1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 #include "opt_ratelimit.h" 69 #include "opt_ipsec.h" 70 #include "opt_sctp.h" 71 #include "opt_route.h" 72 #include "opt_rss.h" 73 74 #include <sys/param.h> 75 #include <sys/kernel.h> 76 #include <sys/malloc.h> 77 #include <sys/mbuf.h> 78 #include <sys/errno.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/protosw.h> 82 #include <sys/socket.h> 83 #include <sys/socketvar.h> 84 #include <sys/syslog.h> 85 #include <sys/ucred.h> 86 87 #include <machine/in_cksum.h> 88 89 #include <net/if.h> 90 #include <net/if_var.h> 91 #include <net/if_llatbl.h> 92 #include <net/netisr.h> 93 #include <net/route.h> 94 #include <net/pfil.h> 95 #include <net/rss_config.h> 96 #include <net/vnet.h> 97 98 #include <netinet/in.h> 99 #include <netinet/in_var.h> 100 #include <netinet/ip_var.h> 101 #include <netinet6/in6_fib.h> 102 #include <netinet6/in6_var.h> 103 #include <netinet/ip6.h> 104 #include <netinet/icmp6.h> 105 #include <netinet6/ip6_var.h> 106 #include <netinet/in_pcb.h> 107 #include <netinet/tcp_var.h> 108 #include <netinet6/nd6.h> 109 #include <netinet6/in6_rss.h> 110 111 #include <netipsec/ipsec_support.h> 112 #ifdef SCTP 113 #include <netinet/sctp.h> 114 #include <netinet/sctp_crc32.h> 115 #endif 116 117 #include <netinet6/ip6protosw.h> 118 #include <netinet6/scope6_var.h> 119 120 extern int in6_mcast_loop; 121 122 struct ip6_exthdrs { 123 struct mbuf *ip6e_ip6; 124 struct mbuf *ip6e_hbh; 125 struct mbuf *ip6e_dest1; 126 struct mbuf *ip6e_rthdr; 127 struct mbuf *ip6e_dest2; 128 }; 129 130 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 131 132 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 133 struct ucred *, int); 134 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 135 struct socket *, struct sockopt *); 136 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 137 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 138 struct ucred *, int, int, int); 139 140 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 141 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 142 struct ip6_frag **); 143 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 144 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 145 static int ip6_getpmtu(struct route_in6 *, int, 146 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 147 u_int); 148 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 149 u_long *, int *, u_int); 150 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 151 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 152 153 154 /* 155 * Make an extension header from option data. hp is the source, and 156 * mp is the destination. 157 */ 158 #define MAKE_EXTHDR(hp, mp) \ 159 do { \ 160 if (hp) { \ 161 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 162 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 163 ((eh)->ip6e_len + 1) << 3); \ 164 if (error) \ 165 goto freehdrs; \ 166 } \ 167 } while (/*CONSTCOND*/ 0) 168 169 /* 170 * Form a chain of extension headers. 171 * m is the extension header mbuf 172 * mp is the previous mbuf in the chain 173 * p is the next header 174 * i is the type of option. 175 */ 176 #define MAKE_CHAIN(m, mp, p, i)\ 177 do {\ 178 if (m) {\ 179 if (!hdrsplit) \ 180 panic("assumption failed: hdr not split"); \ 181 *mtod((m), u_char *) = *(p);\ 182 *(p) = (i);\ 183 p = mtod((m), u_char *);\ 184 (m)->m_next = (mp)->m_next;\ 185 (mp)->m_next = (m);\ 186 (mp) = (m);\ 187 }\ 188 } while (/*CONSTCOND*/ 0) 189 190 void 191 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 192 { 193 u_short csum; 194 195 csum = in_cksum_skip(m, offset + plen, offset); 196 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 197 csum = 0xffff; 198 offset += m->m_pkthdr.csum_data; /* checksum offset */ 199 200 if (offset + sizeof(u_short) > m->m_len) { 201 printf("%s: delayed m_pullup, m->len: %d plen %u off %u " 202 "csum_flags=%b\n", __func__, m->m_len, plen, offset, 203 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 204 /* 205 * XXX this should not happen, but if it does, the correct 206 * behavior may be to insert the checksum in the appropriate 207 * next mbuf in the chain. 208 */ 209 return; 210 } 211 *(u_short *)(m->m_data + offset) = csum; 212 } 213 214 int 215 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 216 int fraglen , uint32_t id) 217 { 218 struct mbuf *m, **mnext, *m_frgpart; 219 struct ip6_hdr *ip6, *mhip6; 220 struct ip6_frag *ip6f; 221 int off; 222 int error; 223 int tlen = m0->m_pkthdr.len; 224 225 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); 226 227 m = m0; 228 ip6 = mtod(m, struct ip6_hdr *); 229 mnext = &m->m_nextpkt; 230 231 for (off = hlen; off < tlen; off += fraglen) { 232 m = m_gethdr(M_NOWAIT, MT_DATA); 233 if (!m) { 234 IP6STAT_INC(ip6s_odropped); 235 return (ENOBUFS); 236 } 237 m->m_flags = m0->m_flags & M_COPYFLAGS; 238 *mnext = m; 239 mnext = &m->m_nextpkt; 240 m->m_data += max_linkhdr; 241 mhip6 = mtod(m, struct ip6_hdr *); 242 *mhip6 = *ip6; 243 m->m_len = sizeof(*mhip6); 244 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 245 if (error) { 246 IP6STAT_INC(ip6s_odropped); 247 return (error); 248 } 249 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 250 if (off + fraglen >= tlen) 251 fraglen = tlen - off; 252 else 253 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 254 mhip6->ip6_plen = htons((u_short)(fraglen + hlen + 255 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 256 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { 257 IP6STAT_INC(ip6s_odropped); 258 return (ENOBUFS); 259 } 260 m_cat(m, m_frgpart); 261 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); 262 m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum; 263 m->m_pkthdr.rcvif = NULL; 264 ip6f->ip6f_reserved = 0; 265 ip6f->ip6f_ident = id; 266 ip6f->ip6f_nxt = nextproto; 267 IP6STAT_INC(ip6s_ofragments); 268 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 269 } 270 271 return (0); 272 } 273 274 /* 275 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 276 * header (with pri, len, nxt, hlim, src, dst). 277 * This function may modify ver and hlim only. 278 * The mbuf chain containing the packet will be freed. 279 * The mbuf opt, if present, will not be freed. 280 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 281 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 282 * then result of route lookup is stored in ro->ro_rt. 283 * 284 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and 285 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 286 * which is rt_mtu. 287 * 288 * ifpp - XXX: just for statistics 289 */ 290 /* 291 * XXX TODO: no flowid is assigned for outbound flows? 292 */ 293 int 294 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 295 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 296 struct ifnet **ifpp, struct inpcb *inp) 297 { 298 struct ip6_hdr *ip6; 299 struct ifnet *ifp, *origifp; 300 struct mbuf *m = m0; 301 struct mbuf *mprev = NULL; 302 int hlen, tlen, len; 303 struct route_in6 ip6route; 304 struct rtentry *rt = NULL; 305 struct sockaddr_in6 *dst, src_sa, dst_sa; 306 struct in6_addr odst; 307 int error = 0; 308 struct in6_ifaddr *ia = NULL; 309 u_long mtu; 310 int alwaysfrag, dontfrag; 311 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 312 struct ip6_exthdrs exthdrs; 313 struct in6_addr src0, dst0; 314 u_int32_t zone; 315 struct route_in6 *ro_pmtu = NULL; 316 int hdrsplit = 0; 317 int sw_csum, tso; 318 int needfiblookup; 319 uint32_t fibnum; 320 struct m_tag *fwd_tag = NULL; 321 uint32_t id; 322 323 if (inp != NULL) { 324 INP_LOCK_ASSERT(inp); 325 M_SETFIB(m, inp->inp_inc.inc_fibnum); 326 if ((flags & IP_NODEFAULTFLOWID) == 0) { 327 /* unconditionally set flowid */ 328 m->m_pkthdr.flowid = inp->inp_flowid; 329 M_HASHTYPE_SET(m, inp->inp_flowtype); 330 } 331 } 332 333 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 334 /* 335 * IPSec checking which handles several cases. 336 * FAST IPSEC: We re-injected the packet. 337 * XXX: need scope argument. 338 */ 339 if (IPSEC_ENABLED(ipv6)) { 340 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { 341 if (error == EINPROGRESS) 342 error = 0; 343 goto done; 344 } 345 } 346 #endif /* IPSEC */ 347 348 bzero(&exthdrs, sizeof(exthdrs)); 349 if (opt) { 350 /* Hop-by-Hop options header */ 351 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 352 /* Destination options header(1st part) */ 353 if (opt->ip6po_rthdr) { 354 /* 355 * Destination options header(1st part) 356 * This only makes sense with a routing header. 357 * See Section 9.2 of RFC 3542. 358 * Disabling this part just for MIP6 convenience is 359 * a bad idea. We need to think carefully about a 360 * way to make the advanced API coexist with MIP6 361 * options, which might automatically be inserted in 362 * the kernel. 363 */ 364 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 365 } 366 /* Routing header */ 367 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 368 /* Destination options header(2nd part) */ 369 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 370 } 371 372 /* 373 * Calculate the total length of the extension header chain. 374 * Keep the length of the unfragmentable part for fragmentation. 375 */ 376 optlen = 0; 377 if (exthdrs.ip6e_hbh) 378 optlen += exthdrs.ip6e_hbh->m_len; 379 if (exthdrs.ip6e_dest1) 380 optlen += exthdrs.ip6e_dest1->m_len; 381 if (exthdrs.ip6e_rthdr) 382 optlen += exthdrs.ip6e_rthdr->m_len; 383 unfragpartlen = optlen + sizeof(struct ip6_hdr); 384 385 /* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */ 386 if (exthdrs.ip6e_dest2) 387 optlen += exthdrs.ip6e_dest2->m_len; 388 389 /* 390 * If there is at least one extension header, 391 * separate IP6 header from the payload. 392 */ 393 if (optlen && !hdrsplit) { 394 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 395 m = NULL; 396 goto freehdrs; 397 } 398 m = exthdrs.ip6e_ip6; 399 hdrsplit++; 400 } 401 402 ip6 = mtod(m, struct ip6_hdr *); 403 404 /* adjust mbuf packet header length */ 405 m->m_pkthdr.len += optlen; 406 plen = m->m_pkthdr.len - sizeof(*ip6); 407 408 /* If this is a jumbo payload, insert a jumbo payload option. */ 409 if (plen > IPV6_MAXPACKET) { 410 if (!hdrsplit) { 411 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 412 m = NULL; 413 goto freehdrs; 414 } 415 m = exthdrs.ip6e_ip6; 416 hdrsplit++; 417 } 418 /* adjust pointer */ 419 ip6 = mtod(m, struct ip6_hdr *); 420 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 421 goto freehdrs; 422 ip6->ip6_plen = 0; 423 } else 424 ip6->ip6_plen = htons(plen); 425 426 /* 427 * Concatenate headers and fill in next header fields. 428 * Here we have, on "m" 429 * IPv6 payload 430 * and we insert headers accordingly. Finally, we should be getting: 431 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 432 * 433 * during the header composing process, "m" points to IPv6 header. 434 * "mprev" points to an extension header prior to esp. 435 */ 436 u_char *nexthdrp = &ip6->ip6_nxt; 437 mprev = m; 438 439 /* 440 * we treat dest2 specially. this makes IPsec processing 441 * much easier. the goal here is to make mprev point the 442 * mbuf prior to dest2. 443 * 444 * result: IPv6 dest2 payload 445 * m and mprev will point to IPv6 header. 446 */ 447 if (exthdrs.ip6e_dest2) { 448 if (!hdrsplit) 449 panic("assumption failed: hdr not split"); 450 exthdrs.ip6e_dest2->m_next = m->m_next; 451 m->m_next = exthdrs.ip6e_dest2; 452 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 453 ip6->ip6_nxt = IPPROTO_DSTOPTS; 454 } 455 456 /* 457 * result: IPv6 hbh dest1 rthdr dest2 payload 458 * m will point to IPv6 header. mprev will point to the 459 * extension header prior to dest2 (rthdr in the above case). 460 */ 461 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 462 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 463 IPPROTO_DSTOPTS); 464 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 465 IPPROTO_ROUTING); 466 467 /* 468 * If there is a routing header, discard the packet. 469 */ 470 if (exthdrs.ip6e_rthdr) { 471 error = EINVAL; 472 goto bad; 473 } 474 475 /* Source address validation */ 476 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 477 (flags & IPV6_UNSPECSRC) == 0) { 478 error = EOPNOTSUPP; 479 IP6STAT_INC(ip6s_badscope); 480 goto bad; 481 } 482 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 483 error = EOPNOTSUPP; 484 IP6STAT_INC(ip6s_badscope); 485 goto bad; 486 } 487 488 IP6STAT_INC(ip6s_localout); 489 490 /* 491 * Route packet. 492 */ 493 if (ro == NULL) { 494 ro = &ip6route; 495 bzero((caddr_t)ro, sizeof(*ro)); 496 } 497 ro_pmtu = ro; 498 if (opt && opt->ip6po_rthdr) 499 ro = &opt->ip6po_route; 500 dst = (struct sockaddr_in6 *)&ro->ro_dst; 501 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 502 again: 503 /* 504 * if specified, try to fill in the traffic class field. 505 * do not override if a non-zero value is already set. 506 * we check the diffserv field and the ecn field separately. 507 */ 508 if (opt && opt->ip6po_tclass >= 0) { 509 int mask = 0; 510 511 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 512 mask |= 0xfc; 513 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 514 mask |= 0x03; 515 if (mask != 0) 516 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 517 } 518 519 /* fill in or override the hop limit field, if necessary. */ 520 if (opt && opt->ip6po_hlim != -1) 521 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 522 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 523 if (im6o != NULL) 524 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 525 else 526 ip6->ip6_hlim = V_ip6_defmcasthlim; 527 } 528 /* 529 * Validate route against routing table additions; 530 * a better/more specific route might have been added. 531 * Make sure address family is set in route. 532 */ 533 if (inp) { 534 ro->ro_dst.sin6_family = AF_INET6; 535 RT_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, fibnum); 536 } 537 if (ro->ro_rt && fwd_tag == NULL && (ro->ro_rt->rt_flags & RTF_UP) && 538 ro->ro_dst.sin6_family == AF_INET6 && 539 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 540 rt = ro->ro_rt; 541 ifp = ro->ro_rt->rt_ifp; 542 } else { 543 if (ro->ro_lle) 544 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 545 ro->ro_lle = NULL; 546 if (fwd_tag == NULL) { 547 bzero(&dst_sa, sizeof(dst_sa)); 548 dst_sa.sin6_family = AF_INET6; 549 dst_sa.sin6_len = sizeof(dst_sa); 550 dst_sa.sin6_addr = ip6->ip6_dst; 551 } 552 error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp, 553 &rt, fibnum); 554 if (error != 0) { 555 if (ifp != NULL) 556 in6_ifstat_inc(ifp, ifs6_out_discard); 557 goto bad; 558 } 559 } 560 if (rt == NULL) { 561 /* 562 * If in6_selectroute() does not return a route entry, 563 * dst may not have been updated. 564 */ 565 *dst = dst_sa; /* XXX */ 566 } 567 568 /* 569 * then rt (for unicast) and ifp must be non-NULL valid values. 570 */ 571 if ((flags & IPV6_FORWARDING) == 0) { 572 /* XXX: the FORWARDING flag can be set for mrouting. */ 573 in6_ifstat_inc(ifp, ifs6_out_request); 574 } 575 if (rt != NULL) { 576 ia = (struct in6_ifaddr *)(rt->rt_ifa); 577 counter_u64_add(rt->rt_pksent, 1); 578 } 579 580 581 /* 582 * The outgoing interface must be in the zone of source and 583 * destination addresses. 584 */ 585 origifp = ifp; 586 587 src0 = ip6->ip6_src; 588 if (in6_setscope(&src0, origifp, &zone)) 589 goto badscope; 590 bzero(&src_sa, sizeof(src_sa)); 591 src_sa.sin6_family = AF_INET6; 592 src_sa.sin6_len = sizeof(src_sa); 593 src_sa.sin6_addr = ip6->ip6_src; 594 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 595 goto badscope; 596 597 dst0 = ip6->ip6_dst; 598 if (in6_setscope(&dst0, origifp, &zone)) 599 goto badscope; 600 /* re-initialize to be sure */ 601 bzero(&dst_sa, sizeof(dst_sa)); 602 dst_sa.sin6_family = AF_INET6; 603 dst_sa.sin6_len = sizeof(dst_sa); 604 dst_sa.sin6_addr = ip6->ip6_dst; 605 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 606 goto badscope; 607 } 608 609 /* We should use ia_ifp to support the case of 610 * sending packets to an address of our own. 611 */ 612 if (ia != NULL && ia->ia_ifp) 613 ifp = ia->ia_ifp; 614 615 /* scope check is done. */ 616 goto routefound; 617 618 badscope: 619 IP6STAT_INC(ip6s_badscope); 620 in6_ifstat_inc(origifp, ifs6_out_discard); 621 if (error == 0) 622 error = EHOSTUNREACH; /* XXX */ 623 goto bad; 624 625 routefound: 626 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 627 if (opt && opt->ip6po_nextroute.ro_rt) { 628 /* 629 * The nexthop is explicitly specified by the 630 * application. We assume the next hop is an IPv6 631 * address. 632 */ 633 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 634 } 635 else if ((rt->rt_flags & RTF_GATEWAY)) 636 dst = (struct sockaddr_in6 *)rt->rt_gateway; 637 } 638 639 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 640 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 641 } else { 642 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 643 in6_ifstat_inc(ifp, ifs6_out_mcast); 644 /* 645 * Confirm that the outgoing interface supports multicast. 646 */ 647 if (!(ifp->if_flags & IFF_MULTICAST)) { 648 IP6STAT_INC(ip6s_noroute); 649 in6_ifstat_inc(ifp, ifs6_out_discard); 650 error = ENETUNREACH; 651 goto bad; 652 } 653 if ((im6o == NULL && in6_mcast_loop) || 654 (im6o && im6o->im6o_multicast_loop)) { 655 /* 656 * Loop back multicast datagram if not expressly 657 * forbidden to do so, even if we have not joined 658 * the address; protocols will filter it later, 659 * thus deferring a hash lookup and lock acquisition 660 * at the expense of an m_copym(). 661 */ 662 ip6_mloopback(ifp, m); 663 } else { 664 /* 665 * If we are acting as a multicast router, perform 666 * multicast forwarding as if the packet had just 667 * arrived on the interface to which we are about 668 * to send. The multicast forwarding function 669 * recursively calls this function, using the 670 * IPV6_FORWARDING flag to prevent infinite recursion. 671 * 672 * Multicasts that are looped back by ip6_mloopback(), 673 * above, will be forwarded by the ip6_input() routine, 674 * if necessary. 675 */ 676 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 677 /* 678 * XXX: ip6_mforward expects that rcvif is NULL 679 * when it is called from the originating path. 680 * However, it may not always be the case. 681 */ 682 m->m_pkthdr.rcvif = NULL; 683 if (ip6_mforward(ip6, ifp, m) != 0) { 684 m_freem(m); 685 goto done; 686 } 687 } 688 } 689 /* 690 * Multicasts with a hoplimit of zero may be looped back, 691 * above, but must not be transmitted on a network. 692 * Also, multicasts addressed to the loopback interface 693 * are not sent -- the above call to ip6_mloopback() will 694 * loop back a copy if this host actually belongs to the 695 * destination group on the loopback interface. 696 */ 697 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 698 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 699 m_freem(m); 700 goto done; 701 } 702 } 703 704 /* 705 * Fill the outgoing inteface to tell the upper layer 706 * to increment per-interface statistics. 707 */ 708 if (ifpp) 709 *ifpp = ifp; 710 711 /* Determine path MTU. */ 712 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 713 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 714 goto bad; 715 716 /* 717 * The caller of this function may specify to use the minimum MTU 718 * in some cases. 719 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 720 * setting. The logic is a bit complicated; by default, unicast 721 * packets will follow path MTU while multicast packets will be sent at 722 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 723 * including unicast ones will be sent at the minimum MTU. Multicast 724 * packets will always be sent at the minimum MTU unless 725 * IP6PO_MINMTU_DISABLE is explicitly specified. 726 * See RFC 3542 for more details. 727 */ 728 if (mtu > IPV6_MMTU) { 729 if ((flags & IPV6_MINMTU)) 730 mtu = IPV6_MMTU; 731 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 732 mtu = IPV6_MMTU; 733 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 734 (opt == NULL || 735 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 736 mtu = IPV6_MMTU; 737 } 738 } 739 740 /* 741 * clear embedded scope identifiers if necessary. 742 * in6_clearscope will touch the addresses only when necessary. 743 */ 744 in6_clearscope(&ip6->ip6_src); 745 in6_clearscope(&ip6->ip6_dst); 746 747 /* 748 * If the outgoing packet contains a hop-by-hop options header, 749 * it must be examined and processed even by the source node. 750 * (RFC 2460, section 4.) 751 */ 752 if (exthdrs.ip6e_hbh) { 753 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 754 u_int32_t dummy; /* XXX unused */ 755 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 756 757 #ifdef DIAGNOSTIC 758 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 759 panic("ip6e_hbh is not contiguous"); 760 #endif 761 /* 762 * XXX: if we have to send an ICMPv6 error to the sender, 763 * we need the M_LOOP flag since icmp6_error() expects 764 * the IPv6 and the hop-by-hop options header are 765 * contiguous unless the flag is set. 766 */ 767 m->m_flags |= M_LOOP; 768 m->m_pkthdr.rcvif = ifp; 769 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 770 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 771 &dummy, &plen) < 0) { 772 /* m was already freed at this point */ 773 error = EINVAL;/* better error? */ 774 goto done; 775 } 776 m->m_flags &= ~M_LOOP; /* XXX */ 777 m->m_pkthdr.rcvif = NULL; 778 } 779 780 /* Jump over all PFIL processing if hooks are not active. */ 781 if (!PFIL_HOOKED(&V_inet6_pfil_hook)) 782 goto passout; 783 784 odst = ip6->ip6_dst; 785 /* Run through list of hooks for output packets. */ 786 error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp); 787 if (error != 0 || m == NULL) 788 goto done; 789 /* adjust pointer */ 790 ip6 = mtod(m, struct ip6_hdr *); 791 792 needfiblookup = 0; 793 /* See if destination IP address was changed by packet filter. */ 794 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 795 m->m_flags |= M_SKIP_FIREWALL; 796 /* If destination is now ourself drop to ip6_input(). */ 797 if (in6_localip(&ip6->ip6_dst)) { 798 m->m_flags |= M_FASTFWD_OURS; 799 if (m->m_pkthdr.rcvif == NULL) 800 m->m_pkthdr.rcvif = V_loif; 801 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 802 m->m_pkthdr.csum_flags |= 803 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 804 m->m_pkthdr.csum_data = 0xffff; 805 } 806 #ifdef SCTP 807 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 808 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 809 #endif 810 error = netisr_queue(NETISR_IPV6, m); 811 goto done; 812 } else { 813 RO_RTFREE(ro); 814 needfiblookup = 1; /* Redo the routing table lookup. */ 815 if (ro->ro_lle) 816 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 817 ro->ro_lle = NULL; 818 } 819 } 820 /* See if fib was changed by packet filter. */ 821 if (fibnum != M_GETFIB(m)) { 822 m->m_flags |= M_SKIP_FIREWALL; 823 fibnum = M_GETFIB(m); 824 RO_RTFREE(ro); 825 needfiblookup = 1; 826 if (ro->ro_lle) 827 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 828 ro->ro_lle = NULL; 829 } 830 if (needfiblookup) 831 goto again; 832 833 /* See if local, if yes, send it to netisr. */ 834 if (m->m_flags & M_FASTFWD_OURS) { 835 if (m->m_pkthdr.rcvif == NULL) 836 m->m_pkthdr.rcvif = V_loif; 837 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 838 m->m_pkthdr.csum_flags |= 839 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 840 m->m_pkthdr.csum_data = 0xffff; 841 } 842 #ifdef SCTP 843 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 844 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 845 #endif 846 error = netisr_queue(NETISR_IPV6, m); 847 goto done; 848 } 849 /* Or forward to some other address? */ 850 if ((m->m_flags & M_IP6_NEXTHOP) && 851 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 852 dst = (struct sockaddr_in6 *)&ro->ro_dst; 853 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 854 m->m_flags |= M_SKIP_FIREWALL; 855 m->m_flags &= ~M_IP6_NEXTHOP; 856 m_tag_delete(m, fwd_tag); 857 goto again; 858 } 859 860 passout: 861 /* 862 * Send the packet to the outgoing interface. 863 * If necessary, do IPv6 fragmentation before sending. 864 * 865 * the logic here is rather complex: 866 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 867 * 1-a: send as is if tlen <= path mtu 868 * 1-b: fragment if tlen > path mtu 869 * 870 * 2: if user asks us not to fragment (dontfrag == 1) 871 * 2-a: send as is if tlen <= interface mtu 872 * 2-b: error if tlen > interface mtu 873 * 874 * 3: if we always need to attach fragment header (alwaysfrag == 1) 875 * always fragment 876 * 877 * 4: if dontfrag == 1 && alwaysfrag == 1 878 * error, as we cannot handle this conflicting request 879 */ 880 sw_csum = m->m_pkthdr.csum_flags; 881 if (!hdrsplit) { 882 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 883 sw_csum &= ~ifp->if_hwassist; 884 } else 885 tso = 0; 886 /* 887 * If we added extension headers, we will not do TSO and calculate the 888 * checksums ourselves for now. 889 * XXX-BZ Need a framework to know when the NIC can handle it, even 890 * with ext. hdrs. 891 */ 892 if (sw_csum & CSUM_DELAY_DATA_IPV6) { 893 sw_csum &= ~CSUM_DELAY_DATA_IPV6; 894 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 895 } 896 #ifdef SCTP 897 if (sw_csum & CSUM_SCTP_IPV6) { 898 sw_csum &= ~CSUM_SCTP_IPV6; 899 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 900 } 901 #endif 902 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 903 tlen = m->m_pkthdr.len; 904 905 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 906 dontfrag = 1; 907 else 908 dontfrag = 0; 909 if (dontfrag && alwaysfrag) { /* case 4 */ 910 /* conflicting request - can't transmit */ 911 error = EMSGSIZE; 912 goto bad; 913 } 914 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ 915 /* 916 * Even if the DONTFRAG option is specified, we cannot send the 917 * packet when the data length is larger than the MTU of the 918 * outgoing interface. 919 * Notify the error by sending IPV6_PATHMTU ancillary data if 920 * application wanted to know the MTU value. Also return an 921 * error code (this is not described in the API spec). 922 */ 923 if (inp != NULL) 924 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 925 error = EMSGSIZE; 926 goto bad; 927 } 928 929 /* 930 * transmit packet without fragmentation 931 */ 932 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 933 struct in6_ifaddr *ia6; 934 935 ip6 = mtod(m, struct ip6_hdr *); 936 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 937 if (ia6) { 938 /* Record statistics for this interface address. */ 939 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 940 counter_u64_add(ia6->ia_ifa.ifa_obytes, 941 m->m_pkthdr.len); 942 ifa_free(&ia6->ia_ifa); 943 } 944 #ifdef RATELIMIT 945 if (inp != NULL) { 946 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 947 in_pcboutput_txrtlmt(inp, ifp, m); 948 /* stamp send tag on mbuf */ 949 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 950 } else { 951 m->m_pkthdr.snd_tag = NULL; 952 } 953 #endif 954 error = nd6_output_ifp(ifp, origifp, m, dst, 955 (struct route *)ro); 956 #ifdef RATELIMIT 957 /* check for route change */ 958 if (error == EAGAIN) 959 in_pcboutput_eagain(inp); 960 #endif 961 goto done; 962 } 963 964 /* 965 * try to fragment the packet. case 1-b and 3 966 */ 967 if (mtu < IPV6_MMTU) { 968 /* path MTU cannot be less than IPV6_MMTU */ 969 error = EMSGSIZE; 970 in6_ifstat_inc(ifp, ifs6_out_fragfail); 971 goto bad; 972 } else if (ip6->ip6_plen == 0) { 973 /* jumbo payload cannot be fragmented */ 974 error = EMSGSIZE; 975 in6_ifstat_inc(ifp, ifs6_out_fragfail); 976 goto bad; 977 } else { 978 u_char nextproto; 979 980 /* 981 * Too large for the destination or interface; 982 * fragment if possible. 983 * Must be able to put at least 8 bytes per fragment. 984 */ 985 hlen = unfragpartlen; 986 if (mtu > IPV6_MAXPACKET) 987 mtu = IPV6_MAXPACKET; 988 989 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 990 if (len < 8) { 991 error = EMSGSIZE; 992 in6_ifstat_inc(ifp, ifs6_out_fragfail); 993 goto bad; 994 } 995 996 /* 997 * If the interface will not calculate checksums on 998 * fragmented packets, then do it here. 999 * XXX-BZ handle the hw offloading case. Need flags. 1000 */ 1001 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1002 in6_delayed_cksum(m, plen, hlen); 1003 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 1004 } 1005 #ifdef SCTP 1006 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 1007 sctp_delayed_cksum(m, hlen); 1008 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 1009 } 1010 #endif 1011 /* 1012 * Change the next header field of the last header in the 1013 * unfragmentable part. 1014 */ 1015 if (exthdrs.ip6e_rthdr) { 1016 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1017 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1018 } else if (exthdrs.ip6e_dest1) { 1019 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1020 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1021 } else if (exthdrs.ip6e_hbh) { 1022 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1023 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1024 } else { 1025 nextproto = ip6->ip6_nxt; 1026 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1027 } 1028 1029 /* 1030 * Loop through length of segment after first fragment, 1031 * make new header and copy data of each part and link onto 1032 * chain. 1033 */ 1034 m0 = m; 1035 id = htonl(ip6_randomid()); 1036 if ((error = ip6_fragment(ifp, m, hlen, nextproto, len, id))) 1037 goto sendorfree; 1038 1039 in6_ifstat_inc(ifp, ifs6_out_fragok); 1040 } 1041 1042 /* 1043 * Remove leading garbages. 1044 */ 1045 sendorfree: 1046 m = m0->m_nextpkt; 1047 m0->m_nextpkt = 0; 1048 m_freem(m0); 1049 for (m0 = m; m; m = m0) { 1050 m0 = m->m_nextpkt; 1051 m->m_nextpkt = 0; 1052 if (error == 0) { 1053 /* Record statistics for this interface address. */ 1054 if (ia) { 1055 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1056 counter_u64_add(ia->ia_ifa.ifa_obytes, 1057 m->m_pkthdr.len); 1058 } 1059 #ifdef RATELIMIT 1060 if (inp != NULL) { 1061 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 1062 in_pcboutput_txrtlmt(inp, ifp, m); 1063 /* stamp send tag on mbuf */ 1064 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 1065 } else { 1066 m->m_pkthdr.snd_tag = NULL; 1067 } 1068 #endif 1069 error = nd6_output_ifp(ifp, origifp, m, dst, 1070 (struct route *)ro); 1071 #ifdef RATELIMIT 1072 /* check for route change */ 1073 if (error == EAGAIN) 1074 in_pcboutput_eagain(inp); 1075 #endif 1076 } else 1077 m_freem(m); 1078 } 1079 1080 if (error == 0) 1081 IP6STAT_INC(ip6s_fragmented); 1082 1083 done: 1084 if (ro == &ip6route) 1085 RO_RTFREE(ro); 1086 return (error); 1087 1088 freehdrs: 1089 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1090 m_freem(exthdrs.ip6e_dest1); 1091 m_freem(exthdrs.ip6e_rthdr); 1092 m_freem(exthdrs.ip6e_dest2); 1093 /* FALLTHROUGH */ 1094 bad: 1095 if (m) 1096 m_freem(m); 1097 goto done; 1098 } 1099 1100 static int 1101 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1102 { 1103 struct mbuf *m; 1104 1105 if (hlen > MCLBYTES) 1106 return (ENOBUFS); /* XXX */ 1107 1108 if (hlen > MLEN) 1109 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1110 else 1111 m = m_get(M_NOWAIT, MT_DATA); 1112 if (m == NULL) 1113 return (ENOBUFS); 1114 m->m_len = hlen; 1115 if (hdr) 1116 bcopy(hdr, mtod(m, caddr_t), hlen); 1117 1118 *mp = m; 1119 return (0); 1120 } 1121 1122 /* 1123 * Insert jumbo payload option. 1124 */ 1125 static int 1126 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1127 { 1128 struct mbuf *mopt; 1129 u_char *optbuf; 1130 u_int32_t v; 1131 1132 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1133 1134 /* 1135 * If there is no hop-by-hop options header, allocate new one. 1136 * If there is one but it doesn't have enough space to store the 1137 * jumbo payload option, allocate a cluster to store the whole options. 1138 * Otherwise, use it to store the options. 1139 */ 1140 if (exthdrs->ip6e_hbh == NULL) { 1141 mopt = m_get(M_NOWAIT, MT_DATA); 1142 if (mopt == NULL) 1143 return (ENOBUFS); 1144 mopt->m_len = JUMBOOPTLEN; 1145 optbuf = mtod(mopt, u_char *); 1146 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1147 exthdrs->ip6e_hbh = mopt; 1148 } else { 1149 struct ip6_hbh *hbh; 1150 1151 mopt = exthdrs->ip6e_hbh; 1152 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1153 /* 1154 * XXX assumption: 1155 * - exthdrs->ip6e_hbh is not referenced from places 1156 * other than exthdrs. 1157 * - exthdrs->ip6e_hbh is not an mbuf chain. 1158 */ 1159 int oldoptlen = mopt->m_len; 1160 struct mbuf *n; 1161 1162 /* 1163 * XXX: give up if the whole (new) hbh header does 1164 * not fit even in an mbuf cluster. 1165 */ 1166 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1167 return (ENOBUFS); 1168 1169 /* 1170 * As a consequence, we must always prepare a cluster 1171 * at this point. 1172 */ 1173 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1174 if (n == NULL) 1175 return (ENOBUFS); 1176 n->m_len = oldoptlen + JUMBOOPTLEN; 1177 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1178 oldoptlen); 1179 optbuf = mtod(n, caddr_t) + oldoptlen; 1180 m_freem(mopt); 1181 mopt = exthdrs->ip6e_hbh = n; 1182 } else { 1183 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1184 mopt->m_len += JUMBOOPTLEN; 1185 } 1186 optbuf[0] = IP6OPT_PADN; 1187 optbuf[1] = 1; 1188 1189 /* 1190 * Adjust the header length according to the pad and 1191 * the jumbo payload option. 1192 */ 1193 hbh = mtod(mopt, struct ip6_hbh *); 1194 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1195 } 1196 1197 /* fill in the option. */ 1198 optbuf[2] = IP6OPT_JUMBO; 1199 optbuf[3] = 4; 1200 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1201 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1202 1203 /* finally, adjust the packet header length */ 1204 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1205 1206 return (0); 1207 #undef JUMBOOPTLEN 1208 } 1209 1210 /* 1211 * Insert fragment header and copy unfragmentable header portions. 1212 */ 1213 static int 1214 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1215 struct ip6_frag **frghdrp) 1216 { 1217 struct mbuf *n, *mlast; 1218 1219 if (hlen > sizeof(struct ip6_hdr)) { 1220 n = m_copym(m0, sizeof(struct ip6_hdr), 1221 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1222 if (n == NULL) 1223 return (ENOBUFS); 1224 m->m_next = n; 1225 } else 1226 n = m; 1227 1228 /* Search for the last mbuf of unfragmentable part. */ 1229 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1230 ; 1231 1232 if (M_WRITABLE(mlast) && 1233 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1234 /* use the trailing space of the last mbuf for the fragment hdr */ 1235 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1236 mlast->m_len); 1237 mlast->m_len += sizeof(struct ip6_frag); 1238 m->m_pkthdr.len += sizeof(struct ip6_frag); 1239 } else { 1240 /* allocate a new mbuf for the fragment header */ 1241 struct mbuf *mfrg; 1242 1243 mfrg = m_get(M_NOWAIT, MT_DATA); 1244 if (mfrg == NULL) 1245 return (ENOBUFS); 1246 mfrg->m_len = sizeof(struct ip6_frag); 1247 *frghdrp = mtod(mfrg, struct ip6_frag *); 1248 mlast->m_next = mfrg; 1249 } 1250 1251 return (0); 1252 } 1253 1254 /* 1255 * Calculates IPv6 path mtu for destination @dst. 1256 * Resulting MTU is stored in @mtup. 1257 * 1258 * Returns 0 on success. 1259 */ 1260 static int 1261 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1262 { 1263 struct nhop6_extended nh6; 1264 struct in6_addr kdst; 1265 uint32_t scopeid; 1266 struct ifnet *ifp; 1267 u_long mtu; 1268 int error; 1269 1270 in6_splitscope(dst, &kdst, &scopeid); 1271 if (fib6_lookup_nh_ext(fibnum, &kdst, scopeid, NHR_REF, 0, &nh6) != 0) 1272 return (EHOSTUNREACH); 1273 1274 ifp = nh6.nh_ifp; 1275 mtu = nh6.nh_mtu; 1276 1277 error = ip6_calcmtu(ifp, dst, mtu, mtup, NULL, 0); 1278 fib6_free_nh_ext(fibnum, &nh6); 1279 1280 return (error); 1281 } 1282 1283 /* 1284 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1285 * and cached data in @ro_pmtu. 1286 * MTU from (successful) route lookup is saved (along with dst) 1287 * inside @ro_pmtu to avoid subsequent route lookups after packet 1288 * filter processing. 1289 * 1290 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1291 * Returns 0 on success. 1292 */ 1293 static int 1294 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1295 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1296 int *alwaysfragp, u_int fibnum, u_int proto) 1297 { 1298 struct nhop6_basic nh6; 1299 struct in6_addr kdst; 1300 uint32_t scopeid; 1301 struct sockaddr_in6 *sa6_dst; 1302 u_long mtu; 1303 1304 mtu = 0; 1305 if (do_lookup) { 1306 1307 /* 1308 * Here ro_pmtu has final destination address, while 1309 * ro might represent immediate destination. 1310 * Use ro_pmtu destination since mtu might differ. 1311 */ 1312 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1313 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1314 ro_pmtu->ro_mtu = 0; 1315 1316 if (ro_pmtu->ro_mtu == 0) { 1317 bzero(sa6_dst, sizeof(*sa6_dst)); 1318 sa6_dst->sin6_family = AF_INET6; 1319 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1320 sa6_dst->sin6_addr = *dst; 1321 1322 in6_splitscope(dst, &kdst, &scopeid); 1323 if (fib6_lookup_nh_basic(fibnum, &kdst, scopeid, 0, 0, 1324 &nh6) == 0) 1325 ro_pmtu->ro_mtu = nh6.nh_mtu; 1326 } 1327 1328 mtu = ro_pmtu->ro_mtu; 1329 } 1330 1331 if (ro_pmtu->ro_rt) 1332 mtu = ro_pmtu->ro_rt->rt_mtu; 1333 1334 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1335 } 1336 1337 /* 1338 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1339 * hostcache data for @dst. 1340 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1341 * 1342 * Returns 0 on success. 1343 */ 1344 static int 1345 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1346 u_long *mtup, int *alwaysfragp, u_int proto) 1347 { 1348 u_long mtu = 0; 1349 int alwaysfrag = 0; 1350 int error = 0; 1351 1352 if (rt_mtu > 0) { 1353 u_int32_t ifmtu; 1354 struct in_conninfo inc; 1355 1356 bzero(&inc, sizeof(inc)); 1357 inc.inc_flags |= INC_ISIPV6; 1358 inc.inc6_faddr = *dst; 1359 1360 ifmtu = IN6_LINKMTU(ifp); 1361 1362 /* TCP is known to react to pmtu changes so skip hc */ 1363 if (proto != IPPROTO_TCP) 1364 mtu = tcp_hc_getmtu(&inc); 1365 1366 if (mtu) 1367 mtu = min(mtu, rt_mtu); 1368 else 1369 mtu = rt_mtu; 1370 if (mtu == 0) 1371 mtu = ifmtu; 1372 else if (mtu < IPV6_MMTU) { 1373 /* 1374 * RFC2460 section 5, last paragraph: 1375 * if we record ICMPv6 too big message with 1376 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1377 * or smaller, with framgent header attached. 1378 * (fragment header is needed regardless from the 1379 * packet size, for translators to identify packets) 1380 */ 1381 alwaysfrag = 1; 1382 mtu = IPV6_MMTU; 1383 } 1384 } else if (ifp) { 1385 mtu = IN6_LINKMTU(ifp); 1386 } else 1387 error = EHOSTUNREACH; /* XXX */ 1388 1389 *mtup = mtu; 1390 if (alwaysfragp) 1391 *alwaysfragp = alwaysfrag; 1392 return (error); 1393 } 1394 1395 /* 1396 * IP6 socket option processing. 1397 */ 1398 int 1399 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1400 { 1401 int optdatalen, uproto; 1402 void *optdata; 1403 struct inpcb *in6p = sotoinpcb(so); 1404 int error, optval; 1405 int level, op, optname; 1406 int optlen; 1407 struct thread *td; 1408 #ifdef RSS 1409 uint32_t rss_bucket; 1410 int retval; 1411 #endif 1412 1413 /* 1414 * Don't use more than a quarter of mbuf clusters. N.B.: 1415 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1416 * on LP64 architectures, so cast to u_long to avoid undefined 1417 * behavior. ILP32 architectures cannot have nmbclusters 1418 * large enough to overflow for other reasons. 1419 */ 1420 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1421 1422 level = sopt->sopt_level; 1423 op = sopt->sopt_dir; 1424 optname = sopt->sopt_name; 1425 optlen = sopt->sopt_valsize; 1426 td = sopt->sopt_td; 1427 error = 0; 1428 optval = 0; 1429 uproto = (int)so->so_proto->pr_protocol; 1430 1431 if (level != IPPROTO_IPV6) { 1432 error = EINVAL; 1433 1434 if (sopt->sopt_level == SOL_SOCKET && 1435 sopt->sopt_dir == SOPT_SET) { 1436 switch (sopt->sopt_name) { 1437 case SO_REUSEADDR: 1438 INP_WLOCK(in6p); 1439 if ((so->so_options & SO_REUSEADDR) != 0) 1440 in6p->inp_flags2 |= INP_REUSEADDR; 1441 else 1442 in6p->inp_flags2 &= ~INP_REUSEADDR; 1443 INP_WUNLOCK(in6p); 1444 error = 0; 1445 break; 1446 case SO_REUSEPORT: 1447 INP_WLOCK(in6p); 1448 if ((so->so_options & SO_REUSEPORT) != 0) 1449 in6p->inp_flags2 |= INP_REUSEPORT; 1450 else 1451 in6p->inp_flags2 &= ~INP_REUSEPORT; 1452 INP_WUNLOCK(in6p); 1453 error = 0; 1454 break; 1455 case SO_SETFIB: 1456 INP_WLOCK(in6p); 1457 in6p->inp_inc.inc_fibnum = so->so_fibnum; 1458 INP_WUNLOCK(in6p); 1459 error = 0; 1460 break; 1461 case SO_MAX_PACING_RATE: 1462 #ifdef RATELIMIT 1463 INP_WLOCK(in6p); 1464 in6p->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1465 INP_WUNLOCK(in6p); 1466 error = 0; 1467 #else 1468 error = EOPNOTSUPP; 1469 #endif 1470 break; 1471 default: 1472 break; 1473 } 1474 } 1475 } else { /* level == IPPROTO_IPV6 */ 1476 switch (op) { 1477 1478 case SOPT_SET: 1479 switch (optname) { 1480 case IPV6_2292PKTOPTIONS: 1481 #ifdef IPV6_PKTOPTIONS 1482 case IPV6_PKTOPTIONS: 1483 #endif 1484 { 1485 struct mbuf *m; 1486 1487 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1488 printf("ip6_ctloutput: mbuf limit hit\n"); 1489 error = ENOBUFS; 1490 break; 1491 } 1492 1493 error = soopt_getm(sopt, &m); /* XXX */ 1494 if (error != 0) 1495 break; 1496 error = soopt_mcopyin(sopt, m); /* XXX */ 1497 if (error != 0) 1498 break; 1499 error = ip6_pcbopts(&in6p->in6p_outputopts, 1500 m, so, sopt); 1501 m_freem(m); /* XXX */ 1502 break; 1503 } 1504 1505 /* 1506 * Use of some Hop-by-Hop options or some 1507 * Destination options, might require special 1508 * privilege. That is, normal applications 1509 * (without special privilege) might be forbidden 1510 * from setting certain options in outgoing packets, 1511 * and might never see certain options in received 1512 * packets. [RFC 2292 Section 6] 1513 * KAME specific note: 1514 * KAME prevents non-privileged users from sending or 1515 * receiving ANY hbh/dst options in order to avoid 1516 * overhead of parsing options in the kernel. 1517 */ 1518 case IPV6_RECVHOPOPTS: 1519 case IPV6_RECVDSTOPTS: 1520 case IPV6_RECVRTHDRDSTOPTS: 1521 if (td != NULL) { 1522 error = priv_check(td, 1523 PRIV_NETINET_SETHDROPTS); 1524 if (error) 1525 break; 1526 } 1527 /* FALLTHROUGH */ 1528 case IPV6_UNICAST_HOPS: 1529 case IPV6_HOPLIMIT: 1530 1531 case IPV6_RECVPKTINFO: 1532 case IPV6_RECVHOPLIMIT: 1533 case IPV6_RECVRTHDR: 1534 case IPV6_RECVPATHMTU: 1535 case IPV6_RECVTCLASS: 1536 case IPV6_RECVFLOWID: 1537 #ifdef RSS 1538 case IPV6_RECVRSSBUCKETID: 1539 #endif 1540 case IPV6_V6ONLY: 1541 case IPV6_AUTOFLOWLABEL: 1542 case IPV6_ORIGDSTADDR: 1543 case IPV6_BINDANY: 1544 case IPV6_BINDMULTI: 1545 #ifdef RSS 1546 case IPV6_RSS_LISTEN_BUCKET: 1547 #endif 1548 if (optname == IPV6_BINDANY && td != NULL) { 1549 error = priv_check(td, 1550 PRIV_NETINET_BINDANY); 1551 if (error) 1552 break; 1553 } 1554 1555 if (optlen != sizeof(int)) { 1556 error = EINVAL; 1557 break; 1558 } 1559 error = sooptcopyin(sopt, &optval, 1560 sizeof optval, sizeof optval); 1561 if (error) 1562 break; 1563 switch (optname) { 1564 1565 case IPV6_UNICAST_HOPS: 1566 if (optval < -1 || optval >= 256) 1567 error = EINVAL; 1568 else { 1569 /* -1 = kernel default */ 1570 in6p->in6p_hops = optval; 1571 if ((in6p->inp_vflag & 1572 INP_IPV4) != 0) 1573 in6p->inp_ip_ttl = optval; 1574 } 1575 break; 1576 #define OPTSET(bit) \ 1577 do { \ 1578 INP_WLOCK(in6p); \ 1579 if (optval) \ 1580 in6p->inp_flags |= (bit); \ 1581 else \ 1582 in6p->inp_flags &= ~(bit); \ 1583 INP_WUNLOCK(in6p); \ 1584 } while (/*CONSTCOND*/ 0) 1585 #define OPTSET2292(bit) \ 1586 do { \ 1587 INP_WLOCK(in6p); \ 1588 in6p->inp_flags |= IN6P_RFC2292; \ 1589 if (optval) \ 1590 in6p->inp_flags |= (bit); \ 1591 else \ 1592 in6p->inp_flags &= ~(bit); \ 1593 INP_WUNLOCK(in6p); \ 1594 } while (/*CONSTCOND*/ 0) 1595 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1596 1597 #define OPTSET2(bit, val) do { \ 1598 INP_WLOCK(in6p); \ 1599 if (val) \ 1600 in6p->inp_flags2 |= bit; \ 1601 else \ 1602 in6p->inp_flags2 &= ~bit; \ 1603 INP_WUNLOCK(in6p); \ 1604 } while (0) 1605 #define OPTBIT2(bit) (in6p->inp_flags2 & (bit) ? 1 : 0) 1606 1607 case IPV6_RECVPKTINFO: 1608 /* cannot mix with RFC2292 */ 1609 if (OPTBIT(IN6P_RFC2292)) { 1610 error = EINVAL; 1611 break; 1612 } 1613 OPTSET(IN6P_PKTINFO); 1614 break; 1615 1616 case IPV6_HOPLIMIT: 1617 { 1618 struct ip6_pktopts **optp; 1619 1620 /* cannot mix with RFC2292 */ 1621 if (OPTBIT(IN6P_RFC2292)) { 1622 error = EINVAL; 1623 break; 1624 } 1625 optp = &in6p->in6p_outputopts; 1626 error = ip6_pcbopt(IPV6_HOPLIMIT, 1627 (u_char *)&optval, sizeof(optval), 1628 optp, (td != NULL) ? td->td_ucred : 1629 NULL, uproto); 1630 break; 1631 } 1632 1633 case IPV6_RECVHOPLIMIT: 1634 /* cannot mix with RFC2292 */ 1635 if (OPTBIT(IN6P_RFC2292)) { 1636 error = EINVAL; 1637 break; 1638 } 1639 OPTSET(IN6P_HOPLIMIT); 1640 break; 1641 1642 case IPV6_RECVHOPOPTS: 1643 /* cannot mix with RFC2292 */ 1644 if (OPTBIT(IN6P_RFC2292)) { 1645 error = EINVAL; 1646 break; 1647 } 1648 OPTSET(IN6P_HOPOPTS); 1649 break; 1650 1651 case IPV6_RECVDSTOPTS: 1652 /* cannot mix with RFC2292 */ 1653 if (OPTBIT(IN6P_RFC2292)) { 1654 error = EINVAL; 1655 break; 1656 } 1657 OPTSET(IN6P_DSTOPTS); 1658 break; 1659 1660 case IPV6_RECVRTHDRDSTOPTS: 1661 /* cannot mix with RFC2292 */ 1662 if (OPTBIT(IN6P_RFC2292)) { 1663 error = EINVAL; 1664 break; 1665 } 1666 OPTSET(IN6P_RTHDRDSTOPTS); 1667 break; 1668 1669 case IPV6_RECVRTHDR: 1670 /* cannot mix with RFC2292 */ 1671 if (OPTBIT(IN6P_RFC2292)) { 1672 error = EINVAL; 1673 break; 1674 } 1675 OPTSET(IN6P_RTHDR); 1676 break; 1677 1678 case IPV6_RECVPATHMTU: 1679 /* 1680 * We ignore this option for TCP 1681 * sockets. 1682 * (RFC3542 leaves this case 1683 * unspecified.) 1684 */ 1685 if (uproto != IPPROTO_TCP) 1686 OPTSET(IN6P_MTU); 1687 break; 1688 1689 case IPV6_RECVFLOWID: 1690 OPTSET2(INP_RECVFLOWID, optval); 1691 break; 1692 1693 #ifdef RSS 1694 case IPV6_RECVRSSBUCKETID: 1695 OPTSET2(INP_RECVRSSBUCKETID, optval); 1696 break; 1697 #endif 1698 1699 case IPV6_V6ONLY: 1700 /* 1701 * make setsockopt(IPV6_V6ONLY) 1702 * available only prior to bind(2). 1703 * see ipng mailing list, Jun 22 2001. 1704 */ 1705 if (in6p->inp_lport || 1706 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1707 error = EINVAL; 1708 break; 1709 } 1710 OPTSET(IN6P_IPV6_V6ONLY); 1711 if (optval) 1712 in6p->inp_vflag &= ~INP_IPV4; 1713 else 1714 in6p->inp_vflag |= INP_IPV4; 1715 break; 1716 case IPV6_RECVTCLASS: 1717 /* cannot mix with RFC2292 XXX */ 1718 if (OPTBIT(IN6P_RFC2292)) { 1719 error = EINVAL; 1720 break; 1721 } 1722 OPTSET(IN6P_TCLASS); 1723 break; 1724 case IPV6_AUTOFLOWLABEL: 1725 OPTSET(IN6P_AUTOFLOWLABEL); 1726 break; 1727 1728 case IPV6_ORIGDSTADDR: 1729 OPTSET2(INP_ORIGDSTADDR, optval); 1730 break; 1731 case IPV6_BINDANY: 1732 OPTSET(INP_BINDANY); 1733 break; 1734 1735 case IPV6_BINDMULTI: 1736 OPTSET2(INP_BINDMULTI, optval); 1737 break; 1738 #ifdef RSS 1739 case IPV6_RSS_LISTEN_BUCKET: 1740 if ((optval >= 0) && 1741 (optval < rss_getnumbuckets())) { 1742 in6p->inp_rss_listen_bucket = optval; 1743 OPTSET2(INP_RSS_BUCKET_SET, 1); 1744 } else { 1745 error = EINVAL; 1746 } 1747 break; 1748 #endif 1749 } 1750 break; 1751 1752 case IPV6_TCLASS: 1753 case IPV6_DONTFRAG: 1754 case IPV6_USE_MIN_MTU: 1755 case IPV6_PREFER_TEMPADDR: 1756 if (optlen != sizeof(optval)) { 1757 error = EINVAL; 1758 break; 1759 } 1760 error = sooptcopyin(sopt, &optval, 1761 sizeof optval, sizeof optval); 1762 if (error) 1763 break; 1764 { 1765 struct ip6_pktopts **optp; 1766 optp = &in6p->in6p_outputopts; 1767 error = ip6_pcbopt(optname, 1768 (u_char *)&optval, sizeof(optval), 1769 optp, (td != NULL) ? td->td_ucred : 1770 NULL, uproto); 1771 break; 1772 } 1773 1774 case IPV6_2292PKTINFO: 1775 case IPV6_2292HOPLIMIT: 1776 case IPV6_2292HOPOPTS: 1777 case IPV6_2292DSTOPTS: 1778 case IPV6_2292RTHDR: 1779 /* RFC 2292 */ 1780 if (optlen != sizeof(int)) { 1781 error = EINVAL; 1782 break; 1783 } 1784 error = sooptcopyin(sopt, &optval, 1785 sizeof optval, sizeof optval); 1786 if (error) 1787 break; 1788 switch (optname) { 1789 case IPV6_2292PKTINFO: 1790 OPTSET2292(IN6P_PKTINFO); 1791 break; 1792 case IPV6_2292HOPLIMIT: 1793 OPTSET2292(IN6P_HOPLIMIT); 1794 break; 1795 case IPV6_2292HOPOPTS: 1796 /* 1797 * Check super-user privilege. 1798 * See comments for IPV6_RECVHOPOPTS. 1799 */ 1800 if (td != NULL) { 1801 error = priv_check(td, 1802 PRIV_NETINET_SETHDROPTS); 1803 if (error) 1804 return (error); 1805 } 1806 OPTSET2292(IN6P_HOPOPTS); 1807 break; 1808 case IPV6_2292DSTOPTS: 1809 if (td != NULL) { 1810 error = priv_check(td, 1811 PRIV_NETINET_SETHDROPTS); 1812 if (error) 1813 return (error); 1814 } 1815 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1816 break; 1817 case IPV6_2292RTHDR: 1818 OPTSET2292(IN6P_RTHDR); 1819 break; 1820 } 1821 break; 1822 case IPV6_PKTINFO: 1823 case IPV6_HOPOPTS: 1824 case IPV6_RTHDR: 1825 case IPV6_DSTOPTS: 1826 case IPV6_RTHDRDSTOPTS: 1827 case IPV6_NEXTHOP: 1828 { 1829 /* new advanced API (RFC3542) */ 1830 u_char *optbuf; 1831 u_char optbuf_storage[MCLBYTES]; 1832 int optlen; 1833 struct ip6_pktopts **optp; 1834 1835 /* cannot mix with RFC2292 */ 1836 if (OPTBIT(IN6P_RFC2292)) { 1837 error = EINVAL; 1838 break; 1839 } 1840 1841 /* 1842 * We only ensure valsize is not too large 1843 * here. Further validation will be done 1844 * later. 1845 */ 1846 error = sooptcopyin(sopt, optbuf_storage, 1847 sizeof(optbuf_storage), 0); 1848 if (error) 1849 break; 1850 optlen = sopt->sopt_valsize; 1851 optbuf = optbuf_storage; 1852 optp = &in6p->in6p_outputopts; 1853 error = ip6_pcbopt(optname, optbuf, optlen, 1854 optp, (td != NULL) ? td->td_ucred : NULL, 1855 uproto); 1856 break; 1857 } 1858 #undef OPTSET 1859 1860 case IPV6_MULTICAST_IF: 1861 case IPV6_MULTICAST_HOPS: 1862 case IPV6_MULTICAST_LOOP: 1863 case IPV6_JOIN_GROUP: 1864 case IPV6_LEAVE_GROUP: 1865 case IPV6_MSFILTER: 1866 case MCAST_BLOCK_SOURCE: 1867 case MCAST_UNBLOCK_SOURCE: 1868 case MCAST_JOIN_GROUP: 1869 case MCAST_LEAVE_GROUP: 1870 case MCAST_JOIN_SOURCE_GROUP: 1871 case MCAST_LEAVE_SOURCE_GROUP: 1872 error = ip6_setmoptions(in6p, sopt); 1873 break; 1874 1875 case IPV6_PORTRANGE: 1876 error = sooptcopyin(sopt, &optval, 1877 sizeof optval, sizeof optval); 1878 if (error) 1879 break; 1880 1881 INP_WLOCK(in6p); 1882 switch (optval) { 1883 case IPV6_PORTRANGE_DEFAULT: 1884 in6p->inp_flags &= ~(INP_LOWPORT); 1885 in6p->inp_flags &= ~(INP_HIGHPORT); 1886 break; 1887 1888 case IPV6_PORTRANGE_HIGH: 1889 in6p->inp_flags &= ~(INP_LOWPORT); 1890 in6p->inp_flags |= INP_HIGHPORT; 1891 break; 1892 1893 case IPV6_PORTRANGE_LOW: 1894 in6p->inp_flags &= ~(INP_HIGHPORT); 1895 in6p->inp_flags |= INP_LOWPORT; 1896 break; 1897 1898 default: 1899 error = EINVAL; 1900 break; 1901 } 1902 INP_WUNLOCK(in6p); 1903 break; 1904 1905 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1906 case IPV6_IPSEC_POLICY: 1907 if (IPSEC_ENABLED(ipv6)) { 1908 error = IPSEC_PCBCTL(ipv6, in6p, sopt); 1909 break; 1910 } 1911 /* FALLTHROUGH */ 1912 #endif /* IPSEC */ 1913 1914 default: 1915 error = ENOPROTOOPT; 1916 break; 1917 } 1918 break; 1919 1920 case SOPT_GET: 1921 switch (optname) { 1922 1923 case IPV6_2292PKTOPTIONS: 1924 #ifdef IPV6_PKTOPTIONS 1925 case IPV6_PKTOPTIONS: 1926 #endif 1927 /* 1928 * RFC3542 (effectively) deprecated the 1929 * semantics of the 2292-style pktoptions. 1930 * Since it was not reliable in nature (i.e., 1931 * applications had to expect the lack of some 1932 * information after all), it would make sense 1933 * to simplify this part by always returning 1934 * empty data. 1935 */ 1936 sopt->sopt_valsize = 0; 1937 break; 1938 1939 case IPV6_RECVHOPOPTS: 1940 case IPV6_RECVDSTOPTS: 1941 case IPV6_RECVRTHDRDSTOPTS: 1942 case IPV6_UNICAST_HOPS: 1943 case IPV6_RECVPKTINFO: 1944 case IPV6_RECVHOPLIMIT: 1945 case IPV6_RECVRTHDR: 1946 case IPV6_RECVPATHMTU: 1947 1948 case IPV6_V6ONLY: 1949 case IPV6_PORTRANGE: 1950 case IPV6_RECVTCLASS: 1951 case IPV6_AUTOFLOWLABEL: 1952 case IPV6_BINDANY: 1953 case IPV6_FLOWID: 1954 case IPV6_FLOWTYPE: 1955 case IPV6_RECVFLOWID: 1956 #ifdef RSS 1957 case IPV6_RSSBUCKETID: 1958 case IPV6_RECVRSSBUCKETID: 1959 #endif 1960 case IPV6_BINDMULTI: 1961 switch (optname) { 1962 1963 case IPV6_RECVHOPOPTS: 1964 optval = OPTBIT(IN6P_HOPOPTS); 1965 break; 1966 1967 case IPV6_RECVDSTOPTS: 1968 optval = OPTBIT(IN6P_DSTOPTS); 1969 break; 1970 1971 case IPV6_RECVRTHDRDSTOPTS: 1972 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1973 break; 1974 1975 case IPV6_UNICAST_HOPS: 1976 optval = in6p->in6p_hops; 1977 break; 1978 1979 case IPV6_RECVPKTINFO: 1980 optval = OPTBIT(IN6P_PKTINFO); 1981 break; 1982 1983 case IPV6_RECVHOPLIMIT: 1984 optval = OPTBIT(IN6P_HOPLIMIT); 1985 break; 1986 1987 case IPV6_RECVRTHDR: 1988 optval = OPTBIT(IN6P_RTHDR); 1989 break; 1990 1991 case IPV6_RECVPATHMTU: 1992 optval = OPTBIT(IN6P_MTU); 1993 break; 1994 1995 case IPV6_V6ONLY: 1996 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1997 break; 1998 1999 case IPV6_PORTRANGE: 2000 { 2001 int flags; 2002 flags = in6p->inp_flags; 2003 if (flags & INP_HIGHPORT) 2004 optval = IPV6_PORTRANGE_HIGH; 2005 else if (flags & INP_LOWPORT) 2006 optval = IPV6_PORTRANGE_LOW; 2007 else 2008 optval = 0; 2009 break; 2010 } 2011 case IPV6_RECVTCLASS: 2012 optval = OPTBIT(IN6P_TCLASS); 2013 break; 2014 2015 case IPV6_AUTOFLOWLABEL: 2016 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2017 break; 2018 2019 case IPV6_ORIGDSTADDR: 2020 optval = OPTBIT2(INP_ORIGDSTADDR); 2021 break; 2022 2023 case IPV6_BINDANY: 2024 optval = OPTBIT(INP_BINDANY); 2025 break; 2026 2027 case IPV6_FLOWID: 2028 optval = in6p->inp_flowid; 2029 break; 2030 2031 case IPV6_FLOWTYPE: 2032 optval = in6p->inp_flowtype; 2033 break; 2034 2035 case IPV6_RECVFLOWID: 2036 optval = OPTBIT2(INP_RECVFLOWID); 2037 break; 2038 #ifdef RSS 2039 case IPV6_RSSBUCKETID: 2040 retval = 2041 rss_hash2bucket(in6p->inp_flowid, 2042 in6p->inp_flowtype, 2043 &rss_bucket); 2044 if (retval == 0) 2045 optval = rss_bucket; 2046 else 2047 error = EINVAL; 2048 break; 2049 2050 case IPV6_RECVRSSBUCKETID: 2051 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2052 break; 2053 #endif 2054 2055 case IPV6_BINDMULTI: 2056 optval = OPTBIT2(INP_BINDMULTI); 2057 break; 2058 2059 } 2060 if (error) 2061 break; 2062 error = sooptcopyout(sopt, &optval, 2063 sizeof optval); 2064 break; 2065 2066 case IPV6_PATHMTU: 2067 { 2068 u_long pmtu = 0; 2069 struct ip6_mtuinfo mtuinfo; 2070 2071 if (!(so->so_state & SS_ISCONNECTED)) 2072 return (ENOTCONN); 2073 /* 2074 * XXX: we dot not consider the case of source 2075 * routing, or optional information to specify 2076 * the outgoing interface. 2077 */ 2078 error = ip6_getpmtu_ctl(so->so_fibnum, 2079 &in6p->in6p_faddr, &pmtu); 2080 if (error) 2081 break; 2082 if (pmtu > IPV6_MAXPACKET) 2083 pmtu = IPV6_MAXPACKET; 2084 2085 bzero(&mtuinfo, sizeof(mtuinfo)); 2086 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2087 optdata = (void *)&mtuinfo; 2088 optdatalen = sizeof(mtuinfo); 2089 error = sooptcopyout(sopt, optdata, 2090 optdatalen); 2091 break; 2092 } 2093 2094 case IPV6_2292PKTINFO: 2095 case IPV6_2292HOPLIMIT: 2096 case IPV6_2292HOPOPTS: 2097 case IPV6_2292RTHDR: 2098 case IPV6_2292DSTOPTS: 2099 switch (optname) { 2100 case IPV6_2292PKTINFO: 2101 optval = OPTBIT(IN6P_PKTINFO); 2102 break; 2103 case IPV6_2292HOPLIMIT: 2104 optval = OPTBIT(IN6P_HOPLIMIT); 2105 break; 2106 case IPV6_2292HOPOPTS: 2107 optval = OPTBIT(IN6P_HOPOPTS); 2108 break; 2109 case IPV6_2292RTHDR: 2110 optval = OPTBIT(IN6P_RTHDR); 2111 break; 2112 case IPV6_2292DSTOPTS: 2113 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2114 break; 2115 } 2116 error = sooptcopyout(sopt, &optval, 2117 sizeof optval); 2118 break; 2119 case IPV6_PKTINFO: 2120 case IPV6_HOPOPTS: 2121 case IPV6_RTHDR: 2122 case IPV6_DSTOPTS: 2123 case IPV6_RTHDRDSTOPTS: 2124 case IPV6_NEXTHOP: 2125 case IPV6_TCLASS: 2126 case IPV6_DONTFRAG: 2127 case IPV6_USE_MIN_MTU: 2128 case IPV6_PREFER_TEMPADDR: 2129 error = ip6_getpcbopt(in6p->in6p_outputopts, 2130 optname, sopt); 2131 break; 2132 2133 case IPV6_MULTICAST_IF: 2134 case IPV6_MULTICAST_HOPS: 2135 case IPV6_MULTICAST_LOOP: 2136 case IPV6_MSFILTER: 2137 error = ip6_getmoptions(in6p, sopt); 2138 break; 2139 2140 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2141 case IPV6_IPSEC_POLICY: 2142 if (IPSEC_ENABLED(ipv6)) { 2143 error = IPSEC_PCBCTL(ipv6, in6p, sopt); 2144 break; 2145 } 2146 /* FALLTHROUGH */ 2147 #endif /* IPSEC */ 2148 default: 2149 error = ENOPROTOOPT; 2150 break; 2151 } 2152 break; 2153 } 2154 } 2155 return (error); 2156 } 2157 2158 int 2159 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2160 { 2161 int error = 0, optval, optlen; 2162 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2163 struct inpcb *in6p = sotoinpcb(so); 2164 int level, op, optname; 2165 2166 level = sopt->sopt_level; 2167 op = sopt->sopt_dir; 2168 optname = sopt->sopt_name; 2169 optlen = sopt->sopt_valsize; 2170 2171 if (level != IPPROTO_IPV6) { 2172 return (EINVAL); 2173 } 2174 2175 switch (optname) { 2176 case IPV6_CHECKSUM: 2177 /* 2178 * For ICMPv6 sockets, no modification allowed for checksum 2179 * offset, permit "no change" values to help existing apps. 2180 * 2181 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2182 * for an ICMPv6 socket will fail." 2183 * The current behavior does not meet RFC3542. 2184 */ 2185 switch (op) { 2186 case SOPT_SET: 2187 if (optlen != sizeof(int)) { 2188 error = EINVAL; 2189 break; 2190 } 2191 error = sooptcopyin(sopt, &optval, sizeof(optval), 2192 sizeof(optval)); 2193 if (error) 2194 break; 2195 if ((optval % 2) != 0) { 2196 /* the API assumes even offset values */ 2197 error = EINVAL; 2198 } else if (so->so_proto->pr_protocol == 2199 IPPROTO_ICMPV6) { 2200 if (optval != icmp6off) 2201 error = EINVAL; 2202 } else 2203 in6p->in6p_cksum = optval; 2204 break; 2205 2206 case SOPT_GET: 2207 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2208 optval = icmp6off; 2209 else 2210 optval = in6p->in6p_cksum; 2211 2212 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2213 break; 2214 2215 default: 2216 error = EINVAL; 2217 break; 2218 } 2219 break; 2220 2221 default: 2222 error = ENOPROTOOPT; 2223 break; 2224 } 2225 2226 return (error); 2227 } 2228 2229 /* 2230 * Set up IP6 options in pcb for insertion in output packets or 2231 * specifying behavior of outgoing packets. 2232 */ 2233 static int 2234 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2235 struct socket *so, struct sockopt *sopt) 2236 { 2237 struct ip6_pktopts *opt = *pktopt; 2238 int error = 0; 2239 struct thread *td = sopt->sopt_td; 2240 2241 /* turn off any old options. */ 2242 if (opt) { 2243 #ifdef DIAGNOSTIC 2244 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2245 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2246 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2247 printf("ip6_pcbopts: all specified options are cleared.\n"); 2248 #endif 2249 ip6_clearpktopts(opt, -1); 2250 } else 2251 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2252 *pktopt = NULL; 2253 2254 if (!m || m->m_len == 0) { 2255 /* 2256 * Only turning off any previous options, regardless of 2257 * whether the opt is just created or given. 2258 */ 2259 free(opt, M_IP6OPT); 2260 return (0); 2261 } 2262 2263 /* set options specified by user. */ 2264 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2265 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2266 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2267 free(opt, M_IP6OPT); 2268 return (error); 2269 } 2270 *pktopt = opt; 2271 return (0); 2272 } 2273 2274 /* 2275 * initialize ip6_pktopts. beware that there are non-zero default values in 2276 * the struct. 2277 */ 2278 void 2279 ip6_initpktopts(struct ip6_pktopts *opt) 2280 { 2281 2282 bzero(opt, sizeof(*opt)); 2283 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2284 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2285 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2286 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2287 } 2288 2289 static int 2290 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2291 struct ucred *cred, int uproto) 2292 { 2293 struct ip6_pktopts *opt; 2294 2295 if (*pktopt == NULL) { 2296 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2297 M_WAITOK); 2298 ip6_initpktopts(*pktopt); 2299 } 2300 opt = *pktopt; 2301 2302 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2303 } 2304 2305 static int 2306 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2307 { 2308 void *optdata = NULL; 2309 int optdatalen = 0; 2310 struct ip6_ext *ip6e; 2311 int error = 0; 2312 struct in6_pktinfo null_pktinfo; 2313 int deftclass = 0, on; 2314 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2315 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2316 2317 switch (optname) { 2318 case IPV6_PKTINFO: 2319 optdata = (void *)&null_pktinfo; 2320 if (pktopt && pktopt->ip6po_pktinfo) { 2321 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2322 sizeof(null_pktinfo)); 2323 in6_clearscope(&null_pktinfo.ipi6_addr); 2324 } else { 2325 /* XXX: we don't have to do this every time... */ 2326 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2327 } 2328 optdatalen = sizeof(struct in6_pktinfo); 2329 break; 2330 case IPV6_TCLASS: 2331 if (pktopt && pktopt->ip6po_tclass >= 0) 2332 optdata = (void *)&pktopt->ip6po_tclass; 2333 else 2334 optdata = (void *)&deftclass; 2335 optdatalen = sizeof(int); 2336 break; 2337 case IPV6_HOPOPTS: 2338 if (pktopt && pktopt->ip6po_hbh) { 2339 optdata = (void *)pktopt->ip6po_hbh; 2340 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2341 optdatalen = (ip6e->ip6e_len + 1) << 3; 2342 } 2343 break; 2344 case IPV6_RTHDR: 2345 if (pktopt && pktopt->ip6po_rthdr) { 2346 optdata = (void *)pktopt->ip6po_rthdr; 2347 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2348 optdatalen = (ip6e->ip6e_len + 1) << 3; 2349 } 2350 break; 2351 case IPV6_RTHDRDSTOPTS: 2352 if (pktopt && pktopt->ip6po_dest1) { 2353 optdata = (void *)pktopt->ip6po_dest1; 2354 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2355 optdatalen = (ip6e->ip6e_len + 1) << 3; 2356 } 2357 break; 2358 case IPV6_DSTOPTS: 2359 if (pktopt && pktopt->ip6po_dest2) { 2360 optdata = (void *)pktopt->ip6po_dest2; 2361 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2362 optdatalen = (ip6e->ip6e_len + 1) << 3; 2363 } 2364 break; 2365 case IPV6_NEXTHOP: 2366 if (pktopt && pktopt->ip6po_nexthop) { 2367 optdata = (void *)pktopt->ip6po_nexthop; 2368 optdatalen = pktopt->ip6po_nexthop->sa_len; 2369 } 2370 break; 2371 case IPV6_USE_MIN_MTU: 2372 if (pktopt) 2373 optdata = (void *)&pktopt->ip6po_minmtu; 2374 else 2375 optdata = (void *)&defminmtu; 2376 optdatalen = sizeof(int); 2377 break; 2378 case IPV6_DONTFRAG: 2379 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2380 on = 1; 2381 else 2382 on = 0; 2383 optdata = (void *)&on; 2384 optdatalen = sizeof(on); 2385 break; 2386 case IPV6_PREFER_TEMPADDR: 2387 if (pktopt) 2388 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2389 else 2390 optdata = (void *)&defpreftemp; 2391 optdatalen = sizeof(int); 2392 break; 2393 default: /* should not happen */ 2394 #ifdef DIAGNOSTIC 2395 panic("ip6_getpcbopt: unexpected option\n"); 2396 #endif 2397 return (ENOPROTOOPT); 2398 } 2399 2400 error = sooptcopyout(sopt, optdata, optdatalen); 2401 2402 return (error); 2403 } 2404 2405 void 2406 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2407 { 2408 if (pktopt == NULL) 2409 return; 2410 2411 if (optname == -1 || optname == IPV6_PKTINFO) { 2412 if (pktopt->ip6po_pktinfo) 2413 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2414 pktopt->ip6po_pktinfo = NULL; 2415 } 2416 if (optname == -1 || optname == IPV6_HOPLIMIT) 2417 pktopt->ip6po_hlim = -1; 2418 if (optname == -1 || optname == IPV6_TCLASS) 2419 pktopt->ip6po_tclass = -1; 2420 if (optname == -1 || optname == IPV6_NEXTHOP) { 2421 if (pktopt->ip6po_nextroute.ro_rt) { 2422 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2423 pktopt->ip6po_nextroute.ro_rt = NULL; 2424 } 2425 if (pktopt->ip6po_nexthop) 2426 free(pktopt->ip6po_nexthop, M_IP6OPT); 2427 pktopt->ip6po_nexthop = NULL; 2428 } 2429 if (optname == -1 || optname == IPV6_HOPOPTS) { 2430 if (pktopt->ip6po_hbh) 2431 free(pktopt->ip6po_hbh, M_IP6OPT); 2432 pktopt->ip6po_hbh = NULL; 2433 } 2434 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2435 if (pktopt->ip6po_dest1) 2436 free(pktopt->ip6po_dest1, M_IP6OPT); 2437 pktopt->ip6po_dest1 = NULL; 2438 } 2439 if (optname == -1 || optname == IPV6_RTHDR) { 2440 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2441 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2442 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2443 if (pktopt->ip6po_route.ro_rt) { 2444 RTFREE(pktopt->ip6po_route.ro_rt); 2445 pktopt->ip6po_route.ro_rt = NULL; 2446 } 2447 } 2448 if (optname == -1 || optname == IPV6_DSTOPTS) { 2449 if (pktopt->ip6po_dest2) 2450 free(pktopt->ip6po_dest2, M_IP6OPT); 2451 pktopt->ip6po_dest2 = NULL; 2452 } 2453 } 2454 2455 #define PKTOPT_EXTHDRCPY(type) \ 2456 do {\ 2457 if (src->type) {\ 2458 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2459 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2460 if (dst->type == NULL)\ 2461 goto bad;\ 2462 bcopy(src->type, dst->type, hlen);\ 2463 }\ 2464 } while (/*CONSTCOND*/ 0) 2465 2466 static int 2467 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2468 { 2469 if (dst == NULL || src == NULL) { 2470 printf("ip6_clearpktopts: invalid argument\n"); 2471 return (EINVAL); 2472 } 2473 2474 dst->ip6po_hlim = src->ip6po_hlim; 2475 dst->ip6po_tclass = src->ip6po_tclass; 2476 dst->ip6po_flags = src->ip6po_flags; 2477 dst->ip6po_minmtu = src->ip6po_minmtu; 2478 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2479 if (src->ip6po_pktinfo) { 2480 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2481 M_IP6OPT, canwait); 2482 if (dst->ip6po_pktinfo == NULL) 2483 goto bad; 2484 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2485 } 2486 if (src->ip6po_nexthop) { 2487 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2488 M_IP6OPT, canwait); 2489 if (dst->ip6po_nexthop == NULL) 2490 goto bad; 2491 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2492 src->ip6po_nexthop->sa_len); 2493 } 2494 PKTOPT_EXTHDRCPY(ip6po_hbh); 2495 PKTOPT_EXTHDRCPY(ip6po_dest1); 2496 PKTOPT_EXTHDRCPY(ip6po_dest2); 2497 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2498 return (0); 2499 2500 bad: 2501 ip6_clearpktopts(dst, -1); 2502 return (ENOBUFS); 2503 } 2504 #undef PKTOPT_EXTHDRCPY 2505 2506 struct ip6_pktopts * 2507 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2508 { 2509 int error; 2510 struct ip6_pktopts *dst; 2511 2512 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2513 if (dst == NULL) 2514 return (NULL); 2515 ip6_initpktopts(dst); 2516 2517 if ((error = copypktopts(dst, src, canwait)) != 0) { 2518 free(dst, M_IP6OPT); 2519 return (NULL); 2520 } 2521 2522 return (dst); 2523 } 2524 2525 void 2526 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2527 { 2528 if (pktopt == NULL) 2529 return; 2530 2531 ip6_clearpktopts(pktopt, -1); 2532 2533 free(pktopt, M_IP6OPT); 2534 } 2535 2536 /* 2537 * Set IPv6 outgoing packet options based on advanced API. 2538 */ 2539 int 2540 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2541 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2542 { 2543 struct cmsghdr *cm = NULL; 2544 2545 if (control == NULL || opt == NULL) 2546 return (EINVAL); 2547 2548 ip6_initpktopts(opt); 2549 if (stickyopt) { 2550 int error; 2551 2552 /* 2553 * If stickyopt is provided, make a local copy of the options 2554 * for this particular packet, then override them by ancillary 2555 * objects. 2556 * XXX: copypktopts() does not copy the cached route to a next 2557 * hop (if any). This is not very good in terms of efficiency, 2558 * but we can allow this since this option should be rarely 2559 * used. 2560 */ 2561 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2562 return (error); 2563 } 2564 2565 /* 2566 * XXX: Currently, we assume all the optional information is stored 2567 * in a single mbuf. 2568 */ 2569 if (control->m_next) 2570 return (EINVAL); 2571 2572 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2573 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2574 int error; 2575 2576 if (control->m_len < CMSG_LEN(0)) 2577 return (EINVAL); 2578 2579 cm = mtod(control, struct cmsghdr *); 2580 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2581 return (EINVAL); 2582 if (cm->cmsg_level != IPPROTO_IPV6) 2583 continue; 2584 2585 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2586 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2587 if (error) 2588 return (error); 2589 } 2590 2591 return (0); 2592 } 2593 2594 /* 2595 * Set a particular packet option, as a sticky option or an ancillary data 2596 * item. "len" can be 0 only when it's a sticky option. 2597 * We have 4 cases of combination of "sticky" and "cmsg": 2598 * "sticky=0, cmsg=0": impossible 2599 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2600 * "sticky=1, cmsg=0": RFC3542 socket option 2601 * "sticky=1, cmsg=1": RFC2292 socket option 2602 */ 2603 static int 2604 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2605 struct ucred *cred, int sticky, int cmsg, int uproto) 2606 { 2607 int minmtupolicy, preftemp; 2608 int error; 2609 2610 if (!sticky && !cmsg) { 2611 #ifdef DIAGNOSTIC 2612 printf("ip6_setpktopt: impossible case\n"); 2613 #endif 2614 return (EINVAL); 2615 } 2616 2617 /* 2618 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2619 * not be specified in the context of RFC3542. Conversely, 2620 * RFC3542 types should not be specified in the context of RFC2292. 2621 */ 2622 if (!cmsg) { 2623 switch (optname) { 2624 case IPV6_2292PKTINFO: 2625 case IPV6_2292HOPLIMIT: 2626 case IPV6_2292NEXTHOP: 2627 case IPV6_2292HOPOPTS: 2628 case IPV6_2292DSTOPTS: 2629 case IPV6_2292RTHDR: 2630 case IPV6_2292PKTOPTIONS: 2631 return (ENOPROTOOPT); 2632 } 2633 } 2634 if (sticky && cmsg) { 2635 switch (optname) { 2636 case IPV6_PKTINFO: 2637 case IPV6_HOPLIMIT: 2638 case IPV6_NEXTHOP: 2639 case IPV6_HOPOPTS: 2640 case IPV6_DSTOPTS: 2641 case IPV6_RTHDRDSTOPTS: 2642 case IPV6_RTHDR: 2643 case IPV6_USE_MIN_MTU: 2644 case IPV6_DONTFRAG: 2645 case IPV6_TCLASS: 2646 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2647 return (ENOPROTOOPT); 2648 } 2649 } 2650 2651 switch (optname) { 2652 case IPV6_2292PKTINFO: 2653 case IPV6_PKTINFO: 2654 { 2655 struct ifnet *ifp = NULL; 2656 struct in6_pktinfo *pktinfo; 2657 2658 if (len != sizeof(struct in6_pktinfo)) 2659 return (EINVAL); 2660 2661 pktinfo = (struct in6_pktinfo *)buf; 2662 2663 /* 2664 * An application can clear any sticky IPV6_PKTINFO option by 2665 * doing a "regular" setsockopt with ipi6_addr being 2666 * in6addr_any and ipi6_ifindex being zero. 2667 * [RFC 3542, Section 6] 2668 */ 2669 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2670 pktinfo->ipi6_ifindex == 0 && 2671 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2672 ip6_clearpktopts(opt, optname); 2673 break; 2674 } 2675 2676 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2677 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2678 return (EINVAL); 2679 } 2680 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2681 return (EINVAL); 2682 /* validate the interface index if specified. */ 2683 if (pktinfo->ipi6_ifindex > V_if_index) 2684 return (ENXIO); 2685 if (pktinfo->ipi6_ifindex) { 2686 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2687 if (ifp == NULL) 2688 return (ENXIO); 2689 } 2690 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2691 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2692 return (ENETDOWN); 2693 2694 if (ifp != NULL && 2695 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2696 struct in6_ifaddr *ia; 2697 2698 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2699 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2700 if (ia == NULL) 2701 return (EADDRNOTAVAIL); 2702 ifa_free(&ia->ia_ifa); 2703 } 2704 /* 2705 * We store the address anyway, and let in6_selectsrc() 2706 * validate the specified address. This is because ipi6_addr 2707 * may not have enough information about its scope zone, and 2708 * we may need additional information (such as outgoing 2709 * interface or the scope zone of a destination address) to 2710 * disambiguate the scope. 2711 * XXX: the delay of the validation may confuse the 2712 * application when it is used as a sticky option. 2713 */ 2714 if (opt->ip6po_pktinfo == NULL) { 2715 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2716 M_IP6OPT, M_NOWAIT); 2717 if (opt->ip6po_pktinfo == NULL) 2718 return (ENOBUFS); 2719 } 2720 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2721 break; 2722 } 2723 2724 case IPV6_2292HOPLIMIT: 2725 case IPV6_HOPLIMIT: 2726 { 2727 int *hlimp; 2728 2729 /* 2730 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2731 * to simplify the ordering among hoplimit options. 2732 */ 2733 if (optname == IPV6_HOPLIMIT && sticky) 2734 return (ENOPROTOOPT); 2735 2736 if (len != sizeof(int)) 2737 return (EINVAL); 2738 hlimp = (int *)buf; 2739 if (*hlimp < -1 || *hlimp > 255) 2740 return (EINVAL); 2741 2742 opt->ip6po_hlim = *hlimp; 2743 break; 2744 } 2745 2746 case IPV6_TCLASS: 2747 { 2748 int tclass; 2749 2750 if (len != sizeof(int)) 2751 return (EINVAL); 2752 tclass = *(int *)buf; 2753 if (tclass < -1 || tclass > 255) 2754 return (EINVAL); 2755 2756 opt->ip6po_tclass = tclass; 2757 break; 2758 } 2759 2760 case IPV6_2292NEXTHOP: 2761 case IPV6_NEXTHOP: 2762 if (cred != NULL) { 2763 error = priv_check_cred(cred, 2764 PRIV_NETINET_SETHDROPTS, 0); 2765 if (error) 2766 return (error); 2767 } 2768 2769 if (len == 0) { /* just remove the option */ 2770 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2771 break; 2772 } 2773 2774 /* check if cmsg_len is large enough for sa_len */ 2775 if (len < sizeof(struct sockaddr) || len < *buf) 2776 return (EINVAL); 2777 2778 switch (((struct sockaddr *)buf)->sa_family) { 2779 case AF_INET6: 2780 { 2781 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2782 int error; 2783 2784 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2785 return (EINVAL); 2786 2787 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2788 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2789 return (EINVAL); 2790 } 2791 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2792 != 0) { 2793 return (error); 2794 } 2795 break; 2796 } 2797 case AF_LINK: /* should eventually be supported */ 2798 default: 2799 return (EAFNOSUPPORT); 2800 } 2801 2802 /* turn off the previous option, then set the new option. */ 2803 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2804 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2805 if (opt->ip6po_nexthop == NULL) 2806 return (ENOBUFS); 2807 bcopy(buf, opt->ip6po_nexthop, *buf); 2808 break; 2809 2810 case IPV6_2292HOPOPTS: 2811 case IPV6_HOPOPTS: 2812 { 2813 struct ip6_hbh *hbh; 2814 int hbhlen; 2815 2816 /* 2817 * XXX: We don't allow a non-privileged user to set ANY HbH 2818 * options, since per-option restriction has too much 2819 * overhead. 2820 */ 2821 if (cred != NULL) { 2822 error = priv_check_cred(cred, 2823 PRIV_NETINET_SETHDROPTS, 0); 2824 if (error) 2825 return (error); 2826 } 2827 2828 if (len == 0) { 2829 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2830 break; /* just remove the option */ 2831 } 2832 2833 /* message length validation */ 2834 if (len < sizeof(struct ip6_hbh)) 2835 return (EINVAL); 2836 hbh = (struct ip6_hbh *)buf; 2837 hbhlen = (hbh->ip6h_len + 1) << 3; 2838 if (len != hbhlen) 2839 return (EINVAL); 2840 2841 /* turn off the previous option, then set the new option. */ 2842 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2843 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2844 if (opt->ip6po_hbh == NULL) 2845 return (ENOBUFS); 2846 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2847 2848 break; 2849 } 2850 2851 case IPV6_2292DSTOPTS: 2852 case IPV6_DSTOPTS: 2853 case IPV6_RTHDRDSTOPTS: 2854 { 2855 struct ip6_dest *dest, **newdest = NULL; 2856 int destlen; 2857 2858 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2859 error = priv_check_cred(cred, 2860 PRIV_NETINET_SETHDROPTS, 0); 2861 if (error) 2862 return (error); 2863 } 2864 2865 if (len == 0) { 2866 ip6_clearpktopts(opt, optname); 2867 break; /* just remove the option */ 2868 } 2869 2870 /* message length validation */ 2871 if (len < sizeof(struct ip6_dest)) 2872 return (EINVAL); 2873 dest = (struct ip6_dest *)buf; 2874 destlen = (dest->ip6d_len + 1) << 3; 2875 if (len != destlen) 2876 return (EINVAL); 2877 2878 /* 2879 * Determine the position that the destination options header 2880 * should be inserted; before or after the routing header. 2881 */ 2882 switch (optname) { 2883 case IPV6_2292DSTOPTS: 2884 /* 2885 * The old advacned API is ambiguous on this point. 2886 * Our approach is to determine the position based 2887 * according to the existence of a routing header. 2888 * Note, however, that this depends on the order of the 2889 * extension headers in the ancillary data; the 1st 2890 * part of the destination options header must appear 2891 * before the routing header in the ancillary data, 2892 * too. 2893 * RFC3542 solved the ambiguity by introducing 2894 * separate ancillary data or option types. 2895 */ 2896 if (opt->ip6po_rthdr == NULL) 2897 newdest = &opt->ip6po_dest1; 2898 else 2899 newdest = &opt->ip6po_dest2; 2900 break; 2901 case IPV6_RTHDRDSTOPTS: 2902 newdest = &opt->ip6po_dest1; 2903 break; 2904 case IPV6_DSTOPTS: 2905 newdest = &opt->ip6po_dest2; 2906 break; 2907 } 2908 2909 /* turn off the previous option, then set the new option. */ 2910 ip6_clearpktopts(opt, optname); 2911 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2912 if (*newdest == NULL) 2913 return (ENOBUFS); 2914 bcopy(dest, *newdest, destlen); 2915 2916 break; 2917 } 2918 2919 case IPV6_2292RTHDR: 2920 case IPV6_RTHDR: 2921 { 2922 struct ip6_rthdr *rth; 2923 int rthlen; 2924 2925 if (len == 0) { 2926 ip6_clearpktopts(opt, IPV6_RTHDR); 2927 break; /* just remove the option */ 2928 } 2929 2930 /* message length validation */ 2931 if (len < sizeof(struct ip6_rthdr)) 2932 return (EINVAL); 2933 rth = (struct ip6_rthdr *)buf; 2934 rthlen = (rth->ip6r_len + 1) << 3; 2935 if (len != rthlen) 2936 return (EINVAL); 2937 2938 switch (rth->ip6r_type) { 2939 case IPV6_RTHDR_TYPE_0: 2940 if (rth->ip6r_len == 0) /* must contain one addr */ 2941 return (EINVAL); 2942 if (rth->ip6r_len % 2) /* length must be even */ 2943 return (EINVAL); 2944 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2945 return (EINVAL); 2946 break; 2947 default: 2948 return (EINVAL); /* not supported */ 2949 } 2950 2951 /* turn off the previous option */ 2952 ip6_clearpktopts(opt, IPV6_RTHDR); 2953 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2954 if (opt->ip6po_rthdr == NULL) 2955 return (ENOBUFS); 2956 bcopy(rth, opt->ip6po_rthdr, rthlen); 2957 2958 break; 2959 } 2960 2961 case IPV6_USE_MIN_MTU: 2962 if (len != sizeof(int)) 2963 return (EINVAL); 2964 minmtupolicy = *(int *)buf; 2965 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2966 minmtupolicy != IP6PO_MINMTU_DISABLE && 2967 minmtupolicy != IP6PO_MINMTU_ALL) { 2968 return (EINVAL); 2969 } 2970 opt->ip6po_minmtu = minmtupolicy; 2971 break; 2972 2973 case IPV6_DONTFRAG: 2974 if (len != sizeof(int)) 2975 return (EINVAL); 2976 2977 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2978 /* 2979 * we ignore this option for TCP sockets. 2980 * (RFC3542 leaves this case unspecified.) 2981 */ 2982 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2983 } else 2984 opt->ip6po_flags |= IP6PO_DONTFRAG; 2985 break; 2986 2987 case IPV6_PREFER_TEMPADDR: 2988 if (len != sizeof(int)) 2989 return (EINVAL); 2990 preftemp = *(int *)buf; 2991 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 2992 preftemp != IP6PO_TEMPADDR_NOTPREFER && 2993 preftemp != IP6PO_TEMPADDR_PREFER) { 2994 return (EINVAL); 2995 } 2996 opt->ip6po_prefer_tempaddr = preftemp; 2997 break; 2998 2999 default: 3000 return (ENOPROTOOPT); 3001 } /* end of switch */ 3002 3003 return (0); 3004 } 3005 3006 /* 3007 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3008 * packet to the input queue of a specified interface. Note that this 3009 * calls the output routine of the loopback "driver", but with an interface 3010 * pointer that might NOT be &loif -- easier than replicating that code here. 3011 */ 3012 void 3013 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3014 { 3015 struct mbuf *copym; 3016 struct ip6_hdr *ip6; 3017 3018 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3019 if (copym == NULL) 3020 return; 3021 3022 /* 3023 * Make sure to deep-copy IPv6 header portion in case the data 3024 * is in an mbuf cluster, so that we can safely override the IPv6 3025 * header portion later. 3026 */ 3027 if (!M_WRITABLE(copym) || 3028 copym->m_len < sizeof(struct ip6_hdr)) { 3029 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3030 if (copym == NULL) 3031 return; 3032 } 3033 ip6 = mtod(copym, struct ip6_hdr *); 3034 /* 3035 * clear embedded scope identifiers if necessary. 3036 * in6_clearscope will touch the addresses only when necessary. 3037 */ 3038 in6_clearscope(&ip6->ip6_src); 3039 in6_clearscope(&ip6->ip6_dst); 3040 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3041 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3042 CSUM_PSEUDO_HDR; 3043 copym->m_pkthdr.csum_data = 0xffff; 3044 } 3045 if_simloop(ifp, copym, AF_INET6, 0); 3046 } 3047 3048 /* 3049 * Chop IPv6 header off from the payload. 3050 */ 3051 static int 3052 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3053 { 3054 struct mbuf *mh; 3055 struct ip6_hdr *ip6; 3056 3057 ip6 = mtod(m, struct ip6_hdr *); 3058 if (m->m_len > sizeof(*ip6)) { 3059 mh = m_gethdr(M_NOWAIT, MT_DATA); 3060 if (mh == NULL) { 3061 m_freem(m); 3062 return ENOBUFS; 3063 } 3064 m_move_pkthdr(mh, m); 3065 M_ALIGN(mh, sizeof(*ip6)); 3066 m->m_len -= sizeof(*ip6); 3067 m->m_data += sizeof(*ip6); 3068 mh->m_next = m; 3069 m = mh; 3070 m->m_len = sizeof(*ip6); 3071 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3072 } 3073 exthdrs->ip6e_ip6 = m; 3074 return 0; 3075 } 3076 3077 /* 3078 * Compute IPv6 extension header length. 3079 */ 3080 int 3081 ip6_optlen(struct inpcb *in6p) 3082 { 3083 int len; 3084 3085 if (!in6p->in6p_outputopts) 3086 return 0; 3087 3088 len = 0; 3089 #define elen(x) \ 3090 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3091 3092 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3093 if (in6p->in6p_outputopts->ip6po_rthdr) 3094 /* dest1 is valid with rthdr only */ 3095 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3096 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3097 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3098 return len; 3099 #undef elen 3100 } 3101