1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 32 */ 33 34 /*- 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ipsec.h" 71 #include "opt_kern_tls.h" 72 #include "opt_ratelimit.h" 73 #include "opt_route.h" 74 #include "opt_rss.h" 75 #include "opt_sctp.h" 76 77 #include <sys/param.h> 78 #include <sys/kernel.h> 79 #include <sys/ktls.h> 80 #include <sys/malloc.h> 81 #include <sys/mbuf.h> 82 #include <sys/errno.h> 83 #include <sys/priv.h> 84 #include <sys/proc.h> 85 #include <sys/protosw.h> 86 #include <sys/socket.h> 87 #include <sys/socketvar.h> 88 #include <sys/syslog.h> 89 #include <sys/ucred.h> 90 91 #include <machine/in_cksum.h> 92 93 #include <net/if.h> 94 #include <net/if_var.h> 95 #include <net/if_vlan_var.h> 96 #include <net/if_llatbl.h> 97 #include <net/ethernet.h> 98 #include <net/netisr.h> 99 #include <net/route.h> 100 #include <net/route/nhop.h> 101 #include <net/pfil.h> 102 #include <net/rss_config.h> 103 #include <net/vnet.h> 104 105 #include <netinet/in.h> 106 #include <netinet/in_var.h> 107 #include <netinet/ip_var.h> 108 #include <netinet6/in6_fib.h> 109 #include <netinet6/in6_var.h> 110 #include <netinet/ip6.h> 111 #include <netinet/icmp6.h> 112 #include <netinet6/ip6_var.h> 113 #include <netinet/in_pcb.h> 114 #include <netinet/tcp_var.h> 115 #include <netinet6/nd6.h> 116 #include <netinet6/in6_rss.h> 117 118 #include <netipsec/ipsec_support.h> 119 #if defined(SCTP) || defined(SCTP_SUPPORT) 120 #include <netinet/sctp.h> 121 #include <netinet/sctp_crc32.h> 122 #endif 123 124 #include <netinet6/ip6protosw.h> 125 #include <netinet6/scope6_var.h> 126 127 extern int in6_mcast_loop; 128 129 struct ip6_exthdrs { 130 struct mbuf *ip6e_ip6; 131 struct mbuf *ip6e_hbh; 132 struct mbuf *ip6e_dest1; 133 struct mbuf *ip6e_rthdr; 134 struct mbuf *ip6e_dest2; 135 }; 136 137 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 138 139 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 140 struct ucred *, int); 141 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 142 struct socket *, struct sockopt *); 143 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *); 144 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 145 struct ucred *, int, int, int); 146 147 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 148 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 149 struct ip6_frag **); 150 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 151 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 152 static int ip6_getpmtu(struct route_in6 *, int, 153 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 154 u_int); 155 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 156 u_long *, int *, u_int); 157 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 158 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 159 160 /* 161 * Make an extension header from option data. hp is the source, 162 * mp is the destination, and _ol is the optlen. 163 */ 164 #define MAKE_EXTHDR(hp, mp, _ol) \ 165 do { \ 166 if (hp) { \ 167 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 168 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 169 ((eh)->ip6e_len + 1) << 3); \ 170 if (error) \ 171 goto freehdrs; \ 172 (_ol) += (*(mp))->m_len; \ 173 } \ 174 } while (/*CONSTCOND*/ 0) 175 176 /* 177 * Form a chain of extension headers. 178 * m is the extension header mbuf 179 * mp is the previous mbuf in the chain 180 * p is the next header 181 * i is the type of option. 182 */ 183 #define MAKE_CHAIN(m, mp, p, i)\ 184 do {\ 185 if (m) {\ 186 if (!hdrsplit) \ 187 panic("%s:%d: assumption failed: "\ 188 "hdr not split: hdrsplit %d exthdrs %p",\ 189 __func__, __LINE__, hdrsplit, &exthdrs);\ 190 *mtod((m), u_char *) = *(p);\ 191 *(p) = (i);\ 192 p = mtod((m), u_char *);\ 193 (m)->m_next = (mp)->m_next;\ 194 (mp)->m_next = (m);\ 195 (mp) = (m);\ 196 }\ 197 } while (/*CONSTCOND*/ 0) 198 199 void 200 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 201 { 202 u_short csum; 203 204 csum = in_cksum_skip(m, offset + plen, offset); 205 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 206 csum = 0xffff; 207 offset += m->m_pkthdr.csum_data; /* checksum offset */ 208 209 if (offset + sizeof(csum) > m->m_len) 210 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 211 else 212 *(u_short *)mtodo(m, offset) = csum; 213 } 214 215 static int 216 ip6_output_delayed_csum(struct mbuf *m, struct ifnet *ifp, int csum_flags, 217 int plen, int optlen, bool frag) 218 { 219 220 KASSERT((plen >= optlen), ("%s:%d: plen %d < optlen %d, m %p, ifp %p " 221 "csum_flags %#x frag %d\n", 222 __func__, __LINE__, plen, optlen, m, ifp, csum_flags, frag)); 223 224 if ((csum_flags & CSUM_DELAY_DATA_IPV6) || 225 #if defined(SCTP) || defined(SCTP_SUPPORT) 226 (csum_flags & CSUM_SCTP_IPV6) || 227 #endif 228 (!frag && (ifp->if_capenable & IFCAP_MEXTPG) == 0)) { 229 m = mb_unmapped_to_ext(m); 230 if (m == NULL) { 231 if (frag) 232 in6_ifstat_inc(ifp, ifs6_out_fragfail); 233 else 234 IP6STAT_INC(ip6s_odropped); 235 return (ENOBUFS); 236 } 237 if (csum_flags & CSUM_DELAY_DATA_IPV6) { 238 in6_delayed_cksum(m, plen - optlen, 239 sizeof(struct ip6_hdr) + optlen); 240 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 241 } 242 #if defined(SCTP) || defined(SCTP_SUPPORT) 243 if (csum_flags & CSUM_SCTP_IPV6) { 244 sctp_delayed_cksum(m, sizeof(struct ip6_hdr) + optlen); 245 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 246 } 247 #endif 248 } 249 250 return (0); 251 } 252 253 int 254 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 255 int fraglen , uint32_t id) 256 { 257 struct mbuf *m, **mnext, *m_frgpart; 258 struct ip6_hdr *ip6, *mhip6; 259 struct ip6_frag *ip6f; 260 int off; 261 int error; 262 int tlen = m0->m_pkthdr.len; 263 264 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); 265 266 m = m0; 267 ip6 = mtod(m, struct ip6_hdr *); 268 mnext = &m->m_nextpkt; 269 270 for (off = hlen; off < tlen; off += fraglen) { 271 m = m_gethdr(M_NOWAIT, MT_DATA); 272 if (!m) { 273 IP6STAT_INC(ip6s_odropped); 274 return (ENOBUFS); 275 } 276 277 /* 278 * Make sure the complete packet header gets copied 279 * from the originating mbuf to the newly created 280 * mbuf. This also ensures that existing firewall 281 * classification(s), VLAN tags and so on get copied 282 * to the resulting fragmented packet(s): 283 */ 284 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 285 m_free(m); 286 IP6STAT_INC(ip6s_odropped); 287 return (ENOBUFS); 288 } 289 290 *mnext = m; 291 mnext = &m->m_nextpkt; 292 m->m_data += max_linkhdr; 293 mhip6 = mtod(m, struct ip6_hdr *); 294 *mhip6 = *ip6; 295 m->m_len = sizeof(*mhip6); 296 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 297 if (error) { 298 IP6STAT_INC(ip6s_odropped); 299 return (error); 300 } 301 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 302 if (off + fraglen >= tlen) 303 fraglen = tlen - off; 304 else 305 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 306 mhip6->ip6_plen = htons((u_short)(fraglen + hlen + 307 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 308 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { 309 IP6STAT_INC(ip6s_odropped); 310 return (ENOBUFS); 311 } 312 m_cat(m, m_frgpart); 313 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); 314 ip6f->ip6f_reserved = 0; 315 ip6f->ip6f_ident = id; 316 ip6f->ip6f_nxt = nextproto; 317 IP6STAT_INC(ip6s_ofragments); 318 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 319 } 320 321 return (0); 322 } 323 324 static int 325 ip6_output_send(struct inpcb *inp, struct ifnet *ifp, struct ifnet *origifp, 326 struct mbuf *m, struct sockaddr_in6 *dst, struct route_in6 *ro, 327 bool stamp_tag) 328 { 329 #ifdef KERN_TLS 330 struct ktls_session *tls = NULL; 331 #endif 332 struct m_snd_tag *mst; 333 int error; 334 335 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 336 mst = NULL; 337 338 #ifdef KERN_TLS 339 /* 340 * If this is an unencrypted TLS record, save a reference to 341 * the record. This local reference is used to call 342 * ktls_output_eagain after the mbuf has been freed (thus 343 * dropping the mbuf's reference) in if_output. 344 */ 345 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 346 tls = ktls_hold(m->m_next->m_epg_tls); 347 mst = tls->snd_tag; 348 349 /* 350 * If a TLS session doesn't have a valid tag, it must 351 * have had an earlier ifp mismatch, so drop this 352 * packet. 353 */ 354 if (mst == NULL) { 355 error = EAGAIN; 356 goto done; 357 } 358 /* 359 * Always stamp tags that include NIC ktls. 360 */ 361 stamp_tag = true; 362 } 363 #endif 364 #ifdef RATELIMIT 365 if (inp != NULL && mst == NULL) { 366 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 367 (inp->inp_snd_tag != NULL && 368 inp->inp_snd_tag->ifp != ifp)) 369 in_pcboutput_txrtlmt(inp, ifp, m); 370 371 if (inp->inp_snd_tag != NULL) 372 mst = inp->inp_snd_tag; 373 } 374 #endif 375 if (stamp_tag && mst != NULL) { 376 KASSERT(m->m_pkthdr.rcvif == NULL, 377 ("trying to add a send tag to a forwarded packet")); 378 if (mst->ifp != ifp) { 379 error = EAGAIN; 380 goto done; 381 } 382 383 /* stamp send tag on mbuf */ 384 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 385 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 386 } 387 388 error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro); 389 390 done: 391 /* Check for route change invalidating send tags. */ 392 #ifdef KERN_TLS 393 if (tls != NULL) { 394 if (error == EAGAIN) 395 error = ktls_output_eagain(inp, tls); 396 ktls_free(tls); 397 } 398 #endif 399 #ifdef RATELIMIT 400 if (error == EAGAIN) 401 in_pcboutput_eagain(inp); 402 #endif 403 return (error); 404 } 405 406 /* 407 * IP6 output. 408 * The packet in mbuf chain m contains a skeletal IP6 header (with pri, len, 409 * nxt, hlim, src, dst). 410 * This function may modify ver and hlim only. 411 * The mbuf chain containing the packet will be freed. 412 * The mbuf opt, if present, will not be freed. 413 * If route_in6 ro is present and has ro_nh initialized, route lookup would be 414 * skipped and ro->ro_nh would be used. If ro is present but ro->ro_nh is NULL, 415 * then result of route lookup is stored in ro->ro_nh. 416 * 417 * Type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and nd_ifinfo.linkmtu 418 * is uint32_t. So we use u_long to hold largest one, which is rt_mtu. 419 * 420 * ifpp - XXX: just for statistics 421 */ 422 int 423 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 424 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 425 struct ifnet **ifpp, struct inpcb *inp) 426 { 427 struct ip6_hdr *ip6; 428 struct ifnet *ifp, *origifp; 429 struct mbuf *m = m0; 430 struct mbuf *mprev; 431 struct route_in6 *ro_pmtu; 432 struct nhop_object *nh; 433 struct sockaddr_in6 *dst, sin6, src_sa, dst_sa; 434 struct in6_addr odst; 435 u_char *nexthdrp; 436 int tlen, len; 437 int error = 0; 438 int vlan_pcp = -1; 439 struct in6_ifaddr *ia = NULL; 440 u_long mtu; 441 int alwaysfrag, dontfrag; 442 u_int32_t optlen, plen = 0, unfragpartlen; 443 struct ip6_exthdrs exthdrs; 444 struct in6_addr src0, dst0; 445 u_int32_t zone; 446 bool hdrsplit; 447 int sw_csum, tso; 448 int needfiblookup; 449 uint32_t fibnum; 450 struct m_tag *fwd_tag = NULL; 451 uint32_t id; 452 453 NET_EPOCH_ASSERT(); 454 455 if (inp != NULL) { 456 INP_LOCK_ASSERT(inp); 457 M_SETFIB(m, inp->inp_inc.inc_fibnum); 458 if ((flags & IP_NODEFAULTFLOWID) == 0) { 459 /* Unconditionally set flowid. */ 460 m->m_pkthdr.flowid = inp->inp_flowid; 461 M_HASHTYPE_SET(m, inp->inp_flowtype); 462 } 463 if ((inp->inp_flags2 & INP_2PCP_SET) != 0) 464 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >> 465 INP_2PCP_SHIFT; 466 #ifdef NUMA 467 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 468 #endif 469 } 470 471 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 472 /* 473 * IPSec checking which handles several cases. 474 * FAST IPSEC: We re-injected the packet. 475 * XXX: need scope argument. 476 */ 477 if (IPSEC_ENABLED(ipv6)) { 478 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { 479 if (error == EINPROGRESS) 480 error = 0; 481 goto done; 482 } 483 } 484 #endif /* IPSEC */ 485 486 /* Source address validation. */ 487 ip6 = mtod(m, struct ip6_hdr *); 488 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 489 (flags & IPV6_UNSPECSRC) == 0) { 490 error = EOPNOTSUPP; 491 IP6STAT_INC(ip6s_badscope); 492 goto bad; 493 } 494 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 495 error = EOPNOTSUPP; 496 IP6STAT_INC(ip6s_badscope); 497 goto bad; 498 } 499 500 /* 501 * If we are given packet options to add extension headers prepare them. 502 * Calculate the total length of the extension header chain. 503 * Keep the length of the unfragmentable part for fragmentation. 504 */ 505 bzero(&exthdrs, sizeof(exthdrs)); 506 optlen = 0; 507 unfragpartlen = sizeof(struct ip6_hdr); 508 if (opt) { 509 /* Hop-by-Hop options header. */ 510 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh, optlen); 511 512 /* Destination options header (1st part). */ 513 if (opt->ip6po_rthdr) { 514 #ifndef RTHDR_SUPPORT_IMPLEMENTED 515 /* 516 * If there is a routing header, discard the packet 517 * right away here. RH0/1 are obsolete and we do not 518 * currently support RH2/3/4. 519 * People trying to use RH253/254 may want to disable 520 * this check. 521 * The moment we do support any routing header (again) 522 * this block should check the routing type more 523 * selectively. 524 */ 525 error = EINVAL; 526 goto bad; 527 #endif 528 529 /* 530 * Destination options header (1st part). 531 * This only makes sense with a routing header. 532 * See Section 9.2 of RFC 3542. 533 * Disabling this part just for MIP6 convenience is 534 * a bad idea. We need to think carefully about a 535 * way to make the advanced API coexist with MIP6 536 * options, which might automatically be inserted in 537 * the kernel. 538 */ 539 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1, 540 optlen); 541 } 542 /* Routing header. */ 543 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr, optlen); 544 545 unfragpartlen += optlen; 546 547 /* 548 * NOTE: we don't add AH/ESP length here (done in 549 * ip6_ipsec_output()). 550 */ 551 552 /* Destination options header (2nd part). */ 553 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2, optlen); 554 } 555 556 /* 557 * If there is at least one extension header, 558 * separate IP6 header from the payload. 559 */ 560 hdrsplit = false; 561 if (optlen) { 562 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 563 m = NULL; 564 goto freehdrs; 565 } 566 m = exthdrs.ip6e_ip6; 567 ip6 = mtod(m, struct ip6_hdr *); 568 hdrsplit = true; 569 } 570 571 /* Adjust mbuf packet header length. */ 572 m->m_pkthdr.len += optlen; 573 plen = m->m_pkthdr.len - sizeof(*ip6); 574 575 /* If this is a jumbo payload, insert a jumbo payload option. */ 576 if (plen > IPV6_MAXPACKET) { 577 if (!hdrsplit) { 578 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 579 m = NULL; 580 goto freehdrs; 581 } 582 m = exthdrs.ip6e_ip6; 583 ip6 = mtod(m, struct ip6_hdr *); 584 hdrsplit = true; 585 } 586 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 587 goto freehdrs; 588 ip6->ip6_plen = 0; 589 } else 590 ip6->ip6_plen = htons(plen); 591 nexthdrp = &ip6->ip6_nxt; 592 593 if (optlen) { 594 /* 595 * Concatenate headers and fill in next header fields. 596 * Here we have, on "m" 597 * IPv6 payload 598 * and we insert headers accordingly. 599 * Finally, we should be getting: 600 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]. 601 * 602 * During the header composing process "m" points to IPv6 603 * header. "mprev" points to an extension header prior to esp. 604 */ 605 mprev = m; 606 607 /* 608 * We treat dest2 specially. This makes IPsec processing 609 * much easier. The goal here is to make mprev point the 610 * mbuf prior to dest2. 611 * 612 * Result: IPv6 dest2 payload. 613 * m and mprev will point to IPv6 header. 614 */ 615 if (exthdrs.ip6e_dest2) { 616 if (!hdrsplit) 617 panic("%s:%d: assumption failed: " 618 "hdr not split: hdrsplit %d exthdrs %p", 619 __func__, __LINE__, hdrsplit, &exthdrs); 620 exthdrs.ip6e_dest2->m_next = m->m_next; 621 m->m_next = exthdrs.ip6e_dest2; 622 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 623 ip6->ip6_nxt = IPPROTO_DSTOPTS; 624 } 625 626 /* 627 * Result: IPv6 hbh dest1 rthdr dest2 payload. 628 * m will point to IPv6 header. mprev will point to the 629 * extension header prior to dest2 (rthdr in the above case). 630 */ 631 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 632 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 633 IPPROTO_DSTOPTS); 634 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 635 IPPROTO_ROUTING); 636 } 637 638 IP6STAT_INC(ip6s_localout); 639 640 /* Route packet. */ 641 ro_pmtu = ro; 642 if (opt && opt->ip6po_rthdr) 643 ro = &opt->ip6po_route; 644 if (ro != NULL) 645 dst = (struct sockaddr_in6 *)&ro->ro_dst; 646 else 647 dst = &sin6; 648 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 649 650 again: 651 /* 652 * If specified, try to fill in the traffic class field. 653 * Do not override if a non-zero value is already set. 654 * We check the diffserv field and the ECN field separately. 655 */ 656 if (opt && opt->ip6po_tclass >= 0) { 657 int mask = 0; 658 659 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 660 mask |= 0xfc; 661 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 662 mask |= 0x03; 663 if (mask != 0) 664 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 665 } 666 667 /* Fill in or override the hop limit field, if necessary. */ 668 if (opt && opt->ip6po_hlim != -1) 669 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 670 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 671 if (im6o != NULL) 672 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 673 else 674 ip6->ip6_hlim = V_ip6_defmcasthlim; 675 } 676 677 if (ro == NULL || ro->ro_nh == NULL) { 678 bzero(dst, sizeof(*dst)); 679 dst->sin6_family = AF_INET6; 680 dst->sin6_len = sizeof(*dst); 681 dst->sin6_addr = ip6->ip6_dst; 682 } 683 /* 684 * Validate route against routing table changes. 685 * Make sure that the address family is set in route. 686 */ 687 nh = NULL; 688 ifp = NULL; 689 mtu = 0; 690 if (ro != NULL) { 691 if (ro->ro_nh != NULL && inp != NULL) { 692 ro->ro_dst.sin6_family = AF_INET6; /* XXX KASSERT? */ 693 NH_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, 694 fibnum); 695 } 696 if (ro->ro_nh != NULL && fwd_tag == NULL && 697 (!NH_IS_VALID(ro->ro_nh) || 698 ro->ro_dst.sin6_family != AF_INET6 || 699 !IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst))) 700 RO_INVALIDATE_CACHE(ro); 701 702 if (ro->ro_nh != NULL && fwd_tag == NULL && 703 ro->ro_dst.sin6_family == AF_INET6 && 704 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 705 nh = ro->ro_nh; 706 ifp = nh->nh_ifp; 707 } else { 708 if (ro->ro_lle) 709 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 710 ro->ro_lle = NULL; 711 if (fwd_tag == NULL) { 712 bzero(&dst_sa, sizeof(dst_sa)); 713 dst_sa.sin6_family = AF_INET6; 714 dst_sa.sin6_len = sizeof(dst_sa); 715 dst_sa.sin6_addr = ip6->ip6_dst; 716 } 717 error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, 718 &nh, fibnum, m->m_pkthdr.flowid); 719 if (error != 0) { 720 IP6STAT_INC(ip6s_noroute); 721 if (ifp != NULL) 722 in6_ifstat_inc(ifp, ifs6_out_discard); 723 goto bad; 724 } 725 if (ifp != NULL) 726 mtu = ifp->if_mtu; 727 } 728 if (nh == NULL) { 729 /* 730 * If in6_selectroute() does not return a nexthop 731 * dst may not have been updated. 732 */ 733 *dst = dst_sa; /* XXX */ 734 } else { 735 if (nh->nh_flags & NHF_HOST) 736 mtu = nh->nh_mtu; 737 ia = (struct in6_ifaddr *)(nh->nh_ifa); 738 counter_u64_add(nh->nh_pksent, 1); 739 } 740 } else { 741 struct nhop_object *nh; 742 struct in6_addr kdst; 743 uint32_t scopeid; 744 745 if (fwd_tag == NULL) { 746 bzero(&dst_sa, sizeof(dst_sa)); 747 dst_sa.sin6_family = AF_INET6; 748 dst_sa.sin6_len = sizeof(dst_sa); 749 dst_sa.sin6_addr = ip6->ip6_dst; 750 } 751 752 if (IN6_IS_ADDR_MULTICAST(&dst_sa.sin6_addr) && 753 im6o != NULL && 754 (ifp = im6o->im6o_multicast_ifp) != NULL) { 755 /* We do not need a route lookup. */ 756 *dst = dst_sa; /* XXX */ 757 goto nonh6lookup; 758 } 759 760 in6_splitscope(&dst_sa.sin6_addr, &kdst, &scopeid); 761 762 if (IN6_IS_ADDR_MC_LINKLOCAL(&dst_sa.sin6_addr) || 763 IN6_IS_ADDR_MC_NODELOCAL(&dst_sa.sin6_addr)) { 764 if (scopeid > 0) { 765 ifp = in6_getlinkifnet(scopeid); 766 if (ifp == NULL) { 767 error = EHOSTUNREACH; 768 goto bad; 769 } 770 *dst = dst_sa; /* XXX */ 771 goto nonh6lookup; 772 } 773 } 774 775 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 776 m->m_pkthdr.flowid); 777 if (nh == NULL) { 778 IP6STAT_INC(ip6s_noroute); 779 /* No ifp in6_ifstat_inc(ifp, ifs6_out_discard); */ 780 error = EHOSTUNREACH;; 781 goto bad; 782 } 783 784 ifp = nh->nh_ifp; 785 mtu = nh->nh_mtu; 786 ia = ifatoia6(nh->nh_ifa); 787 if (nh->nh_flags & NHF_GATEWAY) 788 dst->sin6_addr = nh->gw6_sa.sin6_addr; 789 nonh6lookup: 790 ; 791 } 792 793 /* Then nh (for unicast) and ifp must be non-NULL valid values. */ 794 if ((flags & IPV6_FORWARDING) == 0) { 795 /* XXX: the FORWARDING flag can be set for mrouting. */ 796 in6_ifstat_inc(ifp, ifs6_out_request); 797 } 798 799 /* Setup data structures for scope ID checks. */ 800 src0 = ip6->ip6_src; 801 bzero(&src_sa, sizeof(src_sa)); 802 src_sa.sin6_family = AF_INET6; 803 src_sa.sin6_len = sizeof(src_sa); 804 src_sa.sin6_addr = ip6->ip6_src; 805 806 dst0 = ip6->ip6_dst; 807 /* Re-initialize to be sure. */ 808 bzero(&dst_sa, sizeof(dst_sa)); 809 dst_sa.sin6_family = AF_INET6; 810 dst_sa.sin6_len = sizeof(dst_sa); 811 dst_sa.sin6_addr = ip6->ip6_dst; 812 813 /* Check for valid scope ID. */ 814 if (in6_setscope(&src0, ifp, &zone) == 0 && 815 sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id && 816 in6_setscope(&dst0, ifp, &zone) == 0 && 817 sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) { 818 /* 819 * The outgoing interface is in the zone of the source 820 * and destination addresses. 821 * 822 * Because the loopback interface cannot receive 823 * packets with a different scope ID than its own, 824 * there is a trick to pretend the outgoing packet 825 * was received by the real network interface, by 826 * setting "origifp" different from "ifp". This is 827 * only allowed when "ifp" is a loopback network 828 * interface. Refer to code in nd6_output_ifp() for 829 * more details. 830 */ 831 origifp = ifp; 832 833 /* 834 * We should use ia_ifp to support the case of sending 835 * packets to an address of our own. 836 */ 837 if (ia != NULL && ia->ia_ifp) 838 ifp = ia->ia_ifp; 839 840 } else if ((ifp->if_flags & IFF_LOOPBACK) == 0 || 841 sa6_recoverscope(&src_sa) != 0 || 842 sa6_recoverscope(&dst_sa) != 0 || 843 dst_sa.sin6_scope_id == 0 || 844 (src_sa.sin6_scope_id != 0 && 845 src_sa.sin6_scope_id != dst_sa.sin6_scope_id) || 846 (origifp = ifnet_byindex(dst_sa.sin6_scope_id)) == NULL) { 847 /* 848 * If the destination network interface is not a 849 * loopback interface, or the destination network 850 * address has no scope ID, or the source address has 851 * a scope ID set which is different from the 852 * destination address one, or there is no network 853 * interface representing this scope ID, the address 854 * pair is considered invalid. 855 */ 856 IP6STAT_INC(ip6s_badscope); 857 in6_ifstat_inc(ifp, ifs6_out_discard); 858 if (error == 0) 859 error = EHOSTUNREACH; /* XXX */ 860 goto bad; 861 } 862 /* All scope ID checks are successful. */ 863 864 if (nh && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 865 if (opt && opt->ip6po_nextroute.ro_nh) { 866 /* 867 * The nexthop is explicitly specified by the 868 * application. We assume the next hop is an IPv6 869 * address. 870 */ 871 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 872 } 873 else if ((nh->nh_flags & NHF_GATEWAY)) 874 dst = &nh->gw6_sa; 875 } 876 877 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 878 m->m_flags &= ~(M_BCAST | M_MCAST); /* Just in case. */ 879 } else { 880 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 881 in6_ifstat_inc(ifp, ifs6_out_mcast); 882 883 /* Confirm that the outgoing interface supports multicast. */ 884 if (!(ifp->if_flags & IFF_MULTICAST)) { 885 IP6STAT_INC(ip6s_noroute); 886 in6_ifstat_inc(ifp, ifs6_out_discard); 887 error = ENETUNREACH; 888 goto bad; 889 } 890 if ((im6o == NULL && in6_mcast_loop) || 891 (im6o && im6o->im6o_multicast_loop)) { 892 /* 893 * Loop back multicast datagram if not expressly 894 * forbidden to do so, even if we have not joined 895 * the address; protocols will filter it later, 896 * thus deferring a hash lookup and lock acquisition 897 * at the expense of an m_copym(). 898 */ 899 ip6_mloopback(ifp, m); 900 } else { 901 /* 902 * If we are acting as a multicast router, perform 903 * multicast forwarding as if the packet had just 904 * arrived on the interface to which we are about 905 * to send. The multicast forwarding function 906 * recursively calls this function, using the 907 * IPV6_FORWARDING flag to prevent infinite recursion. 908 * 909 * Multicasts that are looped back by ip6_mloopback(), 910 * above, will be forwarded by the ip6_input() routine, 911 * if necessary. 912 */ 913 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 914 /* 915 * XXX: ip6_mforward expects that rcvif is NULL 916 * when it is called from the originating path. 917 * However, it may not always be the case. 918 */ 919 m->m_pkthdr.rcvif = NULL; 920 if (ip6_mforward(ip6, ifp, m) != 0) { 921 m_freem(m); 922 goto done; 923 } 924 } 925 } 926 /* 927 * Multicasts with a hoplimit of zero may be looped back, 928 * above, but must not be transmitted on a network. 929 * Also, multicasts addressed to the loopback interface 930 * are not sent -- the above call to ip6_mloopback() will 931 * loop back a copy if this host actually belongs to the 932 * destination group on the loopback interface. 933 */ 934 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 935 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 936 m_freem(m); 937 goto done; 938 } 939 } 940 941 /* 942 * Fill the outgoing inteface to tell the upper layer 943 * to increment per-interface statistics. 944 */ 945 if (ifpp) 946 *ifpp = ifp; 947 948 /* Determine path MTU. */ 949 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 950 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 951 goto bad; 952 KASSERT(mtu > 0, ("%s:%d: mtu %ld, ro_pmtu %p ro %p ifp %p " 953 "alwaysfrag %d fibnum %u\n", __func__, __LINE__, mtu, ro_pmtu, ro, 954 ifp, alwaysfrag, fibnum)); 955 956 /* 957 * The caller of this function may specify to use the minimum MTU 958 * in some cases. 959 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 960 * setting. The logic is a bit complicated; by default, unicast 961 * packets will follow path MTU while multicast packets will be sent at 962 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 963 * including unicast ones will be sent at the minimum MTU. Multicast 964 * packets will always be sent at the minimum MTU unless 965 * IP6PO_MINMTU_DISABLE is explicitly specified. 966 * See RFC 3542 for more details. 967 */ 968 if (mtu > IPV6_MMTU) { 969 if ((flags & IPV6_MINMTU)) 970 mtu = IPV6_MMTU; 971 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 972 mtu = IPV6_MMTU; 973 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 974 (opt == NULL || 975 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 976 mtu = IPV6_MMTU; 977 } 978 } 979 980 /* 981 * Clear embedded scope identifiers if necessary. 982 * in6_clearscope() will touch the addresses only when necessary. 983 */ 984 in6_clearscope(&ip6->ip6_src); 985 in6_clearscope(&ip6->ip6_dst); 986 987 /* 988 * If the outgoing packet contains a hop-by-hop options header, 989 * it must be examined and processed even by the source node. 990 * (RFC 2460, section 4.) 991 */ 992 if (exthdrs.ip6e_hbh) { 993 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 994 u_int32_t dummy; /* XXX unused */ 995 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 996 997 #ifdef DIAGNOSTIC 998 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 999 panic("ip6e_hbh is not contiguous"); 1000 #endif 1001 /* 1002 * XXX: if we have to send an ICMPv6 error to the sender, 1003 * we need the M_LOOP flag since icmp6_error() expects 1004 * the IPv6 and the hop-by-hop options header are 1005 * contiguous unless the flag is set. 1006 */ 1007 m->m_flags |= M_LOOP; 1008 m->m_pkthdr.rcvif = ifp; 1009 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 1010 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 1011 &dummy, &plen) < 0) { 1012 /* m was already freed at this point. */ 1013 error = EINVAL;/* better error? */ 1014 goto done; 1015 } 1016 m->m_flags &= ~M_LOOP; /* XXX */ 1017 m->m_pkthdr.rcvif = NULL; 1018 } 1019 1020 /* Jump over all PFIL processing if hooks are not active. */ 1021 if (!PFIL_HOOKED_OUT(V_inet6_pfil_head)) 1022 goto passout; 1023 1024 odst = ip6->ip6_dst; 1025 /* Run through list of hooks for output packets. */ 1026 switch (pfil_run_hooks(V_inet6_pfil_head, &m, ifp, PFIL_OUT, inp)) { 1027 case PFIL_PASS: 1028 ip6 = mtod(m, struct ip6_hdr *); 1029 break; 1030 case PFIL_DROPPED: 1031 error = EACCES; 1032 /* FALLTHROUGH */ 1033 case PFIL_CONSUMED: 1034 goto done; 1035 } 1036 1037 needfiblookup = 0; 1038 /* See if destination IP address was changed by packet filter. */ 1039 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 1040 m->m_flags |= M_SKIP_FIREWALL; 1041 /* If destination is now ourself drop to ip6_input(). */ 1042 if (in6_localip(&ip6->ip6_dst)) { 1043 m->m_flags |= M_FASTFWD_OURS; 1044 if (m->m_pkthdr.rcvif == NULL) 1045 m->m_pkthdr.rcvif = V_loif; 1046 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1047 m->m_pkthdr.csum_flags |= 1048 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1049 m->m_pkthdr.csum_data = 0xffff; 1050 } 1051 #if defined(SCTP) || defined(SCTP_SUPPORT) 1052 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1053 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1054 #endif 1055 error = netisr_queue(NETISR_IPV6, m); 1056 goto done; 1057 } else { 1058 if (ro != NULL) 1059 RO_INVALIDATE_CACHE(ro); 1060 needfiblookup = 1; /* Redo the routing table lookup. */ 1061 } 1062 } 1063 /* See if fib was changed by packet filter. */ 1064 if (fibnum != M_GETFIB(m)) { 1065 m->m_flags |= M_SKIP_FIREWALL; 1066 fibnum = M_GETFIB(m); 1067 if (ro != NULL) 1068 RO_INVALIDATE_CACHE(ro); 1069 needfiblookup = 1; 1070 } 1071 if (needfiblookup) 1072 goto again; 1073 1074 /* See if local, if yes, send it to netisr. */ 1075 if (m->m_flags & M_FASTFWD_OURS) { 1076 if (m->m_pkthdr.rcvif == NULL) 1077 m->m_pkthdr.rcvif = V_loif; 1078 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1079 m->m_pkthdr.csum_flags |= 1080 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1081 m->m_pkthdr.csum_data = 0xffff; 1082 } 1083 #if defined(SCTP) || defined(SCTP_SUPPORT) 1084 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1085 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1086 #endif 1087 error = netisr_queue(NETISR_IPV6, m); 1088 goto done; 1089 } 1090 /* Or forward to some other address? */ 1091 if ((m->m_flags & M_IP6_NEXTHOP) && 1092 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 1093 if (ro != NULL) 1094 dst = (struct sockaddr_in6 *)&ro->ro_dst; 1095 else 1096 dst = &sin6; 1097 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 1098 m->m_flags |= M_SKIP_FIREWALL; 1099 m->m_flags &= ~M_IP6_NEXTHOP; 1100 m_tag_delete(m, fwd_tag); 1101 goto again; 1102 } 1103 1104 passout: 1105 if (vlan_pcp > -1) 1106 EVL_APPLY_PRI(m, vlan_pcp); 1107 /* 1108 * Send the packet to the outgoing interface. 1109 * If necessary, do IPv6 fragmentation before sending. 1110 * 1111 * The logic here is rather complex: 1112 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 1113 * 1-a: send as is if tlen <= path mtu 1114 * 1-b: fragment if tlen > path mtu 1115 * 1116 * 2: if user asks us not to fragment (dontfrag == 1) 1117 * 2-a: send as is if tlen <= interface mtu 1118 * 2-b: error if tlen > interface mtu 1119 * 1120 * 3: if we always need to attach fragment header (alwaysfrag == 1) 1121 * always fragment 1122 * 1123 * 4: if dontfrag == 1 && alwaysfrag == 1 1124 * error, as we cannot handle this conflicting request. 1125 */ 1126 sw_csum = m->m_pkthdr.csum_flags; 1127 if (!hdrsplit) { 1128 tso = ((sw_csum & ifp->if_hwassist & 1129 (CSUM_TSO | CSUM_INNER_TSO)) != 0) ? 1 : 0; 1130 sw_csum &= ~ifp->if_hwassist; 1131 } else 1132 tso = 0; 1133 /* 1134 * If we added extension headers, we will not do TSO and calculate the 1135 * checksums ourselves for now. 1136 * XXX-BZ Need a framework to know when the NIC can handle it, even 1137 * with ext. hdrs. 1138 */ 1139 error = ip6_output_delayed_csum(m, ifp, sw_csum, plen, optlen, false); 1140 if (error != 0) 1141 goto bad; 1142 /* XXX-BZ m->m_pkthdr.csum_flags &= ~ifp->if_hwassist; */ 1143 tlen = m->m_pkthdr.len; 1144 1145 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 1146 dontfrag = 1; 1147 else 1148 dontfrag = 0; 1149 if (dontfrag && alwaysfrag) { /* Case 4. */ 1150 /* Conflicting request - can't transmit. */ 1151 error = EMSGSIZE; 1152 goto bad; 1153 } 1154 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* Case 2-b. */ 1155 /* 1156 * Even if the DONTFRAG option is specified, we cannot send the 1157 * packet when the data length is larger than the MTU of the 1158 * outgoing interface. 1159 * Notify the error by sending IPV6_PATHMTU ancillary data if 1160 * application wanted to know the MTU value. Also return an 1161 * error code (this is not described in the API spec). 1162 */ 1163 if (inp != NULL) 1164 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 1165 error = EMSGSIZE; 1166 goto bad; 1167 } 1168 1169 /* Transmit packet without fragmentation. */ 1170 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* Cases 1-a and 2-a. */ 1171 struct in6_ifaddr *ia6; 1172 1173 ip6 = mtod(m, struct ip6_hdr *); 1174 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1175 if (ia6) { 1176 /* Record statistics for this interface address. */ 1177 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 1178 counter_u64_add(ia6->ia_ifa.ifa_obytes, 1179 m->m_pkthdr.len); 1180 } 1181 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1182 (flags & IP_NO_SND_TAG_RL) ? false : true); 1183 goto done; 1184 } 1185 1186 /* Try to fragment the packet. Cases 1-b and 3. */ 1187 if (mtu < IPV6_MMTU) { 1188 /* Path MTU cannot be less than IPV6_MMTU. */ 1189 error = EMSGSIZE; 1190 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1191 goto bad; 1192 } else if (ip6->ip6_plen == 0) { 1193 /* Jumbo payload cannot be fragmented. */ 1194 error = EMSGSIZE; 1195 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1196 goto bad; 1197 } else { 1198 u_char nextproto; 1199 1200 /* 1201 * Too large for the destination or interface; 1202 * fragment if possible. 1203 * Must be able to put at least 8 bytes per fragment. 1204 */ 1205 if (mtu > IPV6_MAXPACKET) 1206 mtu = IPV6_MAXPACKET; 1207 1208 len = (mtu - unfragpartlen - sizeof(struct ip6_frag)) & ~7; 1209 if (len < 8) { 1210 error = EMSGSIZE; 1211 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1212 goto bad; 1213 } 1214 1215 /* 1216 * If the interface will not calculate checksums on 1217 * fragmented packets, then do it here. 1218 * XXX-BZ handle the hw offloading case. Need flags. 1219 */ 1220 error = ip6_output_delayed_csum(m, ifp, m->m_pkthdr.csum_flags, 1221 plen, optlen, true); 1222 if (error != 0) 1223 goto bad; 1224 1225 /* 1226 * Change the next header field of the last header in the 1227 * unfragmentable part. 1228 */ 1229 if (exthdrs.ip6e_rthdr) { 1230 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1231 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1232 } else if (exthdrs.ip6e_dest1) { 1233 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1234 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1235 } else if (exthdrs.ip6e_hbh) { 1236 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1237 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1238 } else { 1239 ip6 = mtod(m, struct ip6_hdr *); 1240 nextproto = ip6->ip6_nxt; 1241 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1242 } 1243 1244 /* 1245 * Loop through length of segment after first fragment, 1246 * make new header and copy data of each part and link onto 1247 * chain. 1248 */ 1249 m0 = m; 1250 id = htonl(ip6_randomid()); 1251 error = ip6_fragment(ifp, m, unfragpartlen, nextproto,len, id); 1252 if (error != 0) 1253 goto sendorfree; 1254 1255 in6_ifstat_inc(ifp, ifs6_out_fragok); 1256 } 1257 1258 /* Remove leading garbage. */ 1259 sendorfree: 1260 m = m0->m_nextpkt; 1261 m0->m_nextpkt = 0; 1262 m_freem(m0); 1263 for (; m; m = m0) { 1264 m0 = m->m_nextpkt; 1265 m->m_nextpkt = 0; 1266 if (error == 0) { 1267 /* Record statistics for this interface address. */ 1268 if (ia) { 1269 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1270 counter_u64_add(ia->ia_ifa.ifa_obytes, 1271 m->m_pkthdr.len); 1272 } 1273 if (vlan_pcp > -1) 1274 EVL_APPLY_PRI(m, vlan_pcp); 1275 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1276 true); 1277 } else 1278 m_freem(m); 1279 } 1280 1281 if (error == 0) 1282 IP6STAT_INC(ip6s_fragmented); 1283 1284 done: 1285 return (error); 1286 1287 freehdrs: 1288 m_freem(exthdrs.ip6e_hbh); /* m_freem() checks if mbuf is NULL. */ 1289 m_freem(exthdrs.ip6e_dest1); 1290 m_freem(exthdrs.ip6e_rthdr); 1291 m_freem(exthdrs.ip6e_dest2); 1292 /* FALLTHROUGH */ 1293 bad: 1294 if (m) 1295 m_freem(m); 1296 goto done; 1297 } 1298 1299 static int 1300 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1301 { 1302 struct mbuf *m; 1303 1304 if (hlen > MCLBYTES) 1305 return (ENOBUFS); /* XXX */ 1306 1307 if (hlen > MLEN) 1308 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1309 else 1310 m = m_get(M_NOWAIT, MT_DATA); 1311 if (m == NULL) 1312 return (ENOBUFS); 1313 m->m_len = hlen; 1314 if (hdr) 1315 bcopy(hdr, mtod(m, caddr_t), hlen); 1316 1317 *mp = m; 1318 return (0); 1319 } 1320 1321 /* 1322 * Insert jumbo payload option. 1323 */ 1324 static int 1325 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1326 { 1327 struct mbuf *mopt; 1328 u_char *optbuf; 1329 u_int32_t v; 1330 1331 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1332 1333 /* 1334 * If there is no hop-by-hop options header, allocate new one. 1335 * If there is one but it doesn't have enough space to store the 1336 * jumbo payload option, allocate a cluster to store the whole options. 1337 * Otherwise, use it to store the options. 1338 */ 1339 if (exthdrs->ip6e_hbh == NULL) { 1340 mopt = m_get(M_NOWAIT, MT_DATA); 1341 if (mopt == NULL) 1342 return (ENOBUFS); 1343 mopt->m_len = JUMBOOPTLEN; 1344 optbuf = mtod(mopt, u_char *); 1345 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1346 exthdrs->ip6e_hbh = mopt; 1347 } else { 1348 struct ip6_hbh *hbh; 1349 1350 mopt = exthdrs->ip6e_hbh; 1351 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1352 /* 1353 * XXX assumption: 1354 * - exthdrs->ip6e_hbh is not referenced from places 1355 * other than exthdrs. 1356 * - exthdrs->ip6e_hbh is not an mbuf chain. 1357 */ 1358 int oldoptlen = mopt->m_len; 1359 struct mbuf *n; 1360 1361 /* 1362 * XXX: give up if the whole (new) hbh header does 1363 * not fit even in an mbuf cluster. 1364 */ 1365 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1366 return (ENOBUFS); 1367 1368 /* 1369 * As a consequence, we must always prepare a cluster 1370 * at this point. 1371 */ 1372 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1373 if (n == NULL) 1374 return (ENOBUFS); 1375 n->m_len = oldoptlen + JUMBOOPTLEN; 1376 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1377 oldoptlen); 1378 optbuf = mtod(n, caddr_t) + oldoptlen; 1379 m_freem(mopt); 1380 mopt = exthdrs->ip6e_hbh = n; 1381 } else { 1382 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1383 mopt->m_len += JUMBOOPTLEN; 1384 } 1385 optbuf[0] = IP6OPT_PADN; 1386 optbuf[1] = 1; 1387 1388 /* 1389 * Adjust the header length according to the pad and 1390 * the jumbo payload option. 1391 */ 1392 hbh = mtod(mopt, struct ip6_hbh *); 1393 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1394 } 1395 1396 /* fill in the option. */ 1397 optbuf[2] = IP6OPT_JUMBO; 1398 optbuf[3] = 4; 1399 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1400 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1401 1402 /* finally, adjust the packet header length */ 1403 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1404 1405 return (0); 1406 #undef JUMBOOPTLEN 1407 } 1408 1409 /* 1410 * Insert fragment header and copy unfragmentable header portions. 1411 */ 1412 static int 1413 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1414 struct ip6_frag **frghdrp) 1415 { 1416 struct mbuf *n, *mlast; 1417 1418 if (hlen > sizeof(struct ip6_hdr)) { 1419 n = m_copym(m0, sizeof(struct ip6_hdr), 1420 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1421 if (n == NULL) 1422 return (ENOBUFS); 1423 m->m_next = n; 1424 } else 1425 n = m; 1426 1427 /* Search for the last mbuf of unfragmentable part. */ 1428 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1429 ; 1430 1431 if (M_WRITABLE(mlast) && 1432 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1433 /* use the trailing space of the last mbuf for the fragment hdr */ 1434 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1435 mlast->m_len); 1436 mlast->m_len += sizeof(struct ip6_frag); 1437 m->m_pkthdr.len += sizeof(struct ip6_frag); 1438 } else { 1439 /* allocate a new mbuf for the fragment header */ 1440 struct mbuf *mfrg; 1441 1442 mfrg = m_get(M_NOWAIT, MT_DATA); 1443 if (mfrg == NULL) 1444 return (ENOBUFS); 1445 mfrg->m_len = sizeof(struct ip6_frag); 1446 *frghdrp = mtod(mfrg, struct ip6_frag *); 1447 mlast->m_next = mfrg; 1448 } 1449 1450 return (0); 1451 } 1452 1453 /* 1454 * Calculates IPv6 path mtu for destination @dst. 1455 * Resulting MTU is stored in @mtup. 1456 * 1457 * Returns 0 on success. 1458 */ 1459 static int 1460 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1461 { 1462 struct epoch_tracker et; 1463 struct nhop_object *nh; 1464 struct in6_addr kdst; 1465 uint32_t scopeid; 1466 int error; 1467 1468 in6_splitscope(dst, &kdst, &scopeid); 1469 1470 NET_EPOCH_ENTER(et); 1471 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1472 if (nh != NULL) 1473 error = ip6_calcmtu(nh->nh_ifp, dst, nh->nh_mtu, mtup, NULL, 0); 1474 else 1475 error = EHOSTUNREACH; 1476 NET_EPOCH_EXIT(et); 1477 1478 return (error); 1479 } 1480 1481 /* 1482 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1483 * and cached data in @ro_pmtu. 1484 * MTU from (successful) route lookup is saved (along with dst) 1485 * inside @ro_pmtu to avoid subsequent route lookups after packet 1486 * filter processing. 1487 * 1488 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1489 * Returns 0 on success. 1490 */ 1491 static int 1492 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1493 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1494 int *alwaysfragp, u_int fibnum, u_int proto) 1495 { 1496 struct nhop_object *nh; 1497 struct in6_addr kdst; 1498 uint32_t scopeid; 1499 struct sockaddr_in6 *sa6_dst, sin6; 1500 u_long mtu; 1501 1502 NET_EPOCH_ASSERT(); 1503 1504 mtu = 0; 1505 if (ro_pmtu == NULL || do_lookup) { 1506 /* 1507 * Here ro_pmtu has final destination address, while 1508 * ro might represent immediate destination. 1509 * Use ro_pmtu destination since mtu might differ. 1510 */ 1511 if (ro_pmtu != NULL) { 1512 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1513 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1514 ro_pmtu->ro_mtu = 0; 1515 } else 1516 sa6_dst = &sin6; 1517 1518 if (ro_pmtu == NULL || ro_pmtu->ro_mtu == 0) { 1519 bzero(sa6_dst, sizeof(*sa6_dst)); 1520 sa6_dst->sin6_family = AF_INET6; 1521 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1522 sa6_dst->sin6_addr = *dst; 1523 1524 in6_splitscope(dst, &kdst, &scopeid); 1525 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1526 if (nh != NULL) { 1527 mtu = nh->nh_mtu; 1528 if (ro_pmtu != NULL) 1529 ro_pmtu->ro_mtu = mtu; 1530 } 1531 } else 1532 mtu = ro_pmtu->ro_mtu; 1533 } 1534 1535 if (ro_pmtu != NULL && ro_pmtu->ro_nh != NULL) 1536 mtu = ro_pmtu->ro_nh->nh_mtu; 1537 1538 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1539 } 1540 1541 /* 1542 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1543 * hostcache data for @dst. 1544 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1545 * 1546 * Returns 0 on success. 1547 */ 1548 static int 1549 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1550 u_long *mtup, int *alwaysfragp, u_int proto) 1551 { 1552 u_long mtu = 0; 1553 int alwaysfrag = 0; 1554 int error = 0; 1555 1556 if (rt_mtu > 0) { 1557 u_int32_t ifmtu; 1558 struct in_conninfo inc; 1559 1560 bzero(&inc, sizeof(inc)); 1561 inc.inc_flags |= INC_ISIPV6; 1562 inc.inc6_faddr = *dst; 1563 1564 ifmtu = IN6_LINKMTU(ifp); 1565 1566 /* TCP is known to react to pmtu changes so skip hc */ 1567 if (proto != IPPROTO_TCP) 1568 mtu = tcp_hc_getmtu(&inc); 1569 1570 if (mtu) 1571 mtu = min(mtu, rt_mtu); 1572 else 1573 mtu = rt_mtu; 1574 if (mtu == 0) 1575 mtu = ifmtu; 1576 else if (mtu < IPV6_MMTU) { 1577 /* 1578 * RFC2460 section 5, last paragraph: 1579 * if we record ICMPv6 too big message with 1580 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1581 * or smaller, with framgent header attached. 1582 * (fragment header is needed regardless from the 1583 * packet size, for translators to identify packets) 1584 */ 1585 alwaysfrag = 1; 1586 mtu = IPV6_MMTU; 1587 } 1588 } else if (ifp) { 1589 mtu = IN6_LINKMTU(ifp); 1590 } else 1591 error = EHOSTUNREACH; /* XXX */ 1592 1593 *mtup = mtu; 1594 if (alwaysfragp) 1595 *alwaysfragp = alwaysfrag; 1596 return (error); 1597 } 1598 1599 /* 1600 * IP6 socket option processing. 1601 */ 1602 int 1603 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1604 { 1605 int optdatalen, uproto; 1606 void *optdata; 1607 struct inpcb *inp = sotoinpcb(so); 1608 int error, optval; 1609 int level, op, optname; 1610 int optlen; 1611 struct thread *td; 1612 #ifdef RSS 1613 uint32_t rss_bucket; 1614 int retval; 1615 #endif 1616 1617 /* 1618 * Don't use more than a quarter of mbuf clusters. N.B.: 1619 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1620 * on LP64 architectures, so cast to u_long to avoid undefined 1621 * behavior. ILP32 architectures cannot have nmbclusters 1622 * large enough to overflow for other reasons. 1623 */ 1624 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1625 1626 level = sopt->sopt_level; 1627 op = sopt->sopt_dir; 1628 optname = sopt->sopt_name; 1629 optlen = sopt->sopt_valsize; 1630 td = sopt->sopt_td; 1631 error = 0; 1632 optval = 0; 1633 uproto = (int)so->so_proto->pr_protocol; 1634 1635 if (level != IPPROTO_IPV6) { 1636 error = EINVAL; 1637 1638 if (sopt->sopt_level == SOL_SOCKET && 1639 sopt->sopt_dir == SOPT_SET) { 1640 switch (sopt->sopt_name) { 1641 case SO_REUSEADDR: 1642 INP_WLOCK(inp); 1643 if ((so->so_options & SO_REUSEADDR) != 0) 1644 inp->inp_flags2 |= INP_REUSEADDR; 1645 else 1646 inp->inp_flags2 &= ~INP_REUSEADDR; 1647 INP_WUNLOCK(inp); 1648 error = 0; 1649 break; 1650 case SO_REUSEPORT: 1651 INP_WLOCK(inp); 1652 if ((so->so_options & SO_REUSEPORT) != 0) 1653 inp->inp_flags2 |= INP_REUSEPORT; 1654 else 1655 inp->inp_flags2 &= ~INP_REUSEPORT; 1656 INP_WUNLOCK(inp); 1657 error = 0; 1658 break; 1659 case SO_REUSEPORT_LB: 1660 INP_WLOCK(inp); 1661 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1662 inp->inp_flags2 |= INP_REUSEPORT_LB; 1663 else 1664 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1665 INP_WUNLOCK(inp); 1666 error = 0; 1667 break; 1668 case SO_SETFIB: 1669 INP_WLOCK(inp); 1670 inp->inp_inc.inc_fibnum = so->so_fibnum; 1671 INP_WUNLOCK(inp); 1672 error = 0; 1673 break; 1674 case SO_MAX_PACING_RATE: 1675 #ifdef RATELIMIT 1676 INP_WLOCK(inp); 1677 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1678 INP_WUNLOCK(inp); 1679 error = 0; 1680 #else 1681 error = EOPNOTSUPP; 1682 #endif 1683 break; 1684 default: 1685 break; 1686 } 1687 } 1688 } else { /* level == IPPROTO_IPV6 */ 1689 switch (op) { 1690 case SOPT_SET: 1691 switch (optname) { 1692 case IPV6_2292PKTOPTIONS: 1693 #ifdef IPV6_PKTOPTIONS 1694 case IPV6_PKTOPTIONS: 1695 #endif 1696 { 1697 struct mbuf *m; 1698 1699 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1700 printf("ip6_ctloutput: mbuf limit hit\n"); 1701 error = ENOBUFS; 1702 break; 1703 } 1704 1705 error = soopt_getm(sopt, &m); /* XXX */ 1706 if (error != 0) 1707 break; 1708 error = soopt_mcopyin(sopt, m); /* XXX */ 1709 if (error != 0) 1710 break; 1711 INP_WLOCK(inp); 1712 error = ip6_pcbopts(&inp->in6p_outputopts, m, 1713 so, sopt); 1714 INP_WUNLOCK(inp); 1715 m_freem(m); /* XXX */ 1716 break; 1717 } 1718 1719 /* 1720 * Use of some Hop-by-Hop options or some 1721 * Destination options, might require special 1722 * privilege. That is, normal applications 1723 * (without special privilege) might be forbidden 1724 * from setting certain options in outgoing packets, 1725 * and might never see certain options in received 1726 * packets. [RFC 2292 Section 6] 1727 * KAME specific note: 1728 * KAME prevents non-privileged users from sending or 1729 * receiving ANY hbh/dst options in order to avoid 1730 * overhead of parsing options in the kernel. 1731 */ 1732 case IPV6_RECVHOPOPTS: 1733 case IPV6_RECVDSTOPTS: 1734 case IPV6_RECVRTHDRDSTOPTS: 1735 if (td != NULL) { 1736 error = priv_check(td, 1737 PRIV_NETINET_SETHDROPTS); 1738 if (error) 1739 break; 1740 } 1741 /* FALLTHROUGH */ 1742 case IPV6_UNICAST_HOPS: 1743 case IPV6_HOPLIMIT: 1744 1745 case IPV6_RECVPKTINFO: 1746 case IPV6_RECVHOPLIMIT: 1747 case IPV6_RECVRTHDR: 1748 case IPV6_RECVPATHMTU: 1749 case IPV6_RECVTCLASS: 1750 case IPV6_RECVFLOWID: 1751 #ifdef RSS 1752 case IPV6_RECVRSSBUCKETID: 1753 #endif 1754 case IPV6_V6ONLY: 1755 case IPV6_AUTOFLOWLABEL: 1756 case IPV6_ORIGDSTADDR: 1757 case IPV6_BINDANY: 1758 case IPV6_BINDMULTI: 1759 #ifdef RSS 1760 case IPV6_RSS_LISTEN_BUCKET: 1761 #endif 1762 case IPV6_VLAN_PCP: 1763 if (optname == IPV6_BINDANY && td != NULL) { 1764 error = priv_check(td, 1765 PRIV_NETINET_BINDANY); 1766 if (error) 1767 break; 1768 } 1769 1770 if (optlen != sizeof(int)) { 1771 error = EINVAL; 1772 break; 1773 } 1774 error = sooptcopyin(sopt, &optval, 1775 sizeof optval, sizeof optval); 1776 if (error) 1777 break; 1778 switch (optname) { 1779 case IPV6_UNICAST_HOPS: 1780 if (optval < -1 || optval >= 256) 1781 error = EINVAL; 1782 else { 1783 /* -1 = kernel default */ 1784 inp->in6p_hops = optval; 1785 if ((inp->inp_vflag & 1786 INP_IPV4) != 0) 1787 inp->inp_ip_ttl = optval; 1788 } 1789 break; 1790 #define OPTSET(bit) \ 1791 do { \ 1792 INP_WLOCK(inp); \ 1793 if (optval) \ 1794 inp->inp_flags |= (bit); \ 1795 else \ 1796 inp->inp_flags &= ~(bit); \ 1797 INP_WUNLOCK(inp); \ 1798 } while (/*CONSTCOND*/ 0) 1799 #define OPTSET2292(bit) \ 1800 do { \ 1801 INP_WLOCK(inp); \ 1802 inp->inp_flags |= IN6P_RFC2292; \ 1803 if (optval) \ 1804 inp->inp_flags |= (bit); \ 1805 else \ 1806 inp->inp_flags &= ~(bit); \ 1807 INP_WUNLOCK(inp); \ 1808 } while (/*CONSTCOND*/ 0) 1809 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1810 1811 #define OPTSET2_N(bit, val) do { \ 1812 if (val) \ 1813 inp->inp_flags2 |= bit; \ 1814 else \ 1815 inp->inp_flags2 &= ~bit; \ 1816 } while (0) 1817 #define OPTSET2(bit, val) do { \ 1818 INP_WLOCK(inp); \ 1819 OPTSET2_N(bit, val); \ 1820 INP_WUNLOCK(inp); \ 1821 } while (0) 1822 #define OPTBIT2(bit) (inp->inp_flags2 & (bit) ? 1 : 0) 1823 #define OPTSET2292_EXCLUSIVE(bit) \ 1824 do { \ 1825 INP_WLOCK(inp); \ 1826 if (OPTBIT(IN6P_RFC2292)) { \ 1827 error = EINVAL; \ 1828 } else { \ 1829 if (optval) \ 1830 inp->inp_flags |= (bit); \ 1831 else \ 1832 inp->inp_flags &= ~(bit); \ 1833 } \ 1834 INP_WUNLOCK(inp); \ 1835 } while (/*CONSTCOND*/ 0) 1836 1837 case IPV6_RECVPKTINFO: 1838 OPTSET2292_EXCLUSIVE(IN6P_PKTINFO); 1839 break; 1840 1841 case IPV6_HOPLIMIT: 1842 { 1843 struct ip6_pktopts **optp; 1844 1845 /* cannot mix with RFC2292 */ 1846 if (OPTBIT(IN6P_RFC2292)) { 1847 error = EINVAL; 1848 break; 1849 } 1850 INP_WLOCK(inp); 1851 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1852 INP_WUNLOCK(inp); 1853 return (ECONNRESET); 1854 } 1855 optp = &inp->in6p_outputopts; 1856 error = ip6_pcbopt(IPV6_HOPLIMIT, 1857 (u_char *)&optval, sizeof(optval), 1858 optp, (td != NULL) ? td->td_ucred : 1859 NULL, uproto); 1860 INP_WUNLOCK(inp); 1861 break; 1862 } 1863 1864 case IPV6_RECVHOPLIMIT: 1865 OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT); 1866 break; 1867 1868 case IPV6_RECVHOPOPTS: 1869 OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS); 1870 break; 1871 1872 case IPV6_RECVDSTOPTS: 1873 OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS); 1874 break; 1875 1876 case IPV6_RECVRTHDRDSTOPTS: 1877 OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS); 1878 break; 1879 1880 case IPV6_RECVRTHDR: 1881 OPTSET2292_EXCLUSIVE(IN6P_RTHDR); 1882 break; 1883 1884 case IPV6_RECVPATHMTU: 1885 /* 1886 * We ignore this option for TCP 1887 * sockets. 1888 * (RFC3542 leaves this case 1889 * unspecified.) 1890 */ 1891 if (uproto != IPPROTO_TCP) 1892 OPTSET(IN6P_MTU); 1893 break; 1894 1895 case IPV6_RECVFLOWID: 1896 OPTSET2(INP_RECVFLOWID, optval); 1897 break; 1898 1899 #ifdef RSS 1900 case IPV6_RECVRSSBUCKETID: 1901 OPTSET2(INP_RECVRSSBUCKETID, optval); 1902 break; 1903 #endif 1904 1905 case IPV6_V6ONLY: 1906 INP_WLOCK(inp); 1907 if (inp->inp_lport || 1908 !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { 1909 /* 1910 * The socket is already bound. 1911 */ 1912 INP_WUNLOCK(inp); 1913 error = EINVAL; 1914 break; 1915 } 1916 if (optval) { 1917 inp->inp_flags |= IN6P_IPV6_V6ONLY; 1918 inp->inp_vflag &= ~INP_IPV4; 1919 } else { 1920 inp->inp_flags &= ~IN6P_IPV6_V6ONLY; 1921 inp->inp_vflag |= INP_IPV4; 1922 } 1923 INP_WUNLOCK(inp); 1924 break; 1925 case IPV6_RECVTCLASS: 1926 /* cannot mix with RFC2292 XXX */ 1927 OPTSET2292_EXCLUSIVE(IN6P_TCLASS); 1928 break; 1929 case IPV6_AUTOFLOWLABEL: 1930 OPTSET(IN6P_AUTOFLOWLABEL); 1931 break; 1932 1933 case IPV6_ORIGDSTADDR: 1934 OPTSET2(INP_ORIGDSTADDR, optval); 1935 break; 1936 case IPV6_BINDANY: 1937 OPTSET(INP_BINDANY); 1938 break; 1939 1940 case IPV6_BINDMULTI: 1941 OPTSET2(INP_BINDMULTI, optval); 1942 break; 1943 #ifdef RSS 1944 case IPV6_RSS_LISTEN_BUCKET: 1945 if ((optval >= 0) && 1946 (optval < rss_getnumbuckets())) { 1947 INP_WLOCK(inp); 1948 inp->inp_rss_listen_bucket = optval; 1949 OPTSET2_N(INP_RSS_BUCKET_SET, 1); 1950 INP_WUNLOCK(inp); 1951 } else { 1952 error = EINVAL; 1953 } 1954 break; 1955 #endif 1956 case IPV6_VLAN_PCP: 1957 if ((optval >= -1) && (optval <= 1958 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) { 1959 if (optval == -1) { 1960 INP_WLOCK(inp); 1961 inp->inp_flags2 &= 1962 ~(INP_2PCP_SET | 1963 INP_2PCP_MASK); 1964 INP_WUNLOCK(inp); 1965 } else { 1966 INP_WLOCK(inp); 1967 inp->inp_flags2 |= 1968 INP_2PCP_SET; 1969 inp->inp_flags2 &= 1970 ~INP_2PCP_MASK; 1971 inp->inp_flags2 |= 1972 optval << 1973 INP_2PCP_SHIFT; 1974 INP_WUNLOCK(inp); 1975 } 1976 } else 1977 error = EINVAL; 1978 break; 1979 } 1980 break; 1981 1982 case IPV6_TCLASS: 1983 case IPV6_DONTFRAG: 1984 case IPV6_USE_MIN_MTU: 1985 case IPV6_PREFER_TEMPADDR: 1986 if (optlen != sizeof(optval)) { 1987 error = EINVAL; 1988 break; 1989 } 1990 error = sooptcopyin(sopt, &optval, 1991 sizeof optval, sizeof optval); 1992 if (error) 1993 break; 1994 { 1995 struct ip6_pktopts **optp; 1996 INP_WLOCK(inp); 1997 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1998 INP_WUNLOCK(inp); 1999 return (ECONNRESET); 2000 } 2001 optp = &inp->in6p_outputopts; 2002 error = ip6_pcbopt(optname, 2003 (u_char *)&optval, sizeof(optval), 2004 optp, (td != NULL) ? td->td_ucred : 2005 NULL, uproto); 2006 INP_WUNLOCK(inp); 2007 break; 2008 } 2009 2010 case IPV6_2292PKTINFO: 2011 case IPV6_2292HOPLIMIT: 2012 case IPV6_2292HOPOPTS: 2013 case IPV6_2292DSTOPTS: 2014 case IPV6_2292RTHDR: 2015 /* RFC 2292 */ 2016 if (optlen != sizeof(int)) { 2017 error = EINVAL; 2018 break; 2019 } 2020 error = sooptcopyin(sopt, &optval, 2021 sizeof optval, sizeof optval); 2022 if (error) 2023 break; 2024 switch (optname) { 2025 case IPV6_2292PKTINFO: 2026 OPTSET2292(IN6P_PKTINFO); 2027 break; 2028 case IPV6_2292HOPLIMIT: 2029 OPTSET2292(IN6P_HOPLIMIT); 2030 break; 2031 case IPV6_2292HOPOPTS: 2032 /* 2033 * Check super-user privilege. 2034 * See comments for IPV6_RECVHOPOPTS. 2035 */ 2036 if (td != NULL) { 2037 error = priv_check(td, 2038 PRIV_NETINET_SETHDROPTS); 2039 if (error) 2040 return (error); 2041 } 2042 OPTSET2292(IN6P_HOPOPTS); 2043 break; 2044 case IPV6_2292DSTOPTS: 2045 if (td != NULL) { 2046 error = priv_check(td, 2047 PRIV_NETINET_SETHDROPTS); 2048 if (error) 2049 return (error); 2050 } 2051 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 2052 break; 2053 case IPV6_2292RTHDR: 2054 OPTSET2292(IN6P_RTHDR); 2055 break; 2056 } 2057 break; 2058 case IPV6_PKTINFO: 2059 case IPV6_HOPOPTS: 2060 case IPV6_RTHDR: 2061 case IPV6_DSTOPTS: 2062 case IPV6_RTHDRDSTOPTS: 2063 case IPV6_NEXTHOP: 2064 { 2065 /* new advanced API (RFC3542) */ 2066 u_char *optbuf; 2067 u_char optbuf_storage[MCLBYTES]; 2068 int optlen; 2069 struct ip6_pktopts **optp; 2070 2071 /* cannot mix with RFC2292 */ 2072 if (OPTBIT(IN6P_RFC2292)) { 2073 error = EINVAL; 2074 break; 2075 } 2076 2077 /* 2078 * We only ensure valsize is not too large 2079 * here. Further validation will be done 2080 * later. 2081 */ 2082 error = sooptcopyin(sopt, optbuf_storage, 2083 sizeof(optbuf_storage), 0); 2084 if (error) 2085 break; 2086 optlen = sopt->sopt_valsize; 2087 optbuf = optbuf_storage; 2088 INP_WLOCK(inp); 2089 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 2090 INP_WUNLOCK(inp); 2091 return (ECONNRESET); 2092 } 2093 optp = &inp->in6p_outputopts; 2094 error = ip6_pcbopt(optname, optbuf, optlen, 2095 optp, (td != NULL) ? td->td_ucred : NULL, 2096 uproto); 2097 INP_WUNLOCK(inp); 2098 break; 2099 } 2100 #undef OPTSET 2101 2102 case IPV6_MULTICAST_IF: 2103 case IPV6_MULTICAST_HOPS: 2104 case IPV6_MULTICAST_LOOP: 2105 case IPV6_JOIN_GROUP: 2106 case IPV6_LEAVE_GROUP: 2107 case IPV6_MSFILTER: 2108 case MCAST_BLOCK_SOURCE: 2109 case MCAST_UNBLOCK_SOURCE: 2110 case MCAST_JOIN_GROUP: 2111 case MCAST_LEAVE_GROUP: 2112 case MCAST_JOIN_SOURCE_GROUP: 2113 case MCAST_LEAVE_SOURCE_GROUP: 2114 error = ip6_setmoptions(inp, sopt); 2115 break; 2116 2117 case IPV6_PORTRANGE: 2118 error = sooptcopyin(sopt, &optval, 2119 sizeof optval, sizeof optval); 2120 if (error) 2121 break; 2122 2123 INP_WLOCK(inp); 2124 switch (optval) { 2125 case IPV6_PORTRANGE_DEFAULT: 2126 inp->inp_flags &= ~(INP_LOWPORT); 2127 inp->inp_flags &= ~(INP_HIGHPORT); 2128 break; 2129 2130 case IPV6_PORTRANGE_HIGH: 2131 inp->inp_flags &= ~(INP_LOWPORT); 2132 inp->inp_flags |= INP_HIGHPORT; 2133 break; 2134 2135 case IPV6_PORTRANGE_LOW: 2136 inp->inp_flags &= ~(INP_HIGHPORT); 2137 inp->inp_flags |= INP_LOWPORT; 2138 break; 2139 2140 default: 2141 error = EINVAL; 2142 break; 2143 } 2144 INP_WUNLOCK(inp); 2145 break; 2146 2147 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2148 case IPV6_IPSEC_POLICY: 2149 if (IPSEC_ENABLED(ipv6)) { 2150 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2151 break; 2152 } 2153 /* FALLTHROUGH */ 2154 #endif /* IPSEC */ 2155 2156 default: 2157 error = ENOPROTOOPT; 2158 break; 2159 } 2160 break; 2161 2162 case SOPT_GET: 2163 switch (optname) { 2164 case IPV6_2292PKTOPTIONS: 2165 #ifdef IPV6_PKTOPTIONS 2166 case IPV6_PKTOPTIONS: 2167 #endif 2168 /* 2169 * RFC3542 (effectively) deprecated the 2170 * semantics of the 2292-style pktoptions. 2171 * Since it was not reliable in nature (i.e., 2172 * applications had to expect the lack of some 2173 * information after all), it would make sense 2174 * to simplify this part by always returning 2175 * empty data. 2176 */ 2177 sopt->sopt_valsize = 0; 2178 break; 2179 2180 case IPV6_RECVHOPOPTS: 2181 case IPV6_RECVDSTOPTS: 2182 case IPV6_RECVRTHDRDSTOPTS: 2183 case IPV6_UNICAST_HOPS: 2184 case IPV6_RECVPKTINFO: 2185 case IPV6_RECVHOPLIMIT: 2186 case IPV6_RECVRTHDR: 2187 case IPV6_RECVPATHMTU: 2188 2189 case IPV6_V6ONLY: 2190 case IPV6_PORTRANGE: 2191 case IPV6_RECVTCLASS: 2192 case IPV6_AUTOFLOWLABEL: 2193 case IPV6_BINDANY: 2194 case IPV6_FLOWID: 2195 case IPV6_FLOWTYPE: 2196 case IPV6_RECVFLOWID: 2197 #ifdef RSS 2198 case IPV6_RSSBUCKETID: 2199 case IPV6_RECVRSSBUCKETID: 2200 #endif 2201 case IPV6_BINDMULTI: 2202 case IPV6_VLAN_PCP: 2203 switch (optname) { 2204 case IPV6_RECVHOPOPTS: 2205 optval = OPTBIT(IN6P_HOPOPTS); 2206 break; 2207 2208 case IPV6_RECVDSTOPTS: 2209 optval = OPTBIT(IN6P_DSTOPTS); 2210 break; 2211 2212 case IPV6_RECVRTHDRDSTOPTS: 2213 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 2214 break; 2215 2216 case IPV6_UNICAST_HOPS: 2217 optval = inp->in6p_hops; 2218 break; 2219 2220 case IPV6_RECVPKTINFO: 2221 optval = OPTBIT(IN6P_PKTINFO); 2222 break; 2223 2224 case IPV6_RECVHOPLIMIT: 2225 optval = OPTBIT(IN6P_HOPLIMIT); 2226 break; 2227 2228 case IPV6_RECVRTHDR: 2229 optval = OPTBIT(IN6P_RTHDR); 2230 break; 2231 2232 case IPV6_RECVPATHMTU: 2233 optval = OPTBIT(IN6P_MTU); 2234 break; 2235 2236 case IPV6_V6ONLY: 2237 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2238 break; 2239 2240 case IPV6_PORTRANGE: 2241 { 2242 int flags; 2243 flags = inp->inp_flags; 2244 if (flags & INP_HIGHPORT) 2245 optval = IPV6_PORTRANGE_HIGH; 2246 else if (flags & INP_LOWPORT) 2247 optval = IPV6_PORTRANGE_LOW; 2248 else 2249 optval = 0; 2250 break; 2251 } 2252 case IPV6_RECVTCLASS: 2253 optval = OPTBIT(IN6P_TCLASS); 2254 break; 2255 2256 case IPV6_AUTOFLOWLABEL: 2257 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2258 break; 2259 2260 case IPV6_ORIGDSTADDR: 2261 optval = OPTBIT2(INP_ORIGDSTADDR); 2262 break; 2263 2264 case IPV6_BINDANY: 2265 optval = OPTBIT(INP_BINDANY); 2266 break; 2267 2268 case IPV6_FLOWID: 2269 optval = inp->inp_flowid; 2270 break; 2271 2272 case IPV6_FLOWTYPE: 2273 optval = inp->inp_flowtype; 2274 break; 2275 2276 case IPV6_RECVFLOWID: 2277 optval = OPTBIT2(INP_RECVFLOWID); 2278 break; 2279 #ifdef RSS 2280 case IPV6_RSSBUCKETID: 2281 retval = 2282 rss_hash2bucket(inp->inp_flowid, 2283 inp->inp_flowtype, 2284 &rss_bucket); 2285 if (retval == 0) 2286 optval = rss_bucket; 2287 else 2288 error = EINVAL; 2289 break; 2290 2291 case IPV6_RECVRSSBUCKETID: 2292 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2293 break; 2294 #endif 2295 2296 case IPV6_BINDMULTI: 2297 optval = OPTBIT2(INP_BINDMULTI); 2298 break; 2299 2300 case IPV6_VLAN_PCP: 2301 if (OPTBIT2(INP_2PCP_SET)) { 2302 optval = (inp->inp_flags2 & 2303 INP_2PCP_MASK) >> 2304 INP_2PCP_SHIFT; 2305 } else { 2306 optval = -1; 2307 } 2308 break; 2309 } 2310 2311 if (error) 2312 break; 2313 error = sooptcopyout(sopt, &optval, 2314 sizeof optval); 2315 break; 2316 2317 case IPV6_PATHMTU: 2318 { 2319 u_long pmtu = 0; 2320 struct ip6_mtuinfo mtuinfo; 2321 struct in6_addr addr; 2322 2323 if (!(so->so_state & SS_ISCONNECTED)) 2324 return (ENOTCONN); 2325 /* 2326 * XXX: we dot not consider the case of source 2327 * routing, or optional information to specify 2328 * the outgoing interface. 2329 * Copy faddr out of inp to avoid holding lock 2330 * on inp during route lookup. 2331 */ 2332 INP_RLOCK(inp); 2333 bcopy(&inp->in6p_faddr, &addr, sizeof(addr)); 2334 INP_RUNLOCK(inp); 2335 error = ip6_getpmtu_ctl(so->so_fibnum, 2336 &addr, &pmtu); 2337 if (error) 2338 break; 2339 if (pmtu > IPV6_MAXPACKET) 2340 pmtu = IPV6_MAXPACKET; 2341 2342 bzero(&mtuinfo, sizeof(mtuinfo)); 2343 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2344 optdata = (void *)&mtuinfo; 2345 optdatalen = sizeof(mtuinfo); 2346 error = sooptcopyout(sopt, optdata, 2347 optdatalen); 2348 break; 2349 } 2350 2351 case IPV6_2292PKTINFO: 2352 case IPV6_2292HOPLIMIT: 2353 case IPV6_2292HOPOPTS: 2354 case IPV6_2292RTHDR: 2355 case IPV6_2292DSTOPTS: 2356 switch (optname) { 2357 case IPV6_2292PKTINFO: 2358 optval = OPTBIT(IN6P_PKTINFO); 2359 break; 2360 case IPV6_2292HOPLIMIT: 2361 optval = OPTBIT(IN6P_HOPLIMIT); 2362 break; 2363 case IPV6_2292HOPOPTS: 2364 optval = OPTBIT(IN6P_HOPOPTS); 2365 break; 2366 case IPV6_2292RTHDR: 2367 optval = OPTBIT(IN6P_RTHDR); 2368 break; 2369 case IPV6_2292DSTOPTS: 2370 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2371 break; 2372 } 2373 error = sooptcopyout(sopt, &optval, 2374 sizeof optval); 2375 break; 2376 case IPV6_PKTINFO: 2377 case IPV6_HOPOPTS: 2378 case IPV6_RTHDR: 2379 case IPV6_DSTOPTS: 2380 case IPV6_RTHDRDSTOPTS: 2381 case IPV6_NEXTHOP: 2382 case IPV6_TCLASS: 2383 case IPV6_DONTFRAG: 2384 case IPV6_USE_MIN_MTU: 2385 case IPV6_PREFER_TEMPADDR: 2386 error = ip6_getpcbopt(inp, optname, sopt); 2387 break; 2388 2389 case IPV6_MULTICAST_IF: 2390 case IPV6_MULTICAST_HOPS: 2391 case IPV6_MULTICAST_LOOP: 2392 case IPV6_MSFILTER: 2393 error = ip6_getmoptions(inp, sopt); 2394 break; 2395 2396 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2397 case IPV6_IPSEC_POLICY: 2398 if (IPSEC_ENABLED(ipv6)) { 2399 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2400 break; 2401 } 2402 /* FALLTHROUGH */ 2403 #endif /* IPSEC */ 2404 default: 2405 error = ENOPROTOOPT; 2406 break; 2407 } 2408 break; 2409 } 2410 } 2411 return (error); 2412 } 2413 2414 int 2415 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2416 { 2417 int error = 0, optval, optlen; 2418 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2419 struct inpcb *inp = sotoinpcb(so); 2420 int level, op, optname; 2421 2422 level = sopt->sopt_level; 2423 op = sopt->sopt_dir; 2424 optname = sopt->sopt_name; 2425 optlen = sopt->sopt_valsize; 2426 2427 if (level != IPPROTO_IPV6) { 2428 return (EINVAL); 2429 } 2430 2431 switch (optname) { 2432 case IPV6_CHECKSUM: 2433 /* 2434 * For ICMPv6 sockets, no modification allowed for checksum 2435 * offset, permit "no change" values to help existing apps. 2436 * 2437 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2438 * for an ICMPv6 socket will fail." 2439 * The current behavior does not meet RFC3542. 2440 */ 2441 switch (op) { 2442 case SOPT_SET: 2443 if (optlen != sizeof(int)) { 2444 error = EINVAL; 2445 break; 2446 } 2447 error = sooptcopyin(sopt, &optval, sizeof(optval), 2448 sizeof(optval)); 2449 if (error) 2450 break; 2451 if (optval < -1 || (optval % 2) != 0) { 2452 /* 2453 * The API assumes non-negative even offset 2454 * values or -1 as a special value. 2455 */ 2456 error = EINVAL; 2457 } else if (so->so_proto->pr_protocol == 2458 IPPROTO_ICMPV6) { 2459 if (optval != icmp6off) 2460 error = EINVAL; 2461 } else 2462 inp->in6p_cksum = optval; 2463 break; 2464 2465 case SOPT_GET: 2466 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2467 optval = icmp6off; 2468 else 2469 optval = inp->in6p_cksum; 2470 2471 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2472 break; 2473 2474 default: 2475 error = EINVAL; 2476 break; 2477 } 2478 break; 2479 2480 default: 2481 error = ENOPROTOOPT; 2482 break; 2483 } 2484 2485 return (error); 2486 } 2487 2488 /* 2489 * Set up IP6 options in pcb for insertion in output packets or 2490 * specifying behavior of outgoing packets. 2491 */ 2492 static int 2493 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2494 struct socket *so, struct sockopt *sopt) 2495 { 2496 struct ip6_pktopts *opt = *pktopt; 2497 int error = 0; 2498 struct thread *td = sopt->sopt_td; 2499 2500 /* turn off any old options. */ 2501 if (opt) { 2502 #ifdef DIAGNOSTIC 2503 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2504 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2505 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2506 printf("ip6_pcbopts: all specified options are cleared.\n"); 2507 #endif 2508 ip6_clearpktopts(opt, -1); 2509 } else { 2510 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 2511 if (opt == NULL) 2512 return (ENOMEM); 2513 } 2514 *pktopt = NULL; 2515 2516 if (!m || m->m_len == 0) { 2517 /* 2518 * Only turning off any previous options, regardless of 2519 * whether the opt is just created or given. 2520 */ 2521 free(opt, M_IP6OPT); 2522 return (0); 2523 } 2524 2525 /* set options specified by user. */ 2526 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2527 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2528 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2529 free(opt, M_IP6OPT); 2530 return (error); 2531 } 2532 *pktopt = opt; 2533 return (0); 2534 } 2535 2536 /* 2537 * initialize ip6_pktopts. beware that there are non-zero default values in 2538 * the struct. 2539 */ 2540 void 2541 ip6_initpktopts(struct ip6_pktopts *opt) 2542 { 2543 2544 bzero(opt, sizeof(*opt)); 2545 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2546 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2547 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2548 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2549 } 2550 2551 static int 2552 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2553 struct ucred *cred, int uproto) 2554 { 2555 struct ip6_pktopts *opt; 2556 2557 if (*pktopt == NULL) { 2558 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2559 M_NOWAIT); 2560 if (*pktopt == NULL) 2561 return (ENOBUFS); 2562 ip6_initpktopts(*pktopt); 2563 } 2564 opt = *pktopt; 2565 2566 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2567 } 2568 2569 #define GET_PKTOPT_VAR(field, lenexpr) do { \ 2570 if (pktopt && pktopt->field) { \ 2571 INP_RUNLOCK(inp); \ 2572 optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \ 2573 malloc_optdata = true; \ 2574 INP_RLOCK(inp); \ 2575 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { \ 2576 INP_RUNLOCK(inp); \ 2577 free(optdata, M_TEMP); \ 2578 return (ECONNRESET); \ 2579 } \ 2580 pktopt = inp->in6p_outputopts; \ 2581 if (pktopt && pktopt->field) { \ 2582 optdatalen = min(lenexpr, sopt->sopt_valsize); \ 2583 bcopy(&pktopt->field, optdata, optdatalen); \ 2584 } else { \ 2585 free(optdata, M_TEMP); \ 2586 optdata = NULL; \ 2587 malloc_optdata = false; \ 2588 } \ 2589 } \ 2590 } while(0) 2591 2592 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \ 2593 (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3) 2594 2595 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \ 2596 pktopt->field->sa_len) 2597 2598 static int 2599 ip6_getpcbopt(struct inpcb *inp, int optname, struct sockopt *sopt) 2600 { 2601 void *optdata = NULL; 2602 bool malloc_optdata = false; 2603 int optdatalen = 0; 2604 int error = 0; 2605 struct in6_pktinfo null_pktinfo; 2606 int deftclass = 0, on; 2607 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2608 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2609 struct ip6_pktopts *pktopt; 2610 2611 INP_RLOCK(inp); 2612 pktopt = inp->in6p_outputopts; 2613 2614 switch (optname) { 2615 case IPV6_PKTINFO: 2616 optdata = (void *)&null_pktinfo; 2617 if (pktopt && pktopt->ip6po_pktinfo) { 2618 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2619 sizeof(null_pktinfo)); 2620 in6_clearscope(&null_pktinfo.ipi6_addr); 2621 } else { 2622 /* XXX: we don't have to do this every time... */ 2623 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2624 } 2625 optdatalen = sizeof(struct in6_pktinfo); 2626 break; 2627 case IPV6_TCLASS: 2628 if (pktopt && pktopt->ip6po_tclass >= 0) 2629 deftclass = pktopt->ip6po_tclass; 2630 optdata = (void *)&deftclass; 2631 optdatalen = sizeof(int); 2632 break; 2633 case IPV6_HOPOPTS: 2634 GET_PKTOPT_EXT_HDR(ip6po_hbh); 2635 break; 2636 case IPV6_RTHDR: 2637 GET_PKTOPT_EXT_HDR(ip6po_rthdr); 2638 break; 2639 case IPV6_RTHDRDSTOPTS: 2640 GET_PKTOPT_EXT_HDR(ip6po_dest1); 2641 break; 2642 case IPV6_DSTOPTS: 2643 GET_PKTOPT_EXT_HDR(ip6po_dest2); 2644 break; 2645 case IPV6_NEXTHOP: 2646 GET_PKTOPT_SOCKADDR(ip6po_nexthop); 2647 break; 2648 case IPV6_USE_MIN_MTU: 2649 if (pktopt) 2650 defminmtu = pktopt->ip6po_minmtu; 2651 optdata = (void *)&defminmtu; 2652 optdatalen = sizeof(int); 2653 break; 2654 case IPV6_DONTFRAG: 2655 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2656 on = 1; 2657 else 2658 on = 0; 2659 optdata = (void *)&on; 2660 optdatalen = sizeof(on); 2661 break; 2662 case IPV6_PREFER_TEMPADDR: 2663 if (pktopt) 2664 defpreftemp = pktopt->ip6po_prefer_tempaddr; 2665 optdata = (void *)&defpreftemp; 2666 optdatalen = sizeof(int); 2667 break; 2668 default: /* should not happen */ 2669 #ifdef DIAGNOSTIC 2670 panic("ip6_getpcbopt: unexpected option\n"); 2671 #endif 2672 INP_RUNLOCK(inp); 2673 return (ENOPROTOOPT); 2674 } 2675 INP_RUNLOCK(inp); 2676 2677 error = sooptcopyout(sopt, optdata, optdatalen); 2678 if (malloc_optdata) 2679 free(optdata, M_TEMP); 2680 2681 return (error); 2682 } 2683 2684 void 2685 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2686 { 2687 if (pktopt == NULL) 2688 return; 2689 2690 if (optname == -1 || optname == IPV6_PKTINFO) { 2691 if (pktopt->ip6po_pktinfo) 2692 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2693 pktopt->ip6po_pktinfo = NULL; 2694 } 2695 if (optname == -1 || optname == IPV6_HOPLIMIT) 2696 pktopt->ip6po_hlim = -1; 2697 if (optname == -1 || optname == IPV6_TCLASS) 2698 pktopt->ip6po_tclass = -1; 2699 if (optname == -1 || optname == IPV6_NEXTHOP) { 2700 if (pktopt->ip6po_nextroute.ro_nh) { 2701 NH_FREE(pktopt->ip6po_nextroute.ro_nh); 2702 pktopt->ip6po_nextroute.ro_nh = NULL; 2703 } 2704 if (pktopt->ip6po_nexthop) 2705 free(pktopt->ip6po_nexthop, M_IP6OPT); 2706 pktopt->ip6po_nexthop = NULL; 2707 } 2708 if (optname == -1 || optname == IPV6_HOPOPTS) { 2709 if (pktopt->ip6po_hbh) 2710 free(pktopt->ip6po_hbh, M_IP6OPT); 2711 pktopt->ip6po_hbh = NULL; 2712 } 2713 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2714 if (pktopt->ip6po_dest1) 2715 free(pktopt->ip6po_dest1, M_IP6OPT); 2716 pktopt->ip6po_dest1 = NULL; 2717 } 2718 if (optname == -1 || optname == IPV6_RTHDR) { 2719 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2720 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2721 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2722 if (pktopt->ip6po_route.ro_nh) { 2723 NH_FREE(pktopt->ip6po_route.ro_nh); 2724 pktopt->ip6po_route.ro_nh = NULL; 2725 } 2726 } 2727 if (optname == -1 || optname == IPV6_DSTOPTS) { 2728 if (pktopt->ip6po_dest2) 2729 free(pktopt->ip6po_dest2, M_IP6OPT); 2730 pktopt->ip6po_dest2 = NULL; 2731 } 2732 } 2733 2734 #define PKTOPT_EXTHDRCPY(type) \ 2735 do {\ 2736 if (src->type) {\ 2737 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2738 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2739 if (dst->type == NULL)\ 2740 goto bad;\ 2741 bcopy(src->type, dst->type, hlen);\ 2742 }\ 2743 } while (/*CONSTCOND*/ 0) 2744 2745 static int 2746 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2747 { 2748 if (dst == NULL || src == NULL) { 2749 printf("ip6_clearpktopts: invalid argument\n"); 2750 return (EINVAL); 2751 } 2752 2753 dst->ip6po_hlim = src->ip6po_hlim; 2754 dst->ip6po_tclass = src->ip6po_tclass; 2755 dst->ip6po_flags = src->ip6po_flags; 2756 dst->ip6po_minmtu = src->ip6po_minmtu; 2757 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2758 if (src->ip6po_pktinfo) { 2759 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2760 M_IP6OPT, canwait); 2761 if (dst->ip6po_pktinfo == NULL) 2762 goto bad; 2763 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2764 } 2765 if (src->ip6po_nexthop) { 2766 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2767 M_IP6OPT, canwait); 2768 if (dst->ip6po_nexthop == NULL) 2769 goto bad; 2770 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2771 src->ip6po_nexthop->sa_len); 2772 } 2773 PKTOPT_EXTHDRCPY(ip6po_hbh); 2774 PKTOPT_EXTHDRCPY(ip6po_dest1); 2775 PKTOPT_EXTHDRCPY(ip6po_dest2); 2776 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2777 return (0); 2778 2779 bad: 2780 ip6_clearpktopts(dst, -1); 2781 return (ENOBUFS); 2782 } 2783 #undef PKTOPT_EXTHDRCPY 2784 2785 struct ip6_pktopts * 2786 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2787 { 2788 int error; 2789 struct ip6_pktopts *dst; 2790 2791 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2792 if (dst == NULL) 2793 return (NULL); 2794 ip6_initpktopts(dst); 2795 2796 if ((error = copypktopts(dst, src, canwait)) != 0) { 2797 free(dst, M_IP6OPT); 2798 return (NULL); 2799 } 2800 2801 return (dst); 2802 } 2803 2804 void 2805 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2806 { 2807 if (pktopt == NULL) 2808 return; 2809 2810 ip6_clearpktopts(pktopt, -1); 2811 2812 free(pktopt, M_IP6OPT); 2813 } 2814 2815 /* 2816 * Set IPv6 outgoing packet options based on advanced API. 2817 */ 2818 int 2819 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2820 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2821 { 2822 struct cmsghdr *cm = NULL; 2823 2824 if (control == NULL || opt == NULL) 2825 return (EINVAL); 2826 2827 ip6_initpktopts(opt); 2828 if (stickyopt) { 2829 int error; 2830 2831 /* 2832 * If stickyopt is provided, make a local copy of the options 2833 * for this particular packet, then override them by ancillary 2834 * objects. 2835 * XXX: copypktopts() does not copy the cached route to a next 2836 * hop (if any). This is not very good in terms of efficiency, 2837 * but we can allow this since this option should be rarely 2838 * used. 2839 */ 2840 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2841 return (error); 2842 } 2843 2844 /* 2845 * XXX: Currently, we assume all the optional information is stored 2846 * in a single mbuf. 2847 */ 2848 if (control->m_next) 2849 return (EINVAL); 2850 2851 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2852 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2853 int error; 2854 2855 if (control->m_len < CMSG_LEN(0)) 2856 return (EINVAL); 2857 2858 cm = mtod(control, struct cmsghdr *); 2859 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2860 return (EINVAL); 2861 if (cm->cmsg_level != IPPROTO_IPV6) 2862 continue; 2863 2864 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2865 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2866 if (error) 2867 return (error); 2868 } 2869 2870 return (0); 2871 } 2872 2873 /* 2874 * Set a particular packet option, as a sticky option or an ancillary data 2875 * item. "len" can be 0 only when it's a sticky option. 2876 * We have 4 cases of combination of "sticky" and "cmsg": 2877 * "sticky=0, cmsg=0": impossible 2878 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2879 * "sticky=1, cmsg=0": RFC3542 socket option 2880 * "sticky=1, cmsg=1": RFC2292 socket option 2881 */ 2882 static int 2883 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2884 struct ucred *cred, int sticky, int cmsg, int uproto) 2885 { 2886 int minmtupolicy, preftemp; 2887 int error; 2888 2889 if (!sticky && !cmsg) { 2890 #ifdef DIAGNOSTIC 2891 printf("ip6_setpktopt: impossible case\n"); 2892 #endif 2893 return (EINVAL); 2894 } 2895 2896 /* 2897 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2898 * not be specified in the context of RFC3542. Conversely, 2899 * RFC3542 types should not be specified in the context of RFC2292. 2900 */ 2901 if (!cmsg) { 2902 switch (optname) { 2903 case IPV6_2292PKTINFO: 2904 case IPV6_2292HOPLIMIT: 2905 case IPV6_2292NEXTHOP: 2906 case IPV6_2292HOPOPTS: 2907 case IPV6_2292DSTOPTS: 2908 case IPV6_2292RTHDR: 2909 case IPV6_2292PKTOPTIONS: 2910 return (ENOPROTOOPT); 2911 } 2912 } 2913 if (sticky && cmsg) { 2914 switch (optname) { 2915 case IPV6_PKTINFO: 2916 case IPV6_HOPLIMIT: 2917 case IPV6_NEXTHOP: 2918 case IPV6_HOPOPTS: 2919 case IPV6_DSTOPTS: 2920 case IPV6_RTHDRDSTOPTS: 2921 case IPV6_RTHDR: 2922 case IPV6_USE_MIN_MTU: 2923 case IPV6_DONTFRAG: 2924 case IPV6_TCLASS: 2925 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2926 return (ENOPROTOOPT); 2927 } 2928 } 2929 2930 switch (optname) { 2931 case IPV6_2292PKTINFO: 2932 case IPV6_PKTINFO: 2933 { 2934 struct ifnet *ifp = NULL; 2935 struct in6_pktinfo *pktinfo; 2936 2937 if (len != sizeof(struct in6_pktinfo)) 2938 return (EINVAL); 2939 2940 pktinfo = (struct in6_pktinfo *)buf; 2941 2942 /* 2943 * An application can clear any sticky IPV6_PKTINFO option by 2944 * doing a "regular" setsockopt with ipi6_addr being 2945 * in6addr_any and ipi6_ifindex being zero. 2946 * [RFC 3542, Section 6] 2947 */ 2948 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2949 pktinfo->ipi6_ifindex == 0 && 2950 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2951 ip6_clearpktopts(opt, optname); 2952 break; 2953 } 2954 2955 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2956 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2957 return (EINVAL); 2958 } 2959 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2960 return (EINVAL); 2961 /* validate the interface index if specified. */ 2962 if (pktinfo->ipi6_ifindex > V_if_index) 2963 return (ENXIO); 2964 if (pktinfo->ipi6_ifindex) { 2965 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2966 if (ifp == NULL) 2967 return (ENXIO); 2968 } 2969 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2970 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2971 return (ENETDOWN); 2972 2973 if (ifp != NULL && 2974 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2975 struct in6_ifaddr *ia; 2976 2977 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2978 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2979 if (ia == NULL) 2980 return (EADDRNOTAVAIL); 2981 ifa_free(&ia->ia_ifa); 2982 } 2983 /* 2984 * We store the address anyway, and let in6_selectsrc() 2985 * validate the specified address. This is because ipi6_addr 2986 * may not have enough information about its scope zone, and 2987 * we may need additional information (such as outgoing 2988 * interface or the scope zone of a destination address) to 2989 * disambiguate the scope. 2990 * XXX: the delay of the validation may confuse the 2991 * application when it is used as a sticky option. 2992 */ 2993 if (opt->ip6po_pktinfo == NULL) { 2994 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2995 M_IP6OPT, M_NOWAIT); 2996 if (opt->ip6po_pktinfo == NULL) 2997 return (ENOBUFS); 2998 } 2999 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 3000 break; 3001 } 3002 3003 case IPV6_2292HOPLIMIT: 3004 case IPV6_HOPLIMIT: 3005 { 3006 int *hlimp; 3007 3008 /* 3009 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 3010 * to simplify the ordering among hoplimit options. 3011 */ 3012 if (optname == IPV6_HOPLIMIT && sticky) 3013 return (ENOPROTOOPT); 3014 3015 if (len != sizeof(int)) 3016 return (EINVAL); 3017 hlimp = (int *)buf; 3018 if (*hlimp < -1 || *hlimp > 255) 3019 return (EINVAL); 3020 3021 opt->ip6po_hlim = *hlimp; 3022 break; 3023 } 3024 3025 case IPV6_TCLASS: 3026 { 3027 int tclass; 3028 3029 if (len != sizeof(int)) 3030 return (EINVAL); 3031 tclass = *(int *)buf; 3032 if (tclass < -1 || tclass > 255) 3033 return (EINVAL); 3034 3035 opt->ip6po_tclass = tclass; 3036 break; 3037 } 3038 3039 case IPV6_2292NEXTHOP: 3040 case IPV6_NEXTHOP: 3041 if (cred != NULL) { 3042 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3043 if (error) 3044 return (error); 3045 } 3046 3047 if (len == 0) { /* just remove the option */ 3048 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3049 break; 3050 } 3051 3052 /* check if cmsg_len is large enough for sa_len */ 3053 if (len < sizeof(struct sockaddr) || len < *buf) 3054 return (EINVAL); 3055 3056 switch (((struct sockaddr *)buf)->sa_family) { 3057 case AF_INET6: 3058 { 3059 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3060 int error; 3061 3062 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3063 return (EINVAL); 3064 3065 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3066 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3067 return (EINVAL); 3068 } 3069 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 3070 != 0) { 3071 return (error); 3072 } 3073 break; 3074 } 3075 case AF_LINK: /* should eventually be supported */ 3076 default: 3077 return (EAFNOSUPPORT); 3078 } 3079 3080 /* turn off the previous option, then set the new option. */ 3081 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3082 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3083 if (opt->ip6po_nexthop == NULL) 3084 return (ENOBUFS); 3085 bcopy(buf, opt->ip6po_nexthop, *buf); 3086 break; 3087 3088 case IPV6_2292HOPOPTS: 3089 case IPV6_HOPOPTS: 3090 { 3091 struct ip6_hbh *hbh; 3092 int hbhlen; 3093 3094 /* 3095 * XXX: We don't allow a non-privileged user to set ANY HbH 3096 * options, since per-option restriction has too much 3097 * overhead. 3098 */ 3099 if (cred != NULL) { 3100 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3101 if (error) 3102 return (error); 3103 } 3104 3105 if (len == 0) { 3106 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3107 break; /* just remove the option */ 3108 } 3109 3110 /* message length validation */ 3111 if (len < sizeof(struct ip6_hbh)) 3112 return (EINVAL); 3113 hbh = (struct ip6_hbh *)buf; 3114 hbhlen = (hbh->ip6h_len + 1) << 3; 3115 if (len != hbhlen) 3116 return (EINVAL); 3117 3118 /* turn off the previous option, then set the new option. */ 3119 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3120 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3121 if (opt->ip6po_hbh == NULL) 3122 return (ENOBUFS); 3123 bcopy(hbh, opt->ip6po_hbh, hbhlen); 3124 3125 break; 3126 } 3127 3128 case IPV6_2292DSTOPTS: 3129 case IPV6_DSTOPTS: 3130 case IPV6_RTHDRDSTOPTS: 3131 { 3132 struct ip6_dest *dest, **newdest = NULL; 3133 int destlen; 3134 3135 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 3136 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3137 if (error) 3138 return (error); 3139 } 3140 3141 if (len == 0) { 3142 ip6_clearpktopts(opt, optname); 3143 break; /* just remove the option */ 3144 } 3145 3146 /* message length validation */ 3147 if (len < sizeof(struct ip6_dest)) 3148 return (EINVAL); 3149 dest = (struct ip6_dest *)buf; 3150 destlen = (dest->ip6d_len + 1) << 3; 3151 if (len != destlen) 3152 return (EINVAL); 3153 3154 /* 3155 * Determine the position that the destination options header 3156 * should be inserted; before or after the routing header. 3157 */ 3158 switch (optname) { 3159 case IPV6_2292DSTOPTS: 3160 /* 3161 * The old advacned API is ambiguous on this point. 3162 * Our approach is to determine the position based 3163 * according to the existence of a routing header. 3164 * Note, however, that this depends on the order of the 3165 * extension headers in the ancillary data; the 1st 3166 * part of the destination options header must appear 3167 * before the routing header in the ancillary data, 3168 * too. 3169 * RFC3542 solved the ambiguity by introducing 3170 * separate ancillary data or option types. 3171 */ 3172 if (opt->ip6po_rthdr == NULL) 3173 newdest = &opt->ip6po_dest1; 3174 else 3175 newdest = &opt->ip6po_dest2; 3176 break; 3177 case IPV6_RTHDRDSTOPTS: 3178 newdest = &opt->ip6po_dest1; 3179 break; 3180 case IPV6_DSTOPTS: 3181 newdest = &opt->ip6po_dest2; 3182 break; 3183 } 3184 3185 /* turn off the previous option, then set the new option. */ 3186 ip6_clearpktopts(opt, optname); 3187 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3188 if (*newdest == NULL) 3189 return (ENOBUFS); 3190 bcopy(dest, *newdest, destlen); 3191 3192 break; 3193 } 3194 3195 case IPV6_2292RTHDR: 3196 case IPV6_RTHDR: 3197 { 3198 struct ip6_rthdr *rth; 3199 int rthlen; 3200 3201 if (len == 0) { 3202 ip6_clearpktopts(opt, IPV6_RTHDR); 3203 break; /* just remove the option */ 3204 } 3205 3206 /* message length validation */ 3207 if (len < sizeof(struct ip6_rthdr)) 3208 return (EINVAL); 3209 rth = (struct ip6_rthdr *)buf; 3210 rthlen = (rth->ip6r_len + 1) << 3; 3211 if (len != rthlen) 3212 return (EINVAL); 3213 3214 switch (rth->ip6r_type) { 3215 case IPV6_RTHDR_TYPE_0: 3216 if (rth->ip6r_len == 0) /* must contain one addr */ 3217 return (EINVAL); 3218 if (rth->ip6r_len % 2) /* length must be even */ 3219 return (EINVAL); 3220 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3221 return (EINVAL); 3222 break; 3223 default: 3224 return (EINVAL); /* not supported */ 3225 } 3226 3227 /* turn off the previous option */ 3228 ip6_clearpktopts(opt, IPV6_RTHDR); 3229 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3230 if (opt->ip6po_rthdr == NULL) 3231 return (ENOBUFS); 3232 bcopy(rth, opt->ip6po_rthdr, rthlen); 3233 3234 break; 3235 } 3236 3237 case IPV6_USE_MIN_MTU: 3238 if (len != sizeof(int)) 3239 return (EINVAL); 3240 minmtupolicy = *(int *)buf; 3241 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3242 minmtupolicy != IP6PO_MINMTU_DISABLE && 3243 minmtupolicy != IP6PO_MINMTU_ALL) { 3244 return (EINVAL); 3245 } 3246 opt->ip6po_minmtu = minmtupolicy; 3247 break; 3248 3249 case IPV6_DONTFRAG: 3250 if (len != sizeof(int)) 3251 return (EINVAL); 3252 3253 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3254 /* 3255 * we ignore this option for TCP sockets. 3256 * (RFC3542 leaves this case unspecified.) 3257 */ 3258 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3259 } else 3260 opt->ip6po_flags |= IP6PO_DONTFRAG; 3261 break; 3262 3263 case IPV6_PREFER_TEMPADDR: 3264 if (len != sizeof(int)) 3265 return (EINVAL); 3266 preftemp = *(int *)buf; 3267 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3268 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3269 preftemp != IP6PO_TEMPADDR_PREFER) { 3270 return (EINVAL); 3271 } 3272 opt->ip6po_prefer_tempaddr = preftemp; 3273 break; 3274 3275 default: 3276 return (ENOPROTOOPT); 3277 } /* end of switch */ 3278 3279 return (0); 3280 } 3281 3282 /* 3283 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3284 * packet to the input queue of a specified interface. Note that this 3285 * calls the output routine of the loopback "driver", but with an interface 3286 * pointer that might NOT be &loif -- easier than replicating that code here. 3287 */ 3288 void 3289 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3290 { 3291 struct mbuf *copym; 3292 struct ip6_hdr *ip6; 3293 3294 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3295 if (copym == NULL) 3296 return; 3297 3298 /* 3299 * Make sure to deep-copy IPv6 header portion in case the data 3300 * is in an mbuf cluster, so that we can safely override the IPv6 3301 * header portion later. 3302 */ 3303 if (!M_WRITABLE(copym) || 3304 copym->m_len < sizeof(struct ip6_hdr)) { 3305 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3306 if (copym == NULL) 3307 return; 3308 } 3309 ip6 = mtod(copym, struct ip6_hdr *); 3310 /* 3311 * clear embedded scope identifiers if necessary. 3312 * in6_clearscope will touch the addresses only when necessary. 3313 */ 3314 in6_clearscope(&ip6->ip6_src); 3315 in6_clearscope(&ip6->ip6_dst); 3316 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3317 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3318 CSUM_PSEUDO_HDR; 3319 copym->m_pkthdr.csum_data = 0xffff; 3320 } 3321 if_simloop(ifp, copym, AF_INET6, 0); 3322 } 3323 3324 /* 3325 * Chop IPv6 header off from the payload. 3326 */ 3327 static int 3328 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3329 { 3330 struct mbuf *mh; 3331 struct ip6_hdr *ip6; 3332 3333 ip6 = mtod(m, struct ip6_hdr *); 3334 if (m->m_len > sizeof(*ip6)) { 3335 mh = m_gethdr(M_NOWAIT, MT_DATA); 3336 if (mh == NULL) { 3337 m_freem(m); 3338 return ENOBUFS; 3339 } 3340 m_move_pkthdr(mh, m); 3341 M_ALIGN(mh, sizeof(*ip6)); 3342 m->m_len -= sizeof(*ip6); 3343 m->m_data += sizeof(*ip6); 3344 mh->m_next = m; 3345 m = mh; 3346 m->m_len = sizeof(*ip6); 3347 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3348 } 3349 exthdrs->ip6e_ip6 = m; 3350 return 0; 3351 } 3352 3353 /* 3354 * Compute IPv6 extension header length. 3355 */ 3356 int 3357 ip6_optlen(struct inpcb *inp) 3358 { 3359 int len; 3360 3361 if (!inp->in6p_outputopts) 3362 return 0; 3363 3364 len = 0; 3365 #define elen(x) \ 3366 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3367 3368 len += elen(inp->in6p_outputopts->ip6po_hbh); 3369 if (inp->in6p_outputopts->ip6po_rthdr) 3370 /* dest1 is valid with rthdr only */ 3371 len += elen(inp->in6p_outputopts->ip6po_dest1); 3372 len += elen(inp->in6p_outputopts->ip6po_rthdr); 3373 len += elen(inp->in6p_outputopts->ip6po_dest2); 3374 return len; 3375 #undef elen 3376 } 3377