1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 32 */ 33 34 /*- 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ipsec.h" 71 #include "opt_kern_tls.h" 72 #include "opt_ratelimit.h" 73 #include "opt_route.h" 74 #include "opt_rss.h" 75 #include "opt_sctp.h" 76 77 #include <sys/param.h> 78 #include <sys/kernel.h> 79 #include <sys/ktls.h> 80 #include <sys/malloc.h> 81 #include <sys/mbuf.h> 82 #include <sys/errno.h> 83 #include <sys/priv.h> 84 #include <sys/proc.h> 85 #include <sys/protosw.h> 86 #include <sys/socket.h> 87 #include <sys/socketvar.h> 88 #include <sys/syslog.h> 89 #include <sys/ucred.h> 90 91 #include <machine/in_cksum.h> 92 93 #include <net/if.h> 94 #include <net/if_var.h> 95 #include <net/if_llatbl.h> 96 #include <net/netisr.h> 97 #include <net/route.h> 98 #include <net/route/nhop.h> 99 #include <net/pfil.h> 100 #include <net/rss_config.h> 101 #include <net/vnet.h> 102 103 #include <netinet/in.h> 104 #include <netinet/in_var.h> 105 #include <netinet/ip_var.h> 106 #include <netinet6/in6_fib.h> 107 #include <netinet6/in6_var.h> 108 #include <netinet/ip6.h> 109 #include <netinet/icmp6.h> 110 #include <netinet6/ip6_var.h> 111 #include <netinet/in_pcb.h> 112 #include <netinet/tcp_var.h> 113 #include <netinet6/nd6.h> 114 #include <netinet6/in6_rss.h> 115 116 #include <netipsec/ipsec_support.h> 117 #if defined(SCTP) || defined(SCTP_SUPPORT) 118 #include <netinet/sctp.h> 119 #include <netinet/sctp_crc32.h> 120 #endif 121 122 #include <netinet6/ip6protosw.h> 123 #include <netinet6/scope6_var.h> 124 125 extern int in6_mcast_loop; 126 127 struct ip6_exthdrs { 128 struct mbuf *ip6e_ip6; 129 struct mbuf *ip6e_hbh; 130 struct mbuf *ip6e_dest1; 131 struct mbuf *ip6e_rthdr; 132 struct mbuf *ip6e_dest2; 133 }; 134 135 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 136 137 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 138 struct ucred *, int); 139 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 140 struct socket *, struct sockopt *); 141 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *); 142 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 143 struct ucred *, int, int, int); 144 145 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 146 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 147 struct ip6_frag **); 148 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 149 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 150 static int ip6_getpmtu(struct route_in6 *, int, 151 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 152 u_int); 153 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 154 u_long *, int *, u_int); 155 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 156 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 157 158 /* 159 * Make an extension header from option data. hp is the source, 160 * mp is the destination, and _ol is the optlen. 161 */ 162 #define MAKE_EXTHDR(hp, mp, _ol) \ 163 do { \ 164 if (hp) { \ 165 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 166 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 167 ((eh)->ip6e_len + 1) << 3); \ 168 if (error) \ 169 goto freehdrs; \ 170 (_ol) += (*(mp))->m_len; \ 171 } \ 172 } while (/*CONSTCOND*/ 0) 173 174 /* 175 * Form a chain of extension headers. 176 * m is the extension header mbuf 177 * mp is the previous mbuf in the chain 178 * p is the next header 179 * i is the type of option. 180 */ 181 #define MAKE_CHAIN(m, mp, p, i)\ 182 do {\ 183 if (m) {\ 184 if (!hdrsplit) \ 185 panic("%s:%d: assumption failed: "\ 186 "hdr not split: hdrsplit %d exthdrs %p",\ 187 __func__, __LINE__, hdrsplit, &exthdrs);\ 188 *mtod((m), u_char *) = *(p);\ 189 *(p) = (i);\ 190 p = mtod((m), u_char *);\ 191 (m)->m_next = (mp)->m_next;\ 192 (mp)->m_next = (m);\ 193 (mp) = (m);\ 194 }\ 195 } while (/*CONSTCOND*/ 0) 196 197 void 198 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 199 { 200 u_short csum; 201 202 csum = in_cksum_skip(m, offset + plen, offset); 203 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 204 csum = 0xffff; 205 offset += m->m_pkthdr.csum_data; /* checksum offset */ 206 207 if (offset + sizeof(csum) > m->m_len) 208 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 209 else 210 *(u_short *)mtodo(m, offset) = csum; 211 } 212 213 static int 214 ip6_output_delayed_csum(struct mbuf *m, struct ifnet *ifp, int csum_flags, 215 int plen, int optlen, bool frag) 216 { 217 218 KASSERT((plen >= optlen), ("%s:%d: plen %d < optlen %d, m %p, ifp %p " 219 "csum_flags %#x frag %d\n", 220 __func__, __LINE__, plen, optlen, m, ifp, csum_flags, frag)); 221 222 if ((csum_flags & CSUM_DELAY_DATA_IPV6) || 223 #if defined(SCTP) || defined(SCTP_SUPPORT) 224 (csum_flags & CSUM_SCTP_IPV6) || 225 #endif 226 (!frag && (ifp->if_capenable & IFCAP_NOMAP) == 0)) { 227 m = mb_unmapped_to_ext(m); 228 if (m == NULL) { 229 if (frag) 230 in6_ifstat_inc(ifp, ifs6_out_fragfail); 231 else 232 IP6STAT_INC(ip6s_odropped); 233 return (ENOBUFS); 234 } 235 if (csum_flags & CSUM_DELAY_DATA_IPV6) { 236 in6_delayed_cksum(m, plen - optlen, 237 sizeof(struct ip6_hdr) + optlen); 238 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 239 } 240 #if defined(SCTP) || defined(SCTP_SUPPORT) 241 if (csum_flags & CSUM_SCTP_IPV6) { 242 sctp_delayed_cksum(m, sizeof(struct ip6_hdr) + optlen); 243 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 244 } 245 #endif 246 } 247 248 return (0); 249 } 250 251 int 252 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 253 int fraglen , uint32_t id) 254 { 255 struct mbuf *m, **mnext, *m_frgpart; 256 struct ip6_hdr *ip6, *mhip6; 257 struct ip6_frag *ip6f; 258 int off; 259 int error; 260 int tlen = m0->m_pkthdr.len; 261 262 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); 263 264 m = m0; 265 ip6 = mtod(m, struct ip6_hdr *); 266 mnext = &m->m_nextpkt; 267 268 for (off = hlen; off < tlen; off += fraglen) { 269 m = m_gethdr(M_NOWAIT, MT_DATA); 270 if (!m) { 271 IP6STAT_INC(ip6s_odropped); 272 return (ENOBUFS); 273 } 274 275 /* 276 * Make sure the complete packet header gets copied 277 * from the originating mbuf to the newly created 278 * mbuf. This also ensures that existing firewall 279 * classification(s), VLAN tags and so on get copied 280 * to the resulting fragmented packet(s): 281 */ 282 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 283 m_free(m); 284 IP6STAT_INC(ip6s_odropped); 285 return (ENOBUFS); 286 } 287 288 *mnext = m; 289 mnext = &m->m_nextpkt; 290 m->m_data += max_linkhdr; 291 mhip6 = mtod(m, struct ip6_hdr *); 292 *mhip6 = *ip6; 293 m->m_len = sizeof(*mhip6); 294 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 295 if (error) { 296 IP6STAT_INC(ip6s_odropped); 297 return (error); 298 } 299 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 300 if (off + fraglen >= tlen) 301 fraglen = tlen - off; 302 else 303 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 304 mhip6->ip6_plen = htons((u_short)(fraglen + hlen + 305 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 306 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { 307 IP6STAT_INC(ip6s_odropped); 308 return (ENOBUFS); 309 } 310 m_cat(m, m_frgpart); 311 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); 312 ip6f->ip6f_reserved = 0; 313 ip6f->ip6f_ident = id; 314 ip6f->ip6f_nxt = nextproto; 315 IP6STAT_INC(ip6s_ofragments); 316 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 317 } 318 319 return (0); 320 } 321 322 static int 323 ip6_output_send(struct inpcb *inp, struct ifnet *ifp, struct ifnet *origifp, 324 struct mbuf *m, struct sockaddr_in6 *dst, struct route_in6 *ro, 325 bool stamp_tag) 326 { 327 #ifdef KERN_TLS 328 struct ktls_session *tls = NULL; 329 #endif 330 struct m_snd_tag *mst; 331 int error; 332 333 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 334 mst = NULL; 335 336 #ifdef KERN_TLS 337 /* 338 * If this is an unencrypted TLS record, save a reference to 339 * the record. This local reference is used to call 340 * ktls_output_eagain after the mbuf has been freed (thus 341 * dropping the mbuf's reference) in if_output. 342 */ 343 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 344 tls = ktls_hold(m->m_next->m_epg_tls); 345 mst = tls->snd_tag; 346 347 /* 348 * If a TLS session doesn't have a valid tag, it must 349 * have had an earlier ifp mismatch, so drop this 350 * packet. 351 */ 352 if (mst == NULL) { 353 error = EAGAIN; 354 goto done; 355 } 356 /* 357 * Always stamp tags that include NIC ktls. 358 */ 359 stamp_tag = true; 360 } 361 #endif 362 #ifdef RATELIMIT 363 if (inp != NULL && mst == NULL) { 364 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 365 (inp->inp_snd_tag != NULL && 366 inp->inp_snd_tag->ifp != ifp)) 367 in_pcboutput_txrtlmt(inp, ifp, m); 368 369 if (inp->inp_snd_tag != NULL) 370 mst = inp->inp_snd_tag; 371 } 372 #endif 373 if (stamp_tag && mst != NULL) { 374 KASSERT(m->m_pkthdr.rcvif == NULL, 375 ("trying to add a send tag to a forwarded packet")); 376 if (mst->ifp != ifp) { 377 error = EAGAIN; 378 goto done; 379 } 380 381 /* stamp send tag on mbuf */ 382 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 383 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 384 } 385 386 error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro); 387 388 done: 389 /* Check for route change invalidating send tags. */ 390 #ifdef KERN_TLS 391 if (tls != NULL) { 392 if (error == EAGAIN) 393 error = ktls_output_eagain(inp, tls); 394 ktls_free(tls); 395 } 396 #endif 397 #ifdef RATELIMIT 398 if (error == EAGAIN) 399 in_pcboutput_eagain(inp); 400 #endif 401 return (error); 402 } 403 404 /* 405 * IP6 output. 406 * The packet in mbuf chain m contains a skeletal IP6 header (with pri, len, 407 * nxt, hlim, src, dst). 408 * This function may modify ver and hlim only. 409 * The mbuf chain containing the packet will be freed. 410 * The mbuf opt, if present, will not be freed. 411 * If route_in6 ro is present and has ro_nh initialized, route lookup would be 412 * skipped and ro->ro_nh would be used. If ro is present but ro->ro_nh is NULL, 413 * then result of route lookup is stored in ro->ro_nh. 414 * 415 * Type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and nd_ifinfo.linkmtu 416 * is uint32_t. So we use u_long to hold largest one, which is rt_mtu. 417 * 418 * ifpp - XXX: just for statistics 419 */ 420 /* 421 * XXX TODO: no flowid is assigned for outbound flows? 422 */ 423 int 424 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 425 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 426 struct ifnet **ifpp, struct inpcb *inp) 427 { 428 struct ip6_hdr *ip6; 429 struct ifnet *ifp, *origifp; 430 struct mbuf *m = m0; 431 struct mbuf *mprev; 432 struct route_in6 *ro_pmtu; 433 struct nhop_object *nh; 434 struct sockaddr_in6 *dst, sin6, src_sa, dst_sa; 435 struct in6_addr odst; 436 u_char *nexthdrp; 437 int tlen, len; 438 int error = 0; 439 struct in6_ifaddr *ia = NULL; 440 u_long mtu; 441 int alwaysfrag, dontfrag; 442 u_int32_t optlen, plen = 0, unfragpartlen; 443 struct ip6_exthdrs exthdrs; 444 struct in6_addr src0, dst0; 445 u_int32_t zone; 446 bool hdrsplit; 447 int sw_csum, tso; 448 int needfiblookup; 449 uint32_t fibnum; 450 struct m_tag *fwd_tag = NULL; 451 uint32_t id; 452 453 NET_EPOCH_ASSERT(); 454 455 if (inp != NULL) { 456 INP_LOCK_ASSERT(inp); 457 M_SETFIB(m, inp->inp_inc.inc_fibnum); 458 if ((flags & IP_NODEFAULTFLOWID) == 0) { 459 /* Unconditionally set flowid. */ 460 m->m_pkthdr.flowid = inp->inp_flowid; 461 M_HASHTYPE_SET(m, inp->inp_flowtype); 462 } 463 #ifdef NUMA 464 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 465 #endif 466 } 467 468 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 469 /* 470 * IPSec checking which handles several cases. 471 * FAST IPSEC: We re-injected the packet. 472 * XXX: need scope argument. 473 */ 474 if (IPSEC_ENABLED(ipv6)) { 475 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { 476 if (error == EINPROGRESS) 477 error = 0; 478 goto done; 479 } 480 } 481 #endif /* IPSEC */ 482 483 /* Source address validation. */ 484 ip6 = mtod(m, struct ip6_hdr *); 485 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 486 (flags & IPV6_UNSPECSRC) == 0) { 487 error = EOPNOTSUPP; 488 IP6STAT_INC(ip6s_badscope); 489 goto bad; 490 } 491 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 492 error = EOPNOTSUPP; 493 IP6STAT_INC(ip6s_badscope); 494 goto bad; 495 } 496 497 /* 498 * If we are given packet options to add extension headers prepare them. 499 * Calculate the total length of the extension header chain. 500 * Keep the length of the unfragmentable part for fragmentation. 501 */ 502 bzero(&exthdrs, sizeof(exthdrs)); 503 optlen = 0; 504 unfragpartlen = sizeof(struct ip6_hdr); 505 if (opt) { 506 /* Hop-by-Hop options header. */ 507 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh, optlen); 508 509 /* Destination options header (1st part). */ 510 if (opt->ip6po_rthdr) { 511 #ifndef RTHDR_SUPPORT_IMPLEMENTED 512 /* 513 * If there is a routing header, discard the packet 514 * right away here. RH0/1 are obsolete and we do not 515 * currently support RH2/3/4. 516 * People trying to use RH253/254 may want to disable 517 * this check. 518 * The moment we do support any routing header (again) 519 * this block should check the routing type more 520 * selectively. 521 */ 522 error = EINVAL; 523 goto bad; 524 #endif 525 526 /* 527 * Destination options header (1st part). 528 * This only makes sense with a routing header. 529 * See Section 9.2 of RFC 3542. 530 * Disabling this part just for MIP6 convenience is 531 * a bad idea. We need to think carefully about a 532 * way to make the advanced API coexist with MIP6 533 * options, which might automatically be inserted in 534 * the kernel. 535 */ 536 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1, 537 optlen); 538 } 539 /* Routing header. */ 540 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr, optlen); 541 542 unfragpartlen += optlen; 543 544 /* 545 * NOTE: we don't add AH/ESP length here (done in 546 * ip6_ipsec_output()). 547 */ 548 549 /* Destination options header (2nd part). */ 550 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2, optlen); 551 } 552 553 /* 554 * If there is at least one extension header, 555 * separate IP6 header from the payload. 556 */ 557 hdrsplit = false; 558 if (optlen) { 559 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 560 m = NULL; 561 goto freehdrs; 562 } 563 m = exthdrs.ip6e_ip6; 564 ip6 = mtod(m, struct ip6_hdr *); 565 hdrsplit = true; 566 } 567 568 /* Adjust mbuf packet header length. */ 569 m->m_pkthdr.len += optlen; 570 plen = m->m_pkthdr.len - sizeof(*ip6); 571 572 /* If this is a jumbo payload, insert a jumbo payload option. */ 573 if (plen > IPV6_MAXPACKET) { 574 if (!hdrsplit) { 575 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 576 m = NULL; 577 goto freehdrs; 578 } 579 m = exthdrs.ip6e_ip6; 580 ip6 = mtod(m, struct ip6_hdr *); 581 hdrsplit = true; 582 } 583 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 584 goto freehdrs; 585 ip6->ip6_plen = 0; 586 } else 587 ip6->ip6_plen = htons(plen); 588 nexthdrp = &ip6->ip6_nxt; 589 590 if (optlen) { 591 /* 592 * Concatenate headers and fill in next header fields. 593 * Here we have, on "m" 594 * IPv6 payload 595 * and we insert headers accordingly. 596 * Finally, we should be getting: 597 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]. 598 * 599 * During the header composing process "m" points to IPv6 600 * header. "mprev" points to an extension header prior to esp. 601 */ 602 mprev = m; 603 604 /* 605 * We treat dest2 specially. This makes IPsec processing 606 * much easier. The goal here is to make mprev point the 607 * mbuf prior to dest2. 608 * 609 * Result: IPv6 dest2 payload. 610 * m and mprev will point to IPv6 header. 611 */ 612 if (exthdrs.ip6e_dest2) { 613 if (!hdrsplit) 614 panic("%s:%d: assumption failed: " 615 "hdr not split: hdrsplit %d exthdrs %p", 616 __func__, __LINE__, hdrsplit, &exthdrs); 617 exthdrs.ip6e_dest2->m_next = m->m_next; 618 m->m_next = exthdrs.ip6e_dest2; 619 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 620 ip6->ip6_nxt = IPPROTO_DSTOPTS; 621 } 622 623 /* 624 * Result: IPv6 hbh dest1 rthdr dest2 payload. 625 * m will point to IPv6 header. mprev will point to the 626 * extension header prior to dest2 (rthdr in the above case). 627 */ 628 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 629 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 630 IPPROTO_DSTOPTS); 631 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 632 IPPROTO_ROUTING); 633 } 634 635 IP6STAT_INC(ip6s_localout); 636 637 /* Route packet. */ 638 ro_pmtu = ro; 639 if (opt && opt->ip6po_rthdr) 640 ro = &opt->ip6po_route; 641 if (ro != NULL) 642 dst = (struct sockaddr_in6 *)&ro->ro_dst; 643 else 644 dst = &sin6; 645 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 646 647 again: 648 /* 649 * If specified, try to fill in the traffic class field. 650 * Do not override if a non-zero value is already set. 651 * We check the diffserv field and the ECN field separately. 652 */ 653 if (opt && opt->ip6po_tclass >= 0) { 654 int mask = 0; 655 656 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 657 mask |= 0xfc; 658 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 659 mask |= 0x03; 660 if (mask != 0) 661 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 662 } 663 664 /* Fill in or override the hop limit field, if necessary. */ 665 if (opt && opt->ip6po_hlim != -1) 666 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 667 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 668 if (im6o != NULL) 669 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 670 else 671 ip6->ip6_hlim = V_ip6_defmcasthlim; 672 } 673 674 if (ro == NULL || ro->ro_nh == NULL) { 675 bzero(dst, sizeof(*dst)); 676 dst->sin6_family = AF_INET6; 677 dst->sin6_len = sizeof(*dst); 678 dst->sin6_addr = ip6->ip6_dst; 679 } 680 /* 681 * Validate route against routing table changes. 682 * Make sure that the address family is set in route. 683 */ 684 nh = NULL; 685 ifp = NULL; 686 mtu = 0; 687 if (ro != NULL) { 688 if (ro->ro_nh != NULL && inp != NULL) { 689 ro->ro_dst.sin6_family = AF_INET6; /* XXX KASSERT? */ 690 NH_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, 691 fibnum); 692 } 693 if (ro->ro_nh != NULL && fwd_tag == NULL && 694 (!NH_IS_VALID(ro->ro_nh) || 695 ro->ro_dst.sin6_family != AF_INET6 || 696 !IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst))) 697 RO_INVALIDATE_CACHE(ro); 698 699 if (ro->ro_nh != NULL && fwd_tag == NULL && 700 ro->ro_dst.sin6_family == AF_INET6 && 701 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 702 nh = ro->ro_nh; 703 ifp = nh->nh_ifp; 704 } else { 705 if (ro->ro_lle) 706 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 707 ro->ro_lle = NULL; 708 if (fwd_tag == NULL) { 709 bzero(&dst_sa, sizeof(dst_sa)); 710 dst_sa.sin6_family = AF_INET6; 711 dst_sa.sin6_len = sizeof(dst_sa); 712 dst_sa.sin6_addr = ip6->ip6_dst; 713 } 714 error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, 715 &nh, fibnum, m->m_pkthdr.flowid); 716 if (error != 0) { 717 IP6STAT_INC(ip6s_noroute); 718 if (ifp != NULL) 719 in6_ifstat_inc(ifp, ifs6_out_discard); 720 goto bad; 721 } 722 if (ifp != NULL) 723 mtu = ifp->if_mtu; 724 } 725 if (nh == NULL) { 726 /* 727 * If in6_selectroute() does not return a nexthop 728 * dst may not have been updated. 729 */ 730 *dst = dst_sa; /* XXX */ 731 } else { 732 if (nh->nh_flags & NHF_HOST) 733 mtu = nh->nh_mtu; 734 ia = (struct in6_ifaddr *)(nh->nh_ifa); 735 counter_u64_add(nh->nh_pksent, 1); 736 } 737 } else { 738 struct nhop_object *nh; 739 struct in6_addr kdst; 740 uint32_t scopeid; 741 742 if (fwd_tag == NULL) { 743 bzero(&dst_sa, sizeof(dst_sa)); 744 dst_sa.sin6_family = AF_INET6; 745 dst_sa.sin6_len = sizeof(dst_sa); 746 dst_sa.sin6_addr = ip6->ip6_dst; 747 } 748 749 if (IN6_IS_ADDR_MULTICAST(&dst_sa.sin6_addr) && 750 im6o != NULL && 751 (ifp = im6o->im6o_multicast_ifp) != NULL) { 752 /* We do not need a route lookup. */ 753 *dst = dst_sa; /* XXX */ 754 goto nonh6lookup; 755 } 756 757 in6_splitscope(&dst_sa.sin6_addr, &kdst, &scopeid); 758 759 if (IN6_IS_ADDR_MC_LINKLOCAL(&dst_sa.sin6_addr) || 760 IN6_IS_ADDR_MC_NODELOCAL(&dst_sa.sin6_addr)) { 761 if (scopeid > 0) { 762 ifp = in6_getlinkifnet(scopeid); 763 if (ifp == NULL) { 764 error = EHOSTUNREACH; 765 goto bad; 766 } 767 *dst = dst_sa; /* XXX */ 768 goto nonh6lookup; 769 } 770 } 771 772 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 773 if (nh == NULL) { 774 IP6STAT_INC(ip6s_noroute); 775 /* No ifp in6_ifstat_inc(ifp, ifs6_out_discard); */ 776 error = EHOSTUNREACH;; 777 goto bad; 778 } 779 780 ifp = nh->nh_ifp; 781 mtu = nh->nh_mtu; 782 ia = ifatoia6(nh->nh_ifa); 783 if (nh->nh_flags & NHF_GATEWAY) 784 dst->sin6_addr = nh->gw6_sa.sin6_addr; 785 nonh6lookup: 786 ; 787 } 788 789 /* Then nh (for unicast) and ifp must be non-NULL valid values. */ 790 if ((flags & IPV6_FORWARDING) == 0) { 791 /* XXX: the FORWARDING flag can be set for mrouting. */ 792 in6_ifstat_inc(ifp, ifs6_out_request); 793 } 794 795 /* Setup data structures for scope ID checks. */ 796 src0 = ip6->ip6_src; 797 bzero(&src_sa, sizeof(src_sa)); 798 src_sa.sin6_family = AF_INET6; 799 src_sa.sin6_len = sizeof(src_sa); 800 src_sa.sin6_addr = ip6->ip6_src; 801 802 dst0 = ip6->ip6_dst; 803 /* Re-initialize to be sure. */ 804 bzero(&dst_sa, sizeof(dst_sa)); 805 dst_sa.sin6_family = AF_INET6; 806 dst_sa.sin6_len = sizeof(dst_sa); 807 dst_sa.sin6_addr = ip6->ip6_dst; 808 809 /* Check for valid scope ID. */ 810 if (in6_setscope(&src0, ifp, &zone) == 0 && 811 sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id && 812 in6_setscope(&dst0, ifp, &zone) == 0 && 813 sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) { 814 /* 815 * The outgoing interface is in the zone of the source 816 * and destination addresses. 817 * 818 * Because the loopback interface cannot receive 819 * packets with a different scope ID than its own, 820 * there is a trick to pretend the outgoing packet 821 * was received by the real network interface, by 822 * setting "origifp" different from "ifp". This is 823 * only allowed when "ifp" is a loopback network 824 * interface. Refer to code in nd6_output_ifp() for 825 * more details. 826 */ 827 origifp = ifp; 828 829 /* 830 * We should use ia_ifp to support the case of sending 831 * packets to an address of our own. 832 */ 833 if (ia != NULL && ia->ia_ifp) 834 ifp = ia->ia_ifp; 835 836 } else if ((ifp->if_flags & IFF_LOOPBACK) == 0 || 837 sa6_recoverscope(&src_sa) != 0 || 838 sa6_recoverscope(&dst_sa) != 0 || 839 dst_sa.sin6_scope_id == 0 || 840 (src_sa.sin6_scope_id != 0 && 841 src_sa.sin6_scope_id != dst_sa.sin6_scope_id) || 842 (origifp = ifnet_byindex(dst_sa.sin6_scope_id)) == NULL) { 843 /* 844 * If the destination network interface is not a 845 * loopback interface, or the destination network 846 * address has no scope ID, or the source address has 847 * a scope ID set which is different from the 848 * destination address one, or there is no network 849 * interface representing this scope ID, the address 850 * pair is considered invalid. 851 */ 852 IP6STAT_INC(ip6s_badscope); 853 in6_ifstat_inc(ifp, ifs6_out_discard); 854 if (error == 0) 855 error = EHOSTUNREACH; /* XXX */ 856 goto bad; 857 } 858 /* All scope ID checks are successful. */ 859 860 if (nh && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 861 if (opt && opt->ip6po_nextroute.ro_nh) { 862 /* 863 * The nexthop is explicitly specified by the 864 * application. We assume the next hop is an IPv6 865 * address. 866 */ 867 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 868 } 869 else if ((nh->nh_flags & NHF_GATEWAY)) 870 dst = &nh->gw6_sa; 871 } 872 873 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 874 m->m_flags &= ~(M_BCAST | M_MCAST); /* Just in case. */ 875 } else { 876 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 877 in6_ifstat_inc(ifp, ifs6_out_mcast); 878 879 /* Confirm that the outgoing interface supports multicast. */ 880 if (!(ifp->if_flags & IFF_MULTICAST)) { 881 IP6STAT_INC(ip6s_noroute); 882 in6_ifstat_inc(ifp, ifs6_out_discard); 883 error = ENETUNREACH; 884 goto bad; 885 } 886 if ((im6o == NULL && in6_mcast_loop) || 887 (im6o && im6o->im6o_multicast_loop)) { 888 /* 889 * Loop back multicast datagram if not expressly 890 * forbidden to do so, even if we have not joined 891 * the address; protocols will filter it later, 892 * thus deferring a hash lookup and lock acquisition 893 * at the expense of an m_copym(). 894 */ 895 ip6_mloopback(ifp, m); 896 } else { 897 /* 898 * If we are acting as a multicast router, perform 899 * multicast forwarding as if the packet had just 900 * arrived on the interface to which we are about 901 * to send. The multicast forwarding function 902 * recursively calls this function, using the 903 * IPV6_FORWARDING flag to prevent infinite recursion. 904 * 905 * Multicasts that are looped back by ip6_mloopback(), 906 * above, will be forwarded by the ip6_input() routine, 907 * if necessary. 908 */ 909 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 910 /* 911 * XXX: ip6_mforward expects that rcvif is NULL 912 * when it is called from the originating path. 913 * However, it may not always be the case. 914 */ 915 m->m_pkthdr.rcvif = NULL; 916 if (ip6_mforward(ip6, ifp, m) != 0) { 917 m_freem(m); 918 goto done; 919 } 920 } 921 } 922 /* 923 * Multicasts with a hoplimit of zero may be looped back, 924 * above, but must not be transmitted on a network. 925 * Also, multicasts addressed to the loopback interface 926 * are not sent -- the above call to ip6_mloopback() will 927 * loop back a copy if this host actually belongs to the 928 * destination group on the loopback interface. 929 */ 930 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 931 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 932 m_freem(m); 933 goto done; 934 } 935 } 936 937 /* 938 * Fill the outgoing inteface to tell the upper layer 939 * to increment per-interface statistics. 940 */ 941 if (ifpp) 942 *ifpp = ifp; 943 944 /* Determine path MTU. */ 945 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 946 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 947 goto bad; 948 KASSERT(mtu > 0, ("%s:%d: mtu %ld, ro_pmtu %p ro %p ifp %p " 949 "alwaysfrag %d fibnum %u\n", __func__, __LINE__, mtu, ro_pmtu, ro, 950 ifp, alwaysfrag, fibnum)); 951 952 /* 953 * The caller of this function may specify to use the minimum MTU 954 * in some cases. 955 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 956 * setting. The logic is a bit complicated; by default, unicast 957 * packets will follow path MTU while multicast packets will be sent at 958 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 959 * including unicast ones will be sent at the minimum MTU. Multicast 960 * packets will always be sent at the minimum MTU unless 961 * IP6PO_MINMTU_DISABLE is explicitly specified. 962 * See RFC 3542 for more details. 963 */ 964 if (mtu > IPV6_MMTU) { 965 if ((flags & IPV6_MINMTU)) 966 mtu = IPV6_MMTU; 967 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 968 mtu = IPV6_MMTU; 969 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 970 (opt == NULL || 971 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 972 mtu = IPV6_MMTU; 973 } 974 } 975 976 /* 977 * Clear embedded scope identifiers if necessary. 978 * in6_clearscope() will touch the addresses only when necessary. 979 */ 980 in6_clearscope(&ip6->ip6_src); 981 in6_clearscope(&ip6->ip6_dst); 982 983 /* 984 * If the outgoing packet contains a hop-by-hop options header, 985 * it must be examined and processed even by the source node. 986 * (RFC 2460, section 4.) 987 */ 988 if (exthdrs.ip6e_hbh) { 989 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 990 u_int32_t dummy; /* XXX unused */ 991 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 992 993 #ifdef DIAGNOSTIC 994 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 995 panic("ip6e_hbh is not contiguous"); 996 #endif 997 /* 998 * XXX: if we have to send an ICMPv6 error to the sender, 999 * we need the M_LOOP flag since icmp6_error() expects 1000 * the IPv6 and the hop-by-hop options header are 1001 * contiguous unless the flag is set. 1002 */ 1003 m->m_flags |= M_LOOP; 1004 m->m_pkthdr.rcvif = ifp; 1005 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 1006 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 1007 &dummy, &plen) < 0) { 1008 /* m was already freed at this point. */ 1009 error = EINVAL;/* better error? */ 1010 goto done; 1011 } 1012 m->m_flags &= ~M_LOOP; /* XXX */ 1013 m->m_pkthdr.rcvif = NULL; 1014 } 1015 1016 /* Jump over all PFIL processing if hooks are not active. */ 1017 if (!PFIL_HOOKED_OUT(V_inet6_pfil_head)) 1018 goto passout; 1019 1020 odst = ip6->ip6_dst; 1021 /* Run through list of hooks for output packets. */ 1022 switch (pfil_run_hooks(V_inet6_pfil_head, &m, ifp, PFIL_OUT, inp)) { 1023 case PFIL_PASS: 1024 ip6 = mtod(m, struct ip6_hdr *); 1025 break; 1026 case PFIL_DROPPED: 1027 error = EACCES; 1028 /* FALLTHROUGH */ 1029 case PFIL_CONSUMED: 1030 goto done; 1031 } 1032 1033 needfiblookup = 0; 1034 /* See if destination IP address was changed by packet filter. */ 1035 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 1036 m->m_flags |= M_SKIP_FIREWALL; 1037 /* If destination is now ourself drop to ip6_input(). */ 1038 if (in6_localip(&ip6->ip6_dst)) { 1039 m->m_flags |= M_FASTFWD_OURS; 1040 if (m->m_pkthdr.rcvif == NULL) 1041 m->m_pkthdr.rcvif = V_loif; 1042 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1043 m->m_pkthdr.csum_flags |= 1044 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1045 m->m_pkthdr.csum_data = 0xffff; 1046 } 1047 #if defined(SCTP) || defined(SCTP_SUPPORT) 1048 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1049 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1050 #endif 1051 error = netisr_queue(NETISR_IPV6, m); 1052 goto done; 1053 } else { 1054 if (ro != NULL) 1055 RO_INVALIDATE_CACHE(ro); 1056 needfiblookup = 1; /* Redo the routing table lookup. */ 1057 } 1058 } 1059 /* See if fib was changed by packet filter. */ 1060 if (fibnum != M_GETFIB(m)) { 1061 m->m_flags |= M_SKIP_FIREWALL; 1062 fibnum = M_GETFIB(m); 1063 if (ro != NULL) 1064 RO_INVALIDATE_CACHE(ro); 1065 needfiblookup = 1; 1066 } 1067 if (needfiblookup) 1068 goto again; 1069 1070 /* See if local, if yes, send it to netisr. */ 1071 if (m->m_flags & M_FASTFWD_OURS) { 1072 if (m->m_pkthdr.rcvif == NULL) 1073 m->m_pkthdr.rcvif = V_loif; 1074 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1075 m->m_pkthdr.csum_flags |= 1076 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1077 m->m_pkthdr.csum_data = 0xffff; 1078 } 1079 #if defined(SCTP) || defined(SCTP_SUPPORT) 1080 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1081 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1082 #endif 1083 error = netisr_queue(NETISR_IPV6, m); 1084 goto done; 1085 } 1086 /* Or forward to some other address? */ 1087 if ((m->m_flags & M_IP6_NEXTHOP) && 1088 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 1089 if (ro != NULL) 1090 dst = (struct sockaddr_in6 *)&ro->ro_dst; 1091 else 1092 dst = &sin6; 1093 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 1094 m->m_flags |= M_SKIP_FIREWALL; 1095 m->m_flags &= ~M_IP6_NEXTHOP; 1096 m_tag_delete(m, fwd_tag); 1097 goto again; 1098 } 1099 1100 passout: 1101 /* 1102 * Send the packet to the outgoing interface. 1103 * If necessary, do IPv6 fragmentation before sending. 1104 * 1105 * The logic here is rather complex: 1106 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 1107 * 1-a: send as is if tlen <= path mtu 1108 * 1-b: fragment if tlen > path mtu 1109 * 1110 * 2: if user asks us not to fragment (dontfrag == 1) 1111 * 2-a: send as is if tlen <= interface mtu 1112 * 2-b: error if tlen > interface mtu 1113 * 1114 * 3: if we always need to attach fragment header (alwaysfrag == 1) 1115 * always fragment 1116 * 1117 * 4: if dontfrag == 1 && alwaysfrag == 1 1118 * error, as we cannot handle this conflicting request. 1119 */ 1120 sw_csum = m->m_pkthdr.csum_flags; 1121 if (!hdrsplit) { 1122 tso = ((sw_csum & ifp->if_hwassist & 1123 (CSUM_TSO | CSUM_INNER_TSO)) != 0) ? 1 : 0; 1124 sw_csum &= ~ifp->if_hwassist; 1125 } else 1126 tso = 0; 1127 /* 1128 * If we added extension headers, we will not do TSO and calculate the 1129 * checksums ourselves for now. 1130 * XXX-BZ Need a framework to know when the NIC can handle it, even 1131 * with ext. hdrs. 1132 */ 1133 error = ip6_output_delayed_csum(m, ifp, sw_csum, plen, optlen, false); 1134 if (error != 0) 1135 goto bad; 1136 /* XXX-BZ m->m_pkthdr.csum_flags &= ~ifp->if_hwassist; */ 1137 tlen = m->m_pkthdr.len; 1138 1139 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 1140 dontfrag = 1; 1141 else 1142 dontfrag = 0; 1143 if (dontfrag && alwaysfrag) { /* Case 4. */ 1144 /* Conflicting request - can't transmit. */ 1145 error = EMSGSIZE; 1146 goto bad; 1147 } 1148 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* Case 2-b. */ 1149 /* 1150 * Even if the DONTFRAG option is specified, we cannot send the 1151 * packet when the data length is larger than the MTU of the 1152 * outgoing interface. 1153 * Notify the error by sending IPV6_PATHMTU ancillary data if 1154 * application wanted to know the MTU value. Also return an 1155 * error code (this is not described in the API spec). 1156 */ 1157 if (inp != NULL) 1158 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 1159 error = EMSGSIZE; 1160 goto bad; 1161 } 1162 1163 /* Transmit packet without fragmentation. */ 1164 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* Cases 1-a and 2-a. */ 1165 struct in6_ifaddr *ia6; 1166 1167 ip6 = mtod(m, struct ip6_hdr *); 1168 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1169 if (ia6) { 1170 /* Record statistics for this interface address. */ 1171 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 1172 counter_u64_add(ia6->ia_ifa.ifa_obytes, 1173 m->m_pkthdr.len); 1174 ifa_free(&ia6->ia_ifa); 1175 } 1176 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1177 (flags & IP_NO_SND_TAG_RL) ? false : true); 1178 goto done; 1179 } 1180 1181 /* Try to fragment the packet. Cases 1-b and 3. */ 1182 if (mtu < IPV6_MMTU) { 1183 /* Path MTU cannot be less than IPV6_MMTU. */ 1184 error = EMSGSIZE; 1185 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1186 goto bad; 1187 } else if (ip6->ip6_plen == 0) { 1188 /* Jumbo payload cannot be fragmented. */ 1189 error = EMSGSIZE; 1190 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1191 goto bad; 1192 } else { 1193 u_char nextproto; 1194 1195 /* 1196 * Too large for the destination or interface; 1197 * fragment if possible. 1198 * Must be able to put at least 8 bytes per fragment. 1199 */ 1200 if (mtu > IPV6_MAXPACKET) 1201 mtu = IPV6_MAXPACKET; 1202 1203 len = (mtu - unfragpartlen - sizeof(struct ip6_frag)) & ~7; 1204 if (len < 8) { 1205 error = EMSGSIZE; 1206 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1207 goto bad; 1208 } 1209 1210 /* 1211 * If the interface will not calculate checksums on 1212 * fragmented packets, then do it here. 1213 * XXX-BZ handle the hw offloading case. Need flags. 1214 */ 1215 error = ip6_output_delayed_csum(m, ifp, m->m_pkthdr.csum_flags, 1216 plen, optlen, true); 1217 if (error != 0) 1218 goto bad; 1219 1220 /* 1221 * Change the next header field of the last header in the 1222 * unfragmentable part. 1223 */ 1224 if (exthdrs.ip6e_rthdr) { 1225 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1226 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1227 } else if (exthdrs.ip6e_dest1) { 1228 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1229 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1230 } else if (exthdrs.ip6e_hbh) { 1231 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1232 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1233 } else { 1234 ip6 = mtod(m, struct ip6_hdr *); 1235 nextproto = ip6->ip6_nxt; 1236 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1237 } 1238 1239 /* 1240 * Loop through length of segment after first fragment, 1241 * make new header and copy data of each part and link onto 1242 * chain. 1243 */ 1244 m0 = m; 1245 id = htonl(ip6_randomid()); 1246 error = ip6_fragment(ifp, m, unfragpartlen, nextproto,len, id); 1247 if (error != 0) 1248 goto sendorfree; 1249 1250 in6_ifstat_inc(ifp, ifs6_out_fragok); 1251 } 1252 1253 /* Remove leading garbage. */ 1254 sendorfree: 1255 m = m0->m_nextpkt; 1256 m0->m_nextpkt = 0; 1257 m_freem(m0); 1258 for (; m; m = m0) { 1259 m0 = m->m_nextpkt; 1260 m->m_nextpkt = 0; 1261 if (error == 0) { 1262 /* Record statistics for this interface address. */ 1263 if (ia) { 1264 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1265 counter_u64_add(ia->ia_ifa.ifa_obytes, 1266 m->m_pkthdr.len); 1267 } 1268 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1269 true); 1270 } else 1271 m_freem(m); 1272 } 1273 1274 if (error == 0) 1275 IP6STAT_INC(ip6s_fragmented); 1276 1277 done: 1278 return (error); 1279 1280 freehdrs: 1281 m_freem(exthdrs.ip6e_hbh); /* m_freem() checks if mbuf is NULL. */ 1282 m_freem(exthdrs.ip6e_dest1); 1283 m_freem(exthdrs.ip6e_rthdr); 1284 m_freem(exthdrs.ip6e_dest2); 1285 /* FALLTHROUGH */ 1286 bad: 1287 if (m) 1288 m_freem(m); 1289 goto done; 1290 } 1291 1292 static int 1293 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1294 { 1295 struct mbuf *m; 1296 1297 if (hlen > MCLBYTES) 1298 return (ENOBUFS); /* XXX */ 1299 1300 if (hlen > MLEN) 1301 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1302 else 1303 m = m_get(M_NOWAIT, MT_DATA); 1304 if (m == NULL) 1305 return (ENOBUFS); 1306 m->m_len = hlen; 1307 if (hdr) 1308 bcopy(hdr, mtod(m, caddr_t), hlen); 1309 1310 *mp = m; 1311 return (0); 1312 } 1313 1314 /* 1315 * Insert jumbo payload option. 1316 */ 1317 static int 1318 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1319 { 1320 struct mbuf *mopt; 1321 u_char *optbuf; 1322 u_int32_t v; 1323 1324 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1325 1326 /* 1327 * If there is no hop-by-hop options header, allocate new one. 1328 * If there is one but it doesn't have enough space to store the 1329 * jumbo payload option, allocate a cluster to store the whole options. 1330 * Otherwise, use it to store the options. 1331 */ 1332 if (exthdrs->ip6e_hbh == NULL) { 1333 mopt = m_get(M_NOWAIT, MT_DATA); 1334 if (mopt == NULL) 1335 return (ENOBUFS); 1336 mopt->m_len = JUMBOOPTLEN; 1337 optbuf = mtod(mopt, u_char *); 1338 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1339 exthdrs->ip6e_hbh = mopt; 1340 } else { 1341 struct ip6_hbh *hbh; 1342 1343 mopt = exthdrs->ip6e_hbh; 1344 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1345 /* 1346 * XXX assumption: 1347 * - exthdrs->ip6e_hbh is not referenced from places 1348 * other than exthdrs. 1349 * - exthdrs->ip6e_hbh is not an mbuf chain. 1350 */ 1351 int oldoptlen = mopt->m_len; 1352 struct mbuf *n; 1353 1354 /* 1355 * XXX: give up if the whole (new) hbh header does 1356 * not fit even in an mbuf cluster. 1357 */ 1358 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1359 return (ENOBUFS); 1360 1361 /* 1362 * As a consequence, we must always prepare a cluster 1363 * at this point. 1364 */ 1365 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1366 if (n == NULL) 1367 return (ENOBUFS); 1368 n->m_len = oldoptlen + JUMBOOPTLEN; 1369 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1370 oldoptlen); 1371 optbuf = mtod(n, caddr_t) + oldoptlen; 1372 m_freem(mopt); 1373 mopt = exthdrs->ip6e_hbh = n; 1374 } else { 1375 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1376 mopt->m_len += JUMBOOPTLEN; 1377 } 1378 optbuf[0] = IP6OPT_PADN; 1379 optbuf[1] = 1; 1380 1381 /* 1382 * Adjust the header length according to the pad and 1383 * the jumbo payload option. 1384 */ 1385 hbh = mtod(mopt, struct ip6_hbh *); 1386 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1387 } 1388 1389 /* fill in the option. */ 1390 optbuf[2] = IP6OPT_JUMBO; 1391 optbuf[3] = 4; 1392 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1393 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1394 1395 /* finally, adjust the packet header length */ 1396 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1397 1398 return (0); 1399 #undef JUMBOOPTLEN 1400 } 1401 1402 /* 1403 * Insert fragment header and copy unfragmentable header portions. 1404 */ 1405 static int 1406 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1407 struct ip6_frag **frghdrp) 1408 { 1409 struct mbuf *n, *mlast; 1410 1411 if (hlen > sizeof(struct ip6_hdr)) { 1412 n = m_copym(m0, sizeof(struct ip6_hdr), 1413 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1414 if (n == NULL) 1415 return (ENOBUFS); 1416 m->m_next = n; 1417 } else 1418 n = m; 1419 1420 /* Search for the last mbuf of unfragmentable part. */ 1421 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1422 ; 1423 1424 if (M_WRITABLE(mlast) && 1425 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1426 /* use the trailing space of the last mbuf for the fragment hdr */ 1427 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1428 mlast->m_len); 1429 mlast->m_len += sizeof(struct ip6_frag); 1430 m->m_pkthdr.len += sizeof(struct ip6_frag); 1431 } else { 1432 /* allocate a new mbuf for the fragment header */ 1433 struct mbuf *mfrg; 1434 1435 mfrg = m_get(M_NOWAIT, MT_DATA); 1436 if (mfrg == NULL) 1437 return (ENOBUFS); 1438 mfrg->m_len = sizeof(struct ip6_frag); 1439 *frghdrp = mtod(mfrg, struct ip6_frag *); 1440 mlast->m_next = mfrg; 1441 } 1442 1443 return (0); 1444 } 1445 1446 /* 1447 * Calculates IPv6 path mtu for destination @dst. 1448 * Resulting MTU is stored in @mtup. 1449 * 1450 * Returns 0 on success. 1451 */ 1452 static int 1453 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1454 { 1455 struct epoch_tracker et; 1456 struct nhop_object *nh; 1457 struct in6_addr kdst; 1458 uint32_t scopeid; 1459 int error; 1460 1461 in6_splitscope(dst, &kdst, &scopeid); 1462 1463 NET_EPOCH_ENTER(et); 1464 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1465 if (nh != NULL) 1466 error = ip6_calcmtu(nh->nh_ifp, dst, nh->nh_mtu, mtup, NULL, 0); 1467 else 1468 error = EHOSTUNREACH; 1469 NET_EPOCH_EXIT(et); 1470 1471 return (error); 1472 } 1473 1474 /* 1475 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1476 * and cached data in @ro_pmtu. 1477 * MTU from (successful) route lookup is saved (along with dst) 1478 * inside @ro_pmtu to avoid subsequent route lookups after packet 1479 * filter processing. 1480 * 1481 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1482 * Returns 0 on success. 1483 */ 1484 static int 1485 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1486 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1487 int *alwaysfragp, u_int fibnum, u_int proto) 1488 { 1489 struct nhop_object *nh; 1490 struct in6_addr kdst; 1491 uint32_t scopeid; 1492 struct sockaddr_in6 *sa6_dst, sin6; 1493 u_long mtu; 1494 1495 NET_EPOCH_ASSERT(); 1496 1497 mtu = 0; 1498 if (ro_pmtu == NULL || do_lookup) { 1499 /* 1500 * Here ro_pmtu has final destination address, while 1501 * ro might represent immediate destination. 1502 * Use ro_pmtu destination since mtu might differ. 1503 */ 1504 if (ro_pmtu != NULL) { 1505 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1506 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1507 ro_pmtu->ro_mtu = 0; 1508 } else 1509 sa6_dst = &sin6; 1510 1511 if (ro_pmtu == NULL || ro_pmtu->ro_mtu == 0) { 1512 bzero(sa6_dst, sizeof(*sa6_dst)); 1513 sa6_dst->sin6_family = AF_INET6; 1514 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1515 sa6_dst->sin6_addr = *dst; 1516 1517 in6_splitscope(dst, &kdst, &scopeid); 1518 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1519 if (nh != NULL) { 1520 mtu = nh->nh_mtu; 1521 if (ro_pmtu != NULL) 1522 ro_pmtu->ro_mtu = mtu; 1523 } 1524 } else 1525 mtu = ro_pmtu->ro_mtu; 1526 } 1527 1528 if (ro_pmtu != NULL && ro_pmtu->ro_nh != NULL) 1529 mtu = ro_pmtu->ro_nh->nh_mtu; 1530 1531 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1532 } 1533 1534 /* 1535 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1536 * hostcache data for @dst. 1537 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1538 * 1539 * Returns 0 on success. 1540 */ 1541 static int 1542 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1543 u_long *mtup, int *alwaysfragp, u_int proto) 1544 { 1545 u_long mtu = 0; 1546 int alwaysfrag = 0; 1547 int error = 0; 1548 1549 if (rt_mtu > 0) { 1550 u_int32_t ifmtu; 1551 struct in_conninfo inc; 1552 1553 bzero(&inc, sizeof(inc)); 1554 inc.inc_flags |= INC_ISIPV6; 1555 inc.inc6_faddr = *dst; 1556 1557 ifmtu = IN6_LINKMTU(ifp); 1558 1559 /* TCP is known to react to pmtu changes so skip hc */ 1560 if (proto != IPPROTO_TCP) 1561 mtu = tcp_hc_getmtu(&inc); 1562 1563 if (mtu) 1564 mtu = min(mtu, rt_mtu); 1565 else 1566 mtu = rt_mtu; 1567 if (mtu == 0) 1568 mtu = ifmtu; 1569 else if (mtu < IPV6_MMTU) { 1570 /* 1571 * RFC2460 section 5, last paragraph: 1572 * if we record ICMPv6 too big message with 1573 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1574 * or smaller, with framgent header attached. 1575 * (fragment header is needed regardless from the 1576 * packet size, for translators to identify packets) 1577 */ 1578 alwaysfrag = 1; 1579 mtu = IPV6_MMTU; 1580 } 1581 } else if (ifp) { 1582 mtu = IN6_LINKMTU(ifp); 1583 } else 1584 error = EHOSTUNREACH; /* XXX */ 1585 1586 *mtup = mtu; 1587 if (alwaysfragp) 1588 *alwaysfragp = alwaysfrag; 1589 return (error); 1590 } 1591 1592 /* 1593 * IP6 socket option processing. 1594 */ 1595 int 1596 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1597 { 1598 int optdatalen, uproto; 1599 void *optdata; 1600 struct inpcb *inp = sotoinpcb(so); 1601 int error, optval; 1602 int level, op, optname; 1603 int optlen; 1604 struct thread *td; 1605 #ifdef RSS 1606 uint32_t rss_bucket; 1607 int retval; 1608 #endif 1609 1610 /* 1611 * Don't use more than a quarter of mbuf clusters. N.B.: 1612 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1613 * on LP64 architectures, so cast to u_long to avoid undefined 1614 * behavior. ILP32 architectures cannot have nmbclusters 1615 * large enough to overflow for other reasons. 1616 */ 1617 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1618 1619 level = sopt->sopt_level; 1620 op = sopt->sopt_dir; 1621 optname = sopt->sopt_name; 1622 optlen = sopt->sopt_valsize; 1623 td = sopt->sopt_td; 1624 error = 0; 1625 optval = 0; 1626 uproto = (int)so->so_proto->pr_protocol; 1627 1628 if (level != IPPROTO_IPV6) { 1629 error = EINVAL; 1630 1631 if (sopt->sopt_level == SOL_SOCKET && 1632 sopt->sopt_dir == SOPT_SET) { 1633 switch (sopt->sopt_name) { 1634 case SO_REUSEADDR: 1635 INP_WLOCK(inp); 1636 if ((so->so_options & SO_REUSEADDR) != 0) 1637 inp->inp_flags2 |= INP_REUSEADDR; 1638 else 1639 inp->inp_flags2 &= ~INP_REUSEADDR; 1640 INP_WUNLOCK(inp); 1641 error = 0; 1642 break; 1643 case SO_REUSEPORT: 1644 INP_WLOCK(inp); 1645 if ((so->so_options & SO_REUSEPORT) != 0) 1646 inp->inp_flags2 |= INP_REUSEPORT; 1647 else 1648 inp->inp_flags2 &= ~INP_REUSEPORT; 1649 INP_WUNLOCK(inp); 1650 error = 0; 1651 break; 1652 case SO_REUSEPORT_LB: 1653 INP_WLOCK(inp); 1654 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1655 inp->inp_flags2 |= INP_REUSEPORT_LB; 1656 else 1657 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1658 INP_WUNLOCK(inp); 1659 error = 0; 1660 break; 1661 case SO_SETFIB: 1662 INP_WLOCK(inp); 1663 inp->inp_inc.inc_fibnum = so->so_fibnum; 1664 INP_WUNLOCK(inp); 1665 error = 0; 1666 break; 1667 case SO_MAX_PACING_RATE: 1668 #ifdef RATELIMIT 1669 INP_WLOCK(inp); 1670 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1671 INP_WUNLOCK(inp); 1672 error = 0; 1673 #else 1674 error = EOPNOTSUPP; 1675 #endif 1676 break; 1677 default: 1678 break; 1679 } 1680 } 1681 } else { /* level == IPPROTO_IPV6 */ 1682 switch (op) { 1683 case SOPT_SET: 1684 switch (optname) { 1685 case IPV6_2292PKTOPTIONS: 1686 #ifdef IPV6_PKTOPTIONS 1687 case IPV6_PKTOPTIONS: 1688 #endif 1689 { 1690 struct mbuf *m; 1691 1692 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1693 printf("ip6_ctloutput: mbuf limit hit\n"); 1694 error = ENOBUFS; 1695 break; 1696 } 1697 1698 error = soopt_getm(sopt, &m); /* XXX */ 1699 if (error != 0) 1700 break; 1701 error = soopt_mcopyin(sopt, m); /* XXX */ 1702 if (error != 0) 1703 break; 1704 INP_WLOCK(inp); 1705 error = ip6_pcbopts(&inp->in6p_outputopts, m, 1706 so, sopt); 1707 INP_WUNLOCK(inp); 1708 m_freem(m); /* XXX */ 1709 break; 1710 } 1711 1712 /* 1713 * Use of some Hop-by-Hop options or some 1714 * Destination options, might require special 1715 * privilege. That is, normal applications 1716 * (without special privilege) might be forbidden 1717 * from setting certain options in outgoing packets, 1718 * and might never see certain options in received 1719 * packets. [RFC 2292 Section 6] 1720 * KAME specific note: 1721 * KAME prevents non-privileged users from sending or 1722 * receiving ANY hbh/dst options in order to avoid 1723 * overhead of parsing options in the kernel. 1724 */ 1725 case IPV6_RECVHOPOPTS: 1726 case IPV6_RECVDSTOPTS: 1727 case IPV6_RECVRTHDRDSTOPTS: 1728 if (td != NULL) { 1729 error = priv_check(td, 1730 PRIV_NETINET_SETHDROPTS); 1731 if (error) 1732 break; 1733 } 1734 /* FALLTHROUGH */ 1735 case IPV6_UNICAST_HOPS: 1736 case IPV6_HOPLIMIT: 1737 1738 case IPV6_RECVPKTINFO: 1739 case IPV6_RECVHOPLIMIT: 1740 case IPV6_RECVRTHDR: 1741 case IPV6_RECVPATHMTU: 1742 case IPV6_RECVTCLASS: 1743 case IPV6_RECVFLOWID: 1744 #ifdef RSS 1745 case IPV6_RECVRSSBUCKETID: 1746 #endif 1747 case IPV6_V6ONLY: 1748 case IPV6_AUTOFLOWLABEL: 1749 case IPV6_ORIGDSTADDR: 1750 case IPV6_BINDANY: 1751 case IPV6_BINDMULTI: 1752 #ifdef RSS 1753 case IPV6_RSS_LISTEN_BUCKET: 1754 #endif 1755 if (optname == IPV6_BINDANY && td != NULL) { 1756 error = priv_check(td, 1757 PRIV_NETINET_BINDANY); 1758 if (error) 1759 break; 1760 } 1761 1762 if (optlen != sizeof(int)) { 1763 error = EINVAL; 1764 break; 1765 } 1766 error = sooptcopyin(sopt, &optval, 1767 sizeof optval, sizeof optval); 1768 if (error) 1769 break; 1770 switch (optname) { 1771 case IPV6_UNICAST_HOPS: 1772 if (optval < -1 || optval >= 256) 1773 error = EINVAL; 1774 else { 1775 /* -1 = kernel default */ 1776 inp->in6p_hops = optval; 1777 if ((inp->inp_vflag & 1778 INP_IPV4) != 0) 1779 inp->inp_ip_ttl = optval; 1780 } 1781 break; 1782 #define OPTSET(bit) \ 1783 do { \ 1784 INP_WLOCK(inp); \ 1785 if (optval) \ 1786 inp->inp_flags |= (bit); \ 1787 else \ 1788 inp->inp_flags &= ~(bit); \ 1789 INP_WUNLOCK(inp); \ 1790 } while (/*CONSTCOND*/ 0) 1791 #define OPTSET2292(bit) \ 1792 do { \ 1793 INP_WLOCK(inp); \ 1794 inp->inp_flags |= IN6P_RFC2292; \ 1795 if (optval) \ 1796 inp->inp_flags |= (bit); \ 1797 else \ 1798 inp->inp_flags &= ~(bit); \ 1799 INP_WUNLOCK(inp); \ 1800 } while (/*CONSTCOND*/ 0) 1801 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1802 1803 #define OPTSET2_N(bit, val) do { \ 1804 if (val) \ 1805 inp->inp_flags2 |= bit; \ 1806 else \ 1807 inp->inp_flags2 &= ~bit; \ 1808 } while (0) 1809 #define OPTSET2(bit, val) do { \ 1810 INP_WLOCK(inp); \ 1811 OPTSET2_N(bit, val); \ 1812 INP_WUNLOCK(inp); \ 1813 } while (0) 1814 #define OPTBIT2(bit) (inp->inp_flags2 & (bit) ? 1 : 0) 1815 #define OPTSET2292_EXCLUSIVE(bit) \ 1816 do { \ 1817 INP_WLOCK(inp); \ 1818 if (OPTBIT(IN6P_RFC2292)) { \ 1819 error = EINVAL; \ 1820 } else { \ 1821 if (optval) \ 1822 inp->inp_flags |= (bit); \ 1823 else \ 1824 inp->inp_flags &= ~(bit); \ 1825 } \ 1826 INP_WUNLOCK(inp); \ 1827 } while (/*CONSTCOND*/ 0) 1828 1829 case IPV6_RECVPKTINFO: 1830 OPTSET2292_EXCLUSIVE(IN6P_PKTINFO); 1831 break; 1832 1833 case IPV6_HOPLIMIT: 1834 { 1835 struct ip6_pktopts **optp; 1836 1837 /* cannot mix with RFC2292 */ 1838 if (OPTBIT(IN6P_RFC2292)) { 1839 error = EINVAL; 1840 break; 1841 } 1842 INP_WLOCK(inp); 1843 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1844 INP_WUNLOCK(inp); 1845 return (ECONNRESET); 1846 } 1847 optp = &inp->in6p_outputopts; 1848 error = ip6_pcbopt(IPV6_HOPLIMIT, 1849 (u_char *)&optval, sizeof(optval), 1850 optp, (td != NULL) ? td->td_ucred : 1851 NULL, uproto); 1852 INP_WUNLOCK(inp); 1853 break; 1854 } 1855 1856 case IPV6_RECVHOPLIMIT: 1857 OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT); 1858 break; 1859 1860 case IPV6_RECVHOPOPTS: 1861 OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS); 1862 break; 1863 1864 case IPV6_RECVDSTOPTS: 1865 OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS); 1866 break; 1867 1868 case IPV6_RECVRTHDRDSTOPTS: 1869 OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS); 1870 break; 1871 1872 case IPV6_RECVRTHDR: 1873 OPTSET2292_EXCLUSIVE(IN6P_RTHDR); 1874 break; 1875 1876 case IPV6_RECVPATHMTU: 1877 /* 1878 * We ignore this option for TCP 1879 * sockets. 1880 * (RFC3542 leaves this case 1881 * unspecified.) 1882 */ 1883 if (uproto != IPPROTO_TCP) 1884 OPTSET(IN6P_MTU); 1885 break; 1886 1887 case IPV6_RECVFLOWID: 1888 OPTSET2(INP_RECVFLOWID, optval); 1889 break; 1890 1891 #ifdef RSS 1892 case IPV6_RECVRSSBUCKETID: 1893 OPTSET2(INP_RECVRSSBUCKETID, optval); 1894 break; 1895 #endif 1896 1897 case IPV6_V6ONLY: 1898 INP_WLOCK(inp); 1899 if (inp->inp_lport || 1900 !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { 1901 /* 1902 * The socket is already bound. 1903 */ 1904 INP_WUNLOCK(inp); 1905 error = EINVAL; 1906 break; 1907 } 1908 if (optval) { 1909 inp->inp_flags |= IN6P_IPV6_V6ONLY; 1910 inp->inp_vflag &= ~INP_IPV4; 1911 } else { 1912 inp->inp_flags &= ~IN6P_IPV6_V6ONLY; 1913 inp->inp_vflag |= INP_IPV4; 1914 } 1915 INP_WUNLOCK(inp); 1916 break; 1917 case IPV6_RECVTCLASS: 1918 /* cannot mix with RFC2292 XXX */ 1919 OPTSET2292_EXCLUSIVE(IN6P_TCLASS); 1920 break; 1921 case IPV6_AUTOFLOWLABEL: 1922 OPTSET(IN6P_AUTOFLOWLABEL); 1923 break; 1924 1925 case IPV6_ORIGDSTADDR: 1926 OPTSET2(INP_ORIGDSTADDR, optval); 1927 break; 1928 case IPV6_BINDANY: 1929 OPTSET(INP_BINDANY); 1930 break; 1931 1932 case IPV6_BINDMULTI: 1933 OPTSET2(INP_BINDMULTI, optval); 1934 break; 1935 #ifdef RSS 1936 case IPV6_RSS_LISTEN_BUCKET: 1937 if ((optval >= 0) && 1938 (optval < rss_getnumbuckets())) { 1939 INP_WLOCK(inp); 1940 inp->inp_rss_listen_bucket = optval; 1941 OPTSET2_N(INP_RSS_BUCKET_SET, 1); 1942 INP_WUNLOCK(inp); 1943 } else { 1944 error = EINVAL; 1945 } 1946 break; 1947 #endif 1948 } 1949 break; 1950 1951 case IPV6_TCLASS: 1952 case IPV6_DONTFRAG: 1953 case IPV6_USE_MIN_MTU: 1954 case IPV6_PREFER_TEMPADDR: 1955 if (optlen != sizeof(optval)) { 1956 error = EINVAL; 1957 break; 1958 } 1959 error = sooptcopyin(sopt, &optval, 1960 sizeof optval, sizeof optval); 1961 if (error) 1962 break; 1963 { 1964 struct ip6_pktopts **optp; 1965 INP_WLOCK(inp); 1966 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1967 INP_WUNLOCK(inp); 1968 return (ECONNRESET); 1969 } 1970 optp = &inp->in6p_outputopts; 1971 error = ip6_pcbopt(optname, 1972 (u_char *)&optval, sizeof(optval), 1973 optp, (td != NULL) ? td->td_ucred : 1974 NULL, uproto); 1975 INP_WUNLOCK(inp); 1976 break; 1977 } 1978 1979 case IPV6_2292PKTINFO: 1980 case IPV6_2292HOPLIMIT: 1981 case IPV6_2292HOPOPTS: 1982 case IPV6_2292DSTOPTS: 1983 case IPV6_2292RTHDR: 1984 /* RFC 2292 */ 1985 if (optlen != sizeof(int)) { 1986 error = EINVAL; 1987 break; 1988 } 1989 error = sooptcopyin(sopt, &optval, 1990 sizeof optval, sizeof optval); 1991 if (error) 1992 break; 1993 switch (optname) { 1994 case IPV6_2292PKTINFO: 1995 OPTSET2292(IN6P_PKTINFO); 1996 break; 1997 case IPV6_2292HOPLIMIT: 1998 OPTSET2292(IN6P_HOPLIMIT); 1999 break; 2000 case IPV6_2292HOPOPTS: 2001 /* 2002 * Check super-user privilege. 2003 * See comments for IPV6_RECVHOPOPTS. 2004 */ 2005 if (td != NULL) { 2006 error = priv_check(td, 2007 PRIV_NETINET_SETHDROPTS); 2008 if (error) 2009 return (error); 2010 } 2011 OPTSET2292(IN6P_HOPOPTS); 2012 break; 2013 case IPV6_2292DSTOPTS: 2014 if (td != NULL) { 2015 error = priv_check(td, 2016 PRIV_NETINET_SETHDROPTS); 2017 if (error) 2018 return (error); 2019 } 2020 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 2021 break; 2022 case IPV6_2292RTHDR: 2023 OPTSET2292(IN6P_RTHDR); 2024 break; 2025 } 2026 break; 2027 case IPV6_PKTINFO: 2028 case IPV6_HOPOPTS: 2029 case IPV6_RTHDR: 2030 case IPV6_DSTOPTS: 2031 case IPV6_RTHDRDSTOPTS: 2032 case IPV6_NEXTHOP: 2033 { 2034 /* new advanced API (RFC3542) */ 2035 u_char *optbuf; 2036 u_char optbuf_storage[MCLBYTES]; 2037 int optlen; 2038 struct ip6_pktopts **optp; 2039 2040 /* cannot mix with RFC2292 */ 2041 if (OPTBIT(IN6P_RFC2292)) { 2042 error = EINVAL; 2043 break; 2044 } 2045 2046 /* 2047 * We only ensure valsize is not too large 2048 * here. Further validation will be done 2049 * later. 2050 */ 2051 error = sooptcopyin(sopt, optbuf_storage, 2052 sizeof(optbuf_storage), 0); 2053 if (error) 2054 break; 2055 optlen = sopt->sopt_valsize; 2056 optbuf = optbuf_storage; 2057 INP_WLOCK(inp); 2058 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 2059 INP_WUNLOCK(inp); 2060 return (ECONNRESET); 2061 } 2062 optp = &inp->in6p_outputopts; 2063 error = ip6_pcbopt(optname, optbuf, optlen, 2064 optp, (td != NULL) ? td->td_ucred : NULL, 2065 uproto); 2066 INP_WUNLOCK(inp); 2067 break; 2068 } 2069 #undef OPTSET 2070 2071 case IPV6_MULTICAST_IF: 2072 case IPV6_MULTICAST_HOPS: 2073 case IPV6_MULTICAST_LOOP: 2074 case IPV6_JOIN_GROUP: 2075 case IPV6_LEAVE_GROUP: 2076 case IPV6_MSFILTER: 2077 case MCAST_BLOCK_SOURCE: 2078 case MCAST_UNBLOCK_SOURCE: 2079 case MCAST_JOIN_GROUP: 2080 case MCAST_LEAVE_GROUP: 2081 case MCAST_JOIN_SOURCE_GROUP: 2082 case MCAST_LEAVE_SOURCE_GROUP: 2083 error = ip6_setmoptions(inp, sopt); 2084 break; 2085 2086 case IPV6_PORTRANGE: 2087 error = sooptcopyin(sopt, &optval, 2088 sizeof optval, sizeof optval); 2089 if (error) 2090 break; 2091 2092 INP_WLOCK(inp); 2093 switch (optval) { 2094 case IPV6_PORTRANGE_DEFAULT: 2095 inp->inp_flags &= ~(INP_LOWPORT); 2096 inp->inp_flags &= ~(INP_HIGHPORT); 2097 break; 2098 2099 case IPV6_PORTRANGE_HIGH: 2100 inp->inp_flags &= ~(INP_LOWPORT); 2101 inp->inp_flags |= INP_HIGHPORT; 2102 break; 2103 2104 case IPV6_PORTRANGE_LOW: 2105 inp->inp_flags &= ~(INP_HIGHPORT); 2106 inp->inp_flags |= INP_LOWPORT; 2107 break; 2108 2109 default: 2110 error = EINVAL; 2111 break; 2112 } 2113 INP_WUNLOCK(inp); 2114 break; 2115 2116 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2117 case IPV6_IPSEC_POLICY: 2118 if (IPSEC_ENABLED(ipv6)) { 2119 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2120 break; 2121 } 2122 /* FALLTHROUGH */ 2123 #endif /* IPSEC */ 2124 2125 default: 2126 error = ENOPROTOOPT; 2127 break; 2128 } 2129 break; 2130 2131 case SOPT_GET: 2132 switch (optname) { 2133 case IPV6_2292PKTOPTIONS: 2134 #ifdef IPV6_PKTOPTIONS 2135 case IPV6_PKTOPTIONS: 2136 #endif 2137 /* 2138 * RFC3542 (effectively) deprecated the 2139 * semantics of the 2292-style pktoptions. 2140 * Since it was not reliable in nature (i.e., 2141 * applications had to expect the lack of some 2142 * information after all), it would make sense 2143 * to simplify this part by always returning 2144 * empty data. 2145 */ 2146 sopt->sopt_valsize = 0; 2147 break; 2148 2149 case IPV6_RECVHOPOPTS: 2150 case IPV6_RECVDSTOPTS: 2151 case IPV6_RECVRTHDRDSTOPTS: 2152 case IPV6_UNICAST_HOPS: 2153 case IPV6_RECVPKTINFO: 2154 case IPV6_RECVHOPLIMIT: 2155 case IPV6_RECVRTHDR: 2156 case IPV6_RECVPATHMTU: 2157 2158 case IPV6_V6ONLY: 2159 case IPV6_PORTRANGE: 2160 case IPV6_RECVTCLASS: 2161 case IPV6_AUTOFLOWLABEL: 2162 case IPV6_BINDANY: 2163 case IPV6_FLOWID: 2164 case IPV6_FLOWTYPE: 2165 case IPV6_RECVFLOWID: 2166 #ifdef RSS 2167 case IPV6_RSSBUCKETID: 2168 case IPV6_RECVRSSBUCKETID: 2169 #endif 2170 case IPV6_BINDMULTI: 2171 switch (optname) { 2172 case IPV6_RECVHOPOPTS: 2173 optval = OPTBIT(IN6P_HOPOPTS); 2174 break; 2175 2176 case IPV6_RECVDSTOPTS: 2177 optval = OPTBIT(IN6P_DSTOPTS); 2178 break; 2179 2180 case IPV6_RECVRTHDRDSTOPTS: 2181 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 2182 break; 2183 2184 case IPV6_UNICAST_HOPS: 2185 optval = inp->in6p_hops; 2186 break; 2187 2188 case IPV6_RECVPKTINFO: 2189 optval = OPTBIT(IN6P_PKTINFO); 2190 break; 2191 2192 case IPV6_RECVHOPLIMIT: 2193 optval = OPTBIT(IN6P_HOPLIMIT); 2194 break; 2195 2196 case IPV6_RECVRTHDR: 2197 optval = OPTBIT(IN6P_RTHDR); 2198 break; 2199 2200 case IPV6_RECVPATHMTU: 2201 optval = OPTBIT(IN6P_MTU); 2202 break; 2203 2204 case IPV6_V6ONLY: 2205 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2206 break; 2207 2208 case IPV6_PORTRANGE: 2209 { 2210 int flags; 2211 flags = inp->inp_flags; 2212 if (flags & INP_HIGHPORT) 2213 optval = IPV6_PORTRANGE_HIGH; 2214 else if (flags & INP_LOWPORT) 2215 optval = IPV6_PORTRANGE_LOW; 2216 else 2217 optval = 0; 2218 break; 2219 } 2220 case IPV6_RECVTCLASS: 2221 optval = OPTBIT(IN6P_TCLASS); 2222 break; 2223 2224 case IPV6_AUTOFLOWLABEL: 2225 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2226 break; 2227 2228 case IPV6_ORIGDSTADDR: 2229 optval = OPTBIT2(INP_ORIGDSTADDR); 2230 break; 2231 2232 case IPV6_BINDANY: 2233 optval = OPTBIT(INP_BINDANY); 2234 break; 2235 2236 case IPV6_FLOWID: 2237 optval = inp->inp_flowid; 2238 break; 2239 2240 case IPV6_FLOWTYPE: 2241 optval = inp->inp_flowtype; 2242 break; 2243 2244 case IPV6_RECVFLOWID: 2245 optval = OPTBIT2(INP_RECVFLOWID); 2246 break; 2247 #ifdef RSS 2248 case IPV6_RSSBUCKETID: 2249 retval = 2250 rss_hash2bucket(inp->inp_flowid, 2251 inp->inp_flowtype, 2252 &rss_bucket); 2253 if (retval == 0) 2254 optval = rss_bucket; 2255 else 2256 error = EINVAL; 2257 break; 2258 2259 case IPV6_RECVRSSBUCKETID: 2260 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2261 break; 2262 #endif 2263 2264 case IPV6_BINDMULTI: 2265 optval = OPTBIT2(INP_BINDMULTI); 2266 break; 2267 } 2268 if (error) 2269 break; 2270 error = sooptcopyout(sopt, &optval, 2271 sizeof optval); 2272 break; 2273 2274 case IPV6_PATHMTU: 2275 { 2276 u_long pmtu = 0; 2277 struct ip6_mtuinfo mtuinfo; 2278 struct in6_addr addr; 2279 2280 if (!(so->so_state & SS_ISCONNECTED)) 2281 return (ENOTCONN); 2282 /* 2283 * XXX: we dot not consider the case of source 2284 * routing, or optional information to specify 2285 * the outgoing interface. 2286 * Copy faddr out of inp to avoid holding lock 2287 * on inp during route lookup. 2288 */ 2289 INP_RLOCK(inp); 2290 bcopy(&inp->in6p_faddr, &addr, sizeof(addr)); 2291 INP_RUNLOCK(inp); 2292 error = ip6_getpmtu_ctl(so->so_fibnum, 2293 &addr, &pmtu); 2294 if (error) 2295 break; 2296 if (pmtu > IPV6_MAXPACKET) 2297 pmtu = IPV6_MAXPACKET; 2298 2299 bzero(&mtuinfo, sizeof(mtuinfo)); 2300 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2301 optdata = (void *)&mtuinfo; 2302 optdatalen = sizeof(mtuinfo); 2303 error = sooptcopyout(sopt, optdata, 2304 optdatalen); 2305 break; 2306 } 2307 2308 case IPV6_2292PKTINFO: 2309 case IPV6_2292HOPLIMIT: 2310 case IPV6_2292HOPOPTS: 2311 case IPV6_2292RTHDR: 2312 case IPV6_2292DSTOPTS: 2313 switch (optname) { 2314 case IPV6_2292PKTINFO: 2315 optval = OPTBIT(IN6P_PKTINFO); 2316 break; 2317 case IPV6_2292HOPLIMIT: 2318 optval = OPTBIT(IN6P_HOPLIMIT); 2319 break; 2320 case IPV6_2292HOPOPTS: 2321 optval = OPTBIT(IN6P_HOPOPTS); 2322 break; 2323 case IPV6_2292RTHDR: 2324 optval = OPTBIT(IN6P_RTHDR); 2325 break; 2326 case IPV6_2292DSTOPTS: 2327 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2328 break; 2329 } 2330 error = sooptcopyout(sopt, &optval, 2331 sizeof optval); 2332 break; 2333 case IPV6_PKTINFO: 2334 case IPV6_HOPOPTS: 2335 case IPV6_RTHDR: 2336 case IPV6_DSTOPTS: 2337 case IPV6_RTHDRDSTOPTS: 2338 case IPV6_NEXTHOP: 2339 case IPV6_TCLASS: 2340 case IPV6_DONTFRAG: 2341 case IPV6_USE_MIN_MTU: 2342 case IPV6_PREFER_TEMPADDR: 2343 error = ip6_getpcbopt(inp, optname, sopt); 2344 break; 2345 2346 case IPV6_MULTICAST_IF: 2347 case IPV6_MULTICAST_HOPS: 2348 case IPV6_MULTICAST_LOOP: 2349 case IPV6_MSFILTER: 2350 error = ip6_getmoptions(inp, sopt); 2351 break; 2352 2353 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2354 case IPV6_IPSEC_POLICY: 2355 if (IPSEC_ENABLED(ipv6)) { 2356 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2357 break; 2358 } 2359 /* FALLTHROUGH */ 2360 #endif /* IPSEC */ 2361 default: 2362 error = ENOPROTOOPT; 2363 break; 2364 } 2365 break; 2366 } 2367 } 2368 return (error); 2369 } 2370 2371 int 2372 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2373 { 2374 int error = 0, optval, optlen; 2375 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2376 struct inpcb *inp = sotoinpcb(so); 2377 int level, op, optname; 2378 2379 level = sopt->sopt_level; 2380 op = sopt->sopt_dir; 2381 optname = sopt->sopt_name; 2382 optlen = sopt->sopt_valsize; 2383 2384 if (level != IPPROTO_IPV6) { 2385 return (EINVAL); 2386 } 2387 2388 switch (optname) { 2389 case IPV6_CHECKSUM: 2390 /* 2391 * For ICMPv6 sockets, no modification allowed for checksum 2392 * offset, permit "no change" values to help existing apps. 2393 * 2394 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2395 * for an ICMPv6 socket will fail." 2396 * The current behavior does not meet RFC3542. 2397 */ 2398 switch (op) { 2399 case SOPT_SET: 2400 if (optlen != sizeof(int)) { 2401 error = EINVAL; 2402 break; 2403 } 2404 error = sooptcopyin(sopt, &optval, sizeof(optval), 2405 sizeof(optval)); 2406 if (error) 2407 break; 2408 if (optval < -1 || (optval % 2) != 0) { 2409 /* 2410 * The API assumes non-negative even offset 2411 * values or -1 as a special value. 2412 */ 2413 error = EINVAL; 2414 } else if (so->so_proto->pr_protocol == 2415 IPPROTO_ICMPV6) { 2416 if (optval != icmp6off) 2417 error = EINVAL; 2418 } else 2419 inp->in6p_cksum = optval; 2420 break; 2421 2422 case SOPT_GET: 2423 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2424 optval = icmp6off; 2425 else 2426 optval = inp->in6p_cksum; 2427 2428 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2429 break; 2430 2431 default: 2432 error = EINVAL; 2433 break; 2434 } 2435 break; 2436 2437 default: 2438 error = ENOPROTOOPT; 2439 break; 2440 } 2441 2442 return (error); 2443 } 2444 2445 /* 2446 * Set up IP6 options in pcb for insertion in output packets or 2447 * specifying behavior of outgoing packets. 2448 */ 2449 static int 2450 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2451 struct socket *so, struct sockopt *sopt) 2452 { 2453 struct ip6_pktopts *opt = *pktopt; 2454 int error = 0; 2455 struct thread *td = sopt->sopt_td; 2456 2457 /* turn off any old options. */ 2458 if (opt) { 2459 #ifdef DIAGNOSTIC 2460 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2461 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2462 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2463 printf("ip6_pcbopts: all specified options are cleared.\n"); 2464 #endif 2465 ip6_clearpktopts(opt, -1); 2466 } else { 2467 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 2468 if (opt == NULL) 2469 return (ENOMEM); 2470 } 2471 *pktopt = NULL; 2472 2473 if (!m || m->m_len == 0) { 2474 /* 2475 * Only turning off any previous options, regardless of 2476 * whether the opt is just created or given. 2477 */ 2478 free(opt, M_IP6OPT); 2479 return (0); 2480 } 2481 2482 /* set options specified by user. */ 2483 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2484 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2485 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2486 free(opt, M_IP6OPT); 2487 return (error); 2488 } 2489 *pktopt = opt; 2490 return (0); 2491 } 2492 2493 /* 2494 * initialize ip6_pktopts. beware that there are non-zero default values in 2495 * the struct. 2496 */ 2497 void 2498 ip6_initpktopts(struct ip6_pktopts *opt) 2499 { 2500 2501 bzero(opt, sizeof(*opt)); 2502 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2503 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2504 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2505 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2506 } 2507 2508 static int 2509 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2510 struct ucred *cred, int uproto) 2511 { 2512 struct ip6_pktopts *opt; 2513 2514 if (*pktopt == NULL) { 2515 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2516 M_NOWAIT); 2517 if (*pktopt == NULL) 2518 return (ENOBUFS); 2519 ip6_initpktopts(*pktopt); 2520 } 2521 opt = *pktopt; 2522 2523 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2524 } 2525 2526 #define GET_PKTOPT_VAR(field, lenexpr) do { \ 2527 if (pktopt && pktopt->field) { \ 2528 INP_RUNLOCK(inp); \ 2529 optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \ 2530 malloc_optdata = true; \ 2531 INP_RLOCK(inp); \ 2532 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { \ 2533 INP_RUNLOCK(inp); \ 2534 free(optdata, M_TEMP); \ 2535 return (ECONNRESET); \ 2536 } \ 2537 pktopt = inp->in6p_outputopts; \ 2538 if (pktopt && pktopt->field) { \ 2539 optdatalen = min(lenexpr, sopt->sopt_valsize); \ 2540 bcopy(&pktopt->field, optdata, optdatalen); \ 2541 } else { \ 2542 free(optdata, M_TEMP); \ 2543 optdata = NULL; \ 2544 malloc_optdata = false; \ 2545 } \ 2546 } \ 2547 } while(0) 2548 2549 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \ 2550 (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3) 2551 2552 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \ 2553 pktopt->field->sa_len) 2554 2555 static int 2556 ip6_getpcbopt(struct inpcb *inp, int optname, struct sockopt *sopt) 2557 { 2558 void *optdata = NULL; 2559 bool malloc_optdata = false; 2560 int optdatalen = 0; 2561 int error = 0; 2562 struct in6_pktinfo null_pktinfo; 2563 int deftclass = 0, on; 2564 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2565 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2566 struct ip6_pktopts *pktopt; 2567 2568 INP_RLOCK(inp); 2569 pktopt = inp->in6p_outputopts; 2570 2571 switch (optname) { 2572 case IPV6_PKTINFO: 2573 optdata = (void *)&null_pktinfo; 2574 if (pktopt && pktopt->ip6po_pktinfo) { 2575 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2576 sizeof(null_pktinfo)); 2577 in6_clearscope(&null_pktinfo.ipi6_addr); 2578 } else { 2579 /* XXX: we don't have to do this every time... */ 2580 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2581 } 2582 optdatalen = sizeof(struct in6_pktinfo); 2583 break; 2584 case IPV6_TCLASS: 2585 if (pktopt && pktopt->ip6po_tclass >= 0) 2586 deftclass = pktopt->ip6po_tclass; 2587 optdata = (void *)&deftclass; 2588 optdatalen = sizeof(int); 2589 break; 2590 case IPV6_HOPOPTS: 2591 GET_PKTOPT_EXT_HDR(ip6po_hbh); 2592 break; 2593 case IPV6_RTHDR: 2594 GET_PKTOPT_EXT_HDR(ip6po_rthdr); 2595 break; 2596 case IPV6_RTHDRDSTOPTS: 2597 GET_PKTOPT_EXT_HDR(ip6po_dest1); 2598 break; 2599 case IPV6_DSTOPTS: 2600 GET_PKTOPT_EXT_HDR(ip6po_dest2); 2601 break; 2602 case IPV6_NEXTHOP: 2603 GET_PKTOPT_SOCKADDR(ip6po_nexthop); 2604 break; 2605 case IPV6_USE_MIN_MTU: 2606 if (pktopt) 2607 defminmtu = pktopt->ip6po_minmtu; 2608 optdata = (void *)&defminmtu; 2609 optdatalen = sizeof(int); 2610 break; 2611 case IPV6_DONTFRAG: 2612 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2613 on = 1; 2614 else 2615 on = 0; 2616 optdata = (void *)&on; 2617 optdatalen = sizeof(on); 2618 break; 2619 case IPV6_PREFER_TEMPADDR: 2620 if (pktopt) 2621 defpreftemp = pktopt->ip6po_prefer_tempaddr; 2622 optdata = (void *)&defpreftemp; 2623 optdatalen = sizeof(int); 2624 break; 2625 default: /* should not happen */ 2626 #ifdef DIAGNOSTIC 2627 panic("ip6_getpcbopt: unexpected option\n"); 2628 #endif 2629 INP_RUNLOCK(inp); 2630 return (ENOPROTOOPT); 2631 } 2632 INP_RUNLOCK(inp); 2633 2634 error = sooptcopyout(sopt, optdata, optdatalen); 2635 if (malloc_optdata) 2636 free(optdata, M_TEMP); 2637 2638 return (error); 2639 } 2640 2641 void 2642 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2643 { 2644 if (pktopt == NULL) 2645 return; 2646 2647 if (optname == -1 || optname == IPV6_PKTINFO) { 2648 if (pktopt->ip6po_pktinfo) 2649 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2650 pktopt->ip6po_pktinfo = NULL; 2651 } 2652 if (optname == -1 || optname == IPV6_HOPLIMIT) 2653 pktopt->ip6po_hlim = -1; 2654 if (optname == -1 || optname == IPV6_TCLASS) 2655 pktopt->ip6po_tclass = -1; 2656 if (optname == -1 || optname == IPV6_NEXTHOP) { 2657 if (pktopt->ip6po_nextroute.ro_nh) { 2658 NH_FREE(pktopt->ip6po_nextroute.ro_nh); 2659 pktopt->ip6po_nextroute.ro_nh = NULL; 2660 } 2661 if (pktopt->ip6po_nexthop) 2662 free(pktopt->ip6po_nexthop, M_IP6OPT); 2663 pktopt->ip6po_nexthop = NULL; 2664 } 2665 if (optname == -1 || optname == IPV6_HOPOPTS) { 2666 if (pktopt->ip6po_hbh) 2667 free(pktopt->ip6po_hbh, M_IP6OPT); 2668 pktopt->ip6po_hbh = NULL; 2669 } 2670 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2671 if (pktopt->ip6po_dest1) 2672 free(pktopt->ip6po_dest1, M_IP6OPT); 2673 pktopt->ip6po_dest1 = NULL; 2674 } 2675 if (optname == -1 || optname == IPV6_RTHDR) { 2676 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2677 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2678 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2679 if (pktopt->ip6po_route.ro_nh) { 2680 NH_FREE(pktopt->ip6po_route.ro_nh); 2681 pktopt->ip6po_route.ro_nh = NULL; 2682 } 2683 } 2684 if (optname == -1 || optname == IPV6_DSTOPTS) { 2685 if (pktopt->ip6po_dest2) 2686 free(pktopt->ip6po_dest2, M_IP6OPT); 2687 pktopt->ip6po_dest2 = NULL; 2688 } 2689 } 2690 2691 #define PKTOPT_EXTHDRCPY(type) \ 2692 do {\ 2693 if (src->type) {\ 2694 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2695 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2696 if (dst->type == NULL)\ 2697 goto bad;\ 2698 bcopy(src->type, dst->type, hlen);\ 2699 }\ 2700 } while (/*CONSTCOND*/ 0) 2701 2702 static int 2703 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2704 { 2705 if (dst == NULL || src == NULL) { 2706 printf("ip6_clearpktopts: invalid argument\n"); 2707 return (EINVAL); 2708 } 2709 2710 dst->ip6po_hlim = src->ip6po_hlim; 2711 dst->ip6po_tclass = src->ip6po_tclass; 2712 dst->ip6po_flags = src->ip6po_flags; 2713 dst->ip6po_minmtu = src->ip6po_minmtu; 2714 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2715 if (src->ip6po_pktinfo) { 2716 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2717 M_IP6OPT, canwait); 2718 if (dst->ip6po_pktinfo == NULL) 2719 goto bad; 2720 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2721 } 2722 if (src->ip6po_nexthop) { 2723 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2724 M_IP6OPT, canwait); 2725 if (dst->ip6po_nexthop == NULL) 2726 goto bad; 2727 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2728 src->ip6po_nexthop->sa_len); 2729 } 2730 PKTOPT_EXTHDRCPY(ip6po_hbh); 2731 PKTOPT_EXTHDRCPY(ip6po_dest1); 2732 PKTOPT_EXTHDRCPY(ip6po_dest2); 2733 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2734 return (0); 2735 2736 bad: 2737 ip6_clearpktopts(dst, -1); 2738 return (ENOBUFS); 2739 } 2740 #undef PKTOPT_EXTHDRCPY 2741 2742 struct ip6_pktopts * 2743 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2744 { 2745 int error; 2746 struct ip6_pktopts *dst; 2747 2748 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2749 if (dst == NULL) 2750 return (NULL); 2751 ip6_initpktopts(dst); 2752 2753 if ((error = copypktopts(dst, src, canwait)) != 0) { 2754 free(dst, M_IP6OPT); 2755 return (NULL); 2756 } 2757 2758 return (dst); 2759 } 2760 2761 void 2762 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2763 { 2764 if (pktopt == NULL) 2765 return; 2766 2767 ip6_clearpktopts(pktopt, -1); 2768 2769 free(pktopt, M_IP6OPT); 2770 } 2771 2772 /* 2773 * Set IPv6 outgoing packet options based on advanced API. 2774 */ 2775 int 2776 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2777 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2778 { 2779 struct cmsghdr *cm = NULL; 2780 2781 if (control == NULL || opt == NULL) 2782 return (EINVAL); 2783 2784 ip6_initpktopts(opt); 2785 if (stickyopt) { 2786 int error; 2787 2788 /* 2789 * If stickyopt is provided, make a local copy of the options 2790 * for this particular packet, then override them by ancillary 2791 * objects. 2792 * XXX: copypktopts() does not copy the cached route to a next 2793 * hop (if any). This is not very good in terms of efficiency, 2794 * but we can allow this since this option should be rarely 2795 * used. 2796 */ 2797 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2798 return (error); 2799 } 2800 2801 /* 2802 * XXX: Currently, we assume all the optional information is stored 2803 * in a single mbuf. 2804 */ 2805 if (control->m_next) 2806 return (EINVAL); 2807 2808 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2809 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2810 int error; 2811 2812 if (control->m_len < CMSG_LEN(0)) 2813 return (EINVAL); 2814 2815 cm = mtod(control, struct cmsghdr *); 2816 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2817 return (EINVAL); 2818 if (cm->cmsg_level != IPPROTO_IPV6) 2819 continue; 2820 2821 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2822 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2823 if (error) 2824 return (error); 2825 } 2826 2827 return (0); 2828 } 2829 2830 /* 2831 * Set a particular packet option, as a sticky option or an ancillary data 2832 * item. "len" can be 0 only when it's a sticky option. 2833 * We have 4 cases of combination of "sticky" and "cmsg": 2834 * "sticky=0, cmsg=0": impossible 2835 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2836 * "sticky=1, cmsg=0": RFC3542 socket option 2837 * "sticky=1, cmsg=1": RFC2292 socket option 2838 */ 2839 static int 2840 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2841 struct ucred *cred, int sticky, int cmsg, int uproto) 2842 { 2843 int minmtupolicy, preftemp; 2844 int error; 2845 2846 if (!sticky && !cmsg) { 2847 #ifdef DIAGNOSTIC 2848 printf("ip6_setpktopt: impossible case\n"); 2849 #endif 2850 return (EINVAL); 2851 } 2852 2853 /* 2854 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2855 * not be specified in the context of RFC3542. Conversely, 2856 * RFC3542 types should not be specified in the context of RFC2292. 2857 */ 2858 if (!cmsg) { 2859 switch (optname) { 2860 case IPV6_2292PKTINFO: 2861 case IPV6_2292HOPLIMIT: 2862 case IPV6_2292NEXTHOP: 2863 case IPV6_2292HOPOPTS: 2864 case IPV6_2292DSTOPTS: 2865 case IPV6_2292RTHDR: 2866 case IPV6_2292PKTOPTIONS: 2867 return (ENOPROTOOPT); 2868 } 2869 } 2870 if (sticky && cmsg) { 2871 switch (optname) { 2872 case IPV6_PKTINFO: 2873 case IPV6_HOPLIMIT: 2874 case IPV6_NEXTHOP: 2875 case IPV6_HOPOPTS: 2876 case IPV6_DSTOPTS: 2877 case IPV6_RTHDRDSTOPTS: 2878 case IPV6_RTHDR: 2879 case IPV6_USE_MIN_MTU: 2880 case IPV6_DONTFRAG: 2881 case IPV6_TCLASS: 2882 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2883 return (ENOPROTOOPT); 2884 } 2885 } 2886 2887 switch (optname) { 2888 case IPV6_2292PKTINFO: 2889 case IPV6_PKTINFO: 2890 { 2891 struct ifnet *ifp = NULL; 2892 struct in6_pktinfo *pktinfo; 2893 2894 if (len != sizeof(struct in6_pktinfo)) 2895 return (EINVAL); 2896 2897 pktinfo = (struct in6_pktinfo *)buf; 2898 2899 /* 2900 * An application can clear any sticky IPV6_PKTINFO option by 2901 * doing a "regular" setsockopt with ipi6_addr being 2902 * in6addr_any and ipi6_ifindex being zero. 2903 * [RFC 3542, Section 6] 2904 */ 2905 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2906 pktinfo->ipi6_ifindex == 0 && 2907 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2908 ip6_clearpktopts(opt, optname); 2909 break; 2910 } 2911 2912 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2913 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2914 return (EINVAL); 2915 } 2916 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2917 return (EINVAL); 2918 /* validate the interface index if specified. */ 2919 if (pktinfo->ipi6_ifindex > V_if_index) 2920 return (ENXIO); 2921 if (pktinfo->ipi6_ifindex) { 2922 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2923 if (ifp == NULL) 2924 return (ENXIO); 2925 } 2926 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2927 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2928 return (ENETDOWN); 2929 2930 if (ifp != NULL && 2931 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2932 struct in6_ifaddr *ia; 2933 2934 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2935 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2936 if (ia == NULL) 2937 return (EADDRNOTAVAIL); 2938 ifa_free(&ia->ia_ifa); 2939 } 2940 /* 2941 * We store the address anyway, and let in6_selectsrc() 2942 * validate the specified address. This is because ipi6_addr 2943 * may not have enough information about its scope zone, and 2944 * we may need additional information (such as outgoing 2945 * interface or the scope zone of a destination address) to 2946 * disambiguate the scope. 2947 * XXX: the delay of the validation may confuse the 2948 * application when it is used as a sticky option. 2949 */ 2950 if (opt->ip6po_pktinfo == NULL) { 2951 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2952 M_IP6OPT, M_NOWAIT); 2953 if (opt->ip6po_pktinfo == NULL) 2954 return (ENOBUFS); 2955 } 2956 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2957 break; 2958 } 2959 2960 case IPV6_2292HOPLIMIT: 2961 case IPV6_HOPLIMIT: 2962 { 2963 int *hlimp; 2964 2965 /* 2966 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2967 * to simplify the ordering among hoplimit options. 2968 */ 2969 if (optname == IPV6_HOPLIMIT && sticky) 2970 return (ENOPROTOOPT); 2971 2972 if (len != sizeof(int)) 2973 return (EINVAL); 2974 hlimp = (int *)buf; 2975 if (*hlimp < -1 || *hlimp > 255) 2976 return (EINVAL); 2977 2978 opt->ip6po_hlim = *hlimp; 2979 break; 2980 } 2981 2982 case IPV6_TCLASS: 2983 { 2984 int tclass; 2985 2986 if (len != sizeof(int)) 2987 return (EINVAL); 2988 tclass = *(int *)buf; 2989 if (tclass < -1 || tclass > 255) 2990 return (EINVAL); 2991 2992 opt->ip6po_tclass = tclass; 2993 break; 2994 } 2995 2996 case IPV6_2292NEXTHOP: 2997 case IPV6_NEXTHOP: 2998 if (cred != NULL) { 2999 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3000 if (error) 3001 return (error); 3002 } 3003 3004 if (len == 0) { /* just remove the option */ 3005 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3006 break; 3007 } 3008 3009 /* check if cmsg_len is large enough for sa_len */ 3010 if (len < sizeof(struct sockaddr) || len < *buf) 3011 return (EINVAL); 3012 3013 switch (((struct sockaddr *)buf)->sa_family) { 3014 case AF_INET6: 3015 { 3016 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3017 int error; 3018 3019 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3020 return (EINVAL); 3021 3022 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3023 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3024 return (EINVAL); 3025 } 3026 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 3027 != 0) { 3028 return (error); 3029 } 3030 break; 3031 } 3032 case AF_LINK: /* should eventually be supported */ 3033 default: 3034 return (EAFNOSUPPORT); 3035 } 3036 3037 /* turn off the previous option, then set the new option. */ 3038 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3039 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3040 if (opt->ip6po_nexthop == NULL) 3041 return (ENOBUFS); 3042 bcopy(buf, opt->ip6po_nexthop, *buf); 3043 break; 3044 3045 case IPV6_2292HOPOPTS: 3046 case IPV6_HOPOPTS: 3047 { 3048 struct ip6_hbh *hbh; 3049 int hbhlen; 3050 3051 /* 3052 * XXX: We don't allow a non-privileged user to set ANY HbH 3053 * options, since per-option restriction has too much 3054 * overhead. 3055 */ 3056 if (cred != NULL) { 3057 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3058 if (error) 3059 return (error); 3060 } 3061 3062 if (len == 0) { 3063 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3064 break; /* just remove the option */ 3065 } 3066 3067 /* message length validation */ 3068 if (len < sizeof(struct ip6_hbh)) 3069 return (EINVAL); 3070 hbh = (struct ip6_hbh *)buf; 3071 hbhlen = (hbh->ip6h_len + 1) << 3; 3072 if (len != hbhlen) 3073 return (EINVAL); 3074 3075 /* turn off the previous option, then set the new option. */ 3076 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3077 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3078 if (opt->ip6po_hbh == NULL) 3079 return (ENOBUFS); 3080 bcopy(hbh, opt->ip6po_hbh, hbhlen); 3081 3082 break; 3083 } 3084 3085 case IPV6_2292DSTOPTS: 3086 case IPV6_DSTOPTS: 3087 case IPV6_RTHDRDSTOPTS: 3088 { 3089 struct ip6_dest *dest, **newdest = NULL; 3090 int destlen; 3091 3092 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 3093 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3094 if (error) 3095 return (error); 3096 } 3097 3098 if (len == 0) { 3099 ip6_clearpktopts(opt, optname); 3100 break; /* just remove the option */ 3101 } 3102 3103 /* message length validation */ 3104 if (len < sizeof(struct ip6_dest)) 3105 return (EINVAL); 3106 dest = (struct ip6_dest *)buf; 3107 destlen = (dest->ip6d_len + 1) << 3; 3108 if (len != destlen) 3109 return (EINVAL); 3110 3111 /* 3112 * Determine the position that the destination options header 3113 * should be inserted; before or after the routing header. 3114 */ 3115 switch (optname) { 3116 case IPV6_2292DSTOPTS: 3117 /* 3118 * The old advacned API is ambiguous on this point. 3119 * Our approach is to determine the position based 3120 * according to the existence of a routing header. 3121 * Note, however, that this depends on the order of the 3122 * extension headers in the ancillary data; the 1st 3123 * part of the destination options header must appear 3124 * before the routing header in the ancillary data, 3125 * too. 3126 * RFC3542 solved the ambiguity by introducing 3127 * separate ancillary data or option types. 3128 */ 3129 if (opt->ip6po_rthdr == NULL) 3130 newdest = &opt->ip6po_dest1; 3131 else 3132 newdest = &opt->ip6po_dest2; 3133 break; 3134 case IPV6_RTHDRDSTOPTS: 3135 newdest = &opt->ip6po_dest1; 3136 break; 3137 case IPV6_DSTOPTS: 3138 newdest = &opt->ip6po_dest2; 3139 break; 3140 } 3141 3142 /* turn off the previous option, then set the new option. */ 3143 ip6_clearpktopts(opt, optname); 3144 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3145 if (*newdest == NULL) 3146 return (ENOBUFS); 3147 bcopy(dest, *newdest, destlen); 3148 3149 break; 3150 } 3151 3152 case IPV6_2292RTHDR: 3153 case IPV6_RTHDR: 3154 { 3155 struct ip6_rthdr *rth; 3156 int rthlen; 3157 3158 if (len == 0) { 3159 ip6_clearpktopts(opt, IPV6_RTHDR); 3160 break; /* just remove the option */ 3161 } 3162 3163 /* message length validation */ 3164 if (len < sizeof(struct ip6_rthdr)) 3165 return (EINVAL); 3166 rth = (struct ip6_rthdr *)buf; 3167 rthlen = (rth->ip6r_len + 1) << 3; 3168 if (len != rthlen) 3169 return (EINVAL); 3170 3171 switch (rth->ip6r_type) { 3172 case IPV6_RTHDR_TYPE_0: 3173 if (rth->ip6r_len == 0) /* must contain one addr */ 3174 return (EINVAL); 3175 if (rth->ip6r_len % 2) /* length must be even */ 3176 return (EINVAL); 3177 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3178 return (EINVAL); 3179 break; 3180 default: 3181 return (EINVAL); /* not supported */ 3182 } 3183 3184 /* turn off the previous option */ 3185 ip6_clearpktopts(opt, IPV6_RTHDR); 3186 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3187 if (opt->ip6po_rthdr == NULL) 3188 return (ENOBUFS); 3189 bcopy(rth, opt->ip6po_rthdr, rthlen); 3190 3191 break; 3192 } 3193 3194 case IPV6_USE_MIN_MTU: 3195 if (len != sizeof(int)) 3196 return (EINVAL); 3197 minmtupolicy = *(int *)buf; 3198 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3199 minmtupolicy != IP6PO_MINMTU_DISABLE && 3200 minmtupolicy != IP6PO_MINMTU_ALL) { 3201 return (EINVAL); 3202 } 3203 opt->ip6po_minmtu = minmtupolicy; 3204 break; 3205 3206 case IPV6_DONTFRAG: 3207 if (len != sizeof(int)) 3208 return (EINVAL); 3209 3210 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3211 /* 3212 * we ignore this option for TCP sockets. 3213 * (RFC3542 leaves this case unspecified.) 3214 */ 3215 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3216 } else 3217 opt->ip6po_flags |= IP6PO_DONTFRAG; 3218 break; 3219 3220 case IPV6_PREFER_TEMPADDR: 3221 if (len != sizeof(int)) 3222 return (EINVAL); 3223 preftemp = *(int *)buf; 3224 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3225 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3226 preftemp != IP6PO_TEMPADDR_PREFER) { 3227 return (EINVAL); 3228 } 3229 opt->ip6po_prefer_tempaddr = preftemp; 3230 break; 3231 3232 default: 3233 return (ENOPROTOOPT); 3234 } /* end of switch */ 3235 3236 return (0); 3237 } 3238 3239 /* 3240 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3241 * packet to the input queue of a specified interface. Note that this 3242 * calls the output routine of the loopback "driver", but with an interface 3243 * pointer that might NOT be &loif -- easier than replicating that code here. 3244 */ 3245 void 3246 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3247 { 3248 struct mbuf *copym; 3249 struct ip6_hdr *ip6; 3250 3251 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3252 if (copym == NULL) 3253 return; 3254 3255 /* 3256 * Make sure to deep-copy IPv6 header portion in case the data 3257 * is in an mbuf cluster, so that we can safely override the IPv6 3258 * header portion later. 3259 */ 3260 if (!M_WRITABLE(copym) || 3261 copym->m_len < sizeof(struct ip6_hdr)) { 3262 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3263 if (copym == NULL) 3264 return; 3265 } 3266 ip6 = mtod(copym, struct ip6_hdr *); 3267 /* 3268 * clear embedded scope identifiers if necessary. 3269 * in6_clearscope will touch the addresses only when necessary. 3270 */ 3271 in6_clearscope(&ip6->ip6_src); 3272 in6_clearscope(&ip6->ip6_dst); 3273 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3274 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3275 CSUM_PSEUDO_HDR; 3276 copym->m_pkthdr.csum_data = 0xffff; 3277 } 3278 if_simloop(ifp, copym, AF_INET6, 0); 3279 } 3280 3281 /* 3282 * Chop IPv6 header off from the payload. 3283 */ 3284 static int 3285 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3286 { 3287 struct mbuf *mh; 3288 struct ip6_hdr *ip6; 3289 3290 ip6 = mtod(m, struct ip6_hdr *); 3291 if (m->m_len > sizeof(*ip6)) { 3292 mh = m_gethdr(M_NOWAIT, MT_DATA); 3293 if (mh == NULL) { 3294 m_freem(m); 3295 return ENOBUFS; 3296 } 3297 m_move_pkthdr(mh, m); 3298 M_ALIGN(mh, sizeof(*ip6)); 3299 m->m_len -= sizeof(*ip6); 3300 m->m_data += sizeof(*ip6); 3301 mh->m_next = m; 3302 m = mh; 3303 m->m_len = sizeof(*ip6); 3304 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3305 } 3306 exthdrs->ip6e_ip6 = m; 3307 return 0; 3308 } 3309 3310 /* 3311 * Compute IPv6 extension header length. 3312 */ 3313 int 3314 ip6_optlen(struct inpcb *inp) 3315 { 3316 int len; 3317 3318 if (!inp->in6p_outputopts) 3319 return 0; 3320 3321 len = 0; 3322 #define elen(x) \ 3323 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3324 3325 len += elen(inp->in6p_outputopts->ip6po_hbh); 3326 if (inp->in6p_outputopts->ip6po_rthdr) 3327 /* dest1 is valid with rthdr only */ 3328 len += elen(inp->in6p_outputopts->ip6po_dest1); 3329 len += elen(inp->in6p_outputopts->ip6po_rthdr); 3330 len += elen(inp->in6p_outputopts->ip6po_dest2); 3331 return len; 3332 #undef elen 3333 } 3334