xref: /freebsd/sys/netinet6/mld6.c (revision 1323ec571215a77ddd21294f0871979d5ad6b992)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2009 Bruce Simpson.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. The name of the author may not be used to endorse or promote
15  *    products derived from this software without specific prior written
16  *    permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  *	$KAME: mld6.c,v 1.27 2001/04/04 05:17:30 itojun Exp $
31  */
32 
33 /*-
34  * Copyright (c) 1988 Stephen Deering.
35  * Copyright (c) 1992, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * This code is derived from software contributed to Berkeley by
39  * Stephen Deering of Stanford University.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)igmp.c	8.1 (Berkeley) 7/19/93
66  */
67 
68 #include <sys/cdefs.h>
69 __FBSDID("$FreeBSD$");
70 
71 #include "opt_inet.h"
72 #include "opt_inet6.h"
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/mbuf.h>
77 #include <sys/socket.h>
78 #include <sys/protosw.h>
79 #include <sys/sysctl.h>
80 #include <sys/kernel.h>
81 #include <sys/callout.h>
82 #include <sys/malloc.h>
83 #include <sys/module.h>
84 #include <sys/ktr.h>
85 
86 #include <net/if.h>
87 #include <net/if_var.h>
88 #include <net/route.h>
89 #include <net/vnet.h>
90 
91 #include <netinet/in.h>
92 #include <netinet/in_var.h>
93 #include <netinet6/in6_var.h>
94 #include <netinet/ip6.h>
95 #include <netinet6/ip6_var.h>
96 #include <netinet6/scope6_var.h>
97 #include <netinet/icmp6.h>
98 #include <netinet6/mld6.h>
99 #include <netinet6/mld6_var.h>
100 
101 #include <security/mac/mac_framework.h>
102 
103 #ifndef KTR_MLD
104 #define KTR_MLD KTR_INET6
105 #endif
106 
107 static struct mld_ifsoftc *
108 		mli_alloc_locked(struct ifnet *);
109 static void	mli_delete_locked(const struct ifnet *);
110 static void	mld_dispatch_packet(struct mbuf *);
111 static void	mld_dispatch_queue(struct mbufq *, int);
112 static void	mld_final_leave(struct in6_multi *, struct mld_ifsoftc *);
113 static void	mld_fasttimo_vnet(struct in6_multi_head *inmh);
114 static int	mld_handle_state_change(struct in6_multi *,
115 		    struct mld_ifsoftc *);
116 static int	mld_initial_join(struct in6_multi *, struct mld_ifsoftc *,
117 		    const int);
118 #ifdef KTR
119 static char *	mld_rec_type_to_str(const int);
120 #endif
121 static void	mld_set_version(struct mld_ifsoftc *, const int);
122 static void	mld_slowtimo_vnet(void);
123 static int	mld_v1_input_query(struct ifnet *, const struct ip6_hdr *,
124 		    /*const*/ struct mld_hdr *);
125 static int	mld_v1_input_report(struct ifnet *, const struct ip6_hdr *,
126 		    /*const*/ struct mld_hdr *);
127 static void	mld_v1_process_group_timer(struct in6_multi_head *,
128 		    struct in6_multi *);
129 static void	mld_v1_process_querier_timers(struct mld_ifsoftc *);
130 static int	mld_v1_transmit_report(struct in6_multi *, const int);
131 static void	mld_v1_update_group(struct in6_multi *, const int);
132 static void	mld_v2_cancel_link_timers(struct mld_ifsoftc *);
133 static void	mld_v2_dispatch_general_query(struct mld_ifsoftc *);
134 static struct mbuf *
135 		mld_v2_encap_report(struct ifnet *, struct mbuf *);
136 static int	mld_v2_enqueue_filter_change(struct mbufq *,
137 		    struct in6_multi *);
138 static int	mld_v2_enqueue_group_record(struct mbufq *,
139 		    struct in6_multi *, const int, const int, const int,
140 		    const int);
141 static int	mld_v2_input_query(struct ifnet *, const struct ip6_hdr *,
142 		    struct mbuf *, struct mldv2_query *, const int, const int);
143 static int	mld_v2_merge_state_changes(struct in6_multi *,
144 		    struct mbufq *);
145 static void	mld_v2_process_group_timers(struct in6_multi_head *,
146 		    struct mbufq *, struct mbufq *,
147 		    struct in6_multi *, const int);
148 static int	mld_v2_process_group_query(struct in6_multi *,
149 		    struct mld_ifsoftc *mli, int, struct mbuf *,
150 		    struct mldv2_query *, const int);
151 static int	sysctl_mld_gsr(SYSCTL_HANDLER_ARGS);
152 static int	sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS);
153 
154 /*
155  * Normative references: RFC 2710, RFC 3590, RFC 3810.
156  *
157  * Locking:
158  *  * The MLD subsystem lock ends up being system-wide for the moment,
159  *    but could be per-VIMAGE later on.
160  *  * The permitted lock order is: IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK.
161  *    Any may be taken independently; if any are held at the same
162  *    time, the above lock order must be followed.
163  *  * IN6_MULTI_LOCK covers in_multi.
164  *  * MLD_LOCK covers per-link state and any global variables in this file.
165  *  * IF_ADDR_LOCK covers if_multiaddrs, which is used for a variety of
166  *    per-link state iterators.
167  *
168  *  XXX LOR PREVENTION
169  *  A special case for IPv6 is the in6_setscope() routine. ip6_output()
170  *  will not accept an ifp; it wants an embedded scope ID, unlike
171  *  ip_output(), which happily takes the ifp given to it. The embedded
172  *  scope ID is only used by MLD to select the outgoing interface.
173  *
174  *  During interface attach and detach, MLD will take MLD_LOCK *after*
175  *  the IF_AFDATA_LOCK.
176  *  As in6_setscope() takes IF_AFDATA_LOCK then SCOPE_LOCK, we can't call
177  *  it with MLD_LOCK held without triggering an LOR. A netisr with indirect
178  *  dispatch could work around this, but we'd rather not do that, as it
179  *  can introduce other races.
180  *
181  *  As such, we exploit the fact that the scope ID is just the interface
182  *  index, and embed it in the IPv6 destination address accordingly.
183  *  This is potentially NOT VALID for MLDv1 reports, as they
184  *  are always sent to the multicast group itself; as MLDv2
185  *  reports are always sent to ff02::16, this is not an issue
186  *  when MLDv2 is in use.
187  *
188  *  This does not however eliminate the LOR when ip6_output() itself
189  *  calls in6_setscope() internally whilst MLD_LOCK is held. This will
190  *  trigger a LOR warning in WITNESS when the ifnet is detached.
191  *
192  *  The right answer is probably to make IF_AFDATA_LOCK an rwlock, given
193  *  how it's used across the network stack. Here we're simply exploiting
194  *  the fact that MLD runs at a similar layer in the stack to scope6.c.
195  *
196  * VIMAGE:
197  *  * Each in6_multi corresponds to an ifp, and each ifp corresponds
198  *    to a vnet in ifp->if_vnet.
199  */
200 static struct mtx		 mld_mtx;
201 static MALLOC_DEFINE(M_MLD, "mld", "mld state");
202 
203 #define	MLD_EMBEDSCOPE(pin6, zoneid)					\
204 	if (IN6_IS_SCOPE_LINKLOCAL(pin6) ||				\
205 	    IN6_IS_ADDR_MC_INTFACELOCAL(pin6))				\
206 		(pin6)->s6_addr16[1] = htons((zoneid) & 0xFFFF)		\
207 
208 /*
209  * VIMAGE-wide globals.
210  */
211 VNET_DEFINE_STATIC(struct timeval, mld_gsrdelay) = {10, 0};
212 VNET_DEFINE_STATIC(LIST_HEAD(, mld_ifsoftc), mli_head);
213 VNET_DEFINE_STATIC(int, interface_timers_running6);
214 VNET_DEFINE_STATIC(int, state_change_timers_running6);
215 VNET_DEFINE_STATIC(int, current_state_timers_running6);
216 
217 #define	V_mld_gsrdelay			VNET(mld_gsrdelay)
218 #define	V_mli_head			VNET(mli_head)
219 #define	V_interface_timers_running6	VNET(interface_timers_running6)
220 #define	V_state_change_timers_running6	VNET(state_change_timers_running6)
221 #define	V_current_state_timers_running6	VNET(current_state_timers_running6)
222 
223 SYSCTL_DECL(_net_inet6);	/* Note: Not in any common header. */
224 
225 SYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
226     "IPv6 Multicast Listener Discovery");
227 
228 /*
229  * Virtualized sysctls.
230  */
231 SYSCTL_PROC(_net_inet6_mld, OID_AUTO, gsrdelay,
232     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
233     &VNET_NAME(mld_gsrdelay.tv_sec), 0, sysctl_mld_gsr, "I",
234     "Rate limit for MLDv2 Group-and-Source queries in seconds");
235 
236 /*
237  * Non-virtualized sysctls.
238  */
239 static SYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo,
240     CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mld_ifinfo,
241     "Per-interface MLDv2 state");
242 
243 static int	mld_v1enable = 1;
244 SYSCTL_INT(_net_inet6_mld, OID_AUTO, v1enable, CTLFLAG_RWTUN,
245     &mld_v1enable, 0, "Enable fallback to MLDv1");
246 
247 static int	mld_v2enable = 1;
248 SYSCTL_INT(_net_inet6_mld, OID_AUTO, v2enable, CTLFLAG_RWTUN,
249     &mld_v2enable, 0, "Enable MLDv2");
250 
251 static int	mld_use_allow = 1;
252 SYSCTL_INT(_net_inet6_mld, OID_AUTO, use_allow, CTLFLAG_RWTUN,
253     &mld_use_allow, 0, "Use ALLOW/BLOCK for RFC 4604 SSM joins/leaves");
254 
255 /*
256  * Packed Router Alert option structure declaration.
257  */
258 struct mld_raopt {
259 	struct ip6_hbh		hbh;
260 	struct ip6_opt		pad;
261 	struct ip6_opt_router	ra;
262 } __packed;
263 
264 /*
265  * Router Alert hop-by-hop option header.
266  */
267 static struct mld_raopt mld_ra = {
268 	.hbh = { 0, 0 },
269 	.pad = { .ip6o_type = IP6OPT_PADN, 0 },
270 	.ra = {
271 	    .ip6or_type = IP6OPT_ROUTER_ALERT,
272 	    .ip6or_len = IP6OPT_RTALERT_LEN - 2,
273 	    .ip6or_value[0] = ((IP6OPT_RTALERT_MLD >> 8) & 0xFF),
274 	    .ip6or_value[1] = (IP6OPT_RTALERT_MLD & 0xFF)
275 	}
276 };
277 static struct ip6_pktopts mld_po;
278 
279 static __inline void
280 mld_save_context(struct mbuf *m, struct ifnet *ifp)
281 {
282 
283 #ifdef VIMAGE
284 	m->m_pkthdr.PH_loc.ptr = ifp->if_vnet;
285 #endif /* VIMAGE */
286 	m->m_pkthdr.rcvif = ifp;
287 	m->m_pkthdr.flowid = ifp->if_index;
288 }
289 
290 static __inline void
291 mld_scrub_context(struct mbuf *m)
292 {
293 
294 	m->m_pkthdr.PH_loc.ptr = NULL;
295 	m->m_pkthdr.flowid = 0;
296 }
297 
298 /*
299  * Restore context from a queued output chain.
300  * Return saved ifindex.
301  *
302  * VIMAGE: The assertion is there to make sure that we
303  * actually called CURVNET_SET() with what's in the mbuf chain.
304  */
305 static __inline uint32_t
306 mld_restore_context(struct mbuf *m)
307 {
308 
309 #if defined(VIMAGE) && defined(INVARIANTS)
310 	KASSERT(curvnet == m->m_pkthdr.PH_loc.ptr,
311 	    ("%s: called when curvnet was not restored: cuvnet %p m ptr %p",
312 	    __func__, curvnet, m->m_pkthdr.PH_loc.ptr));
313 #endif
314 	return (m->m_pkthdr.flowid);
315 }
316 
317 /*
318  * Retrieve or set threshold between group-source queries in seconds.
319  *
320  * VIMAGE: Assume curvnet set by caller.
321  * SMPng: NOTE: Serialized by MLD lock.
322  */
323 static int
324 sysctl_mld_gsr(SYSCTL_HANDLER_ARGS)
325 {
326 	int error;
327 	int i;
328 
329 	error = sysctl_wire_old_buffer(req, sizeof(int));
330 	if (error)
331 		return (error);
332 
333 	MLD_LOCK();
334 
335 	i = V_mld_gsrdelay.tv_sec;
336 
337 	error = sysctl_handle_int(oidp, &i, 0, req);
338 	if (error || !req->newptr)
339 		goto out_locked;
340 
341 	if (i < -1 || i >= 60) {
342 		error = EINVAL;
343 		goto out_locked;
344 	}
345 
346 	CTR2(KTR_MLD, "change mld_gsrdelay from %d to %d",
347 	     V_mld_gsrdelay.tv_sec, i);
348 	V_mld_gsrdelay.tv_sec = i;
349 
350 out_locked:
351 	MLD_UNLOCK();
352 	return (error);
353 }
354 
355 /*
356  * Expose struct mld_ifsoftc to userland, keyed by ifindex.
357  * For use by ifmcstat(8).
358  *
359  * VIMAGE: Assume curvnet set by caller. The node handler itself
360  * is not directly virtualized.
361  */
362 static int
363 sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS)
364 {
365 	struct epoch_tracker	 et;
366 	int			*name;
367 	int			 error;
368 	u_int			 namelen;
369 	struct ifnet		*ifp;
370 	struct mld_ifsoftc	*mli;
371 
372 	name = (int *)arg1;
373 	namelen = arg2;
374 
375 	if (req->newptr != NULL)
376 		return (EPERM);
377 
378 	if (namelen != 1)
379 		return (EINVAL);
380 
381 	error = sysctl_wire_old_buffer(req, sizeof(struct mld_ifinfo));
382 	if (error)
383 		return (error);
384 
385 	IN6_MULTI_LOCK();
386 	IN6_MULTI_LIST_LOCK();
387 	MLD_LOCK();
388 	NET_EPOCH_ENTER(et);
389 
390 	error = ENOENT;
391 	ifp = ifnet_byindex(name[0]);
392 	if (ifp == NULL)
393 		goto out_locked;
394 
395 	LIST_FOREACH(mli, &V_mli_head, mli_link) {
396 		if (ifp == mli->mli_ifp) {
397 			struct mld_ifinfo info;
398 
399 			info.mli_version = mli->mli_version;
400 			info.mli_v1_timer = mli->mli_v1_timer;
401 			info.mli_v2_timer = mli->mli_v2_timer;
402 			info.mli_flags = mli->mli_flags;
403 			info.mli_rv = mli->mli_rv;
404 			info.mli_qi = mli->mli_qi;
405 			info.mli_qri = mli->mli_qri;
406 			info.mli_uri = mli->mli_uri;
407 			error = SYSCTL_OUT(req, &info, sizeof(info));
408 			break;
409 		}
410 	}
411 
412 out_locked:
413 	NET_EPOCH_EXIT(et);
414 	MLD_UNLOCK();
415 	IN6_MULTI_LIST_UNLOCK();
416 	IN6_MULTI_UNLOCK();
417 	return (error);
418 }
419 
420 /*
421  * Dispatch an entire queue of pending packet chains.
422  * VIMAGE: Assumes the vnet pointer has been set.
423  */
424 static void
425 mld_dispatch_queue(struct mbufq *mq, int limit)
426 {
427 	struct mbuf *m;
428 
429 	while ((m = mbufq_dequeue(mq)) != NULL) {
430 		CTR3(KTR_MLD, "%s: dispatch %p from %p", __func__, mq, m);
431 		mld_dispatch_packet(m);
432 		if (--limit == 0)
433 			break;
434 	}
435 }
436 
437 /*
438  * Filter outgoing MLD report state by group.
439  *
440  * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1)
441  * and node-local addresses. However, kernel and socket consumers
442  * always embed the KAME scope ID in the address provided, so strip it
443  * when performing comparison.
444  * Note: This is not the same as the *multicast* scope.
445  *
446  * Return zero if the given group is one for which MLD reports
447  * should be suppressed, or non-zero if reports should be issued.
448  */
449 static __inline int
450 mld_is_addr_reported(const struct in6_addr *addr)
451 {
452 
453 	KASSERT(IN6_IS_ADDR_MULTICAST(addr), ("%s: not multicast", __func__));
454 
455 	if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL)
456 		return (0);
457 
458 	if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL) {
459 		struct in6_addr tmp = *addr;
460 		in6_clearscope(&tmp);
461 		if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes))
462 			return (0);
463 	}
464 
465 	return (1);
466 }
467 
468 /*
469  * Attach MLD when PF_INET6 is attached to an interface.
470  *
471  * SMPng: Normally called with IF_AFDATA_LOCK held.
472  */
473 struct mld_ifsoftc *
474 mld_domifattach(struct ifnet *ifp)
475 {
476 	struct mld_ifsoftc *mli;
477 
478 	CTR3(KTR_MLD, "%s: called for ifp %p(%s)",
479 	    __func__, ifp, if_name(ifp));
480 
481 	MLD_LOCK();
482 
483 	mli = mli_alloc_locked(ifp);
484 	if (!(ifp->if_flags & IFF_MULTICAST))
485 		mli->mli_flags |= MLIF_SILENT;
486 	if (mld_use_allow)
487 		mli->mli_flags |= MLIF_USEALLOW;
488 
489 	MLD_UNLOCK();
490 
491 	return (mli);
492 }
493 
494 /*
495  * VIMAGE: assume curvnet set by caller.
496  */
497 static struct mld_ifsoftc *
498 mli_alloc_locked(/*const*/ struct ifnet *ifp)
499 {
500 	struct mld_ifsoftc *mli;
501 
502 	MLD_LOCK_ASSERT();
503 
504 	mli = malloc(sizeof(struct mld_ifsoftc), M_MLD, M_NOWAIT|M_ZERO);
505 	if (mli == NULL)
506 		goto out;
507 
508 	mli->mli_ifp = ifp;
509 	mli->mli_version = MLD_VERSION_2;
510 	mli->mli_flags = 0;
511 	mli->mli_rv = MLD_RV_INIT;
512 	mli->mli_qi = MLD_QI_INIT;
513 	mli->mli_qri = MLD_QRI_INIT;
514 	mli->mli_uri = MLD_URI_INIT;
515 	mbufq_init(&mli->mli_gq, MLD_MAX_RESPONSE_PACKETS);
516 
517 	LIST_INSERT_HEAD(&V_mli_head, mli, mli_link);
518 
519 	CTR2(KTR_MLD, "allocate mld_ifsoftc for ifp %p(%s)",
520 	     ifp, if_name(ifp));
521 
522 out:
523 	return (mli);
524 }
525 
526 /*
527  * Hook for ifdetach.
528  *
529  * NOTE: Some finalization tasks need to run before the protocol domain
530  * is detached, but also before the link layer does its cleanup.
531  * Run before link-layer cleanup; cleanup groups, but do not free MLD state.
532  *
533  * SMPng: Caller must hold IN6_MULTI_LOCK().
534  * Must take IF_ADDR_LOCK() to cover if_multiaddrs iterator.
535  * XXX This routine is also bitten by unlocked ifma_protospec access.
536  */
537 void
538 mld_ifdetach(struct ifnet *ifp, struct in6_multi_head *inmh)
539 {
540 	struct epoch_tracker     et;
541 	struct mld_ifsoftc	*mli;
542 	struct ifmultiaddr	*ifma;
543 	struct in6_multi	*inm;
544 
545 	CTR3(KTR_MLD, "%s: called for ifp %p(%s)", __func__, ifp,
546 	    if_name(ifp));
547 
548 	IN6_MULTI_LIST_LOCK_ASSERT();
549 	MLD_LOCK();
550 
551 	mli = MLD_IFINFO(ifp);
552 	IF_ADDR_WLOCK(ifp);
553 	/*
554 	 * Extract list of in6_multi associated with the detaching ifp
555 	 * which the PF_INET6 layer is about to release.
556 	 */
557 	NET_EPOCH_ENTER(et);
558 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
559 		inm = in6m_ifmultiaddr_get_inm(ifma);
560 		if (inm == NULL)
561 			continue;
562 		in6m_disconnect_locked(inmh, inm);
563 
564 		if (mli->mli_version == MLD_VERSION_2) {
565 			in6m_clear_recorded(inm);
566 
567 			/*
568 			 * We need to release the final reference held
569 			 * for issuing the INCLUDE {}.
570 			 */
571 			if (inm->in6m_state == MLD_LEAVING_MEMBER) {
572 				inm->in6m_state = MLD_NOT_MEMBER;
573 				in6m_rele_locked(inmh, inm);
574 			}
575 		}
576 	}
577 	NET_EPOCH_EXIT(et);
578 	IF_ADDR_WUNLOCK(ifp);
579 	MLD_UNLOCK();
580 }
581 
582 /*
583  * Hook for domifdetach.
584  * Runs after link-layer cleanup; free MLD state.
585  *
586  * SMPng: Normally called with IF_AFDATA_LOCK held.
587  */
588 void
589 mld_domifdetach(struct ifnet *ifp)
590 {
591 
592 	CTR3(KTR_MLD, "%s: called for ifp %p(%s)",
593 	    __func__, ifp, if_name(ifp));
594 
595 	MLD_LOCK();
596 	mli_delete_locked(ifp);
597 	MLD_UNLOCK();
598 }
599 
600 static void
601 mli_delete_locked(const struct ifnet *ifp)
602 {
603 	struct mld_ifsoftc *mli, *tmli;
604 
605 	CTR3(KTR_MLD, "%s: freeing mld_ifsoftc for ifp %p(%s)",
606 	    __func__, ifp, if_name(ifp));
607 
608 	MLD_LOCK_ASSERT();
609 
610 	LIST_FOREACH_SAFE(mli, &V_mli_head, mli_link, tmli) {
611 		if (mli->mli_ifp == ifp) {
612 			/*
613 			 * Free deferred General Query responses.
614 			 */
615 			mbufq_drain(&mli->mli_gq);
616 
617 			LIST_REMOVE(mli, mli_link);
618 
619 			free(mli, M_MLD);
620 			return;
621 		}
622 	}
623 }
624 
625 /*
626  * Process a received MLDv1 general or address-specific query.
627  * Assumes that the query header has been pulled up to sizeof(mld_hdr).
628  *
629  * NOTE: Can't be fully const correct as we temporarily embed scope ID in
630  * mld_addr. This is OK as we own the mbuf chain.
631  */
632 static int
633 mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6,
634     /*const*/ struct mld_hdr *mld)
635 {
636 	struct ifmultiaddr	*ifma;
637 	struct mld_ifsoftc	*mli;
638 	struct in6_multi	*inm;
639 	int			 is_general_query;
640 	uint16_t		 timer;
641 #ifdef KTR
642 	char			 ip6tbuf[INET6_ADDRSTRLEN];
643 #endif
644 
645 	NET_EPOCH_ASSERT();
646 
647 	is_general_query = 0;
648 
649 	if (!mld_v1enable) {
650 		CTR3(KTR_MLD, "ignore v1 query %s on ifp %p(%s)",
651 		    ip6_sprintf(ip6tbuf, &mld->mld_addr),
652 		    ifp, if_name(ifp));
653 		return (0);
654 	}
655 
656 	/*
657 	 * RFC3810 Section 6.2: MLD queries must originate from
658 	 * a router's link-local address.
659 	 */
660 	if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) {
661 		CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)",
662 		    ip6_sprintf(ip6tbuf, &ip6->ip6_src),
663 		    ifp, if_name(ifp));
664 		return (0);
665 	}
666 
667 	/*
668 	 * Do address field validation upfront before we accept
669 	 * the query.
670 	 */
671 	if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) {
672 		/*
673 		 * MLDv1 General Query.
674 		 * If this was not sent to the all-nodes group, ignore it.
675 		 */
676 		struct in6_addr		 dst;
677 
678 		dst = ip6->ip6_dst;
679 		in6_clearscope(&dst);
680 		if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes))
681 			return (EINVAL);
682 		is_general_query = 1;
683 	} else {
684 		/*
685 		 * Embed scope ID of receiving interface in MLD query for
686 		 * lookup whilst we don't hold other locks.
687 		 */
688 		in6_setscope(&mld->mld_addr, ifp, NULL);
689 	}
690 
691 	IN6_MULTI_LIST_LOCK();
692 	MLD_LOCK();
693 
694 	/*
695 	 * Switch to MLDv1 host compatibility mode.
696 	 */
697 	mli = MLD_IFINFO(ifp);
698 	KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp));
699 	mld_set_version(mli, MLD_VERSION_1);
700 
701 	timer = (ntohs(mld->mld_maxdelay) * PR_FASTHZ) / MLD_TIMER_SCALE;
702 	if (timer == 0)
703 		timer = 1;
704 
705 	if (is_general_query) {
706 		/*
707 		 * For each reporting group joined on this
708 		 * interface, kick the report timer.
709 		 */
710 		CTR2(KTR_MLD, "process v1 general query on ifp %p(%s)",
711 			 ifp, if_name(ifp));
712 		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
713 			inm = in6m_ifmultiaddr_get_inm(ifma);
714 			if (inm == NULL)
715 				continue;
716 			mld_v1_update_group(inm, timer);
717 		}
718 	} else {
719 		/*
720 		 * MLDv1 Group-Specific Query.
721 		 * If this is a group-specific MLDv1 query, we need only
722 		 * look up the single group to process it.
723 		 */
724 		inm = in6m_lookup_locked(ifp, &mld->mld_addr);
725 		if (inm != NULL) {
726 			CTR3(KTR_MLD, "process v1 query %s on ifp %p(%s)",
727 			    ip6_sprintf(ip6tbuf, &mld->mld_addr),
728 			    ifp, if_name(ifp));
729 			mld_v1_update_group(inm, timer);
730 		}
731 		/* XXX Clear embedded scope ID as userland won't expect it. */
732 		in6_clearscope(&mld->mld_addr);
733 	}
734 
735 	MLD_UNLOCK();
736 	IN6_MULTI_LIST_UNLOCK();
737 
738 	return (0);
739 }
740 
741 /*
742  * Update the report timer on a group in response to an MLDv1 query.
743  *
744  * If we are becoming the reporting member for this group, start the timer.
745  * If we already are the reporting member for this group, and timer is
746  * below the threshold, reset it.
747  *
748  * We may be updating the group for the first time since we switched
749  * to MLDv2. If we are, then we must clear any recorded source lists,
750  * and transition to REPORTING state; the group timer is overloaded
751  * for group and group-source query responses.
752  *
753  * Unlike MLDv2, the delay per group should be jittered
754  * to avoid bursts of MLDv1 reports.
755  */
756 static void
757 mld_v1_update_group(struct in6_multi *inm, const int timer)
758 {
759 #ifdef KTR
760 	char			 ip6tbuf[INET6_ADDRSTRLEN];
761 #endif
762 
763 	CTR4(KTR_MLD, "%s: %s/%s timer=%d", __func__,
764 	    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
765 	    if_name(inm->in6m_ifp), timer);
766 
767 	IN6_MULTI_LIST_LOCK_ASSERT();
768 
769 	switch (inm->in6m_state) {
770 	case MLD_NOT_MEMBER:
771 	case MLD_SILENT_MEMBER:
772 		break;
773 	case MLD_REPORTING_MEMBER:
774 		if (inm->in6m_timer != 0 &&
775 		    inm->in6m_timer <= timer) {
776 			CTR1(KTR_MLD, "%s: REPORTING and timer running, "
777 			    "skipping.", __func__);
778 			break;
779 		}
780 		/* FALLTHROUGH */
781 	case MLD_SG_QUERY_PENDING_MEMBER:
782 	case MLD_G_QUERY_PENDING_MEMBER:
783 	case MLD_IDLE_MEMBER:
784 	case MLD_LAZY_MEMBER:
785 	case MLD_AWAKENING_MEMBER:
786 		CTR1(KTR_MLD, "%s: ->REPORTING", __func__);
787 		inm->in6m_state = MLD_REPORTING_MEMBER;
788 		inm->in6m_timer = MLD_RANDOM_DELAY(timer);
789 		V_current_state_timers_running6 = 1;
790 		break;
791 	case MLD_SLEEPING_MEMBER:
792 		CTR1(KTR_MLD, "%s: ->AWAKENING", __func__);
793 		inm->in6m_state = MLD_AWAKENING_MEMBER;
794 		break;
795 	case MLD_LEAVING_MEMBER:
796 		break;
797 	}
798 }
799 
800 /*
801  * Process a received MLDv2 general, group-specific or
802  * group-and-source-specific query.
803  *
804  * Assumes that mld points to a struct mldv2_query which is stored in
805  * contiguous memory.
806  *
807  * Return 0 if successful, otherwise an appropriate error code is returned.
808  */
809 static int
810 mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6,
811     struct mbuf *m, struct mldv2_query *mld, const int off, const int icmp6len)
812 {
813 	struct mld_ifsoftc	*mli;
814 	struct in6_multi	*inm;
815 	uint32_t		 maxdelay, nsrc, qqi;
816 	int			 is_general_query;
817 	uint16_t		 timer;
818 	uint8_t			 qrv;
819 #ifdef KTR
820 	char			 ip6tbuf[INET6_ADDRSTRLEN];
821 #endif
822 
823 	NET_EPOCH_ASSERT();
824 
825 	if (!mld_v2enable) {
826 		CTR3(KTR_MLD, "ignore v2 query src %s on ifp %p(%s)",
827 		    ip6_sprintf(ip6tbuf, &ip6->ip6_src),
828 		    ifp, if_name(ifp));
829 		return (0);
830 	}
831 
832 	/*
833 	 * RFC3810 Section 6.2: MLD queries must originate from
834 	 * a router's link-local address.
835 	 */
836 	if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) {
837 		CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)",
838 		    ip6_sprintf(ip6tbuf, &ip6->ip6_src),
839 		    ifp, if_name(ifp));
840 		return (0);
841 	}
842 
843 	is_general_query = 0;
844 
845 	CTR2(KTR_MLD, "input v2 query on ifp %p(%s)", ifp, if_name(ifp));
846 
847 	maxdelay = ntohs(mld->mld_maxdelay);	/* in 1/10ths of a second */
848 	if (maxdelay >= 32768) {
849 		maxdelay = (MLD_MRC_MANT(maxdelay) | 0x1000) <<
850 			   (MLD_MRC_EXP(maxdelay) + 3);
851 	}
852 	timer = (maxdelay * PR_FASTHZ) / MLD_TIMER_SCALE;
853 	if (timer == 0)
854 		timer = 1;
855 
856 	qrv = MLD_QRV(mld->mld_misc);
857 	if (qrv < 2) {
858 		CTR3(KTR_MLD, "%s: clamping qrv %d to %d", __func__,
859 		    qrv, MLD_RV_INIT);
860 		qrv = MLD_RV_INIT;
861 	}
862 
863 	qqi = mld->mld_qqi;
864 	if (qqi >= 128) {
865 		qqi = MLD_QQIC_MANT(mld->mld_qqi) <<
866 		     (MLD_QQIC_EXP(mld->mld_qqi) + 3);
867 	}
868 
869 	nsrc = ntohs(mld->mld_numsrc);
870 	if (nsrc > MLD_MAX_GS_SOURCES)
871 		return (EMSGSIZE);
872 	if (icmp6len < sizeof(struct mldv2_query) +
873 	    (nsrc * sizeof(struct in6_addr)))
874 		return (EMSGSIZE);
875 
876 	/*
877 	 * Do further input validation upfront to avoid resetting timers
878 	 * should we need to discard this query.
879 	 */
880 	if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) {
881 		/*
882 		 * A general query with a source list has undefined
883 		 * behaviour; discard it.
884 		 */
885 		if (nsrc > 0)
886 			return (EINVAL);
887 		is_general_query = 1;
888 	} else {
889 		/*
890 		 * Embed scope ID of receiving interface in MLD query for
891 		 * lookup whilst we don't hold other locks (due to KAME
892 		 * locking lameness). We own this mbuf chain just now.
893 		 */
894 		in6_setscope(&mld->mld_addr, ifp, NULL);
895 	}
896 
897 	IN6_MULTI_LIST_LOCK();
898 	MLD_LOCK();
899 
900 	mli = MLD_IFINFO(ifp);
901 	KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp));
902 
903 	/*
904 	 * Discard the v2 query if we're in Compatibility Mode.
905 	 * The RFC is pretty clear that hosts need to stay in MLDv1 mode
906 	 * until the Old Version Querier Present timer expires.
907 	 */
908 	if (mli->mli_version != MLD_VERSION_2)
909 		goto out_locked;
910 
911 	mld_set_version(mli, MLD_VERSION_2);
912 	mli->mli_rv = qrv;
913 	mli->mli_qi = qqi;
914 	mli->mli_qri = maxdelay;
915 
916 	CTR4(KTR_MLD, "%s: qrv %d qi %d maxdelay %d", __func__, qrv, qqi,
917 	    maxdelay);
918 
919 	if (is_general_query) {
920 		/*
921 		 * MLDv2 General Query.
922 		 *
923 		 * Schedule a current-state report on this ifp for
924 		 * all groups, possibly containing source lists.
925 		 *
926 		 * If there is a pending General Query response
927 		 * scheduled earlier than the selected delay, do
928 		 * not schedule any other reports.
929 		 * Otherwise, reset the interface timer.
930 		 */
931 		CTR2(KTR_MLD, "process v2 general query on ifp %p(%s)",
932 		    ifp, if_name(ifp));
933 		if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) {
934 			mli->mli_v2_timer = MLD_RANDOM_DELAY(timer);
935 			V_interface_timers_running6 = 1;
936 		}
937 	} else {
938 		/*
939 		 * MLDv2 Group-specific or Group-and-source-specific Query.
940 		 *
941 		 * Group-source-specific queries are throttled on
942 		 * a per-group basis to defeat denial-of-service attempts.
943 		 * Queries for groups we are not a member of on this
944 		 * link are simply ignored.
945 		 */
946 		inm = in6m_lookup_locked(ifp, &mld->mld_addr);
947 		if (inm == NULL)
948 			goto out_locked;
949 		if (nsrc > 0) {
950 			if (!ratecheck(&inm->in6m_lastgsrtv,
951 			    &V_mld_gsrdelay)) {
952 				CTR1(KTR_MLD, "%s: GS query throttled.",
953 				    __func__);
954 				goto out_locked;
955 			}
956 		}
957 		CTR2(KTR_MLD, "process v2 group query on ifp %p(%s)",
958 		     ifp, if_name(ifp));
959 		/*
960 		 * If there is a pending General Query response
961 		 * scheduled sooner than the selected delay, no
962 		 * further report need be scheduled.
963 		 * Otherwise, prepare to respond to the
964 		 * group-specific or group-and-source query.
965 		 */
966 		if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer)
967 			mld_v2_process_group_query(inm, mli, timer, m, mld, off);
968 
969 		/* XXX Clear embedded scope ID as userland won't expect it. */
970 		in6_clearscope(&mld->mld_addr);
971 	}
972 
973 out_locked:
974 	MLD_UNLOCK();
975 	IN6_MULTI_LIST_UNLOCK();
976 
977 	return (0);
978 }
979 
980 /*
981  * Process a received MLDv2 group-specific or group-and-source-specific
982  * query.
983  * Return <0 if any error occurred. Currently this is ignored.
984  */
985 static int
986 mld_v2_process_group_query(struct in6_multi *inm, struct mld_ifsoftc *mli,
987     int timer, struct mbuf *m0, struct mldv2_query *mld, const int off)
988 {
989 	int			 retval;
990 	uint16_t		 nsrc;
991 
992 	IN6_MULTI_LIST_LOCK_ASSERT();
993 	MLD_LOCK_ASSERT();
994 
995 	retval = 0;
996 
997 	switch (inm->in6m_state) {
998 	case MLD_NOT_MEMBER:
999 	case MLD_SILENT_MEMBER:
1000 	case MLD_SLEEPING_MEMBER:
1001 	case MLD_LAZY_MEMBER:
1002 	case MLD_AWAKENING_MEMBER:
1003 	case MLD_IDLE_MEMBER:
1004 	case MLD_LEAVING_MEMBER:
1005 		return (retval);
1006 		break;
1007 	case MLD_REPORTING_MEMBER:
1008 	case MLD_G_QUERY_PENDING_MEMBER:
1009 	case MLD_SG_QUERY_PENDING_MEMBER:
1010 		break;
1011 	}
1012 
1013 	nsrc = ntohs(mld->mld_numsrc);
1014 
1015 	/* Length should be checked by calling function. */
1016 	KASSERT((m0->m_flags & M_PKTHDR) == 0 ||
1017 	    m0->m_pkthdr.len >= off + sizeof(struct mldv2_query) +
1018 	    nsrc * sizeof(struct in6_addr),
1019 	    ("mldv2 packet is too short: (%d bytes < %zd bytes, m=%p)",
1020 	    m0->m_pkthdr.len, off + sizeof(struct mldv2_query) +
1021 	    nsrc * sizeof(struct in6_addr), m0));
1022 
1023 	/*
1024 	 * Deal with group-specific queries upfront.
1025 	 * If any group query is already pending, purge any recorded
1026 	 * source-list state if it exists, and schedule a query response
1027 	 * for this group-specific query.
1028 	 */
1029 	if (nsrc == 0) {
1030 		if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER ||
1031 		    inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) {
1032 			in6m_clear_recorded(inm);
1033 			timer = min(inm->in6m_timer, timer);
1034 		}
1035 		inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER;
1036 		inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1037 		V_current_state_timers_running6 = 1;
1038 		return (retval);
1039 	}
1040 
1041 	/*
1042 	 * Deal with the case where a group-and-source-specific query has
1043 	 * been received but a group-specific query is already pending.
1044 	 */
1045 	if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) {
1046 		timer = min(inm->in6m_timer, timer);
1047 		inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1048 		V_current_state_timers_running6 = 1;
1049 		return (retval);
1050 	}
1051 
1052 	/*
1053 	 * Finally, deal with the case where a group-and-source-specific
1054 	 * query has been received, where a response to a previous g-s-r
1055 	 * query exists, or none exists.
1056 	 * In this case, we need to parse the source-list which the Querier
1057 	 * has provided us with and check if we have any source list filter
1058 	 * entries at T1 for these sources. If we do not, there is no need
1059 	 * schedule a report and the query may be dropped.
1060 	 * If we do, we must record them and schedule a current-state
1061 	 * report for those sources.
1062 	 */
1063 	if (inm->in6m_nsrc > 0) {
1064 		struct in6_addr		 srcaddr;
1065 		int			 i, nrecorded;
1066 		int			 soff;
1067 
1068 		soff = off + sizeof(struct mldv2_query);
1069 		nrecorded = 0;
1070 		for (i = 0; i < nsrc; i++) {
1071 			m_copydata(m0, soff, sizeof(struct in6_addr),
1072 			    (caddr_t)&srcaddr);
1073 			retval = in6m_record_source(inm, &srcaddr);
1074 			if (retval < 0)
1075 				break;
1076 			nrecorded += retval;
1077 			soff += sizeof(struct in6_addr);
1078 		}
1079 		if (nrecorded > 0) {
1080 			CTR1(KTR_MLD,
1081 			    "%s: schedule response to SG query", __func__);
1082 			inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER;
1083 			inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1084 			V_current_state_timers_running6 = 1;
1085 		}
1086 	}
1087 
1088 	return (retval);
1089 }
1090 
1091 /*
1092  * Process a received MLDv1 host membership report.
1093  * Assumes mld points to mld_hdr in pulled up mbuf chain.
1094  *
1095  * NOTE: Can't be fully const correct as we temporarily embed scope ID in
1096  * mld_addr. This is OK as we own the mbuf chain.
1097  */
1098 static int
1099 mld_v1_input_report(struct ifnet *ifp, const struct ip6_hdr *ip6,
1100     /*const*/ struct mld_hdr *mld)
1101 {
1102 	struct in6_addr		 src, dst;
1103 	struct in6_ifaddr	*ia;
1104 	struct in6_multi	*inm;
1105 #ifdef KTR
1106 	char			 ip6tbuf[INET6_ADDRSTRLEN];
1107 #endif
1108 
1109 	NET_EPOCH_ASSERT();
1110 
1111 	if (!mld_v1enable) {
1112 		CTR3(KTR_MLD, "ignore v1 report %s on ifp %p(%s)",
1113 		    ip6_sprintf(ip6tbuf, &mld->mld_addr),
1114 		    ifp, if_name(ifp));
1115 		return (0);
1116 	}
1117 
1118 	if (ifp->if_flags & IFF_LOOPBACK)
1119 		return (0);
1120 
1121 	/*
1122 	 * MLDv1 reports must originate from a host's link-local address,
1123 	 * or the unspecified address (when booting).
1124 	 */
1125 	src = ip6->ip6_src;
1126 	in6_clearscope(&src);
1127 	if (!IN6_IS_SCOPE_LINKLOCAL(&src) && !IN6_IS_ADDR_UNSPECIFIED(&src)) {
1128 		CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)",
1129 		    ip6_sprintf(ip6tbuf, &ip6->ip6_src),
1130 		    ifp, if_name(ifp));
1131 		return (EINVAL);
1132 	}
1133 
1134 	/*
1135 	 * RFC2710 Section 4: MLDv1 reports must pertain to a multicast
1136 	 * group, and must be directed to the group itself.
1137 	 */
1138 	dst = ip6->ip6_dst;
1139 	in6_clearscope(&dst);
1140 	if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) ||
1141 	    !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &dst)) {
1142 		CTR3(KTR_MLD, "ignore v1 query dst %s on ifp %p(%s)",
1143 		    ip6_sprintf(ip6tbuf, &ip6->ip6_dst),
1144 		    ifp, if_name(ifp));
1145 		return (EINVAL);
1146 	}
1147 
1148 	/*
1149 	 * Make sure we don't hear our own membership report, as fast
1150 	 * leave requires knowing that we are the only member of a
1151 	 * group. Assume we used the link-local address if available,
1152 	 * otherwise look for ::.
1153 	 *
1154 	 * XXX Note that scope ID comparison is needed for the address
1155 	 * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be
1156 	 * performed for the on-wire address.
1157 	 */
1158 	ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
1159 	if ((ia && IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia))) ||
1160 	    (ia == NULL && IN6_IS_ADDR_UNSPECIFIED(&src))) {
1161 		if (ia != NULL)
1162 			ifa_free(&ia->ia_ifa);
1163 		return (0);
1164 	}
1165 	if (ia != NULL)
1166 		ifa_free(&ia->ia_ifa);
1167 
1168 	CTR3(KTR_MLD, "process v1 report %s on ifp %p(%s)",
1169 	    ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, if_name(ifp));
1170 
1171 	/*
1172 	 * Embed scope ID of receiving interface in MLD query for lookup
1173 	 * whilst we don't hold other locks (due to KAME locking lameness).
1174 	 */
1175 	if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr))
1176 		in6_setscope(&mld->mld_addr, ifp, NULL);
1177 
1178 	IN6_MULTI_LIST_LOCK();
1179 	MLD_LOCK();
1180 
1181 	/*
1182 	 * MLDv1 report suppression.
1183 	 * If we are a member of this group, and our membership should be
1184 	 * reported, and our group timer is pending or about to be reset,
1185 	 * stop our group timer by transitioning to the 'lazy' state.
1186 	 */
1187 	inm = in6m_lookup_locked(ifp, &mld->mld_addr);
1188 	if (inm != NULL) {
1189 		struct mld_ifsoftc *mli;
1190 
1191 		mli = inm->in6m_mli;
1192 		KASSERT(mli != NULL,
1193 		    ("%s: no mli for ifp %p", __func__, ifp));
1194 
1195 		/*
1196 		 * If we are in MLDv2 host mode, do not allow the
1197 		 * other host's MLDv1 report to suppress our reports.
1198 		 */
1199 		if (mli->mli_version == MLD_VERSION_2)
1200 			goto out_locked;
1201 
1202 		inm->in6m_timer = 0;
1203 
1204 		switch (inm->in6m_state) {
1205 		case MLD_NOT_MEMBER:
1206 		case MLD_SILENT_MEMBER:
1207 		case MLD_SLEEPING_MEMBER:
1208 			break;
1209 		case MLD_REPORTING_MEMBER:
1210 		case MLD_IDLE_MEMBER:
1211 		case MLD_AWAKENING_MEMBER:
1212 			CTR3(KTR_MLD,
1213 			    "report suppressed for %s on ifp %p(%s)",
1214 			    ip6_sprintf(ip6tbuf, &mld->mld_addr),
1215 			    ifp, if_name(ifp));
1216 		case MLD_LAZY_MEMBER:
1217 			inm->in6m_state = MLD_LAZY_MEMBER;
1218 			break;
1219 		case MLD_G_QUERY_PENDING_MEMBER:
1220 		case MLD_SG_QUERY_PENDING_MEMBER:
1221 		case MLD_LEAVING_MEMBER:
1222 			break;
1223 		}
1224 	}
1225 
1226 out_locked:
1227 	MLD_UNLOCK();
1228 	IN6_MULTI_LIST_UNLOCK();
1229 
1230 	/* XXX Clear embedded scope ID as userland won't expect it. */
1231 	in6_clearscope(&mld->mld_addr);
1232 
1233 	return (0);
1234 }
1235 
1236 /*
1237  * MLD input path.
1238  *
1239  * Assume query messages which fit in a single ICMPv6 message header
1240  * have been pulled up.
1241  * Assume that userland will want to see the message, even if it
1242  * otherwise fails kernel input validation; do not free it.
1243  * Pullup may however free the mbuf chain m if it fails.
1244  *
1245  * Return IPPROTO_DONE if we freed m. Otherwise, return 0.
1246  */
1247 int
1248 mld_input(struct mbuf **mp, int off, int icmp6len)
1249 {
1250 	struct ifnet	*ifp;
1251 	struct ip6_hdr	*ip6;
1252 	struct mbuf	*m;
1253 	struct mld_hdr	*mld;
1254 	int		 mldlen;
1255 
1256 	m = *mp;
1257 	CTR3(KTR_MLD, "%s: called w/mbuf (%p,%d)", __func__, m, off);
1258 
1259 	ifp = m->m_pkthdr.rcvif;
1260 
1261 	/* Pullup to appropriate size. */
1262 	if (m->m_len < off + sizeof(*mld)) {
1263 		m = m_pullup(m, off + sizeof(*mld));
1264 		if (m == NULL) {
1265 			ICMP6STAT_INC(icp6s_badlen);
1266 			return (IPPROTO_DONE);
1267 		}
1268 	}
1269 	mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off);
1270 	if (mld->mld_type == MLD_LISTENER_QUERY &&
1271 	    icmp6len >= sizeof(struct mldv2_query)) {
1272 		mldlen = sizeof(struct mldv2_query);
1273 	} else {
1274 		mldlen = sizeof(struct mld_hdr);
1275 	}
1276 	if (m->m_len < off + mldlen) {
1277 		m = m_pullup(m, off + mldlen);
1278 		if (m == NULL) {
1279 			ICMP6STAT_INC(icp6s_badlen);
1280 			return (IPPROTO_DONE);
1281 		}
1282 	}
1283 	*mp = m;
1284 	ip6 = mtod(m, struct ip6_hdr *);
1285 	mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off);
1286 
1287 	/*
1288 	 * Userland needs to see all of this traffic for implementing
1289 	 * the endpoint discovery portion of multicast routing.
1290 	 */
1291 	switch (mld->mld_type) {
1292 	case MLD_LISTENER_QUERY:
1293 		icmp6_ifstat_inc(ifp, ifs6_in_mldquery);
1294 		if (icmp6len == sizeof(struct mld_hdr)) {
1295 			if (mld_v1_input_query(ifp, ip6, mld) != 0)
1296 				return (0);
1297 		} else if (icmp6len >= sizeof(struct mldv2_query)) {
1298 			if (mld_v2_input_query(ifp, ip6, m,
1299 			    (struct mldv2_query *)mld, off, icmp6len) != 0)
1300 				return (0);
1301 		}
1302 		break;
1303 	case MLD_LISTENER_REPORT:
1304 		icmp6_ifstat_inc(ifp, ifs6_in_mldreport);
1305 		if (mld_v1_input_report(ifp, ip6, mld) != 0)
1306 			return (0);
1307 		break;
1308 	case MLDV2_LISTENER_REPORT:
1309 		icmp6_ifstat_inc(ifp, ifs6_in_mldreport);
1310 		break;
1311 	case MLD_LISTENER_DONE:
1312 		icmp6_ifstat_inc(ifp, ifs6_in_mlddone);
1313 		break;
1314 	default:
1315 		break;
1316 	}
1317 
1318 	return (0);
1319 }
1320 
1321 /*
1322  * Fast timeout handler (global).
1323  * VIMAGE: Timeout handlers are expected to service all vimages.
1324  */
1325 void
1326 mld_fasttimo(void)
1327 {
1328 	struct in6_multi_head inmh;
1329 	VNET_ITERATOR_DECL(vnet_iter);
1330 
1331 	SLIST_INIT(&inmh);
1332 
1333 	VNET_LIST_RLOCK_NOSLEEP();
1334 	VNET_FOREACH(vnet_iter) {
1335 		CURVNET_SET(vnet_iter);
1336 		mld_fasttimo_vnet(&inmh);
1337 		CURVNET_RESTORE();
1338 	}
1339 	VNET_LIST_RUNLOCK_NOSLEEP();
1340 	in6m_release_list_deferred(&inmh);
1341 }
1342 
1343 /*
1344  * Fast timeout handler (per-vnet).
1345  *
1346  * VIMAGE: Assume caller has set up our curvnet.
1347  */
1348 static void
1349 mld_fasttimo_vnet(struct in6_multi_head *inmh)
1350 {
1351 	struct epoch_tracker     et;
1352 	struct mbufq		 scq;	/* State-change packets */
1353 	struct mbufq		 qrq;	/* Query response packets */
1354 	struct ifnet		*ifp;
1355 	struct mld_ifsoftc	*mli;
1356 	struct ifmultiaddr	*ifma;
1357 	struct in6_multi	*inm;
1358 	int			 uri_fasthz;
1359 
1360 	uri_fasthz = 0;
1361 
1362 	/*
1363 	 * Quick check to see if any work needs to be done, in order to
1364 	 * minimize the overhead of fasttimo processing.
1365 	 * SMPng: XXX Unlocked reads.
1366 	 */
1367 	if (!V_current_state_timers_running6 &&
1368 	    !V_interface_timers_running6 &&
1369 	    !V_state_change_timers_running6)
1370 		return;
1371 
1372 	IN6_MULTI_LIST_LOCK();
1373 	MLD_LOCK();
1374 
1375 	/*
1376 	 * MLDv2 General Query response timer processing.
1377 	 */
1378 	if (V_interface_timers_running6) {
1379 		CTR1(KTR_MLD, "%s: interface timers running", __func__);
1380 
1381 		V_interface_timers_running6 = 0;
1382 		LIST_FOREACH(mli, &V_mli_head, mli_link) {
1383 			if (mli->mli_v2_timer == 0) {
1384 				/* Do nothing. */
1385 			} else if (--mli->mli_v2_timer == 0) {
1386 				mld_v2_dispatch_general_query(mli);
1387 			} else {
1388 				V_interface_timers_running6 = 1;
1389 			}
1390 		}
1391 	}
1392 
1393 	if (!V_current_state_timers_running6 &&
1394 	    !V_state_change_timers_running6)
1395 		goto out_locked;
1396 
1397 	V_current_state_timers_running6 = 0;
1398 	V_state_change_timers_running6 = 0;
1399 
1400 	CTR1(KTR_MLD, "%s: state change timers running", __func__);
1401 
1402 	/*
1403 	 * MLD host report and state-change timer processing.
1404 	 * Note: Processing a v2 group timer may remove a node.
1405 	 */
1406 	LIST_FOREACH(mli, &V_mli_head, mli_link) {
1407 		ifp = mli->mli_ifp;
1408 
1409 		if (mli->mli_version == MLD_VERSION_2) {
1410 			uri_fasthz = MLD_RANDOM_DELAY(mli->mli_uri *
1411 			    PR_FASTHZ);
1412 			mbufq_init(&qrq, MLD_MAX_G_GS_PACKETS);
1413 			mbufq_init(&scq, MLD_MAX_STATE_CHANGE_PACKETS);
1414 		}
1415 
1416 		NET_EPOCH_ENTER(et);
1417 		IF_ADDR_WLOCK(ifp);
1418 		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1419 			inm = in6m_ifmultiaddr_get_inm(ifma);
1420 			if (inm == NULL)
1421 				continue;
1422 			switch (mli->mli_version) {
1423 			case MLD_VERSION_1:
1424 				mld_v1_process_group_timer(inmh, inm);
1425 				break;
1426 			case MLD_VERSION_2:
1427 				mld_v2_process_group_timers(inmh, &qrq,
1428 				    &scq, inm, uri_fasthz);
1429 				break;
1430 			}
1431 		}
1432 		IF_ADDR_WUNLOCK(ifp);
1433 
1434 		switch (mli->mli_version) {
1435 		case MLD_VERSION_1:
1436 			/*
1437 			 * Transmit reports for this lifecycle.  This
1438 			 * is done while not holding IF_ADDR_LOCK
1439 			 * since this can call
1440 			 * in6ifa_ifpforlinklocal() which locks
1441 			 * IF_ADDR_LOCK internally as well as
1442 			 * ip6_output() to transmit a packet.
1443 			 */
1444 			while ((inm = SLIST_FIRST(inmh)) != NULL) {
1445 				SLIST_REMOVE_HEAD(inmh, in6m_defer);
1446 				(void)mld_v1_transmit_report(inm,
1447 				    MLD_LISTENER_REPORT);
1448 			}
1449 			break;
1450 		case MLD_VERSION_2:
1451 			mld_dispatch_queue(&qrq, 0);
1452 			mld_dispatch_queue(&scq, 0);
1453 			break;
1454 		}
1455 		NET_EPOCH_EXIT(et);
1456 	}
1457 
1458 out_locked:
1459 	MLD_UNLOCK();
1460 	IN6_MULTI_LIST_UNLOCK();
1461 }
1462 
1463 /*
1464  * Update host report group timer.
1465  * Will update the global pending timer flags.
1466  */
1467 static void
1468 mld_v1_process_group_timer(struct in6_multi_head *inmh, struct in6_multi *inm)
1469 {
1470 	int report_timer_expired;
1471 
1472 	IN6_MULTI_LIST_LOCK_ASSERT();
1473 	MLD_LOCK_ASSERT();
1474 
1475 	if (inm->in6m_timer == 0) {
1476 		report_timer_expired = 0;
1477 	} else if (--inm->in6m_timer == 0) {
1478 		report_timer_expired = 1;
1479 	} else {
1480 		V_current_state_timers_running6 = 1;
1481 		return;
1482 	}
1483 
1484 	switch (inm->in6m_state) {
1485 	case MLD_NOT_MEMBER:
1486 	case MLD_SILENT_MEMBER:
1487 	case MLD_IDLE_MEMBER:
1488 	case MLD_LAZY_MEMBER:
1489 	case MLD_SLEEPING_MEMBER:
1490 	case MLD_AWAKENING_MEMBER:
1491 		break;
1492 	case MLD_REPORTING_MEMBER:
1493 		if (report_timer_expired) {
1494 			inm->in6m_state = MLD_IDLE_MEMBER;
1495 			SLIST_INSERT_HEAD(inmh, inm, in6m_defer);
1496 		}
1497 		break;
1498 	case MLD_G_QUERY_PENDING_MEMBER:
1499 	case MLD_SG_QUERY_PENDING_MEMBER:
1500 	case MLD_LEAVING_MEMBER:
1501 		break;
1502 	}
1503 }
1504 
1505 /*
1506  * Update a group's timers for MLDv2.
1507  * Will update the global pending timer flags.
1508  * Note: Unlocked read from mli.
1509  */
1510 static void
1511 mld_v2_process_group_timers(struct in6_multi_head *inmh,
1512     struct mbufq *qrq, struct mbufq *scq,
1513     struct in6_multi *inm, const int uri_fasthz)
1514 {
1515 	int query_response_timer_expired;
1516 	int state_change_retransmit_timer_expired;
1517 #ifdef KTR
1518 	char ip6tbuf[INET6_ADDRSTRLEN];
1519 #endif
1520 
1521 	IN6_MULTI_LIST_LOCK_ASSERT();
1522 	MLD_LOCK_ASSERT();
1523 
1524 	query_response_timer_expired = 0;
1525 	state_change_retransmit_timer_expired = 0;
1526 
1527 	/*
1528 	 * During a transition from compatibility mode back to MLDv2,
1529 	 * a group record in REPORTING state may still have its group
1530 	 * timer active. This is a no-op in this function; it is easier
1531 	 * to deal with it here than to complicate the slow-timeout path.
1532 	 */
1533 	if (inm->in6m_timer == 0) {
1534 		query_response_timer_expired = 0;
1535 	} else if (--inm->in6m_timer == 0) {
1536 		query_response_timer_expired = 1;
1537 	} else {
1538 		V_current_state_timers_running6 = 1;
1539 	}
1540 
1541 	if (inm->in6m_sctimer == 0) {
1542 		state_change_retransmit_timer_expired = 0;
1543 	} else if (--inm->in6m_sctimer == 0) {
1544 		state_change_retransmit_timer_expired = 1;
1545 	} else {
1546 		V_state_change_timers_running6 = 1;
1547 	}
1548 
1549 	/* We are in fasttimo, so be quick about it. */
1550 	if (!state_change_retransmit_timer_expired &&
1551 	    !query_response_timer_expired)
1552 		return;
1553 
1554 	switch (inm->in6m_state) {
1555 	case MLD_NOT_MEMBER:
1556 	case MLD_SILENT_MEMBER:
1557 	case MLD_SLEEPING_MEMBER:
1558 	case MLD_LAZY_MEMBER:
1559 	case MLD_AWAKENING_MEMBER:
1560 	case MLD_IDLE_MEMBER:
1561 		break;
1562 	case MLD_G_QUERY_PENDING_MEMBER:
1563 	case MLD_SG_QUERY_PENDING_MEMBER:
1564 		/*
1565 		 * Respond to a previously pending Group-Specific
1566 		 * or Group-and-Source-Specific query by enqueueing
1567 		 * the appropriate Current-State report for
1568 		 * immediate transmission.
1569 		 */
1570 		if (query_response_timer_expired) {
1571 			int retval __unused;
1572 
1573 			retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1,
1574 			    (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER),
1575 			    0);
1576 			CTR2(KTR_MLD, "%s: enqueue record = %d",
1577 			    __func__, retval);
1578 			inm->in6m_state = MLD_REPORTING_MEMBER;
1579 			in6m_clear_recorded(inm);
1580 		}
1581 		/* FALLTHROUGH */
1582 	case MLD_REPORTING_MEMBER:
1583 	case MLD_LEAVING_MEMBER:
1584 		if (state_change_retransmit_timer_expired) {
1585 			/*
1586 			 * State-change retransmission timer fired.
1587 			 * If there are any further pending retransmissions,
1588 			 * set the global pending state-change flag, and
1589 			 * reset the timer.
1590 			 */
1591 			if (--inm->in6m_scrv > 0) {
1592 				inm->in6m_sctimer = uri_fasthz;
1593 				V_state_change_timers_running6 = 1;
1594 			}
1595 			/*
1596 			 * Retransmit the previously computed state-change
1597 			 * report. If there are no further pending
1598 			 * retransmissions, the mbuf queue will be consumed.
1599 			 * Update T0 state to T1 as we have now sent
1600 			 * a state-change.
1601 			 */
1602 			(void)mld_v2_merge_state_changes(inm, scq);
1603 
1604 			in6m_commit(inm);
1605 			CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
1606 			    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
1607 			    if_name(inm->in6m_ifp));
1608 
1609 			/*
1610 			 * If we are leaving the group for good, make sure
1611 			 * we release MLD's reference to it.
1612 			 * This release must be deferred using a SLIST,
1613 			 * as we are called from a loop which traverses
1614 			 * the in_ifmultiaddr TAILQ.
1615 			 */
1616 			if (inm->in6m_state == MLD_LEAVING_MEMBER &&
1617 			    inm->in6m_scrv == 0) {
1618 				inm->in6m_state = MLD_NOT_MEMBER;
1619 				in6m_disconnect_locked(inmh, inm);
1620 				in6m_rele_locked(inmh, inm);
1621 			}
1622 		}
1623 		break;
1624 	}
1625 }
1626 
1627 /*
1628  * Switch to a different version on the given interface,
1629  * as per Section 9.12.
1630  */
1631 static void
1632 mld_set_version(struct mld_ifsoftc *mli, const int version)
1633 {
1634 	int old_version_timer;
1635 
1636 	MLD_LOCK_ASSERT();
1637 
1638 	CTR4(KTR_MLD, "%s: switching to v%d on ifp %p(%s)", __func__,
1639 	    version, mli->mli_ifp, if_name(mli->mli_ifp));
1640 
1641 	if (version == MLD_VERSION_1) {
1642 		/*
1643 		 * Compute the "Older Version Querier Present" timer as per
1644 		 * Section 9.12.
1645 		 */
1646 		old_version_timer = (mli->mli_rv * mli->mli_qi) + mli->mli_qri;
1647 		old_version_timer *= PR_SLOWHZ;
1648 		mli->mli_v1_timer = old_version_timer;
1649 	}
1650 
1651 	if (mli->mli_v1_timer > 0 && mli->mli_version != MLD_VERSION_1) {
1652 		mli->mli_version = MLD_VERSION_1;
1653 		mld_v2_cancel_link_timers(mli);
1654 	}
1655 }
1656 
1657 /*
1658  * Cancel pending MLDv2 timers for the given link and all groups
1659  * joined on it; state-change, general-query, and group-query timers.
1660  */
1661 static void
1662 mld_v2_cancel_link_timers(struct mld_ifsoftc *mli)
1663 {
1664 	struct epoch_tracker	 et;
1665 	struct in6_multi_head	 inmh;
1666 	struct ifmultiaddr	*ifma;
1667 	struct ifnet		*ifp;
1668 	struct in6_multi	*inm;
1669 
1670 	CTR3(KTR_MLD, "%s: cancel v2 timers on ifp %p(%s)", __func__,
1671 	    mli->mli_ifp, if_name(mli->mli_ifp));
1672 
1673 	SLIST_INIT(&inmh);
1674 	IN6_MULTI_LIST_LOCK_ASSERT();
1675 	MLD_LOCK_ASSERT();
1676 
1677 	/*
1678 	 * Fast-track this potentially expensive operation
1679 	 * by checking all the global 'timer pending' flags.
1680 	 */
1681 	if (!V_interface_timers_running6 &&
1682 	    !V_state_change_timers_running6 &&
1683 	    !V_current_state_timers_running6)
1684 		return;
1685 
1686 	mli->mli_v2_timer = 0;
1687 
1688 	ifp = mli->mli_ifp;
1689 
1690 	IF_ADDR_WLOCK(ifp);
1691 	NET_EPOCH_ENTER(et);
1692 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1693 		inm = in6m_ifmultiaddr_get_inm(ifma);
1694 		if (inm == NULL)
1695 			continue;
1696 		switch (inm->in6m_state) {
1697 		case MLD_NOT_MEMBER:
1698 		case MLD_SILENT_MEMBER:
1699 		case MLD_IDLE_MEMBER:
1700 		case MLD_LAZY_MEMBER:
1701 		case MLD_SLEEPING_MEMBER:
1702 		case MLD_AWAKENING_MEMBER:
1703 			break;
1704 		case MLD_LEAVING_MEMBER:
1705 			/*
1706 			 * If we are leaving the group and switching
1707 			 * version, we need to release the final
1708 			 * reference held for issuing the INCLUDE {}.
1709 			 */
1710 			if (inm->in6m_refcount == 1)
1711 				in6m_disconnect_locked(&inmh, inm);
1712 			in6m_rele_locked(&inmh, inm);
1713 			/* FALLTHROUGH */
1714 		case MLD_G_QUERY_PENDING_MEMBER:
1715 		case MLD_SG_QUERY_PENDING_MEMBER:
1716 			in6m_clear_recorded(inm);
1717 			/* FALLTHROUGH */
1718 		case MLD_REPORTING_MEMBER:
1719 			inm->in6m_sctimer = 0;
1720 			inm->in6m_timer = 0;
1721 			inm->in6m_state = MLD_REPORTING_MEMBER;
1722 			/*
1723 			 * Free any pending MLDv2 state-change records.
1724 			 */
1725 			mbufq_drain(&inm->in6m_scq);
1726 			break;
1727 		}
1728 	}
1729 	NET_EPOCH_EXIT(et);
1730 	IF_ADDR_WUNLOCK(ifp);
1731 	in6m_release_list_deferred(&inmh);
1732 }
1733 
1734 /*
1735  * Global slowtimo handler.
1736  * VIMAGE: Timeout handlers are expected to service all vimages.
1737  */
1738 void
1739 mld_slowtimo(void)
1740 {
1741 	VNET_ITERATOR_DECL(vnet_iter);
1742 
1743 	VNET_LIST_RLOCK_NOSLEEP();
1744 	VNET_FOREACH(vnet_iter) {
1745 		CURVNET_SET(vnet_iter);
1746 		mld_slowtimo_vnet();
1747 		CURVNET_RESTORE();
1748 	}
1749 	VNET_LIST_RUNLOCK_NOSLEEP();
1750 }
1751 
1752 /*
1753  * Per-vnet slowtimo handler.
1754  */
1755 static void
1756 mld_slowtimo_vnet(void)
1757 {
1758 	struct mld_ifsoftc *mli;
1759 
1760 	MLD_LOCK();
1761 
1762 	LIST_FOREACH(mli, &V_mli_head, mli_link) {
1763 		mld_v1_process_querier_timers(mli);
1764 	}
1765 
1766 	MLD_UNLOCK();
1767 }
1768 
1769 /*
1770  * Update the Older Version Querier Present timers for a link.
1771  * See Section 9.12 of RFC 3810.
1772  */
1773 static void
1774 mld_v1_process_querier_timers(struct mld_ifsoftc *mli)
1775 {
1776 
1777 	MLD_LOCK_ASSERT();
1778 
1779 	if (mli->mli_version != MLD_VERSION_2 && --mli->mli_v1_timer == 0) {
1780 		/*
1781 		 * MLDv1 Querier Present timer expired; revert to MLDv2.
1782 		 */
1783 		CTR5(KTR_MLD,
1784 		    "%s: transition from v%d -> v%d on %p(%s)",
1785 		    __func__, mli->mli_version, MLD_VERSION_2,
1786 		    mli->mli_ifp, if_name(mli->mli_ifp));
1787 		mli->mli_version = MLD_VERSION_2;
1788 	}
1789 }
1790 
1791 /*
1792  * Transmit an MLDv1 report immediately.
1793  */
1794 static int
1795 mld_v1_transmit_report(struct in6_multi *in6m, const int type)
1796 {
1797 	struct ifnet		*ifp;
1798 	struct in6_ifaddr	*ia;
1799 	struct ip6_hdr		*ip6;
1800 	struct mbuf		*mh, *md;
1801 	struct mld_hdr		*mld;
1802 
1803 	NET_EPOCH_ASSERT();
1804 	IN6_MULTI_LIST_LOCK_ASSERT();
1805 	MLD_LOCK_ASSERT();
1806 
1807 	ifp = in6m->in6m_ifp;
1808 	/* in process of being freed */
1809 	if (ifp == NULL)
1810 		return (0);
1811 	ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
1812 	/* ia may be NULL if link-local address is tentative. */
1813 
1814 	mh = m_gethdr(M_NOWAIT, MT_DATA);
1815 	if (mh == NULL) {
1816 		if (ia != NULL)
1817 			ifa_free(&ia->ia_ifa);
1818 		return (ENOMEM);
1819 	}
1820 	md = m_get(M_NOWAIT, MT_DATA);
1821 	if (md == NULL) {
1822 		m_free(mh);
1823 		if (ia != NULL)
1824 			ifa_free(&ia->ia_ifa);
1825 		return (ENOMEM);
1826 	}
1827 	mh->m_next = md;
1828 
1829 	/*
1830 	 * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so
1831 	 * that ether_output() does not need to allocate another mbuf
1832 	 * for the header in the most common case.
1833 	 */
1834 	M_ALIGN(mh, sizeof(struct ip6_hdr));
1835 	mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr);
1836 	mh->m_len = sizeof(struct ip6_hdr);
1837 
1838 	ip6 = mtod(mh, struct ip6_hdr *);
1839 	ip6->ip6_flow = 0;
1840 	ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
1841 	ip6->ip6_vfc |= IPV6_VERSION;
1842 	ip6->ip6_nxt = IPPROTO_ICMPV6;
1843 	ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any;
1844 	ip6->ip6_dst = in6m->in6m_addr;
1845 
1846 	md->m_len = sizeof(struct mld_hdr);
1847 	mld = mtod(md, struct mld_hdr *);
1848 	mld->mld_type = type;
1849 	mld->mld_code = 0;
1850 	mld->mld_cksum = 0;
1851 	mld->mld_maxdelay = 0;
1852 	mld->mld_reserved = 0;
1853 	mld->mld_addr = in6m->in6m_addr;
1854 	in6_clearscope(&mld->mld_addr);
1855 	mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6,
1856 	    sizeof(struct ip6_hdr), sizeof(struct mld_hdr));
1857 
1858 	mld_save_context(mh, ifp);
1859 	mh->m_flags |= M_MLDV1;
1860 
1861 	mld_dispatch_packet(mh);
1862 
1863 	if (ia != NULL)
1864 		ifa_free(&ia->ia_ifa);
1865 	return (0);
1866 }
1867 
1868 /*
1869  * Process a state change from the upper layer for the given IPv6 group.
1870  *
1871  * Each socket holds a reference on the in_multi in its own ip_moptions.
1872  * The socket layer will have made the necessary updates to.the group
1873  * state, it is now up to MLD to issue a state change report if there
1874  * has been any change between T0 (when the last state-change was issued)
1875  * and T1 (now).
1876  *
1877  * We use the MLDv2 state machine at group level. The MLd module
1878  * however makes the decision as to which MLD protocol version to speak.
1879  * A state change *from* INCLUDE {} always means an initial join.
1880  * A state change *to* INCLUDE {} always means a final leave.
1881  *
1882  * If delay is non-zero, and the state change is an initial multicast
1883  * join, the state change report will be delayed by 'delay' ticks
1884  * in units of PR_FASTHZ if MLDv1 is active on the link; otherwise
1885  * the initial MLDv2 state change report will be delayed by whichever
1886  * is sooner, a pending state-change timer or delay itself.
1887  *
1888  * VIMAGE: curvnet should have been set by caller, as this routine
1889  * is called from the socket option handlers.
1890  */
1891 int
1892 mld_change_state(struct in6_multi *inm, const int delay)
1893 {
1894 	struct mld_ifsoftc *mli;
1895 	struct ifnet *ifp;
1896 	int error;
1897 
1898 	IN6_MULTI_LIST_LOCK_ASSERT();
1899 
1900 	error = 0;
1901 
1902 	/*
1903 	 * Check if the in6_multi has already been disconnected.
1904 	 */
1905 	if (inm->in6m_ifp == NULL) {
1906 		CTR1(KTR_MLD, "%s: inm is disconnected", __func__);
1907 		return (0);
1908 	}
1909 
1910 	/*
1911 	 * Try to detect if the upper layer just asked us to change state
1912 	 * for an interface which has now gone away.
1913 	 */
1914 	KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__));
1915 	ifp = inm->in6m_ifma->ifma_ifp;
1916 	if (ifp == NULL)
1917 		return (0);
1918 	/*
1919 	 * Sanity check that netinet6's notion of ifp is the
1920 	 * same as net's.
1921 	 */
1922 	KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__));
1923 
1924 	MLD_LOCK();
1925 	mli = MLD_IFINFO(ifp);
1926 	KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp));
1927 
1928 	/*
1929 	 * If we detect a state transition to or from MCAST_UNDEFINED
1930 	 * for this group, then we are starting or finishing an MLD
1931 	 * life cycle for this group.
1932 	 */
1933 	if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) {
1934 		CTR3(KTR_MLD, "%s: inm transition %d -> %d", __func__,
1935 		    inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode);
1936 		if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) {
1937 			CTR1(KTR_MLD, "%s: initial join", __func__);
1938 			error = mld_initial_join(inm, mli, delay);
1939 			goto out_locked;
1940 		} else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) {
1941 			CTR1(KTR_MLD, "%s: final leave", __func__);
1942 			mld_final_leave(inm, mli);
1943 			goto out_locked;
1944 		}
1945 	} else {
1946 		CTR1(KTR_MLD, "%s: filter set change", __func__);
1947 	}
1948 
1949 	error = mld_handle_state_change(inm, mli);
1950 
1951 out_locked:
1952 	MLD_UNLOCK();
1953 	return (error);
1954 }
1955 
1956 /*
1957  * Perform the initial join for an MLD group.
1958  *
1959  * When joining a group:
1960  *  If the group should have its MLD traffic suppressed, do nothing.
1961  *  MLDv1 starts sending MLDv1 host membership reports.
1962  *  MLDv2 will schedule an MLDv2 state-change report containing the
1963  *  initial state of the membership.
1964  *
1965  * If the delay argument is non-zero, then we must delay sending the
1966  * initial state change for delay ticks (in units of PR_FASTHZ).
1967  */
1968 static int
1969 mld_initial_join(struct in6_multi *inm, struct mld_ifsoftc *mli,
1970     const int delay)
1971 {
1972 	struct epoch_tracker     et;
1973 	struct ifnet		*ifp;
1974 	struct mbufq		*mq;
1975 	int			 error, retval, syncstates;
1976 	int			 odelay;
1977 #ifdef KTR
1978 	char			 ip6tbuf[INET6_ADDRSTRLEN];
1979 #endif
1980 
1981 	CTR4(KTR_MLD, "%s: initial join %s on ifp %p(%s)",
1982 	    __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
1983 	    inm->in6m_ifp, if_name(inm->in6m_ifp));
1984 
1985 	error = 0;
1986 	syncstates = 1;
1987 
1988 	ifp = inm->in6m_ifp;
1989 
1990 	IN6_MULTI_LIST_LOCK_ASSERT();
1991 	MLD_LOCK_ASSERT();
1992 
1993 	KASSERT(mli && mli->mli_ifp == ifp, ("%s: inconsistent ifp", __func__));
1994 
1995 	/*
1996 	 * Groups joined on loopback or marked as 'not reported',
1997 	 * enter the MLD_SILENT_MEMBER state and
1998 	 * are never reported in any protocol exchanges.
1999 	 * All other groups enter the appropriate state machine
2000 	 * for the version in use on this link.
2001 	 * A link marked as MLIF_SILENT causes MLD to be completely
2002 	 * disabled for the link.
2003 	 */
2004 	if ((ifp->if_flags & IFF_LOOPBACK) ||
2005 	    (mli->mli_flags & MLIF_SILENT) ||
2006 	    !mld_is_addr_reported(&inm->in6m_addr)) {
2007 		CTR1(KTR_MLD,
2008 "%s: not kicking state machine for silent group", __func__);
2009 		inm->in6m_state = MLD_SILENT_MEMBER;
2010 		inm->in6m_timer = 0;
2011 	} else {
2012 		/*
2013 		 * Deal with overlapping in_multi lifecycle.
2014 		 * If this group was LEAVING, then make sure
2015 		 * we drop the reference we picked up to keep the
2016 		 * group around for the final INCLUDE {} enqueue.
2017 		 */
2018 		if (mli->mli_version == MLD_VERSION_2 &&
2019 		    inm->in6m_state == MLD_LEAVING_MEMBER) {
2020 			inm->in6m_refcount--;
2021 			MPASS(inm->in6m_refcount > 0);
2022 		}
2023 		inm->in6m_state = MLD_REPORTING_MEMBER;
2024 
2025 		switch (mli->mli_version) {
2026 		case MLD_VERSION_1:
2027 			/*
2028 			 * If a delay was provided, only use it if
2029 			 * it is greater than the delay normally
2030 			 * used for an MLDv1 state change report,
2031 			 * and delay sending the initial MLDv1 report
2032 			 * by not transitioning to the IDLE state.
2033 			 */
2034 			odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI * PR_FASTHZ);
2035 			if (delay) {
2036 				inm->in6m_timer = max(delay, odelay);
2037 				V_current_state_timers_running6 = 1;
2038 			} else {
2039 				inm->in6m_state = MLD_IDLE_MEMBER;
2040 				NET_EPOCH_ENTER(et);
2041 				error = mld_v1_transmit_report(inm,
2042 				     MLD_LISTENER_REPORT);
2043 				NET_EPOCH_EXIT(et);
2044 				if (error == 0) {
2045 					inm->in6m_timer = odelay;
2046 					V_current_state_timers_running6 = 1;
2047 				}
2048 			}
2049 			break;
2050 
2051 		case MLD_VERSION_2:
2052 			/*
2053 			 * Defer update of T0 to T1, until the first copy
2054 			 * of the state change has been transmitted.
2055 			 */
2056 			syncstates = 0;
2057 
2058 			/*
2059 			 * Immediately enqueue a State-Change Report for
2060 			 * this interface, freeing any previous reports.
2061 			 * Don't kick the timers if there is nothing to do,
2062 			 * or if an error occurred.
2063 			 */
2064 			mq = &inm->in6m_scq;
2065 			mbufq_drain(mq);
2066 			retval = mld_v2_enqueue_group_record(mq, inm, 1,
2067 			    0, 0, (mli->mli_flags & MLIF_USEALLOW));
2068 			CTR2(KTR_MLD, "%s: enqueue record = %d",
2069 			    __func__, retval);
2070 			if (retval <= 0) {
2071 				error = retval * -1;
2072 				break;
2073 			}
2074 
2075 			/*
2076 			 * Schedule transmission of pending state-change
2077 			 * report up to RV times for this link. The timer
2078 			 * will fire at the next mld_fasttimo (~200ms),
2079 			 * giving us an opportunity to merge the reports.
2080 			 *
2081 			 * If a delay was provided to this function, only
2082 			 * use this delay if sooner than the existing one.
2083 			 */
2084 			KASSERT(mli->mli_rv > 1,
2085 			   ("%s: invalid robustness %d", __func__,
2086 			    mli->mli_rv));
2087 			inm->in6m_scrv = mli->mli_rv;
2088 			if (delay) {
2089 				if (inm->in6m_sctimer > 1) {
2090 					inm->in6m_sctimer =
2091 					    min(inm->in6m_sctimer, delay);
2092 				} else
2093 					inm->in6m_sctimer = delay;
2094 			} else
2095 				inm->in6m_sctimer = 1;
2096 			V_state_change_timers_running6 = 1;
2097 
2098 			error = 0;
2099 			break;
2100 		}
2101 	}
2102 
2103 	/*
2104 	 * Only update the T0 state if state change is atomic,
2105 	 * i.e. we don't need to wait for a timer to fire before we
2106 	 * can consider the state change to have been communicated.
2107 	 */
2108 	if (syncstates) {
2109 		in6m_commit(inm);
2110 		CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
2111 		    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2112 		    if_name(inm->in6m_ifp));
2113 	}
2114 
2115 	return (error);
2116 }
2117 
2118 /*
2119  * Issue an intermediate state change during the life-cycle.
2120  */
2121 static int
2122 mld_handle_state_change(struct in6_multi *inm, struct mld_ifsoftc *mli)
2123 {
2124 	struct ifnet		*ifp;
2125 	int			 retval;
2126 #ifdef KTR
2127 	char			 ip6tbuf[INET6_ADDRSTRLEN];
2128 #endif
2129 
2130 	CTR4(KTR_MLD, "%s: state change for %s on ifp %p(%s)",
2131 	    __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2132 	    inm->in6m_ifp, if_name(inm->in6m_ifp));
2133 
2134 	ifp = inm->in6m_ifp;
2135 
2136 	IN6_MULTI_LIST_LOCK_ASSERT();
2137 	MLD_LOCK_ASSERT();
2138 
2139 	KASSERT(mli && mli->mli_ifp == ifp,
2140 	    ("%s: inconsistent ifp", __func__));
2141 
2142 	if ((ifp->if_flags & IFF_LOOPBACK) ||
2143 	    (mli->mli_flags & MLIF_SILENT) ||
2144 	    !mld_is_addr_reported(&inm->in6m_addr) ||
2145 	    (mli->mli_version != MLD_VERSION_2)) {
2146 		if (!mld_is_addr_reported(&inm->in6m_addr)) {
2147 			CTR1(KTR_MLD,
2148 "%s: not kicking state machine for silent group", __func__);
2149 		}
2150 		CTR1(KTR_MLD, "%s: nothing to do", __func__);
2151 		in6m_commit(inm);
2152 		CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
2153 		    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2154 		    if_name(inm->in6m_ifp));
2155 		return (0);
2156 	}
2157 
2158 	mbufq_drain(&inm->in6m_scq);
2159 
2160 	retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0,
2161 	    (mli->mli_flags & MLIF_USEALLOW));
2162 	CTR2(KTR_MLD, "%s: enqueue record = %d", __func__, retval);
2163 	if (retval <= 0)
2164 		return (-retval);
2165 
2166 	/*
2167 	 * If record(s) were enqueued, start the state-change
2168 	 * report timer for this group.
2169 	 */
2170 	inm->in6m_scrv = mli->mli_rv;
2171 	inm->in6m_sctimer = 1;
2172 	V_state_change_timers_running6 = 1;
2173 
2174 	return (0);
2175 }
2176 
2177 /*
2178  * Perform the final leave for a multicast address.
2179  *
2180  * When leaving a group:
2181  *  MLDv1 sends a DONE message, if and only if we are the reporter.
2182  *  MLDv2 enqueues a state-change report containing a transition
2183  *  to INCLUDE {} for immediate transmission.
2184  */
2185 static void
2186 mld_final_leave(struct in6_multi *inm, struct mld_ifsoftc *mli)
2187 {
2188 	struct epoch_tracker     et;
2189 	int syncstates;
2190 #ifdef KTR
2191 	char ip6tbuf[INET6_ADDRSTRLEN];
2192 #endif
2193 
2194 	syncstates = 1;
2195 
2196 	CTR4(KTR_MLD, "%s: final leave %s on ifp %p(%s)",
2197 	    __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2198 	    inm->in6m_ifp, if_name(inm->in6m_ifp));
2199 
2200 	IN6_MULTI_LIST_LOCK_ASSERT();
2201 	MLD_LOCK_ASSERT();
2202 
2203 	switch (inm->in6m_state) {
2204 	case MLD_NOT_MEMBER:
2205 	case MLD_SILENT_MEMBER:
2206 	case MLD_LEAVING_MEMBER:
2207 		/* Already leaving or left; do nothing. */
2208 		CTR1(KTR_MLD,
2209 "%s: not kicking state machine for silent group", __func__);
2210 		break;
2211 	case MLD_REPORTING_MEMBER:
2212 	case MLD_IDLE_MEMBER:
2213 	case MLD_G_QUERY_PENDING_MEMBER:
2214 	case MLD_SG_QUERY_PENDING_MEMBER:
2215 		if (mli->mli_version == MLD_VERSION_1) {
2216 #ifdef INVARIANTS
2217 			if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER ||
2218 			    inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER)
2219 			panic("%s: MLDv2 state reached, not MLDv2 mode",
2220 			     __func__);
2221 #endif
2222 			NET_EPOCH_ENTER(et);
2223 			mld_v1_transmit_report(inm, MLD_LISTENER_DONE);
2224 			NET_EPOCH_EXIT(et);
2225 			inm->in6m_state = MLD_NOT_MEMBER;
2226 			V_current_state_timers_running6 = 1;
2227 		} else if (mli->mli_version == MLD_VERSION_2) {
2228 			/*
2229 			 * Stop group timer and all pending reports.
2230 			 * Immediately enqueue a state-change report
2231 			 * TO_IN {} to be sent on the next fast timeout,
2232 			 * giving us an opportunity to merge reports.
2233 			 */
2234 			mbufq_drain(&inm->in6m_scq);
2235 			inm->in6m_timer = 0;
2236 			inm->in6m_scrv = mli->mli_rv;
2237 			CTR4(KTR_MLD, "%s: Leaving %s/%s with %d "
2238 			    "pending retransmissions.", __func__,
2239 			    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2240 			    if_name(inm->in6m_ifp), inm->in6m_scrv);
2241 			if (inm->in6m_scrv == 0) {
2242 				inm->in6m_state = MLD_NOT_MEMBER;
2243 				inm->in6m_sctimer = 0;
2244 			} else {
2245 				int retval;
2246 
2247 				in6m_acquire_locked(inm);
2248 
2249 				retval = mld_v2_enqueue_group_record(
2250 				    &inm->in6m_scq, inm, 1, 0, 0,
2251 				    (mli->mli_flags & MLIF_USEALLOW));
2252 				KASSERT(retval != 0,
2253 				    ("%s: enqueue record = %d", __func__,
2254 				     retval));
2255 
2256 				inm->in6m_state = MLD_LEAVING_MEMBER;
2257 				inm->in6m_sctimer = 1;
2258 				V_state_change_timers_running6 = 1;
2259 				syncstates = 0;
2260 			}
2261 			break;
2262 		}
2263 		break;
2264 	case MLD_LAZY_MEMBER:
2265 	case MLD_SLEEPING_MEMBER:
2266 	case MLD_AWAKENING_MEMBER:
2267 		/* Our reports are suppressed; do nothing. */
2268 		break;
2269 	}
2270 
2271 	if (syncstates) {
2272 		in6m_commit(inm);
2273 		CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
2274 		    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2275 		    if_name(inm->in6m_ifp));
2276 		inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED;
2277 		CTR3(KTR_MLD, "%s: T1 now MCAST_UNDEFINED for %p/%s",
2278 		    __func__, &inm->in6m_addr, if_name(inm->in6m_ifp));
2279 	}
2280 }
2281 
2282 /*
2283  * Enqueue an MLDv2 group record to the given output queue.
2284  *
2285  * If is_state_change is zero, a current-state record is appended.
2286  * If is_state_change is non-zero, a state-change report is appended.
2287  *
2288  * If is_group_query is non-zero, an mbuf packet chain is allocated.
2289  * If is_group_query is zero, and if there is a packet with free space
2290  * at the tail of the queue, it will be appended to providing there
2291  * is enough free space.
2292  * Otherwise a new mbuf packet chain is allocated.
2293  *
2294  * If is_source_query is non-zero, each source is checked to see if
2295  * it was recorded for a Group-Source query, and will be omitted if
2296  * it is not both in-mode and recorded.
2297  *
2298  * If use_block_allow is non-zero, state change reports for initial join
2299  * and final leave, on an inclusive mode group with a source list, will be
2300  * rewritten to use the ALLOW_NEW and BLOCK_OLD record types, respectively.
2301  *
2302  * The function will attempt to allocate leading space in the packet
2303  * for the IPv6+ICMP headers to be prepended without fragmenting the chain.
2304  *
2305  * If successful the size of all data appended to the queue is returned,
2306  * otherwise an error code less than zero is returned, or zero if
2307  * no record(s) were appended.
2308  */
2309 static int
2310 mld_v2_enqueue_group_record(struct mbufq *mq, struct in6_multi *inm,
2311     const int is_state_change, const int is_group_query,
2312     const int is_source_query, const int use_block_allow)
2313 {
2314 	struct mldv2_record	 mr;
2315 	struct mldv2_record	*pmr;
2316 	struct ifnet		*ifp;
2317 	struct ip6_msource	*ims, *nims;
2318 	struct mbuf		*m0, *m, *md;
2319 	int			 is_filter_list_change;
2320 	int			 minrec0len, m0srcs, msrcs, nbytes, off;
2321 	int			 record_has_sources;
2322 	int			 now;
2323 	int			 type;
2324 	uint8_t			 mode;
2325 #ifdef KTR
2326 	char			 ip6tbuf[INET6_ADDRSTRLEN];
2327 #endif
2328 
2329 	IN6_MULTI_LIST_LOCK_ASSERT();
2330 
2331 	ifp = inm->in6m_ifp;
2332 	is_filter_list_change = 0;
2333 	m = NULL;
2334 	m0 = NULL;
2335 	m0srcs = 0;
2336 	msrcs = 0;
2337 	nbytes = 0;
2338 	nims = NULL;
2339 	record_has_sources = 1;
2340 	pmr = NULL;
2341 	type = MLD_DO_NOTHING;
2342 	mode = inm->in6m_st[1].iss_fmode;
2343 
2344 	/*
2345 	 * If we did not transition out of ASM mode during t0->t1,
2346 	 * and there are no source nodes to process, we can skip
2347 	 * the generation of source records.
2348 	 */
2349 	if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 &&
2350 	    inm->in6m_nsrc == 0)
2351 		record_has_sources = 0;
2352 
2353 	if (is_state_change) {
2354 		/*
2355 		 * Queue a state change record.
2356 		 * If the mode did not change, and there are non-ASM
2357 		 * listeners or source filters present,
2358 		 * we potentially need to issue two records for the group.
2359 		 * If there are ASM listeners, and there was no filter
2360 		 * mode transition of any kind, do nothing.
2361 		 *
2362 		 * If we are transitioning to MCAST_UNDEFINED, we need
2363 		 * not send any sources. A transition to/from this state is
2364 		 * considered inclusive with some special treatment.
2365 		 *
2366 		 * If we are rewriting initial joins/leaves to use
2367 		 * ALLOW/BLOCK, and the group's membership is inclusive,
2368 		 * we need to send sources in all cases.
2369 		 */
2370 		if (mode != inm->in6m_st[0].iss_fmode) {
2371 			if (mode == MCAST_EXCLUDE) {
2372 				CTR1(KTR_MLD, "%s: change to EXCLUDE",
2373 				    __func__);
2374 				type = MLD_CHANGE_TO_EXCLUDE_MODE;
2375 			} else {
2376 				CTR1(KTR_MLD, "%s: change to INCLUDE",
2377 				    __func__);
2378 				if (use_block_allow) {
2379 					/*
2380 					 * XXX
2381 					 * Here we're interested in state
2382 					 * edges either direction between
2383 					 * MCAST_UNDEFINED and MCAST_INCLUDE.
2384 					 * Perhaps we should just check
2385 					 * the group state, rather than
2386 					 * the filter mode.
2387 					 */
2388 					if (mode == MCAST_UNDEFINED) {
2389 						type = MLD_BLOCK_OLD_SOURCES;
2390 					} else {
2391 						type = MLD_ALLOW_NEW_SOURCES;
2392 					}
2393 				} else {
2394 					type = MLD_CHANGE_TO_INCLUDE_MODE;
2395 					if (mode == MCAST_UNDEFINED)
2396 						record_has_sources = 0;
2397 				}
2398 			}
2399 		} else {
2400 			if (record_has_sources) {
2401 				is_filter_list_change = 1;
2402 			} else {
2403 				type = MLD_DO_NOTHING;
2404 			}
2405 		}
2406 	} else {
2407 		/*
2408 		 * Queue a current state record.
2409 		 */
2410 		if (mode == MCAST_EXCLUDE) {
2411 			type = MLD_MODE_IS_EXCLUDE;
2412 		} else if (mode == MCAST_INCLUDE) {
2413 			type = MLD_MODE_IS_INCLUDE;
2414 			KASSERT(inm->in6m_st[1].iss_asm == 0,
2415 			    ("%s: inm %p is INCLUDE but ASM count is %d",
2416 			     __func__, inm, inm->in6m_st[1].iss_asm));
2417 		}
2418 	}
2419 
2420 	/*
2421 	 * Generate the filter list changes using a separate function.
2422 	 */
2423 	if (is_filter_list_change)
2424 		return (mld_v2_enqueue_filter_change(mq, inm));
2425 
2426 	if (type == MLD_DO_NOTHING) {
2427 		CTR3(KTR_MLD, "%s: nothing to do for %s/%s",
2428 		    __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2429 		    if_name(inm->in6m_ifp));
2430 		return (0);
2431 	}
2432 
2433 	/*
2434 	 * If any sources are present, we must be able to fit at least
2435 	 * one in the trailing space of the tail packet's mbuf,
2436 	 * ideally more.
2437 	 */
2438 	minrec0len = sizeof(struct mldv2_record);
2439 	if (record_has_sources)
2440 		minrec0len += sizeof(struct in6_addr);
2441 
2442 	CTR4(KTR_MLD, "%s: queueing %s for %s/%s", __func__,
2443 	    mld_rec_type_to_str(type),
2444 	    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2445 	    if_name(inm->in6m_ifp));
2446 
2447 	/*
2448 	 * Check if we have a packet in the tail of the queue for this
2449 	 * group into which the first group record for this group will fit.
2450 	 * Otherwise allocate a new packet.
2451 	 * Always allocate leading space for IP6+RA+ICMPV6+REPORT.
2452 	 * Note: Group records for G/GSR query responses MUST be sent
2453 	 * in their own packet.
2454 	 */
2455 	m0 = mbufq_last(mq);
2456 	if (!is_group_query &&
2457 	    m0 != NULL &&
2458 	    (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) &&
2459 	    (m0->m_pkthdr.len + minrec0len) <
2460 	     (ifp->if_mtu - MLD_MTUSPACE)) {
2461 		m0srcs = (ifp->if_mtu - m0->m_pkthdr.len -
2462 			    sizeof(struct mldv2_record)) /
2463 			    sizeof(struct in6_addr);
2464 		m = m0;
2465 		CTR1(KTR_MLD, "%s: use existing packet", __func__);
2466 	} else {
2467 		if (mbufq_full(mq)) {
2468 			CTR1(KTR_MLD, "%s: outbound queue full", __func__);
2469 			return (-ENOMEM);
2470 		}
2471 		m = NULL;
2472 		m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
2473 		    sizeof(struct mldv2_record)) / sizeof(struct in6_addr);
2474 		if (!is_state_change && !is_group_query)
2475 			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2476 		if (m == NULL)
2477 			m = m_gethdr(M_NOWAIT, MT_DATA);
2478 		if (m == NULL)
2479 			return (-ENOMEM);
2480 
2481 		mld_save_context(m, ifp);
2482 
2483 		CTR1(KTR_MLD, "%s: allocated first packet", __func__);
2484 	}
2485 
2486 	/*
2487 	 * Append group record.
2488 	 * If we have sources, we don't know how many yet.
2489 	 */
2490 	mr.mr_type = type;
2491 	mr.mr_datalen = 0;
2492 	mr.mr_numsrc = 0;
2493 	mr.mr_addr = inm->in6m_addr;
2494 	in6_clearscope(&mr.mr_addr);
2495 	if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) {
2496 		if (m != m0)
2497 			m_freem(m);
2498 		CTR1(KTR_MLD, "%s: m_append() failed.", __func__);
2499 		return (-ENOMEM);
2500 	}
2501 	nbytes += sizeof(struct mldv2_record);
2502 
2503 	/*
2504 	 * Append as many sources as will fit in the first packet.
2505 	 * If we are appending to a new packet, the chain allocation
2506 	 * may potentially use clusters; use m_getptr() in this case.
2507 	 * If we are appending to an existing packet, we need to obtain
2508 	 * a pointer to the group record after m_append(), in case a new
2509 	 * mbuf was allocated.
2510 	 *
2511 	 * Only append sources which are in-mode at t1. If we are
2512 	 * transitioning to MCAST_UNDEFINED state on the group, and
2513 	 * use_block_allow is zero, do not include source entries.
2514 	 * Otherwise, we need to include this source in the report.
2515 	 *
2516 	 * Only report recorded sources in our filter set when responding
2517 	 * to a group-source query.
2518 	 */
2519 	if (record_has_sources) {
2520 		if (m == m0) {
2521 			md = m_last(m);
2522 			pmr = (struct mldv2_record *)(mtod(md, uint8_t *) +
2523 			    md->m_len - nbytes);
2524 		} else {
2525 			md = m_getptr(m, 0, &off);
2526 			pmr = (struct mldv2_record *)(mtod(md, uint8_t *) +
2527 			    off);
2528 		}
2529 		msrcs = 0;
2530 		RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs,
2531 		    nims) {
2532 			CTR2(KTR_MLD, "%s: visit node %s", __func__,
2533 			    ip6_sprintf(ip6tbuf, &ims->im6s_addr));
2534 			now = im6s_get_mode(inm, ims, 1);
2535 			CTR2(KTR_MLD, "%s: node is %d", __func__, now);
2536 			if ((now != mode) ||
2537 			    (now == mode &&
2538 			     (!use_block_allow && mode == MCAST_UNDEFINED))) {
2539 				CTR1(KTR_MLD, "%s: skip node", __func__);
2540 				continue;
2541 			}
2542 			if (is_source_query && ims->im6s_stp == 0) {
2543 				CTR1(KTR_MLD, "%s: skip unrecorded node",
2544 				    __func__);
2545 				continue;
2546 			}
2547 			CTR1(KTR_MLD, "%s: append node", __func__);
2548 			if (!m_append(m, sizeof(struct in6_addr),
2549 			    (void *)&ims->im6s_addr)) {
2550 				if (m != m0)
2551 					m_freem(m);
2552 				CTR1(KTR_MLD, "%s: m_append() failed.",
2553 				    __func__);
2554 				return (-ENOMEM);
2555 			}
2556 			nbytes += sizeof(struct in6_addr);
2557 			++msrcs;
2558 			if (msrcs == m0srcs)
2559 				break;
2560 		}
2561 		CTR2(KTR_MLD, "%s: msrcs is %d this packet", __func__,
2562 		    msrcs);
2563 		pmr->mr_numsrc = htons(msrcs);
2564 		nbytes += (msrcs * sizeof(struct in6_addr));
2565 	}
2566 
2567 	if (is_source_query && msrcs == 0) {
2568 		CTR1(KTR_MLD, "%s: no recorded sources to report", __func__);
2569 		if (m != m0)
2570 			m_freem(m);
2571 		return (0);
2572 	}
2573 
2574 	/*
2575 	 * We are good to go with first packet.
2576 	 */
2577 	if (m != m0) {
2578 		CTR1(KTR_MLD, "%s: enqueueing first packet", __func__);
2579 		m->m_pkthdr.PH_vt.vt_nrecs = 1;
2580 		mbufq_enqueue(mq, m);
2581 	} else
2582 		m->m_pkthdr.PH_vt.vt_nrecs++;
2583 
2584 	/*
2585 	 * No further work needed if no source list in packet(s).
2586 	 */
2587 	if (!record_has_sources)
2588 		return (nbytes);
2589 
2590 	/*
2591 	 * Whilst sources remain to be announced, we need to allocate
2592 	 * a new packet and fill out as many sources as will fit.
2593 	 * Always try for a cluster first.
2594 	 */
2595 	while (nims != NULL) {
2596 		if (mbufq_full(mq)) {
2597 			CTR1(KTR_MLD, "%s: outbound queue full", __func__);
2598 			return (-ENOMEM);
2599 		}
2600 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2601 		if (m == NULL)
2602 			m = m_gethdr(M_NOWAIT, MT_DATA);
2603 		if (m == NULL)
2604 			return (-ENOMEM);
2605 		mld_save_context(m, ifp);
2606 		md = m_getptr(m, 0, &off);
2607 		pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off);
2608 		CTR1(KTR_MLD, "%s: allocated next packet", __func__);
2609 
2610 		if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) {
2611 			if (m != m0)
2612 				m_freem(m);
2613 			CTR1(KTR_MLD, "%s: m_append() failed.", __func__);
2614 			return (-ENOMEM);
2615 		}
2616 		m->m_pkthdr.PH_vt.vt_nrecs = 1;
2617 		nbytes += sizeof(struct mldv2_record);
2618 
2619 		m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
2620 		    sizeof(struct mldv2_record)) / sizeof(struct in6_addr);
2621 
2622 		msrcs = 0;
2623 		RB_FOREACH_FROM(ims, ip6_msource_tree, nims) {
2624 			CTR2(KTR_MLD, "%s: visit node %s",
2625 			    __func__, ip6_sprintf(ip6tbuf, &ims->im6s_addr));
2626 			now = im6s_get_mode(inm, ims, 1);
2627 			if ((now != mode) ||
2628 			    (now == mode &&
2629 			     (!use_block_allow && mode == MCAST_UNDEFINED))) {
2630 				CTR1(KTR_MLD, "%s: skip node", __func__);
2631 				continue;
2632 			}
2633 			if (is_source_query && ims->im6s_stp == 0) {
2634 				CTR1(KTR_MLD, "%s: skip unrecorded node",
2635 				    __func__);
2636 				continue;
2637 			}
2638 			CTR1(KTR_MLD, "%s: append node", __func__);
2639 			if (!m_append(m, sizeof(struct in6_addr),
2640 			    (void *)&ims->im6s_addr)) {
2641 				if (m != m0)
2642 					m_freem(m);
2643 				CTR1(KTR_MLD, "%s: m_append() failed.",
2644 				    __func__);
2645 				return (-ENOMEM);
2646 			}
2647 			++msrcs;
2648 			if (msrcs == m0srcs)
2649 				break;
2650 		}
2651 		pmr->mr_numsrc = htons(msrcs);
2652 		nbytes += (msrcs * sizeof(struct in6_addr));
2653 
2654 		CTR1(KTR_MLD, "%s: enqueueing next packet", __func__);
2655 		mbufq_enqueue(mq, m);
2656 	}
2657 
2658 	return (nbytes);
2659 }
2660 
2661 /*
2662  * Type used to mark record pass completion.
2663  * We exploit the fact we can cast to this easily from the
2664  * current filter modes on each ip_msource node.
2665  */
2666 typedef enum {
2667 	REC_NONE = 0x00,	/* MCAST_UNDEFINED */
2668 	REC_ALLOW = 0x01,	/* MCAST_INCLUDE */
2669 	REC_BLOCK = 0x02,	/* MCAST_EXCLUDE */
2670 	REC_FULL = REC_ALLOW | REC_BLOCK
2671 } rectype_t;
2672 
2673 /*
2674  * Enqueue an MLDv2 filter list change to the given output queue.
2675  *
2676  * Source list filter state is held in an RB-tree. When the filter list
2677  * for a group is changed without changing its mode, we need to compute
2678  * the deltas between T0 and T1 for each source in the filter set,
2679  * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records.
2680  *
2681  * As we may potentially queue two record types, and the entire R-B tree
2682  * needs to be walked at once, we break this out into its own function
2683  * so we can generate a tightly packed queue of packets.
2684  *
2685  * XXX This could be written to only use one tree walk, although that makes
2686  * serializing into the mbuf chains a bit harder. For now we do two walks
2687  * which makes things easier on us, and it may or may not be harder on
2688  * the L2 cache.
2689  *
2690  * If successful the size of all data appended to the queue is returned,
2691  * otherwise an error code less than zero is returned, or zero if
2692  * no record(s) were appended.
2693  */
2694 static int
2695 mld_v2_enqueue_filter_change(struct mbufq *mq, struct in6_multi *inm)
2696 {
2697 	static const int MINRECLEN =
2698 	    sizeof(struct mldv2_record) + sizeof(struct in6_addr);
2699 	struct ifnet		*ifp;
2700 	struct mldv2_record	 mr;
2701 	struct mldv2_record	*pmr;
2702 	struct ip6_msource	*ims, *nims;
2703 	struct mbuf		*m, *m0, *md;
2704 	int			 m0srcs, nbytes, npbytes, off, rsrcs, schanged;
2705 	uint8_t			 mode, now, then;
2706 	rectype_t		 crt, drt, nrt;
2707 #ifdef KTR
2708 	int			 nallow, nblock;
2709 	char			 ip6tbuf[INET6_ADDRSTRLEN];
2710 #endif
2711 
2712 	IN6_MULTI_LIST_LOCK_ASSERT();
2713 
2714 	if (inm->in6m_nsrc == 0 ||
2715 	    (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0))
2716 		return (0);
2717 
2718 	ifp = inm->in6m_ifp;			/* interface */
2719 	mode = inm->in6m_st[1].iss_fmode;	/* filter mode at t1 */
2720 	crt = REC_NONE;	/* current group record type */
2721 	drt = REC_NONE;	/* mask of completed group record types */
2722 	nrt = REC_NONE;	/* record type for current node */
2723 	m0srcs = 0;	/* # source which will fit in current mbuf chain */
2724 	npbytes = 0;	/* # of bytes appended this packet */
2725 	nbytes = 0;	/* # of bytes appended to group's state-change queue */
2726 	rsrcs = 0;	/* # sources encoded in current record */
2727 	schanged = 0;	/* # nodes encoded in overall filter change */
2728 #ifdef KTR
2729 	nallow = 0;	/* # of source entries in ALLOW_NEW */
2730 	nblock = 0;	/* # of source entries in BLOCK_OLD */
2731 #endif
2732 	nims = NULL;	/* next tree node pointer */
2733 
2734 	/*
2735 	 * For each possible filter record mode.
2736 	 * The first kind of source we encounter tells us which
2737 	 * is the first kind of record we start appending.
2738 	 * If a node transitioned to UNDEFINED at t1, its mode is treated
2739 	 * as the inverse of the group's filter mode.
2740 	 */
2741 	while (drt != REC_FULL) {
2742 		do {
2743 			m0 = mbufq_last(mq);
2744 			if (m0 != NULL &&
2745 			    (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <=
2746 			     MLD_V2_REPORT_MAXRECS) &&
2747 			    (m0->m_pkthdr.len + MINRECLEN) <
2748 			     (ifp->if_mtu - MLD_MTUSPACE)) {
2749 				m = m0;
2750 				m0srcs = (ifp->if_mtu - m0->m_pkthdr.len -
2751 					    sizeof(struct mldv2_record)) /
2752 					    sizeof(struct in6_addr);
2753 				CTR1(KTR_MLD,
2754 				    "%s: use previous packet", __func__);
2755 			} else {
2756 				m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2757 				if (m == NULL)
2758 					m = m_gethdr(M_NOWAIT, MT_DATA);
2759 				if (m == NULL) {
2760 					CTR1(KTR_MLD,
2761 					    "%s: m_get*() failed", __func__);
2762 					return (-ENOMEM);
2763 				}
2764 				m->m_pkthdr.PH_vt.vt_nrecs = 0;
2765 				mld_save_context(m, ifp);
2766 				m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
2767 				    sizeof(struct mldv2_record)) /
2768 				    sizeof(struct in6_addr);
2769 				npbytes = 0;
2770 				CTR1(KTR_MLD,
2771 				    "%s: allocated new packet", __func__);
2772 			}
2773 			/*
2774 			 * Append the MLD group record header to the
2775 			 * current packet's data area.
2776 			 * Recalculate pointer to free space for next
2777 			 * group record, in case m_append() allocated
2778 			 * a new mbuf or cluster.
2779 			 */
2780 			memset(&mr, 0, sizeof(mr));
2781 			mr.mr_addr = inm->in6m_addr;
2782 			in6_clearscope(&mr.mr_addr);
2783 			if (!m_append(m, sizeof(mr), (void *)&mr)) {
2784 				if (m != m0)
2785 					m_freem(m);
2786 				CTR1(KTR_MLD,
2787 				    "%s: m_append() failed", __func__);
2788 				return (-ENOMEM);
2789 			}
2790 			npbytes += sizeof(struct mldv2_record);
2791 			if (m != m0) {
2792 				/* new packet; offset in chain */
2793 				md = m_getptr(m, npbytes -
2794 				    sizeof(struct mldv2_record), &off);
2795 				pmr = (struct mldv2_record *)(mtod(md,
2796 				    uint8_t *) + off);
2797 			} else {
2798 				/* current packet; offset from last append */
2799 				md = m_last(m);
2800 				pmr = (struct mldv2_record *)(mtod(md,
2801 				    uint8_t *) + md->m_len -
2802 				    sizeof(struct mldv2_record));
2803 			}
2804 			/*
2805 			 * Begin walking the tree for this record type
2806 			 * pass, or continue from where we left off
2807 			 * previously if we had to allocate a new packet.
2808 			 * Only report deltas in-mode at t1.
2809 			 * We need not report included sources as allowed
2810 			 * if we are in inclusive mode on the group,
2811 			 * however the converse is not true.
2812 			 */
2813 			rsrcs = 0;
2814 			if (nims == NULL) {
2815 				nims = RB_MIN(ip6_msource_tree,
2816 				    &inm->in6m_srcs);
2817 			}
2818 			RB_FOREACH_FROM(ims, ip6_msource_tree, nims) {
2819 				CTR2(KTR_MLD, "%s: visit node %s", __func__,
2820 				    ip6_sprintf(ip6tbuf, &ims->im6s_addr));
2821 				now = im6s_get_mode(inm, ims, 1);
2822 				then = im6s_get_mode(inm, ims, 0);
2823 				CTR3(KTR_MLD, "%s: mode: t0 %d, t1 %d",
2824 				    __func__, then, now);
2825 				if (now == then) {
2826 					CTR1(KTR_MLD,
2827 					    "%s: skip unchanged", __func__);
2828 					continue;
2829 				}
2830 				if (mode == MCAST_EXCLUDE &&
2831 				    now == MCAST_INCLUDE) {
2832 					CTR1(KTR_MLD,
2833 					    "%s: skip IN src on EX group",
2834 					    __func__);
2835 					continue;
2836 				}
2837 				nrt = (rectype_t)now;
2838 				if (nrt == REC_NONE)
2839 					nrt = (rectype_t)(~mode & REC_FULL);
2840 				if (schanged++ == 0) {
2841 					crt = nrt;
2842 				} else if (crt != nrt)
2843 					continue;
2844 				if (!m_append(m, sizeof(struct in6_addr),
2845 				    (void *)&ims->im6s_addr)) {
2846 					if (m != m0)
2847 						m_freem(m);
2848 					CTR1(KTR_MLD,
2849 					    "%s: m_append() failed", __func__);
2850 					return (-ENOMEM);
2851 				}
2852 #ifdef KTR
2853 				nallow += !!(crt == REC_ALLOW);
2854 				nblock += !!(crt == REC_BLOCK);
2855 #endif
2856 				if (++rsrcs == m0srcs)
2857 					break;
2858 			}
2859 			/*
2860 			 * If we did not append any tree nodes on this
2861 			 * pass, back out of allocations.
2862 			 */
2863 			if (rsrcs == 0) {
2864 				npbytes -= sizeof(struct mldv2_record);
2865 				if (m != m0) {
2866 					CTR1(KTR_MLD,
2867 					    "%s: m_free(m)", __func__);
2868 					m_freem(m);
2869 				} else {
2870 					CTR1(KTR_MLD,
2871 					    "%s: m_adj(m, -mr)", __func__);
2872 					m_adj(m, -((int)sizeof(
2873 					    struct mldv2_record)));
2874 				}
2875 				continue;
2876 			}
2877 			npbytes += (rsrcs * sizeof(struct in6_addr));
2878 			if (crt == REC_ALLOW)
2879 				pmr->mr_type = MLD_ALLOW_NEW_SOURCES;
2880 			else if (crt == REC_BLOCK)
2881 				pmr->mr_type = MLD_BLOCK_OLD_SOURCES;
2882 			pmr->mr_numsrc = htons(rsrcs);
2883 			/*
2884 			 * Count the new group record, and enqueue this
2885 			 * packet if it wasn't already queued.
2886 			 */
2887 			m->m_pkthdr.PH_vt.vt_nrecs++;
2888 			if (m != m0)
2889 				mbufq_enqueue(mq, m);
2890 			nbytes += npbytes;
2891 		} while (nims != NULL);
2892 		drt |= crt;
2893 		crt = (~crt & REC_FULL);
2894 	}
2895 
2896 	CTR3(KTR_MLD, "%s: queued %d ALLOW_NEW, %d BLOCK_OLD", __func__,
2897 	    nallow, nblock);
2898 
2899 	return (nbytes);
2900 }
2901 
2902 static int
2903 mld_v2_merge_state_changes(struct in6_multi *inm, struct mbufq *scq)
2904 {
2905 	struct mbufq	*gq;
2906 	struct mbuf	*m;		/* pending state-change */
2907 	struct mbuf	*m0;		/* copy of pending state-change */
2908 	struct mbuf	*mt;		/* last state-change in packet */
2909 	int		 docopy, domerge;
2910 	u_int		 recslen;
2911 
2912 	docopy = 0;
2913 	domerge = 0;
2914 	recslen = 0;
2915 
2916 	IN6_MULTI_LIST_LOCK_ASSERT();
2917 	MLD_LOCK_ASSERT();
2918 
2919 	/*
2920 	 * If there are further pending retransmissions, make a writable
2921 	 * copy of each queued state-change message before merging.
2922 	 */
2923 	if (inm->in6m_scrv > 0)
2924 		docopy = 1;
2925 
2926 	gq = &inm->in6m_scq;
2927 #ifdef KTR
2928 	if (mbufq_first(gq) == NULL) {
2929 		CTR2(KTR_MLD, "%s: WARNING: queue for inm %p is empty",
2930 		    __func__, inm);
2931 	}
2932 #endif
2933 
2934 	m = mbufq_first(gq);
2935 	while (m != NULL) {
2936 		/*
2937 		 * Only merge the report into the current packet if
2938 		 * there is sufficient space to do so; an MLDv2 report
2939 		 * packet may only contain 65,535 group records.
2940 		 * Always use a simple mbuf chain concatentation to do this,
2941 		 * as large state changes for single groups may have
2942 		 * allocated clusters.
2943 		 */
2944 		domerge = 0;
2945 		mt = mbufq_last(scq);
2946 		if (mt != NULL) {
2947 			recslen = m_length(m, NULL);
2948 
2949 			if ((mt->m_pkthdr.PH_vt.vt_nrecs +
2950 			    m->m_pkthdr.PH_vt.vt_nrecs <=
2951 			    MLD_V2_REPORT_MAXRECS) &&
2952 			    (mt->m_pkthdr.len + recslen <=
2953 			    (inm->in6m_ifp->if_mtu - MLD_MTUSPACE)))
2954 				domerge = 1;
2955 		}
2956 
2957 		if (!domerge && mbufq_full(gq)) {
2958 			CTR2(KTR_MLD,
2959 			    "%s: outbound queue full, skipping whole packet %p",
2960 			    __func__, m);
2961 			mt = m->m_nextpkt;
2962 			if (!docopy)
2963 				m_freem(m);
2964 			m = mt;
2965 			continue;
2966 		}
2967 
2968 		if (!docopy) {
2969 			CTR2(KTR_MLD, "%s: dequeueing %p", __func__, m);
2970 			m0 = mbufq_dequeue(gq);
2971 			m = m0->m_nextpkt;
2972 		} else {
2973 			CTR2(KTR_MLD, "%s: copying %p", __func__, m);
2974 			m0 = m_dup(m, M_NOWAIT);
2975 			if (m0 == NULL)
2976 				return (ENOMEM);
2977 			m0->m_nextpkt = NULL;
2978 			m = m->m_nextpkt;
2979 		}
2980 
2981 		if (!domerge) {
2982 			CTR3(KTR_MLD, "%s: queueing %p to scq %p)",
2983 			    __func__, m0, scq);
2984 			mbufq_enqueue(scq, m0);
2985 		} else {
2986 			struct mbuf *mtl;	/* last mbuf of packet mt */
2987 
2988 			CTR3(KTR_MLD, "%s: merging %p with ifscq tail %p)",
2989 			    __func__, m0, mt);
2990 
2991 			mtl = m_last(mt);
2992 			m0->m_flags &= ~M_PKTHDR;
2993 			mt->m_pkthdr.len += recslen;
2994 			mt->m_pkthdr.PH_vt.vt_nrecs +=
2995 			    m0->m_pkthdr.PH_vt.vt_nrecs;
2996 
2997 			mtl->m_next = m0;
2998 		}
2999 	}
3000 
3001 	return (0);
3002 }
3003 
3004 /*
3005  * Respond to a pending MLDv2 General Query.
3006  */
3007 static void
3008 mld_v2_dispatch_general_query(struct mld_ifsoftc *mli)
3009 {
3010 	struct ifmultiaddr	*ifma;
3011 	struct ifnet		*ifp;
3012 	struct in6_multi	*inm;
3013 	int			 retval __unused;
3014 
3015 	NET_EPOCH_ASSERT();
3016 	IN6_MULTI_LIST_LOCK_ASSERT();
3017 	MLD_LOCK_ASSERT();
3018 
3019 	KASSERT(mli->mli_version == MLD_VERSION_2,
3020 	    ("%s: called when version %d", __func__, mli->mli_version));
3021 
3022 	/*
3023 	 * Check that there are some packets queued. If so, send them first.
3024 	 * For large number of groups the reply to general query can take
3025 	 * many packets, we should finish sending them before starting of
3026 	 * queuing the new reply.
3027 	 */
3028 	if (mbufq_len(&mli->mli_gq) != 0)
3029 		goto send;
3030 
3031 	ifp = mli->mli_ifp;
3032 
3033 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3034 		inm = in6m_ifmultiaddr_get_inm(ifma);
3035 		if (inm == NULL)
3036 			continue;
3037 		KASSERT(ifp == inm->in6m_ifp,
3038 		    ("%s: inconsistent ifp", __func__));
3039 
3040 		switch (inm->in6m_state) {
3041 		case MLD_NOT_MEMBER:
3042 		case MLD_SILENT_MEMBER:
3043 			break;
3044 		case MLD_REPORTING_MEMBER:
3045 		case MLD_IDLE_MEMBER:
3046 		case MLD_LAZY_MEMBER:
3047 		case MLD_SLEEPING_MEMBER:
3048 		case MLD_AWAKENING_MEMBER:
3049 			inm->in6m_state = MLD_REPORTING_MEMBER;
3050 			retval = mld_v2_enqueue_group_record(&mli->mli_gq,
3051 			    inm, 0, 0, 0, 0);
3052 			CTR2(KTR_MLD, "%s: enqueue record = %d",
3053 			    __func__, retval);
3054 			break;
3055 		case MLD_G_QUERY_PENDING_MEMBER:
3056 		case MLD_SG_QUERY_PENDING_MEMBER:
3057 		case MLD_LEAVING_MEMBER:
3058 			break;
3059 		}
3060 	}
3061 
3062 send:
3063 	mld_dispatch_queue(&mli->mli_gq, MLD_MAX_RESPONSE_BURST);
3064 
3065 	/*
3066 	 * Slew transmission of bursts over 500ms intervals.
3067 	 */
3068 	if (mbufq_first(&mli->mli_gq) != NULL) {
3069 		mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY(
3070 		    MLD_RESPONSE_BURST_INTERVAL);
3071 		V_interface_timers_running6 = 1;
3072 	}
3073 }
3074 
3075 /*
3076  * Transmit the next pending message in the output queue.
3077  *
3078  * VIMAGE: Needs to store/restore vnet pointer on a per-mbuf-chain basis.
3079  * MRT: Nothing needs to be done, as MLD traffic is always local to
3080  * a link and uses a link-scope multicast address.
3081  */
3082 static void
3083 mld_dispatch_packet(struct mbuf *m)
3084 {
3085 	struct ip6_moptions	 im6o;
3086 	struct ifnet		*ifp;
3087 	struct ifnet		*oifp;
3088 	struct mbuf		*m0;
3089 	struct mbuf		*md;
3090 	struct ip6_hdr		*ip6;
3091 	struct mld_hdr		*mld;
3092 	int			 error;
3093 	int			 off;
3094 	int			 type;
3095 	uint32_t		 ifindex;
3096 
3097 	CTR2(KTR_MLD, "%s: transmit %p", __func__, m);
3098 	NET_EPOCH_ASSERT();
3099 
3100 	/*
3101 	 * Set VNET image pointer from enqueued mbuf chain
3102 	 * before doing anything else. Whilst we use interface
3103 	 * indexes to guard against interface detach, they are
3104 	 * unique to each VIMAGE and must be retrieved.
3105 	 */
3106 	ifindex = mld_restore_context(m);
3107 
3108 	/*
3109 	 * Check if the ifnet still exists. This limits the scope of
3110 	 * any race in the absence of a global ifp lock for low cost
3111 	 * (an array lookup).
3112 	 */
3113 	ifp = ifnet_byindex(ifindex);
3114 	if (ifp == NULL) {
3115 		CTR3(KTR_MLD, "%s: dropped %p as ifindex %u went away.",
3116 		    __func__, m, ifindex);
3117 		m_freem(m);
3118 		IP6STAT_INC(ip6s_noroute);
3119 		goto out;
3120 	}
3121 
3122 	im6o.im6o_multicast_hlim  = 1;
3123 	im6o.im6o_multicast_loop = (V_ip6_mrouter != NULL);
3124 	im6o.im6o_multicast_ifp = ifp;
3125 
3126 	if (m->m_flags & M_MLDV1) {
3127 		m0 = m;
3128 	} else {
3129 		m0 = mld_v2_encap_report(ifp, m);
3130 		if (m0 == NULL) {
3131 			CTR2(KTR_MLD, "%s: dropped %p", __func__, m);
3132 			IP6STAT_INC(ip6s_odropped);
3133 			goto out;
3134 		}
3135 	}
3136 
3137 	mld_scrub_context(m0);
3138 	m_clrprotoflags(m);
3139 	m0->m_pkthdr.rcvif = V_loif;
3140 
3141 	ip6 = mtod(m0, struct ip6_hdr *);
3142 #if 0
3143 	(void)in6_setscope(&ip6->ip6_dst, ifp, NULL);	/* XXX LOR */
3144 #else
3145 	/*
3146 	 * XXX XXX Break some KPI rules to prevent an LOR which would
3147 	 * occur if we called in6_setscope() at transmission.
3148 	 * See comments at top of file.
3149 	 */
3150 	MLD_EMBEDSCOPE(&ip6->ip6_dst, ifp->if_index);
3151 #endif
3152 
3153 	/*
3154 	 * Retrieve the ICMPv6 type before handoff to ip6_output(),
3155 	 * so we can bump the stats.
3156 	 */
3157 	md = m_getptr(m0, sizeof(struct ip6_hdr), &off);
3158 	mld = (struct mld_hdr *)(mtod(md, uint8_t *) + off);
3159 	type = mld->mld_type;
3160 
3161 	oifp = NULL;
3162 	error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, &im6o,
3163 	    &oifp, NULL);
3164 	if (error) {
3165 		CTR3(KTR_MLD, "%s: ip6_output(%p) = %d", __func__, m0, error);
3166 		goto out;
3167 	}
3168 	ICMP6STAT_INC(icp6s_outhist[type]);
3169 	if (oifp != NULL) {
3170 		icmp6_ifstat_inc(oifp, ifs6_out_msg);
3171 		switch (type) {
3172 		case MLD_LISTENER_REPORT:
3173 		case MLDV2_LISTENER_REPORT:
3174 			icmp6_ifstat_inc(oifp, ifs6_out_mldreport);
3175 			break;
3176 		case MLD_LISTENER_DONE:
3177 			icmp6_ifstat_inc(oifp, ifs6_out_mlddone);
3178 			break;
3179 		}
3180 	}
3181 out:
3182 	return;
3183 }
3184 
3185 /*
3186  * Encapsulate an MLDv2 report.
3187  *
3188  * KAME IPv6 requires that hop-by-hop options be passed separately,
3189  * and that the IPv6 header be prepended in a separate mbuf.
3190  *
3191  * Returns a pointer to the new mbuf chain head, or NULL if the
3192  * allocation failed.
3193  */
3194 static struct mbuf *
3195 mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m)
3196 {
3197 	struct mbuf		*mh;
3198 	struct mldv2_report	*mld;
3199 	struct ip6_hdr		*ip6;
3200 	struct in6_ifaddr	*ia;
3201 	int			 mldreclen;
3202 
3203 	KASSERT(ifp != NULL, ("%s: null ifp", __func__));
3204 	KASSERT((m->m_flags & M_PKTHDR),
3205 	    ("%s: mbuf chain %p is !M_PKTHDR", __func__, m));
3206 
3207 	/*
3208 	 * RFC3590: OK to send as :: or tentative during DAD.
3209 	 */
3210 	NET_EPOCH_ASSERT();
3211 	ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
3212 	if (ia == NULL)
3213 		CTR1(KTR_MLD, "%s: warning: ia is NULL", __func__);
3214 
3215 	mh = m_gethdr(M_NOWAIT, MT_DATA);
3216 	if (mh == NULL) {
3217 		if (ia != NULL)
3218 			ifa_free(&ia->ia_ifa);
3219 		m_freem(m);
3220 		return (NULL);
3221 	}
3222 	M_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report));
3223 
3224 	mldreclen = m_length(m, NULL);
3225 	CTR2(KTR_MLD, "%s: mldreclen is %d", __func__, mldreclen);
3226 
3227 	mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report);
3228 	mh->m_pkthdr.len = sizeof(struct ip6_hdr) +
3229 	    sizeof(struct mldv2_report) + mldreclen;
3230 
3231 	ip6 = mtod(mh, struct ip6_hdr *);
3232 	ip6->ip6_flow = 0;
3233 	ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3234 	ip6->ip6_vfc |= IPV6_VERSION;
3235 	ip6->ip6_nxt = IPPROTO_ICMPV6;
3236 	ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any;
3237 	if (ia != NULL)
3238 		ifa_free(&ia->ia_ifa);
3239 	ip6->ip6_dst = in6addr_linklocal_allv2routers;
3240 	/* scope ID will be set in netisr */
3241 
3242 	mld = (struct mldv2_report *)(ip6 + 1);
3243 	mld->mld_type = MLDV2_LISTENER_REPORT;
3244 	mld->mld_code = 0;
3245 	mld->mld_cksum = 0;
3246 	mld->mld_v2_reserved = 0;
3247 	mld->mld_v2_numrecs = htons(m->m_pkthdr.PH_vt.vt_nrecs);
3248 	m->m_pkthdr.PH_vt.vt_nrecs = 0;
3249 
3250 	mh->m_next = m;
3251 	mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6,
3252 	    sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen);
3253 	return (mh);
3254 }
3255 
3256 #ifdef KTR
3257 static char *
3258 mld_rec_type_to_str(const int type)
3259 {
3260 
3261 	switch (type) {
3262 		case MLD_CHANGE_TO_EXCLUDE_MODE:
3263 			return "TO_EX";
3264 			break;
3265 		case MLD_CHANGE_TO_INCLUDE_MODE:
3266 			return "TO_IN";
3267 			break;
3268 		case MLD_MODE_IS_EXCLUDE:
3269 			return "MODE_EX";
3270 			break;
3271 		case MLD_MODE_IS_INCLUDE:
3272 			return "MODE_IN";
3273 			break;
3274 		case MLD_ALLOW_NEW_SOURCES:
3275 			return "ALLOW_NEW";
3276 			break;
3277 		case MLD_BLOCK_OLD_SOURCES:
3278 			return "BLOCK_OLD";
3279 			break;
3280 		default:
3281 			break;
3282 	}
3283 	return "unknown";
3284 }
3285 #endif
3286 
3287 static void
3288 mld_init(void *unused __unused)
3289 {
3290 
3291 	CTR1(KTR_MLD, "%s: initializing", __func__);
3292 	MLD_LOCK_INIT();
3293 
3294 	ip6_initpktopts(&mld_po);
3295 	mld_po.ip6po_hlim = 1;
3296 	mld_po.ip6po_hbh = &mld_ra.hbh;
3297 	mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER;
3298 	mld_po.ip6po_flags = IP6PO_DONTFRAG;
3299 }
3300 SYSINIT(mld_init, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, mld_init, NULL);
3301 
3302 static void
3303 mld_uninit(void *unused __unused)
3304 {
3305 
3306 	CTR1(KTR_MLD, "%s: tearing down", __func__);
3307 	MLD_LOCK_DESTROY();
3308 }
3309 SYSUNINIT(mld_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, mld_uninit, NULL);
3310 
3311 static void
3312 vnet_mld_init(const void *unused __unused)
3313 {
3314 
3315 	CTR1(KTR_MLD, "%s: initializing", __func__);
3316 
3317 	LIST_INIT(&V_mli_head);
3318 }
3319 VNET_SYSINIT(vnet_mld_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mld_init,
3320     NULL);
3321 
3322 static void
3323 vnet_mld_uninit(const void *unused __unused)
3324 {
3325 
3326 	/* This can happen if we shutdown the network stack. */
3327 	CTR1(KTR_MLD, "%s: tearing down", __func__);
3328 }
3329 VNET_SYSUNINIT(vnet_mld_uninit, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mld_uninit,
3330     NULL);
3331 
3332 static int
3333 mld_modevent(module_t mod, int type, void *unused __unused)
3334 {
3335 
3336     switch (type) {
3337     case MOD_LOAD:
3338     case MOD_UNLOAD:
3339 	break;
3340     default:
3341 	return (EOPNOTSUPP);
3342     }
3343     return (0);
3344 }
3345 
3346 static moduledata_t mld_mod = {
3347     "mld",
3348     mld_modevent,
3349     0
3350 };
3351 DECLARE_MODULE(mld, mld_mod, SI_SUB_PROTO_MC, SI_ORDER_ANY);
3352