xref: /freebsd/sys/netinet6/ip6_output.c (revision f4f8f02054f3abb6ceb84aefcdecc78d5c8b462f)
1 /*-
2  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the project nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	$KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $
30  */
31 
32 /*-
33  * Copyright (c) 1982, 1986, 1988, 1990, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 4. Neither the name of the University nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
61  */
62 
63 #include <sys/cdefs.h>
64 __FBSDID("$FreeBSD$");
65 
66 #include "opt_inet.h"
67 #include "opt_inet6.h"
68 #include "opt_ipsec.h"
69 #include "opt_route.h"
70 
71 #include <sys/param.h>
72 #include <sys/kernel.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/errno.h>
76 #include <sys/priv.h>
77 #include <sys/proc.h>
78 #include <sys/protosw.h>
79 #include <sys/socket.h>
80 #include <sys/socketvar.h>
81 #include <sys/syslog.h>
82 #include <sys/ucred.h>
83 #include <sys/vimage.h>
84 
85 #include <net/if.h>
86 #include <net/netisr.h>
87 #include <net/route.h>
88 #include <net/pfil.h>
89 #include <net/vnet.h>
90 
91 #include <netinet/in.h>
92 #include <netinet/in_var.h>
93 #include <netinet6/in6_var.h>
94 #include <netinet/ip6.h>
95 #include <netinet/icmp6.h>
96 #include <netinet6/ip6_var.h>
97 #include <netinet/in_pcb.h>
98 #include <netinet/tcp_var.h>
99 #include <netinet6/nd6.h>
100 #include <netinet/vinet.h>
101 
102 #ifdef IPSEC
103 #include <netipsec/ipsec.h>
104 #include <netipsec/ipsec6.h>
105 #include <netipsec/key.h>
106 #include <netinet6/ip6_ipsec.h>
107 #endif /* IPSEC */
108 
109 #include <netinet6/ip6protosw.h>
110 #include <netinet6/scope6_var.h>
111 #include <netinet6/vinet6.h>
112 
113 extern int in6_mcast_loop;
114 
115 struct ip6_exthdrs {
116 	struct mbuf *ip6e_ip6;
117 	struct mbuf *ip6e_hbh;
118 	struct mbuf *ip6e_dest1;
119 	struct mbuf *ip6e_rthdr;
120 	struct mbuf *ip6e_dest2;
121 };
122 
123 static int ip6_pcbopt __P((int, u_char *, int, struct ip6_pktopts **,
124 			   struct ucred *, int));
125 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
126 	struct socket *, struct sockopt *));
127 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
128 static int ip6_setpktopt __P((int, u_char *, int, struct ip6_pktopts *,
129 	struct ucred *, int, int, int));
130 
131 static int ip6_copyexthdr(struct mbuf **, caddr_t, int);
132 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
133 	struct ip6_frag **));
134 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
135 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
136 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *,
137 	struct ifnet *, struct in6_addr *, u_long *, int *));
138 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
139 
140 
141 /*
142  * Make an extension header from option data.  hp is the source, and
143  * mp is the destination.
144  */
145 #define MAKE_EXTHDR(hp, mp)						\
146     do {								\
147 	if (hp) {							\
148 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
149 		error = ip6_copyexthdr((mp), (caddr_t)(hp),		\
150 		    ((eh)->ip6e_len + 1) << 3);				\
151 		if (error)						\
152 			goto freehdrs;					\
153 	}								\
154     } while (/*CONSTCOND*/ 0)
155 
156 /*
157  * Form a chain of extension headers.
158  * m is the extension header mbuf
159  * mp is the previous mbuf in the chain
160  * p is the next header
161  * i is the type of option.
162  */
163 #define MAKE_CHAIN(m, mp, p, i)\
164     do {\
165 	if (m) {\
166 		if (!hdrsplit) \
167 			panic("assumption failed: hdr not split"); \
168 		*mtod((m), u_char *) = *(p);\
169 		*(p) = (i);\
170 		p = mtod((m), u_char *);\
171 		(m)->m_next = (mp)->m_next;\
172 		(mp)->m_next = (m);\
173 		(mp) = (m);\
174 	}\
175     } while (/*CONSTCOND*/ 0)
176 
177 /*
178  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
179  * header (with pri, len, nxt, hlim, src, dst).
180  * This function may modify ver and hlim only.
181  * The mbuf chain containing the packet will be freed.
182  * The mbuf opt, if present, will not be freed.
183  *
184  * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
185  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
186  * which is rt_rmx.rmx_mtu.
187  *
188  * ifpp - XXX: just for statistics
189  */
190 int
191 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt,
192     struct route_in6 *ro, int flags, struct ip6_moptions *im6o,
193     struct ifnet **ifpp, struct inpcb *inp)
194 {
195 	INIT_VNET_NET(curvnet);
196 	INIT_VNET_INET6(curvnet);
197 	struct ip6_hdr *ip6, *mhip6;
198 	struct ifnet *ifp, *origifp;
199 	struct mbuf *m = m0;
200 	struct mbuf *mprev = NULL;
201 	int hlen, tlen, len, off;
202 	struct route_in6 ip6route;
203 	struct rtentry *rt = NULL;
204 	struct sockaddr_in6 *dst, src_sa, dst_sa;
205 	struct in6_addr odst;
206 	int error = 0;
207 	struct in6_ifaddr *ia = NULL;
208 	u_long mtu;
209 	int alwaysfrag, dontfrag;
210 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
211 	struct ip6_exthdrs exthdrs;
212 	struct in6_addr finaldst, src0, dst0;
213 	u_int32_t zone;
214 	struct route_in6 *ro_pmtu = NULL;
215 	int hdrsplit = 0;
216 	int needipsec = 0;
217 #ifdef IPSEC
218 	struct ipsec_output_state state;
219 	struct ip6_rthdr *rh = NULL;
220 	int needipsectun = 0;
221 	int segleft_org = 0;
222 	struct secpolicy *sp = NULL;
223 #endif /* IPSEC */
224 
225 	ip6 = mtod(m, struct ip6_hdr *);
226 	if (ip6 == NULL) {
227 		printf ("ip6 is NULL");
228 		goto bad;
229 	}
230 
231 	finaldst = ip6->ip6_dst;
232 
233 	bzero(&exthdrs, sizeof(exthdrs));
234 
235 	if (opt) {
236 		/* Hop-by-Hop options header */
237 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
238 		/* Destination options header(1st part) */
239 		if (opt->ip6po_rthdr) {
240 			/*
241 			 * Destination options header(1st part)
242 			 * This only makes sense with a routing header.
243 			 * See Section 9.2 of RFC 3542.
244 			 * Disabling this part just for MIP6 convenience is
245 			 * a bad idea.  We need to think carefully about a
246 			 * way to make the advanced API coexist with MIP6
247 			 * options, which might automatically be inserted in
248 			 * the kernel.
249 			 */
250 			MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
251 		}
252 		/* Routing header */
253 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
254 		/* Destination options header(2nd part) */
255 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
256 	}
257 
258 	/*
259 	 * IPSec checking which handles several cases.
260 	 * FAST IPSEC: We re-injected the packet.
261 	 */
262 #ifdef IPSEC
263 	switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp, &sp))
264 	{
265 	case 1:                 /* Bad packet */
266 		goto freehdrs;
267 	case -1:                /* Do IPSec */
268 		needipsec = 1;
269 	case 0:                 /* No IPSec */
270 	default:
271 		break;
272 	}
273 #endif /* IPSEC */
274 
275 	/*
276 	 * Calculate the total length of the extension header chain.
277 	 * Keep the length of the unfragmentable part for fragmentation.
278 	 */
279 	optlen = 0;
280 	if (exthdrs.ip6e_hbh)
281 		optlen += exthdrs.ip6e_hbh->m_len;
282 	if (exthdrs.ip6e_dest1)
283 		optlen += exthdrs.ip6e_dest1->m_len;
284 	if (exthdrs.ip6e_rthdr)
285 		optlen += exthdrs.ip6e_rthdr->m_len;
286 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
287 
288 	/* NOTE: we don't add AH/ESP length here. do that later. */
289 	if (exthdrs.ip6e_dest2)
290 		optlen += exthdrs.ip6e_dest2->m_len;
291 
292 	/*
293 	 * If we need IPsec, or there is at least one extension header,
294 	 * separate IP6 header from the payload.
295 	 */
296 	if ((needipsec || optlen) && !hdrsplit) {
297 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
298 			m = NULL;
299 			goto freehdrs;
300 		}
301 		m = exthdrs.ip6e_ip6;
302 		hdrsplit++;
303 	}
304 
305 	/* adjust pointer */
306 	ip6 = mtod(m, struct ip6_hdr *);
307 
308 	/* adjust mbuf packet header length */
309 	m->m_pkthdr.len += optlen;
310 	plen = m->m_pkthdr.len - sizeof(*ip6);
311 
312 	/* If this is a jumbo payload, insert a jumbo payload option. */
313 	if (plen > IPV6_MAXPACKET) {
314 		if (!hdrsplit) {
315 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
316 				m = NULL;
317 				goto freehdrs;
318 			}
319 			m = exthdrs.ip6e_ip6;
320 			hdrsplit++;
321 		}
322 		/* adjust pointer */
323 		ip6 = mtod(m, struct ip6_hdr *);
324 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
325 			goto freehdrs;
326 		ip6->ip6_plen = 0;
327 	} else
328 		ip6->ip6_plen = htons(plen);
329 
330 	/*
331 	 * Concatenate headers and fill in next header fields.
332 	 * Here we have, on "m"
333 	 *	IPv6 payload
334 	 * and we insert headers accordingly.  Finally, we should be getting:
335 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
336 	 *
337 	 * during the header composing process, "m" points to IPv6 header.
338 	 * "mprev" points to an extension header prior to esp.
339 	 */
340 	u_char *nexthdrp = &ip6->ip6_nxt;
341 	mprev = m;
342 
343 	/*
344 	 * we treat dest2 specially.  this makes IPsec processing
345 	 * much easier.  the goal here is to make mprev point the
346 	 * mbuf prior to dest2.
347 	 *
348 	 * result: IPv6 dest2 payload
349 	 * m and mprev will point to IPv6 header.
350 	 */
351 	if (exthdrs.ip6e_dest2) {
352 		if (!hdrsplit)
353 			panic("assumption failed: hdr not split");
354 		exthdrs.ip6e_dest2->m_next = m->m_next;
355 		m->m_next = exthdrs.ip6e_dest2;
356 		*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
357 		ip6->ip6_nxt = IPPROTO_DSTOPTS;
358 	}
359 
360 	/*
361 	 * result: IPv6 hbh dest1 rthdr dest2 payload
362 	 * m will point to IPv6 header.  mprev will point to the
363 	 * extension header prior to dest2 (rthdr in the above case).
364 	 */
365 	MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
366 	MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
367 		   IPPROTO_DSTOPTS);
368 	MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
369 		   IPPROTO_ROUTING);
370 
371 #ifdef IPSEC
372 	if (!needipsec)
373 		goto skip_ipsec2;
374 
375 	/*
376 	 * pointers after IPsec headers are not valid any more.
377 	 * other pointers need a great care too.
378 	 * (IPsec routines should not mangle mbufs prior to AH/ESP)
379 	 */
380 	exthdrs.ip6e_dest2 = NULL;
381 
382 	if (exthdrs.ip6e_rthdr) {
383 		rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
384 		segleft_org = rh->ip6r_segleft;
385 		rh->ip6r_segleft = 0;
386 	}
387 
388 	bzero(&state, sizeof(state));
389 	state.m = m;
390 	error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
391 				    &needipsectun);
392 	m = state.m;
393 	if (error == EJUSTRETURN) {
394 		/*
395 		 * We had a SP with a level of 'use' and no SA. We
396 		 * will just continue to process the packet without
397 		 * IPsec processing.
398 		 */
399 		;
400 	} else if (error) {
401 		/* mbuf is already reclaimed in ipsec6_output_trans. */
402 		m = NULL;
403 		switch (error) {
404 		case EHOSTUNREACH:
405 		case ENETUNREACH:
406 		case EMSGSIZE:
407 		case ENOBUFS:
408 		case ENOMEM:
409 			break;
410 		default:
411 			printf("[%s:%d] (ipsec): error code %d\n",
412 			    __func__, __LINE__, error);
413 			/* FALLTHROUGH */
414 		case ENOENT:
415 			/* don't show these error codes to the user */
416 			error = 0;
417 			break;
418 		}
419 		goto bad;
420 	} else if (!needipsectun) {
421 		/*
422 		 * In the FAST IPSec case we have already
423 		 * re-injected the packet and it has been freed
424 		 * by the ipsec_done() function.  So, just clean
425 		 * up after ourselves.
426 		 */
427 		m = NULL;
428 		goto done;
429 	}
430 	if (exthdrs.ip6e_rthdr) {
431 		/* ah6_output doesn't modify mbuf chain */
432 		rh->ip6r_segleft = segleft_org;
433 	}
434 skip_ipsec2:;
435 #endif /* IPSEC */
436 
437 	/*
438 	 * If there is a routing header, replace the destination address field
439 	 * with the first hop of the routing header.
440 	 */
441 	if (exthdrs.ip6e_rthdr) {
442 		struct ip6_rthdr *rh =
443 			(struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
444 						  struct ip6_rthdr *));
445 
446 		/*
447 		 * While this switch may look gratuitous, leave it in
448 		 * in favour of RH2 implementations, etc.
449 		 */
450 		switch (rh->ip6r_type) {
451 #ifndef BURN_BRIDGES
452 		case IPV6_RTHDR_TYPE_0:
453 			/*
454 			 * According to RFC 5095 we should not implement
455 			 * it in any way but we may want to give the user
456 			 * a hint for now.
457 			 */
458 			log(LOG_INFO, "[%s:%d] IPv6 Type 0 Routing Headers are "
459 			    "deprecated.\n", __func__, __LINE__);
460 			/* FALLTHROUGH */
461 #endif
462 		default:	/* is it possible? */
463 			 error = EINVAL;
464 			 goto bad;
465 		}
466 	}
467 
468 	/* Source address validation */
469 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
470 	    (flags & IPV6_UNSPECSRC) == 0) {
471 		error = EOPNOTSUPP;
472 		V_ip6stat.ip6s_badscope++;
473 		goto bad;
474 	}
475 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
476 		error = EOPNOTSUPP;
477 		V_ip6stat.ip6s_badscope++;
478 		goto bad;
479 	}
480 
481 	V_ip6stat.ip6s_localout++;
482 
483 	/*
484 	 * Route packet.
485 	 */
486 	if (ro == 0) {
487 		ro = &ip6route;
488 		bzero((caddr_t)ro, sizeof(*ro));
489 	}
490 	ro_pmtu = ro;
491 	if (opt && opt->ip6po_rthdr)
492 		ro = &opt->ip6po_route;
493 	dst = (struct sockaddr_in6 *)&ro->ro_dst;
494 
495 again:
496 	/*
497 	 * if specified, try to fill in the traffic class field.
498 	 * do not override if a non-zero value is already set.
499 	 * we check the diffserv field and the ecn field separately.
500 	 */
501 	if (opt && opt->ip6po_tclass >= 0) {
502 		int mask = 0;
503 
504 		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
505 			mask |= 0xfc;
506 		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
507 			mask |= 0x03;
508 		if (mask != 0)
509 			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
510 	}
511 
512 	/* fill in or override the hop limit field, if necessary. */
513 	if (opt && opt->ip6po_hlim != -1)
514 		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
515 	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
516 		if (im6o != NULL)
517 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
518 		else
519 			ip6->ip6_hlim = V_ip6_defmcasthlim;
520 	}
521 
522 #ifdef IPSEC
523 	/*
524 	 * We may re-inject packets into the stack here.
525 	 */
526 	if (needipsec && needipsectun) {
527 		struct ipsec_output_state state;
528 
529 		/*
530 		 * All the extension headers will become inaccessible
531 		 * (since they can be encrypted).
532 		 * Don't panic, we need no more updates to extension headers
533 		 * on inner IPv6 packet (since they are now encapsulated).
534 		 *
535 		 * IPv6 [ESP|AH] IPv6 [extension headers] payload
536 		 */
537 		bzero(&exthdrs, sizeof(exthdrs));
538 		exthdrs.ip6e_ip6 = m;
539 
540 		bzero(&state, sizeof(state));
541 		state.m = m;
542 		state.ro = (struct route *)ro;
543 		state.dst = (struct sockaddr *)dst;
544 
545 		error = ipsec6_output_tunnel(&state, sp, flags);
546 
547 		m = state.m;
548 		ro = (struct route_in6 *)state.ro;
549 		dst = (struct sockaddr_in6 *)state.dst;
550 		if (error == EJUSTRETURN) {
551 			/*
552 			 * We had a SP with a level of 'use' and no SA. We
553 			 * will just continue to process the packet without
554 			 * IPsec processing.
555 			 */
556 			;
557 		} else if (error) {
558 			/* mbuf is already reclaimed in ipsec6_output_tunnel. */
559 			m0 = m = NULL;
560 			m = NULL;
561 			switch (error) {
562 			case EHOSTUNREACH:
563 			case ENETUNREACH:
564 			case EMSGSIZE:
565 			case ENOBUFS:
566 			case ENOMEM:
567 				break;
568 			default:
569 				printf("[%s:%d] (ipsec): error code %d\n",
570 				    __func__, __LINE__, error);
571 				/* FALLTHROUGH */
572 			case ENOENT:
573 				/* don't show these error codes to the user */
574 				error = 0;
575 				break;
576 			}
577 			goto bad;
578 		} else {
579 			/*
580 			 * In the FAST IPSec case we have already
581 			 * re-injected the packet and it has been freed
582 			 * by the ipsec_done() function.  So, just clean
583 			 * up after ourselves.
584 			 */
585 			m = NULL;
586 			goto done;
587 		}
588 
589 		exthdrs.ip6e_ip6 = m;
590 	}
591 #endif /* IPSEC */
592 
593 	/* adjust pointer */
594 	ip6 = mtod(m, struct ip6_hdr *);
595 
596 	bzero(&dst_sa, sizeof(dst_sa));
597 	dst_sa.sin6_family = AF_INET6;
598 	dst_sa.sin6_len = sizeof(dst_sa);
599 	dst_sa.sin6_addr = ip6->ip6_dst;
600 	if ((error = in6_selectroute(&dst_sa, opt, im6o, ro,
601 	    &ifp, &rt)) != 0) {
602 		switch (error) {
603 		case EHOSTUNREACH:
604 			V_ip6stat.ip6s_noroute++;
605 			break;
606 		case EADDRNOTAVAIL:
607 		default:
608 			break; /* XXX statistics? */
609 		}
610 		if (ifp != NULL)
611 			in6_ifstat_inc(ifp, ifs6_out_discard);
612 		goto bad;
613 	}
614 	if (rt == NULL) {
615 		/*
616 		 * If in6_selectroute() does not return a route entry,
617 		 * dst may not have been updated.
618 		 */
619 		*dst = dst_sa;	/* XXX */
620 	}
621 
622 	/*
623 	 * then rt (for unicast) and ifp must be non-NULL valid values.
624 	 */
625 	if ((flags & IPV6_FORWARDING) == 0) {
626 		/* XXX: the FORWARDING flag can be set for mrouting. */
627 		in6_ifstat_inc(ifp, ifs6_out_request);
628 	}
629 	if (rt != NULL) {
630 		ia = (struct in6_ifaddr *)(rt->rt_ifa);
631 		rt->rt_use++;
632 	}
633 
634 	/*
635 	 * The outgoing interface must be in the zone of source and
636 	 * destination addresses.  We should use ia_ifp to support the
637 	 * case of sending packets to an address of our own.
638 	 */
639 	if (ia != NULL && ia->ia_ifp)
640 		origifp = ia->ia_ifp;
641 	else
642 		origifp = ifp;
643 
644 	src0 = ip6->ip6_src;
645 	if (in6_setscope(&src0, origifp, &zone))
646 		goto badscope;
647 	bzero(&src_sa, sizeof(src_sa));
648 	src_sa.sin6_family = AF_INET6;
649 	src_sa.sin6_len = sizeof(src_sa);
650 	src_sa.sin6_addr = ip6->ip6_src;
651 	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
652 		goto badscope;
653 
654 	dst0 = ip6->ip6_dst;
655 	if (in6_setscope(&dst0, origifp, &zone))
656 		goto badscope;
657 	/* re-initialize to be sure */
658 	bzero(&dst_sa, sizeof(dst_sa));
659 	dst_sa.sin6_family = AF_INET6;
660 	dst_sa.sin6_len = sizeof(dst_sa);
661 	dst_sa.sin6_addr = ip6->ip6_dst;
662 	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) {
663 		goto badscope;
664 	}
665 
666 	/* scope check is done. */
667 	goto routefound;
668 
669   badscope:
670 	V_ip6stat.ip6s_badscope++;
671 	in6_ifstat_inc(origifp, ifs6_out_discard);
672 	if (error == 0)
673 		error = EHOSTUNREACH; /* XXX */
674 	goto bad;
675 
676   routefound:
677 	if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
678 		if (opt && opt->ip6po_nextroute.ro_rt) {
679 			/*
680 			 * The nexthop is explicitly specified by the
681 			 * application.  We assume the next hop is an IPv6
682 			 * address.
683 			 */
684 			dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
685 		}
686 		else if ((rt->rt_flags & RTF_GATEWAY))
687 			dst = (struct sockaddr_in6 *)rt->rt_gateway;
688 	}
689 
690 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
691 		m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
692 	} else {
693 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
694 		in6_ifstat_inc(ifp, ifs6_out_mcast);
695 		/*
696 		 * Confirm that the outgoing interface supports multicast.
697 		 */
698 		if (!(ifp->if_flags & IFF_MULTICAST)) {
699 			V_ip6stat.ip6s_noroute++;
700 			in6_ifstat_inc(ifp, ifs6_out_discard);
701 			error = ENETUNREACH;
702 			goto bad;
703 		}
704 		if ((im6o == NULL && in6_mcast_loop) ||
705 		    (im6o && im6o->im6o_multicast_loop)) {
706 			/*
707 			 * Loop back multicast datagram if not expressly
708 			 * forbidden to do so, even if we have not joined
709 			 * the address; protocols will filter it later,
710 			 * thus deferring a hash lookup and lock acquisition
711 			 * at the expense of an m_copym().
712 			 */
713 			ip6_mloopback(ifp, m, dst);
714 		} else {
715 			/*
716 			 * If we are acting as a multicast router, perform
717 			 * multicast forwarding as if the packet had just
718 			 * arrived on the interface to which we are about
719 			 * to send.  The multicast forwarding function
720 			 * recursively calls this function, using the
721 			 * IPV6_FORWARDING flag to prevent infinite recursion.
722 			 *
723 			 * Multicasts that are looped back by ip6_mloopback(),
724 			 * above, will be forwarded by the ip6_input() routine,
725 			 * if necessary.
726 			 */
727 			if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
728 				/*
729 				 * XXX: ip6_mforward expects that rcvif is NULL
730 				 * when it is called from the originating path.
731 				 * However, it is not always the case, since
732 				 * some versions of MGETHDR() does not
733 				 * initialize the field.
734 				 */
735 				m->m_pkthdr.rcvif = NULL;
736 				if (ip6_mforward(ip6, ifp, m) != 0) {
737 					m_freem(m);
738 					goto done;
739 				}
740 			}
741 		}
742 		/*
743 		 * Multicasts with a hoplimit of zero may be looped back,
744 		 * above, but must not be transmitted on a network.
745 		 * Also, multicasts addressed to the loopback interface
746 		 * are not sent -- the above call to ip6_mloopback() will
747 		 * loop back a copy if this host actually belongs to the
748 		 * destination group on the loopback interface.
749 		 */
750 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
751 		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
752 			m_freem(m);
753 			goto done;
754 		}
755 	}
756 
757 	/*
758 	 * Fill the outgoing inteface to tell the upper layer
759 	 * to increment per-interface statistics.
760 	 */
761 	if (ifpp)
762 		*ifpp = ifp;
763 
764 	/* Determine path MTU. */
765 	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
766 	    &alwaysfrag)) != 0)
767 		goto bad;
768 
769 	/*
770 	 * The caller of this function may specify to use the minimum MTU
771 	 * in some cases.
772 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
773 	 * setting.  The logic is a bit complicated; by default, unicast
774 	 * packets will follow path MTU while multicast packets will be sent at
775 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
776 	 * including unicast ones will be sent at the minimum MTU.  Multicast
777 	 * packets will always be sent at the minimum MTU unless
778 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
779 	 * See RFC 3542 for more details.
780 	 */
781 	if (mtu > IPV6_MMTU) {
782 		if ((flags & IPV6_MINMTU))
783 			mtu = IPV6_MMTU;
784 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
785 			mtu = IPV6_MMTU;
786 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
787 			 (opt == NULL ||
788 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
789 			mtu = IPV6_MMTU;
790 		}
791 	}
792 
793 	/*
794 	 * clear embedded scope identifiers if necessary.
795 	 * in6_clearscope will touch the addresses only when necessary.
796 	 */
797 	in6_clearscope(&ip6->ip6_src);
798 	in6_clearscope(&ip6->ip6_dst);
799 
800 	/*
801 	 * If the outgoing packet contains a hop-by-hop options header,
802 	 * it must be examined and processed even by the source node.
803 	 * (RFC 2460, section 4.)
804 	 */
805 	if (exthdrs.ip6e_hbh) {
806 		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
807 		u_int32_t dummy; /* XXX unused */
808 		u_int32_t plen = 0; /* XXX: ip6_process will check the value */
809 
810 #ifdef DIAGNOSTIC
811 		if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
812 			panic("ip6e_hbh is not continuous");
813 #endif
814 		/*
815 		 *  XXX: if we have to send an ICMPv6 error to the sender,
816 		 *       we need the M_LOOP flag since icmp6_error() expects
817 		 *       the IPv6 and the hop-by-hop options header are
818 		 *       continuous unless the flag is set.
819 		 */
820 		m->m_flags |= M_LOOP;
821 		m->m_pkthdr.rcvif = ifp;
822 		if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
823 		    ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
824 		    &dummy, &plen) < 0) {
825 			/* m was already freed at this point */
826 			error = EINVAL;/* better error? */
827 			goto done;
828 		}
829 		m->m_flags &= ~M_LOOP; /* XXX */
830 		m->m_pkthdr.rcvif = NULL;
831 	}
832 
833 	/* Jump over all PFIL processing if hooks are not active. */
834 	if (!PFIL_HOOKED(&inet6_pfil_hook))
835 		goto passout;
836 
837 	odst = ip6->ip6_dst;
838 	/* Run through list of hooks for output packets. */
839 	error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT, inp);
840 	if (error != 0 || m == NULL)
841 		goto done;
842 	ip6 = mtod(m, struct ip6_hdr *);
843 
844 	/* See if destination IP address was changed by packet filter. */
845 	if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) {
846 		m->m_flags |= M_SKIP_FIREWALL;
847 		/* If destination is now ourself drop to ip6_input(). */
848 		if (in6_localaddr(&ip6->ip6_dst)) {
849 			if (m->m_pkthdr.rcvif == NULL)
850 				m->m_pkthdr.rcvif = V_loif;
851 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
852 				m->m_pkthdr.csum_flags |=
853 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
854 				m->m_pkthdr.csum_data = 0xffff;
855 			}
856 			m->m_pkthdr.csum_flags |=
857 			    CSUM_IP_CHECKED | CSUM_IP_VALID;
858 			error = netisr_queue(NETISR_IPV6, m);
859 			goto done;
860 		} else
861 			goto again;	/* Redo the routing table lookup. */
862 	}
863 
864 	/* XXX: IPFIREWALL_FORWARD */
865 
866 passout:
867 	/*
868 	 * Send the packet to the outgoing interface.
869 	 * If necessary, do IPv6 fragmentation before sending.
870 	 *
871 	 * the logic here is rather complex:
872 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
873 	 * 1-a:	send as is if tlen <= path mtu
874 	 * 1-b:	fragment if tlen > path mtu
875 	 *
876 	 * 2: if user asks us not to fragment (dontfrag == 1)
877 	 * 2-a:	send as is if tlen <= interface mtu
878 	 * 2-b:	error if tlen > interface mtu
879 	 *
880 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
881 	 *	always fragment
882 	 *
883 	 * 4: if dontfrag == 1 && alwaysfrag == 1
884 	 *	error, as we cannot handle this conflicting request
885 	 */
886 	tlen = m->m_pkthdr.len;
887 
888 	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
889 		dontfrag = 1;
890 	else
891 		dontfrag = 0;
892 	if (dontfrag && alwaysfrag) {	/* case 4 */
893 		/* conflicting request - can't transmit */
894 		error = EMSGSIZE;
895 		goto bad;
896 	}
897 	if (dontfrag && tlen > IN6_LINKMTU(ifp)) {	/* case 2-b */
898 		/*
899 		 * Even if the DONTFRAG option is specified, we cannot send the
900 		 * packet when the data length is larger than the MTU of the
901 		 * outgoing interface.
902 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
903 		 * well as returning an error code (the latter is not described
904 		 * in the API spec.)
905 		 */
906 		u_int32_t mtu32;
907 		struct ip6ctlparam ip6cp;
908 
909 		mtu32 = (u_int32_t)mtu;
910 		bzero(&ip6cp, sizeof(ip6cp));
911 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
912 		pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
913 		    (void *)&ip6cp);
914 
915 		error = EMSGSIZE;
916 		goto bad;
917 	}
918 
919 	/*
920 	 * transmit packet without fragmentation
921 	 */
922 	if (dontfrag || (!alwaysfrag && tlen <= mtu)) {	/* case 1-a and 2-a */
923 		struct in6_ifaddr *ia6;
924 
925 		ip6 = mtod(m, struct ip6_hdr *);
926 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
927 		if (ia6) {
928 			/* Record statistics for this interface address. */
929 			ia6->ia_ifa.if_opackets++;
930 			ia6->ia_ifa.if_obytes += m->m_pkthdr.len;
931 		}
932 		error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
933 		goto done;
934 	}
935 
936 	/*
937 	 * try to fragment the packet.  case 1-b and 3
938 	 */
939 	if (mtu < IPV6_MMTU) {
940 		/* path MTU cannot be less than IPV6_MMTU */
941 		error = EMSGSIZE;
942 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
943 		goto bad;
944 	} else if (ip6->ip6_plen == 0) {
945 		/* jumbo payload cannot be fragmented */
946 		error = EMSGSIZE;
947 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
948 		goto bad;
949 	} else {
950 		struct mbuf **mnext, *m_frgpart;
951 		struct ip6_frag *ip6f;
952 		u_int32_t id = htonl(ip6_randomid());
953 		u_char nextproto;
954 
955 		int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len;
956 
957 		/*
958 		 * Too large for the destination or interface;
959 		 * fragment if possible.
960 		 * Must be able to put at least 8 bytes per fragment.
961 		 */
962 		hlen = unfragpartlen;
963 		if (mtu > IPV6_MAXPACKET)
964 			mtu = IPV6_MAXPACKET;
965 
966 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
967 		if (len < 8) {
968 			error = EMSGSIZE;
969 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
970 			goto bad;
971 		}
972 
973 		/*
974 		 * Verify that we have any chance at all of being able to queue
975 		 *      the packet or packet fragments
976 		 */
977 		if (qslots <= 0 || ((u_int)qslots * (mtu - hlen)
978 		    < tlen  /* - hlen */)) {
979 			error = ENOBUFS;
980 			V_ip6stat.ip6s_odropped++;
981 			goto bad;
982 		}
983 
984 		mnext = &m->m_nextpkt;
985 
986 		/*
987 		 * Change the next header field of the last header in the
988 		 * unfragmentable part.
989 		 */
990 		if (exthdrs.ip6e_rthdr) {
991 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
992 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
993 		} else if (exthdrs.ip6e_dest1) {
994 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
995 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
996 		} else if (exthdrs.ip6e_hbh) {
997 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
998 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
999 		} else {
1000 			nextproto = ip6->ip6_nxt;
1001 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
1002 		}
1003 
1004 		/*
1005 		 * Loop through length of segment after first fragment,
1006 		 * make new header and copy data of each part and link onto
1007 		 * chain.
1008 		 */
1009 		m0 = m;
1010 		for (off = hlen; off < tlen; off += len) {
1011 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
1012 			if (!m) {
1013 				error = ENOBUFS;
1014 				V_ip6stat.ip6s_odropped++;
1015 				goto sendorfree;
1016 			}
1017 			m->m_pkthdr.rcvif = NULL;
1018 			m->m_flags = m0->m_flags & M_COPYFLAGS;
1019 			*mnext = m;
1020 			mnext = &m->m_nextpkt;
1021 			m->m_data += max_linkhdr;
1022 			mhip6 = mtod(m, struct ip6_hdr *);
1023 			*mhip6 = *ip6;
1024 			m->m_len = sizeof(*mhip6);
1025 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1026 			if (error) {
1027 				V_ip6stat.ip6s_odropped++;
1028 				goto sendorfree;
1029 			}
1030 			ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
1031 			if (off + len >= tlen)
1032 				len = tlen - off;
1033 			else
1034 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1035 			mhip6->ip6_plen = htons((u_short)(len + hlen +
1036 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
1037 			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
1038 				error = ENOBUFS;
1039 				V_ip6stat.ip6s_odropped++;
1040 				goto sendorfree;
1041 			}
1042 			m_cat(m, m_frgpart);
1043 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1044 			m->m_pkthdr.rcvif = NULL;
1045 			ip6f->ip6f_reserved = 0;
1046 			ip6f->ip6f_ident = id;
1047 			ip6f->ip6f_nxt = nextproto;
1048 			V_ip6stat.ip6s_ofragments++;
1049 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1050 		}
1051 
1052 		in6_ifstat_inc(ifp, ifs6_out_fragok);
1053 	}
1054 
1055 	/*
1056 	 * Remove leading garbages.
1057 	 */
1058 sendorfree:
1059 	m = m0->m_nextpkt;
1060 	m0->m_nextpkt = 0;
1061 	m_freem(m0);
1062 	for (m0 = m; m; m = m0) {
1063 		m0 = m->m_nextpkt;
1064 		m->m_nextpkt = 0;
1065 		if (error == 0) {
1066 			/* Record statistics for this interface address. */
1067 			if (ia) {
1068 				ia->ia_ifa.if_opackets++;
1069 				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1070 			}
1071 			error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1072 		} else
1073 			m_freem(m);
1074 	}
1075 
1076 	if (error == 0)
1077 		V_ip6stat.ip6s_fragmented++;
1078 
1079 done:
1080 	if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1081 		RTFREE(ro->ro_rt);
1082 	} else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1083 		RTFREE(ro_pmtu->ro_rt);
1084 	}
1085 #ifdef IPSEC
1086 	if (sp != NULL)
1087 		KEY_FREESP(&sp);
1088 #endif
1089 
1090 	return (error);
1091 
1092 freehdrs:
1093 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
1094 	m_freem(exthdrs.ip6e_dest1);
1095 	m_freem(exthdrs.ip6e_rthdr);
1096 	m_freem(exthdrs.ip6e_dest2);
1097 	/* FALLTHROUGH */
1098 bad:
1099 	if (m)
1100 		m_freem(m);
1101 	goto done;
1102 }
1103 
1104 static int
1105 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen)
1106 {
1107 	struct mbuf *m;
1108 
1109 	if (hlen > MCLBYTES)
1110 		return (ENOBUFS); /* XXX */
1111 
1112 	MGET(m, M_DONTWAIT, MT_DATA);
1113 	if (!m)
1114 		return (ENOBUFS);
1115 
1116 	if (hlen > MLEN) {
1117 		MCLGET(m, M_DONTWAIT);
1118 		if ((m->m_flags & M_EXT) == 0) {
1119 			m_free(m);
1120 			return (ENOBUFS);
1121 		}
1122 	}
1123 	m->m_len = hlen;
1124 	if (hdr)
1125 		bcopy(hdr, mtod(m, caddr_t), hlen);
1126 
1127 	*mp = m;
1128 	return (0);
1129 }
1130 
1131 /*
1132  * Insert jumbo payload option.
1133  */
1134 static int
1135 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1136 {
1137 	struct mbuf *mopt;
1138 	u_char *optbuf;
1139 	u_int32_t v;
1140 
1141 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
1142 
1143 	/*
1144 	 * If there is no hop-by-hop options header, allocate new one.
1145 	 * If there is one but it doesn't have enough space to store the
1146 	 * jumbo payload option, allocate a cluster to store the whole options.
1147 	 * Otherwise, use it to store the options.
1148 	 */
1149 	if (exthdrs->ip6e_hbh == 0) {
1150 		MGET(mopt, M_DONTWAIT, MT_DATA);
1151 		if (mopt == 0)
1152 			return (ENOBUFS);
1153 		mopt->m_len = JUMBOOPTLEN;
1154 		optbuf = mtod(mopt, u_char *);
1155 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
1156 		exthdrs->ip6e_hbh = mopt;
1157 	} else {
1158 		struct ip6_hbh *hbh;
1159 
1160 		mopt = exthdrs->ip6e_hbh;
1161 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1162 			/*
1163 			 * XXX assumption:
1164 			 * - exthdrs->ip6e_hbh is not referenced from places
1165 			 *   other than exthdrs.
1166 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
1167 			 */
1168 			int oldoptlen = mopt->m_len;
1169 			struct mbuf *n;
1170 
1171 			/*
1172 			 * XXX: give up if the whole (new) hbh header does
1173 			 * not fit even in an mbuf cluster.
1174 			 */
1175 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1176 				return (ENOBUFS);
1177 
1178 			/*
1179 			 * As a consequence, we must always prepare a cluster
1180 			 * at this point.
1181 			 */
1182 			MGET(n, M_DONTWAIT, MT_DATA);
1183 			if (n) {
1184 				MCLGET(n, M_DONTWAIT);
1185 				if ((n->m_flags & M_EXT) == 0) {
1186 					m_freem(n);
1187 					n = NULL;
1188 				}
1189 			}
1190 			if (!n)
1191 				return (ENOBUFS);
1192 			n->m_len = oldoptlen + JUMBOOPTLEN;
1193 			bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1194 			    oldoptlen);
1195 			optbuf = mtod(n, caddr_t) + oldoptlen;
1196 			m_freem(mopt);
1197 			mopt = exthdrs->ip6e_hbh = n;
1198 		} else {
1199 			optbuf = mtod(mopt, u_char *) + mopt->m_len;
1200 			mopt->m_len += JUMBOOPTLEN;
1201 		}
1202 		optbuf[0] = IP6OPT_PADN;
1203 		optbuf[1] = 1;
1204 
1205 		/*
1206 		 * Adjust the header length according to the pad and
1207 		 * the jumbo payload option.
1208 		 */
1209 		hbh = mtod(mopt, struct ip6_hbh *);
1210 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1211 	}
1212 
1213 	/* fill in the option. */
1214 	optbuf[2] = IP6OPT_JUMBO;
1215 	optbuf[3] = 4;
1216 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1217 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1218 
1219 	/* finally, adjust the packet header length */
1220 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1221 
1222 	return (0);
1223 #undef JUMBOOPTLEN
1224 }
1225 
1226 /*
1227  * Insert fragment header and copy unfragmentable header portions.
1228  */
1229 static int
1230 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1231     struct ip6_frag **frghdrp)
1232 {
1233 	struct mbuf *n, *mlast;
1234 
1235 	if (hlen > sizeof(struct ip6_hdr)) {
1236 		n = m_copym(m0, sizeof(struct ip6_hdr),
1237 		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1238 		if (n == 0)
1239 			return (ENOBUFS);
1240 		m->m_next = n;
1241 	} else
1242 		n = m;
1243 
1244 	/* Search for the last mbuf of unfragmentable part. */
1245 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1246 		;
1247 
1248 	if ((mlast->m_flags & M_EXT) == 0 &&
1249 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1250 		/* use the trailing space of the last mbuf for the fragment hdr */
1251 		*frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1252 		    mlast->m_len);
1253 		mlast->m_len += sizeof(struct ip6_frag);
1254 		m->m_pkthdr.len += sizeof(struct ip6_frag);
1255 	} else {
1256 		/* allocate a new mbuf for the fragment header */
1257 		struct mbuf *mfrg;
1258 
1259 		MGET(mfrg, M_DONTWAIT, MT_DATA);
1260 		if (mfrg == 0)
1261 			return (ENOBUFS);
1262 		mfrg->m_len = sizeof(struct ip6_frag);
1263 		*frghdrp = mtod(mfrg, struct ip6_frag *);
1264 		mlast->m_next = mfrg;
1265 	}
1266 
1267 	return (0);
1268 }
1269 
1270 static int
1271 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro,
1272     struct ifnet *ifp, struct in6_addr *dst, u_long *mtup,
1273     int *alwaysfragp)
1274 {
1275 	u_int32_t mtu = 0;
1276 	int alwaysfrag = 0;
1277 	int error = 0;
1278 
1279 	if (ro_pmtu != ro) {
1280 		/* The first hop and the final destination may differ. */
1281 		struct sockaddr_in6 *sa6_dst =
1282 		    (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1283 		if (ro_pmtu->ro_rt &&
1284 		    ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1285 		     !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1286 			RTFREE(ro_pmtu->ro_rt);
1287 			ro_pmtu->ro_rt = (struct rtentry *)NULL;
1288 		}
1289 		if (ro_pmtu->ro_rt == NULL) {
1290 			bzero(sa6_dst, sizeof(*sa6_dst));
1291 			sa6_dst->sin6_family = AF_INET6;
1292 			sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1293 			sa6_dst->sin6_addr = *dst;
1294 
1295 			rtalloc((struct route *)ro_pmtu);
1296 		}
1297 	}
1298 	if (ro_pmtu->ro_rt) {
1299 		u_int32_t ifmtu;
1300 		struct in_conninfo inc;
1301 
1302 		bzero(&inc, sizeof(inc));
1303 		inc.inc_flags |= INC_ISIPV6;
1304 		inc.inc6_faddr = *dst;
1305 
1306 		if (ifp == NULL)
1307 			ifp = ro_pmtu->ro_rt->rt_ifp;
1308 		ifmtu = IN6_LINKMTU(ifp);
1309 		mtu = tcp_hc_getmtu(&inc);
1310 		if (mtu)
1311 			mtu = min(mtu, ro_pmtu->ro_rt->rt_rmx.rmx_mtu);
1312 		else
1313 			mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1314 		if (mtu == 0)
1315 			mtu = ifmtu;
1316 		else if (mtu < IPV6_MMTU) {
1317 			/*
1318 			 * RFC2460 section 5, last paragraph:
1319 			 * if we record ICMPv6 too big message with
1320 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1321 			 * or smaller, with framgent header attached.
1322 			 * (fragment header is needed regardless from the
1323 			 * packet size, for translators to identify packets)
1324 			 */
1325 			alwaysfrag = 1;
1326 			mtu = IPV6_MMTU;
1327 		} else if (mtu > ifmtu) {
1328 			/*
1329 			 * The MTU on the route is larger than the MTU on
1330 			 * the interface!  This shouldn't happen, unless the
1331 			 * MTU of the interface has been changed after the
1332 			 * interface was brought up.  Change the MTU in the
1333 			 * route to match the interface MTU (as long as the
1334 			 * field isn't locked).
1335 			 */
1336 			mtu = ifmtu;
1337 			ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1338 		}
1339 	} else if (ifp) {
1340 		mtu = IN6_LINKMTU(ifp);
1341 	} else
1342 		error = EHOSTUNREACH; /* XXX */
1343 
1344 	*mtup = mtu;
1345 	if (alwaysfragp)
1346 		*alwaysfragp = alwaysfrag;
1347 	return (error);
1348 }
1349 
1350 /*
1351  * IP6 socket option processing.
1352  */
1353 int
1354 ip6_ctloutput(struct socket *so, struct sockopt *sopt)
1355 {
1356 	int optdatalen, uproto;
1357 	void *optdata;
1358 	struct inpcb *in6p = sotoinpcb(so);
1359 	int error, optval;
1360 	int level, op, optname;
1361 	int optlen;
1362 	struct thread *td;
1363 
1364 	level = sopt->sopt_level;
1365 	op = sopt->sopt_dir;
1366 	optname = sopt->sopt_name;
1367 	optlen = sopt->sopt_valsize;
1368 	td = sopt->sopt_td;
1369 	error = 0;
1370 	optval = 0;
1371 	uproto = (int)so->so_proto->pr_protocol;
1372 
1373 	if (level == IPPROTO_IPV6) {
1374 		switch (op) {
1375 
1376 		case SOPT_SET:
1377 			switch (optname) {
1378 			case IPV6_2292PKTOPTIONS:
1379 #ifdef IPV6_PKTOPTIONS
1380 			case IPV6_PKTOPTIONS:
1381 #endif
1382 			{
1383 				struct mbuf *m;
1384 
1385 				error = soopt_getm(sopt, &m); /* XXX */
1386 				if (error != 0)
1387 					break;
1388 				error = soopt_mcopyin(sopt, m); /* XXX */
1389 				if (error != 0)
1390 					break;
1391 				error = ip6_pcbopts(&in6p->in6p_outputopts,
1392 						    m, so, sopt);
1393 				m_freem(m); /* XXX */
1394 				break;
1395 			}
1396 
1397 			/*
1398 			 * Use of some Hop-by-Hop options or some
1399 			 * Destination options, might require special
1400 			 * privilege.  That is, normal applications
1401 			 * (without special privilege) might be forbidden
1402 			 * from setting certain options in outgoing packets,
1403 			 * and might never see certain options in received
1404 			 * packets. [RFC 2292 Section 6]
1405 			 * KAME specific note:
1406 			 *  KAME prevents non-privileged users from sending or
1407 			 *  receiving ANY hbh/dst options in order to avoid
1408 			 *  overhead of parsing options in the kernel.
1409 			 */
1410 			case IPV6_RECVHOPOPTS:
1411 			case IPV6_RECVDSTOPTS:
1412 			case IPV6_RECVRTHDRDSTOPTS:
1413 				if (td != NULL) {
1414 					error = priv_check(td,
1415 					    PRIV_NETINET_SETHDROPTS);
1416 					if (error)
1417 						break;
1418 				}
1419 				/* FALLTHROUGH */
1420 			case IPV6_UNICAST_HOPS:
1421 			case IPV6_HOPLIMIT:
1422 			case IPV6_FAITH:
1423 
1424 			case IPV6_RECVPKTINFO:
1425 			case IPV6_RECVHOPLIMIT:
1426 			case IPV6_RECVRTHDR:
1427 			case IPV6_RECVPATHMTU:
1428 			case IPV6_RECVTCLASS:
1429 			case IPV6_V6ONLY:
1430 			case IPV6_AUTOFLOWLABEL:
1431 				if (optlen != sizeof(int)) {
1432 					error = EINVAL;
1433 					break;
1434 				}
1435 				error = sooptcopyin(sopt, &optval,
1436 					sizeof optval, sizeof optval);
1437 				if (error)
1438 					break;
1439 				switch (optname) {
1440 
1441 				case IPV6_UNICAST_HOPS:
1442 					if (optval < -1 || optval >= 256)
1443 						error = EINVAL;
1444 					else {
1445 						/* -1 = kernel default */
1446 						in6p->in6p_hops = optval;
1447 						if ((in6p->inp_vflag &
1448 						     INP_IPV4) != 0)
1449 							in6p->inp_ip_ttl = optval;
1450 					}
1451 					break;
1452 #define OPTSET(bit) \
1453 do { \
1454 	if (optval) \
1455 		in6p->inp_flags |= (bit); \
1456 	else \
1457 		in6p->inp_flags &= ~(bit); \
1458 } while (/*CONSTCOND*/ 0)
1459 #define OPTSET2292(bit) \
1460 do { \
1461 	in6p->inp_flags |= IN6P_RFC2292; \
1462 	if (optval) \
1463 		in6p->inp_flags |= (bit); \
1464 	else \
1465 		in6p->inp_flags &= ~(bit); \
1466 } while (/*CONSTCOND*/ 0)
1467 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0)
1468 
1469 				case IPV6_RECVPKTINFO:
1470 					/* cannot mix with RFC2292 */
1471 					if (OPTBIT(IN6P_RFC2292)) {
1472 						error = EINVAL;
1473 						break;
1474 					}
1475 					OPTSET(IN6P_PKTINFO);
1476 					break;
1477 
1478 				case IPV6_HOPLIMIT:
1479 				{
1480 					struct ip6_pktopts **optp;
1481 
1482 					/* cannot mix with RFC2292 */
1483 					if (OPTBIT(IN6P_RFC2292)) {
1484 						error = EINVAL;
1485 						break;
1486 					}
1487 					optp = &in6p->in6p_outputopts;
1488 					error = ip6_pcbopt(IPV6_HOPLIMIT,
1489 					    (u_char *)&optval, sizeof(optval),
1490 					    optp, (td != NULL) ? td->td_ucred :
1491 					    NULL, uproto);
1492 					break;
1493 				}
1494 
1495 				case IPV6_RECVHOPLIMIT:
1496 					/* cannot mix with RFC2292 */
1497 					if (OPTBIT(IN6P_RFC2292)) {
1498 						error = EINVAL;
1499 						break;
1500 					}
1501 					OPTSET(IN6P_HOPLIMIT);
1502 					break;
1503 
1504 				case IPV6_RECVHOPOPTS:
1505 					/* cannot mix with RFC2292 */
1506 					if (OPTBIT(IN6P_RFC2292)) {
1507 						error = EINVAL;
1508 						break;
1509 					}
1510 					OPTSET(IN6P_HOPOPTS);
1511 					break;
1512 
1513 				case IPV6_RECVDSTOPTS:
1514 					/* cannot mix with RFC2292 */
1515 					if (OPTBIT(IN6P_RFC2292)) {
1516 						error = EINVAL;
1517 						break;
1518 					}
1519 					OPTSET(IN6P_DSTOPTS);
1520 					break;
1521 
1522 				case IPV6_RECVRTHDRDSTOPTS:
1523 					/* cannot mix with RFC2292 */
1524 					if (OPTBIT(IN6P_RFC2292)) {
1525 						error = EINVAL;
1526 						break;
1527 					}
1528 					OPTSET(IN6P_RTHDRDSTOPTS);
1529 					break;
1530 
1531 				case IPV6_RECVRTHDR:
1532 					/* cannot mix with RFC2292 */
1533 					if (OPTBIT(IN6P_RFC2292)) {
1534 						error = EINVAL;
1535 						break;
1536 					}
1537 					OPTSET(IN6P_RTHDR);
1538 					break;
1539 
1540 				case IPV6_FAITH:
1541 					OPTSET(INP_FAITH);
1542 					break;
1543 
1544 				case IPV6_RECVPATHMTU:
1545 					/*
1546 					 * We ignore this option for TCP
1547 					 * sockets.
1548 					 * (RFC3542 leaves this case
1549 					 * unspecified.)
1550 					 */
1551 					if (uproto != IPPROTO_TCP)
1552 						OPTSET(IN6P_MTU);
1553 					break;
1554 
1555 				case IPV6_V6ONLY:
1556 					/*
1557 					 * make setsockopt(IPV6_V6ONLY)
1558 					 * available only prior to bind(2).
1559 					 * see ipng mailing list, Jun 22 2001.
1560 					 */
1561 					if (in6p->inp_lport ||
1562 					    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1563 						error = EINVAL;
1564 						break;
1565 					}
1566 					OPTSET(IN6P_IPV6_V6ONLY);
1567 					if (optval)
1568 						in6p->inp_vflag &= ~INP_IPV4;
1569 					else
1570 						in6p->inp_vflag |= INP_IPV4;
1571 					break;
1572 				case IPV6_RECVTCLASS:
1573 					/* cannot mix with RFC2292 XXX */
1574 					if (OPTBIT(IN6P_RFC2292)) {
1575 						error = EINVAL;
1576 						break;
1577 					}
1578 					OPTSET(IN6P_TCLASS);
1579 					break;
1580 				case IPV6_AUTOFLOWLABEL:
1581 					OPTSET(IN6P_AUTOFLOWLABEL);
1582 					break;
1583 
1584 				}
1585 				break;
1586 
1587 			case IPV6_TCLASS:
1588 			case IPV6_DONTFRAG:
1589 			case IPV6_USE_MIN_MTU:
1590 			case IPV6_PREFER_TEMPADDR:
1591 				if (optlen != sizeof(optval)) {
1592 					error = EINVAL;
1593 					break;
1594 				}
1595 				error = sooptcopyin(sopt, &optval,
1596 					sizeof optval, sizeof optval);
1597 				if (error)
1598 					break;
1599 				{
1600 					struct ip6_pktopts **optp;
1601 					optp = &in6p->in6p_outputopts;
1602 					error = ip6_pcbopt(optname,
1603 					    (u_char *)&optval, sizeof(optval),
1604 					    optp, (td != NULL) ? td->td_ucred :
1605 					    NULL, uproto);
1606 					break;
1607 				}
1608 
1609 			case IPV6_2292PKTINFO:
1610 			case IPV6_2292HOPLIMIT:
1611 			case IPV6_2292HOPOPTS:
1612 			case IPV6_2292DSTOPTS:
1613 			case IPV6_2292RTHDR:
1614 				/* RFC 2292 */
1615 				if (optlen != sizeof(int)) {
1616 					error = EINVAL;
1617 					break;
1618 				}
1619 				error = sooptcopyin(sopt, &optval,
1620 					sizeof optval, sizeof optval);
1621 				if (error)
1622 					break;
1623 				switch (optname) {
1624 				case IPV6_2292PKTINFO:
1625 					OPTSET2292(IN6P_PKTINFO);
1626 					break;
1627 				case IPV6_2292HOPLIMIT:
1628 					OPTSET2292(IN6P_HOPLIMIT);
1629 					break;
1630 				case IPV6_2292HOPOPTS:
1631 					/*
1632 					 * Check super-user privilege.
1633 					 * See comments for IPV6_RECVHOPOPTS.
1634 					 */
1635 					if (td != NULL) {
1636 						error = priv_check(td,
1637 						    PRIV_NETINET_SETHDROPTS);
1638 						if (error)
1639 							return (error);
1640 					}
1641 					OPTSET2292(IN6P_HOPOPTS);
1642 					break;
1643 				case IPV6_2292DSTOPTS:
1644 					if (td != NULL) {
1645 						error = priv_check(td,
1646 						    PRIV_NETINET_SETHDROPTS);
1647 						if (error)
1648 							return (error);
1649 					}
1650 					OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1651 					break;
1652 				case IPV6_2292RTHDR:
1653 					OPTSET2292(IN6P_RTHDR);
1654 					break;
1655 				}
1656 				break;
1657 			case IPV6_PKTINFO:
1658 			case IPV6_HOPOPTS:
1659 			case IPV6_RTHDR:
1660 			case IPV6_DSTOPTS:
1661 			case IPV6_RTHDRDSTOPTS:
1662 			case IPV6_NEXTHOP:
1663 			{
1664 				/* new advanced API (RFC3542) */
1665 				u_char *optbuf;
1666 				u_char optbuf_storage[MCLBYTES];
1667 				int optlen;
1668 				struct ip6_pktopts **optp;
1669 
1670 				/* cannot mix with RFC2292 */
1671 				if (OPTBIT(IN6P_RFC2292)) {
1672 					error = EINVAL;
1673 					break;
1674 				}
1675 
1676 				/*
1677 				 * We only ensure valsize is not too large
1678 				 * here.  Further validation will be done
1679 				 * later.
1680 				 */
1681 				error = sooptcopyin(sopt, optbuf_storage,
1682 				    sizeof(optbuf_storage), 0);
1683 				if (error)
1684 					break;
1685 				optlen = sopt->sopt_valsize;
1686 				optbuf = optbuf_storage;
1687 				optp = &in6p->in6p_outputopts;
1688 				error = ip6_pcbopt(optname, optbuf, optlen,
1689 				    optp, (td != NULL) ? td->td_ucred : NULL,
1690 				    uproto);
1691 				break;
1692 			}
1693 #undef OPTSET
1694 
1695 			case IPV6_MULTICAST_IF:
1696 			case IPV6_MULTICAST_HOPS:
1697 			case IPV6_MULTICAST_LOOP:
1698 			case IPV6_JOIN_GROUP:
1699 			case IPV6_LEAVE_GROUP:
1700 			case IPV6_MSFILTER:
1701 			case MCAST_BLOCK_SOURCE:
1702 			case MCAST_UNBLOCK_SOURCE:
1703 			case MCAST_JOIN_GROUP:
1704 			case MCAST_LEAVE_GROUP:
1705 			case MCAST_JOIN_SOURCE_GROUP:
1706 			case MCAST_LEAVE_SOURCE_GROUP:
1707 				error = ip6_setmoptions(in6p, sopt);
1708 				break;
1709 
1710 			case IPV6_PORTRANGE:
1711 				error = sooptcopyin(sopt, &optval,
1712 				    sizeof optval, sizeof optval);
1713 				if (error)
1714 					break;
1715 
1716 				switch (optval) {
1717 				case IPV6_PORTRANGE_DEFAULT:
1718 					in6p->inp_flags &= ~(INP_LOWPORT);
1719 					in6p->inp_flags &= ~(INP_HIGHPORT);
1720 					break;
1721 
1722 				case IPV6_PORTRANGE_HIGH:
1723 					in6p->inp_flags &= ~(INP_LOWPORT);
1724 					in6p->inp_flags |= INP_HIGHPORT;
1725 					break;
1726 
1727 				case IPV6_PORTRANGE_LOW:
1728 					in6p->inp_flags &= ~(INP_HIGHPORT);
1729 					in6p->inp_flags |= INP_LOWPORT;
1730 					break;
1731 
1732 				default:
1733 					error = EINVAL;
1734 					break;
1735 				}
1736 				break;
1737 
1738 #ifdef IPSEC
1739 			case IPV6_IPSEC_POLICY:
1740 			{
1741 				caddr_t req;
1742 				struct mbuf *m;
1743 
1744 				if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1745 					break;
1746 				if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1747 					break;
1748 				req = mtod(m, caddr_t);
1749 				error = ipsec_set_policy(in6p, optname, req,
1750 				    m->m_len, (sopt->sopt_td != NULL) ?
1751 				    sopt->sopt_td->td_ucred : NULL);
1752 				m_freem(m);
1753 				break;
1754 			}
1755 #endif /* IPSEC */
1756 
1757 			default:
1758 				error = ENOPROTOOPT;
1759 				break;
1760 			}
1761 			break;
1762 
1763 		case SOPT_GET:
1764 			switch (optname) {
1765 
1766 			case IPV6_2292PKTOPTIONS:
1767 #ifdef IPV6_PKTOPTIONS
1768 			case IPV6_PKTOPTIONS:
1769 #endif
1770 				/*
1771 				 * RFC3542 (effectively) deprecated the
1772 				 * semantics of the 2292-style pktoptions.
1773 				 * Since it was not reliable in nature (i.e.,
1774 				 * applications had to expect the lack of some
1775 				 * information after all), it would make sense
1776 				 * to simplify this part by always returning
1777 				 * empty data.
1778 				 */
1779 				sopt->sopt_valsize = 0;
1780 				break;
1781 
1782 			case IPV6_RECVHOPOPTS:
1783 			case IPV6_RECVDSTOPTS:
1784 			case IPV6_RECVRTHDRDSTOPTS:
1785 			case IPV6_UNICAST_HOPS:
1786 			case IPV6_RECVPKTINFO:
1787 			case IPV6_RECVHOPLIMIT:
1788 			case IPV6_RECVRTHDR:
1789 			case IPV6_RECVPATHMTU:
1790 
1791 			case IPV6_FAITH:
1792 			case IPV6_V6ONLY:
1793 			case IPV6_PORTRANGE:
1794 			case IPV6_RECVTCLASS:
1795 			case IPV6_AUTOFLOWLABEL:
1796 				switch (optname) {
1797 
1798 				case IPV6_RECVHOPOPTS:
1799 					optval = OPTBIT(IN6P_HOPOPTS);
1800 					break;
1801 
1802 				case IPV6_RECVDSTOPTS:
1803 					optval = OPTBIT(IN6P_DSTOPTS);
1804 					break;
1805 
1806 				case IPV6_RECVRTHDRDSTOPTS:
1807 					optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1808 					break;
1809 
1810 				case IPV6_UNICAST_HOPS:
1811 					optval = in6p->in6p_hops;
1812 					break;
1813 
1814 				case IPV6_RECVPKTINFO:
1815 					optval = OPTBIT(IN6P_PKTINFO);
1816 					break;
1817 
1818 				case IPV6_RECVHOPLIMIT:
1819 					optval = OPTBIT(IN6P_HOPLIMIT);
1820 					break;
1821 
1822 				case IPV6_RECVRTHDR:
1823 					optval = OPTBIT(IN6P_RTHDR);
1824 					break;
1825 
1826 				case IPV6_RECVPATHMTU:
1827 					optval = OPTBIT(IN6P_MTU);
1828 					break;
1829 
1830 				case IPV6_FAITH:
1831 					optval = OPTBIT(INP_FAITH);
1832 					break;
1833 
1834 				case IPV6_V6ONLY:
1835 					optval = OPTBIT(IN6P_IPV6_V6ONLY);
1836 					break;
1837 
1838 				case IPV6_PORTRANGE:
1839 				    {
1840 					int flags;
1841 					flags = in6p->inp_flags;
1842 					if (flags & INP_HIGHPORT)
1843 						optval = IPV6_PORTRANGE_HIGH;
1844 					else if (flags & INP_LOWPORT)
1845 						optval = IPV6_PORTRANGE_LOW;
1846 					else
1847 						optval = 0;
1848 					break;
1849 				    }
1850 				case IPV6_RECVTCLASS:
1851 					optval = OPTBIT(IN6P_TCLASS);
1852 					break;
1853 
1854 				case IPV6_AUTOFLOWLABEL:
1855 					optval = OPTBIT(IN6P_AUTOFLOWLABEL);
1856 					break;
1857 				}
1858 				if (error)
1859 					break;
1860 				error = sooptcopyout(sopt, &optval,
1861 					sizeof optval);
1862 				break;
1863 
1864 			case IPV6_PATHMTU:
1865 			{
1866 				u_long pmtu = 0;
1867 				struct ip6_mtuinfo mtuinfo;
1868 				struct route_in6 sro;
1869 
1870 				bzero(&sro, sizeof(sro));
1871 
1872 				if (!(so->so_state & SS_ISCONNECTED))
1873 					return (ENOTCONN);
1874 				/*
1875 				 * XXX: we dot not consider the case of source
1876 				 * routing, or optional information to specify
1877 				 * the outgoing interface.
1878 				 */
1879 				error = ip6_getpmtu(&sro, NULL, NULL,
1880 				    &in6p->in6p_faddr, &pmtu, NULL);
1881 				if (sro.ro_rt)
1882 					RTFREE(sro.ro_rt);
1883 				if (error)
1884 					break;
1885 				if (pmtu > IPV6_MAXPACKET)
1886 					pmtu = IPV6_MAXPACKET;
1887 
1888 				bzero(&mtuinfo, sizeof(mtuinfo));
1889 				mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1890 				optdata = (void *)&mtuinfo;
1891 				optdatalen = sizeof(mtuinfo);
1892 				error = sooptcopyout(sopt, optdata,
1893 				    optdatalen);
1894 				break;
1895 			}
1896 
1897 			case IPV6_2292PKTINFO:
1898 			case IPV6_2292HOPLIMIT:
1899 			case IPV6_2292HOPOPTS:
1900 			case IPV6_2292RTHDR:
1901 			case IPV6_2292DSTOPTS:
1902 				switch (optname) {
1903 				case IPV6_2292PKTINFO:
1904 					optval = OPTBIT(IN6P_PKTINFO);
1905 					break;
1906 				case IPV6_2292HOPLIMIT:
1907 					optval = OPTBIT(IN6P_HOPLIMIT);
1908 					break;
1909 				case IPV6_2292HOPOPTS:
1910 					optval = OPTBIT(IN6P_HOPOPTS);
1911 					break;
1912 				case IPV6_2292RTHDR:
1913 					optval = OPTBIT(IN6P_RTHDR);
1914 					break;
1915 				case IPV6_2292DSTOPTS:
1916 					optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1917 					break;
1918 				}
1919 				error = sooptcopyout(sopt, &optval,
1920 				    sizeof optval);
1921 				break;
1922 			case IPV6_PKTINFO:
1923 			case IPV6_HOPOPTS:
1924 			case IPV6_RTHDR:
1925 			case IPV6_DSTOPTS:
1926 			case IPV6_RTHDRDSTOPTS:
1927 			case IPV6_NEXTHOP:
1928 			case IPV6_TCLASS:
1929 			case IPV6_DONTFRAG:
1930 			case IPV6_USE_MIN_MTU:
1931 			case IPV6_PREFER_TEMPADDR:
1932 				error = ip6_getpcbopt(in6p->in6p_outputopts,
1933 				    optname, sopt);
1934 				break;
1935 
1936 			case IPV6_MULTICAST_IF:
1937 			case IPV6_MULTICAST_HOPS:
1938 			case IPV6_MULTICAST_LOOP:
1939 			case IPV6_MSFILTER:
1940 				error = ip6_getmoptions(in6p, sopt);
1941 				break;
1942 
1943 #ifdef IPSEC
1944 			case IPV6_IPSEC_POLICY:
1945 			  {
1946 				caddr_t req = NULL;
1947 				size_t len = 0;
1948 				struct mbuf *m = NULL;
1949 				struct mbuf **mp = &m;
1950 				size_t ovalsize = sopt->sopt_valsize;
1951 				caddr_t oval = (caddr_t)sopt->sopt_val;
1952 
1953 				error = soopt_getm(sopt, &m); /* XXX */
1954 				if (error != 0)
1955 					break;
1956 				error = soopt_mcopyin(sopt, m); /* XXX */
1957 				if (error != 0)
1958 					break;
1959 				sopt->sopt_valsize = ovalsize;
1960 				sopt->sopt_val = oval;
1961 				if (m) {
1962 					req = mtod(m, caddr_t);
1963 					len = m->m_len;
1964 				}
1965 				error = ipsec_get_policy(in6p, req, len, mp);
1966 				if (error == 0)
1967 					error = soopt_mcopyout(sopt, m); /* XXX */
1968 				if (error == 0 && m)
1969 					m_freem(m);
1970 				break;
1971 			  }
1972 #endif /* IPSEC */
1973 
1974 			default:
1975 				error = ENOPROTOOPT;
1976 				break;
1977 			}
1978 			break;
1979 		}
1980 	} else {		/* level != IPPROTO_IPV6 */
1981 		error = EINVAL;
1982 	}
1983 	return (error);
1984 }
1985 
1986 int
1987 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt)
1988 {
1989 	int error = 0, optval, optlen;
1990 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1991 	struct inpcb *in6p = sotoinpcb(so);
1992 	int level, op, optname;
1993 
1994 	level = sopt->sopt_level;
1995 	op = sopt->sopt_dir;
1996 	optname = sopt->sopt_name;
1997 	optlen = sopt->sopt_valsize;
1998 
1999 	if (level != IPPROTO_IPV6) {
2000 		return (EINVAL);
2001 	}
2002 
2003 	switch (optname) {
2004 	case IPV6_CHECKSUM:
2005 		/*
2006 		 * For ICMPv6 sockets, no modification allowed for checksum
2007 		 * offset, permit "no change" values to help existing apps.
2008 		 *
2009 		 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
2010 		 * for an ICMPv6 socket will fail."
2011 		 * The current behavior does not meet RFC3542.
2012 		 */
2013 		switch (op) {
2014 		case SOPT_SET:
2015 			if (optlen != sizeof(int)) {
2016 				error = EINVAL;
2017 				break;
2018 			}
2019 			error = sooptcopyin(sopt, &optval, sizeof(optval),
2020 					    sizeof(optval));
2021 			if (error)
2022 				break;
2023 			if ((optval % 2) != 0) {
2024 				/* the API assumes even offset values */
2025 				error = EINVAL;
2026 			} else if (so->so_proto->pr_protocol ==
2027 			    IPPROTO_ICMPV6) {
2028 				if (optval != icmp6off)
2029 					error = EINVAL;
2030 			} else
2031 				in6p->in6p_cksum = optval;
2032 			break;
2033 
2034 		case SOPT_GET:
2035 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2036 				optval = icmp6off;
2037 			else
2038 				optval = in6p->in6p_cksum;
2039 
2040 			error = sooptcopyout(sopt, &optval, sizeof(optval));
2041 			break;
2042 
2043 		default:
2044 			error = EINVAL;
2045 			break;
2046 		}
2047 		break;
2048 
2049 	default:
2050 		error = ENOPROTOOPT;
2051 		break;
2052 	}
2053 
2054 	return (error);
2055 }
2056 
2057 /*
2058  * Set up IP6 options in pcb for insertion in output packets or
2059  * specifying behavior of outgoing packets.
2060  */
2061 static int
2062 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m,
2063     struct socket *so, struct sockopt *sopt)
2064 {
2065 	struct ip6_pktopts *opt = *pktopt;
2066 	int error = 0;
2067 	struct thread *td = sopt->sopt_td;
2068 
2069 	/* turn off any old options. */
2070 	if (opt) {
2071 #ifdef DIAGNOSTIC
2072 		if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2073 		    opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2074 		    opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2075 			printf("ip6_pcbopts: all specified options are cleared.\n");
2076 #endif
2077 		ip6_clearpktopts(opt, -1);
2078 	} else
2079 		opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2080 	*pktopt = NULL;
2081 
2082 	if (!m || m->m_len == 0) {
2083 		/*
2084 		 * Only turning off any previous options, regardless of
2085 		 * whether the opt is just created or given.
2086 		 */
2087 		free(opt, M_IP6OPT);
2088 		return (0);
2089 	}
2090 
2091 	/*  set options specified by user. */
2092 	if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ?
2093 	    td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) {
2094 		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2095 		free(opt, M_IP6OPT);
2096 		return (error);
2097 	}
2098 	*pktopt = opt;
2099 	return (0);
2100 }
2101 
2102 /*
2103  * initialize ip6_pktopts.  beware that there are non-zero default values in
2104  * the struct.
2105  */
2106 void
2107 ip6_initpktopts(struct ip6_pktopts *opt)
2108 {
2109 
2110 	bzero(opt, sizeof(*opt));
2111 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
2112 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
2113 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2114 	opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2115 }
2116 
2117 static int
2118 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2119     struct ucred *cred, int uproto)
2120 {
2121 	struct ip6_pktopts *opt;
2122 
2123 	if (*pktopt == NULL) {
2124 		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2125 		    M_WAITOK);
2126 		ip6_initpktopts(*pktopt);
2127 	}
2128 	opt = *pktopt;
2129 
2130 	return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2131 }
2132 
2133 static int
2134 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2135 {
2136 	void *optdata = NULL;
2137 	int optdatalen = 0;
2138 	struct ip6_ext *ip6e;
2139 	int error = 0;
2140 	struct in6_pktinfo null_pktinfo;
2141 	int deftclass = 0, on;
2142 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
2143 	int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2144 
2145 	switch (optname) {
2146 	case IPV6_PKTINFO:
2147 		if (pktopt && pktopt->ip6po_pktinfo)
2148 			optdata = (void *)pktopt->ip6po_pktinfo;
2149 		else {
2150 			/* XXX: we don't have to do this every time... */
2151 			bzero(&null_pktinfo, sizeof(null_pktinfo));
2152 			optdata = (void *)&null_pktinfo;
2153 		}
2154 		optdatalen = sizeof(struct in6_pktinfo);
2155 		break;
2156 	case IPV6_TCLASS:
2157 		if (pktopt && pktopt->ip6po_tclass >= 0)
2158 			optdata = (void *)&pktopt->ip6po_tclass;
2159 		else
2160 			optdata = (void *)&deftclass;
2161 		optdatalen = sizeof(int);
2162 		break;
2163 	case IPV6_HOPOPTS:
2164 		if (pktopt && pktopt->ip6po_hbh) {
2165 			optdata = (void *)pktopt->ip6po_hbh;
2166 			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2167 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2168 		}
2169 		break;
2170 	case IPV6_RTHDR:
2171 		if (pktopt && pktopt->ip6po_rthdr) {
2172 			optdata = (void *)pktopt->ip6po_rthdr;
2173 			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2174 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2175 		}
2176 		break;
2177 	case IPV6_RTHDRDSTOPTS:
2178 		if (pktopt && pktopt->ip6po_dest1) {
2179 			optdata = (void *)pktopt->ip6po_dest1;
2180 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2181 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2182 		}
2183 		break;
2184 	case IPV6_DSTOPTS:
2185 		if (pktopt && pktopt->ip6po_dest2) {
2186 			optdata = (void *)pktopt->ip6po_dest2;
2187 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2188 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2189 		}
2190 		break;
2191 	case IPV6_NEXTHOP:
2192 		if (pktopt && pktopt->ip6po_nexthop) {
2193 			optdata = (void *)pktopt->ip6po_nexthop;
2194 			optdatalen = pktopt->ip6po_nexthop->sa_len;
2195 		}
2196 		break;
2197 	case IPV6_USE_MIN_MTU:
2198 		if (pktopt)
2199 			optdata = (void *)&pktopt->ip6po_minmtu;
2200 		else
2201 			optdata = (void *)&defminmtu;
2202 		optdatalen = sizeof(int);
2203 		break;
2204 	case IPV6_DONTFRAG:
2205 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2206 			on = 1;
2207 		else
2208 			on = 0;
2209 		optdata = (void *)&on;
2210 		optdatalen = sizeof(on);
2211 		break;
2212 	case IPV6_PREFER_TEMPADDR:
2213 		if (pktopt)
2214 			optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2215 		else
2216 			optdata = (void *)&defpreftemp;
2217 		optdatalen = sizeof(int);
2218 		break;
2219 	default:		/* should not happen */
2220 #ifdef DIAGNOSTIC
2221 		panic("ip6_getpcbopt: unexpected option\n");
2222 #endif
2223 		return (ENOPROTOOPT);
2224 	}
2225 
2226 	error = sooptcopyout(sopt, optdata, optdatalen);
2227 
2228 	return (error);
2229 }
2230 
2231 void
2232 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2233 {
2234 	if (pktopt == NULL)
2235 		return;
2236 
2237 	if (optname == -1 || optname == IPV6_PKTINFO) {
2238 		if (pktopt->ip6po_pktinfo)
2239 			free(pktopt->ip6po_pktinfo, M_IP6OPT);
2240 		pktopt->ip6po_pktinfo = NULL;
2241 	}
2242 	if (optname == -1 || optname == IPV6_HOPLIMIT)
2243 		pktopt->ip6po_hlim = -1;
2244 	if (optname == -1 || optname == IPV6_TCLASS)
2245 		pktopt->ip6po_tclass = -1;
2246 	if (optname == -1 || optname == IPV6_NEXTHOP) {
2247 		if (pktopt->ip6po_nextroute.ro_rt) {
2248 			RTFREE(pktopt->ip6po_nextroute.ro_rt);
2249 			pktopt->ip6po_nextroute.ro_rt = NULL;
2250 		}
2251 		if (pktopt->ip6po_nexthop)
2252 			free(pktopt->ip6po_nexthop, M_IP6OPT);
2253 		pktopt->ip6po_nexthop = NULL;
2254 	}
2255 	if (optname == -1 || optname == IPV6_HOPOPTS) {
2256 		if (pktopt->ip6po_hbh)
2257 			free(pktopt->ip6po_hbh, M_IP6OPT);
2258 		pktopt->ip6po_hbh = NULL;
2259 	}
2260 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2261 		if (pktopt->ip6po_dest1)
2262 			free(pktopt->ip6po_dest1, M_IP6OPT);
2263 		pktopt->ip6po_dest1 = NULL;
2264 	}
2265 	if (optname == -1 || optname == IPV6_RTHDR) {
2266 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2267 			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2268 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2269 		if (pktopt->ip6po_route.ro_rt) {
2270 			RTFREE(pktopt->ip6po_route.ro_rt);
2271 			pktopt->ip6po_route.ro_rt = NULL;
2272 		}
2273 	}
2274 	if (optname == -1 || optname == IPV6_DSTOPTS) {
2275 		if (pktopt->ip6po_dest2)
2276 			free(pktopt->ip6po_dest2, M_IP6OPT);
2277 		pktopt->ip6po_dest2 = NULL;
2278 	}
2279 }
2280 
2281 #define PKTOPT_EXTHDRCPY(type) \
2282 do {\
2283 	if (src->type) {\
2284 		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2285 		dst->type = malloc(hlen, M_IP6OPT, canwait);\
2286 		if (dst->type == NULL && canwait == M_NOWAIT)\
2287 			goto bad;\
2288 		bcopy(src->type, dst->type, hlen);\
2289 	}\
2290 } while (/*CONSTCOND*/ 0)
2291 
2292 static int
2293 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2294 {
2295 	if (dst == NULL || src == NULL)  {
2296 		printf("ip6_clearpktopts: invalid argument\n");
2297 		return (EINVAL);
2298 	}
2299 
2300 	dst->ip6po_hlim = src->ip6po_hlim;
2301 	dst->ip6po_tclass = src->ip6po_tclass;
2302 	dst->ip6po_flags = src->ip6po_flags;
2303 	if (src->ip6po_pktinfo) {
2304 		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2305 		    M_IP6OPT, canwait);
2306 		if (dst->ip6po_pktinfo == NULL)
2307 			goto bad;
2308 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2309 	}
2310 	if (src->ip6po_nexthop) {
2311 		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2312 		    M_IP6OPT, canwait);
2313 		if (dst->ip6po_nexthop == NULL)
2314 			goto bad;
2315 		bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2316 		    src->ip6po_nexthop->sa_len);
2317 	}
2318 	PKTOPT_EXTHDRCPY(ip6po_hbh);
2319 	PKTOPT_EXTHDRCPY(ip6po_dest1);
2320 	PKTOPT_EXTHDRCPY(ip6po_dest2);
2321 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2322 	return (0);
2323 
2324   bad:
2325 	ip6_clearpktopts(dst, -1);
2326 	return (ENOBUFS);
2327 }
2328 #undef PKTOPT_EXTHDRCPY
2329 
2330 struct ip6_pktopts *
2331 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2332 {
2333 	int error;
2334 	struct ip6_pktopts *dst;
2335 
2336 	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2337 	if (dst == NULL)
2338 		return (NULL);
2339 	ip6_initpktopts(dst);
2340 
2341 	if ((error = copypktopts(dst, src, canwait)) != 0) {
2342 		free(dst, M_IP6OPT);
2343 		return (NULL);
2344 	}
2345 
2346 	return (dst);
2347 }
2348 
2349 void
2350 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2351 {
2352 	if (pktopt == NULL)
2353 		return;
2354 
2355 	ip6_clearpktopts(pktopt, -1);
2356 
2357 	free(pktopt, M_IP6OPT);
2358 }
2359 
2360 /*
2361  * Set IPv6 outgoing packet options based on advanced API.
2362  */
2363 int
2364 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2365     struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto)
2366 {
2367 	struct cmsghdr *cm = 0;
2368 
2369 	if (control == NULL || opt == NULL)
2370 		return (EINVAL);
2371 
2372 	ip6_initpktopts(opt);
2373 	if (stickyopt) {
2374 		int error;
2375 
2376 		/*
2377 		 * If stickyopt is provided, make a local copy of the options
2378 		 * for this particular packet, then override them by ancillary
2379 		 * objects.
2380 		 * XXX: copypktopts() does not copy the cached route to a next
2381 		 * hop (if any).  This is not very good in terms of efficiency,
2382 		 * but we can allow this since this option should be rarely
2383 		 * used.
2384 		 */
2385 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2386 			return (error);
2387 	}
2388 
2389 	/*
2390 	 * XXX: Currently, we assume all the optional information is stored
2391 	 * in a single mbuf.
2392 	 */
2393 	if (control->m_next)
2394 		return (EINVAL);
2395 
2396 	for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2397 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2398 		int error;
2399 
2400 		if (control->m_len < CMSG_LEN(0))
2401 			return (EINVAL);
2402 
2403 		cm = mtod(control, struct cmsghdr *);
2404 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2405 			return (EINVAL);
2406 		if (cm->cmsg_level != IPPROTO_IPV6)
2407 			continue;
2408 
2409 		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2410 		    cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2411 		if (error)
2412 			return (error);
2413 	}
2414 
2415 	return (0);
2416 }
2417 
2418 /*
2419  * Set a particular packet option, as a sticky option or an ancillary data
2420  * item.  "len" can be 0 only when it's a sticky option.
2421  * We have 4 cases of combination of "sticky" and "cmsg":
2422  * "sticky=0, cmsg=0": impossible
2423  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2424  * "sticky=1, cmsg=0": RFC3542 socket option
2425  * "sticky=1, cmsg=1": RFC2292 socket option
2426  */
2427 static int
2428 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2429     struct ucred *cred, int sticky, int cmsg, int uproto)
2430 {
2431 	INIT_VNET_NET(curvnet);
2432 	INIT_VNET_INET6(curvnet);
2433 	int minmtupolicy, preftemp;
2434 	int error;
2435 
2436 	if (!sticky && !cmsg) {
2437 #ifdef DIAGNOSTIC
2438 		printf("ip6_setpktopt: impossible case\n");
2439 #endif
2440 		return (EINVAL);
2441 	}
2442 
2443 	/*
2444 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2445 	 * not be specified in the context of RFC3542.  Conversely,
2446 	 * RFC3542 types should not be specified in the context of RFC2292.
2447 	 */
2448 	if (!cmsg) {
2449 		switch (optname) {
2450 		case IPV6_2292PKTINFO:
2451 		case IPV6_2292HOPLIMIT:
2452 		case IPV6_2292NEXTHOP:
2453 		case IPV6_2292HOPOPTS:
2454 		case IPV6_2292DSTOPTS:
2455 		case IPV6_2292RTHDR:
2456 		case IPV6_2292PKTOPTIONS:
2457 			return (ENOPROTOOPT);
2458 		}
2459 	}
2460 	if (sticky && cmsg) {
2461 		switch (optname) {
2462 		case IPV6_PKTINFO:
2463 		case IPV6_HOPLIMIT:
2464 		case IPV6_NEXTHOP:
2465 		case IPV6_HOPOPTS:
2466 		case IPV6_DSTOPTS:
2467 		case IPV6_RTHDRDSTOPTS:
2468 		case IPV6_RTHDR:
2469 		case IPV6_USE_MIN_MTU:
2470 		case IPV6_DONTFRAG:
2471 		case IPV6_TCLASS:
2472 		case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */
2473 			return (ENOPROTOOPT);
2474 		}
2475 	}
2476 
2477 	switch (optname) {
2478 	case IPV6_2292PKTINFO:
2479 	case IPV6_PKTINFO:
2480 	{
2481 		struct ifnet *ifp = NULL;
2482 		struct in6_pktinfo *pktinfo;
2483 
2484 		if (len != sizeof(struct in6_pktinfo))
2485 			return (EINVAL);
2486 
2487 		pktinfo = (struct in6_pktinfo *)buf;
2488 
2489 		/*
2490 		 * An application can clear any sticky IPV6_PKTINFO option by
2491 		 * doing a "regular" setsockopt with ipi6_addr being
2492 		 * in6addr_any and ipi6_ifindex being zero.
2493 		 * [RFC 3542, Section 6]
2494 		 */
2495 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2496 		    pktinfo->ipi6_ifindex == 0 &&
2497 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2498 			ip6_clearpktopts(opt, optname);
2499 			break;
2500 		}
2501 
2502 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2503 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2504 			return (EINVAL);
2505 		}
2506 
2507 		/* validate the interface index if specified. */
2508 		if (pktinfo->ipi6_ifindex > V_if_index ||
2509 		    pktinfo->ipi6_ifindex < 0) {
2510 			 return (ENXIO);
2511 		}
2512 		if (pktinfo->ipi6_ifindex) {
2513 			ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
2514 			if (ifp == NULL)
2515 				return (ENXIO);
2516 		}
2517 
2518 		/*
2519 		 * We store the address anyway, and let in6_selectsrc()
2520 		 * validate the specified address.  This is because ipi6_addr
2521 		 * may not have enough information about its scope zone, and
2522 		 * we may need additional information (such as outgoing
2523 		 * interface or the scope zone of a destination address) to
2524 		 * disambiguate the scope.
2525 		 * XXX: the delay of the validation may confuse the
2526 		 * application when it is used as a sticky option.
2527 		 */
2528 		if (opt->ip6po_pktinfo == NULL) {
2529 			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2530 			    M_IP6OPT, M_NOWAIT);
2531 			if (opt->ip6po_pktinfo == NULL)
2532 				return (ENOBUFS);
2533 		}
2534 		bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
2535 		break;
2536 	}
2537 
2538 	case IPV6_2292HOPLIMIT:
2539 	case IPV6_HOPLIMIT:
2540 	{
2541 		int *hlimp;
2542 
2543 		/*
2544 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2545 		 * to simplify the ordering among hoplimit options.
2546 		 */
2547 		if (optname == IPV6_HOPLIMIT && sticky)
2548 			return (ENOPROTOOPT);
2549 
2550 		if (len != sizeof(int))
2551 			return (EINVAL);
2552 		hlimp = (int *)buf;
2553 		if (*hlimp < -1 || *hlimp > 255)
2554 			return (EINVAL);
2555 
2556 		opt->ip6po_hlim = *hlimp;
2557 		break;
2558 	}
2559 
2560 	case IPV6_TCLASS:
2561 	{
2562 		int tclass;
2563 
2564 		if (len != sizeof(int))
2565 			return (EINVAL);
2566 		tclass = *(int *)buf;
2567 		if (tclass < -1 || tclass > 255)
2568 			return (EINVAL);
2569 
2570 		opt->ip6po_tclass = tclass;
2571 		break;
2572 	}
2573 
2574 	case IPV6_2292NEXTHOP:
2575 	case IPV6_NEXTHOP:
2576 		if (cred != NULL) {
2577 			error = priv_check_cred(cred,
2578 			    PRIV_NETINET_SETHDROPTS, 0);
2579 			if (error)
2580 				return (error);
2581 		}
2582 
2583 		if (len == 0) {	/* just remove the option */
2584 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
2585 			break;
2586 		}
2587 
2588 		/* check if cmsg_len is large enough for sa_len */
2589 		if (len < sizeof(struct sockaddr) || len < *buf)
2590 			return (EINVAL);
2591 
2592 		switch (((struct sockaddr *)buf)->sa_family) {
2593 		case AF_INET6:
2594 		{
2595 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
2596 			int error;
2597 
2598 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
2599 				return (EINVAL);
2600 
2601 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
2602 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
2603 				return (EINVAL);
2604 			}
2605 			if ((error = sa6_embedscope(sa6, V_ip6_use_defzone))
2606 			    != 0) {
2607 				return (error);
2608 			}
2609 			break;
2610 		}
2611 		case AF_LINK:	/* should eventually be supported */
2612 		default:
2613 			return (EAFNOSUPPORT);
2614 		}
2615 
2616 		/* turn off the previous option, then set the new option. */
2617 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
2618 		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
2619 		if (opt->ip6po_nexthop == NULL)
2620 			return (ENOBUFS);
2621 		bcopy(buf, opt->ip6po_nexthop, *buf);
2622 		break;
2623 
2624 	case IPV6_2292HOPOPTS:
2625 	case IPV6_HOPOPTS:
2626 	{
2627 		struct ip6_hbh *hbh;
2628 		int hbhlen;
2629 
2630 		/*
2631 		 * XXX: We don't allow a non-privileged user to set ANY HbH
2632 		 * options, since per-option restriction has too much
2633 		 * overhead.
2634 		 */
2635 		if (cred != NULL) {
2636 			error = priv_check_cred(cred,
2637 			    PRIV_NETINET_SETHDROPTS, 0);
2638 			if (error)
2639 				return (error);
2640 		}
2641 
2642 		if (len == 0) {
2643 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
2644 			break;	/* just remove the option */
2645 		}
2646 
2647 		/* message length validation */
2648 		if (len < sizeof(struct ip6_hbh))
2649 			return (EINVAL);
2650 		hbh = (struct ip6_hbh *)buf;
2651 		hbhlen = (hbh->ip6h_len + 1) << 3;
2652 		if (len != hbhlen)
2653 			return (EINVAL);
2654 
2655 		/* turn off the previous option, then set the new option. */
2656 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
2657 		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
2658 		if (opt->ip6po_hbh == NULL)
2659 			return (ENOBUFS);
2660 		bcopy(hbh, opt->ip6po_hbh, hbhlen);
2661 
2662 		break;
2663 	}
2664 
2665 	case IPV6_2292DSTOPTS:
2666 	case IPV6_DSTOPTS:
2667 	case IPV6_RTHDRDSTOPTS:
2668 	{
2669 		struct ip6_dest *dest, **newdest = NULL;
2670 		int destlen;
2671 
2672 		if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */
2673 			error = priv_check_cred(cred,
2674 			    PRIV_NETINET_SETHDROPTS, 0);
2675 			if (error)
2676 				return (error);
2677 		}
2678 
2679 		if (len == 0) {
2680 			ip6_clearpktopts(opt, optname);
2681 			break;	/* just remove the option */
2682 		}
2683 
2684 		/* message length validation */
2685 		if (len < sizeof(struct ip6_dest))
2686 			return (EINVAL);
2687 		dest = (struct ip6_dest *)buf;
2688 		destlen = (dest->ip6d_len + 1) << 3;
2689 		if (len != destlen)
2690 			return (EINVAL);
2691 
2692 		/*
2693 		 * Determine the position that the destination options header
2694 		 * should be inserted; before or after the routing header.
2695 		 */
2696 		switch (optname) {
2697 		case IPV6_2292DSTOPTS:
2698 			/*
2699 			 * The old advacned API is ambiguous on this point.
2700 			 * Our approach is to determine the position based
2701 			 * according to the existence of a routing header.
2702 			 * Note, however, that this depends on the order of the
2703 			 * extension headers in the ancillary data; the 1st
2704 			 * part of the destination options header must appear
2705 			 * before the routing header in the ancillary data,
2706 			 * too.
2707 			 * RFC3542 solved the ambiguity by introducing
2708 			 * separate ancillary data or option types.
2709 			 */
2710 			if (opt->ip6po_rthdr == NULL)
2711 				newdest = &opt->ip6po_dest1;
2712 			else
2713 				newdest = &opt->ip6po_dest2;
2714 			break;
2715 		case IPV6_RTHDRDSTOPTS:
2716 			newdest = &opt->ip6po_dest1;
2717 			break;
2718 		case IPV6_DSTOPTS:
2719 			newdest = &opt->ip6po_dest2;
2720 			break;
2721 		}
2722 
2723 		/* turn off the previous option, then set the new option. */
2724 		ip6_clearpktopts(opt, optname);
2725 		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
2726 		if (*newdest == NULL)
2727 			return (ENOBUFS);
2728 		bcopy(dest, *newdest, destlen);
2729 
2730 		break;
2731 	}
2732 
2733 	case IPV6_2292RTHDR:
2734 	case IPV6_RTHDR:
2735 	{
2736 		struct ip6_rthdr *rth;
2737 		int rthlen;
2738 
2739 		if (len == 0) {
2740 			ip6_clearpktopts(opt, IPV6_RTHDR);
2741 			break;	/* just remove the option */
2742 		}
2743 
2744 		/* message length validation */
2745 		if (len < sizeof(struct ip6_rthdr))
2746 			return (EINVAL);
2747 		rth = (struct ip6_rthdr *)buf;
2748 		rthlen = (rth->ip6r_len + 1) << 3;
2749 		if (len != rthlen)
2750 			return (EINVAL);
2751 
2752 		switch (rth->ip6r_type) {
2753 		case IPV6_RTHDR_TYPE_0:
2754 			if (rth->ip6r_len == 0)	/* must contain one addr */
2755 				return (EINVAL);
2756 			if (rth->ip6r_len % 2) /* length must be even */
2757 				return (EINVAL);
2758 			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
2759 				return (EINVAL);
2760 			break;
2761 		default:
2762 			return (EINVAL);	/* not supported */
2763 		}
2764 
2765 		/* turn off the previous option */
2766 		ip6_clearpktopts(opt, IPV6_RTHDR);
2767 		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
2768 		if (opt->ip6po_rthdr == NULL)
2769 			return (ENOBUFS);
2770 		bcopy(rth, opt->ip6po_rthdr, rthlen);
2771 
2772 		break;
2773 	}
2774 
2775 	case IPV6_USE_MIN_MTU:
2776 		if (len != sizeof(int))
2777 			return (EINVAL);
2778 		minmtupolicy = *(int *)buf;
2779 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
2780 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
2781 		    minmtupolicy != IP6PO_MINMTU_ALL) {
2782 			return (EINVAL);
2783 		}
2784 		opt->ip6po_minmtu = minmtupolicy;
2785 		break;
2786 
2787 	case IPV6_DONTFRAG:
2788 		if (len != sizeof(int))
2789 			return (EINVAL);
2790 
2791 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
2792 			/*
2793 			 * we ignore this option for TCP sockets.
2794 			 * (RFC3542 leaves this case unspecified.)
2795 			 */
2796 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
2797 		} else
2798 			opt->ip6po_flags |= IP6PO_DONTFRAG;
2799 		break;
2800 
2801 	case IPV6_PREFER_TEMPADDR:
2802 		if (len != sizeof(int))
2803 			return (EINVAL);
2804 		preftemp = *(int *)buf;
2805 		if (preftemp != IP6PO_TEMPADDR_SYSTEM &&
2806 		    preftemp != IP6PO_TEMPADDR_NOTPREFER &&
2807 		    preftemp != IP6PO_TEMPADDR_PREFER) {
2808 			return (EINVAL);
2809 		}
2810 		opt->ip6po_prefer_tempaddr = preftemp;
2811 		break;
2812 
2813 	default:
2814 		return (ENOPROTOOPT);
2815 	} /* end of switch */
2816 
2817 	return (0);
2818 }
2819 
2820 /*
2821  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2822  * packet to the input queue of a specified interface.  Note that this
2823  * calls the output routine of the loopback "driver", but with an interface
2824  * pointer that might NOT be &loif -- easier than replicating that code here.
2825  */
2826 void
2827 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst)
2828 {
2829 	struct mbuf *copym;
2830 	struct ip6_hdr *ip6;
2831 
2832 	copym = m_copy(m, 0, M_COPYALL);
2833 	if (copym == NULL)
2834 		return;
2835 
2836 	/*
2837 	 * Make sure to deep-copy IPv6 header portion in case the data
2838 	 * is in an mbuf cluster, so that we can safely override the IPv6
2839 	 * header portion later.
2840 	 */
2841 	if ((copym->m_flags & M_EXT) != 0 ||
2842 	    copym->m_len < sizeof(struct ip6_hdr)) {
2843 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
2844 		if (copym == NULL)
2845 			return;
2846 	}
2847 
2848 #ifdef DIAGNOSTIC
2849 	if (copym->m_len < sizeof(*ip6)) {
2850 		m_freem(copym);
2851 		return;
2852 	}
2853 #endif
2854 
2855 	ip6 = mtod(copym, struct ip6_hdr *);
2856 	/*
2857 	 * clear embedded scope identifiers if necessary.
2858 	 * in6_clearscope will touch the addresses only when necessary.
2859 	 */
2860 	in6_clearscope(&ip6->ip6_src);
2861 	in6_clearscope(&ip6->ip6_dst);
2862 
2863 	(void)if_simloop(ifp, copym, dst->sin6_family, 0);
2864 }
2865 
2866 /*
2867  * Chop IPv6 header off from the payload.
2868  */
2869 static int
2870 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
2871 {
2872 	struct mbuf *mh;
2873 	struct ip6_hdr *ip6;
2874 
2875 	ip6 = mtod(m, struct ip6_hdr *);
2876 	if (m->m_len > sizeof(*ip6)) {
2877 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2878 		if (mh == 0) {
2879 			m_freem(m);
2880 			return ENOBUFS;
2881 		}
2882 		M_MOVE_PKTHDR(mh, m);
2883 		MH_ALIGN(mh, sizeof(*ip6));
2884 		m->m_len -= sizeof(*ip6);
2885 		m->m_data += sizeof(*ip6);
2886 		mh->m_next = m;
2887 		m = mh;
2888 		m->m_len = sizeof(*ip6);
2889 		bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2890 	}
2891 	exthdrs->ip6e_ip6 = m;
2892 	return 0;
2893 }
2894 
2895 /*
2896  * Compute IPv6 extension header length.
2897  */
2898 int
2899 ip6_optlen(struct inpcb *in6p)
2900 {
2901 	int len;
2902 
2903 	if (!in6p->in6p_outputopts)
2904 		return 0;
2905 
2906 	len = 0;
2907 #define elen(x) \
2908     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2909 
2910 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
2911 	if (in6p->in6p_outputopts->ip6po_rthdr)
2912 		/* dest1 is valid with rthdr only */
2913 		len += elen(in6p->in6p_outputopts->ip6po_dest1);
2914 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2915 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
2916 	return len;
2917 #undef elen
2918 }
2919