK_ASSERT(); 1512 1513 query_response_timer_expired = 0; 1514 state_change_retransmit_timer_expired = 0; 1515 1516 /* 1517 * During a transition from compatibility mode back to MLDv2, 1518 * a group record in REPORTING state may still have its group 1519 * timer active. This is a no-op in this function; it is easier 1520 * to deal with it here than to complicate the slow-timeout path. 1521 */ 1522 if (inm->in6m_timer == 0) { 1523 query_response_timer_expired = 0; 1524 } else if (--inm->in6m_timer == 0) { 1525 query_response_timer_expired = 1; 1526 } else { 1527 V_current_state_timers_running6 = 1; 1528 } 1529 1530 if (inm->in6m_sctimer == 0) { 1531 state_change_retransmit_timer_expired = 0; 1532 } else if (--inm->in6m_sctimer == 0) { 1533 state_change_retransmit_timer_expired = 1; 1534 } else { 1535 V_state_change_timers_running6 = 1; 1536 } 1537 1538 /* We are in fasttimo, so be quick about it. */ 1539 if (!state_change_retransmit_timer_expired && 1540 !query_response_timer_expired) 1541 return; 1542 1543 switch (inm->in6m_state) { 1544 case MLD_NOT_MEMBER: 1545 case MLD_SILENT_MEMBER: 1546 case MLD_SLEEPING_MEMBER: 1547 case MLD_LAZY_MEMBER: 1548 case MLD_AWAKENING_MEMBER: 1549 case MLD_IDLE_MEMBER: 1550 break; 1551 case MLD_G_QUERY_PENDING_MEMBER: 1552 case MLD_SG_QUERY_PENDING_MEMBER: 1553 /* 1554 * Respond to a previously pending Group-Specific 1555 * or Group-and-Source-Specific query by enqueueing 1556 * the appropriate Current-State report for 1557 * immediate transmission. 1558 */ 1559 if (query_response_timer_expired) { 1560 int retval; 1561 1562 retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1, 1563 (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER), 1564 0); 1565 CTR2(KTR_MLD, "%s: enqueue record = %d", 1566 __func__, retval); 1567 inm->in6m_state = MLD_REPORTING_MEMBER; 1568 in6m_clear_recorded(inm); 1569 } 1570 /* FALLTHROUGH */ 1571 case MLD_REPORTING_MEMBER: 1572 case MLD_LEAVING_MEMBER: 1573 if (state_change_retransmit_timer_expired) { 1574 /* 1575 * State-change retransmission timer fired. 1576 * If there are any further pending retransmissions, 1577 * set the global pending state-change flag, and 1578 * reset the timer. 1579 */ 1580 if (--inm->in6m_scrv > 0) { 1581 inm->in6m_sctimer = uri_fasthz; 1582 V_state_change_timers_running6 = 1; 1583 } 1584 /* 1585 * Retransmit the previously computed state-change 1586 * report. If there are no further pending 1587 * retransmissions, the mbuf queue will be consumed. 1588 * Update T0 state to T1 as we have now sent 1589 * a state-change. 1590 */ 1591 (void)mld_v2_merge_state_changes(inm, scq); 1592 1593 in6m_commit(inm); 1594 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 1595 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1596 if_name(inm->in6m_ifp)); 1597 1598 /* 1599 * If we are leaving the group for good, make sure 1600 * we release MLD's reference to it. 1601 * This release must be deferred using a SLIST, 1602 * as we are called from a loop which traverses 1603 * the in_ifmultiaddr TAILQ. 1604 */ 1605 if (inm->in6m_state == MLD_LEAVING_MEMBER && 1606 inm->in6m_scrv == 0) { 1607 inm->in6m_state = MLD_NOT_MEMBER; 1608 SLIST_INSERT_HEAD(&mli->mli_relinmhead, 1609 inm, in6m_nrele); 1610 } 1611 } 1612 break; 1613 } 1614 } 1615 1616 /* 1617 * Switch to a different version on the given interface, 1618 * as per Section 9.12. 1619 */ 1620 static void 1621 mld_set_version(struct mld_ifsoftc *mli, const int version) 1622 { 1623 int old_version_timer; 1624 1625 MLD_LOCK_ASSERT(); 1626 1627 CTR4(KTR_MLD, "%s: switching to v%d on ifp %p(%s)", __func__, 1628 version, mli->mli_ifp, if_name(mli->mli_ifp)); 1629 1630 if (version == MLD_VERSION_1) { 1631 /* 1632 * Compute the "Older Version Querier Present" timer as per 1633 * Section 9.12. 1634 */ 1635 old_version_timer = (mli->mli_rv * mli->mli_qi) + mli->mli_qri; 1636 old_version_timer *= PR_SLOWHZ; 1637 mli->mli_v1_timer = old_version_timer; 1638 } 1639 1640 if (mli->mli_v1_timer > 0 && mli->mli_version != MLD_VERSION_1) { 1641 mli->mli_version = MLD_VERSION_1; 1642 mld_v2_cancel_link_timers(mli); 1643 } 1644 } 1645 1646 /* 1647 * Cancel pending MLDv2 timers for the given link and all groups 1648 * joined on it; state-change, general-query, and group-query timers. 1649 */ 1650 static void 1651 mld_v2_cancel_link_timers(struct mld_ifsoftc *mli) 1652 { 1653 struct ifmultiaddr *ifma; 1654 struct ifnet *ifp; 1655 struct in6_multi *inm, *tinm; 1656 1657 CTR3(KTR_MLD, "%s: cancel v2 timers on ifp %p(%s)", __func__, 1658 mli->mli_ifp, if_name(mli->mli_ifp)); 1659 1660 IN6_MULTI_LOCK_ASSERT(); 1661 MLD_LOCK_ASSERT(); 1662 1663 /* 1664 * Fast-track this potentially expensive operation 1665 * by checking all the global 'timer pending' flags. 1666 */ 1667 if (!V_interface_timers_running6 && 1668 !V_state_change_timers_running6 && 1669 !V_current_state_timers_running6) 1670 return; 1671 1672 mli->mli_v2_timer = 0; 1673 1674 ifp = mli->mli_ifp; 1675 1676 IF_ADDR_RLOCK(ifp); 1677 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1678 if (ifma->ifma_addr->sa_family != AF_INET6) 1679 continue; 1680 inm = (struct in6_multi *)ifma->ifma_protospec; 1681 switch (inm->in6m_state) { 1682 case MLD_NOT_MEMBER: 1683 case MLD_SILENT_MEMBER: 1684 case MLD_IDLE_MEMBER: 1685 case MLD_LAZY_MEMBER: 1686 case MLD_SLEEPING_MEMBER: 1687 case MLD_AWAKENING_MEMBER: 1688 break; 1689 case MLD_LEAVING_MEMBER: 1690 /* 1691 * If we are leaving the group and switching 1692 * version, we need to release the final 1693 * reference held for issuing the INCLUDE {}. 1694 */ 1695 SLIST_INSERT_HEAD(&mli->mli_relinmhead, inm, 1696 in6m_nrele); 1697 /* FALLTHROUGH */ 1698 case MLD_G_QUERY_PENDING_MEMBER: 1699 case MLD_SG_QUERY_PENDING_MEMBER: 1700 in6m_clear_recorded(inm); 1701 /* FALLTHROUGH */ 1702 case MLD_REPORTING_MEMBER: 1703 inm->in6m_sctimer = 0; 1704 inm->in6m_timer = 0; 1705 inm->in6m_state = MLD_REPORTING_MEMBER; 1706 /* 1707 * Free any pending MLDv2 state-change records. 1708 */ 1709 mbufq_drain(&inm->in6m_scq); 1710 break; 1711 } 1712 } 1713 IF_ADDR_RUNLOCK(ifp); 1714 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele, tinm) { 1715 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele); 1716 in6m_release_locked(inm); 1717 } 1718 } 1719 1720 /* 1721 * Global slowtimo handler. 1722 * VIMAGE: Timeout handlers are expected to service all vimages. 1723 */ 1724 void 1725 mld_slowtimo(void) 1726 { 1727 VNET_ITERATOR_DECL(vnet_iter); 1728 1729 VNET_LIST_RLOCK_NOSLEEP(); 1730 VNET_FOREACH(vnet_iter) { 1731 CURVNET_SET(vnet_iter); 1732 mld_slowtimo_vnet(); 1733 CURVNET_RESTORE(); 1734 } 1735 VNET_LIST_RUNLOCK_NOSLEEP(); 1736 } 1737 1738 /* 1739 * Per-vnet slowtimo handler. 1740 */ 1741 static void 1742 mld_slowtimo_vnet(void) 1743 { 1744 struct mld_ifsoftc *mli; 1745 1746 MLD_LOCK(); 1747 1748 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1749 mld_v1_process_querier_timers(mli); 1750 } 1751 1752 MLD_UNLOCK(); 1753 } 1754 1755 /* 1756 * Update the Older Version Querier Present timers for a link. 1757 * See Section 9.12 of RFC 3810. 1758 */ 1759 static void 1760 mld_v1_process_querier_timers(struct mld_ifsoftc *mli) 1761 { 1762 1763 MLD_LOCK_ASSERT(); 1764 1765 if (mli->mli_version != MLD_VERSION_2 && --mli->mli_v1_timer == 0) { 1766 /* 1767 * MLDv1 Querier Present timer expired; revert to MLDv2. 1768 */ 1769 CTR5(KTR_MLD, 1770 "%s: transition from v%d -> v%d on %p(%s)", 1771 __func__, mli->mli_version, MLD_VERSION_2, 1772 mli->mli_ifp, if_name(mli->mli_ifp)); 1773 mli->mli_version = MLD_VERSION_2; 1774 } 1775 } 1776 1777 /* 1778 * Transmit an MLDv1 report immediately. 1779 */ 1780 static int 1781 mld_v1_transmit_report(struct in6_multi *in6m, const int type) 1782 { 1783 struct ifnet *ifp; 1784 struct in6_ifaddr *ia; 1785 struct ip6_hdr *ip6; 1786 struct mbuf *mh, *md; 1787 struct mld_hdr *mld; 1788 1789 IN6_MULTI_LOCK_ASSERT(); 1790 MLD_LOCK_ASSERT(); 1791 1792 ifp = in6m->in6m_ifp; 1793 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1794 /* ia may be NULL if link-local address is tentative. */ 1795 1796 mh = m_gethdr(M_NOWAIT, MT_DATA); 1797 if (mh == NULL) { 1798 if (ia != NULL) 1799 ifa_free(&ia->ia_ifa); 1800 return (ENOMEM); 1801 } 1802 md = m_get(M_NOWAIT, MT_DATA); 1803 if (md == NULL) { 1804 m_free(mh); 1805 if (ia != NULL) 1806 ifa_free(&ia->ia_ifa); 1807 return (ENOMEM); 1808 } 1809 mh->m_next = md; 1810 1811 /* 1812 * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so 1813 * that ether_output() does not need to allocate another mbuf 1814 * for the header in the most common case. 1815 */ 1816 M_ALIGN(mh, sizeof(struct ip6_hdr)); 1817 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr); 1818 mh->m_len = sizeof(struct ip6_hdr); 1819 1820 ip6 = mtod(mh, struct ip6_hdr *); 1821 ip6->ip6_flow = 0; 1822 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 1823 ip6->ip6_vfc |= IPV6_VERSION; 1824 ip6->ip6_nxt = IPPROTO_ICMPV6; 1825 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 1826 ip6->ip6_dst = in6m->in6m_addr; 1827 1828 md->m_len = sizeof(struct mld_hdr); 1829 mld = mtod(md, struct mld_hdr *); 1830 mld->mld_type = type; 1831 mld->mld_code = 0; 1832 mld->mld_cksum = 0; 1833 mld->mld_maxdelay = 0; 1834 mld->mld_reserved = 0; 1835 mld->mld_addr = in6m->in6m_addr; 1836 in6_clearscope(&mld->mld_addr); 1837 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 1838 sizeof(struct ip6_hdr), sizeof(struct mld_hdr)); 1839 1840 mld_save_context(mh, ifp); 1841 mh->m_flags |= M_MLDV1; 1842 1843 mld_dispatch_packet(mh); 1844 1845 if (ia != NULL) 1846 ifa_free(&ia->ia_ifa); 1847 return (0); 1848 } 1849 1850 /* 1851 * Process a state change from the upper layer for the given IPv6 group. 1852 * 1853 * Each socket holds a reference on the in_multi in its own ip_moptions. 1854 * The socket layer will have made the necessary updates to.the group 1855 * state, it is now up to MLD to issue a state change report if there 1856 * has been any change between T0 (when the last state-change was issued) 1857 * and T1 (now). 1858 * 1859 * We use the MLDv2 state machine at group level. The MLd module 1860 * however makes the decision as to which MLD protocol version to speak. 1861 * A state change *from* INCLUDE {} always means an initial join. 1862 * A state change *to* INCLUDE {} always means a final leave. 1863 * 1864 * If delay is non-zero, and the state change is an initial multicast 1865 * join, the state change report will be delayed by 'delay' ticks 1866 * in units of PR_FASTHZ if MLDv1 is active on the link; otherwise 1867 * the initial MLDv2 state change report will be delayed by whichever 1868 * is sooner, a pending state-change timer or delay itself. 1869 * 1870 * VIMAGE: curvnet should have been set by caller, as this routine 1871 * is called from the socket option handlers. 1872 */ 1873 int 1874 mld_change_state(struct in6_multi *inm, const int delay) 1875 { 1876 struct mld_ifsoftc *mli; 1877 struct ifnet *ifp; 1878 int error; 1879 1880 IN6_MULTI_LOCK_ASSERT(); 1881 1882 error = 0; 1883 1884 /* 1885 * Try to detect if the upper layer just asked us to change state 1886 * for an interface which has now gone away. 1887 */ 1888 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); 1889 ifp = inm->in6m_ifma->ifma_ifp; 1890 if (ifp != NULL) { 1891 /* 1892 * Sanity check that netinet6's notion of ifp is the 1893 * same as net's. 1894 */ 1895 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); 1896 } 1897 1898 MLD_LOCK(); 1899 1900 mli = MLD_IFINFO(ifp); 1901 KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp)); 1902 1903 /* 1904 * If we detect a state transition to or from MCAST_UNDEFINED 1905 * for this group, then we are starting or finishing an MLD 1906 * life cycle for this group. 1907 */ 1908 if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) { 1909 CTR3(KTR_MLD, "%s: inm transition %d -> %d", __func__, 1910 inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode); 1911 if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) { 1912 CTR1(KTR_MLD, "%s: initial join", __func__); 1913 error = mld_initial_join(inm, mli, delay); 1914 goto out_locked; 1915 } else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) { 1916 CTR1(KTR_MLD, "%s: final leave", __func__); 1917 mld_final_leave(inm, mli); 1918 goto out_locked; 1919 } 1920 } else { 1921 CTR1(KTR_MLD, "%s: filter set change", __func__); 1922 } 1923 1924 error = mld_handle_state_change(inm, mli); 1925 1926 out_locked: 1927 MLD_UNLOCK(); 1928 return (error); 1929 } 1930 1931 /* 1932 * Perform the initial join for an MLD group. 1933 * 1934 * When joining a group: 1935 * If the group should have its MLD traffic suppressed, do nothing. 1936 * MLDv1 starts sending MLDv1 host membership reports. 1937 * MLDv2 will schedule an MLDv2 state-change report containing the 1938 * initial state of the membership. 1939 * 1940 * If the delay argument is non-zero, then we must delay sending the 1941 * initial state change for delay ticks (in units of PR_FASTHZ). 1942 */ 1943 static int 1944 mld_initial_join(struct in6_multi *inm, struct mld_ifsoftc *mli, 1945 const int delay) 1946 { 1947 struct ifnet *ifp; 1948 struct mbufq *mq; 1949 int error, retval, syncstates; 1950 int odelay; 1951 #ifdef KTR 1952 char ip6tbuf[INET6_ADDRSTRLEN]; 1953 #endif 1954 1955 CTR4(KTR_MLD, "%s: initial join %s on ifp %p(%s)", 1956 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1957 inm->in6m_ifp, if_name(inm->in6m_ifp)); 1958 1959 error = 0; 1960 syncstates = 1; 1961 1962 ifp = inm->in6m_ifp; 1963 1964 IN6_MULTI_LOCK_ASSERT(); 1965 MLD_LOCK_ASSERT(); 1966 1967 KASSERT(mli && mli->mli_ifp == ifp, ("%s: inconsistent ifp", __func__)); 1968 1969 /* 1970 * Groups joined on loopback or marked as 'not reported', 1971 * enter the MLD_SILENT_MEMBER state and 1972 * are never reported in any protocol exchanges. 1973 * All other groups enter the appropriate state machine 1974 * for the version in use on this link. 1975 * A link marked as MLIF_SILENT causes MLD to be completely 1976 * disabled for the link. 1977 */ 1978 if ((ifp->if_flags & IFF_LOOPBACK) || 1979 (mli->mli_flags & MLIF_SILENT) || 1980 !mld_is_addr_reported(&inm->in6m_addr)) { 1981 CTR1(KTR_MLD, 1982 "%s: not kicking state machine for silent group", __func__); 1983 inm->in6m_state = MLD_SILENT_MEMBER; 1984 inm->in6m_timer = 0; 1985 } else { 1986 /* 1987 * Deal with overlapping in_multi lifecycle. 1988 * If this group was LEAVING, then make sure 1989 * we drop the reference we picked up to keep the 1990 * group around for the final INCLUDE {} enqueue. 1991 */ 1992 if (mli->mli_version == MLD_VERSION_2 && 1993 inm->in6m_state == MLD_LEAVING_MEMBER) 1994 in6m_release_locked(inm); 1995 1996 inm->in6m_state = MLD_REPORTING_MEMBER; 1997 1998 switch (mli->mli_version) { 1999 case MLD_VERSION_1: 2000 /* 2001 * If a delay was provided, only use it if 2002 * it is greater than the delay normally 2003 * used for an MLDv1 state change report, 2004 * and delay sending the initial MLDv1 report 2005 * by not transitioning to the IDLE state. 2006 */ 2007 odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI * PR_FASTHZ); 2008 if (delay) { 2009 inm->in6m_timer = max(delay, odelay); 2010 V_current_state_timers_running6 = 1; 2011 } else { 2012 inm->in6m_state = MLD_IDLE_MEMBER; 2013 error = mld_v1_transmit_report(inm, 2014 MLD_LISTENER_REPORT); 2015 if (error == 0) { 2016 inm->in6m_timer = odelay; 2017 V_current_state_timers_running6 = 1; 2018 } 2019 } 2020 break; 2021 2022 case MLD_VERSION_2: 2023 /* 2024 * Defer update of T0 to T1, until the first copy 2025 * of the state change has been transmitted. 2026 */ 2027 syncstates = 0; 2028 2029 /* 2030 * Immediately enqueue a State-Change Report for 2031 * this interface, freeing any previous reports. 2032 * Don't kick the timers if there is nothing to do, 2033 * or if an error occurred. 2034 */ 2035 mq = &inm->in6m_scq; 2036 mbufq_drain(mq); 2037 retval = mld_v2_enqueue_group_record(mq, inm, 1, 2038 0, 0, (mli->mli_flags & MLIF_USEALLOW)); 2039 CTR2(KTR_MLD, "%s: enqueue record = %d", 2040 __func__, retval); 2041 if (retval <= 0) { 2042 error = retval * -1; 2043 break; 2044 } 2045 2046 /* 2047 * Schedule transmission of pending state-change 2048 * report up to RV times for this link. The timer 2049 * will fire at the next mld_fasttimo (~200ms), 2050 * giving us an opportunity to merge the reports. 2051 * 2052 * If a delay was provided to this function, only 2053 * use this delay if sooner than the existing one. 2054 */ 2055 KASSERT(mli->mli_rv > 1, 2056 ("%s: invalid robustness %d", __func__, 2057 mli->mli_rv)); 2058 inm->in6m_scrv = mli->mli_rv; 2059 if (delay) { 2060 if (inm->in6m_sctimer > 1) { 2061 inm->in6m_sctimer = 2062 min(inm->in6m_sctimer, delay); 2063 } else 2064 inm->in6m_sctimer = delay; 2065 } else 2066 inm->in6m_sctimer = 1; 2067 V_state_change_timers_running6 = 1; 2068 2069 error = 0; 2070 break; 2071 } 2072 } 2073 2074 /* 2075 * Only update the T0 state if state change is atomic, 2076 * i.e. we don't need to wait for a timer to fire before we 2077 * can consider the state change to have been communicated. 2078 */ 2079 if (syncstates) { 2080 in6m_commit(inm); 2081 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2082 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2083 if_name(inm->in6m_ifp)); 2084 } 2085 2086 return (error); 2087 } 2088 2089 /* 2090 * Issue an intermediate state change during the life-cycle. 2091 */ 2092 static int 2093 mld_handle_state_change(struct in6_multi *inm, struct mld_ifsoftc *mli) 2094 { 2095 struct ifnet *ifp; 2096 int retval; 2097 #ifdef KTR 2098 char ip6tbuf[INET6_ADDRSTRLEN]; 2099 #endif 2100 2101 CTR4(KTR_MLD, "%s: state change for %s on ifp %p(%s)", 2102 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2103 inm->in6m_ifp, if_name(inm->in6m_ifp)); 2104 2105 ifp = inm->in6m_ifp; 2106 2107 IN6_MULTI_LOCK_ASSERT(); 2108 MLD_LOCK_ASSERT(); 2109 2110 KASSERT(mli && mli->mli_ifp == ifp, 2111 ("%s: inconsistent ifp", __func__)); 2112 2113 if ((ifp->if_flags & IFF_LOOPBACK) || 2114 (mli->mli_flags & MLIF_SILENT) || 2115 !mld_is_addr_reported(&inm->in6m_addr) || 2116 (mli->mli_version != MLD_VERSION_2)) { 2117 if (!mld_is_addr_reported(&inm->in6m_addr)) { 2118 CTR1(KTR_MLD, 2119 "%s: not kicking state machine for silent group", __func__); 2120 } 2121 CTR1(KTR_MLD, "%s: nothing to do", __func__); 2122 in6m_commit(inm); 2123 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2124 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2125 if_name(inm->in6m_ifp)); 2126 return (0); 2127 } 2128 2129 mbufq_drain(&inm->in6m_scq); 2130 2131 retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0, 2132 (mli->mli_flags & MLIF_USEALLOW)); 2133 CTR2(KTR_MLD, "%s: enqueue record = %d", __func__, retval); 2134 if (retval <= 0) 2135 return (-retval); 2136 2137 /* 2138 * If record(s) were enqueued, start the state-change 2139 * report timer for this group. 2140 */ 2141 inm->in6m_scrv = mli->mli_rv; 2142 inm->in6m_sctimer = 1; 2143 V_state_change_timers_running6 = 1; 2144 2145 return (0); 2146 } 2147 2148 /* 2149 * Perform the final leave for a multicast address. 2150 * 2151 * When leaving a group: 2152 * MLDv1 sends a DONE message, if and only if we are the reporter. 2153 * MLDv2 enqueues a state-change report containing a transition 2154 * to INCLUDE {} for immediate transmission. 2155 */ 2156 static void 2157 mld_final_leave(struct in6_multi *inm, struct mld_ifsoftc *mli) 2158 { 2159 int syncstates; 2160 #ifdef KTR 2161 char ip6tbuf[INET6_ADDRSTRLEN]; 2162 #endif 2163 2164 syncstates = 1; 2165 2166 CTR4(KTR_MLD, "%s: final leave %s on ifp %p(%s)", 2167 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2168 inm->in6m_ifp, if_name(inm->in6m_ifp)); 2169 2170 IN6_MULTI_LOCK_ASSERT(); 2171 MLD_LOCK_ASSERT(); 2172 2173 switch (inm->in6m_state) { 2174 case MLD_NOT_MEMBER: 2175 case MLD_SILENT_MEMBER: 2176 case MLD_LEAVING_MEMBER: 2177 /* Already leaving or left; do nothing. */ 2178 CTR1(KTR_MLD, 2179 "%s: not kicking state machine for silent group", __func__); 2180 break; 2181 case MLD_REPORTING_MEMBER: 2182 case MLD_IDLE_MEMBER: 2183 case MLD_G_QUERY_PENDING_MEMBER: 2184 case MLD_SG_QUERY_PENDING_MEMBER: 2185 if (mli->mli_version == MLD_VERSION_1) { 2186 #ifdef INVARIANTS 2187 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 2188 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) 2189 panic("%s: MLDv2 state reached, not MLDv2 mode", 2190 __func__); 2191 #endif 2192 mld_v1_transmit_report(inm, MLD_LISTENER_DONE); 2193 inm->in6m_state = MLD_NOT_MEMBER; 2194 V_current_state_timers_running6 = 1; 2195 } else if (mli->mli_version == MLD_VERSION_2) { 2196 /* 2197 * Stop group timer and all pending reports. 2198 * Immediately enqueue a state-change report 2199 * TO_IN {} to be sent on the next fast timeout, 2200 * giving us an opportunity to merge reports. 2201 */ 2202 mbufq_drain(&inm->in6m_scq); 2203 inm->in6m_timer = 0; 2204 inm->in6m_scrv = mli->mli_rv; 2205 CTR4(KTR_MLD, "%s: Leaving %s/%s with %d " 2206 "pending retransmissions.", __func__, 2207 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2208 if_name(inm->in6m_ifp), inm->in6m_scrv); 2209 if (inm->in6m_scrv == 0) { 2210 inm->in6m_state = MLD_NOT_MEMBER; 2211 inm->in6m_sctimer = 0; 2212 } else { 2213 int retval; 2214 2215 in6m_acquire_locked(inm); 2216 2217 retval = mld_v2_enqueue_group_record( 2218 &inm->in6m_scq, inm, 1, 0, 0, 2219 (mli->mli_flags & MLIF_USEALLOW)); 2220 KASSERT(retval != 0, 2221 ("%s: enqueue record = %d", __func__, 2222 retval)); 2223 2224 inm->in6m_state = MLD_LEAVING_MEMBER; 2225 inm->in6m_sctimer = 1; 2226 V_state_change_timers_running6 = 1; 2227 syncstates = 0; 2228 } 2229 break; 2230 } 2231 break; 2232 case MLD_LAZY_MEMBER: 2233 case MLD_SLEEPING_MEMBER: 2234 case MLD_AWAKENING_MEMBER: 2235 /* Our reports are suppressed; do nothing. */ 2236 break; 2237 } 2238 2239 if (syncstates) { 2240 in6m_commit(inm); 2241 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2242 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2243 if_name(inm->in6m_ifp)); 2244 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 2245 CTR3(KTR_MLD, "%s: T1 now MCAST_UNDEFINED for %p/%s", 2246 __func__, &inm->in6m_addr, if_name(inm->in6m_ifp)); 2247 } 2248 } 2249 2250 /* 2251 * Enqueue an MLDv2 group record to the given output queue. 2252 * 2253 * If is_state_change is zero, a current-state record is appended. 2254 * If is_state_change is non-zero, a state-change report is appended. 2255 * 2256 * If is_group_query is non-zero, an mbuf packet chain is allocated. 2257 * If is_group_query is zero, and if there is a packet with free space 2258 * at the tail of the queue, it will be appended to providing there 2259 * is enough free space. 2260 * Otherwise a new mbuf packet chain is allocated. 2261 * 2262 * If is_source_query is non-zero, each source is checked to see if 2263 * it was recorded for a Group-Source query, and will be omitted if 2264 * it is not both in-mode and recorded. 2265 * 2266 * If use_block_allow is non-zero, state change reports for initial join 2267 * and final leave, on an inclusive mode group with a source list, will be 2268 * rewritten to use the ALLOW_NEW and BLOCK_OLD record types, respectively. 2269 * 2270 * The function will attempt to allocate leading space in the packet 2271 * for the IPv6+ICMP headers to be prepended without fragmenting the chain. 2272 * 2273 * If successful the size of all data appended to the queue is returned, 2274 * otherwise an error code less than zero is returned, or zero if 2275 * no record(s) were appended. 2276 */ 2277 static int 2278 mld_v2_enqueue_group_record(struct mbufq *mq, struct in6_multi *inm, 2279 const int is_state_change, const int is_group_query, 2280 const int is_source_query, const int use_block_allow) 2281 { 2282 struct mldv2_record mr; 2283 struct mldv2_record *pmr; 2284 struct ifnet *ifp; 2285 struct ip6_msource *ims, *nims; 2286 struct mbuf *m0, *m, *md; 2287 int error, is_filter_list_change; 2288 int minrec0len, m0srcs, msrcs, nbytes, off; 2289 int record_has_sources; 2290 int now; 2291 int type; 2292 uint8_t mode; 2293 #ifdef KTR 2294 char ip6tbuf[INET6_ADDRSTRLEN]; 2295 #endif 2296 2297 IN6_MULTI_LOCK_ASSERT(); 2298 2299 error = 0; 2300 ifp = inm->in6m_ifp; 2301 is_filter_list_change = 0; 2302 m = NULL; 2303 m0 = NULL; 2304 m0srcs = 0; 2305 msrcs = 0; 2306 nbytes = 0; 2307 nims = NULL; 2308 record_has_sources = 1; 2309 pmr = NULL; 2310 type = MLD_DO_NOTHING; 2311 mode = inm->in6m_st[1].iss_fmode; 2312 2313 /* 2314 * If we did not transition out of ASM mode during t0->t1, 2315 * and there are no source nodes to process, we can skip 2316 * the generation of source records. 2317 */ 2318 if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 && 2319 inm->in6m_nsrc == 0) 2320 record_has_sources = 0; 2321 2322 if (is_state_change) { 2323 /* 2324 * Queue a state change record. 2325 * If the mode did not change, and there are non-ASM 2326 * listeners or source filters present, 2327 * we potentially need to issue two records for the group. 2328 * If there are ASM listeners, and there was no filter 2329 * mode transition of any kind, do nothing. 2330 * 2331 * If we are transitioning to MCAST_UNDEFINED, we need 2332 * not send any sources. A transition to/from this state is 2333 * considered inclusive with some special treatment. 2334 * 2335 * If we are rewriting initial joins/leaves to use 2336 * ALLOW/BLOCK, and the group's membership is inclusive, 2337 * we need to send sources in all cases. 2338 */ 2339 if (mode != inm->in6m_st[0].iss_fmode) { 2340 if (mode == MCAST_EXCLUDE) { 2341 CTR1(KTR_MLD, "%s: change to EXCLUDE", 2342 __func__); 2343 type = MLD_CHANGE_TO_EXCLUDE_MODE; 2344 } else { 2345 CTR1(KTR_MLD, "%s: change to INCLUDE", 2346 __func__); 2347 if (use_block_allow) { 2348 /* 2349 * XXX 2350 * Here we're interested in state 2351 * edges either direction between 2352 * MCAST_UNDEFINED and MCAST_INCLUDE. 2353 * Perhaps we should just check 2354 * the group state, rather than 2355 * the filter mode. 2356 */ 2357 if (mode == MCAST_UNDEFINED) { 2358 type = MLD_BLOCK_OLD_SOURCES; 2359 } else { 2360 type = MLD_ALLOW_NEW_SOURCES; 2361 } 2362 } else { 2363 type = MLD_CHANGE_TO_INCLUDE_MODE; 2364 if (mode == MCAST_UNDEFINED) 2365 record_has_sources = 0; 2366 } 2367 } 2368 } else { 2369 if (record_has_sources) { 2370 is_filter_list_change = 1; 2371 } else { 2372 type = MLD_DO_NOTHING; 2373 } 2374 } 2375 } else { 2376 /* 2377 * Queue a current state record. 2378 */ 2379 if (mode == MCAST_EXCLUDE) { 2380 type = MLD_MODE_IS_EXCLUDE; 2381 } else if (mode == MCAST_INCLUDE) { 2382 type = MLD_MODE_IS_INCLUDE; 2383 KASSERT(inm->in6m_st[1].iss_asm == 0, 2384 ("%s: inm %p is INCLUDE but ASM count is %d", 2385 __func__, inm, inm->in6m_st[1].iss_asm)); 2386 } 2387 } 2388 2389 /* 2390 * Generate the filter list changes using a separate function. 2391 */ 2392 if (is_filter_list_change) 2393 return (mld_v2_enqueue_filter_change(mq, inm)); 2394 2395 if (type == MLD_DO_NOTHING) { 2396 CTR3(KTR_MLD, "%s: nothing to do for %s/%s", 2397 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2398 if_name(inm->in6m_ifp)); 2399 return (0); 2400 } 2401 2402 /* 2403 * If any sources are present, we must be able to fit at least 2404 * one in the trailing space of the tail packet's mbuf, 2405 * ideally more. 2406 */ 2407 minrec0len = sizeof(struct mldv2_record); 2408 if (record_has_sources) 2409 minrec0len += sizeof(struct in6_addr); 2410 2411 CTR4(KTR_MLD, "%s: queueing %s for %s/%s", __func__, 2412 mld_rec_type_to_str(type), 2413 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2414 if_name(inm->in6m_ifp)); 2415 2416 /* 2417 * Check if we have a packet in the tail of the queue for this 2418 * group into which the first group record for this group will fit. 2419 * Otherwise allocate a new packet. 2420 * Always allocate leading space for IP6+RA+ICMPV6+REPORT. 2421 * Note: Group records for G/GSR query responses MUST be sent 2422 * in their own packet. 2423 */ 2424 m0 = mbufq_last(mq); 2425 if (!is_group_query && 2426 m0 != NULL && 2427 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) && 2428 (m0->m_pkthdr.len + minrec0len) < 2429 (ifp->if_mtu - MLD_MTUSPACE)) { 2430 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2431 sizeof(struct mldv2_record)) / 2432 sizeof(struct in6_addr); 2433 m = m0; 2434 CTR1(KTR_MLD, "%s: use existing packet", __func__); 2435 } else { 2436 if (mbufq_full(mq)) { 2437 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2438 return (-ENOMEM); 2439 } 2440 m = NULL; 2441 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2442 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2443 if (!is_state_change && !is_group_query) 2444 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2445 if (m == NULL) 2446 m = m_gethdr(M_NOWAIT, MT_DATA); 2447 if (m == NULL) 2448 return (-ENOMEM); 2449 2450 mld_save_context(m, ifp); 2451 2452 CTR1(KTR_MLD, "%s: allocated first packet", __func__); 2453 } 2454 2455 /* 2456 * Append group record. 2457 * If we have sources, we don't know how many yet. 2458 */ 2459 mr.mr_type = type; 2460 mr.mr_datalen = 0; 2461 mr.mr_numsrc = 0; 2462 mr.mr_addr = inm->in6m_addr; 2463 in6_clearscope(&mr.mr_addr); 2464 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2465 if (m != m0) 2466 m_freem(m); 2467 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2468 return (-ENOMEM); 2469 } 2470 nbytes += sizeof(struct mldv2_record); 2471 2472 /* 2473 * Append as many sources as will fit in the first packet. 2474 * If we are appending to a new packet, the chain allocation 2475 * may potentially use clusters; use m_getptr() in this case. 2476 * If we are appending to an existing packet, we need to obtain 2477 * a pointer to the group record after m_append(), in case a new 2478 * mbuf was allocated. 2479 * 2480 * Only append sources which are in-mode at t1. If we are 2481 * transitioning to MCAST_UNDEFINED state on the group, and 2482 * use_block_allow is zero, do not include source entries. 2483 * Otherwise, we need to include this source in the report. 2484 * 2485 * Only report recorded sources in our filter set when responding 2486 * to a group-source query. 2487 */ 2488 if (record_has_sources) { 2489 if (m == m0) { 2490 md = m_last(m); 2491 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2492 md->m_len - nbytes); 2493 } else { 2494 md = m_getptr(m, 0, &off); 2495 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2496 off); 2497 } 2498 msrcs = 0; 2499 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, 2500 nims) { 2501 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2502 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2503 now = im6s_get_mode(inm, ims, 1); 2504 CTR2(KTR_MLD, "%s: node is %d", __func__, now); 2505 if ((now != mode) || 2506 (now == mode && 2507 (!use_block_allow && mode == MCAST_UNDEFINED))) { 2508 CTR1(KTR_MLD, "%s: skip node", __func__); 2509 continue; 2510 } 2511 if (is_source_query && ims->im6s_stp == 0) { 2512 CTR1(KTR_MLD, "%s: skip unrecorded node", 2513 __func__); 2514 continue; 2515 } 2516 CTR1(KTR_MLD, "%s: append node", __func__); 2517 if (!m_append(m, sizeof(struct in6_addr), 2518 (void *)&ims->im6s_addr)) { 2519 if (m != m0) 2520 m_freem(m); 2521 CTR1(KTR_MLD, "%s: m_append() failed.", 2522 __func__); 2523 return (-ENOMEM); 2524 } 2525 nbytes += sizeof(struct in6_addr); 2526 ++msrcs; 2527 if (msrcs == m0srcs) 2528 break; 2529 } 2530 CTR2(KTR_MLD, "%s: msrcs is %d this packet", __func__, 2531 msrcs); 2532 pmr->mr_numsrc = htons(msrcs); 2533 nbytes += (msrcs * sizeof(struct in6_addr)); 2534 } 2535 2536 if (is_source_query && msrcs == 0) { 2537 CTR1(KTR_MLD, "%s: no recorded sources to report", __func__); 2538 if (m != m0) 2539 m_freem(m); 2540 return (0); 2541 } 2542 2543 /* 2544 * We are good to go with first packet. 2545 */ 2546 if (m != m0) { 2547 CTR1(KTR_MLD, "%s: enqueueing first packet", __func__); 2548 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2549 mbufq_enqueue(mq, m); 2550 } else 2551 m->m_pkthdr.PH_vt.vt_nrecs++; 2552 2553 /* 2554 * No further work needed if no source list in packet(s). 2555 */ 2556 if (!record_has_sources) 2557 return (nbytes); 2558 2559 /* 2560 * Whilst sources remain to be announced, we need to allocate 2561 * a new packet and fill out as many sources as will fit. 2562 * Always try for a cluster first. 2563 */ 2564 while (nims != NULL) { 2565 if (mbufq_full(mq)) { 2566 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2567 return (-ENOMEM); 2568 } 2569 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2570 if (m == NULL) 2571 m = m_gethdr(M_NOWAIT, MT_DATA); 2572 if (m == NULL) 2573 return (-ENOMEM); 2574 mld_save_context(m, ifp); 2575 md = m_getptr(m, 0, &off); 2576 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off); 2577 CTR1(KTR_MLD, "%s: allocated next packet", __func__); 2578 2579 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2580 if (m != m0) 2581 m_freem(m); 2582 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2583 return (-ENOMEM); 2584 } 2585 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2586 nbytes += sizeof(struct mldv2_record); 2587 2588 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2589 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2590 2591 msrcs = 0; 2592 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2593 CTR2(KTR_MLD, "%s: visit node %s", 2594 __func__, ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2595 now = im6s_get_mode(inm, ims, 1); 2596 if ((now != mode) || 2597 (now == mode && 2598 (!use_block_allow && mode == MCAST_UNDEFINED))) { 2599 CTR1(KTR_MLD, "%s: skip node", __func__); 2600 continue; 2601 } 2602 if (is_source_query && ims->im6s_stp == 0) { 2603 CTR1(KTR_MLD, "%s: skip unrecorded node", 2604 __func__); 2605 continue; 2606 } 2607 CTR1(KTR_MLD, "%s: append node", __func__); 2608 if (!m_append(m, sizeof(struct in6_addr), 2609 (void *)&ims->im6s_addr)) { 2610 if (m != m0) 2611 m_freem(m); 2612 CTR1(KTR_MLD, "%s: m_append() failed.", 2613 __func__); 2614 return (-ENOMEM); 2615 } 2616 ++msrcs; 2617 if (msrcs == m0srcs) 2618 break; 2619 } 2620 pmr->mr_numsrc = htons(msrcs); 2621 nbytes += (msrcs * sizeof(struct in6_addr)); 2622 2623 CTR1(KTR_MLD, "%s: enqueueing next packet", __func__); 2624 mbufq_enqueue(mq, m); 2625 } 2626 2627 return (nbytes); 2628 } 2629 2630 /* 2631 * Type used to mark record pass completion. 2632 * We exploit the fact we can cast to this easily from the 2633 * current filter modes on each ip_msource node. 2634 */ 2635 typedef enum { 2636 REC_NONE = 0x00, /* MCAST_UNDEFINED */ 2637 REC_ALLOW = 0x01, /* MCAST_INCLUDE */ 2638 REC_BLOCK = 0x02, /* MCAST_EXCLUDE */ 2639 REC_FULL = REC_ALLOW | REC_BLOCK 2640 } rectype_t; 2641 2642 /* 2643 * Enqueue an MLDv2 filter list change to the given output queue. 2644 * 2645 * Source list filter state is held in an RB-tree. When the filter list 2646 * for a group is changed without changing its mode, we need to compute 2647 * the deltas between T0 and T1 for each source in the filter set, 2648 * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records. 2649 * 2650 * As we may potentially queue two record types, and the entire R-B tree 2651 * needs to be walked at once, we break this out into its own function 2652 * so we can generate a tightly packed queue of packets. 2653 * 2654 * XXX This could be written to only use one tree walk, although that makes 2655 * serializing into the mbuf chains a bit harder. For now we do two walks 2656 * which makes things easier on us, and it may or may not be harder on 2657 * the L2 cache. 2658 * 2659 * If successful the size of all data appended to the queue is returned, 2660 * otherwise an error code less than zero is returned, or zero if 2661 * no record(s) were appended. 2662 */ 2663 static int 2664 mld_v2_enqueue_filter_change(struct mbufq *mq, struct in6_multi *inm) 2665 { 2666 static const int MINRECLEN = 2667 sizeof(struct mldv2_record) + sizeof(struct in6_addr); 2668 struct ifnet *ifp; 2669 struct mldv2_record mr; 2670 struct mldv2_record *pmr; 2671 struct ip6_msource *ims, *nims; 2672 struct mbuf *m, *m0, *md; 2673 int m0srcs, nbytes, npbytes, off, rsrcs, schanged; 2674 int nallow, nblock; 2675 uint8_t mode, now, then; 2676 rectype_t crt, drt, nrt; 2677 #ifdef KTR 2678 char ip6tbuf[INET6_ADDRSTRLEN]; 2679 #endif 2680 2681 IN6_MULTI_LOCK_ASSERT(); 2682 2683 if (inm->in6m_nsrc == 0 || 2684 (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0)) 2685 return (0); 2686 2687 ifp = inm->in6m_ifp; /* interface */ 2688 mode = inm->in6m_st[1].iss_fmode; /* filter mode at t1 */ 2689 crt = REC_NONE; /* current group record type */ 2690 drt = REC_NONE; /* mask of completed group record types */ 2691 nrt = REC_NONE; /* record type for current node */ 2692 m0srcs = 0; /* # source which will fit in current mbuf chain */ 2693 npbytes = 0; /* # of bytes appended this packet */ 2694 nbytes = 0; /* # of bytes appended to group's state-change queue */ 2695 rsrcs = 0; /* # sources encoded in current record */ 2696 schanged = 0; /* # nodes encoded in overall filter change */ 2697 nallow = 0; /* # of source entries in ALLOW_NEW */ 2698 nblock = 0; /* # of source entries in BLOCK_OLD */ 2699 nims = NULL; /* next tree node pointer */ 2700 2701 /* 2702 * For each possible filter record mode. 2703 * The first kind of source we encounter tells us which 2704 * is the first kind of record we start appending. 2705 * If a node transitioned to UNDEFINED at t1, its mode is treated 2706 * as the inverse of the group's filter mode. 2707 */ 2708 while (drt != REC_FULL) { 2709 do { 2710 m0 = mbufq_last(mq); 2711 if (m0 != NULL && 2712 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= 2713 MLD_V2_REPORT_MAXRECS) && 2714 (m0->m_pkthdr.len + MINRECLEN) < 2715 (ifp->if_mtu - MLD_MTUSPACE)) { 2716 m = m0; 2717 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2718 sizeof(struct mldv2_record)) / 2719 sizeof(struct in6_addr); 2720 CTR1(KTR_MLD, 2721 "%s: use previous packet", __func__); 2722 } else { 2723 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2724 if (m == NULL) 2725 m = m_gethdr(M_NOWAIT, MT_DATA); 2726 if (m == NULL) { 2727 CTR1(KTR_MLD, 2728 "%s: m_get*() failed", __func__); 2729 return (-ENOMEM); 2730 } 2731 m->m_pkthdr.PH_vt.vt_nrecs = 0; 2732 mld_save_context(m, ifp); 2733 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2734 sizeof(struct mldv2_record)) / 2735 sizeof(struct in6_addr); 2736 npbytes = 0; 2737 CTR1(KTR_MLD, 2738 "%s: allocated new packet", __func__); 2739 } 2740 /* 2741 * Append the MLD group record header to the 2742 * current packet's data area. 2743 * Recalculate pointer to free space for next 2744 * group record, in case m_append() allocated 2745 * a new mbuf or cluster. 2746 */ 2747 memset(&mr, 0, sizeof(mr)); 2748 mr.mr_addr = inm->in6m_addr; 2749 in6_clearscope(&mr.mr_addr); 2750 if (!m_append(m, sizeof(mr), (void *)&mr)) { 2751 if (m != m0) 2752 m_freem(m); 2753 CTR1(KTR_MLD, 2754 "%s: m_append() failed", __func__); 2755 return (-ENOMEM); 2756 } 2757 npbytes += sizeof(struct mldv2_record); 2758 if (m != m0) { 2759 /* new packet; offset in chain */ 2760 md = m_getptr(m, npbytes - 2761 sizeof(struct mldv2_record), &off); 2762 pmr = (struct mldv2_record *)(mtod(md, 2763 uint8_t *) + off); 2764 } else { 2765 /* current packet; offset from last append */ 2766 md = m_last(m); 2767 pmr = (struct mldv2_record *)(mtod(md, 2768 uint8_t *) + md->m_len - 2769 sizeof(struct mldv2_record)); 2770 } 2771 /* 2772 * Begin walking the tree for this record type 2773 * pass, or continue from where we left off 2774 * previously if we had to allocate a new packet. 2775 * Only report deltas in-mode at t1. 2776 * We need not report included sources as allowed 2777 * if we are in inclusive mode on the group, 2778 * however the converse is not true. 2779 */ 2780 rsrcs = 0; 2781 if (nims == NULL) { 2782 nims = RB_MIN(ip6_msource_tree, 2783 &inm->in6m_srcs); 2784 } 2785 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2786 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2787 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2788 now = im6s_get_mode(inm, ims, 1); 2789 then = im6s_get_mode(inm, ims, 0); 2790 CTR3(KTR_MLD, "%s: mode: t0 %d, t1 %d", 2791 __func__, then, now); 2792 if (now == then) { 2793 CTR1(KTR_MLD, 2794 "%s: skip unchanged", __func__); 2795 continue; 2796 } 2797 if (mode == MCAST_EXCLUDE && 2798 now == MCAST_INCLUDE) { 2799 CTR1(KTR_MLD, 2800 "%s: skip IN src on EX group", 2801 __func__); 2802 continue; 2803 } 2804 nrt = (rectype_t)now; 2805 if (nrt == REC_NONE) 2806 nrt = (rectype_t)(~mode & REC_FULL); 2807 if (schanged++ == 0) { 2808 crt = nrt; 2809 } else if (crt != nrt) 2810 continue; 2811 if (!m_append(m, sizeof(struct in6_addr), 2812 (void *)&ims->im6s_addr)) { 2813 if (m != m0) 2814 m_freem(m); 2815 CTR1(KTR_MLD, 2816 "%s: m_append() failed", __func__); 2817 return (-ENOMEM); 2818 } 2819 nallow += !!(crt == REC_ALLOW); 2820 nblock += !!(crt == REC_BLOCK); 2821 if (++rsrcs == m0srcs) 2822 break; 2823 } 2824 /* 2825 * If we did not append any tree nodes on this 2826 * pass, back out of allocations. 2827 */ 2828 if (rsrcs == 0) { 2829 npbytes -= sizeof(struct mldv2_record); 2830 if (m != m0) { 2831 CTR1(KTR_MLD, 2832 "%s: m_free(m)", __func__); 2833 m_freem(m); 2834 } else { 2835 CTR1(KTR_MLD, 2836 "%s: m_adj(m, -mr)", __func__); 2837 m_adj(m, -((int)sizeof( 2838 struct mldv2_record))); 2839 } 2840 continue; 2841 } 2842 npbytes += (rsrcs * sizeof(struct in6_addr)); 2843 if (crt == REC_ALLOW) 2844 pmr->mr_type = MLD_ALLOW_NEW_SOURCES; 2845 else if (crt == REC_BLOCK) 2846 pmr->mr_type = MLD_BLOCK_OLD_SOURCES; 2847 pmr->mr_numsrc = htons(rsrcs); 2848 /* 2849 * Count the new group record, and enqueue this 2850 * packet if it wasn't already queued. 2851 */ 2852 m->m_pkthdr.PH_vt.vt_nrecs++; 2853 if (m != m0) 2854 mbufq_enqueue(mq, m); 2855 nbytes += npbytes; 2856 } while (nims != NULL); 2857 drt |= crt; 2858 crt = (~crt & REC_FULL); 2859 } 2860 2861 CTR3(KTR_MLD, "%s: queued %d ALLOW_NEW, %d BLOCK_OLD", __func__, 2862 nallow, nblock); 2863 2864 return (nbytes); 2865 } 2866 2867 static int 2868 mld_v2_merge_state_changes(struct in6_multi *inm, struct mbufq *scq) 2869 { 2870 struct mbufq *gq; 2871 struct mbuf *m; /* pending state-change */ 2872 struct mbuf *m0; /* copy of pending state-change */ 2873 struct mbuf *mt; /* last state-change in packet */ 2874 int docopy, domerge; 2875 u_int recslen; 2876 2877 docopy = 0; 2878 domerge = 0; 2879 recslen = 0; 2880 2881 IN6_MULTI_LOCK_ASSERT(); 2882 MLD_LOCK_ASSERT(); 2883 2884 /* 2885 * If there are further pending retransmissions, make a writable 2886 * copy of each queued state-change message before merging. 2887 */ 2888 if (inm->in6m_scrv > 0) 2889 docopy = 1; 2890 2891 gq = &inm->in6m_scq; 2892 #ifdef KTR 2893 if (mbufq_first(gq) == NULL) { 2894 CTR2(KTR_MLD, "%s: WARNING: queue for inm %p is empty", 2895 __func__, inm); 2896 } 2897 #endif 2898 2899 m = mbufq_first(gq); 2900 while (m != NULL) { 2901 /* 2902 * Only merge the report into the current packet if 2903 * there is sufficient space to do so; an MLDv2 report 2904 * packet may only contain 65,535 group records. 2905 * Always use a simple mbuf chain concatentation to do this, 2906 * as large state changes for single groups may have 2907 * allocated clusters. 2908 */ 2909 domerge = 0; 2910 mt = mbufq_last(scq); 2911 if (mt != NULL) { 2912 recslen = m_length(m, NULL); 2913 2914 if ((mt->m_pkthdr.PH_vt.vt_nrecs + 2915 m->m_pkthdr.PH_vt.vt_nrecs <= 2916 MLD_V2_REPORT_MAXRECS) && 2917 (mt->m_pkthdr.len + recslen <= 2918 (inm->in6m_ifp->if_mtu - MLD_MTUSPACE))) 2919 domerge = 1; 2920 } 2921 2922 if (!domerge && mbufq_full(gq)) { 2923 CTR2(KTR_MLD, 2924 "%s: outbound queue full, skipping whole packet %p", 2925 __func__, m); 2926 mt = m->m_nextpkt; 2927 if (!docopy) 2928 m_freem(m); 2929 m = mt; 2930 continue; 2931 } 2932 2933 if (!docopy) { 2934 CTR2(KTR_MLD, "%s: dequeueing %p", __func__, m); 2935 m0 = mbufq_dequeue(gq); 2936 m = m0->m_nextpkt; 2937 } else { 2938 CTR2(KTR_MLD, "%s: copying %p", __func__, m); 2939 m0 = m_dup(m, M_NOWAIT); 2940 if (m0 == NULL) 2941 return (ENOMEM); 2942 m0->m_nextpkt = NULL; 2943 m = m->m_nextpkt; 2944 } 2945 2946 if (!domerge) { 2947 CTR3(KTR_MLD, "%s: queueing %p to scq %p)", 2948 __func__, m0, scq); 2949 mbufq_enqueue(scq, m0); 2950 } else { 2951 struct mbuf *mtl; /* last mbuf of packet mt */ 2952 2953 CTR3(KTR_MLD, "%s: merging %p with ifscq tail %p)", 2954 __func__, m0, mt); 2955 2956 mtl = m_last(mt); 2957 m0->m_flags &= ~M_PKTHDR; 2958 mt->m_pkthdr.len += recslen; 2959 mt->m_pkthdr.PH_vt.vt_nrecs += 2960 m0->m_pkthdr.PH_vt.vt_nrecs; 2961 2962 mtl->m_next = m0; 2963 } 2964 } 2965 2966 return (0); 2967 } 2968 2969 /* 2970 * Respond to a pending MLDv2 General Query. 2971 */ 2972 static void 2973 mld_v2_dispatch_general_query(struct mld_ifsoftc *mli) 2974 { 2975 struct ifmultiaddr *ifma; 2976 struct ifnet *ifp; 2977 struct in6_multi *inm; 2978 int retval; 2979 2980 IN6_MULTI_LOCK_ASSERT(); 2981 MLD_LOCK_ASSERT(); 2982 2983 KASSERT(mli->mli_version == MLD_VERSION_2, 2984 ("%s: called when version %d", __func__, mli->mli_version)); 2985 2986 /* 2987 * Check that there are some packets queued. If so, send them first. 2988 * For large number of groups the reply to general query can take 2989 * many packets, we should finish sending them before starting of 2990 * queuing the new reply. 2991 */ 2992 if (mbufq_len(&mli->mli_gq) != 0) 2993 goto send; 2994 2995 ifp = mli->mli_ifp; 2996 2997 IF_ADDR_RLOCK(ifp); 2998 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2999 if (ifma->ifma_addr->sa_family != AF_INET6 || 3000 ifma->ifma_protospec == NULL) 3001 continue; 3002 3003 inm = (struct in6_multi *)ifma->ifma_protospec; 3004 KASSERT(ifp == inm->in6m_ifp, 3005 ("%s: inconsistent ifp", __func__)); 3006 3007 switch (inm->in6m_state) { 3008 case MLD_NOT_MEMBER: 3009 case MLD_SILENT_MEMBER: 3010 break; 3011 case MLD_REPORTING_MEMBER: 3012 case MLD_IDLE_MEMBER: 3013 case MLD_LAZY_MEMBER: 3014 case MLD_SLEEPING_MEMBER: 3015 case MLD_AWAKENING_MEMBER: 3016 inm->in6m_state = MLD_REPORTING_MEMBER; 3017 retval = mld_v2_enqueue_group_record(&mli->mli_gq, 3018 inm, 0, 0, 0, 0); 3019 CTR2(KTR_MLD, "%s: enqueue record = %d", 3020 __func__, retval); 3021 break; 3022 case MLD_G_QUERY_PENDING_MEMBER: 3023 case MLD_SG_QUERY_PENDING_MEMBER: 3024 case MLD_LEAVING_MEMBER: 3025 break; 3026 } 3027 } 3028 IF_ADDR_RUNLOCK(ifp); 3029 3030 send: 3031 mld_dispatch_queue(&mli->mli_gq, MLD_MAX_RESPONSE_BURST); 3032 3033 /* 3034 * Slew transmission of bursts over 500ms intervals. 3035 */ 3036 if (mbufq_first(&mli->mli_gq) != NULL) { 3037 mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY( 3038 MLD_RESPONSE_BURST_INTERVAL); 3039 V_interface_timers_running6 = 1; 3040 } 3041 } 3042 3043 /* 3044 * Transmit the next pending message in the output queue. 3045 * 3046 * VIMAGE: Needs to store/restore vnet pointer on a per-mbuf-chain basis. 3047 * MRT: Nothing needs to be done, as MLD traffic is always local to 3048 * a link and uses a link-scope multicast address. 3049 */ 3050 static void 3051 mld_dispatch_packet(struct mbuf *m) 3052 { 3053 struct ip6_moptions im6o; 3054 struct ifnet *ifp; 3055 struct ifnet *oifp; 3056 struct mbuf *m0; 3057 struct mbuf *md; 3058 struct ip6_hdr *ip6; 3059 struct mld_hdr *mld; 3060 int error; 3061 int off; 3062 int type; 3063 uint32_t ifindex; 3064 3065 CTR2(KTR_MLD, "%s: transmit %p", __func__, m); 3066 3067 /* 3068 * Set VNET image pointer from enqueued mbuf chain 3069 * before doing anything else. Whilst we use interface 3070 * indexes to guard against interface detach, they are 3071 * unique to each VIMAGE and must be retrieved. 3072 */ 3073 ifindex = mld_restore_context(m); 3074 3075 /* 3076 * Check if the ifnet still exists. This limits the scope of 3077 * any race in the absence of a global ifp lock for low cost 3078 * (an array lookup). 3079 */ 3080 ifp = ifnet_byindex(ifindex); 3081 if (ifp == NULL) { 3082 CTR3(KTR_MLD, "%s: dropped %p as ifindex %u went away.", 3083 __func__, m, ifindex); 3084 m_freem(m); 3085 IP6STAT_INC(ip6s_noroute); 3086 goto out; 3087 } 3088 3089 im6o.im6o_multicast_hlim = 1; 3090 im6o.im6o_multicast_loop = (V_ip6_mrouter != NULL); 3091 im6o.im6o_multicast_ifp = ifp; 3092 3093 if (m->m_flags & M_MLDV1) { 3094 m0 = m; 3095 } else { 3096 m0 = mld_v2_encap_report(ifp, m); 3097 if (m0 == NULL) { 3098 CTR2(KTR_MLD, "%s: dropped %p", __func__, m); 3099 IP6STAT_INC(ip6s_odropped); 3100 goto out; 3101 } 3102 } 3103 3104 mld_scrub_context(m0); 3105 m_clrprotoflags(m); 3106 m0->m_pkthdr.rcvif = V_loif; 3107 3108 ip6 = mtod(m0, struct ip6_hdr *); 3109 #if 0 3110 (void)in6_setscope(&ip6->ip6_dst, ifp, NULL); /* XXX LOR */ 3111 #else 3112 /* 3113 * XXX XXX Break some KPI rules to prevent an LOR which would 3114 * occur if we called in6_setscope() at transmission. 3115 * See comments at top of file. 3116 */ 3117 MLD_EMBEDSCOPE(&ip6->ip6_dst, ifp->if_index); 3118 #endif 3119 3120 /* 3121 * Retrieve the ICMPv6 type before handoff to ip6_output(), 3122 * so we can bump the stats. 3123 */ 3124 md = m_getptr(m0, sizeof(struct ip6_hdr), &off); 3125 mld = (struct mld_hdr *)(mtod(md, uint8_t *) + off); 3126 type = mld->mld_type; 3127 3128 error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, &im6o, 3129 &oifp, NULL); 3130 if (error) { 3131 CTR3(KTR_MLD, "%s: ip6_output(%p) = %d", __func__, m0, error); 3132 goto out; 3133 } 3134 ICMP6STAT_INC(icp6s_outhist[type]); 3135 if (oifp != NULL) { 3136 icmp6_ifstat_inc(oifp, ifs6_out_msg); 3137 switch (type) { 3138 case MLD_LISTENER_REPORT: 3139 case MLDV2_LISTENER_REPORT: 3140 icmp6_ifstat_inc(oifp, ifs6_out_mldreport); 3141 break; 3142 case MLD_LISTENER_DONE: 3143 icmp6_ifstat_inc(oifp, ifs6_out_mlddone); 3144 break; 3145 } 3146 } 3147 out: 3148 return; 3149 } 3150 3151 /* 3152 * Encapsulate an MLDv2 report. 3153 * 3154 * KAME IPv6 requires that hop-by-hop options be passed separately, 3155 * and that the IPv6 header be prepended in a separate mbuf. 3156 * 3157 * Returns a pointer to the new mbuf chain head, or NULL if the 3158 * allocation failed. 3159 */ 3160 static struct mbuf * 3161 mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m) 3162 { 3163 struct mbuf *mh; 3164 struct mldv2_report *mld; 3165 struct ip6_hdr *ip6; 3166 struct in6_ifaddr *ia; 3167 int mldreclen; 3168 3169 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 3170 KASSERT((m->m_flags & M_PKTHDR), 3171 ("%s: mbuf chain %p is !M_PKTHDR", __func__, m)); 3172 3173 /* 3174 * RFC3590: OK to send as :: or tentative during DAD. 3175 */ 3176 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 3177 if (ia == NULL) 3178 CTR1(KTR_MLD, "%s: warning: ia is NULL", __func__); 3179 3180 mh = m_gethdr(M_NOWAIT, MT_DATA); 3181 if (mh == NULL) { 3182 if (ia != NULL) 3183 ifa_free(&ia->ia_ifa); 3184 m_freem(m); 3185 return (NULL); 3186 } 3187 M_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report)); 3188 3189 mldreclen = m_length(m, NULL); 3190 CTR2(KTR_MLD, "%s: mldreclen is %d", __func__, mldreclen); 3191 3192 mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report); 3193 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + 3194 sizeof(struct mldv2_report) + mldreclen; 3195 3196 ip6 = mtod(mh, struct ip6_hdr *); 3197 ip6->ip6_flow = 0; 3198 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 3199 ip6->ip6_vfc |= IPV6_VERSION; 3200 ip6->ip6_nxt = IPPROTO_ICMPV6; 3201 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 3202 if (ia != NULL) 3203 ifa_free(&ia->ia_ifa); 3204 ip6->ip6_dst = in6addr_linklocal_allv2routers; 3205 /* scope ID will be set in netisr */ 3206 3207 mld = (struct mldv2_report *)(ip6 + 1); 3208 mld->mld_type = MLDV2_LISTENER_REPORT; 3209 mld->mld_code = 0; 3210 mld->mld_cksum = 0; 3211 mld->mld_v2_reserved = 0; 3212 mld->mld_v2_numrecs = htons(m->m_pkthdr.PH_vt.vt_nrecs); 3213 m->m_pkthdr.PH_vt.vt_nrecs = 0; 3214 3215 mh->m_next = m; 3216 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 3217 sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen); 3218 return (mh); 3219 } 3220 3221 #ifdef KTR 3222 static char * 3223 mld_rec_type_to_str(const int type) 3224 { 3225 3226 switch (type) { 3227 case MLD_CHANGE_TO_EXCLUDE_MODE: 3228 return "TO_EX"; 3229 break; 3230 case MLD_CHANGE_TO_INCLUDE_MODE: 3231 return "TO_IN"; 3232 break; 3233 case MLD_MODE_IS_EXCLUDE: 3234 return "MODE_EX"; 3235 break; 3236 case MLD_MODE_IS_INCLUDE: 3237 return "MODE_IN"; 3238 break; 3239 case MLD_ALLOW_NEW_SOURCES: 3240 return "ALLOW_NEW"; 3241 break; 3242 case MLD_BLOCK_OLD_SOURCES: 3243 return "BLOCK_OLD"; 3244 break; 3245 default: 3246 break; 3247 } 3248 return "unknown"; 3249 } 3250 #endif 3251 3252 static void 3253 mld_init(void *unused __unused) 3254 { 3255 3256 CTR1(KTR_MLD, "%s: initializing", __func__); 3257 MLD_LOCK_INIT(); 3258 3259 ip6_initpktopts(&mld_po); 3260 mld_po.ip6po_hlim = 1; 3261 mld_po.ip6po_hbh = &mld_ra.hbh; 3262 mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER; 3263 mld_po.ip6po_flags = IP6PO_DONTFRAG; 3264 } 3265 SYSINIT(mld_init, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, mld_init, NULL); 3266 3267 static void 3268 mld_uninit(void *unused __unused) 3269 { 3270 3271 CTR1(KTR_MLD, "%s: tearing down", __func__); 3272 MLD_LOCK_DESTROY(); 3273 } 3274 SYSUNINIT(mld_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, mld_uninit, NULL); 3275 3276 static void 3277 vnet_mld_init(const void *unused __unused) 3278 { 3279 3280 CTR1(KTR_MLD, "%s: initializing", __func__); 3281 3282 LIST_INIT(&V_mli_head); 3283 } 3284 VNET_SYSINIT(vnet_mld_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mld_init, 3285 NULL); 3286 3287 static void 3288 vnet_mld_uninit(const void *unused __unused) 3289 { 3290 3291 /* This can happen if we shutdown the network stack. */ 3292 CTR1(KTR_MLD, "%s: tearing down", __func__); 3293 } 3294 VNET_SYSUNINIT(vnet_mld_uninit, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mld_uninit, 3295 NULL); 3296 3297 static int 3298 mld_modevent(module_t mod, int type, void *unused __unused) 3299 { 3300 3301 switch (type) { 3302 case MOD_LOAD: 3303 case MOD_UNLOAD: 3304 break; 3305 default: 3306 return (EOPNOTSUPP); 3307 } 3308 return (0); 3309 } 3310 3311 static moduledata_t mld_mod = { 3312 "mld", 3313 mld_modevent, 3314 0 3315 }; 3316 DECLARE_MODULE(mld, mld_mod, SI_SUB_PROTO_MC, SI_ORDER_ANY); 3317