1 /* $FreeBSD$ */ 2 /* $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Berkeley and its contributors. 49 * 4. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 66 */ 67 68 #include "opt_ip6fw.h" 69 #include "opt_inet.h" 70 #include "opt_inet6.h" 71 #include "opt_ipsec.h" 72 #include "opt_pfil_hooks.h" 73 74 #include <sys/param.h> 75 #include <sys/malloc.h> 76 #include <sys/mbuf.h> 77 #include <sys/proc.h> 78 #include <sys/errno.h> 79 #include <sys/protosw.h> 80 #include <sys/socket.h> 81 #include <sys/socketvar.h> 82 #include <sys/systm.h> 83 #include <sys/kernel.h> 84 85 #include <net/if.h> 86 #include <net/route.h> 87 #ifdef PFIL_HOOKS 88 #include <net/pfil.h> 89 #endif 90 91 #include <netinet/in.h> 92 #include <netinet/in_var.h> 93 #include <netinet6/in6_var.h> 94 #include <netinet/ip6.h> 95 #include <netinet/icmp6.h> 96 #include <netinet6/ip6_var.h> 97 #include <netinet/in_pcb.h> 98 #include <netinet6/nd6.h> 99 100 #ifdef IPSEC 101 #include <netinet6/ipsec.h> 102 #ifdef INET6 103 #include <netinet6/ipsec6.h> 104 #endif 105 #include <netkey/key.h> 106 #endif /* IPSEC */ 107 108 #include <netinet6/ip6_fw.h> 109 110 #include <net/net_osdep.h> 111 112 #include <netinet6/ip6protosw.h> 113 114 static MALLOC_DEFINE(M_IPMOPTS, "ip6_moptions", "internet multicast options"); 115 116 struct ip6_exthdrs { 117 struct mbuf *ip6e_ip6; 118 struct mbuf *ip6e_hbh; 119 struct mbuf *ip6e_dest1; 120 struct mbuf *ip6e_rthdr; 121 struct mbuf *ip6e_dest2; 122 }; 123 124 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 125 struct socket *, struct sockopt *sopt)); 126 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *)); 127 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **)); 128 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int)); 129 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 130 struct ip6_frag **)); 131 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t)); 132 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *)); 133 134 /* 135 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 136 * header (with pri, len, nxt, hlim, src, dst). 137 * This function may modify ver and hlim only. 138 * The mbuf chain containing the packet will be freed. 139 * The mbuf opt, if present, will not be freed. 140 * 141 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 142 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 143 * which is rt_rmx.rmx_mtu. 144 */ 145 int 146 ip6_output(m0, opt, ro, flags, im6o, ifpp) 147 struct mbuf *m0; 148 struct ip6_pktopts *opt; 149 struct route_in6 *ro; 150 int flags; 151 struct ip6_moptions *im6o; 152 struct ifnet **ifpp; /* XXX: just for statistics */ 153 { 154 struct ip6_hdr *ip6, *mhip6; 155 struct ifnet *ifp, *origifp; 156 struct mbuf *m = m0; 157 int hlen, tlen, len, off; 158 struct route_in6 ip6route; 159 struct sockaddr_in6 *dst; 160 int error = 0; 161 struct in6_ifaddr *ia = NULL; 162 u_long mtu; 163 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 164 struct ip6_exthdrs exthdrs; 165 struct in6_addr finaldst; 166 struct route_in6 *ro_pmtu = NULL; 167 int hdrsplit = 0; 168 int needipsec = 0; 169 #ifdef PFIL_HOOKS 170 struct packet_filter_hook *pfh; 171 struct mbuf *m1; 172 int rv; 173 #endif /* PFIL_HOOKS */ 174 #ifdef IPSEC 175 int needipsectun = 0; 176 struct socket *so; 177 struct secpolicy *sp = NULL; 178 179 /* for AH processing. stupid to have "socket" variable in IP layer... */ 180 so = ipsec_getsocket(m); 181 (void)ipsec_setsocket(m, NULL); 182 ip6 = mtod(m, struct ip6_hdr *); 183 #endif /* IPSEC */ 184 185 #define MAKE_EXTHDR(hp, mp) \ 186 do { \ 187 if (hp) { \ 188 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 189 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 190 ((eh)->ip6e_len + 1) << 3); \ 191 if (error) \ 192 goto freehdrs; \ 193 } \ 194 } while (0) 195 196 bzero(&exthdrs, sizeof(exthdrs)); 197 198 if (opt) { 199 /* Hop-by-Hop options header */ 200 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 201 /* Destination options header(1st part) */ 202 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 203 /* Routing header */ 204 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 205 /* Destination options header(2nd part) */ 206 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 207 } 208 209 #ifdef IPSEC 210 /* get a security policy for this packet */ 211 if (so == NULL) 212 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 213 else 214 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error); 215 216 if (sp == NULL) { 217 ipsec6stat.out_inval++; 218 goto freehdrs; 219 } 220 221 error = 0; 222 223 /* check policy */ 224 switch (sp->policy) { 225 case IPSEC_POLICY_DISCARD: 226 /* 227 * This packet is just discarded. 228 */ 229 ipsec6stat.out_polvio++; 230 goto freehdrs; 231 232 case IPSEC_POLICY_BYPASS: 233 case IPSEC_POLICY_NONE: 234 /* no need to do IPsec. */ 235 needipsec = 0; 236 break; 237 238 case IPSEC_POLICY_IPSEC: 239 if (sp->req == NULL) { 240 /* acquire a policy */ 241 error = key_spdacquire(sp); 242 goto freehdrs; 243 } 244 needipsec = 1; 245 break; 246 247 case IPSEC_POLICY_ENTRUST: 248 default: 249 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 250 } 251 #endif /* IPSEC */ 252 253 /* 254 * Calculate the total length of the extension header chain. 255 * Keep the length of the unfragmentable part for fragmentation. 256 */ 257 optlen = 0; 258 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 259 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 260 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 261 unfragpartlen = optlen + sizeof(struct ip6_hdr); 262 /* NOTE: we don't add AH/ESP length here. do that later. */ 263 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 264 265 /* 266 * If we need IPsec, or there is at least one extension header, 267 * separate IP6 header from the payload. 268 */ 269 if ((needipsec || optlen) && !hdrsplit) { 270 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 271 m = NULL; 272 goto freehdrs; 273 } 274 m = exthdrs.ip6e_ip6; 275 hdrsplit++; 276 } 277 278 /* adjust pointer */ 279 ip6 = mtod(m, struct ip6_hdr *); 280 281 /* adjust mbuf packet header length */ 282 m->m_pkthdr.len += optlen; 283 plen = m->m_pkthdr.len - sizeof(*ip6); 284 285 /* If this is a jumbo payload, insert a jumbo payload option. */ 286 if (plen > IPV6_MAXPACKET) { 287 if (!hdrsplit) { 288 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 289 m = NULL; 290 goto freehdrs; 291 } 292 m = exthdrs.ip6e_ip6; 293 hdrsplit++; 294 } 295 /* adjust pointer */ 296 ip6 = mtod(m, struct ip6_hdr *); 297 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 298 goto freehdrs; 299 ip6->ip6_plen = 0; 300 } else 301 ip6->ip6_plen = htons(plen); 302 303 /* 304 * Concatenate headers and fill in next header fields. 305 * Here we have, on "m" 306 * IPv6 payload 307 * and we insert headers accordingly. Finally, we should be getting: 308 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 309 * 310 * during the header composing process, "m" points to IPv6 header. 311 * "mprev" points to an extension header prior to esp. 312 */ 313 { 314 u_char *nexthdrp = &ip6->ip6_nxt; 315 struct mbuf *mprev = m; 316 317 /* 318 * we treat dest2 specially. this makes IPsec processing 319 * much easier. the goal here is to make mprev point the 320 * mbuf prior to dest2. 321 * 322 * result: IPv6 dest2 payload 323 * m and mprev will point to IPv6 header. 324 */ 325 if (exthdrs.ip6e_dest2) { 326 if (!hdrsplit) 327 panic("assumption failed: hdr not split"); 328 exthdrs.ip6e_dest2->m_next = m->m_next; 329 m->m_next = exthdrs.ip6e_dest2; 330 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 331 ip6->ip6_nxt = IPPROTO_DSTOPTS; 332 } 333 334 #define MAKE_CHAIN(m, mp, p, i)\ 335 do {\ 336 if (m) {\ 337 if (!hdrsplit) \ 338 panic("assumption failed: hdr not split"); \ 339 *mtod((m), u_char *) = *(p);\ 340 *(p) = (i);\ 341 p = mtod((m), u_char *);\ 342 (m)->m_next = (mp)->m_next;\ 343 (mp)->m_next = (m);\ 344 (mp) = (m);\ 345 }\ 346 } while (0) 347 /* 348 * result: IPv6 hbh dest1 rthdr dest2 payload 349 * m will point to IPv6 header. mprev will point to the 350 * extension header prior to dest2 (rthdr in the above case). 351 */ 352 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, 353 nexthdrp, IPPROTO_HOPOPTS); 354 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, 355 nexthdrp, IPPROTO_DSTOPTS); 356 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, 357 nexthdrp, IPPROTO_ROUTING); 358 359 #ifdef IPSEC 360 if (!needipsec) 361 goto skip_ipsec2; 362 363 /* 364 * pointers after IPsec headers are not valid any more. 365 * other pointers need a great care too. 366 * (IPsec routines should not mangle mbufs prior to AH/ESP) 367 */ 368 exthdrs.ip6e_dest2 = NULL; 369 370 { 371 struct ip6_rthdr *rh = NULL; 372 int segleft_org = 0; 373 struct ipsec_output_state state; 374 375 if (exthdrs.ip6e_rthdr) { 376 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 377 segleft_org = rh->ip6r_segleft; 378 rh->ip6r_segleft = 0; 379 } 380 381 bzero(&state, sizeof(state)); 382 state.m = m; 383 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 384 &needipsectun); 385 m = state.m; 386 if (error) { 387 /* mbuf is already reclaimed in ipsec6_output_trans. */ 388 m = NULL; 389 switch (error) { 390 case EHOSTUNREACH: 391 case ENETUNREACH: 392 case EMSGSIZE: 393 case ENOBUFS: 394 case ENOMEM: 395 break; 396 default: 397 printf("ip6_output (ipsec): error code %d\n", error); 398 /* fall through */ 399 case ENOENT: 400 /* don't show these error codes to the user */ 401 error = 0; 402 break; 403 } 404 goto bad; 405 } 406 if (exthdrs.ip6e_rthdr) { 407 /* ah6_output doesn't modify mbuf chain */ 408 rh->ip6r_segleft = segleft_org; 409 } 410 } 411 skip_ipsec2:; 412 #endif 413 } 414 415 /* 416 * If there is a routing header, replace destination address field 417 * with the first hop of the routing header. 418 */ 419 if (exthdrs.ip6e_rthdr) { 420 struct ip6_rthdr *rh = 421 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 422 struct ip6_rthdr *)); 423 struct ip6_rthdr0 *rh0; 424 425 finaldst = ip6->ip6_dst; 426 switch (rh->ip6r_type) { 427 case IPV6_RTHDR_TYPE_0: 428 rh0 = (struct ip6_rthdr0 *)rh; 429 ip6->ip6_dst = rh0->ip6r0_addr[0]; 430 bcopy((caddr_t)&rh0->ip6r0_addr[1], 431 (caddr_t)&rh0->ip6r0_addr[0], 432 sizeof(struct in6_addr)*(rh0->ip6r0_segleft - 1) 433 ); 434 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst; 435 break; 436 default: /* is it possible? */ 437 error = EINVAL; 438 goto bad; 439 } 440 } 441 442 /* Source address validation */ 443 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 444 (flags & IPV6_DADOUTPUT) == 0) { 445 error = EOPNOTSUPP; 446 ip6stat.ip6s_badscope++; 447 goto bad; 448 } 449 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 450 error = EOPNOTSUPP; 451 ip6stat.ip6s_badscope++; 452 goto bad; 453 } 454 455 ip6stat.ip6s_localout++; 456 457 /* 458 * Route packet. 459 */ 460 if (ro == 0) { 461 ro = &ip6route; 462 bzero((caddr_t)ro, sizeof(*ro)); 463 } 464 ro_pmtu = ro; 465 if (opt && opt->ip6po_rthdr) 466 ro = &opt->ip6po_route; 467 dst = (struct sockaddr_in6 *)&ro->ro_dst; 468 /* 469 * If there is a cached route, 470 * check that it is to the same destination 471 * and is still up. If not, free it and try again. 472 */ 473 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 474 dst->sin6_family != AF_INET6 || 475 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) { 476 RTFREE(ro->ro_rt); 477 ro->ro_rt = (struct rtentry *)0; 478 } 479 if (ro->ro_rt == 0) { 480 bzero(dst, sizeof(*dst)); 481 dst->sin6_family = AF_INET6; 482 dst->sin6_len = sizeof(struct sockaddr_in6); 483 dst->sin6_addr = ip6->ip6_dst; 484 #ifdef SCOPEDROUTING 485 /* XXX: sin6_scope_id should already be fixed at this point */ 486 if (IN6_IS_SCOPE_LINKLOCAL(&dst->sin6_addr)) 487 dst->sin6_scope_id = ntohs(dst->sin6_addr.s6_addr16[1]); 488 #endif 489 } 490 #ifdef IPSEC 491 if (needipsec && needipsectun) { 492 struct ipsec_output_state state; 493 494 /* 495 * All the extension headers will become inaccessible 496 * (since they can be encrypted). 497 * Don't panic, we need no more updates to extension headers 498 * on inner IPv6 packet (since they are now encapsulated). 499 * 500 * IPv6 [ESP|AH] IPv6 [extension headers] payload 501 */ 502 bzero(&exthdrs, sizeof(exthdrs)); 503 exthdrs.ip6e_ip6 = m; 504 505 bzero(&state, sizeof(state)); 506 state.m = m; 507 state.ro = (struct route *)ro; 508 state.dst = (struct sockaddr *)dst; 509 510 error = ipsec6_output_tunnel(&state, sp, flags); 511 512 m = state.m; 513 ro = (struct route_in6 *)state.ro; 514 dst = (struct sockaddr_in6 *)state.dst; 515 if (error) { 516 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 517 m0 = m = NULL; 518 m = NULL; 519 switch (error) { 520 case EHOSTUNREACH: 521 case ENETUNREACH: 522 case EMSGSIZE: 523 case ENOBUFS: 524 case ENOMEM: 525 break; 526 default: 527 printf("ip6_output (ipsec): error code %d\n", error); 528 /* fall through */ 529 case ENOENT: 530 /* don't show these error codes to the user */ 531 error = 0; 532 break; 533 } 534 goto bad; 535 } 536 537 exthdrs.ip6e_ip6 = m; 538 } 539 #endif /* IPSEC */ 540 541 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 542 /* Unicast */ 543 544 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa)) 545 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) 546 /* xxx 547 * interface selection comes here 548 * if an interface is specified from an upper layer, 549 * ifp must point it. 550 */ 551 if (ro->ro_rt == 0) { 552 /* 553 * non-bsdi always clone routes, if parent is 554 * PRF_CLONING. 555 */ 556 rtalloc((struct route *)ro); 557 } 558 if (ro->ro_rt == 0) { 559 ip6stat.ip6s_noroute++; 560 error = EHOSTUNREACH; 561 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */ 562 goto bad; 563 } 564 ia = ifatoia6(ro->ro_rt->rt_ifa); 565 ifp = ro->ro_rt->rt_ifp; 566 ro->ro_rt->rt_use++; 567 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 568 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway; 569 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 570 571 in6_ifstat_inc(ifp, ifs6_out_request); 572 573 /* 574 * Check if the outgoing interface conflicts with 575 * the interface specified by ifi6_ifindex (if specified). 576 * Note that loopback interface is always okay. 577 * (this may happen when we are sending a packet to one of 578 * our own addresses.) 579 */ 580 if (opt && opt->ip6po_pktinfo 581 && opt->ip6po_pktinfo->ipi6_ifindex) { 582 if (!(ifp->if_flags & IFF_LOOPBACK) 583 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) { 584 ip6stat.ip6s_noroute++; 585 in6_ifstat_inc(ifp, ifs6_out_discard); 586 error = EHOSTUNREACH; 587 goto bad; 588 } 589 } 590 591 if (opt && opt->ip6po_hlim != -1) 592 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 593 } else { 594 /* Multicast */ 595 struct in6_multi *in6m; 596 597 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 598 599 /* 600 * See if the caller provided any multicast options 601 */ 602 ifp = NULL; 603 if (im6o != NULL) { 604 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 605 if (im6o->im6o_multicast_ifp != NULL) 606 ifp = im6o->im6o_multicast_ifp; 607 } else 608 ip6->ip6_hlim = ip6_defmcasthlim; 609 610 /* 611 * See if the caller provided the outgoing interface 612 * as an ancillary data. 613 * Boundary check for ifindex is assumed to be already done. 614 */ 615 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex) 616 ifp = ifnet_byindex(opt->ip6po_pktinfo->ipi6_ifindex); 617 618 /* 619 * If the destination is a node-local scope multicast, 620 * the packet should be loop-backed only. 621 */ 622 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) { 623 /* 624 * If the outgoing interface is already specified, 625 * it should be a loopback interface. 626 */ 627 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) { 628 ip6stat.ip6s_badscope++; 629 error = ENETUNREACH; /* XXX: better error? */ 630 /* XXX correct ifp? */ 631 in6_ifstat_inc(ifp, ifs6_out_discard); 632 goto bad; 633 } else { 634 ifp = &loif[0]; 635 } 636 } 637 638 if (opt && opt->ip6po_hlim != -1) 639 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 640 641 /* 642 * If caller did not provide an interface lookup a 643 * default in the routing table. This is either a 644 * default for the speicfied group (i.e. a host 645 * route), or a multicast default (a route for the 646 * ``net'' ff00::/8). 647 */ 648 if (ifp == NULL) { 649 if (ro->ro_rt == 0) { 650 ro->ro_rt = rtalloc1((struct sockaddr *) 651 &ro->ro_dst, 0, 0UL); 652 } 653 if (ro->ro_rt == 0) { 654 ip6stat.ip6s_noroute++; 655 error = EHOSTUNREACH; 656 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */ 657 goto bad; 658 } 659 ia = ifatoia6(ro->ro_rt->rt_ifa); 660 ifp = ro->ro_rt->rt_ifp; 661 ro->ro_rt->rt_use++; 662 } 663 664 if ((flags & IPV6_FORWARDING) == 0) 665 in6_ifstat_inc(ifp, ifs6_out_request); 666 in6_ifstat_inc(ifp, ifs6_out_mcast); 667 668 /* 669 * Confirm that the outgoing interface supports multicast. 670 */ 671 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 672 ip6stat.ip6s_noroute++; 673 in6_ifstat_inc(ifp, ifs6_out_discard); 674 error = ENETUNREACH; 675 goto bad; 676 } 677 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 678 if (in6m != NULL && 679 (im6o == NULL || im6o->im6o_multicast_loop)) { 680 /* 681 * If we belong to the destination multicast group 682 * on the outgoing interface, and the caller did not 683 * forbid loopback, loop back a copy. 684 */ 685 ip6_mloopback(ifp, m, dst); 686 } else { 687 /* 688 * If we are acting as a multicast router, perform 689 * multicast forwarding as if the packet had just 690 * arrived on the interface to which we are about 691 * to send. The multicast forwarding function 692 * recursively calls this function, using the 693 * IPV6_FORWARDING flag to prevent infinite recursion. 694 * 695 * Multicasts that are looped back by ip6_mloopback(), 696 * above, will be forwarded by the ip6_input() routine, 697 * if necessary. 698 */ 699 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 700 if (ip6_mforward(ip6, ifp, m) != 0) { 701 m_freem(m); 702 goto done; 703 } 704 } 705 } 706 /* 707 * Multicasts with a hoplimit of zero may be looped back, 708 * above, but must not be transmitted on a network. 709 * Also, multicasts addressed to the loopback interface 710 * are not sent -- the above call to ip6_mloopback() will 711 * loop back a copy if this host actually belongs to the 712 * destination group on the loopback interface. 713 */ 714 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) { 715 m_freem(m); 716 goto done; 717 } 718 } 719 720 /* 721 * Fill the outgoing inteface to tell the upper layer 722 * to increment per-interface statistics. 723 */ 724 if (ifpp) 725 *ifpp = ifp; 726 727 /* 728 * Determine path MTU. 729 */ 730 if (ro_pmtu != ro) { 731 /* The first hop and the final destination may differ. */ 732 struct sockaddr_in6 *sin6_fin = 733 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 734 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 735 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr, 736 &finaldst))) { 737 RTFREE(ro_pmtu->ro_rt); 738 ro_pmtu->ro_rt = (struct rtentry *)0; 739 } 740 if (ro_pmtu->ro_rt == 0) { 741 bzero(sin6_fin, sizeof(*sin6_fin)); 742 sin6_fin->sin6_family = AF_INET6; 743 sin6_fin->sin6_len = sizeof(struct sockaddr_in6); 744 sin6_fin->sin6_addr = finaldst; 745 746 rtalloc((struct route *)ro_pmtu); 747 } 748 } 749 if (ro_pmtu->ro_rt != NULL) { 750 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu; 751 752 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 753 if (mtu > ifmtu || mtu == 0) { 754 /* 755 * The MTU on the route is larger than the MTU on 756 * the interface! This shouldn't happen, unless the 757 * MTU of the interface has been changed after the 758 * interface was brought up. Change the MTU in the 759 * route to match the interface MTU (as long as the 760 * field isn't locked). 761 * 762 * if MTU on the route is 0, we need to fix the MTU. 763 * this case happens with path MTU discovery timeouts. 764 */ 765 mtu = ifmtu; 766 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0) 767 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */ 768 } 769 } else { 770 mtu = nd_ifinfo[ifp->if_index].linkmtu; 771 } 772 773 /* 774 * advanced API (IPV6_USE_MIN_MTU) overrides mtu setting 775 */ 776 if ((flags & IPV6_MINMTU) != 0 && mtu > IPV6_MMTU) 777 mtu = IPV6_MMTU; 778 779 /* Fake scoped addresses */ 780 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 781 /* 782 * If source or destination address is a scoped address, and 783 * the packet is going to be sent to a loopback interface, 784 * we should keep the original interface. 785 */ 786 787 /* 788 * XXX: this is a very experimental and temporary solution. 789 * We eventually have sockaddr_in6 and use the sin6_scope_id 790 * field of the structure here. 791 * We rely on the consistency between two scope zone ids 792 * of source and destination, which should already be assured. 793 * Larger scopes than link will be supported in the future. 794 */ 795 origifp = NULL; 796 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 797 origifp = ifnet_byindex(ntohs(ip6->ip6_src.s6_addr16[1])); 798 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 799 origifp = ifnet_byindex(ntohs(ip6->ip6_dst.s6_addr16[1])); 800 /* 801 * XXX: origifp can be NULL even in those two cases above. 802 * For example, if we remove the (only) link-local address 803 * from the loopback interface, and try to send a link-local 804 * address without link-id information. Then the source 805 * address is ::1, and the destination address is the 806 * link-local address with its s6_addr16[1] being zero. 807 * What is worse, if the packet goes to the loopback interface 808 * by a default rejected route, the null pointer would be 809 * passed to looutput, and the kernel would hang. 810 * The following last resort would prevent such disaster. 811 */ 812 if (origifp == NULL) 813 origifp = ifp; 814 } 815 else 816 origifp = ifp; 817 #ifndef SCOPEDROUTING 818 /* 819 * clear embedded scope identifiers if necessary. 820 * in6_clearscope will touch the addresses only when necessary. 821 */ 822 in6_clearscope(&ip6->ip6_src); 823 in6_clearscope(&ip6->ip6_dst); 824 #endif 825 826 /* 827 * Check with the firewall... 828 */ 829 if (ip6_fw_enable && ip6_fw_chk_ptr) { 830 u_short port = 0; 831 m->m_pkthdr.rcvif = NULL; /* XXX */ 832 /* If ipfw says divert, we have to just drop packet */ 833 if ((*ip6_fw_chk_ptr)(&ip6, ifp, &port, &m)) { 834 m_freem(m); 835 goto done; 836 } 837 if (!m) { 838 error = EACCES; 839 goto done; 840 } 841 } 842 843 /* 844 * If the outgoing packet contains a hop-by-hop options header, 845 * it must be examined and processed even by the source node. 846 * (RFC 2460, section 4.) 847 */ 848 if (exthdrs.ip6e_hbh) { 849 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 850 u_int32_t dummy1; /* XXX unused */ 851 u_int32_t dummy2; /* XXX unused */ 852 853 #ifdef DIAGNOSTIC 854 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 855 panic("ip6e_hbh is not continuous"); 856 #endif 857 /* 858 * XXX: if we have to send an ICMPv6 error to the sender, 859 * we need the M_LOOP flag since icmp6_error() expects 860 * the IPv6 and the hop-by-hop options header are 861 * continuous unless the flag is set. 862 */ 863 m->m_flags |= M_LOOP; 864 m->m_pkthdr.rcvif = ifp; 865 if (ip6_process_hopopts(m, 866 (u_int8_t *)(hbh + 1), 867 ((hbh->ip6h_len + 1) << 3) - 868 sizeof(struct ip6_hbh), 869 &dummy1, &dummy2) < 0) { 870 /* m was already freed at this point */ 871 error = EINVAL;/* better error? */ 872 goto done; 873 } 874 m->m_flags &= ~M_LOOP; /* XXX */ 875 m->m_pkthdr.rcvif = NULL; 876 } 877 878 #ifdef PFIL_HOOKS 879 /* 880 * Run through list of hooks for output packets. 881 */ 882 m1 = m; 883 pfh = pfil_hook_get(PFIL_OUT, &inet6sw[ip6_protox[IPPROTO_IPV6]].pr_pfh); 884 for (; pfh; pfh = pfh->pfil_link.tqe_next) 885 if (pfh->pfil_func) { 886 rv = pfh->pfil_func(ip6, sizeof(*ip6), ifp, 1, &m1); 887 if (rv) { 888 error = EHOSTUNREACH; 889 goto done; 890 } 891 m = m1; 892 if (m == NULL) 893 goto done; 894 ip6 = mtod(m, struct ip6_hdr *); 895 } 896 #endif /* PFIL_HOOKS */ 897 /* 898 * Send the packet to the outgoing interface. 899 * If necessary, do IPv6 fragmentation before sending. 900 */ 901 tlen = m->m_pkthdr.len; 902 if (tlen <= mtu 903 #ifdef notyet 904 /* 905 * On any link that cannot convey a 1280-octet packet in one piece, 906 * link-specific fragmentation and reassembly must be provided at 907 * a layer below IPv6. [RFC 2460, sec.5] 908 * Thus if the interface has ability of link-level fragmentation, 909 * we can just send the packet even if the packet size is 910 * larger than the link's MTU. 911 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet... 912 */ 913 914 || ifp->if_flags & IFF_FRAGMENTABLE 915 #endif 916 ) 917 { 918 /* Record statistics for this interface address. */ 919 if (ia && !(flags & IPV6_FORWARDING)) { 920 ia->ia_ifa.if_opackets++; 921 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 922 } 923 #ifdef IPSEC 924 /* clean ipsec history once it goes out of the node */ 925 ipsec_delaux(m); 926 #endif 927 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 928 goto done; 929 } else if (mtu < IPV6_MMTU) { 930 /* 931 * note that path MTU is never less than IPV6_MMTU 932 * (see icmp6_input). 933 */ 934 error = EMSGSIZE; 935 in6_ifstat_inc(ifp, ifs6_out_fragfail); 936 goto bad; 937 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */ 938 error = EMSGSIZE; 939 in6_ifstat_inc(ifp, ifs6_out_fragfail); 940 goto bad; 941 } else { 942 struct mbuf **mnext, *m_frgpart; 943 struct ip6_frag *ip6f; 944 u_int32_t id = htonl(ip6_id++); 945 u_char nextproto; 946 947 /* 948 * Too large for the destination or interface; 949 * fragment if possible. 950 * Must be able to put at least 8 bytes per fragment. 951 */ 952 hlen = unfragpartlen; 953 if (mtu > IPV6_MAXPACKET) 954 mtu = IPV6_MAXPACKET; 955 956 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 957 if (len < 8) { 958 error = EMSGSIZE; 959 in6_ifstat_inc(ifp, ifs6_out_fragfail); 960 goto bad; 961 } 962 963 mnext = &m->m_nextpkt; 964 965 /* 966 * Change the next header field of the last header in the 967 * unfragmentable part. 968 */ 969 if (exthdrs.ip6e_rthdr) { 970 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 971 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 972 } else if (exthdrs.ip6e_dest1) { 973 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 974 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 975 } else if (exthdrs.ip6e_hbh) { 976 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 977 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 978 } else { 979 nextproto = ip6->ip6_nxt; 980 ip6->ip6_nxt = IPPROTO_FRAGMENT; 981 } 982 983 /* 984 * Loop through length of segment after first fragment, 985 * make new header and copy data of each part and link onto 986 * chain. 987 */ 988 m0 = m; 989 for (off = hlen; off < tlen; off += len) { 990 MGETHDR(m, M_DONTWAIT, MT_HEADER); 991 if (!m) { 992 error = ENOBUFS; 993 ip6stat.ip6s_odropped++; 994 goto sendorfree; 995 } 996 m->m_pkthdr.rcvif = NULL; 997 m->m_flags = m0->m_flags & M_COPYFLAGS; 998 *mnext = m; 999 mnext = &m->m_nextpkt; 1000 m->m_data += max_linkhdr; 1001 mhip6 = mtod(m, struct ip6_hdr *); 1002 *mhip6 = *ip6; 1003 m->m_len = sizeof(*mhip6); 1004 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 1005 if (error) { 1006 ip6stat.ip6s_odropped++; 1007 goto sendorfree; 1008 } 1009 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 1010 if (off + len >= tlen) 1011 len = tlen - off; 1012 else 1013 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1014 mhip6->ip6_plen = htons((u_short)(len + hlen + 1015 sizeof(*ip6f) - 1016 sizeof(struct ip6_hdr))); 1017 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 1018 error = ENOBUFS; 1019 ip6stat.ip6s_odropped++; 1020 goto sendorfree; 1021 } 1022 m_cat(m, m_frgpart); 1023 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1024 m->m_pkthdr.rcvif = (struct ifnet *)0; 1025 ip6f->ip6f_reserved = 0; 1026 ip6f->ip6f_ident = id; 1027 ip6f->ip6f_nxt = nextproto; 1028 ip6stat.ip6s_ofragments++; 1029 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1030 } 1031 1032 in6_ifstat_inc(ifp, ifs6_out_fragok); 1033 } 1034 1035 /* 1036 * Remove leading garbages. 1037 */ 1038 sendorfree: 1039 m = m0->m_nextpkt; 1040 m0->m_nextpkt = 0; 1041 m_freem(m0); 1042 for (m0 = m; m; m = m0) { 1043 m0 = m->m_nextpkt; 1044 m->m_nextpkt = 0; 1045 if (error == 0) { 1046 /* Record statistics for this interface address. */ 1047 if (ia) { 1048 ia->ia_ifa.if_opackets++; 1049 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 1050 } 1051 #ifdef IPSEC 1052 /* clean ipsec history once it goes out of the node */ 1053 ipsec_delaux(m); 1054 #endif 1055 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1056 } else 1057 m_freem(m); 1058 } 1059 1060 if (error == 0) 1061 ip6stat.ip6s_fragmented++; 1062 1063 done: 1064 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1065 RTFREE(ro->ro_rt); 1066 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1067 RTFREE(ro_pmtu->ro_rt); 1068 } 1069 1070 #ifdef IPSEC 1071 if (sp != NULL) 1072 key_freesp(sp); 1073 #endif /* IPSEC */ 1074 1075 return(error); 1076 1077 freehdrs: 1078 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1079 m_freem(exthdrs.ip6e_dest1); 1080 m_freem(exthdrs.ip6e_rthdr); 1081 m_freem(exthdrs.ip6e_dest2); 1082 /* fall through */ 1083 bad: 1084 m_freem(m); 1085 goto done; 1086 } 1087 1088 static int 1089 ip6_copyexthdr(mp, hdr, hlen) 1090 struct mbuf **mp; 1091 caddr_t hdr; 1092 int hlen; 1093 { 1094 struct mbuf *m; 1095 1096 if (hlen > MCLBYTES) 1097 return(ENOBUFS); /* XXX */ 1098 1099 MGET(m, M_DONTWAIT, MT_DATA); 1100 if (!m) 1101 return(ENOBUFS); 1102 1103 if (hlen > MLEN) { 1104 MCLGET(m, M_DONTWAIT); 1105 if ((m->m_flags & M_EXT) == 0) { 1106 m_free(m); 1107 return(ENOBUFS); 1108 } 1109 } 1110 m->m_len = hlen; 1111 if (hdr) 1112 bcopy(hdr, mtod(m, caddr_t), hlen); 1113 1114 *mp = m; 1115 return(0); 1116 } 1117 1118 /* 1119 * Insert jumbo payload option. 1120 */ 1121 static int 1122 ip6_insert_jumboopt(exthdrs, plen) 1123 struct ip6_exthdrs *exthdrs; 1124 u_int32_t plen; 1125 { 1126 struct mbuf *mopt; 1127 u_char *optbuf; 1128 u_int32_t v; 1129 1130 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1131 1132 /* 1133 * If there is no hop-by-hop options header, allocate new one. 1134 * If there is one but it doesn't have enough space to store the 1135 * jumbo payload option, allocate a cluster to store the whole options. 1136 * Otherwise, use it to store the options. 1137 */ 1138 if (exthdrs->ip6e_hbh == 0) { 1139 MGET(mopt, M_DONTWAIT, MT_DATA); 1140 if (mopt == 0) 1141 return(ENOBUFS); 1142 mopt->m_len = JUMBOOPTLEN; 1143 optbuf = mtod(mopt, u_char *); 1144 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1145 exthdrs->ip6e_hbh = mopt; 1146 } else { 1147 struct ip6_hbh *hbh; 1148 1149 mopt = exthdrs->ip6e_hbh; 1150 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1151 /* 1152 * XXX assumption: 1153 * - exthdrs->ip6e_hbh is not referenced from places 1154 * other than exthdrs. 1155 * - exthdrs->ip6e_hbh is not an mbuf chain. 1156 */ 1157 int oldoptlen = mopt->m_len; 1158 struct mbuf *n; 1159 1160 /* 1161 * XXX: give up if the whole (new) hbh header does 1162 * not fit even in an mbuf cluster. 1163 */ 1164 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1165 return(ENOBUFS); 1166 1167 /* 1168 * As a consequence, we must always prepare a cluster 1169 * at this point. 1170 */ 1171 MGET(n, M_DONTWAIT, MT_DATA); 1172 if (n) { 1173 MCLGET(n, M_DONTWAIT); 1174 if ((n->m_flags & M_EXT) == 0) { 1175 m_freem(n); 1176 n = NULL; 1177 } 1178 } 1179 if (!n) 1180 return(ENOBUFS); 1181 n->m_len = oldoptlen + JUMBOOPTLEN; 1182 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1183 oldoptlen); 1184 optbuf = mtod(n, caddr_t) + oldoptlen; 1185 m_freem(mopt); 1186 mopt = exthdrs->ip6e_hbh = n; 1187 } else { 1188 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1189 mopt->m_len += JUMBOOPTLEN; 1190 } 1191 optbuf[0] = IP6OPT_PADN; 1192 optbuf[1] = 1; 1193 1194 /* 1195 * Adjust the header length according to the pad and 1196 * the jumbo payload option. 1197 */ 1198 hbh = mtod(mopt, struct ip6_hbh *); 1199 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1200 } 1201 1202 /* fill in the option. */ 1203 optbuf[2] = IP6OPT_JUMBO; 1204 optbuf[3] = 4; 1205 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1206 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1207 1208 /* finally, adjust the packet header length */ 1209 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1210 1211 return(0); 1212 #undef JUMBOOPTLEN 1213 } 1214 1215 /* 1216 * Insert fragment header and copy unfragmentable header portions. 1217 */ 1218 static int 1219 ip6_insertfraghdr(m0, m, hlen, frghdrp) 1220 struct mbuf *m0, *m; 1221 int hlen; 1222 struct ip6_frag **frghdrp; 1223 { 1224 struct mbuf *n, *mlast; 1225 1226 if (hlen > sizeof(struct ip6_hdr)) { 1227 n = m_copym(m0, sizeof(struct ip6_hdr), 1228 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1229 if (n == 0) 1230 return(ENOBUFS); 1231 m->m_next = n; 1232 } else 1233 n = m; 1234 1235 /* Search for the last mbuf of unfragmentable part. */ 1236 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1237 ; 1238 1239 if ((mlast->m_flags & M_EXT) == 0 && 1240 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1241 /* use the trailing space of the last mbuf for the fragment hdr */ 1242 *frghdrp = 1243 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len); 1244 mlast->m_len += sizeof(struct ip6_frag); 1245 m->m_pkthdr.len += sizeof(struct ip6_frag); 1246 } else { 1247 /* allocate a new mbuf for the fragment header */ 1248 struct mbuf *mfrg; 1249 1250 MGET(mfrg, M_DONTWAIT, MT_DATA); 1251 if (mfrg == 0) 1252 return(ENOBUFS); 1253 mfrg->m_len = sizeof(struct ip6_frag); 1254 *frghdrp = mtod(mfrg, struct ip6_frag *); 1255 mlast->m_next = mfrg; 1256 } 1257 1258 return(0); 1259 } 1260 1261 /* 1262 * IP6 socket option processing. 1263 */ 1264 int 1265 ip6_ctloutput(so, sopt) 1266 struct socket *so; 1267 struct sockopt *sopt; 1268 { 1269 int privileged; 1270 struct inpcb *in6p = sotoinpcb(so); 1271 int error, optval; 1272 int level, op, optname; 1273 int optlen; 1274 struct thread *td; 1275 1276 if (sopt) { 1277 level = sopt->sopt_level; 1278 op = sopt->sopt_dir; 1279 optname = sopt->sopt_name; 1280 optlen = sopt->sopt_valsize; 1281 td = sopt->sopt_td; 1282 } else { 1283 panic("ip6_ctloutput: arg soopt is NULL"); 1284 } 1285 error = optval = 0; 1286 1287 privileged = (td == 0 || suser(td)) ? 0 : 1; 1288 1289 if (level == IPPROTO_IPV6) { 1290 switch (op) { 1291 1292 case SOPT_SET: 1293 switch (optname) { 1294 case IPV6_PKTOPTIONS: 1295 { 1296 struct mbuf *m; 1297 1298 error = soopt_getm(sopt, &m); /* XXX */ 1299 if (error != NULL) 1300 break; 1301 error = soopt_mcopyin(sopt, m); /* XXX */ 1302 if (error != NULL) 1303 break; 1304 error = ip6_pcbopts(&in6p->in6p_outputopts, 1305 m, so, sopt); 1306 m_freem(m); /* XXX */ 1307 break; 1308 } 1309 1310 /* 1311 * Use of some Hop-by-Hop options or some 1312 * Destination options, might require special 1313 * privilege. That is, normal applications 1314 * (without special privilege) might be forbidden 1315 * from setting certain options in outgoing packets, 1316 * and might never see certain options in received 1317 * packets. [RFC 2292 Section 6] 1318 * KAME specific note: 1319 * KAME prevents non-privileged users from sending or 1320 * receiving ANY hbh/dst options in order to avoid 1321 * overhead of parsing options in the kernel. 1322 */ 1323 case IPV6_UNICAST_HOPS: 1324 case IPV6_CHECKSUM: 1325 case IPV6_FAITH: 1326 1327 case IPV6_V6ONLY: 1328 if (optlen != sizeof(int)) { 1329 error = EINVAL; 1330 break; 1331 } 1332 error = sooptcopyin(sopt, &optval, 1333 sizeof optval, sizeof optval); 1334 if (error) 1335 break; 1336 switch (optname) { 1337 1338 case IPV6_UNICAST_HOPS: 1339 if (optval < -1 || optval >= 256) 1340 error = EINVAL; 1341 else { 1342 /* -1 = kernel default */ 1343 in6p->in6p_hops = optval; 1344 1345 if ((in6p->in6p_vflag & 1346 INP_IPV4) != 0) 1347 in6p->inp_ip_ttl = optval; 1348 } 1349 break; 1350 #define OPTSET(bit) \ 1351 do { \ 1352 if (optval) \ 1353 in6p->in6p_flags |= (bit); \ 1354 else \ 1355 in6p->in6p_flags &= ~(bit); \ 1356 } while (0) 1357 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) 1358 1359 case IPV6_CHECKSUM: 1360 in6p->in6p_cksum = optval; 1361 break; 1362 1363 case IPV6_FAITH: 1364 OPTSET(IN6P_FAITH); 1365 break; 1366 1367 case IPV6_V6ONLY: 1368 /* 1369 * make setsockopt(IPV6_V6ONLY) 1370 * available only prior to bind(2). 1371 * see ipng mailing list, Jun 22 2001. 1372 */ 1373 if (in6p->in6p_lport || 1374 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) 1375 { 1376 error = EINVAL; 1377 break; 1378 } 1379 /* 1380 * XXX: BINDV6ONLY should be integrated 1381 * into V6ONLY. 1382 */ 1383 OPTSET(IN6P_BINDV6ONLY); 1384 OPTSET(IN6P_IPV6_V6ONLY); 1385 break; 1386 } 1387 break; 1388 1389 case IPV6_PKTINFO: 1390 case IPV6_HOPLIMIT: 1391 case IPV6_HOPOPTS: 1392 case IPV6_DSTOPTS: 1393 case IPV6_RTHDR: 1394 /* RFC 2292 */ 1395 if (optlen != sizeof(int)) { 1396 error = EINVAL; 1397 break; 1398 } 1399 error = sooptcopyin(sopt, &optval, 1400 sizeof optval, sizeof optval); 1401 if (error) 1402 break; 1403 switch (optname) { 1404 case IPV6_PKTINFO: 1405 OPTSET(IN6P_PKTINFO); 1406 break; 1407 case IPV6_HOPLIMIT: 1408 OPTSET(IN6P_HOPLIMIT); 1409 break; 1410 case IPV6_HOPOPTS: 1411 /* 1412 * Check super-user privilege. 1413 * See comments for IPV6_RECVHOPOPTS. 1414 */ 1415 if (!privileged) 1416 return(EPERM); 1417 OPTSET(IN6P_HOPOPTS); 1418 break; 1419 case IPV6_DSTOPTS: 1420 if (!privileged) 1421 return(EPERM); 1422 OPTSET(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1423 break; 1424 case IPV6_RTHDR: 1425 OPTSET(IN6P_RTHDR); 1426 break; 1427 } 1428 break; 1429 #undef OPTSET 1430 1431 case IPV6_MULTICAST_IF: 1432 case IPV6_MULTICAST_HOPS: 1433 case IPV6_MULTICAST_LOOP: 1434 case IPV6_JOIN_GROUP: 1435 case IPV6_LEAVE_GROUP: 1436 { 1437 struct mbuf *m; 1438 if (sopt->sopt_valsize > MLEN) { 1439 error = EMSGSIZE; 1440 break; 1441 } 1442 /* XXX */ 1443 MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_HEADER); 1444 if (m == 0) { 1445 error = ENOBUFS; 1446 break; 1447 } 1448 m->m_len = sopt->sopt_valsize; 1449 error = sooptcopyin(sopt, mtod(m, char *), 1450 m->m_len, m->m_len); 1451 error = ip6_setmoptions(sopt->sopt_name, 1452 &in6p->in6p_moptions, 1453 m); 1454 (void)m_free(m); 1455 } 1456 break; 1457 1458 case IPV6_PORTRANGE: 1459 error = sooptcopyin(sopt, &optval, 1460 sizeof optval, sizeof optval); 1461 if (error) 1462 break; 1463 1464 switch (optval) { 1465 case IPV6_PORTRANGE_DEFAULT: 1466 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1467 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1468 break; 1469 1470 case IPV6_PORTRANGE_HIGH: 1471 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1472 in6p->in6p_flags |= IN6P_HIGHPORT; 1473 break; 1474 1475 case IPV6_PORTRANGE_LOW: 1476 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1477 in6p->in6p_flags |= IN6P_LOWPORT; 1478 break; 1479 1480 default: 1481 error = EINVAL; 1482 break; 1483 } 1484 break; 1485 1486 #ifdef IPSEC 1487 case IPV6_IPSEC_POLICY: 1488 { 1489 caddr_t req = NULL; 1490 size_t len = 0; 1491 struct mbuf *m; 1492 1493 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1494 break; 1495 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1496 break; 1497 if (m) { 1498 req = mtod(m, caddr_t); 1499 len = m->m_len; 1500 } 1501 error = ipsec6_set_policy(in6p, optname, req, 1502 len, privileged); 1503 m_freem(m); 1504 } 1505 break; 1506 #endif /* KAME IPSEC */ 1507 1508 case IPV6_FW_ADD: 1509 case IPV6_FW_DEL: 1510 case IPV6_FW_FLUSH: 1511 case IPV6_FW_ZERO: 1512 { 1513 struct mbuf *m; 1514 struct mbuf **mp = &m; 1515 1516 if (ip6_fw_ctl_ptr == NULL) 1517 return EINVAL; 1518 /* XXX */ 1519 if ((error = soopt_getm(sopt, &m)) != 0) 1520 break; 1521 /* XXX */ 1522 if ((error = soopt_mcopyin(sopt, m)) != 0) 1523 break; 1524 error = (*ip6_fw_ctl_ptr)(optname, mp); 1525 m = *mp; 1526 } 1527 break; 1528 1529 default: 1530 error = ENOPROTOOPT; 1531 break; 1532 } 1533 break; 1534 1535 case SOPT_GET: 1536 switch (optname) { 1537 1538 case IPV6_PKTOPTIONS: 1539 if (in6p->in6p_options) { 1540 struct mbuf *m; 1541 m = m_copym(in6p->in6p_options, 1542 0, M_COPYALL, M_TRYWAIT); 1543 error = soopt_mcopyout(sopt, m); 1544 if (error == 0) 1545 m_freem(m); 1546 } else 1547 sopt->sopt_valsize = 0; 1548 break; 1549 1550 case IPV6_UNICAST_HOPS: 1551 case IPV6_CHECKSUM: 1552 1553 case IPV6_FAITH: 1554 case IPV6_V6ONLY: 1555 case IPV6_PORTRANGE: 1556 switch (optname) { 1557 1558 case IPV6_UNICAST_HOPS: 1559 optval = in6p->in6p_hops; 1560 break; 1561 1562 case IPV6_CHECKSUM: 1563 optval = in6p->in6p_cksum; 1564 break; 1565 1566 case IPV6_FAITH: 1567 optval = OPTBIT(IN6P_FAITH); 1568 break; 1569 1570 case IPV6_V6ONLY: 1571 /* XXX: see the setopt case. */ 1572 optval = OPTBIT(IN6P_BINDV6ONLY); 1573 break; 1574 1575 case IPV6_PORTRANGE: 1576 { 1577 int flags; 1578 flags = in6p->in6p_flags; 1579 if (flags & IN6P_HIGHPORT) 1580 optval = IPV6_PORTRANGE_HIGH; 1581 else if (flags & IN6P_LOWPORT) 1582 optval = IPV6_PORTRANGE_LOW; 1583 else 1584 optval = 0; 1585 break; 1586 } 1587 } 1588 error = sooptcopyout(sopt, &optval, 1589 sizeof optval); 1590 break; 1591 1592 case IPV6_PKTINFO: 1593 case IPV6_HOPLIMIT: 1594 case IPV6_HOPOPTS: 1595 case IPV6_RTHDR: 1596 case IPV6_DSTOPTS: 1597 if (optname == IPV6_HOPOPTS || 1598 optname == IPV6_DSTOPTS || 1599 !privileged) 1600 return(EPERM); 1601 switch (optname) { 1602 case IPV6_PKTINFO: 1603 optval = OPTBIT(IN6P_PKTINFO); 1604 break; 1605 case IPV6_HOPLIMIT: 1606 optval = OPTBIT(IN6P_HOPLIMIT); 1607 break; 1608 case IPV6_HOPOPTS: 1609 if (!privileged) 1610 return(EPERM); 1611 optval = OPTBIT(IN6P_HOPOPTS); 1612 break; 1613 case IPV6_RTHDR: 1614 optval = OPTBIT(IN6P_RTHDR); 1615 break; 1616 case IPV6_DSTOPTS: 1617 if (!privileged) 1618 return(EPERM); 1619 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1620 break; 1621 } 1622 error = sooptcopyout(sopt, &optval, 1623 sizeof optval); 1624 break; 1625 1626 case IPV6_MULTICAST_IF: 1627 case IPV6_MULTICAST_HOPS: 1628 case IPV6_MULTICAST_LOOP: 1629 case IPV6_JOIN_GROUP: 1630 case IPV6_LEAVE_GROUP: 1631 { 1632 struct mbuf *m; 1633 error = ip6_getmoptions(sopt->sopt_name, 1634 in6p->in6p_moptions, &m); 1635 if (error == 0) 1636 error = sooptcopyout(sopt, 1637 mtod(m, char *), m->m_len); 1638 m_freem(m); 1639 } 1640 break; 1641 1642 #ifdef IPSEC 1643 case IPV6_IPSEC_POLICY: 1644 { 1645 caddr_t req = NULL; 1646 size_t len = 0; 1647 struct mbuf *m = NULL; 1648 struct mbuf **mp = &m; 1649 1650 error = soopt_getm(sopt, &m); /* XXX */ 1651 if (error != NULL) 1652 break; 1653 error = soopt_mcopyin(sopt, m); /* XXX */ 1654 if (error != NULL) 1655 break; 1656 if (m) { 1657 req = mtod(m, caddr_t); 1658 len = m->m_len; 1659 } 1660 error = ipsec6_get_policy(in6p, req, len, mp); 1661 if (error == 0) 1662 error = soopt_mcopyout(sopt, m); /*XXX*/ 1663 if (error == 0 && m) 1664 m_freem(m); 1665 break; 1666 } 1667 #endif /* KAME IPSEC */ 1668 1669 case IPV6_FW_GET: 1670 { 1671 struct mbuf *m; 1672 struct mbuf **mp = &m; 1673 1674 if (ip6_fw_ctl_ptr == NULL) 1675 { 1676 return EINVAL; 1677 } 1678 error = (*ip6_fw_ctl_ptr)(optname, mp); 1679 if (error == 0) 1680 error = soopt_mcopyout(sopt, m); /* XXX */ 1681 if (error == 0 && m) 1682 m_freem(m); 1683 } 1684 break; 1685 1686 default: 1687 error = ENOPROTOOPT; 1688 break; 1689 } 1690 break; 1691 } 1692 } else { 1693 error = EINVAL; 1694 } 1695 return(error); 1696 } 1697 1698 /* 1699 * Set up IP6 options in pcb for insertion in output packets or 1700 * specifying behavior of outgoing packets. 1701 */ 1702 static int 1703 ip6_pcbopts(pktopt, m, so, sopt) 1704 struct ip6_pktopts **pktopt; 1705 struct mbuf *m; 1706 struct socket *so; 1707 struct sockopt *sopt; 1708 { 1709 struct ip6_pktopts *opt = *pktopt; 1710 int error = 0; 1711 struct thread *td = sopt->sopt_td; 1712 int priv = 0; 1713 1714 /* turn off any old options. */ 1715 if (opt) { 1716 #ifdef DIAGNOSTIC 1717 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 1718 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 1719 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 1720 printf("ip6_pcbopts: all specified options are cleared.\n"); 1721 #endif 1722 ip6_clearpktopts(opt, 1, -1); 1723 } else 1724 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 1725 *pktopt = NULL; 1726 1727 if (!m || m->m_len == 0) { 1728 /* 1729 * Only turning off any previous options. 1730 */ 1731 if (opt) 1732 free(opt, M_IP6OPT); 1733 return(0); 1734 } 1735 1736 /* set options specified by user. */ 1737 if (td && !suser(td)) 1738 priv = 1; 1739 if ((error = ip6_setpktoptions(m, opt, priv, 1)) != 0) { 1740 ip6_clearpktopts(opt, 1, -1); /* XXX: discard all options */ 1741 return(error); 1742 } 1743 *pktopt = opt; 1744 return(0); 1745 } 1746 1747 /* 1748 * initialize ip6_pktopts. beware that there are non-zero default values in 1749 * the struct. 1750 */ 1751 void 1752 init_ip6pktopts(opt) 1753 struct ip6_pktopts *opt; 1754 { 1755 1756 bzero(opt, sizeof(*opt)); 1757 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 1758 } 1759 1760 void 1761 ip6_clearpktopts(pktopt, needfree, optname) 1762 struct ip6_pktopts *pktopt; 1763 int needfree, optname; 1764 { 1765 if (pktopt == NULL) 1766 return; 1767 1768 if (optname == -1) { 1769 if (needfree && pktopt->ip6po_pktinfo) 1770 free(pktopt->ip6po_pktinfo, M_IP6OPT); 1771 pktopt->ip6po_pktinfo = NULL; 1772 } 1773 if (optname == -1) 1774 pktopt->ip6po_hlim = -1; 1775 if (optname == -1) { 1776 if (needfree && pktopt->ip6po_nexthop) 1777 free(pktopt->ip6po_nexthop, M_IP6OPT); 1778 pktopt->ip6po_nexthop = NULL; 1779 } 1780 if (optname == -1) { 1781 if (needfree && pktopt->ip6po_hbh) 1782 free(pktopt->ip6po_hbh, M_IP6OPT); 1783 pktopt->ip6po_hbh = NULL; 1784 } 1785 if (optname == -1) { 1786 if (needfree && pktopt->ip6po_dest1) 1787 free(pktopt->ip6po_dest1, M_IP6OPT); 1788 pktopt->ip6po_dest1 = NULL; 1789 } 1790 if (optname == -1) { 1791 if (needfree && pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 1792 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 1793 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 1794 if (pktopt->ip6po_route.ro_rt) { 1795 RTFREE(pktopt->ip6po_route.ro_rt); 1796 pktopt->ip6po_route.ro_rt = NULL; 1797 } 1798 } 1799 if (optname == -1) { 1800 if (needfree && pktopt->ip6po_dest2) 1801 free(pktopt->ip6po_dest2, M_IP6OPT); 1802 pktopt->ip6po_dest2 = NULL; 1803 } 1804 } 1805 1806 #define PKTOPT_EXTHDRCPY(type) \ 1807 do {\ 1808 if (src->type) {\ 1809 int hlen =\ 1810 (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 1811 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 1812 if (dst->type == NULL && canwait == M_NOWAIT)\ 1813 goto bad;\ 1814 bcopy(src->type, dst->type, hlen);\ 1815 }\ 1816 } while (0) 1817 1818 struct ip6_pktopts * 1819 ip6_copypktopts(src, canwait) 1820 struct ip6_pktopts *src; 1821 int canwait; 1822 { 1823 struct ip6_pktopts *dst; 1824 1825 if (src == NULL) { 1826 printf("ip6_clearpktopts: invalid argument\n"); 1827 return(NULL); 1828 } 1829 1830 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 1831 if (dst == NULL && canwait == M_NOWAIT) 1832 goto bad; 1833 bzero(dst, sizeof(*dst)); 1834 1835 dst->ip6po_hlim = src->ip6po_hlim; 1836 if (src->ip6po_pktinfo) { 1837 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 1838 M_IP6OPT, canwait); 1839 if (dst->ip6po_pktinfo == NULL && canwait == M_NOWAIT) 1840 goto bad; 1841 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 1842 } 1843 if (src->ip6po_nexthop) { 1844 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 1845 M_IP6OPT, canwait); 1846 if (dst->ip6po_nexthop == NULL && canwait == M_NOWAIT) 1847 goto bad; 1848 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 1849 src->ip6po_nexthop->sa_len); 1850 } 1851 PKTOPT_EXTHDRCPY(ip6po_hbh); 1852 PKTOPT_EXTHDRCPY(ip6po_dest1); 1853 PKTOPT_EXTHDRCPY(ip6po_dest2); 1854 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 1855 return(dst); 1856 1857 bad: 1858 printf("ip6_copypktopts: copy failed"); 1859 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT); 1860 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT); 1861 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT); 1862 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT); 1863 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT); 1864 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT); 1865 return(NULL); 1866 } 1867 #undef PKTOPT_EXTHDRCPY 1868 1869 void 1870 ip6_freepcbopts(pktopt) 1871 struct ip6_pktopts *pktopt; 1872 { 1873 if (pktopt == NULL) 1874 return; 1875 1876 ip6_clearpktopts(pktopt, 1, -1); 1877 1878 free(pktopt, M_IP6OPT); 1879 } 1880 1881 /* 1882 * Set the IP6 multicast options in response to user setsockopt(). 1883 */ 1884 static int 1885 ip6_setmoptions(optname, im6op, m) 1886 int optname; 1887 struct ip6_moptions **im6op; 1888 struct mbuf *m; 1889 { 1890 int error = 0; 1891 u_int loop, ifindex; 1892 struct ipv6_mreq *mreq; 1893 struct ifnet *ifp; 1894 struct ip6_moptions *im6o = *im6op; 1895 struct route_in6 ro; 1896 struct sockaddr_in6 *dst; 1897 struct in6_multi_mship *imm; 1898 struct thread *td = curthread; /* XXX */ 1899 1900 if (im6o == NULL) { 1901 /* 1902 * No multicast option buffer attached to the pcb; 1903 * allocate one and initialize to default values. 1904 */ 1905 im6o = (struct ip6_moptions *) 1906 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 1907 1908 if (im6o == NULL) 1909 return(ENOBUFS); 1910 *im6op = im6o; 1911 im6o->im6o_multicast_ifp = NULL; 1912 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1913 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 1914 LIST_INIT(&im6o->im6o_memberships); 1915 } 1916 1917 switch (optname) { 1918 1919 case IPV6_MULTICAST_IF: 1920 /* 1921 * Select the interface for outgoing multicast packets. 1922 */ 1923 if (m == NULL || m->m_len != sizeof(u_int)) { 1924 error = EINVAL; 1925 break; 1926 } 1927 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex)); 1928 if (ifindex < 0 || if_index < ifindex) { 1929 error = ENXIO; /* XXX EINVAL? */ 1930 break; 1931 } 1932 ifp = ifnet_byindex(ifindex); 1933 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1934 error = EADDRNOTAVAIL; 1935 break; 1936 } 1937 im6o->im6o_multicast_ifp = ifp; 1938 break; 1939 1940 case IPV6_MULTICAST_HOPS: 1941 { 1942 /* 1943 * Set the IP6 hoplimit for outgoing multicast packets. 1944 */ 1945 int optval; 1946 if (m == NULL || m->m_len != sizeof(int)) { 1947 error = EINVAL; 1948 break; 1949 } 1950 bcopy(mtod(m, u_int *), &optval, sizeof(optval)); 1951 if (optval < -1 || optval >= 256) 1952 error = EINVAL; 1953 else if (optval == -1) 1954 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1955 else 1956 im6o->im6o_multicast_hlim = optval; 1957 break; 1958 } 1959 1960 case IPV6_MULTICAST_LOOP: 1961 /* 1962 * Set the loopback flag for outgoing multicast packets. 1963 * Must be zero or one. 1964 */ 1965 if (m == NULL || m->m_len != sizeof(u_int)) { 1966 error = EINVAL; 1967 break; 1968 } 1969 bcopy(mtod(m, u_int *), &loop, sizeof(loop)); 1970 if (loop > 1) { 1971 error = EINVAL; 1972 break; 1973 } 1974 im6o->im6o_multicast_loop = loop; 1975 break; 1976 1977 case IPV6_JOIN_GROUP: 1978 /* 1979 * Add a multicast group membership. 1980 * Group must be a valid IP6 multicast address. 1981 */ 1982 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1983 error = EINVAL; 1984 break; 1985 } 1986 mreq = mtod(m, struct ipv6_mreq *); 1987 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1988 /* 1989 * We use the unspecified address to specify to accept 1990 * all multicast addresses. Only super user is allowed 1991 * to do this. 1992 */ 1993 if (suser(td)) 1994 { 1995 error = EACCES; 1996 break; 1997 } 1998 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1999 error = EINVAL; 2000 break; 2001 } 2002 2003 /* 2004 * If the interface is specified, validate it. 2005 */ 2006 if (mreq->ipv6mr_interface < 0 2007 || if_index < mreq->ipv6mr_interface) { 2008 error = ENXIO; /* XXX EINVAL? */ 2009 break; 2010 } 2011 /* 2012 * If no interface was explicitly specified, choose an 2013 * appropriate one according to the given multicast address. 2014 */ 2015 if (mreq->ipv6mr_interface == 0) { 2016 /* 2017 * If the multicast address is in node-local scope, 2018 * the interface should be a loopback interface. 2019 * Otherwise, look up the routing table for the 2020 * address, and choose the outgoing interface. 2021 * XXX: is it a good approach? 2022 */ 2023 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) { 2024 ifp = &loif[0]; 2025 } else { 2026 ro.ro_rt = NULL; 2027 dst = (struct sockaddr_in6 *)&ro.ro_dst; 2028 bzero(dst, sizeof(*dst)); 2029 dst->sin6_len = sizeof(struct sockaddr_in6); 2030 dst->sin6_family = AF_INET6; 2031 dst->sin6_addr = mreq->ipv6mr_multiaddr; 2032 rtalloc((struct route *)&ro); 2033 if (ro.ro_rt == NULL) { 2034 error = EADDRNOTAVAIL; 2035 break; 2036 } 2037 ifp = ro.ro_rt->rt_ifp; 2038 rtfree(ro.ro_rt); 2039 } 2040 } else 2041 ifp = ifnet_byindex(mreq->ipv6mr_interface); 2042 2043 /* 2044 * See if we found an interface, and confirm that it 2045 * supports multicast 2046 */ 2047 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2048 error = EADDRNOTAVAIL; 2049 break; 2050 } 2051 /* 2052 * Put interface index into the multicast address, 2053 * if the address has link-local scope. 2054 */ 2055 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 2056 mreq->ipv6mr_multiaddr.s6_addr16[1] 2057 = htons(mreq->ipv6mr_interface); 2058 } 2059 /* 2060 * See if the membership already exists. 2061 */ 2062 for (imm = im6o->im6o_memberships.lh_first; 2063 imm != NULL; imm = imm->i6mm_chain.le_next) 2064 if (imm->i6mm_maddr->in6m_ifp == ifp && 2065 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2066 &mreq->ipv6mr_multiaddr)) 2067 break; 2068 if (imm != NULL) { 2069 error = EADDRINUSE; 2070 break; 2071 } 2072 /* 2073 * Everything looks good; add a new record to the multicast 2074 * address list for the given interface. 2075 */ 2076 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK); 2077 if (imm == NULL) { 2078 error = ENOBUFS; 2079 break; 2080 } 2081 if ((imm->i6mm_maddr = 2082 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) { 2083 free(imm, M_IPMADDR); 2084 break; 2085 } 2086 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2087 break; 2088 2089 case IPV6_LEAVE_GROUP: 2090 /* 2091 * Drop a multicast group membership. 2092 * Group must be a valid IP6 multicast address. 2093 */ 2094 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2095 error = EINVAL; 2096 break; 2097 } 2098 mreq = mtod(m, struct ipv6_mreq *); 2099 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2100 if (suser(td)) { 2101 error = EACCES; 2102 break; 2103 } 2104 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2105 error = EINVAL; 2106 break; 2107 } 2108 /* 2109 * If an interface address was specified, get a pointer 2110 * to its ifnet structure. 2111 */ 2112 if (mreq->ipv6mr_interface < 0 2113 || if_index < mreq->ipv6mr_interface) { 2114 error = ENXIO; /* XXX EINVAL? */ 2115 break; 2116 } 2117 ifp = ifnet_byindex(mreq->ipv6mr_interface); 2118 /* 2119 * Put interface index into the multicast address, 2120 * if the address has link-local scope. 2121 */ 2122 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 2123 mreq->ipv6mr_multiaddr.s6_addr16[1] 2124 = htons(mreq->ipv6mr_interface); 2125 } 2126 /* 2127 * Find the membership in the membership list. 2128 */ 2129 for (imm = im6o->im6o_memberships.lh_first; 2130 imm != NULL; imm = imm->i6mm_chain.le_next) { 2131 if ((ifp == NULL || 2132 imm->i6mm_maddr->in6m_ifp == ifp) && 2133 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2134 &mreq->ipv6mr_multiaddr)) 2135 break; 2136 } 2137 if (imm == NULL) { 2138 /* Unable to resolve interface */ 2139 error = EADDRNOTAVAIL; 2140 break; 2141 } 2142 /* 2143 * Give up the multicast address record to which the 2144 * membership points. 2145 */ 2146 LIST_REMOVE(imm, i6mm_chain); 2147 in6_delmulti(imm->i6mm_maddr); 2148 free(imm, M_IPMADDR); 2149 break; 2150 2151 default: 2152 error = EOPNOTSUPP; 2153 break; 2154 } 2155 2156 /* 2157 * If all options have default values, no need to keep the mbuf. 2158 */ 2159 if (im6o->im6o_multicast_ifp == NULL && 2160 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2161 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2162 im6o->im6o_memberships.lh_first == NULL) { 2163 free(*im6op, M_IPMOPTS); 2164 *im6op = NULL; 2165 } 2166 2167 return(error); 2168 } 2169 2170 /* 2171 * Return the IP6 multicast options in response to user getsockopt(). 2172 */ 2173 static int 2174 ip6_getmoptions(optname, im6o, mp) 2175 int optname; 2176 struct ip6_moptions *im6o; 2177 struct mbuf **mp; 2178 { 2179 u_int *hlim, *loop, *ifindex; 2180 2181 *mp = m_get(M_TRYWAIT, MT_HEADER); /* XXX */ 2182 2183 switch (optname) { 2184 2185 case IPV6_MULTICAST_IF: 2186 ifindex = mtod(*mp, u_int *); 2187 (*mp)->m_len = sizeof(u_int); 2188 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 2189 *ifindex = 0; 2190 else 2191 *ifindex = im6o->im6o_multicast_ifp->if_index; 2192 return(0); 2193 2194 case IPV6_MULTICAST_HOPS: 2195 hlim = mtod(*mp, u_int *); 2196 (*mp)->m_len = sizeof(u_int); 2197 if (im6o == NULL) 2198 *hlim = ip6_defmcasthlim; 2199 else 2200 *hlim = im6o->im6o_multicast_hlim; 2201 return(0); 2202 2203 case IPV6_MULTICAST_LOOP: 2204 loop = mtod(*mp, u_int *); 2205 (*mp)->m_len = sizeof(u_int); 2206 if (im6o == NULL) 2207 *loop = ip6_defmcasthlim; 2208 else 2209 *loop = im6o->im6o_multicast_loop; 2210 return(0); 2211 2212 default: 2213 return(EOPNOTSUPP); 2214 } 2215 } 2216 2217 /* 2218 * Discard the IP6 multicast options. 2219 */ 2220 void 2221 ip6_freemoptions(im6o) 2222 struct ip6_moptions *im6o; 2223 { 2224 struct in6_multi_mship *imm; 2225 2226 if (im6o == NULL) 2227 return; 2228 2229 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 2230 LIST_REMOVE(imm, i6mm_chain); 2231 if (imm->i6mm_maddr) 2232 in6_delmulti(imm->i6mm_maddr); 2233 free(imm, M_IPMADDR); 2234 } 2235 free(im6o, M_IPMOPTS); 2236 } 2237 2238 /* 2239 * Set IPv6 outgoing packet options based on advanced API. 2240 */ 2241 int 2242 ip6_setpktoptions(control, opt, priv, needcopy) 2243 struct mbuf *control; 2244 struct ip6_pktopts *opt; 2245 int priv, needcopy; 2246 { 2247 struct cmsghdr *cm = 0; 2248 2249 if (control == 0 || opt == 0) 2250 return(EINVAL); 2251 2252 init_ip6pktopts(opt); 2253 2254 /* 2255 * XXX: Currently, we assume all the optional information is stored 2256 * in a single mbuf. 2257 */ 2258 if (control->m_next) 2259 return(EINVAL); 2260 2261 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2262 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2263 cm = mtod(control, struct cmsghdr *); 2264 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2265 return(EINVAL); 2266 if (cm->cmsg_level != IPPROTO_IPV6) 2267 continue; 2268 2269 /* 2270 * XXX should check if RFC2292 API is mixed with 2292bis API 2271 */ 2272 switch (cm->cmsg_type) { 2273 case IPV6_PKTINFO: 2274 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo))) 2275 return(EINVAL); 2276 if (needcopy) { 2277 /* XXX: Is it really WAITOK? */ 2278 opt->ip6po_pktinfo = 2279 malloc(sizeof(struct in6_pktinfo), 2280 M_IP6OPT, M_WAITOK); 2281 bcopy(CMSG_DATA(cm), opt->ip6po_pktinfo, 2282 sizeof(struct in6_pktinfo)); 2283 } else 2284 opt->ip6po_pktinfo = 2285 (struct in6_pktinfo *)CMSG_DATA(cm); 2286 if (opt->ip6po_pktinfo->ipi6_ifindex && 2287 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr)) 2288 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] = 2289 htons(opt->ip6po_pktinfo->ipi6_ifindex); 2290 2291 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index 2292 || opt->ip6po_pktinfo->ipi6_ifindex < 0) { 2293 return(ENXIO); 2294 } 2295 2296 /* 2297 * Check if the requested source address is indeed a 2298 * unicast address assigned to the node, and can be 2299 * used as the packet's source address. 2300 */ 2301 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) { 2302 struct in6_ifaddr *ia6; 2303 struct sockaddr_in6 sin6; 2304 2305 bzero(&sin6, sizeof(sin6)); 2306 sin6.sin6_len = sizeof(sin6); 2307 sin6.sin6_family = AF_INET6; 2308 sin6.sin6_addr = 2309 opt->ip6po_pktinfo->ipi6_addr; 2310 ia6 = (struct in6_ifaddr *)ifa_ifwithaddr(sin6tosa(&sin6)); 2311 if (ia6 == NULL || 2312 (ia6->ia6_flags & (IN6_IFF_ANYCAST | 2313 IN6_IFF_NOTREADY)) != 0) 2314 return(EADDRNOTAVAIL); 2315 } 2316 break; 2317 2318 case IPV6_HOPLIMIT: 2319 if (cm->cmsg_len != CMSG_LEN(sizeof(int))) 2320 return(EINVAL); 2321 2322 opt->ip6po_hlim = *(int *)CMSG_DATA(cm); 2323 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255) 2324 return(EINVAL); 2325 break; 2326 2327 case IPV6_NEXTHOP: 2328 if (!priv) 2329 return(EPERM); 2330 2331 if (cm->cmsg_len < sizeof(u_char) || 2332 /* check if cmsg_len is large enough for sa_len */ 2333 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm))) 2334 return(EINVAL); 2335 2336 if (needcopy) { 2337 opt->ip6po_nexthop = 2338 malloc(*CMSG_DATA(cm), 2339 M_IP6OPT, M_WAITOK); 2340 bcopy(CMSG_DATA(cm), 2341 opt->ip6po_nexthop, 2342 *CMSG_DATA(cm)); 2343 } else 2344 opt->ip6po_nexthop = 2345 (struct sockaddr *)CMSG_DATA(cm); 2346 break; 2347 2348 case IPV6_HOPOPTS: 2349 { 2350 struct ip6_hbh *hbh; 2351 int hbhlen; 2352 2353 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh))) 2354 return(EINVAL); 2355 hbh = (struct ip6_hbh *)CMSG_DATA(cm); 2356 hbhlen = (hbh->ip6h_len + 1) << 3; 2357 if (cm->cmsg_len != CMSG_LEN(hbhlen)) 2358 return(EINVAL); 2359 2360 if (needcopy) { 2361 opt->ip6po_hbh = 2362 malloc(hbhlen, M_IP6OPT, M_WAITOK); 2363 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2364 } else 2365 opt->ip6po_hbh = hbh; 2366 break; 2367 } 2368 2369 case IPV6_DSTOPTS: 2370 { 2371 struct ip6_dest *dest, **newdest; 2372 int destlen; 2373 2374 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest))) 2375 return(EINVAL); 2376 dest = (struct ip6_dest *)CMSG_DATA(cm); 2377 destlen = (dest->ip6d_len + 1) << 3; 2378 if (cm->cmsg_len != CMSG_LEN(destlen)) 2379 return(EINVAL); 2380 2381 /* 2382 * The old advacned API is ambiguous on this 2383 * point. Our approach is to determine the 2384 * position based according to the existence 2385 * of a routing header. Note, however, that 2386 * this depends on the order of the extension 2387 * headers in the ancillary data; the 1st part 2388 * of the destination options header must 2389 * appear before the routing header in the 2390 * ancillary data, too. 2391 * RFC2292bis solved the ambiguity by 2392 * introducing separate cmsg types. 2393 */ 2394 if (opt->ip6po_rthdr == NULL) 2395 newdest = &opt->ip6po_dest1; 2396 else 2397 newdest = &opt->ip6po_dest2; 2398 2399 if (needcopy) { 2400 *newdest = malloc(destlen, M_IP6OPT, M_WAITOK); 2401 bcopy(dest, *newdest, destlen); 2402 } else 2403 *newdest = dest; 2404 2405 break; 2406 } 2407 2408 case IPV6_RTHDR: 2409 { 2410 struct ip6_rthdr *rth; 2411 int rthlen; 2412 2413 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr))) 2414 return(EINVAL); 2415 rth = (struct ip6_rthdr *)CMSG_DATA(cm); 2416 rthlen = (rth->ip6r_len + 1) << 3; 2417 if (cm->cmsg_len != CMSG_LEN(rthlen)) 2418 return(EINVAL); 2419 2420 switch (rth->ip6r_type) { 2421 case IPV6_RTHDR_TYPE_0: 2422 /* must contain one addr */ 2423 if (rth->ip6r_len == 0) 2424 return(EINVAL); 2425 /* length must be even */ 2426 if (rth->ip6r_len % 2) 2427 return(EINVAL); 2428 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2429 return(EINVAL); 2430 break; 2431 default: 2432 return(EINVAL); /* not supported */ 2433 } 2434 2435 if (needcopy) { 2436 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, 2437 M_WAITOK); 2438 bcopy(rth, opt->ip6po_rthdr, rthlen); 2439 } else 2440 opt->ip6po_rthdr = rth; 2441 2442 break; 2443 } 2444 2445 default: 2446 return(ENOPROTOOPT); 2447 } 2448 } 2449 2450 return(0); 2451 } 2452 2453 /* 2454 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2455 * packet to the input queue of a specified interface. Note that this 2456 * calls the output routine of the loopback "driver", but with an interface 2457 * pointer that might NOT be &loif -- easier than replicating that code here. 2458 */ 2459 void 2460 ip6_mloopback(ifp, m, dst) 2461 struct ifnet *ifp; 2462 struct mbuf *m; 2463 struct sockaddr_in6 *dst; 2464 { 2465 struct mbuf *copym; 2466 struct ip6_hdr *ip6; 2467 2468 copym = m_copy(m, 0, M_COPYALL); 2469 if (copym == NULL) 2470 return; 2471 2472 /* 2473 * Make sure to deep-copy IPv6 header portion in case the data 2474 * is in an mbuf cluster, so that we can safely override the IPv6 2475 * header portion later. 2476 */ 2477 if ((copym->m_flags & M_EXT) != 0 || 2478 copym->m_len < sizeof(struct ip6_hdr)) { 2479 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2480 if (copym == NULL) 2481 return; 2482 } 2483 2484 #ifdef DIAGNOSTIC 2485 if (copym->m_len < sizeof(*ip6)) { 2486 m_freem(copym); 2487 return; 2488 } 2489 #endif 2490 2491 ip6 = mtod(copym, struct ip6_hdr *); 2492 #ifndef SCOPEDROUTING 2493 /* 2494 * clear embedded scope identifiers if necessary. 2495 * in6_clearscope will touch the addresses only when necessary. 2496 */ 2497 in6_clearscope(&ip6->ip6_src); 2498 in6_clearscope(&ip6->ip6_dst); 2499 #endif 2500 2501 (void)if_simloop(ifp, copym, dst->sin6_family, NULL); 2502 } 2503 2504 /* 2505 * Chop IPv6 header off from the payload. 2506 */ 2507 static int 2508 ip6_splithdr(m, exthdrs) 2509 struct mbuf *m; 2510 struct ip6_exthdrs *exthdrs; 2511 { 2512 struct mbuf *mh; 2513 struct ip6_hdr *ip6; 2514 2515 ip6 = mtod(m, struct ip6_hdr *); 2516 if (m->m_len > sizeof(*ip6)) { 2517 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 2518 if (mh == 0) { 2519 m_freem(m); 2520 return ENOBUFS; 2521 } 2522 M_COPY_PKTHDR(mh, m); 2523 MH_ALIGN(mh, sizeof(*ip6)); 2524 m->m_flags &= ~M_PKTHDR; 2525 m->m_len -= sizeof(*ip6); 2526 m->m_data += sizeof(*ip6); 2527 mh->m_next = m; 2528 m = mh; 2529 m->m_len = sizeof(*ip6); 2530 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2531 } 2532 exthdrs->ip6e_ip6 = m; 2533 return 0; 2534 } 2535 2536 /* 2537 * Compute IPv6 extension header length. 2538 */ 2539 int 2540 ip6_optlen(in6p) 2541 struct in6pcb *in6p; 2542 { 2543 int len; 2544 2545 if (!in6p->in6p_outputopts) 2546 return 0; 2547 2548 len = 0; 2549 #define elen(x) \ 2550 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 2551 2552 len += elen(in6p->in6p_outputopts->ip6po_hbh); 2553 if (in6p->in6p_outputopts->ip6po_rthdr) 2554 /* dest1 is valid with rthdr only */ 2555 len += elen(in6p->in6p_outputopts->ip6po_dest1); 2556 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 2557 len += elen(in6p->in6p_outputopts->ip6po_dest2); 2558 return len; 2559 #undef elen 2560 } 2561