1 /*- 2 * Copyright (c) 2009 Bruce Simpson. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 3. The name of the author may not be used to endorse or promote 13 * products derived from this software without specific prior written 14 * permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $KAME: mld6.c,v 1.27 2001/04/04 05:17:30 itojun Exp $ 29 */ 30 31 /*- 32 * Copyright (c) 1988 Stephen Deering. 33 * Copyright (c) 1992, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * This code is derived from software contributed to Berkeley by 37 * Stephen Deering of Stanford University. 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 1. Redistributions of source code must retain the above copyright 43 * notice, this list of conditions and the following disclaimer. 44 * 2. Redistributions in binary form must reproduce the above copyright 45 * notice, this list of conditions and the following disclaimer in the 46 * documentation and/or other materials provided with the distribution. 47 * 4. Neither the name of the University nor the names of its contributors 48 * may be used to endorse or promote products derived from this software 49 * without specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 61 * SUCH DAMAGE. 62 * 63 * @(#)igmp.c 8.1 (Berkeley) 7/19/93 64 */ 65 66 #include <sys/cdefs.h> 67 __FBSDID("$FreeBSD$"); 68 69 #include "opt_inet.h" 70 #include "opt_inet6.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/mbuf.h> 75 #include <sys/socket.h> 76 #include <sys/protosw.h> 77 #include <sys/sysctl.h> 78 #include <sys/kernel.h> 79 #include <sys/callout.h> 80 #include <sys/malloc.h> 81 #include <sys/module.h> 82 #include <sys/ktr.h> 83 84 #include <net/if.h> 85 #include <net/if_var.h> 86 #include <net/route.h> 87 #include <net/vnet.h> 88 89 #include <netinet/in.h> 90 #include <netinet/in_var.h> 91 #include <netinet6/in6_var.h> 92 #include <netinet/ip6.h> 93 #include <netinet6/ip6_var.h> 94 #include <netinet6/scope6_var.h> 95 #include <netinet/icmp6.h> 96 #include <netinet6/mld6.h> 97 #include <netinet6/mld6_var.h> 98 99 #include <security/mac/mac_framework.h> 100 101 #ifndef KTR_MLD 102 #define KTR_MLD KTR_INET6 103 #endif 104 105 static struct mld_ifsoftc * 106 mli_alloc_locked(struct ifnet *); 107 static void mli_delete_locked(const struct ifnet *); 108 static void mld_dispatch_packet(struct mbuf *); 109 static void mld_dispatch_queue(struct mbufq *, int); 110 static void mld_final_leave(struct in6_multi *, struct mld_ifsoftc *); 111 static void mld_fasttimo_vnet(void); 112 static int mld_handle_state_change(struct in6_multi *, 113 struct mld_ifsoftc *); 114 static int mld_initial_join(struct in6_multi *, struct mld_ifsoftc *, 115 const int); 116 #ifdef KTR 117 static char * mld_rec_type_to_str(const int); 118 #endif 119 static void mld_set_version(struct mld_ifsoftc *, const int); 120 static void mld_slowtimo_vnet(void); 121 static int mld_v1_input_query(struct ifnet *, const struct ip6_hdr *, 122 /*const*/ struct mld_hdr *); 123 static int mld_v1_input_report(struct ifnet *, const struct ip6_hdr *, 124 /*const*/ struct mld_hdr *); 125 static void mld_v1_process_group_timer(struct mld_ifsoftc *, 126 struct in6_multi *); 127 static void mld_v1_process_querier_timers(struct mld_ifsoftc *); 128 static int mld_v1_transmit_report(struct in6_multi *, const int); 129 static void mld_v1_update_group(struct in6_multi *, const int); 130 static void mld_v2_cancel_link_timers(struct mld_ifsoftc *); 131 static void mld_v2_dispatch_general_query(struct mld_ifsoftc *); 132 static struct mbuf * 133 mld_v2_encap_report(struct ifnet *, struct mbuf *); 134 static int mld_v2_enqueue_filter_change(struct mbufq *, 135 struct in6_multi *); 136 static int mld_v2_enqueue_group_record(struct mbufq *, 137 struct in6_multi *, const int, const int, const int, 138 const int); 139 static int mld_v2_input_query(struct ifnet *, const struct ip6_hdr *, 140 struct mbuf *, const int, const int); 141 static int mld_v2_merge_state_changes(struct in6_multi *, 142 struct mbufq *); 143 static void mld_v2_process_group_timers(struct mld_ifsoftc *, 144 struct mbufq *, struct mbufq *, 145 struct in6_multi *, const int); 146 static int mld_v2_process_group_query(struct in6_multi *, 147 struct mld_ifsoftc *mli, int, struct mbuf *, const int); 148 static int sysctl_mld_gsr(SYSCTL_HANDLER_ARGS); 149 static int sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS); 150 151 /* 152 * Normative references: RFC 2710, RFC 3590, RFC 3810. 153 * 154 * Locking: 155 * * The MLD subsystem lock ends up being system-wide for the moment, 156 * but could be per-VIMAGE later on. 157 * * The permitted lock order is: IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK. 158 * Any may be taken independently; if any are held at the same 159 * time, the above lock order must be followed. 160 * * IN6_MULTI_LOCK covers in_multi. 161 * * MLD_LOCK covers per-link state and any global variables in this file. 162 * * IF_ADDR_LOCK covers if_multiaddrs, which is used for a variety of 163 * per-link state iterators. 164 * 165 * XXX LOR PREVENTION 166 * A special case for IPv6 is the in6_setscope() routine. ip6_output() 167 * will not accept an ifp; it wants an embedded scope ID, unlike 168 * ip_output(), which happily takes the ifp given to it. The embedded 169 * scope ID is only used by MLD to select the outgoing interface. 170 * 171 * During interface attach and detach, MLD will take MLD_LOCK *after* 172 * the IF_AFDATA_LOCK. 173 * As in6_setscope() takes IF_AFDATA_LOCK then SCOPE_LOCK, we can't call 174 * it with MLD_LOCK held without triggering an LOR. A netisr with indirect 175 * dispatch could work around this, but we'd rather not do that, as it 176 * can introduce other races. 177 * 178 * As such, we exploit the fact that the scope ID is just the interface 179 * index, and embed it in the IPv6 destination address accordingly. 180 * This is potentially NOT VALID for MLDv1 reports, as they 181 * are always sent to the multicast group itself; as MLDv2 182 * reports are always sent to ff02::16, this is not an issue 183 * when MLDv2 is in use. 184 * 185 * This does not however eliminate the LOR when ip6_output() itself 186 * calls in6_setscope() internally whilst MLD_LOCK is held. This will 187 * trigger a LOR warning in WITNESS when the ifnet is detached. 188 * 189 * The right answer is probably to make IF_AFDATA_LOCK an rwlock, given 190 * how it's used across the network stack. Here we're simply exploiting 191 * the fact that MLD runs at a similar layer in the stack to scope6.c. 192 * 193 * VIMAGE: 194 * * Each in6_multi corresponds to an ifp, and each ifp corresponds 195 * to a vnet in ifp->if_vnet. 196 */ 197 static struct mtx mld_mtx; 198 static MALLOC_DEFINE(M_MLD, "mld", "mld state"); 199 200 #define MLD_EMBEDSCOPE(pin6, zoneid) \ 201 if (IN6_IS_SCOPE_LINKLOCAL(pin6) || \ 202 IN6_IS_ADDR_MC_INTFACELOCAL(pin6)) \ 203 (pin6)->s6_addr16[1] = htons((zoneid) & 0xFFFF) \ 204 205 /* 206 * VIMAGE-wide globals. 207 */ 208 static VNET_DEFINE(struct timeval, mld_gsrdelay) = {10, 0}; 209 static VNET_DEFINE(LIST_HEAD(, mld_ifsoftc), mli_head); 210 static VNET_DEFINE(int, interface_timers_running6); 211 static VNET_DEFINE(int, state_change_timers_running6); 212 static VNET_DEFINE(int, current_state_timers_running6); 213 214 #define V_mld_gsrdelay VNET(mld_gsrdelay) 215 #define V_mli_head VNET(mli_head) 216 #define V_interface_timers_running6 VNET(interface_timers_running6) 217 #define V_state_change_timers_running6 VNET(state_change_timers_running6) 218 #define V_current_state_timers_running6 VNET(current_state_timers_running6) 219 220 SYSCTL_DECL(_net_inet6); /* Note: Not in any common header. */ 221 222 SYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW, 0, 223 "IPv6 Multicast Listener Discovery"); 224 225 /* 226 * Virtualized sysctls. 227 */ 228 SYSCTL_PROC(_net_inet6_mld, OID_AUTO, gsrdelay, 229 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 230 &VNET_NAME(mld_gsrdelay.tv_sec), 0, sysctl_mld_gsr, "I", 231 "Rate limit for MLDv2 Group-and-Source queries in seconds"); 232 233 /* 234 * Non-virtualized sysctls. 235 */ 236 static SYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo, 237 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mld_ifinfo, 238 "Per-interface MLDv2 state"); 239 240 static int mld_v1enable = 1; 241 SYSCTL_INT(_net_inet6_mld, OID_AUTO, v1enable, CTLFLAG_RWTUN, 242 &mld_v1enable, 0, "Enable fallback to MLDv1"); 243 244 static int mld_use_allow = 1; 245 SYSCTL_INT(_net_inet6_mld, OID_AUTO, use_allow, CTLFLAG_RWTUN, 246 &mld_use_allow, 0, "Use ALLOW/BLOCK for RFC 4604 SSM joins/leaves"); 247 248 /* 249 * Packed Router Alert option structure declaration. 250 */ 251 struct mld_raopt { 252 struct ip6_hbh hbh; 253 struct ip6_opt pad; 254 struct ip6_opt_router ra; 255 } __packed; 256 257 /* 258 * Router Alert hop-by-hop option header. 259 */ 260 static struct mld_raopt mld_ra = { 261 .hbh = { 0, 0 }, 262 .pad = { .ip6o_type = IP6OPT_PADN, 0 }, 263 .ra = { 264 .ip6or_type = IP6OPT_ROUTER_ALERT, 265 .ip6or_len = IP6OPT_RTALERT_LEN - 2, 266 .ip6or_value[0] = ((IP6OPT_RTALERT_MLD >> 8) & 0xFF), 267 .ip6or_value[1] = (IP6OPT_RTALERT_MLD & 0xFF) 268 } 269 }; 270 static struct ip6_pktopts mld_po; 271 272 static __inline void 273 mld_save_context(struct mbuf *m, struct ifnet *ifp) 274 { 275 276 #ifdef VIMAGE 277 m->m_pkthdr.PH_loc.ptr = ifp->if_vnet; 278 #endif /* VIMAGE */ 279 m->m_pkthdr.flowid = ifp->if_index; 280 } 281 282 static __inline void 283 mld_scrub_context(struct mbuf *m) 284 { 285 286 m->m_pkthdr.PH_loc.ptr = NULL; 287 m->m_pkthdr.flowid = 0; 288 } 289 290 /* 291 * Restore context from a queued output chain. 292 * Return saved ifindex. 293 * 294 * VIMAGE: The assertion is there to make sure that we 295 * actually called CURVNET_SET() with what's in the mbuf chain. 296 */ 297 static __inline uint32_t 298 mld_restore_context(struct mbuf *m) 299 { 300 301 #if defined(VIMAGE) && defined(INVARIANTS) 302 KASSERT(curvnet == m->m_pkthdr.PH_loc.ptr, 303 ("%s: called when curvnet was not restored", __func__)); 304 #endif 305 return (m->m_pkthdr.flowid); 306 } 307 308 /* 309 * Retrieve or set threshold between group-source queries in seconds. 310 * 311 * VIMAGE: Assume curvnet set by caller. 312 * SMPng: NOTE: Serialized by MLD lock. 313 */ 314 static int 315 sysctl_mld_gsr(SYSCTL_HANDLER_ARGS) 316 { 317 int error; 318 int i; 319 320 error = sysctl_wire_old_buffer(req, sizeof(int)); 321 if (error) 322 return (error); 323 324 MLD_LOCK(); 325 326 i = V_mld_gsrdelay.tv_sec; 327 328 error = sysctl_handle_int(oidp, &i, 0, req); 329 if (error || !req->newptr) 330 goto out_locked; 331 332 if (i < -1 || i >= 60) { 333 error = EINVAL; 334 goto out_locked; 335 } 336 337 CTR2(KTR_MLD, "change mld_gsrdelay from %d to %d", 338 V_mld_gsrdelay.tv_sec, i); 339 V_mld_gsrdelay.tv_sec = i; 340 341 out_locked: 342 MLD_UNLOCK(); 343 return (error); 344 } 345 346 /* 347 * Expose struct mld_ifsoftc to userland, keyed by ifindex. 348 * For use by ifmcstat(8). 349 * 350 * SMPng: NOTE: Does an unlocked ifindex space read. 351 * VIMAGE: Assume curvnet set by caller. The node handler itself 352 * is not directly virtualized. 353 */ 354 static int 355 sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS) 356 { 357 int *name; 358 int error; 359 u_int namelen; 360 struct ifnet *ifp; 361 struct mld_ifsoftc *mli; 362 363 name = (int *)arg1; 364 namelen = arg2; 365 366 if (req->newptr != NULL) 367 return (EPERM); 368 369 if (namelen != 1) 370 return (EINVAL); 371 372 error = sysctl_wire_old_buffer(req, sizeof(struct mld_ifinfo)); 373 if (error) 374 return (error); 375 376 IN6_MULTI_LOCK(); 377 MLD_LOCK(); 378 379 if (name[0] <= 0 || name[0] > V_if_index) { 380 error = ENOENT; 381 goto out_locked; 382 } 383 384 error = ENOENT; 385 386 ifp = ifnet_byindex(name[0]); 387 if (ifp == NULL) 388 goto out_locked; 389 390 LIST_FOREACH(mli, &V_mli_head, mli_link) { 391 if (ifp == mli->mli_ifp) { 392 struct mld_ifinfo info; 393 394 info.mli_version = mli->mli_version; 395 info.mli_v1_timer = mli->mli_v1_timer; 396 info.mli_v2_timer = mli->mli_v2_timer; 397 info.mli_flags = mli->mli_flags; 398 info.mli_rv = mli->mli_rv; 399 info.mli_qi = mli->mli_qi; 400 info.mli_qri = mli->mli_qri; 401 info.mli_uri = mli->mli_uri; 402 error = SYSCTL_OUT(req, &info, sizeof(info)); 403 break; 404 } 405 } 406 407 out_locked: 408 MLD_UNLOCK(); 409 IN6_MULTI_UNLOCK(); 410 return (error); 411 } 412 413 /* 414 * Dispatch an entire queue of pending packet chains. 415 * VIMAGE: Assumes the vnet pointer has been set. 416 */ 417 static void 418 mld_dispatch_queue(struct mbufq *mq, int limit) 419 { 420 struct mbuf *m; 421 422 while ((m = mbufq_dequeue(mq)) != NULL) { 423 CTR3(KTR_MLD, "%s: dispatch %p from %p", __func__, mq, m); 424 mld_dispatch_packet(m); 425 if (--limit == 0) 426 break; 427 } 428 } 429 430 /* 431 * Filter outgoing MLD report state by group. 432 * 433 * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1) 434 * and node-local addresses. However, kernel and socket consumers 435 * always embed the KAME scope ID in the address provided, so strip it 436 * when performing comparison. 437 * Note: This is not the same as the *multicast* scope. 438 * 439 * Return zero if the given group is one for which MLD reports 440 * should be suppressed, or non-zero if reports should be issued. 441 */ 442 static __inline int 443 mld_is_addr_reported(const struct in6_addr *addr) 444 { 445 446 KASSERT(IN6_IS_ADDR_MULTICAST(addr), ("%s: not multicast", __func__)); 447 448 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL) 449 return (0); 450 451 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL) { 452 struct in6_addr tmp = *addr; 453 in6_clearscope(&tmp); 454 if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes)) 455 return (0); 456 } 457 458 return (1); 459 } 460 461 /* 462 * Attach MLD when PF_INET6 is attached to an interface. 463 * 464 * SMPng: Normally called with IF_AFDATA_LOCK held. 465 */ 466 struct mld_ifsoftc * 467 mld_domifattach(struct ifnet *ifp) 468 { 469 struct mld_ifsoftc *mli; 470 471 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 472 __func__, ifp, if_name(ifp)); 473 474 MLD_LOCK(); 475 476 mli = mli_alloc_locked(ifp); 477 if (!(ifp->if_flags & IFF_MULTICAST)) 478 mli->mli_flags |= MLIF_SILENT; 479 if (mld_use_allow) 480 mli->mli_flags |= MLIF_USEALLOW; 481 482 MLD_UNLOCK(); 483 484 return (mli); 485 } 486 487 /* 488 * VIMAGE: assume curvnet set by caller. 489 */ 490 static struct mld_ifsoftc * 491 mli_alloc_locked(/*const*/ struct ifnet *ifp) 492 { 493 struct mld_ifsoftc *mli; 494 495 MLD_LOCK_ASSERT(); 496 497 mli = malloc(sizeof(struct mld_ifsoftc), M_MLD, M_NOWAIT|M_ZERO); 498 if (mli == NULL) 499 goto out; 500 501 mli->mli_ifp = ifp; 502 mli->mli_version = MLD_VERSION_2; 503 mli->mli_flags = 0; 504 mli->mli_rv = MLD_RV_INIT; 505 mli->mli_qi = MLD_QI_INIT; 506 mli->mli_qri = MLD_QRI_INIT; 507 mli->mli_uri = MLD_URI_INIT; 508 SLIST_INIT(&mli->mli_relinmhead); 509 mbufq_init(&mli->mli_gq, MLD_MAX_RESPONSE_PACKETS); 510 511 LIST_INSERT_HEAD(&V_mli_head, mli, mli_link); 512 513 CTR2(KTR_MLD, "allocate mld_ifsoftc for ifp %p(%s)", 514 ifp, if_name(ifp)); 515 516 out: 517 return (mli); 518 } 519 520 /* 521 * Hook for ifdetach. 522 * 523 * NOTE: Some finalization tasks need to run before the protocol domain 524 * is detached, but also before the link layer does its cleanup. 525 * Run before link-layer cleanup; cleanup groups, but do not free MLD state. 526 * 527 * SMPng: Caller must hold IN6_MULTI_LOCK(). 528 * Must take IF_ADDR_LOCK() to cover if_multiaddrs iterator. 529 * XXX This routine is also bitten by unlocked ifma_protospec access. 530 */ 531 void 532 mld_ifdetach(struct ifnet *ifp) 533 { 534 struct mld_ifsoftc *mli; 535 struct ifmultiaddr *ifma; 536 struct in6_multi *inm, *tinm; 537 538 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", __func__, ifp, 539 if_name(ifp)); 540 541 IN6_MULTI_LOCK_ASSERT(); 542 MLD_LOCK(); 543 544 mli = MLD_IFINFO(ifp); 545 if (mli->mli_version == MLD_VERSION_2) { 546 IF_ADDR_RLOCK(ifp); 547 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 548 if (ifma->ifma_addr->sa_family != AF_INET6 || 549 ifma->ifma_protospec == NULL) 550 continue; 551 inm = (struct in6_multi *)ifma->ifma_protospec; 552 if (inm->in6m_state == MLD_LEAVING_MEMBER) { 553 SLIST_INSERT_HEAD(&mli->mli_relinmhead, 554 inm, in6m_nrele); 555 } 556 in6m_clear_recorded(inm); 557 } 558 IF_ADDR_RUNLOCK(ifp); 559 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele, 560 tinm) { 561 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele); 562 in6m_release_locked(inm); 563 } 564 } 565 566 MLD_UNLOCK(); 567 } 568 569 /* 570 * Hook for domifdetach. 571 * Runs after link-layer cleanup; free MLD state. 572 * 573 * SMPng: Normally called with IF_AFDATA_LOCK held. 574 */ 575 void 576 mld_domifdetach(struct ifnet *ifp) 577 { 578 579 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 580 __func__, ifp, if_name(ifp)); 581 582 MLD_LOCK(); 583 mli_delete_locked(ifp); 584 MLD_UNLOCK(); 585 } 586 587 static void 588 mli_delete_locked(const struct ifnet *ifp) 589 { 590 struct mld_ifsoftc *mli, *tmli; 591 592 CTR3(KTR_MLD, "%s: freeing mld_ifsoftc for ifp %p(%s)", 593 __func__, ifp, if_name(ifp)); 594 595 MLD_LOCK_ASSERT(); 596 597 LIST_FOREACH_SAFE(mli, &V_mli_head, mli_link, tmli) { 598 if (mli->mli_ifp == ifp) { 599 /* 600 * Free deferred General Query responses. 601 */ 602 mbufq_drain(&mli->mli_gq); 603 604 LIST_REMOVE(mli, mli_link); 605 606 KASSERT(SLIST_EMPTY(&mli->mli_relinmhead), 607 ("%s: there are dangling in_multi references", 608 __func__)); 609 610 free(mli, M_MLD); 611 return; 612 } 613 } 614 #ifdef INVARIANTS 615 panic("%s: mld_ifsoftc not found for ifp %p\n", __func__, ifp); 616 #endif 617 } 618 619 /* 620 * Process a received MLDv1 general or address-specific query. 621 * Assumes that the query header has been pulled up to sizeof(mld_hdr). 622 * 623 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 624 * mld_addr. This is OK as we own the mbuf chain. 625 */ 626 static int 627 mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 628 /*const*/ struct mld_hdr *mld) 629 { 630 struct ifmultiaddr *ifma; 631 struct mld_ifsoftc *mli; 632 struct in6_multi *inm; 633 int is_general_query; 634 uint16_t timer; 635 #ifdef KTR 636 char ip6tbuf[INET6_ADDRSTRLEN]; 637 #endif 638 639 is_general_query = 0; 640 641 if (!mld_v1enable) { 642 CTR3(KTR_MLD, "ignore v1 query %s on ifp %p(%s)", 643 ip6_sprintf(ip6tbuf, &mld->mld_addr), 644 ifp, if_name(ifp)); 645 return (0); 646 } 647 648 /* 649 * RFC3810 Section 6.2: MLD queries must originate from 650 * a router's link-local address. 651 */ 652 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 653 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 654 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 655 ifp, if_name(ifp)); 656 return (0); 657 } 658 659 /* 660 * Do address field validation upfront before we accept 661 * the query. 662 */ 663 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 664 /* 665 * MLDv1 General Query. 666 * If this was not sent to the all-nodes group, ignore it. 667 */ 668 struct in6_addr dst; 669 670 dst = ip6->ip6_dst; 671 in6_clearscope(&dst); 672 if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes)) 673 return (EINVAL); 674 is_general_query = 1; 675 } else { 676 /* 677 * Embed scope ID of receiving interface in MLD query for 678 * lookup whilst we don't hold other locks. 679 */ 680 in6_setscope(&mld->mld_addr, ifp, NULL); 681 } 682 683 IN6_MULTI_LOCK(); 684 MLD_LOCK(); 685 686 /* 687 * Switch to MLDv1 host compatibility mode. 688 */ 689 mli = MLD_IFINFO(ifp); 690 KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp)); 691 mld_set_version(mli, MLD_VERSION_1); 692 693 timer = (ntohs(mld->mld_maxdelay) * PR_FASTHZ) / MLD_TIMER_SCALE; 694 if (timer == 0) 695 timer = 1; 696 697 IF_ADDR_RLOCK(ifp); 698 if (is_general_query) { 699 /* 700 * For each reporting group joined on this 701 * interface, kick the report timer. 702 */ 703 CTR2(KTR_MLD, "process v1 general query on ifp %p(%s)", 704 ifp, if_name(ifp)); 705 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 706 if (ifma->ifma_addr->sa_family != AF_INET6 || 707 ifma->ifma_protospec == NULL) 708 continue; 709 inm = (struct in6_multi *)ifma->ifma_protospec; 710 mld_v1_update_group(inm, timer); 711 } 712 } else { 713 /* 714 * MLDv1 Group-Specific Query. 715 * If this is a group-specific MLDv1 query, we need only 716 * look up the single group to process it. 717 */ 718 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 719 if (inm != NULL) { 720 CTR3(KTR_MLD, "process v1 query %s on ifp %p(%s)", 721 ip6_sprintf(ip6tbuf, &mld->mld_addr), 722 ifp, if_name(ifp)); 723 mld_v1_update_group(inm, timer); 724 } 725 /* XXX Clear embedded scope ID as userland won't expect it. */ 726 in6_clearscope(&mld->mld_addr); 727 } 728 729 IF_ADDR_RUNLOCK(ifp); 730 MLD_UNLOCK(); 731 IN6_MULTI_UNLOCK(); 732 733 return (0); 734 } 735 736 /* 737 * Update the report timer on a group in response to an MLDv1 query. 738 * 739 * If we are becoming the reporting member for this group, start the timer. 740 * If we already are the reporting member for this group, and timer is 741 * below the threshold, reset it. 742 * 743 * We may be updating the group for the first time since we switched 744 * to MLDv2. If we are, then we must clear any recorded source lists, 745 * and transition to REPORTING state; the group timer is overloaded 746 * for group and group-source query responses. 747 * 748 * Unlike MLDv2, the delay per group should be jittered 749 * to avoid bursts of MLDv1 reports. 750 */ 751 static void 752 mld_v1_update_group(struct in6_multi *inm, const int timer) 753 { 754 #ifdef KTR 755 char ip6tbuf[INET6_ADDRSTRLEN]; 756 #endif 757 758 CTR4(KTR_MLD, "%s: %s/%s timer=%d", __func__, 759 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 760 if_name(inm->in6m_ifp), timer); 761 762 IN6_MULTI_LOCK_ASSERT(); 763 764 switch (inm->in6m_state) { 765 case MLD_NOT_MEMBER: 766 case MLD_SILENT_MEMBER: 767 break; 768 case MLD_REPORTING_MEMBER: 769 if (inm->in6m_timer != 0 && 770 inm->in6m_timer <= timer) { 771 CTR1(KTR_MLD, "%s: REPORTING and timer running, " 772 "skipping.", __func__); 773 break; 774 } 775 /* FALLTHROUGH */ 776 case MLD_SG_QUERY_PENDING_MEMBER: 777 case MLD_G_QUERY_PENDING_MEMBER: 778 case MLD_IDLE_MEMBER: 779 case MLD_LAZY_MEMBER: 780 case MLD_AWAKENING_MEMBER: 781 CTR1(KTR_MLD, "%s: ->REPORTING", __func__); 782 inm->in6m_state = MLD_REPORTING_MEMBER; 783 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 784 V_current_state_timers_running6 = 1; 785 break; 786 case MLD_SLEEPING_MEMBER: 787 CTR1(KTR_MLD, "%s: ->AWAKENING", __func__); 788 inm->in6m_state = MLD_AWAKENING_MEMBER; 789 break; 790 case MLD_LEAVING_MEMBER: 791 break; 792 } 793 } 794 795 /* 796 * Process a received MLDv2 general, group-specific or 797 * group-and-source-specific query. 798 * 799 * Assumes that the query header has been pulled up to sizeof(mldv2_query). 800 * 801 * Return 0 if successful, otherwise an appropriate error code is returned. 802 */ 803 static int 804 mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 805 struct mbuf *m, const int off, const int icmp6len) 806 { 807 struct mld_ifsoftc *mli; 808 struct mldv2_query *mld; 809 struct in6_multi *inm; 810 uint32_t maxdelay, nsrc, qqi; 811 int is_general_query; 812 uint16_t timer; 813 uint8_t qrv; 814 #ifdef KTR 815 char ip6tbuf[INET6_ADDRSTRLEN]; 816 #endif 817 818 is_general_query = 0; 819 820 /* 821 * RFC3810 Section 6.2: MLD queries must originate from 822 * a router's link-local address. 823 */ 824 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 825 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 826 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 827 ifp, if_name(ifp)); 828 return (0); 829 } 830 831 CTR2(KTR_MLD, "input v2 query on ifp %p(%s)", ifp, if_name(ifp)); 832 833 mld = (struct mldv2_query *)(mtod(m, uint8_t *) + off); 834 835 maxdelay = ntohs(mld->mld_maxdelay); /* in 1/10ths of a second */ 836 if (maxdelay >= 32768) { 837 maxdelay = (MLD_MRC_MANT(maxdelay) | 0x1000) << 838 (MLD_MRC_EXP(maxdelay) + 3); 839 } 840 timer = (maxdelay * PR_FASTHZ) / MLD_TIMER_SCALE; 841 if (timer == 0) 842 timer = 1; 843 844 qrv = MLD_QRV(mld->mld_misc); 845 if (qrv < 2) { 846 CTR3(KTR_MLD, "%s: clamping qrv %d to %d", __func__, 847 qrv, MLD_RV_INIT); 848 qrv = MLD_RV_INIT; 849 } 850 851 qqi = mld->mld_qqi; 852 if (qqi >= 128) { 853 qqi = MLD_QQIC_MANT(mld->mld_qqi) << 854 (MLD_QQIC_EXP(mld->mld_qqi) + 3); 855 } 856 857 nsrc = ntohs(mld->mld_numsrc); 858 if (nsrc > MLD_MAX_GS_SOURCES) 859 return (EMSGSIZE); 860 if (icmp6len < sizeof(struct mldv2_query) + 861 (nsrc * sizeof(struct in6_addr))) 862 return (EMSGSIZE); 863 864 /* 865 * Do further input validation upfront to avoid resetting timers 866 * should we need to discard this query. 867 */ 868 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 869 /* 870 * A general query with a source list has undefined 871 * behaviour; discard it. 872 */ 873 if (nsrc > 0) 874 return (EINVAL); 875 is_general_query = 1; 876 } else { 877 /* 878 * Embed scope ID of receiving interface in MLD query for 879 * lookup whilst we don't hold other locks (due to KAME 880 * locking lameness). We own this mbuf chain just now. 881 */ 882 in6_setscope(&mld->mld_addr, ifp, NULL); 883 } 884 885 IN6_MULTI_LOCK(); 886 MLD_LOCK(); 887 888 mli = MLD_IFINFO(ifp); 889 KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp)); 890 891 /* 892 * Discard the v2 query if we're in Compatibility Mode. 893 * The RFC is pretty clear that hosts need to stay in MLDv1 mode 894 * until the Old Version Querier Present timer expires. 895 */ 896 if (mli->mli_version != MLD_VERSION_2) 897 goto out_locked; 898 899 mld_set_version(mli, MLD_VERSION_2); 900 mli->mli_rv = qrv; 901 mli->mli_qi = qqi; 902 mli->mli_qri = maxdelay; 903 904 CTR4(KTR_MLD, "%s: qrv %d qi %d maxdelay %d", __func__, qrv, qqi, 905 maxdelay); 906 907 if (is_general_query) { 908 /* 909 * MLDv2 General Query. 910 * 911 * Schedule a current-state report on this ifp for 912 * all groups, possibly containing source lists. 913 * 914 * If there is a pending General Query response 915 * scheduled earlier than the selected delay, do 916 * not schedule any other reports. 917 * Otherwise, reset the interface timer. 918 */ 919 CTR2(KTR_MLD, "process v2 general query on ifp %p(%s)", 920 ifp, if_name(ifp)); 921 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) { 922 mli->mli_v2_timer = MLD_RANDOM_DELAY(timer); 923 V_interface_timers_running6 = 1; 924 } 925 } else { 926 /* 927 * MLDv2 Group-specific or Group-and-source-specific Query. 928 * 929 * Group-source-specific queries are throttled on 930 * a per-group basis to defeat denial-of-service attempts. 931 * Queries for groups we are not a member of on this 932 * link are simply ignored. 933 */ 934 IF_ADDR_RLOCK(ifp); 935 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 936 if (inm == NULL) { 937 IF_ADDR_RUNLOCK(ifp); 938 goto out_locked; 939 } 940 if (nsrc > 0) { 941 if (!ratecheck(&inm->in6m_lastgsrtv, 942 &V_mld_gsrdelay)) { 943 CTR1(KTR_MLD, "%s: GS query throttled.", 944 __func__); 945 IF_ADDR_RUNLOCK(ifp); 946 goto out_locked; 947 } 948 } 949 CTR2(KTR_MLD, "process v2 group query on ifp %p(%s)", 950 ifp, if_name(ifp)); 951 /* 952 * If there is a pending General Query response 953 * scheduled sooner than the selected delay, no 954 * further report need be scheduled. 955 * Otherwise, prepare to respond to the 956 * group-specific or group-and-source query. 957 */ 958 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) 959 mld_v2_process_group_query(inm, mli, timer, m, off); 960 961 /* XXX Clear embedded scope ID as userland won't expect it. */ 962 in6_clearscope(&mld->mld_addr); 963 IF_ADDR_RUNLOCK(ifp); 964 } 965 966 out_locked: 967 MLD_UNLOCK(); 968 IN6_MULTI_UNLOCK(); 969 970 return (0); 971 } 972 973 /* 974 * Process a recieved MLDv2 group-specific or group-and-source-specific 975 * query. 976 * Return <0 if any error occured. Currently this is ignored. 977 */ 978 static int 979 mld_v2_process_group_query(struct in6_multi *inm, struct mld_ifsoftc *mli, 980 int timer, struct mbuf *m0, const int off) 981 { 982 struct mldv2_query *mld; 983 int retval; 984 uint16_t nsrc; 985 986 IN6_MULTI_LOCK_ASSERT(); 987 MLD_LOCK_ASSERT(); 988 989 retval = 0; 990 mld = (struct mldv2_query *)(mtod(m0, uint8_t *) + off); 991 992 switch (inm->in6m_state) { 993 case MLD_NOT_MEMBER: 994 case MLD_SILENT_MEMBER: 995 case MLD_SLEEPING_MEMBER: 996 case MLD_LAZY_MEMBER: 997 case MLD_AWAKENING_MEMBER: 998 case MLD_IDLE_MEMBER: 999 case MLD_LEAVING_MEMBER: 1000 return (retval); 1001 break; 1002 case MLD_REPORTING_MEMBER: 1003 case MLD_G_QUERY_PENDING_MEMBER: 1004 case MLD_SG_QUERY_PENDING_MEMBER: 1005 break; 1006 } 1007 1008 nsrc = ntohs(mld->mld_numsrc); 1009 1010 /* 1011 * Deal with group-specific queries upfront. 1012 * If any group query is already pending, purge any recorded 1013 * source-list state if it exists, and schedule a query response 1014 * for this group-specific query. 1015 */ 1016 if (nsrc == 0) { 1017 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 1018 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) { 1019 in6m_clear_recorded(inm); 1020 timer = min(inm->in6m_timer, timer); 1021 } 1022 inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER; 1023 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1024 V_current_state_timers_running6 = 1; 1025 return (retval); 1026 } 1027 1028 /* 1029 * Deal with the case where a group-and-source-specific query has 1030 * been received but a group-specific query is already pending. 1031 */ 1032 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) { 1033 timer = min(inm->in6m_timer, timer); 1034 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1035 V_current_state_timers_running6 = 1; 1036 return (retval); 1037 } 1038 1039 /* 1040 * Finally, deal with the case where a group-and-source-specific 1041 * query has been received, where a response to a previous g-s-r 1042 * query exists, or none exists. 1043 * In this case, we need to parse the source-list which the Querier 1044 * has provided us with and check if we have any source list filter 1045 * entries at T1 for these sources. If we do not, there is no need 1046 * schedule a report and the query may be dropped. 1047 * If we do, we must record them and schedule a current-state 1048 * report for those sources. 1049 */ 1050 if (inm->in6m_nsrc > 0) { 1051 struct mbuf *m; 1052 uint8_t *sp; 1053 int i, nrecorded; 1054 int soff; 1055 1056 m = m0; 1057 soff = off + sizeof(struct mldv2_query); 1058 nrecorded = 0; 1059 for (i = 0; i < nsrc; i++) { 1060 sp = mtod(m, uint8_t *) + soff; 1061 retval = in6m_record_source(inm, 1062 (const struct in6_addr *)sp); 1063 if (retval < 0) 1064 break; 1065 nrecorded += retval; 1066 soff += sizeof(struct in6_addr); 1067 if (soff >= m->m_len) { 1068 soff = soff - m->m_len; 1069 m = m->m_next; 1070 if (m == NULL) 1071 break; 1072 } 1073 } 1074 if (nrecorded > 0) { 1075 CTR1(KTR_MLD, 1076 "%s: schedule response to SG query", __func__); 1077 inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER; 1078 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1079 V_current_state_timers_running6 = 1; 1080 } 1081 } 1082 1083 return (retval); 1084 } 1085 1086 /* 1087 * Process a received MLDv1 host membership report. 1088 * Assumes mld points to mld_hdr in pulled up mbuf chain. 1089 * 1090 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 1091 * mld_addr. This is OK as we own the mbuf chain. 1092 */ 1093 static int 1094 mld_v1_input_report(struct ifnet *ifp, const struct ip6_hdr *ip6, 1095 /*const*/ struct mld_hdr *mld) 1096 { 1097 struct in6_addr src, dst; 1098 struct in6_ifaddr *ia; 1099 struct in6_multi *inm; 1100 #ifdef KTR 1101 char ip6tbuf[INET6_ADDRSTRLEN]; 1102 #endif 1103 1104 if (!mld_v1enable) { 1105 CTR3(KTR_MLD, "ignore v1 report %s on ifp %p(%s)", 1106 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1107 ifp, if_name(ifp)); 1108 return (0); 1109 } 1110 1111 if (ifp->if_flags & IFF_LOOPBACK) 1112 return (0); 1113 1114 /* 1115 * MLDv1 reports must originate from a host's link-local address, 1116 * or the unspecified address (when booting). 1117 */ 1118 src = ip6->ip6_src; 1119 in6_clearscope(&src); 1120 if (!IN6_IS_SCOPE_LINKLOCAL(&src) && !IN6_IS_ADDR_UNSPECIFIED(&src)) { 1121 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 1122 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 1123 ifp, if_name(ifp)); 1124 return (EINVAL); 1125 } 1126 1127 /* 1128 * RFC2710 Section 4: MLDv1 reports must pertain to a multicast 1129 * group, and must be directed to the group itself. 1130 */ 1131 dst = ip6->ip6_dst; 1132 in6_clearscope(&dst); 1133 if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) || 1134 !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &dst)) { 1135 CTR3(KTR_MLD, "ignore v1 query dst %s on ifp %p(%s)", 1136 ip6_sprintf(ip6tbuf, &ip6->ip6_dst), 1137 ifp, if_name(ifp)); 1138 return (EINVAL); 1139 } 1140 1141 /* 1142 * Make sure we don't hear our own membership report, as fast 1143 * leave requires knowing that we are the only member of a 1144 * group. Assume we used the link-local address if available, 1145 * otherwise look for ::. 1146 * 1147 * XXX Note that scope ID comparison is needed for the address 1148 * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be 1149 * performed for the on-wire address. 1150 */ 1151 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1152 if ((ia && IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia))) || 1153 (ia == NULL && IN6_IS_ADDR_UNSPECIFIED(&src))) { 1154 if (ia != NULL) 1155 ifa_free(&ia->ia_ifa); 1156 return (0); 1157 } 1158 if (ia != NULL) 1159 ifa_free(&ia->ia_ifa); 1160 1161 CTR3(KTR_MLD, "process v1 report %s on ifp %p(%s)", 1162 ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, if_name(ifp)); 1163 1164 /* 1165 * Embed scope ID of receiving interface in MLD query for lookup 1166 * whilst we don't hold other locks (due to KAME locking lameness). 1167 */ 1168 if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) 1169 in6_setscope(&mld->mld_addr, ifp, NULL); 1170 1171 IN6_MULTI_LOCK(); 1172 MLD_LOCK(); 1173 IF_ADDR_RLOCK(ifp); 1174 1175 /* 1176 * MLDv1 report suppression. 1177 * If we are a member of this group, and our membership should be 1178 * reported, and our group timer is pending or about to be reset, 1179 * stop our group timer by transitioning to the 'lazy' state. 1180 */ 1181 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 1182 if (inm != NULL) { 1183 struct mld_ifsoftc *mli; 1184 1185 mli = inm->in6m_mli; 1186 KASSERT(mli != NULL, 1187 ("%s: no mli for ifp %p", __func__, ifp)); 1188 1189 /* 1190 * If we are in MLDv2 host mode, do not allow the 1191 * other host's MLDv1 report to suppress our reports. 1192 */ 1193 if (mli->mli_version == MLD_VERSION_2) 1194 goto out_locked; 1195 1196 inm->in6m_timer = 0; 1197 1198 switch (inm->in6m_state) { 1199 case MLD_NOT_MEMBER: 1200 case MLD_SILENT_MEMBER: 1201 case MLD_SLEEPING_MEMBER: 1202 break; 1203 case MLD_REPORTING_MEMBER: 1204 case MLD_IDLE_MEMBER: 1205 case MLD_AWAKENING_MEMBER: 1206 CTR3(KTR_MLD, 1207 "report suppressed for %s on ifp %p(%s)", 1208 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1209 ifp, if_name(ifp)); 1210 case MLD_LAZY_MEMBER: 1211 inm->in6m_state = MLD_LAZY_MEMBER; 1212 break; 1213 case MLD_G_QUERY_PENDING_MEMBER: 1214 case MLD_SG_QUERY_PENDING_MEMBER: 1215 case MLD_LEAVING_MEMBER: 1216 break; 1217 } 1218 } 1219 1220 out_locked: 1221 IF_ADDR_RUNLOCK(ifp); 1222 MLD_UNLOCK(); 1223 IN6_MULTI_UNLOCK(); 1224 1225 /* XXX Clear embedded scope ID as userland won't expect it. */ 1226 in6_clearscope(&mld->mld_addr); 1227 1228 return (0); 1229 } 1230 1231 /* 1232 * MLD input path. 1233 * 1234 * Assume query messages which fit in a single ICMPv6 message header 1235 * have been pulled up. 1236 * Assume that userland will want to see the message, even if it 1237 * otherwise fails kernel input validation; do not free it. 1238 * Pullup may however free the mbuf chain m if it fails. 1239 * 1240 * Return IPPROTO_DONE if we freed m. Otherwise, return 0. 1241 */ 1242 int 1243 mld_input(struct mbuf *m, int off, int icmp6len) 1244 { 1245 struct ifnet *ifp; 1246 struct ip6_hdr *ip6; 1247 struct mld_hdr *mld; 1248 int mldlen; 1249 1250 CTR3(KTR_MLD, "%s: called w/mbuf (%p,%d)", __func__, m, off); 1251 1252 ifp = m->m_pkthdr.rcvif; 1253 1254 ip6 = mtod(m, struct ip6_hdr *); 1255 1256 /* Pullup to appropriate size. */ 1257 mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off); 1258 if (mld->mld_type == MLD_LISTENER_QUERY && 1259 icmp6len >= sizeof(struct mldv2_query)) { 1260 mldlen = sizeof(struct mldv2_query); 1261 } else { 1262 mldlen = sizeof(struct mld_hdr); 1263 } 1264 IP6_EXTHDR_GET(mld, struct mld_hdr *, m, off, mldlen); 1265 if (mld == NULL) { 1266 ICMP6STAT_INC(icp6s_badlen); 1267 return (IPPROTO_DONE); 1268 } 1269 1270 /* 1271 * Userland needs to see all of this traffic for implementing 1272 * the endpoint discovery portion of multicast routing. 1273 */ 1274 switch (mld->mld_type) { 1275 case MLD_LISTENER_QUERY: 1276 icmp6_ifstat_inc(ifp, ifs6_in_mldquery); 1277 if (icmp6len == sizeof(struct mld_hdr)) { 1278 if (mld_v1_input_query(ifp, ip6, mld) != 0) 1279 return (0); 1280 } else if (icmp6len >= sizeof(struct mldv2_query)) { 1281 if (mld_v2_input_query(ifp, ip6, m, off, 1282 icmp6len) != 0) 1283 return (0); 1284 } 1285 break; 1286 case MLD_LISTENER_REPORT: 1287 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1288 if (mld_v1_input_report(ifp, ip6, mld) != 0) 1289 return (0); 1290 break; 1291 case MLDV2_LISTENER_REPORT: 1292 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1293 break; 1294 case MLD_LISTENER_DONE: 1295 icmp6_ifstat_inc(ifp, ifs6_in_mlddone); 1296 break; 1297 default: 1298 break; 1299 } 1300 1301 return (0); 1302 } 1303 1304 /* 1305 * Fast timeout handler (global). 1306 * VIMAGE: Timeout handlers are expected to service all vimages. 1307 */ 1308 void 1309 mld_fasttimo(void) 1310 { 1311 VNET_ITERATOR_DECL(vnet_iter); 1312 1313 VNET_LIST_RLOCK_NOSLEEP(); 1314 VNET_FOREACH(vnet_iter) { 1315 CURVNET_SET(vnet_iter); 1316 mld_fasttimo_vnet(); 1317 CURVNET_RESTORE(); 1318 } 1319 VNET_LIST_RUNLOCK_NOSLEEP(); 1320 } 1321 1322 /* 1323 * Fast timeout handler (per-vnet). 1324 * 1325 * VIMAGE: Assume caller has set up our curvnet. 1326 */ 1327 static void 1328 mld_fasttimo_vnet(void) 1329 { 1330 struct mbufq scq; /* State-change packets */ 1331 struct mbufq qrq; /* Query response packets */ 1332 struct ifnet *ifp; 1333 struct mld_ifsoftc *mli; 1334 struct ifmultiaddr *ifma; 1335 struct in6_multi *inm, *tinm; 1336 int uri_fasthz; 1337 1338 uri_fasthz = 0; 1339 1340 /* 1341 * Quick check to see if any work needs to be done, in order to 1342 * minimize the overhead of fasttimo processing. 1343 * SMPng: XXX Unlocked reads. 1344 */ 1345 if (!V_current_state_timers_running6 && 1346 !V_interface_timers_running6 && 1347 !V_state_change_timers_running6) 1348 return; 1349 1350 IN6_MULTI_LOCK(); 1351 MLD_LOCK(); 1352 1353 /* 1354 * MLDv2 General Query response timer processing. 1355 */ 1356 if (V_interface_timers_running6) { 1357 CTR1(KTR_MLD, "%s: interface timers running", __func__); 1358 1359 V_interface_timers_running6 = 0; 1360 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1361 if (mli->mli_v2_timer == 0) { 1362 /* Do nothing. */ 1363 } else if (--mli->mli_v2_timer == 0) { 1364 mld_v2_dispatch_general_query(mli); 1365 } else { 1366 V_interface_timers_running6 = 1; 1367 } 1368 } 1369 } 1370 1371 if (!V_current_state_timers_running6 && 1372 !V_state_change_timers_running6) 1373 goto out_locked; 1374 1375 V_current_state_timers_running6 = 0; 1376 V_state_change_timers_running6 = 0; 1377 1378 CTR1(KTR_MLD, "%s: state change timers running", __func__); 1379 1380 /* 1381 * MLD host report and state-change timer processing. 1382 * Note: Processing a v2 group timer may remove a node. 1383 */ 1384 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1385 ifp = mli->mli_ifp; 1386 1387 if (mli->mli_version == MLD_VERSION_2) { 1388 uri_fasthz = MLD_RANDOM_DELAY(mli->mli_uri * 1389 PR_FASTHZ); 1390 mbufq_init(&qrq, MLD_MAX_G_GS_PACKETS); 1391 mbufq_init(&scq, MLD_MAX_STATE_CHANGE_PACKETS); 1392 } 1393 1394 IF_ADDR_RLOCK(ifp); 1395 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1396 if (ifma->ifma_addr->sa_family != AF_INET6 || 1397 ifma->ifma_protospec == NULL) 1398 continue; 1399 inm = (struct in6_multi *)ifma->ifma_protospec; 1400 switch (mli->mli_version) { 1401 case MLD_VERSION_1: 1402 mld_v1_process_group_timer(mli, inm); 1403 break; 1404 case MLD_VERSION_2: 1405 mld_v2_process_group_timers(mli, &qrq, 1406 &scq, inm, uri_fasthz); 1407 break; 1408 } 1409 } 1410 IF_ADDR_RUNLOCK(ifp); 1411 1412 switch (mli->mli_version) { 1413 case MLD_VERSION_1: 1414 /* 1415 * Transmit reports for this lifecycle. This 1416 * is done while not holding IF_ADDR_LOCK 1417 * since this can call 1418 * in6ifa_ifpforlinklocal() which locks 1419 * IF_ADDR_LOCK internally as well as 1420 * ip6_output() to transmit a packet. 1421 */ 1422 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, 1423 in6m_nrele, tinm) { 1424 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, 1425 in6m_nrele); 1426 (void)mld_v1_transmit_report(inm, 1427 MLD_LISTENER_REPORT); 1428 } 1429 break; 1430 case MLD_VERSION_2: 1431 mld_dispatch_queue(&qrq, 0); 1432 mld_dispatch_queue(&scq, 0); 1433 1434 /* 1435 * Free the in_multi reference(s) for 1436 * this lifecycle. 1437 */ 1438 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, 1439 in6m_nrele, tinm) { 1440 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, 1441 in6m_nrele); 1442 in6m_release_locked(inm); 1443 } 1444 break; 1445 } 1446 } 1447 1448 out_locked: 1449 MLD_UNLOCK(); 1450 IN6_MULTI_UNLOCK(); 1451 } 1452 1453 /* 1454 * Update host report group timer. 1455 * Will update the global pending timer flags. 1456 */ 1457 static void 1458 mld_v1_process_group_timer(struct mld_ifsoftc *mli, struct in6_multi *inm) 1459 { 1460 int report_timer_expired; 1461 1462 IN6_MULTI_LOCK_ASSERT(); 1463 MLD_LOCK_ASSERT(); 1464 1465 if (inm->in6m_timer == 0) { 1466 report_timer_expired = 0; 1467 } else if (--inm->in6m_timer == 0) { 1468 report_timer_expired = 1; 1469 } else { 1470 V_current_state_timers_running6 = 1; 1471 return; 1472 } 1473 1474 switch (inm->in6m_state) { 1475 case MLD_NOT_MEMBER: 1476 case MLD_SILENT_MEMBER: 1477 case MLD_IDLE_MEMBER: 1478 case MLD_LAZY_MEMBER: 1479 case MLD_SLEEPING_MEMBER: 1480 case MLD_AWAKENING_MEMBER: 1481 break; 1482 case MLD_REPORTING_MEMBER: 1483 if (report_timer_expired) { 1484 inm->in6m_state = MLD_IDLE_MEMBER; 1485 SLIST_INSERT_HEAD(&mli->mli_relinmhead, inm, 1486 in6m_nrele); 1487 } 1488 break; 1489 case MLD_G_QUERY_PENDING_MEMBER: 1490 case MLD_SG_QUERY_PENDING_MEMBER: 1491 case MLD_LEAVING_MEMBER: 1492 break; 1493 } 1494 } 1495 1496 /* 1497 * Update a group's timers for MLDv2. 1498 * Will update the global pending timer flags. 1499 * Note: Unlocked read from mli. 1500 */ 1501 static void 1502 mld_v2_process_group_timers(struct mld_ifsoftc *mli, 1503 struct mbufq *qrq, struct mbufq *scq, 1504 struct in6_multi *inm, const int uri_fasthz) 1505 { 1506 int query_response_timer_expired; 1507 int state_change_retransmit_timer_expired; 1508 #ifdef KTR 1509 char ip6tbuf[INET6_ADDRSTRLEN]; 1510 #endif 1511 1512 IN6_MULTI_LOCK_ASSERT(); 1513 MLD_LOCK_ASSERT(); 1514 1515 query_response_timer_expired = 0; 1516 state_change_retransmit_timer_expired = 0; 1517 1518 /* 1519 * During a transition from compatibility mode back to MLDv2, 1520 * a group record in REPORTING state may still have its group 1521 * timer active. This is a no-op in this function; it is easier 1522 * to deal with it here than to complicate the slow-timeout path. 1523 */ 1524 if (inm->in6m_timer == 0) { 1525 query_response_timer_expired = 0; 1526 } else if (--inm->in6m_timer == 0) { 1527 query_response_timer_expired = 1; 1528 } else { 1529 V_current_state_timers_running6 = 1; 1530 } 1531 1532 if (inm->in6m_sctimer == 0) { 1533 state_change_retransmit_timer_expired = 0; 1534 } else if (--inm->in6m_sctimer == 0) { 1535 state_change_retransmit_timer_expired = 1; 1536 } else { 1537 V_state_change_timers_running6 = 1; 1538 } 1539 1540 /* We are in fasttimo, so be quick about it. */ 1541 if (!state_change_retransmit_timer_expired && 1542 !query_response_timer_expired) 1543 return; 1544 1545 switch (inm->in6m_state) { 1546 case MLD_NOT_MEMBER: 1547 case MLD_SILENT_MEMBER: 1548 case MLD_SLEEPING_MEMBER: 1549 case MLD_LAZY_MEMBER: 1550 case MLD_AWAKENING_MEMBER: 1551 case MLD_IDLE_MEMBER: 1552 break; 1553 case MLD_G_QUERY_PENDING_MEMBER: 1554 case MLD_SG_QUERY_PENDING_MEMBER: 1555 /* 1556 * Respond to a previously pending Group-Specific 1557 * or Group-and-Source-Specific query by enqueueing 1558 * the appropriate Current-State report for 1559 * immediate transmission. 1560 */ 1561 if (query_response_timer_expired) { 1562 int retval; 1563 1564 retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1, 1565 (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER), 1566 0); 1567 CTR2(KTR_MLD, "%s: enqueue record = %d", 1568 __func__, retval); 1569 inm->in6m_state = MLD_REPORTING_MEMBER; 1570 in6m_clear_recorded(inm); 1571 } 1572 /* FALLTHROUGH */ 1573 case MLD_REPORTING_MEMBER: 1574 case MLD_LEAVING_MEMBER: 1575 if (state_change_retransmit_timer_expired) { 1576 /* 1577 * State-change retransmission timer fired. 1578 * If there are any further pending retransmissions, 1579 * set the global pending state-change flag, and 1580 * reset the timer. 1581 */ 1582 if (--inm->in6m_scrv > 0) { 1583 inm->in6m_sctimer = uri_fasthz; 1584 V_state_change_timers_running6 = 1; 1585 } 1586 /* 1587 * Retransmit the previously computed state-change 1588 * report. If there are no further pending 1589 * retransmissions, the mbuf queue will be consumed. 1590 * Update T0 state to T1 as we have now sent 1591 * a state-change. 1592 */ 1593 (void)mld_v2_merge_state_changes(inm, scq); 1594 1595 in6m_commit(inm); 1596 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 1597 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1598 if_name(inm->in6m_ifp)); 1599 1600 /* 1601 * If we are leaving the group for good, make sure 1602 * we release MLD's reference to it. 1603 * This release must be deferred using a SLIST, 1604 * as we are called from a loop which traverses 1605 * the in_ifmultiaddr TAILQ. 1606 */ 1607 if (inm->in6m_state == MLD_LEAVING_MEMBER && 1608 inm->in6m_scrv == 0) { 1609 inm->in6m_state = MLD_NOT_MEMBER; 1610 SLIST_INSERT_HEAD(&mli->mli_relinmhead, 1611 inm, in6m_nrele); 1612 } 1613 } 1614 break; 1615 } 1616 } 1617 1618 /* 1619 * Switch to a different version on the given interface, 1620 * as per Section 9.12. 1621 */ 1622 static void 1623 mld_set_version(struct mld_ifsoftc *mli, const int version) 1624 { 1625 int old_version_timer; 1626 1627 MLD_LOCK_ASSERT(); 1628 1629 CTR4(KTR_MLD, "%s: switching to v%d on ifp %p(%s)", __func__, 1630 version, mli->mli_ifp, if_name(mli->mli_ifp)); 1631 1632 if (version == MLD_VERSION_1) { 1633 /* 1634 * Compute the "Older Version Querier Present" timer as per 1635 * Section 9.12. 1636 */ 1637 old_version_timer = (mli->mli_rv * mli->mli_qi) + mli->mli_qri; 1638 old_version_timer *= PR_SLOWHZ; 1639 mli->mli_v1_timer = old_version_timer; 1640 } 1641 1642 if (mli->mli_v1_timer > 0 && mli->mli_version != MLD_VERSION_1) { 1643 mli->mli_version = MLD_VERSION_1; 1644 mld_v2_cancel_link_timers(mli); 1645 } 1646 } 1647 1648 /* 1649 * Cancel pending MLDv2 timers for the given link and all groups 1650 * joined on it; state-change, general-query, and group-query timers. 1651 */ 1652 static void 1653 mld_v2_cancel_link_timers(struct mld_ifsoftc *mli) 1654 { 1655 struct ifmultiaddr *ifma; 1656 struct ifnet *ifp; 1657 struct in6_multi *inm, *tinm; 1658 1659 CTR3(KTR_MLD, "%s: cancel v2 timers on ifp %p(%s)", __func__, 1660 mli->mli_ifp, if_name(mli->mli_ifp)); 1661 1662 IN6_MULTI_LOCK_ASSERT(); 1663 MLD_LOCK_ASSERT(); 1664 1665 /* 1666 * Fast-track this potentially expensive operation 1667 * by checking all the global 'timer pending' flags. 1668 */ 1669 if (!V_interface_timers_running6 && 1670 !V_state_change_timers_running6 && 1671 !V_current_state_timers_running6) 1672 return; 1673 1674 mli->mli_v2_timer = 0; 1675 1676 ifp = mli->mli_ifp; 1677 1678 IF_ADDR_RLOCK(ifp); 1679 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1680 if (ifma->ifma_addr->sa_family != AF_INET6) 1681 continue; 1682 inm = (struct in6_multi *)ifma->ifma_protospec; 1683 switch (inm->in6m_state) { 1684 case MLD_NOT_MEMBER: 1685 case MLD_SILENT_MEMBER: 1686 case MLD_IDLE_MEMBER: 1687 case MLD_LAZY_MEMBER: 1688 case MLD_SLEEPING_MEMBER: 1689 case MLD_AWAKENING_MEMBER: 1690 break; 1691 case MLD_LEAVING_MEMBER: 1692 /* 1693 * If we are leaving the group and switching 1694 * version, we need to release the final 1695 * reference held for issuing the INCLUDE {}. 1696 */ 1697 SLIST_INSERT_HEAD(&mli->mli_relinmhead, inm, 1698 in6m_nrele); 1699 /* FALLTHROUGH */ 1700 case MLD_G_QUERY_PENDING_MEMBER: 1701 case MLD_SG_QUERY_PENDING_MEMBER: 1702 in6m_clear_recorded(inm); 1703 /* FALLTHROUGH */ 1704 case MLD_REPORTING_MEMBER: 1705 inm->in6m_sctimer = 0; 1706 inm->in6m_timer = 0; 1707 inm->in6m_state = MLD_REPORTING_MEMBER; 1708 /* 1709 * Free any pending MLDv2 state-change records. 1710 */ 1711 mbufq_drain(&inm->in6m_scq); 1712 break; 1713 } 1714 } 1715 IF_ADDR_RUNLOCK(ifp); 1716 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele, tinm) { 1717 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele); 1718 in6m_release_locked(inm); 1719 } 1720 } 1721 1722 /* 1723 * Global slowtimo handler. 1724 * VIMAGE: Timeout handlers are expected to service all vimages. 1725 */ 1726 void 1727 mld_slowtimo(void) 1728 { 1729 VNET_ITERATOR_DECL(vnet_iter); 1730 1731 VNET_LIST_RLOCK_NOSLEEP(); 1732 VNET_FOREACH(vnet_iter) { 1733 CURVNET_SET(vnet_iter); 1734 mld_slowtimo_vnet(); 1735 CURVNET_RESTORE(); 1736 } 1737 VNET_LIST_RUNLOCK_NOSLEEP(); 1738 } 1739 1740 /* 1741 * Per-vnet slowtimo handler. 1742 */ 1743 static void 1744 mld_slowtimo_vnet(void) 1745 { 1746 struct mld_ifsoftc *mli; 1747 1748 MLD_LOCK(); 1749 1750 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1751 mld_v1_process_querier_timers(mli); 1752 } 1753 1754 MLD_UNLOCK(); 1755 } 1756 1757 /* 1758 * Update the Older Version Querier Present timers for a link. 1759 * See Section 9.12 of RFC 3810. 1760 */ 1761 static void 1762 mld_v1_process_querier_timers(struct mld_ifsoftc *mli) 1763 { 1764 1765 MLD_LOCK_ASSERT(); 1766 1767 if (mli->mli_version != MLD_VERSION_2 && --mli->mli_v1_timer == 0) { 1768 /* 1769 * MLDv1 Querier Present timer expired; revert to MLDv2. 1770 */ 1771 CTR5(KTR_MLD, 1772 "%s: transition from v%d -> v%d on %p(%s)", 1773 __func__, mli->mli_version, MLD_VERSION_2, 1774 mli->mli_ifp, if_name(mli->mli_ifp)); 1775 mli->mli_version = MLD_VERSION_2; 1776 } 1777 } 1778 1779 /* 1780 * Transmit an MLDv1 report immediately. 1781 */ 1782 static int 1783 mld_v1_transmit_report(struct in6_multi *in6m, const int type) 1784 { 1785 struct ifnet *ifp; 1786 struct in6_ifaddr *ia; 1787 struct ip6_hdr *ip6; 1788 struct mbuf *mh, *md; 1789 struct mld_hdr *mld; 1790 1791 IN6_MULTI_LOCK_ASSERT(); 1792 MLD_LOCK_ASSERT(); 1793 1794 ifp = in6m->in6m_ifp; 1795 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1796 /* ia may be NULL if link-local address is tentative. */ 1797 1798 mh = m_gethdr(M_NOWAIT, MT_DATA); 1799 if (mh == NULL) { 1800 if (ia != NULL) 1801 ifa_free(&ia->ia_ifa); 1802 return (ENOMEM); 1803 } 1804 md = m_get(M_NOWAIT, MT_DATA); 1805 if (md == NULL) { 1806 m_free(mh); 1807 if (ia != NULL) 1808 ifa_free(&ia->ia_ifa); 1809 return (ENOMEM); 1810 } 1811 mh->m_next = md; 1812 1813 /* 1814 * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so 1815 * that ether_output() does not need to allocate another mbuf 1816 * for the header in the most common case. 1817 */ 1818 M_ALIGN(mh, sizeof(struct ip6_hdr)); 1819 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr); 1820 mh->m_len = sizeof(struct ip6_hdr); 1821 1822 ip6 = mtod(mh, struct ip6_hdr *); 1823 ip6->ip6_flow = 0; 1824 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 1825 ip6->ip6_vfc |= IPV6_VERSION; 1826 ip6->ip6_nxt = IPPROTO_ICMPV6; 1827 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 1828 ip6->ip6_dst = in6m->in6m_addr; 1829 1830 md->m_len = sizeof(struct mld_hdr); 1831 mld = mtod(md, struct mld_hdr *); 1832 mld->mld_type = type; 1833 mld->mld_code = 0; 1834 mld->mld_cksum = 0; 1835 mld->mld_maxdelay = 0; 1836 mld->mld_reserved = 0; 1837 mld->mld_addr = in6m->in6m_addr; 1838 in6_clearscope(&mld->mld_addr); 1839 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 1840 sizeof(struct ip6_hdr), sizeof(struct mld_hdr)); 1841 1842 mld_save_context(mh, ifp); 1843 mh->m_flags |= M_MLDV1; 1844 1845 mld_dispatch_packet(mh); 1846 1847 if (ia != NULL) 1848 ifa_free(&ia->ia_ifa); 1849 return (0); 1850 } 1851 1852 /* 1853 * Process a state change from the upper layer for the given IPv6 group. 1854 * 1855 * Each socket holds a reference on the in_multi in its own ip_moptions. 1856 * The socket layer will have made the necessary updates to.the group 1857 * state, it is now up to MLD to issue a state change report if there 1858 * has been any change between T0 (when the last state-change was issued) 1859 * and T1 (now). 1860 * 1861 * We use the MLDv2 state machine at group level. The MLd module 1862 * however makes the decision as to which MLD protocol version to speak. 1863 * A state change *from* INCLUDE {} always means an initial join. 1864 * A state change *to* INCLUDE {} always means a final leave. 1865 * 1866 * If delay is non-zero, and the state change is an initial multicast 1867 * join, the state change report will be delayed by 'delay' ticks 1868 * in units of PR_FASTHZ if MLDv1 is active on the link; otherwise 1869 * the initial MLDv2 state change report will be delayed by whichever 1870 * is sooner, a pending state-change timer or delay itself. 1871 * 1872 * VIMAGE: curvnet should have been set by caller, as this routine 1873 * is called from the socket option handlers. 1874 */ 1875 int 1876 mld_change_state(struct in6_multi *inm, const int delay) 1877 { 1878 struct mld_ifsoftc *mli; 1879 struct ifnet *ifp; 1880 int error; 1881 1882 IN6_MULTI_LOCK_ASSERT(); 1883 1884 error = 0; 1885 1886 /* 1887 * Try to detect if the upper layer just asked us to change state 1888 * for an interface which has now gone away. 1889 */ 1890 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); 1891 ifp = inm->in6m_ifma->ifma_ifp; 1892 if (ifp != NULL) { 1893 /* 1894 * Sanity check that netinet6's notion of ifp is the 1895 * same as net's. 1896 */ 1897 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); 1898 } 1899 1900 MLD_LOCK(); 1901 1902 mli = MLD_IFINFO(ifp); 1903 KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp)); 1904 1905 /* 1906 * If we detect a state transition to or from MCAST_UNDEFINED 1907 * for this group, then we are starting or finishing an MLD 1908 * life cycle for this group. 1909 */ 1910 if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) { 1911 CTR3(KTR_MLD, "%s: inm transition %d -> %d", __func__, 1912 inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode); 1913 if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) { 1914 CTR1(KTR_MLD, "%s: initial join", __func__); 1915 error = mld_initial_join(inm, mli, delay); 1916 goto out_locked; 1917 } else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) { 1918 CTR1(KTR_MLD, "%s: final leave", __func__); 1919 mld_final_leave(inm, mli); 1920 goto out_locked; 1921 } 1922 } else { 1923 CTR1(KTR_MLD, "%s: filter set change", __func__); 1924 } 1925 1926 error = mld_handle_state_change(inm, mli); 1927 1928 out_locked: 1929 MLD_UNLOCK(); 1930 return (error); 1931 } 1932 1933 /* 1934 * Perform the initial join for an MLD group. 1935 * 1936 * When joining a group: 1937 * If the group should have its MLD traffic suppressed, do nothing. 1938 * MLDv1 starts sending MLDv1 host membership reports. 1939 * MLDv2 will schedule an MLDv2 state-change report containing the 1940 * initial state of the membership. 1941 * 1942 * If the delay argument is non-zero, then we must delay sending the 1943 * initial state change for delay ticks (in units of PR_FASTHZ). 1944 */ 1945 static int 1946 mld_initial_join(struct in6_multi *inm, struct mld_ifsoftc *mli, 1947 const int delay) 1948 { 1949 struct ifnet *ifp; 1950 struct mbufq *mq; 1951 int error, retval, syncstates; 1952 int odelay; 1953 #ifdef KTR 1954 char ip6tbuf[INET6_ADDRSTRLEN]; 1955 #endif 1956 1957 CTR4(KTR_MLD, "%s: initial join %s on ifp %p(%s)", 1958 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1959 inm->in6m_ifp, if_name(inm->in6m_ifp)); 1960 1961 error = 0; 1962 syncstates = 1; 1963 1964 ifp = inm->in6m_ifp; 1965 1966 IN6_MULTI_LOCK_ASSERT(); 1967 MLD_LOCK_ASSERT(); 1968 1969 KASSERT(mli && mli->mli_ifp == ifp, ("%s: inconsistent ifp", __func__)); 1970 1971 /* 1972 * Groups joined on loopback or marked as 'not reported', 1973 * enter the MLD_SILENT_MEMBER state and 1974 * are never reported in any protocol exchanges. 1975 * All other groups enter the appropriate state machine 1976 * for the version in use on this link. 1977 * A link marked as MLIF_SILENT causes MLD to be completely 1978 * disabled for the link. 1979 */ 1980 if ((ifp->if_flags & IFF_LOOPBACK) || 1981 (mli->mli_flags & MLIF_SILENT) || 1982 !mld_is_addr_reported(&inm->in6m_addr)) { 1983 CTR1(KTR_MLD, 1984 "%s: not kicking state machine for silent group", __func__); 1985 inm->in6m_state = MLD_SILENT_MEMBER; 1986 inm->in6m_timer = 0; 1987 } else { 1988 /* 1989 * Deal with overlapping in_multi lifecycle. 1990 * If this group was LEAVING, then make sure 1991 * we drop the reference we picked up to keep the 1992 * group around for the final INCLUDE {} enqueue. 1993 */ 1994 if (mli->mli_version == MLD_VERSION_2 && 1995 inm->in6m_state == MLD_LEAVING_MEMBER) 1996 in6m_release_locked(inm); 1997 1998 inm->in6m_state = MLD_REPORTING_MEMBER; 1999 2000 switch (mli->mli_version) { 2001 case MLD_VERSION_1: 2002 /* 2003 * If a delay was provided, only use it if 2004 * it is greater than the delay normally 2005 * used for an MLDv1 state change report, 2006 * and delay sending the initial MLDv1 report 2007 * by not transitioning to the IDLE state. 2008 */ 2009 odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI * PR_FASTHZ); 2010 if (delay) { 2011 inm->in6m_timer = max(delay, odelay); 2012 V_current_state_timers_running6 = 1; 2013 } else { 2014 inm->in6m_state = MLD_IDLE_MEMBER; 2015 error = mld_v1_transmit_report(inm, 2016 MLD_LISTENER_REPORT); 2017 if (error == 0) { 2018 inm->in6m_timer = odelay; 2019 V_current_state_timers_running6 = 1; 2020 } 2021 } 2022 break; 2023 2024 case MLD_VERSION_2: 2025 /* 2026 * Defer update of T0 to T1, until the first copy 2027 * of the state change has been transmitted. 2028 */ 2029 syncstates = 0; 2030 2031 /* 2032 * Immediately enqueue a State-Change Report for 2033 * this interface, freeing any previous reports. 2034 * Don't kick the timers if there is nothing to do, 2035 * or if an error occurred. 2036 */ 2037 mq = &inm->in6m_scq; 2038 mbufq_drain(mq); 2039 retval = mld_v2_enqueue_group_record(mq, inm, 1, 2040 0, 0, (mli->mli_flags & MLIF_USEALLOW)); 2041 CTR2(KTR_MLD, "%s: enqueue record = %d", 2042 __func__, retval); 2043 if (retval <= 0) { 2044 error = retval * -1; 2045 break; 2046 } 2047 2048 /* 2049 * Schedule transmission of pending state-change 2050 * report up to RV times for this link. The timer 2051 * will fire at the next mld_fasttimo (~200ms), 2052 * giving us an opportunity to merge the reports. 2053 * 2054 * If a delay was provided to this function, only 2055 * use this delay if sooner than the existing one. 2056 */ 2057 KASSERT(mli->mli_rv > 1, 2058 ("%s: invalid robustness %d", __func__, 2059 mli->mli_rv)); 2060 inm->in6m_scrv = mli->mli_rv; 2061 if (delay) { 2062 if (inm->in6m_sctimer > 1) { 2063 inm->in6m_sctimer = 2064 min(inm->in6m_sctimer, delay); 2065 } else 2066 inm->in6m_sctimer = delay; 2067 } else 2068 inm->in6m_sctimer = 1; 2069 V_state_change_timers_running6 = 1; 2070 2071 error = 0; 2072 break; 2073 } 2074 } 2075 2076 /* 2077 * Only update the T0 state if state change is atomic, 2078 * i.e. we don't need to wait for a timer to fire before we 2079 * can consider the state change to have been communicated. 2080 */ 2081 if (syncstates) { 2082 in6m_commit(inm); 2083 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2084 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2085 if_name(inm->in6m_ifp)); 2086 } 2087 2088 return (error); 2089 } 2090 2091 /* 2092 * Issue an intermediate state change during the life-cycle. 2093 */ 2094 static int 2095 mld_handle_state_change(struct in6_multi *inm, struct mld_ifsoftc *mli) 2096 { 2097 struct ifnet *ifp; 2098 int retval; 2099 #ifdef KTR 2100 char ip6tbuf[INET6_ADDRSTRLEN]; 2101 #endif 2102 2103 CTR4(KTR_MLD, "%s: state change for %s on ifp %p(%s)", 2104 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2105 inm->in6m_ifp, if_name(inm->in6m_ifp)); 2106 2107 ifp = inm->in6m_ifp; 2108 2109 IN6_MULTI_LOCK_ASSERT(); 2110 MLD_LOCK_ASSERT(); 2111 2112 KASSERT(mli && mli->mli_ifp == ifp, 2113 ("%s: inconsistent ifp", __func__)); 2114 2115 if ((ifp->if_flags & IFF_LOOPBACK) || 2116 (mli->mli_flags & MLIF_SILENT) || 2117 !mld_is_addr_reported(&inm->in6m_addr) || 2118 (mli->mli_version != MLD_VERSION_2)) { 2119 if (!mld_is_addr_reported(&inm->in6m_addr)) { 2120 CTR1(KTR_MLD, 2121 "%s: not kicking state machine for silent group", __func__); 2122 } 2123 CTR1(KTR_MLD, "%s: nothing to do", __func__); 2124 in6m_commit(inm); 2125 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2126 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2127 if_name(inm->in6m_ifp)); 2128 return (0); 2129 } 2130 2131 mbufq_drain(&inm->in6m_scq); 2132 2133 retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0, 2134 (mli->mli_flags & MLIF_USEALLOW)); 2135 CTR2(KTR_MLD, "%s: enqueue record = %d", __func__, retval); 2136 if (retval <= 0) 2137 return (-retval); 2138 2139 /* 2140 * If record(s) were enqueued, start the state-change 2141 * report timer for this group. 2142 */ 2143 inm->in6m_scrv = mli->mli_rv; 2144 inm->in6m_sctimer = 1; 2145 V_state_change_timers_running6 = 1; 2146 2147 return (0); 2148 } 2149 2150 /* 2151 * Perform the final leave for a multicast address. 2152 * 2153 * When leaving a group: 2154 * MLDv1 sends a DONE message, if and only if we are the reporter. 2155 * MLDv2 enqueues a state-change report containing a transition 2156 * to INCLUDE {} for immediate transmission. 2157 */ 2158 static void 2159 mld_final_leave(struct in6_multi *inm, struct mld_ifsoftc *mli) 2160 { 2161 int syncstates; 2162 #ifdef KTR 2163 char ip6tbuf[INET6_ADDRSTRLEN]; 2164 #endif 2165 2166 syncstates = 1; 2167 2168 CTR4(KTR_MLD, "%s: final leave %s on ifp %p(%s)", 2169 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2170 inm->in6m_ifp, if_name(inm->in6m_ifp)); 2171 2172 IN6_MULTI_LOCK_ASSERT(); 2173 MLD_LOCK_ASSERT(); 2174 2175 switch (inm->in6m_state) { 2176 case MLD_NOT_MEMBER: 2177 case MLD_SILENT_MEMBER: 2178 case MLD_LEAVING_MEMBER: 2179 /* Already leaving or left; do nothing. */ 2180 CTR1(KTR_MLD, 2181 "%s: not kicking state machine for silent group", __func__); 2182 break; 2183 case MLD_REPORTING_MEMBER: 2184 case MLD_IDLE_MEMBER: 2185 case MLD_G_QUERY_PENDING_MEMBER: 2186 case MLD_SG_QUERY_PENDING_MEMBER: 2187 if (mli->mli_version == MLD_VERSION_1) { 2188 #ifdef INVARIANTS 2189 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 2190 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) 2191 panic("%s: MLDv2 state reached, not MLDv2 mode", 2192 __func__); 2193 #endif 2194 mld_v1_transmit_report(inm, MLD_LISTENER_DONE); 2195 inm->in6m_state = MLD_NOT_MEMBER; 2196 V_current_state_timers_running6 = 1; 2197 } else if (mli->mli_version == MLD_VERSION_2) { 2198 /* 2199 * Stop group timer and all pending reports. 2200 * Immediately enqueue a state-change report 2201 * TO_IN {} to be sent on the next fast timeout, 2202 * giving us an opportunity to merge reports. 2203 */ 2204 mbufq_drain(&inm->in6m_scq); 2205 inm->in6m_timer = 0; 2206 inm->in6m_scrv = mli->mli_rv; 2207 CTR4(KTR_MLD, "%s: Leaving %s/%s with %d " 2208 "pending retransmissions.", __func__, 2209 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2210 if_name(inm->in6m_ifp), inm->in6m_scrv); 2211 if (inm->in6m_scrv == 0) { 2212 inm->in6m_state = MLD_NOT_MEMBER; 2213 inm->in6m_sctimer = 0; 2214 } else { 2215 int retval; 2216 2217 in6m_acquire_locked(inm); 2218 2219 retval = mld_v2_enqueue_group_record( 2220 &inm->in6m_scq, inm, 1, 0, 0, 2221 (mli->mli_flags & MLIF_USEALLOW)); 2222 KASSERT(retval != 0, 2223 ("%s: enqueue record = %d", __func__, 2224 retval)); 2225 2226 inm->in6m_state = MLD_LEAVING_MEMBER; 2227 inm->in6m_sctimer = 1; 2228 V_state_change_timers_running6 = 1; 2229 syncstates = 0; 2230 } 2231 break; 2232 } 2233 break; 2234 case MLD_LAZY_MEMBER: 2235 case MLD_SLEEPING_MEMBER: 2236 case MLD_AWAKENING_MEMBER: 2237 /* Our reports are suppressed; do nothing. */ 2238 break; 2239 } 2240 2241 if (syncstates) { 2242 in6m_commit(inm); 2243 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2244 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2245 if_name(inm->in6m_ifp)); 2246 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 2247 CTR3(KTR_MLD, "%s: T1 now MCAST_UNDEFINED for %p/%s", 2248 __func__, &inm->in6m_addr, if_name(inm->in6m_ifp)); 2249 } 2250 } 2251 2252 /* 2253 * Enqueue an MLDv2 group record to the given output queue. 2254 * 2255 * If is_state_change is zero, a current-state record is appended. 2256 * If is_state_change is non-zero, a state-change report is appended. 2257 * 2258 * If is_group_query is non-zero, an mbuf packet chain is allocated. 2259 * If is_group_query is zero, and if there is a packet with free space 2260 * at the tail of the queue, it will be appended to providing there 2261 * is enough free space. 2262 * Otherwise a new mbuf packet chain is allocated. 2263 * 2264 * If is_source_query is non-zero, each source is checked to see if 2265 * it was recorded for a Group-Source query, and will be omitted if 2266 * it is not both in-mode and recorded. 2267 * 2268 * If use_block_allow is non-zero, state change reports for initial join 2269 * and final leave, on an inclusive mode group with a source list, will be 2270 * rewritten to use the ALLOW_NEW and BLOCK_OLD record types, respectively. 2271 * 2272 * The function will attempt to allocate leading space in the packet 2273 * for the IPv6+ICMP headers to be prepended without fragmenting the chain. 2274 * 2275 * If successful the size of all data appended to the queue is returned, 2276 * otherwise an error code less than zero is returned, or zero if 2277 * no record(s) were appended. 2278 */ 2279 static int 2280 mld_v2_enqueue_group_record(struct mbufq *mq, struct in6_multi *inm, 2281 const int is_state_change, const int is_group_query, 2282 const int is_source_query, const int use_block_allow) 2283 { 2284 struct mldv2_record mr; 2285 struct mldv2_record *pmr; 2286 struct ifnet *ifp; 2287 struct ip6_msource *ims, *nims; 2288 struct mbuf *m0, *m, *md; 2289 int error, is_filter_list_change; 2290 int minrec0len, m0srcs, msrcs, nbytes, off; 2291 int record_has_sources; 2292 int now; 2293 int type; 2294 uint8_t mode; 2295 #ifdef KTR 2296 char ip6tbuf[INET6_ADDRSTRLEN]; 2297 #endif 2298 2299 IN6_MULTI_LOCK_ASSERT(); 2300 2301 error = 0; 2302 ifp = inm->in6m_ifp; 2303 is_filter_list_change = 0; 2304 m = NULL; 2305 m0 = NULL; 2306 m0srcs = 0; 2307 msrcs = 0; 2308 nbytes = 0; 2309 nims = NULL; 2310 record_has_sources = 1; 2311 pmr = NULL; 2312 type = MLD_DO_NOTHING; 2313 mode = inm->in6m_st[1].iss_fmode; 2314 2315 /* 2316 * If we did not transition out of ASM mode during t0->t1, 2317 * and there are no source nodes to process, we can skip 2318 * the generation of source records. 2319 */ 2320 if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 && 2321 inm->in6m_nsrc == 0) 2322 record_has_sources = 0; 2323 2324 if (is_state_change) { 2325 /* 2326 * Queue a state change record. 2327 * If the mode did not change, and there are non-ASM 2328 * listeners or source filters present, 2329 * we potentially need to issue two records for the group. 2330 * If there are ASM listeners, and there was no filter 2331 * mode transition of any kind, do nothing. 2332 * 2333 * If we are transitioning to MCAST_UNDEFINED, we need 2334 * not send any sources. A transition to/from this state is 2335 * considered inclusive with some special treatment. 2336 * 2337 * If we are rewriting initial joins/leaves to use 2338 * ALLOW/BLOCK, and the group's membership is inclusive, 2339 * we need to send sources in all cases. 2340 */ 2341 if (mode != inm->in6m_st[0].iss_fmode) { 2342 if (mode == MCAST_EXCLUDE) { 2343 CTR1(KTR_MLD, "%s: change to EXCLUDE", 2344 __func__); 2345 type = MLD_CHANGE_TO_EXCLUDE_MODE; 2346 } else { 2347 CTR1(KTR_MLD, "%s: change to INCLUDE", 2348 __func__); 2349 if (use_block_allow) { 2350 /* 2351 * XXX 2352 * Here we're interested in state 2353 * edges either direction between 2354 * MCAST_UNDEFINED and MCAST_INCLUDE. 2355 * Perhaps we should just check 2356 * the group state, rather than 2357 * the filter mode. 2358 */ 2359 if (mode == MCAST_UNDEFINED) { 2360 type = MLD_BLOCK_OLD_SOURCES; 2361 } else { 2362 type = MLD_ALLOW_NEW_SOURCES; 2363 } 2364 } else { 2365 type = MLD_CHANGE_TO_INCLUDE_MODE; 2366 if (mode == MCAST_UNDEFINED) 2367 record_has_sources = 0; 2368 } 2369 } 2370 } else { 2371 if (record_has_sources) { 2372 is_filter_list_change = 1; 2373 } else { 2374 type = MLD_DO_NOTHING; 2375 } 2376 } 2377 } else { 2378 /* 2379 * Queue a current state record. 2380 */ 2381 if (mode == MCAST_EXCLUDE) { 2382 type = MLD_MODE_IS_EXCLUDE; 2383 } else if (mode == MCAST_INCLUDE) { 2384 type = MLD_MODE_IS_INCLUDE; 2385 KASSERT(inm->in6m_st[1].iss_asm == 0, 2386 ("%s: inm %p is INCLUDE but ASM count is %d", 2387 __func__, inm, inm->in6m_st[1].iss_asm)); 2388 } 2389 } 2390 2391 /* 2392 * Generate the filter list changes using a separate function. 2393 */ 2394 if (is_filter_list_change) 2395 return (mld_v2_enqueue_filter_change(mq, inm)); 2396 2397 if (type == MLD_DO_NOTHING) { 2398 CTR3(KTR_MLD, "%s: nothing to do for %s/%s", 2399 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2400 if_name(inm->in6m_ifp)); 2401 return (0); 2402 } 2403 2404 /* 2405 * If any sources are present, we must be able to fit at least 2406 * one in the trailing space of the tail packet's mbuf, 2407 * ideally more. 2408 */ 2409 minrec0len = sizeof(struct mldv2_record); 2410 if (record_has_sources) 2411 minrec0len += sizeof(struct in6_addr); 2412 2413 CTR4(KTR_MLD, "%s: queueing %s for %s/%s", __func__, 2414 mld_rec_type_to_str(type), 2415 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2416 if_name(inm->in6m_ifp)); 2417 2418 /* 2419 * Check if we have a packet in the tail of the queue for this 2420 * group into which the first group record for this group will fit. 2421 * Otherwise allocate a new packet. 2422 * Always allocate leading space for IP6+RA+ICMPV6+REPORT. 2423 * Note: Group records for G/GSR query responses MUST be sent 2424 * in their own packet. 2425 */ 2426 m0 = mbufq_last(mq); 2427 if (!is_group_query && 2428 m0 != NULL && 2429 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) && 2430 (m0->m_pkthdr.len + minrec0len) < 2431 (ifp->if_mtu - MLD_MTUSPACE)) { 2432 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2433 sizeof(struct mldv2_record)) / 2434 sizeof(struct in6_addr); 2435 m = m0; 2436 CTR1(KTR_MLD, "%s: use existing packet", __func__); 2437 } else { 2438 if (mbufq_full(mq)) { 2439 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2440 return (-ENOMEM); 2441 } 2442 m = NULL; 2443 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2444 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2445 if (!is_state_change && !is_group_query) 2446 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2447 if (m == NULL) 2448 m = m_gethdr(M_NOWAIT, MT_DATA); 2449 if (m == NULL) 2450 return (-ENOMEM); 2451 2452 mld_save_context(m, ifp); 2453 2454 CTR1(KTR_MLD, "%s: allocated first packet", __func__); 2455 } 2456 2457 /* 2458 * Append group record. 2459 * If we have sources, we don't know how many yet. 2460 */ 2461 mr.mr_type = type; 2462 mr.mr_datalen = 0; 2463 mr.mr_numsrc = 0; 2464 mr.mr_addr = inm->in6m_addr; 2465 in6_clearscope(&mr.mr_addr); 2466 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2467 if (m != m0) 2468 m_freem(m); 2469 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2470 return (-ENOMEM); 2471 } 2472 nbytes += sizeof(struct mldv2_record); 2473 2474 /* 2475 * Append as many sources as will fit in the first packet. 2476 * If we are appending to a new packet, the chain allocation 2477 * may potentially use clusters; use m_getptr() in this case. 2478 * If we are appending to an existing packet, we need to obtain 2479 * a pointer to the group record after m_append(), in case a new 2480 * mbuf was allocated. 2481 * 2482 * Only append sources which are in-mode at t1. If we are 2483 * transitioning to MCAST_UNDEFINED state on the group, and 2484 * use_block_allow is zero, do not include source entries. 2485 * Otherwise, we need to include this source in the report. 2486 * 2487 * Only report recorded sources in our filter set when responding 2488 * to a group-source query. 2489 */ 2490 if (record_has_sources) { 2491 if (m == m0) { 2492 md = m_last(m); 2493 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2494 md->m_len - nbytes); 2495 } else { 2496 md = m_getptr(m, 0, &off); 2497 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2498 off); 2499 } 2500 msrcs = 0; 2501 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, 2502 nims) { 2503 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2504 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2505 now = im6s_get_mode(inm, ims, 1); 2506 CTR2(KTR_MLD, "%s: node is %d", __func__, now); 2507 if ((now != mode) || 2508 (now == mode && 2509 (!use_block_allow && mode == MCAST_UNDEFINED))) { 2510 CTR1(KTR_MLD, "%s: skip node", __func__); 2511 continue; 2512 } 2513 if (is_source_query && ims->im6s_stp == 0) { 2514 CTR1(KTR_MLD, "%s: skip unrecorded node", 2515 __func__); 2516 continue; 2517 } 2518 CTR1(KTR_MLD, "%s: append node", __func__); 2519 if (!m_append(m, sizeof(struct in6_addr), 2520 (void *)&ims->im6s_addr)) { 2521 if (m != m0) 2522 m_freem(m); 2523 CTR1(KTR_MLD, "%s: m_append() failed.", 2524 __func__); 2525 return (-ENOMEM); 2526 } 2527 nbytes += sizeof(struct in6_addr); 2528 ++msrcs; 2529 if (msrcs == m0srcs) 2530 break; 2531 } 2532 CTR2(KTR_MLD, "%s: msrcs is %d this packet", __func__, 2533 msrcs); 2534 pmr->mr_numsrc = htons(msrcs); 2535 nbytes += (msrcs * sizeof(struct in6_addr)); 2536 } 2537 2538 if (is_source_query && msrcs == 0) { 2539 CTR1(KTR_MLD, "%s: no recorded sources to report", __func__); 2540 if (m != m0) 2541 m_freem(m); 2542 return (0); 2543 } 2544 2545 /* 2546 * We are good to go with first packet. 2547 */ 2548 if (m != m0) { 2549 CTR1(KTR_MLD, "%s: enqueueing first packet", __func__); 2550 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2551 mbufq_enqueue(mq, m); 2552 } else 2553 m->m_pkthdr.PH_vt.vt_nrecs++; 2554 2555 /* 2556 * No further work needed if no source list in packet(s). 2557 */ 2558 if (!record_has_sources) 2559 return (nbytes); 2560 2561 /* 2562 * Whilst sources remain to be announced, we need to allocate 2563 * a new packet and fill out as many sources as will fit. 2564 * Always try for a cluster first. 2565 */ 2566 while (nims != NULL) { 2567 if (mbufq_full(mq)) { 2568 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2569 return (-ENOMEM); 2570 } 2571 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2572 if (m == NULL) 2573 m = m_gethdr(M_NOWAIT, MT_DATA); 2574 if (m == NULL) 2575 return (-ENOMEM); 2576 mld_save_context(m, ifp); 2577 md = m_getptr(m, 0, &off); 2578 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off); 2579 CTR1(KTR_MLD, "%s: allocated next packet", __func__); 2580 2581 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2582 if (m != m0) 2583 m_freem(m); 2584 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2585 return (-ENOMEM); 2586 } 2587 m->m_pkthdr.PH_vt.vt_nrecs = 1; 2588 nbytes += sizeof(struct mldv2_record); 2589 2590 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2591 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2592 2593 msrcs = 0; 2594 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2595 CTR2(KTR_MLD, "%s: visit node %s", 2596 __func__, ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2597 now = im6s_get_mode(inm, ims, 1); 2598 if ((now != mode) || 2599 (now == mode && 2600 (!use_block_allow && mode == MCAST_UNDEFINED))) { 2601 CTR1(KTR_MLD, "%s: skip node", __func__); 2602 continue; 2603 } 2604 if (is_source_query && ims->im6s_stp == 0) { 2605 CTR1(KTR_MLD, "%s: skip unrecorded node", 2606 __func__); 2607 continue; 2608 } 2609 CTR1(KTR_MLD, "%s: append node", __func__); 2610 if (!m_append(m, sizeof(struct in6_addr), 2611 (void *)&ims->im6s_addr)) { 2612 if (m != m0) 2613 m_freem(m); 2614 CTR1(KTR_MLD, "%s: m_append() failed.", 2615 __func__); 2616 return (-ENOMEM); 2617 } 2618 ++msrcs; 2619 if (msrcs == m0srcs) 2620 break; 2621 } 2622 pmr->mr_numsrc = htons(msrcs); 2623 nbytes += (msrcs * sizeof(struct in6_addr)); 2624 2625 CTR1(KTR_MLD, "%s: enqueueing next packet", __func__); 2626 mbufq_enqueue(mq, m); 2627 } 2628 2629 return (nbytes); 2630 } 2631 2632 /* 2633 * Type used to mark record pass completion. 2634 * We exploit the fact we can cast to this easily from the 2635 * current filter modes on each ip_msource node. 2636 */ 2637 typedef enum { 2638 REC_NONE = 0x00, /* MCAST_UNDEFINED */ 2639 REC_ALLOW = 0x01, /* MCAST_INCLUDE */ 2640 REC_BLOCK = 0x02, /* MCAST_EXCLUDE */ 2641 REC_FULL = REC_ALLOW | REC_BLOCK 2642 } rectype_t; 2643 2644 /* 2645 * Enqueue an MLDv2 filter list change to the given output queue. 2646 * 2647 * Source list filter state is held in an RB-tree. When the filter list 2648 * for a group is changed without changing its mode, we need to compute 2649 * the deltas between T0 and T1 for each source in the filter set, 2650 * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records. 2651 * 2652 * As we may potentially queue two record types, and the entire R-B tree 2653 * needs to be walked at once, we break this out into its own function 2654 * so we can generate a tightly packed queue of packets. 2655 * 2656 * XXX This could be written to only use one tree walk, although that makes 2657 * serializing into the mbuf chains a bit harder. For now we do two walks 2658 * which makes things easier on us, and it may or may not be harder on 2659 * the L2 cache. 2660 * 2661 * If successful the size of all data appended to the queue is returned, 2662 * otherwise an error code less than zero is returned, or zero if 2663 * no record(s) were appended. 2664 */ 2665 static int 2666 mld_v2_enqueue_filter_change(struct mbufq *mq, struct in6_multi *inm) 2667 { 2668 static const int MINRECLEN = 2669 sizeof(struct mldv2_record) + sizeof(struct in6_addr); 2670 struct ifnet *ifp; 2671 struct mldv2_record mr; 2672 struct mldv2_record *pmr; 2673 struct ip6_msource *ims, *nims; 2674 struct mbuf *m, *m0, *md; 2675 int m0srcs, nbytes, npbytes, off, rsrcs, schanged; 2676 int nallow, nblock; 2677 uint8_t mode, now, then; 2678 rectype_t crt, drt, nrt; 2679 #ifdef KTR 2680 char ip6tbuf[INET6_ADDRSTRLEN]; 2681 #endif 2682 2683 IN6_MULTI_LOCK_ASSERT(); 2684 2685 if (inm->in6m_nsrc == 0 || 2686 (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0)) 2687 return (0); 2688 2689 ifp = inm->in6m_ifp; /* interface */ 2690 mode = inm->in6m_st[1].iss_fmode; /* filter mode at t1 */ 2691 crt = REC_NONE; /* current group record type */ 2692 drt = REC_NONE; /* mask of completed group record types */ 2693 nrt = REC_NONE; /* record type for current node */ 2694 m0srcs = 0; /* # source which will fit in current mbuf chain */ 2695 npbytes = 0; /* # of bytes appended this packet */ 2696 nbytes = 0; /* # of bytes appended to group's state-change queue */ 2697 rsrcs = 0; /* # sources encoded in current record */ 2698 schanged = 0; /* # nodes encoded in overall filter change */ 2699 nallow = 0; /* # of source entries in ALLOW_NEW */ 2700 nblock = 0; /* # of source entries in BLOCK_OLD */ 2701 nims = NULL; /* next tree node pointer */ 2702 2703 /* 2704 * For each possible filter record mode. 2705 * The first kind of source we encounter tells us which 2706 * is the first kind of record we start appending. 2707 * If a node transitioned to UNDEFINED at t1, its mode is treated 2708 * as the inverse of the group's filter mode. 2709 */ 2710 while (drt != REC_FULL) { 2711 do { 2712 m0 = mbufq_last(mq); 2713 if (m0 != NULL && 2714 (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= 2715 MLD_V2_REPORT_MAXRECS) && 2716 (m0->m_pkthdr.len + MINRECLEN) < 2717 (ifp->if_mtu - MLD_MTUSPACE)) { 2718 m = m0; 2719 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2720 sizeof(struct mldv2_record)) / 2721 sizeof(struct in6_addr); 2722 CTR1(KTR_MLD, 2723 "%s: use previous packet", __func__); 2724 } else { 2725 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2726 if (m == NULL) 2727 m = m_gethdr(M_NOWAIT, MT_DATA); 2728 if (m == NULL) { 2729 CTR1(KTR_MLD, 2730 "%s: m_get*() failed", __func__); 2731 return (-ENOMEM); 2732 } 2733 m->m_pkthdr.PH_vt.vt_nrecs = 0; 2734 mld_save_context(m, ifp); 2735 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2736 sizeof(struct mldv2_record)) / 2737 sizeof(struct in6_addr); 2738 npbytes = 0; 2739 CTR1(KTR_MLD, 2740 "%s: allocated new packet", __func__); 2741 } 2742 /* 2743 * Append the MLD group record header to the 2744 * current packet's data area. 2745 * Recalculate pointer to free space for next 2746 * group record, in case m_append() allocated 2747 * a new mbuf or cluster. 2748 */ 2749 memset(&mr, 0, sizeof(mr)); 2750 mr.mr_addr = inm->in6m_addr; 2751 in6_clearscope(&mr.mr_addr); 2752 if (!m_append(m, sizeof(mr), (void *)&mr)) { 2753 if (m != m0) 2754 m_freem(m); 2755 CTR1(KTR_MLD, 2756 "%s: m_append() failed", __func__); 2757 return (-ENOMEM); 2758 } 2759 npbytes += sizeof(struct mldv2_record); 2760 if (m != m0) { 2761 /* new packet; offset in chain */ 2762 md = m_getptr(m, npbytes - 2763 sizeof(struct mldv2_record), &off); 2764 pmr = (struct mldv2_record *)(mtod(md, 2765 uint8_t *) + off); 2766 } else { 2767 /* current packet; offset from last append */ 2768 md = m_last(m); 2769 pmr = (struct mldv2_record *)(mtod(md, 2770 uint8_t *) + md->m_len - 2771 sizeof(struct mldv2_record)); 2772 } 2773 /* 2774 * Begin walking the tree for this record type 2775 * pass, or continue from where we left off 2776 * previously if we had to allocate a new packet. 2777 * Only report deltas in-mode at t1. 2778 * We need not report included sources as allowed 2779 * if we are in inclusive mode on the group, 2780 * however the converse is not true. 2781 */ 2782 rsrcs = 0; 2783 if (nims == NULL) { 2784 nims = RB_MIN(ip6_msource_tree, 2785 &inm->in6m_srcs); 2786 } 2787 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2788 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2789 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2790 now = im6s_get_mode(inm, ims, 1); 2791 then = im6s_get_mode(inm, ims, 0); 2792 CTR3(KTR_MLD, "%s: mode: t0 %d, t1 %d", 2793 __func__, then, now); 2794 if (now == then) { 2795 CTR1(KTR_MLD, 2796 "%s: skip unchanged", __func__); 2797 continue; 2798 } 2799 if (mode == MCAST_EXCLUDE && 2800 now == MCAST_INCLUDE) { 2801 CTR1(KTR_MLD, 2802 "%s: skip IN src on EX group", 2803 __func__); 2804 continue; 2805 } 2806 nrt = (rectype_t)now; 2807 if (nrt == REC_NONE) 2808 nrt = (rectype_t)(~mode & REC_FULL); 2809 if (schanged++ == 0) { 2810 crt = nrt; 2811 } else if (crt != nrt) 2812 continue; 2813 if (!m_append(m, sizeof(struct in6_addr), 2814 (void *)&ims->im6s_addr)) { 2815 if (m != m0) 2816 m_freem(m); 2817 CTR1(KTR_MLD, 2818 "%s: m_append() failed", __func__); 2819 return (-ENOMEM); 2820 } 2821 nallow += !!(crt == REC_ALLOW); 2822 nblock += !!(crt == REC_BLOCK); 2823 if (++rsrcs == m0srcs) 2824 break; 2825 } 2826 /* 2827 * If we did not append any tree nodes on this 2828 * pass, back out of allocations. 2829 */ 2830 if (rsrcs == 0) { 2831 npbytes -= sizeof(struct mldv2_record); 2832 if (m != m0) { 2833 CTR1(KTR_MLD, 2834 "%s: m_free(m)", __func__); 2835 m_freem(m); 2836 } else { 2837 CTR1(KTR_MLD, 2838 "%s: m_adj(m, -mr)", __func__); 2839 m_adj(m, -((int)sizeof( 2840 struct mldv2_record))); 2841 } 2842 continue; 2843 } 2844 npbytes += (rsrcs * sizeof(struct in6_addr)); 2845 if (crt == REC_ALLOW) 2846 pmr->mr_type = MLD_ALLOW_NEW_SOURCES; 2847 else if (crt == REC_BLOCK) 2848 pmr->mr_type = MLD_BLOCK_OLD_SOURCES; 2849 pmr->mr_numsrc = htons(rsrcs); 2850 /* 2851 * Count the new group record, and enqueue this 2852 * packet if it wasn't already queued. 2853 */ 2854 m->m_pkthdr.PH_vt.vt_nrecs++; 2855 if (m != m0) 2856 mbufq_enqueue(mq, m); 2857 nbytes += npbytes; 2858 } while (nims != NULL); 2859 drt |= crt; 2860 crt = (~crt & REC_FULL); 2861 } 2862 2863 CTR3(KTR_MLD, "%s: queued %d ALLOW_NEW, %d BLOCK_OLD", __func__, 2864 nallow, nblock); 2865 2866 return (nbytes); 2867 } 2868 2869 static int 2870 mld_v2_merge_state_changes(struct in6_multi *inm, struct mbufq *scq) 2871 { 2872 struct mbufq *gq; 2873 struct mbuf *m; /* pending state-change */ 2874 struct mbuf *m0; /* copy of pending state-change */ 2875 struct mbuf *mt; /* last state-change in packet */ 2876 int docopy, domerge; 2877 u_int recslen; 2878 2879 docopy = 0; 2880 domerge = 0; 2881 recslen = 0; 2882 2883 IN6_MULTI_LOCK_ASSERT(); 2884 MLD_LOCK_ASSERT(); 2885 2886 /* 2887 * If there are further pending retransmissions, make a writable 2888 * copy of each queued state-change message before merging. 2889 */ 2890 if (inm->in6m_scrv > 0) 2891 docopy = 1; 2892 2893 gq = &inm->in6m_scq; 2894 #ifdef KTR 2895 if (mbufq_first(gq) == NULL) { 2896 CTR2(KTR_MLD, "%s: WARNING: queue for inm %p is empty", 2897 __func__, inm); 2898 } 2899 #endif 2900 2901 m = mbufq_first(gq); 2902 while (m != NULL) { 2903 /* 2904 * Only merge the report into the current packet if 2905 * there is sufficient space to do so; an MLDv2 report 2906 * packet may only contain 65,535 group records. 2907 * Always use a simple mbuf chain concatentation to do this, 2908 * as large state changes for single groups may have 2909 * allocated clusters. 2910 */ 2911 domerge = 0; 2912 mt = mbufq_last(scq); 2913 if (mt != NULL) { 2914 recslen = m_length(m, NULL); 2915 2916 if ((mt->m_pkthdr.PH_vt.vt_nrecs + 2917 m->m_pkthdr.PH_vt.vt_nrecs <= 2918 MLD_V2_REPORT_MAXRECS) && 2919 (mt->m_pkthdr.len + recslen <= 2920 (inm->in6m_ifp->if_mtu - MLD_MTUSPACE))) 2921 domerge = 1; 2922 } 2923 2924 if (!domerge && mbufq_full(gq)) { 2925 CTR2(KTR_MLD, 2926 "%s: outbound queue full, skipping whole packet %p", 2927 __func__, m); 2928 mt = m->m_nextpkt; 2929 if (!docopy) 2930 m_freem(m); 2931 m = mt; 2932 continue; 2933 } 2934 2935 if (!docopy) { 2936 CTR2(KTR_MLD, "%s: dequeueing %p", __func__, m); 2937 m0 = mbufq_dequeue(gq); 2938 m = m0->m_nextpkt; 2939 } else { 2940 CTR2(KTR_MLD, "%s: copying %p", __func__, m); 2941 m0 = m_dup(m, M_NOWAIT); 2942 if (m0 == NULL) 2943 return (ENOMEM); 2944 m0->m_nextpkt = NULL; 2945 m = m->m_nextpkt; 2946 } 2947 2948 if (!domerge) { 2949 CTR3(KTR_MLD, "%s: queueing %p to scq %p)", 2950 __func__, m0, scq); 2951 mbufq_enqueue(scq, m0); 2952 } else { 2953 struct mbuf *mtl; /* last mbuf of packet mt */ 2954 2955 CTR3(KTR_MLD, "%s: merging %p with ifscq tail %p)", 2956 __func__, m0, mt); 2957 2958 mtl = m_last(mt); 2959 m0->m_flags &= ~M_PKTHDR; 2960 mt->m_pkthdr.len += recslen; 2961 mt->m_pkthdr.PH_vt.vt_nrecs += 2962 m0->m_pkthdr.PH_vt.vt_nrecs; 2963 2964 mtl->m_next = m0; 2965 } 2966 } 2967 2968 return (0); 2969 } 2970 2971 /* 2972 * Respond to a pending MLDv2 General Query. 2973 */ 2974 static void 2975 mld_v2_dispatch_general_query(struct mld_ifsoftc *mli) 2976 { 2977 struct ifmultiaddr *ifma; 2978 struct ifnet *ifp; 2979 struct in6_multi *inm; 2980 int retval; 2981 2982 IN6_MULTI_LOCK_ASSERT(); 2983 MLD_LOCK_ASSERT(); 2984 2985 KASSERT(mli->mli_version == MLD_VERSION_2, 2986 ("%s: called when version %d", __func__, mli->mli_version)); 2987 2988 /* 2989 * Check that there are some packets queued. If so, send them first. 2990 * For large number of groups the reply to general query can take 2991 * many packets, we should finish sending them before starting of 2992 * queuing the new reply. 2993 */ 2994 if (mbufq_len(&mli->mli_gq) != 0) 2995 goto send; 2996 2997 ifp = mli->mli_ifp; 2998 2999 IF_ADDR_RLOCK(ifp); 3000 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3001 if (ifma->ifma_addr->sa_family != AF_INET6 || 3002 ifma->ifma_protospec == NULL) 3003 continue; 3004 3005 inm = (struct in6_multi *)ifma->ifma_protospec; 3006 KASSERT(ifp == inm->in6m_ifp, 3007 ("%s: inconsistent ifp", __func__)); 3008 3009 switch (inm->in6m_state) { 3010 case MLD_NOT_MEMBER: 3011 case MLD_SILENT_MEMBER: 3012 break; 3013 case MLD_REPORTING_MEMBER: 3014 case MLD_IDLE_MEMBER: 3015 case MLD_LAZY_MEMBER: 3016 case MLD_SLEEPING_MEMBER: 3017 case MLD_AWAKENING_MEMBER: 3018 inm->in6m_state = MLD_REPORTING_MEMBER; 3019 retval = mld_v2_enqueue_group_record(&mli->mli_gq, 3020 inm, 0, 0, 0, 0); 3021 CTR2(KTR_MLD, "%s: enqueue record = %d", 3022 __func__, retval); 3023 break; 3024 case MLD_G_QUERY_PENDING_MEMBER: 3025 case MLD_SG_QUERY_PENDING_MEMBER: 3026 case MLD_LEAVING_MEMBER: 3027 break; 3028 } 3029 } 3030 IF_ADDR_RUNLOCK(ifp); 3031 3032 send: 3033 mld_dispatch_queue(&mli->mli_gq, MLD_MAX_RESPONSE_BURST); 3034 3035 /* 3036 * Slew transmission of bursts over 500ms intervals. 3037 */ 3038 if (mbufq_first(&mli->mli_gq) != NULL) { 3039 mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY( 3040 MLD_RESPONSE_BURST_INTERVAL); 3041 V_interface_timers_running6 = 1; 3042 } 3043 } 3044 3045 /* 3046 * Transmit the next pending message in the output queue. 3047 * 3048 * VIMAGE: Needs to store/restore vnet pointer on a per-mbuf-chain basis. 3049 * MRT: Nothing needs to be done, as MLD traffic is always local to 3050 * a link and uses a link-scope multicast address. 3051 */ 3052 static void 3053 mld_dispatch_packet(struct mbuf *m) 3054 { 3055 struct ip6_moptions im6o; 3056 struct ifnet *ifp; 3057 struct ifnet *oifp; 3058 struct mbuf *m0; 3059 struct mbuf *md; 3060 struct ip6_hdr *ip6; 3061 struct mld_hdr *mld; 3062 int error; 3063 int off; 3064 int type; 3065 uint32_t ifindex; 3066 3067 CTR2(KTR_MLD, "%s: transmit %p", __func__, m); 3068 3069 /* 3070 * Set VNET image pointer from enqueued mbuf chain 3071 * before doing anything else. Whilst we use interface 3072 * indexes to guard against interface detach, they are 3073 * unique to each VIMAGE and must be retrieved. 3074 */ 3075 ifindex = mld_restore_context(m); 3076 3077 /* 3078 * Check if the ifnet still exists. This limits the scope of 3079 * any race in the absence of a global ifp lock for low cost 3080 * (an array lookup). 3081 */ 3082 ifp = ifnet_byindex(ifindex); 3083 if (ifp == NULL) { 3084 CTR3(KTR_MLD, "%s: dropped %p as ifindex %u went away.", 3085 __func__, m, ifindex); 3086 m_freem(m); 3087 IP6STAT_INC(ip6s_noroute); 3088 goto out; 3089 } 3090 3091 im6o.im6o_multicast_hlim = 1; 3092 im6o.im6o_multicast_loop = (V_ip6_mrouter != NULL); 3093 im6o.im6o_multicast_ifp = ifp; 3094 3095 if (m->m_flags & M_MLDV1) { 3096 m0 = m; 3097 } else { 3098 m0 = mld_v2_encap_report(ifp, m); 3099 if (m0 == NULL) { 3100 CTR2(KTR_MLD, "%s: dropped %p", __func__, m); 3101 IP6STAT_INC(ip6s_odropped); 3102 goto out; 3103 } 3104 } 3105 3106 mld_scrub_context(m0); 3107 m_clrprotoflags(m); 3108 m0->m_pkthdr.rcvif = V_loif; 3109 3110 ip6 = mtod(m0, struct ip6_hdr *); 3111 #if 0 3112 (void)in6_setscope(&ip6->ip6_dst, ifp, NULL); /* XXX LOR */ 3113 #else 3114 /* 3115 * XXX XXX Break some KPI rules to prevent an LOR which would 3116 * occur if we called in6_setscope() at transmission. 3117 * See comments at top of file. 3118 */ 3119 MLD_EMBEDSCOPE(&ip6->ip6_dst, ifp->if_index); 3120 #endif 3121 3122 /* 3123 * Retrieve the ICMPv6 type before handoff to ip6_output(), 3124 * so we can bump the stats. 3125 */ 3126 md = m_getptr(m0, sizeof(struct ip6_hdr), &off); 3127 mld = (struct mld_hdr *)(mtod(md, uint8_t *) + off); 3128 type = mld->mld_type; 3129 3130 error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, &im6o, 3131 &oifp, NULL); 3132 if (error) { 3133 CTR3(KTR_MLD, "%s: ip6_output(%p) = %d", __func__, m0, error); 3134 goto out; 3135 } 3136 ICMP6STAT_INC(icp6s_outhist[type]); 3137 if (oifp != NULL) { 3138 icmp6_ifstat_inc(oifp, ifs6_out_msg); 3139 switch (type) { 3140 case MLD_LISTENER_REPORT: 3141 case MLDV2_LISTENER_REPORT: 3142 icmp6_ifstat_inc(oifp, ifs6_out_mldreport); 3143 break; 3144 case MLD_LISTENER_DONE: 3145 icmp6_ifstat_inc(oifp, ifs6_out_mlddone); 3146 break; 3147 } 3148 } 3149 out: 3150 return; 3151 } 3152 3153 /* 3154 * Encapsulate an MLDv2 report. 3155 * 3156 * KAME IPv6 requires that hop-by-hop options be passed separately, 3157 * and that the IPv6 header be prepended in a separate mbuf. 3158 * 3159 * Returns a pointer to the new mbuf chain head, or NULL if the 3160 * allocation failed. 3161 */ 3162 static struct mbuf * 3163 mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m) 3164 { 3165 struct mbuf *mh; 3166 struct mldv2_report *mld; 3167 struct ip6_hdr *ip6; 3168 struct in6_ifaddr *ia; 3169 int mldreclen; 3170 3171 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 3172 KASSERT((m->m_flags & M_PKTHDR), 3173 ("%s: mbuf chain %p is !M_PKTHDR", __func__, m)); 3174 3175 /* 3176 * RFC3590: OK to send as :: or tentative during DAD. 3177 */ 3178 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 3179 if (ia == NULL) 3180 CTR1(KTR_MLD, "%s: warning: ia is NULL", __func__); 3181 3182 mh = m_gethdr(M_NOWAIT, MT_DATA); 3183 if (mh == NULL) { 3184 if (ia != NULL) 3185 ifa_free(&ia->ia_ifa); 3186 m_freem(m); 3187 return (NULL); 3188 } 3189 M_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report)); 3190 3191 mldreclen = m_length(m, NULL); 3192 CTR2(KTR_MLD, "%s: mldreclen is %d", __func__, mldreclen); 3193 3194 mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report); 3195 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + 3196 sizeof(struct mldv2_report) + mldreclen; 3197 3198 ip6 = mtod(mh, struct ip6_hdr *); 3199 ip6->ip6_flow = 0; 3200 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 3201 ip6->ip6_vfc |= IPV6_VERSION; 3202 ip6->ip6_nxt = IPPROTO_ICMPV6; 3203 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 3204 if (ia != NULL) 3205 ifa_free(&ia->ia_ifa); 3206 ip6->ip6_dst = in6addr_linklocal_allv2routers; 3207 /* scope ID will be set in netisr */ 3208 3209 mld = (struct mldv2_report *)(ip6 + 1); 3210 mld->mld_type = MLDV2_LISTENER_REPORT; 3211 mld->mld_code = 0; 3212 mld->mld_cksum = 0; 3213 mld->mld_v2_reserved = 0; 3214 mld->mld_v2_numrecs = htons(m->m_pkthdr.PH_vt.vt_nrecs); 3215 m->m_pkthdr.PH_vt.vt_nrecs = 0; 3216 3217 mh->m_next = m; 3218 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 3219 sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen); 3220 return (mh); 3221 } 3222 3223 #ifdef KTR 3224 static char * 3225 mld_rec_type_to_str(const int type) 3226 { 3227 3228 switch (type) { 3229 case MLD_CHANGE_TO_EXCLUDE_MODE: 3230 return "TO_EX"; 3231 break; 3232 case MLD_CHANGE_TO_INCLUDE_MODE: 3233 return "TO_IN"; 3234 break; 3235 case MLD_MODE_IS_EXCLUDE: 3236 return "MODE_EX"; 3237 break; 3238 case MLD_MODE_IS_INCLUDE: 3239 return "MODE_IN"; 3240 break; 3241 case MLD_ALLOW_NEW_SOURCES: 3242 return "ALLOW_NEW"; 3243 break; 3244 case MLD_BLOCK_OLD_SOURCES: 3245 return "BLOCK_OLD"; 3246 break; 3247 default: 3248 break; 3249 } 3250 return "unknown"; 3251 } 3252 #endif 3253 3254 static void 3255 mld_init(void *unused __unused) 3256 { 3257 3258 CTR1(KTR_MLD, "%s: initializing", __func__); 3259 MLD_LOCK_INIT(); 3260 3261 ip6_initpktopts(&mld_po); 3262 mld_po.ip6po_hlim = 1; 3263 mld_po.ip6po_hbh = &mld_ra.hbh; 3264 mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER; 3265 mld_po.ip6po_flags = IP6PO_DONTFRAG; 3266 } 3267 SYSINIT(mld_init, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, mld_init, NULL); 3268 3269 static void 3270 mld_uninit(void *unused __unused) 3271 { 3272 3273 CTR1(KTR_MLD, "%s: tearing down", __func__); 3274 MLD_LOCK_DESTROY(); 3275 } 3276 SYSUNINIT(mld_uninit, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, mld_uninit, NULL); 3277 3278 static void 3279 vnet_mld_init(const void *unused __unused) 3280 { 3281 3282 CTR1(KTR_MLD, "%s: initializing", __func__); 3283 3284 LIST_INIT(&V_mli_head); 3285 } 3286 VNET_SYSINIT(vnet_mld_init, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mld_init, 3287 NULL); 3288 3289 static void 3290 vnet_mld_uninit(const void *unused __unused) 3291 { 3292 3293 CTR1(KTR_MLD, "%s: tearing down", __func__); 3294 3295 KASSERT(LIST_EMPTY(&V_mli_head), 3296 ("%s: mli list not empty; ifnets not detached?", __func__)); 3297 } 3298 VNET_SYSUNINIT(vnet_mld_uninit, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mld_uninit, 3299 NULL); 3300 3301 static int 3302 mld_modevent(module_t mod, int type, void *unused __unused) 3303 { 3304 3305 switch (type) { 3306 case MOD_LOAD: 3307 case MOD_UNLOAD: 3308 break; 3309 default: 3310 return (EOPNOTSUPP); 3311 } 3312 return (0); 3313 } 3314 3315 static moduledata_t mld_mod = { 3316 "mld", 3317 mld_modevent, 3318 0 3319 }; 3320 DECLARE_MODULE(mld, mld_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); 3321