1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 #include "opt_ratelimit.h" 69 #include "opt_ipsec.h" 70 #include "opt_sctp.h" 71 #include "opt_route.h" 72 #include "opt_rss.h" 73 74 #include <sys/param.h> 75 #include <sys/kernel.h> 76 #include <sys/malloc.h> 77 #include <sys/mbuf.h> 78 #include <sys/errno.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/protosw.h> 82 #include <sys/socket.h> 83 #include <sys/socketvar.h> 84 #include <sys/syslog.h> 85 #include <sys/ucred.h> 86 87 #include <machine/in_cksum.h> 88 89 #include <net/if.h> 90 #include <net/if_var.h> 91 #include <net/if_llatbl.h> 92 #include <net/netisr.h> 93 #include <net/route.h> 94 #include <net/pfil.h> 95 #include <net/rss_config.h> 96 #include <net/vnet.h> 97 98 #include <netinet/in.h> 99 #include <netinet/in_var.h> 100 #include <netinet/ip_var.h> 101 #include <netinet6/in6_fib.h> 102 #include <netinet6/in6_var.h> 103 #include <netinet/ip6.h> 104 #include <netinet/icmp6.h> 105 #include <netinet6/ip6_var.h> 106 #include <netinet/in_pcb.h> 107 #include <netinet/tcp_var.h> 108 #include <netinet6/nd6.h> 109 #include <netinet6/in6_rss.h> 110 111 #include <netipsec/ipsec_support.h> 112 #ifdef SCTP 113 #include <netinet/sctp.h> 114 #include <netinet/sctp_crc32.h> 115 #endif 116 117 #include <netinet6/ip6protosw.h> 118 #include <netinet6/scope6_var.h> 119 120 #ifdef FLOWTABLE 121 #include <net/flowtable.h> 122 #endif 123 124 extern int in6_mcast_loop; 125 126 struct ip6_exthdrs { 127 struct mbuf *ip6e_ip6; 128 struct mbuf *ip6e_hbh; 129 struct mbuf *ip6e_dest1; 130 struct mbuf *ip6e_rthdr; 131 struct mbuf *ip6e_dest2; 132 }; 133 134 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 135 136 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 137 struct ucred *, int); 138 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 139 struct socket *, struct sockopt *); 140 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 141 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 142 struct ucred *, int, int, int); 143 144 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 145 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 146 struct ip6_frag **); 147 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 148 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 149 static int ip6_getpmtu(struct route_in6 *, int, 150 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 151 u_int); 152 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 153 u_long *, int *, u_int); 154 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 155 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 156 157 158 /* 159 * Make an extension header from option data. hp is the source, and 160 * mp is the destination. 161 */ 162 #define MAKE_EXTHDR(hp, mp) \ 163 do { \ 164 if (hp) { \ 165 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 166 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 167 ((eh)->ip6e_len + 1) << 3); \ 168 if (error) \ 169 goto freehdrs; \ 170 } \ 171 } while (/*CONSTCOND*/ 0) 172 173 /* 174 * Form a chain of extension headers. 175 * m is the extension header mbuf 176 * mp is the previous mbuf in the chain 177 * p is the next header 178 * i is the type of option. 179 */ 180 #define MAKE_CHAIN(m, mp, p, i)\ 181 do {\ 182 if (m) {\ 183 if (!hdrsplit) \ 184 panic("assumption failed: hdr not split"); \ 185 *mtod((m), u_char *) = *(p);\ 186 *(p) = (i);\ 187 p = mtod((m), u_char *);\ 188 (m)->m_next = (mp)->m_next;\ 189 (mp)->m_next = (m);\ 190 (mp) = (m);\ 191 }\ 192 } while (/*CONSTCOND*/ 0) 193 194 void 195 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 196 { 197 u_short csum; 198 199 csum = in_cksum_skip(m, offset + plen, offset); 200 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 201 csum = 0xffff; 202 offset += m->m_pkthdr.csum_data; /* checksum offset */ 203 204 if (offset + sizeof(u_short) > m->m_len) { 205 printf("%s: delayed m_pullup, m->len: %d plen %u off %u " 206 "csum_flags=%b\n", __func__, m->m_len, plen, offset, 207 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 208 /* 209 * XXX this should not happen, but if it does, the correct 210 * behavior may be to insert the checksum in the appropriate 211 * next mbuf in the chain. 212 */ 213 return; 214 } 215 *(u_short *)(m->m_data + offset) = csum; 216 } 217 218 int 219 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 220 int fraglen , uint32_t id) 221 { 222 struct mbuf *m, **mnext, *m_frgpart; 223 struct ip6_hdr *ip6, *mhip6; 224 struct ip6_frag *ip6f; 225 int off; 226 int error; 227 int tlen = m0->m_pkthdr.len; 228 229 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); 230 231 m = m0; 232 ip6 = mtod(m, struct ip6_hdr *); 233 mnext = &m->m_nextpkt; 234 235 for (off = hlen; off < tlen; off += fraglen) { 236 m = m_gethdr(M_NOWAIT, MT_DATA); 237 if (!m) { 238 IP6STAT_INC(ip6s_odropped); 239 return (ENOBUFS); 240 } 241 m->m_flags = m0->m_flags & M_COPYFLAGS; 242 *mnext = m; 243 mnext = &m->m_nextpkt; 244 m->m_data += max_linkhdr; 245 mhip6 = mtod(m, struct ip6_hdr *); 246 *mhip6 = *ip6; 247 m->m_len = sizeof(*mhip6); 248 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 249 if (error) { 250 IP6STAT_INC(ip6s_odropped); 251 return (error); 252 } 253 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 254 if (off + fraglen >= tlen) 255 fraglen = tlen - off; 256 else 257 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 258 mhip6->ip6_plen = htons((u_short)(fraglen + hlen + 259 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 260 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { 261 IP6STAT_INC(ip6s_odropped); 262 return (ENOBUFS); 263 } 264 m_cat(m, m_frgpart); 265 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); 266 m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum; 267 m->m_pkthdr.rcvif = NULL; 268 ip6f->ip6f_reserved = 0; 269 ip6f->ip6f_ident = id; 270 ip6f->ip6f_nxt = nextproto; 271 IP6STAT_INC(ip6s_ofragments); 272 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 273 } 274 275 return (0); 276 } 277 278 /* 279 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 280 * header (with pri, len, nxt, hlim, src, dst). 281 * This function may modify ver and hlim only. 282 * The mbuf chain containing the packet will be freed. 283 * The mbuf opt, if present, will not be freed. 284 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 285 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 286 * then result of route lookup is stored in ro->ro_rt. 287 * 288 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and 289 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 290 * which is rt_mtu. 291 * 292 * ifpp - XXX: just for statistics 293 */ 294 /* 295 * XXX TODO: no flowid is assigned for outbound flows? 296 */ 297 int 298 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 299 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 300 struct ifnet **ifpp, struct inpcb *inp) 301 { 302 struct ip6_hdr *ip6; 303 struct ifnet *ifp, *origifp; 304 struct mbuf *m = m0; 305 struct mbuf *mprev = NULL; 306 int hlen, tlen, len; 307 struct route_in6 ip6route; 308 struct rtentry *rt = NULL; 309 struct sockaddr_in6 *dst, src_sa, dst_sa; 310 struct in6_addr odst; 311 int error = 0; 312 struct in6_ifaddr *ia = NULL; 313 u_long mtu; 314 int alwaysfrag, dontfrag; 315 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 316 struct ip6_exthdrs exthdrs; 317 struct in6_addr src0, dst0; 318 u_int32_t zone; 319 struct route_in6 *ro_pmtu = NULL; 320 int hdrsplit = 0; 321 int sw_csum, tso; 322 int needfiblookup; 323 uint32_t fibnum; 324 struct m_tag *fwd_tag = NULL; 325 uint32_t id; 326 327 if (inp != NULL) { 328 M_SETFIB(m, inp->inp_inc.inc_fibnum); 329 if ((flags & IP_NODEFAULTFLOWID) == 0) { 330 /* unconditionally set flowid */ 331 m->m_pkthdr.flowid = inp->inp_flowid; 332 M_HASHTYPE_SET(m, inp->inp_flowtype); 333 } 334 } 335 336 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 337 /* 338 * IPSec checking which handles several cases. 339 * FAST IPSEC: We re-injected the packet. 340 * XXX: need scope argument. 341 */ 342 if (IPSEC_ENABLED(ipv6)) { 343 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { 344 if (error == EINPROGRESS) 345 error = 0; 346 goto done; 347 } 348 } 349 #endif /* IPSEC */ 350 351 bzero(&exthdrs, sizeof(exthdrs)); 352 if (opt) { 353 /* Hop-by-Hop options header */ 354 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 355 /* Destination options header(1st part) */ 356 if (opt->ip6po_rthdr) { 357 /* 358 * Destination options header(1st part) 359 * This only makes sense with a routing header. 360 * See Section 9.2 of RFC 3542. 361 * Disabling this part just for MIP6 convenience is 362 * a bad idea. We need to think carefully about a 363 * way to make the advanced API coexist with MIP6 364 * options, which might automatically be inserted in 365 * the kernel. 366 */ 367 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 368 } 369 /* Routing header */ 370 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 371 /* Destination options header(2nd part) */ 372 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 373 } 374 375 /* 376 * Calculate the total length of the extension header chain. 377 * Keep the length of the unfragmentable part for fragmentation. 378 */ 379 optlen = 0; 380 if (exthdrs.ip6e_hbh) 381 optlen += exthdrs.ip6e_hbh->m_len; 382 if (exthdrs.ip6e_dest1) 383 optlen += exthdrs.ip6e_dest1->m_len; 384 if (exthdrs.ip6e_rthdr) 385 optlen += exthdrs.ip6e_rthdr->m_len; 386 unfragpartlen = optlen + sizeof(struct ip6_hdr); 387 388 /* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */ 389 if (exthdrs.ip6e_dest2) 390 optlen += exthdrs.ip6e_dest2->m_len; 391 392 /* 393 * If there is at least one extension header, 394 * separate IP6 header from the payload. 395 */ 396 if (optlen && !hdrsplit) { 397 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 398 m = NULL; 399 goto freehdrs; 400 } 401 m = exthdrs.ip6e_ip6; 402 hdrsplit++; 403 } 404 405 ip6 = mtod(m, struct ip6_hdr *); 406 407 /* adjust mbuf packet header length */ 408 m->m_pkthdr.len += optlen; 409 plen = m->m_pkthdr.len - sizeof(*ip6); 410 411 /* If this is a jumbo payload, insert a jumbo payload option. */ 412 if (plen > IPV6_MAXPACKET) { 413 if (!hdrsplit) { 414 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 415 m = NULL; 416 goto freehdrs; 417 } 418 m = exthdrs.ip6e_ip6; 419 hdrsplit++; 420 } 421 /* adjust pointer */ 422 ip6 = mtod(m, struct ip6_hdr *); 423 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 424 goto freehdrs; 425 ip6->ip6_plen = 0; 426 } else 427 ip6->ip6_plen = htons(plen); 428 429 /* 430 * Concatenate headers and fill in next header fields. 431 * Here we have, on "m" 432 * IPv6 payload 433 * and we insert headers accordingly. Finally, we should be getting: 434 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 435 * 436 * during the header composing process, "m" points to IPv6 header. 437 * "mprev" points to an extension header prior to esp. 438 */ 439 u_char *nexthdrp = &ip6->ip6_nxt; 440 mprev = m; 441 442 /* 443 * we treat dest2 specially. this makes IPsec processing 444 * much easier. the goal here is to make mprev point the 445 * mbuf prior to dest2. 446 * 447 * result: IPv6 dest2 payload 448 * m and mprev will point to IPv6 header. 449 */ 450 if (exthdrs.ip6e_dest2) { 451 if (!hdrsplit) 452 panic("assumption failed: hdr not split"); 453 exthdrs.ip6e_dest2->m_next = m->m_next; 454 m->m_next = exthdrs.ip6e_dest2; 455 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 456 ip6->ip6_nxt = IPPROTO_DSTOPTS; 457 } 458 459 /* 460 * result: IPv6 hbh dest1 rthdr dest2 payload 461 * m will point to IPv6 header. mprev will point to the 462 * extension header prior to dest2 (rthdr in the above case). 463 */ 464 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 465 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 466 IPPROTO_DSTOPTS); 467 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 468 IPPROTO_ROUTING); 469 470 /* 471 * If there is a routing header, discard the packet. 472 */ 473 if (exthdrs.ip6e_rthdr) { 474 error = EINVAL; 475 goto bad; 476 } 477 478 /* Source address validation */ 479 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 480 (flags & IPV6_UNSPECSRC) == 0) { 481 error = EOPNOTSUPP; 482 IP6STAT_INC(ip6s_badscope); 483 goto bad; 484 } 485 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 486 error = EOPNOTSUPP; 487 IP6STAT_INC(ip6s_badscope); 488 goto bad; 489 } 490 491 IP6STAT_INC(ip6s_localout); 492 493 /* 494 * Route packet. 495 */ 496 if (ro == NULL) { 497 ro = &ip6route; 498 bzero((caddr_t)ro, sizeof(*ro)); 499 } 500 ro_pmtu = ro; 501 if (opt && opt->ip6po_rthdr) 502 ro = &opt->ip6po_route; 503 dst = (struct sockaddr_in6 *)&ro->ro_dst; 504 #ifdef FLOWTABLE 505 if (ro->ro_rt == NULL) 506 (void )flowtable_lookup(AF_INET6, m, (struct route *)ro); 507 #endif 508 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 509 again: 510 /* 511 * if specified, try to fill in the traffic class field. 512 * do not override if a non-zero value is already set. 513 * we check the diffserv field and the ecn field separately. 514 */ 515 if (opt && opt->ip6po_tclass >= 0) { 516 int mask = 0; 517 518 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 519 mask |= 0xfc; 520 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 521 mask |= 0x03; 522 if (mask != 0) 523 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 524 } 525 526 /* fill in or override the hop limit field, if necessary. */ 527 if (opt && opt->ip6po_hlim != -1) 528 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 529 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 530 if (im6o != NULL) 531 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 532 else 533 ip6->ip6_hlim = V_ip6_defmcasthlim; 534 } 535 /* 536 * Validate route against routing table additions; 537 * a better/more specific route might have been added. 538 * Make sure address family is set in route. 539 */ 540 if (inp) { 541 ro->ro_dst.sin6_family = AF_INET6; 542 RT_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, fibnum); 543 } 544 if (ro->ro_rt && fwd_tag == NULL && (ro->ro_rt->rt_flags & RTF_UP) && 545 ro->ro_dst.sin6_family == AF_INET6 && 546 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 547 rt = ro->ro_rt; 548 ifp = ro->ro_rt->rt_ifp; 549 } else { 550 if (ro->ro_lle) 551 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 552 ro->ro_lle = NULL; 553 if (fwd_tag == NULL) { 554 bzero(&dst_sa, sizeof(dst_sa)); 555 dst_sa.sin6_family = AF_INET6; 556 dst_sa.sin6_len = sizeof(dst_sa); 557 dst_sa.sin6_addr = ip6->ip6_dst; 558 } 559 error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp, 560 &rt, fibnum); 561 if (error != 0) { 562 if (ifp != NULL) 563 in6_ifstat_inc(ifp, ifs6_out_discard); 564 goto bad; 565 } 566 } 567 if (rt == NULL) { 568 /* 569 * If in6_selectroute() does not return a route entry, 570 * dst may not have been updated. 571 */ 572 *dst = dst_sa; /* XXX */ 573 } 574 575 /* 576 * then rt (for unicast) and ifp must be non-NULL valid values. 577 */ 578 if ((flags & IPV6_FORWARDING) == 0) { 579 /* XXX: the FORWARDING flag can be set for mrouting. */ 580 in6_ifstat_inc(ifp, ifs6_out_request); 581 } 582 if (rt != NULL) { 583 ia = (struct in6_ifaddr *)(rt->rt_ifa); 584 counter_u64_add(rt->rt_pksent, 1); 585 } 586 587 588 /* 589 * The outgoing interface must be in the zone of source and 590 * destination addresses. 591 */ 592 origifp = ifp; 593 594 src0 = ip6->ip6_src; 595 if (in6_setscope(&src0, origifp, &zone)) 596 goto badscope; 597 bzero(&src_sa, sizeof(src_sa)); 598 src_sa.sin6_family = AF_INET6; 599 src_sa.sin6_len = sizeof(src_sa); 600 src_sa.sin6_addr = ip6->ip6_src; 601 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 602 goto badscope; 603 604 dst0 = ip6->ip6_dst; 605 if (in6_setscope(&dst0, origifp, &zone)) 606 goto badscope; 607 /* re-initialize to be sure */ 608 bzero(&dst_sa, sizeof(dst_sa)); 609 dst_sa.sin6_family = AF_INET6; 610 dst_sa.sin6_len = sizeof(dst_sa); 611 dst_sa.sin6_addr = ip6->ip6_dst; 612 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 613 goto badscope; 614 } 615 616 /* We should use ia_ifp to support the case of 617 * sending packets to an address of our own. 618 */ 619 if (ia != NULL && ia->ia_ifp) 620 ifp = ia->ia_ifp; 621 622 /* scope check is done. */ 623 goto routefound; 624 625 badscope: 626 IP6STAT_INC(ip6s_badscope); 627 in6_ifstat_inc(origifp, ifs6_out_discard); 628 if (error == 0) 629 error = EHOSTUNREACH; /* XXX */ 630 goto bad; 631 632 routefound: 633 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 634 if (opt && opt->ip6po_nextroute.ro_rt) { 635 /* 636 * The nexthop is explicitly specified by the 637 * application. We assume the next hop is an IPv6 638 * address. 639 */ 640 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 641 } 642 else if ((rt->rt_flags & RTF_GATEWAY)) 643 dst = (struct sockaddr_in6 *)rt->rt_gateway; 644 } 645 646 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 647 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 648 } else { 649 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 650 in6_ifstat_inc(ifp, ifs6_out_mcast); 651 /* 652 * Confirm that the outgoing interface supports multicast. 653 */ 654 if (!(ifp->if_flags & IFF_MULTICAST)) { 655 IP6STAT_INC(ip6s_noroute); 656 in6_ifstat_inc(ifp, ifs6_out_discard); 657 error = ENETUNREACH; 658 goto bad; 659 } 660 if ((im6o == NULL && in6_mcast_loop) || 661 (im6o && im6o->im6o_multicast_loop)) { 662 /* 663 * Loop back multicast datagram if not expressly 664 * forbidden to do so, even if we have not joined 665 * the address; protocols will filter it later, 666 * thus deferring a hash lookup and lock acquisition 667 * at the expense of an m_copym(). 668 */ 669 ip6_mloopback(ifp, m); 670 } else { 671 /* 672 * If we are acting as a multicast router, perform 673 * multicast forwarding as if the packet had just 674 * arrived on the interface to which we are about 675 * to send. The multicast forwarding function 676 * recursively calls this function, using the 677 * IPV6_FORWARDING flag to prevent infinite recursion. 678 * 679 * Multicasts that are looped back by ip6_mloopback(), 680 * above, will be forwarded by the ip6_input() routine, 681 * if necessary. 682 */ 683 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 684 /* 685 * XXX: ip6_mforward expects that rcvif is NULL 686 * when it is called from the originating path. 687 * However, it may not always be the case. 688 */ 689 m->m_pkthdr.rcvif = NULL; 690 if (ip6_mforward(ip6, ifp, m) != 0) { 691 m_freem(m); 692 goto done; 693 } 694 } 695 } 696 /* 697 * Multicasts with a hoplimit of zero may be looped back, 698 * above, but must not be transmitted on a network. 699 * Also, multicasts addressed to the loopback interface 700 * are not sent -- the above call to ip6_mloopback() will 701 * loop back a copy if this host actually belongs to the 702 * destination group on the loopback interface. 703 */ 704 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 705 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 706 m_freem(m); 707 goto done; 708 } 709 } 710 711 /* 712 * Fill the outgoing inteface to tell the upper layer 713 * to increment per-interface statistics. 714 */ 715 if (ifpp) 716 *ifpp = ifp; 717 718 /* Determine path MTU. */ 719 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 720 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 721 goto bad; 722 723 /* 724 * The caller of this function may specify to use the minimum MTU 725 * in some cases. 726 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 727 * setting. The logic is a bit complicated; by default, unicast 728 * packets will follow path MTU while multicast packets will be sent at 729 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 730 * including unicast ones will be sent at the minimum MTU. Multicast 731 * packets will always be sent at the minimum MTU unless 732 * IP6PO_MINMTU_DISABLE is explicitly specified. 733 * See RFC 3542 for more details. 734 */ 735 if (mtu > IPV6_MMTU) { 736 if ((flags & IPV6_MINMTU)) 737 mtu = IPV6_MMTU; 738 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 739 mtu = IPV6_MMTU; 740 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 741 (opt == NULL || 742 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 743 mtu = IPV6_MMTU; 744 } 745 } 746 747 /* 748 * clear embedded scope identifiers if necessary. 749 * in6_clearscope will touch the addresses only when necessary. 750 */ 751 in6_clearscope(&ip6->ip6_src); 752 in6_clearscope(&ip6->ip6_dst); 753 754 /* 755 * If the outgoing packet contains a hop-by-hop options header, 756 * it must be examined and processed even by the source node. 757 * (RFC 2460, section 4.) 758 */ 759 if (exthdrs.ip6e_hbh) { 760 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 761 u_int32_t dummy; /* XXX unused */ 762 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 763 764 #ifdef DIAGNOSTIC 765 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 766 panic("ip6e_hbh is not contiguous"); 767 #endif 768 /* 769 * XXX: if we have to send an ICMPv6 error to the sender, 770 * we need the M_LOOP flag since icmp6_error() expects 771 * the IPv6 and the hop-by-hop options header are 772 * contiguous unless the flag is set. 773 */ 774 m->m_flags |= M_LOOP; 775 m->m_pkthdr.rcvif = ifp; 776 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 777 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 778 &dummy, &plen) < 0) { 779 /* m was already freed at this point */ 780 error = EINVAL;/* better error? */ 781 goto done; 782 } 783 m->m_flags &= ~M_LOOP; /* XXX */ 784 m->m_pkthdr.rcvif = NULL; 785 } 786 787 /* Jump over all PFIL processing if hooks are not active. */ 788 if (!PFIL_HOOKED(&V_inet6_pfil_hook)) 789 goto passout; 790 791 odst = ip6->ip6_dst; 792 /* Run through list of hooks for output packets. */ 793 error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp); 794 if (error != 0 || m == NULL) 795 goto done; 796 /* adjust pointer */ 797 ip6 = mtod(m, struct ip6_hdr *); 798 799 needfiblookup = 0; 800 /* See if destination IP address was changed by packet filter. */ 801 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 802 m->m_flags |= M_SKIP_FIREWALL; 803 /* If destination is now ourself drop to ip6_input(). */ 804 if (in6_localip(&ip6->ip6_dst)) { 805 m->m_flags |= M_FASTFWD_OURS; 806 if (m->m_pkthdr.rcvif == NULL) 807 m->m_pkthdr.rcvif = V_loif; 808 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 809 m->m_pkthdr.csum_flags |= 810 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 811 m->m_pkthdr.csum_data = 0xffff; 812 } 813 #ifdef SCTP 814 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 815 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 816 #endif 817 error = netisr_queue(NETISR_IPV6, m); 818 goto done; 819 } else { 820 RO_RTFREE(ro); 821 needfiblookup = 1; /* Redo the routing table lookup. */ 822 if (ro->ro_lle) 823 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 824 ro->ro_lle = NULL; 825 } 826 } 827 /* See if fib was changed by packet filter. */ 828 if (fibnum != M_GETFIB(m)) { 829 m->m_flags |= M_SKIP_FIREWALL; 830 fibnum = M_GETFIB(m); 831 RO_RTFREE(ro); 832 needfiblookup = 1; 833 if (ro->ro_lle) 834 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 835 ro->ro_lle = NULL; 836 } 837 if (needfiblookup) 838 goto again; 839 840 /* See if local, if yes, send it to netisr. */ 841 if (m->m_flags & M_FASTFWD_OURS) { 842 if (m->m_pkthdr.rcvif == NULL) 843 m->m_pkthdr.rcvif = V_loif; 844 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 845 m->m_pkthdr.csum_flags |= 846 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 847 m->m_pkthdr.csum_data = 0xffff; 848 } 849 #ifdef SCTP 850 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 851 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 852 #endif 853 error = netisr_queue(NETISR_IPV6, m); 854 goto done; 855 } 856 /* Or forward to some other address? */ 857 if ((m->m_flags & M_IP6_NEXTHOP) && 858 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 859 dst = (struct sockaddr_in6 *)&ro->ro_dst; 860 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 861 m->m_flags |= M_SKIP_FIREWALL; 862 m->m_flags &= ~M_IP6_NEXTHOP; 863 m_tag_delete(m, fwd_tag); 864 goto again; 865 } 866 867 passout: 868 /* 869 * Send the packet to the outgoing interface. 870 * If necessary, do IPv6 fragmentation before sending. 871 * 872 * the logic here is rather complex: 873 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 874 * 1-a: send as is if tlen <= path mtu 875 * 1-b: fragment if tlen > path mtu 876 * 877 * 2: if user asks us not to fragment (dontfrag == 1) 878 * 2-a: send as is if tlen <= interface mtu 879 * 2-b: error if tlen > interface mtu 880 * 881 * 3: if we always need to attach fragment header (alwaysfrag == 1) 882 * always fragment 883 * 884 * 4: if dontfrag == 1 && alwaysfrag == 1 885 * error, as we cannot handle this conflicting request 886 */ 887 sw_csum = m->m_pkthdr.csum_flags; 888 if (!hdrsplit) { 889 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 890 sw_csum &= ~ifp->if_hwassist; 891 } else 892 tso = 0; 893 /* 894 * If we added extension headers, we will not do TSO and calculate the 895 * checksums ourselves for now. 896 * XXX-BZ Need a framework to know when the NIC can handle it, even 897 * with ext. hdrs. 898 */ 899 if (sw_csum & CSUM_DELAY_DATA_IPV6) { 900 sw_csum &= ~CSUM_DELAY_DATA_IPV6; 901 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 902 } 903 #ifdef SCTP 904 if (sw_csum & CSUM_SCTP_IPV6) { 905 sw_csum &= ~CSUM_SCTP_IPV6; 906 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 907 } 908 #endif 909 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 910 tlen = m->m_pkthdr.len; 911 912 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 913 dontfrag = 1; 914 else 915 dontfrag = 0; 916 if (dontfrag && alwaysfrag) { /* case 4 */ 917 /* conflicting request - can't transmit */ 918 error = EMSGSIZE; 919 goto bad; 920 } 921 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ 922 /* 923 * Even if the DONTFRAG option is specified, we cannot send the 924 * packet when the data length is larger than the MTU of the 925 * outgoing interface. 926 * Notify the error by sending IPV6_PATHMTU ancillary data if 927 * application wanted to know the MTU value. Also return an 928 * error code (this is not described in the API spec). 929 */ 930 if (inp != NULL) 931 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 932 error = EMSGSIZE; 933 goto bad; 934 } 935 936 /* 937 * transmit packet without fragmentation 938 */ 939 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 940 struct in6_ifaddr *ia6; 941 942 ip6 = mtod(m, struct ip6_hdr *); 943 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 944 if (ia6) { 945 /* Record statistics for this interface address. */ 946 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 947 counter_u64_add(ia6->ia_ifa.ifa_obytes, 948 m->m_pkthdr.len); 949 ifa_free(&ia6->ia_ifa); 950 } 951 #ifdef RATELIMIT 952 if (inp != NULL) { 953 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 954 in_pcboutput_txrtlmt(inp, ifp, m); 955 /* stamp send tag on mbuf */ 956 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 957 } else { 958 m->m_pkthdr.snd_tag = NULL; 959 } 960 #endif 961 error = nd6_output_ifp(ifp, origifp, m, dst, 962 (struct route *)ro); 963 #ifdef RATELIMIT 964 /* check for route change */ 965 if (error == EAGAIN) 966 in_pcboutput_eagain(inp); 967 #endif 968 goto done; 969 } 970 971 /* 972 * try to fragment the packet. case 1-b and 3 973 */ 974 if (mtu < IPV6_MMTU) { 975 /* path MTU cannot be less than IPV6_MMTU */ 976 error = EMSGSIZE; 977 in6_ifstat_inc(ifp, ifs6_out_fragfail); 978 goto bad; 979 } else if (ip6->ip6_plen == 0) { 980 /* jumbo payload cannot be fragmented */ 981 error = EMSGSIZE; 982 in6_ifstat_inc(ifp, ifs6_out_fragfail); 983 goto bad; 984 } else { 985 u_char nextproto; 986 987 /* 988 * Too large for the destination or interface; 989 * fragment if possible. 990 * Must be able to put at least 8 bytes per fragment. 991 */ 992 hlen = unfragpartlen; 993 if (mtu > IPV6_MAXPACKET) 994 mtu = IPV6_MAXPACKET; 995 996 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 997 if (len < 8) { 998 error = EMSGSIZE; 999 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1000 goto bad; 1001 } 1002 1003 /* 1004 * If the interface will not calculate checksums on 1005 * fragmented packets, then do it here. 1006 * XXX-BZ handle the hw offloading case. Need flags. 1007 */ 1008 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1009 in6_delayed_cksum(m, plen, hlen); 1010 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 1011 } 1012 #ifdef SCTP 1013 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 1014 sctp_delayed_cksum(m, hlen); 1015 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 1016 } 1017 #endif 1018 /* 1019 * Change the next header field of the last header in the 1020 * unfragmentable part. 1021 */ 1022 if (exthdrs.ip6e_rthdr) { 1023 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1024 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1025 } else if (exthdrs.ip6e_dest1) { 1026 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1027 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1028 } else if (exthdrs.ip6e_hbh) { 1029 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1030 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1031 } else { 1032 nextproto = ip6->ip6_nxt; 1033 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1034 } 1035 1036 /* 1037 * Loop through length of segment after first fragment, 1038 * make new header and copy data of each part and link onto 1039 * chain. 1040 */ 1041 m0 = m; 1042 id = htonl(ip6_randomid()); 1043 if ((error = ip6_fragment(ifp, m, hlen, nextproto, len, id))) 1044 goto sendorfree; 1045 1046 in6_ifstat_inc(ifp, ifs6_out_fragok); 1047 } 1048 1049 /* 1050 * Remove leading garbages. 1051 */ 1052 sendorfree: 1053 m = m0->m_nextpkt; 1054 m0->m_nextpkt = 0; 1055 m_freem(m0); 1056 for (m0 = m; m; m = m0) { 1057 m0 = m->m_nextpkt; 1058 m->m_nextpkt = 0; 1059 if (error == 0) { 1060 /* Record statistics for this interface address. */ 1061 if (ia) { 1062 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1063 counter_u64_add(ia->ia_ifa.ifa_obytes, 1064 m->m_pkthdr.len); 1065 } 1066 #ifdef RATELIMIT 1067 if (inp != NULL) { 1068 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 1069 in_pcboutput_txrtlmt(inp, ifp, m); 1070 /* stamp send tag on mbuf */ 1071 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 1072 } else { 1073 m->m_pkthdr.snd_tag = NULL; 1074 } 1075 #endif 1076 error = nd6_output_ifp(ifp, origifp, m, dst, 1077 (struct route *)ro); 1078 #ifdef RATELIMIT 1079 /* check for route change */ 1080 if (error == EAGAIN) 1081 in_pcboutput_eagain(inp); 1082 #endif 1083 } else 1084 m_freem(m); 1085 } 1086 1087 if (error == 0) 1088 IP6STAT_INC(ip6s_fragmented); 1089 1090 done: 1091 if (ro == &ip6route) 1092 RO_RTFREE(ro); 1093 return (error); 1094 1095 freehdrs: 1096 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1097 m_freem(exthdrs.ip6e_dest1); 1098 m_freem(exthdrs.ip6e_rthdr); 1099 m_freem(exthdrs.ip6e_dest2); 1100 /* FALLTHROUGH */ 1101 bad: 1102 if (m) 1103 m_freem(m); 1104 goto done; 1105 } 1106 1107 static int 1108 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1109 { 1110 struct mbuf *m; 1111 1112 if (hlen > MCLBYTES) 1113 return (ENOBUFS); /* XXX */ 1114 1115 if (hlen > MLEN) 1116 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1117 else 1118 m = m_get(M_NOWAIT, MT_DATA); 1119 if (m == NULL) 1120 return (ENOBUFS); 1121 m->m_len = hlen; 1122 if (hdr) 1123 bcopy(hdr, mtod(m, caddr_t), hlen); 1124 1125 *mp = m; 1126 return (0); 1127 } 1128 1129 /* 1130 * Insert jumbo payload option. 1131 */ 1132 static int 1133 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1134 { 1135 struct mbuf *mopt; 1136 u_char *optbuf; 1137 u_int32_t v; 1138 1139 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1140 1141 /* 1142 * If there is no hop-by-hop options header, allocate new one. 1143 * If there is one but it doesn't have enough space to store the 1144 * jumbo payload option, allocate a cluster to store the whole options. 1145 * Otherwise, use it to store the options. 1146 */ 1147 if (exthdrs->ip6e_hbh == NULL) { 1148 mopt = m_get(M_NOWAIT, MT_DATA); 1149 if (mopt == NULL) 1150 return (ENOBUFS); 1151 mopt->m_len = JUMBOOPTLEN; 1152 optbuf = mtod(mopt, u_char *); 1153 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1154 exthdrs->ip6e_hbh = mopt; 1155 } else { 1156 struct ip6_hbh *hbh; 1157 1158 mopt = exthdrs->ip6e_hbh; 1159 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1160 /* 1161 * XXX assumption: 1162 * - exthdrs->ip6e_hbh is not referenced from places 1163 * other than exthdrs. 1164 * - exthdrs->ip6e_hbh is not an mbuf chain. 1165 */ 1166 int oldoptlen = mopt->m_len; 1167 struct mbuf *n; 1168 1169 /* 1170 * XXX: give up if the whole (new) hbh header does 1171 * not fit even in an mbuf cluster. 1172 */ 1173 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1174 return (ENOBUFS); 1175 1176 /* 1177 * As a consequence, we must always prepare a cluster 1178 * at this point. 1179 */ 1180 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1181 if (n == NULL) 1182 return (ENOBUFS); 1183 n->m_len = oldoptlen + JUMBOOPTLEN; 1184 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1185 oldoptlen); 1186 optbuf = mtod(n, caddr_t) + oldoptlen; 1187 m_freem(mopt); 1188 mopt = exthdrs->ip6e_hbh = n; 1189 } else { 1190 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1191 mopt->m_len += JUMBOOPTLEN; 1192 } 1193 optbuf[0] = IP6OPT_PADN; 1194 optbuf[1] = 1; 1195 1196 /* 1197 * Adjust the header length according to the pad and 1198 * the jumbo payload option. 1199 */ 1200 hbh = mtod(mopt, struct ip6_hbh *); 1201 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1202 } 1203 1204 /* fill in the option. */ 1205 optbuf[2] = IP6OPT_JUMBO; 1206 optbuf[3] = 4; 1207 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1208 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1209 1210 /* finally, adjust the packet header length */ 1211 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1212 1213 return (0); 1214 #undef JUMBOOPTLEN 1215 } 1216 1217 /* 1218 * Insert fragment header and copy unfragmentable header portions. 1219 */ 1220 static int 1221 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1222 struct ip6_frag **frghdrp) 1223 { 1224 struct mbuf *n, *mlast; 1225 1226 if (hlen > sizeof(struct ip6_hdr)) { 1227 n = m_copym(m0, sizeof(struct ip6_hdr), 1228 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1229 if (n == NULL) 1230 return (ENOBUFS); 1231 m->m_next = n; 1232 } else 1233 n = m; 1234 1235 /* Search for the last mbuf of unfragmentable part. */ 1236 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1237 ; 1238 1239 if (M_WRITABLE(mlast) && 1240 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1241 /* use the trailing space of the last mbuf for the fragment hdr */ 1242 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1243 mlast->m_len); 1244 mlast->m_len += sizeof(struct ip6_frag); 1245 m->m_pkthdr.len += sizeof(struct ip6_frag); 1246 } else { 1247 /* allocate a new mbuf for the fragment header */ 1248 struct mbuf *mfrg; 1249 1250 mfrg = m_get(M_NOWAIT, MT_DATA); 1251 if (mfrg == NULL) 1252 return (ENOBUFS); 1253 mfrg->m_len = sizeof(struct ip6_frag); 1254 *frghdrp = mtod(mfrg, struct ip6_frag *); 1255 mlast->m_next = mfrg; 1256 } 1257 1258 return (0); 1259 } 1260 1261 /* 1262 * Calculates IPv6 path mtu for destination @dst. 1263 * Resulting MTU is stored in @mtup. 1264 * 1265 * Returns 0 on success. 1266 */ 1267 static int 1268 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1269 { 1270 struct nhop6_extended nh6; 1271 struct in6_addr kdst; 1272 uint32_t scopeid; 1273 struct ifnet *ifp; 1274 u_long mtu; 1275 int error; 1276 1277 in6_splitscope(dst, &kdst, &scopeid); 1278 if (fib6_lookup_nh_ext(fibnum, &kdst, scopeid, NHR_REF, 0, &nh6) != 0) 1279 return (EHOSTUNREACH); 1280 1281 ifp = nh6.nh_ifp; 1282 mtu = nh6.nh_mtu; 1283 1284 error = ip6_calcmtu(ifp, dst, mtu, mtup, NULL, 0); 1285 fib6_free_nh_ext(fibnum, &nh6); 1286 1287 return (error); 1288 } 1289 1290 /* 1291 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1292 * and cached data in @ro_pmtu. 1293 * MTU from (successful) route lookup is saved (along with dst) 1294 * inside @ro_pmtu to avoid subsequent route lookups after packet 1295 * filter processing. 1296 * 1297 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1298 * Returns 0 on success. 1299 */ 1300 static int 1301 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1302 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1303 int *alwaysfragp, u_int fibnum, u_int proto) 1304 { 1305 struct nhop6_basic nh6; 1306 struct in6_addr kdst; 1307 uint32_t scopeid; 1308 struct sockaddr_in6 *sa6_dst; 1309 u_long mtu; 1310 1311 mtu = 0; 1312 if (do_lookup) { 1313 1314 /* 1315 * Here ro_pmtu has final destination address, while 1316 * ro might represent immediate destination. 1317 * Use ro_pmtu destination since mtu might differ. 1318 */ 1319 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1320 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1321 ro_pmtu->ro_mtu = 0; 1322 1323 if (ro_pmtu->ro_mtu == 0) { 1324 bzero(sa6_dst, sizeof(*sa6_dst)); 1325 sa6_dst->sin6_family = AF_INET6; 1326 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1327 sa6_dst->sin6_addr = *dst; 1328 1329 in6_splitscope(dst, &kdst, &scopeid); 1330 if (fib6_lookup_nh_basic(fibnum, &kdst, scopeid, 0, 0, 1331 &nh6) == 0) 1332 ro_pmtu->ro_mtu = nh6.nh_mtu; 1333 } 1334 1335 mtu = ro_pmtu->ro_mtu; 1336 } 1337 1338 if (ro_pmtu->ro_rt) 1339 mtu = ro_pmtu->ro_rt->rt_mtu; 1340 1341 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1342 } 1343 1344 /* 1345 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1346 * hostcache data for @dst. 1347 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1348 * 1349 * Returns 0 on success. 1350 */ 1351 static int 1352 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1353 u_long *mtup, int *alwaysfragp, u_int proto) 1354 { 1355 u_long mtu = 0; 1356 int alwaysfrag = 0; 1357 int error = 0; 1358 1359 if (rt_mtu > 0) { 1360 u_int32_t ifmtu; 1361 struct in_conninfo inc; 1362 1363 bzero(&inc, sizeof(inc)); 1364 inc.inc_flags |= INC_ISIPV6; 1365 inc.inc6_faddr = *dst; 1366 1367 ifmtu = IN6_LINKMTU(ifp); 1368 1369 /* TCP is known to react to pmtu changes so skip hc */ 1370 if (proto != IPPROTO_TCP) 1371 mtu = tcp_hc_getmtu(&inc); 1372 1373 if (mtu) 1374 mtu = min(mtu, rt_mtu); 1375 else 1376 mtu = rt_mtu; 1377 if (mtu == 0) 1378 mtu = ifmtu; 1379 else if (mtu < IPV6_MMTU) { 1380 /* 1381 * RFC2460 section 5, last paragraph: 1382 * if we record ICMPv6 too big message with 1383 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1384 * or smaller, with framgent header attached. 1385 * (fragment header is needed regardless from the 1386 * packet size, for translators to identify packets) 1387 */ 1388 alwaysfrag = 1; 1389 mtu = IPV6_MMTU; 1390 } 1391 } else if (ifp) { 1392 mtu = IN6_LINKMTU(ifp); 1393 } else 1394 error = EHOSTUNREACH; /* XXX */ 1395 1396 *mtup = mtu; 1397 if (alwaysfragp) 1398 *alwaysfragp = alwaysfrag; 1399 return (error); 1400 } 1401 1402 /* 1403 * IP6 socket option processing. 1404 */ 1405 int 1406 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1407 { 1408 int optdatalen, uproto; 1409 void *optdata; 1410 struct inpcb *in6p = sotoinpcb(so); 1411 int error, optval; 1412 int level, op, optname; 1413 int optlen; 1414 struct thread *td; 1415 #ifdef RSS 1416 uint32_t rss_bucket; 1417 int retval; 1418 #endif 1419 1420 /* 1421 * Don't use more than a quarter of mbuf clusters. N.B.: 1422 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1423 * on LP64 architectures, so cast to u_long to avoid undefined 1424 * behavior. ILP32 architectures cannot have nmbclusters 1425 * large enough to overflow for other reasons. 1426 */ 1427 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1428 1429 level = sopt->sopt_level; 1430 op = sopt->sopt_dir; 1431 optname = sopt->sopt_name; 1432 optlen = sopt->sopt_valsize; 1433 td = sopt->sopt_td; 1434 error = 0; 1435 optval = 0; 1436 uproto = (int)so->so_proto->pr_protocol; 1437 1438 if (level != IPPROTO_IPV6) { 1439 error = EINVAL; 1440 1441 if (sopt->sopt_level == SOL_SOCKET && 1442 sopt->sopt_dir == SOPT_SET) { 1443 switch (sopt->sopt_name) { 1444 case SO_REUSEADDR: 1445 INP_WLOCK(in6p); 1446 if ((so->so_options & SO_REUSEADDR) != 0) 1447 in6p->inp_flags2 |= INP_REUSEADDR; 1448 else 1449 in6p->inp_flags2 &= ~INP_REUSEADDR; 1450 INP_WUNLOCK(in6p); 1451 error = 0; 1452 break; 1453 case SO_REUSEPORT: 1454 INP_WLOCK(in6p); 1455 if ((so->so_options & SO_REUSEPORT) != 0) 1456 in6p->inp_flags2 |= INP_REUSEPORT; 1457 else 1458 in6p->inp_flags2 &= ~INP_REUSEPORT; 1459 INP_WUNLOCK(in6p); 1460 error = 0; 1461 break; 1462 case SO_SETFIB: 1463 INP_WLOCK(in6p); 1464 in6p->inp_inc.inc_fibnum = so->so_fibnum; 1465 INP_WUNLOCK(in6p); 1466 error = 0; 1467 break; 1468 case SO_MAX_PACING_RATE: 1469 #ifdef RATELIMIT 1470 INP_WLOCK(in6p); 1471 in6p->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1472 INP_WUNLOCK(in6p); 1473 error = 0; 1474 #else 1475 error = EOPNOTSUPP; 1476 #endif 1477 break; 1478 default: 1479 break; 1480 } 1481 } 1482 } else { /* level == IPPROTO_IPV6 */ 1483 switch (op) { 1484 1485 case SOPT_SET: 1486 switch (optname) { 1487 case IPV6_2292PKTOPTIONS: 1488 #ifdef IPV6_PKTOPTIONS 1489 case IPV6_PKTOPTIONS: 1490 #endif 1491 { 1492 struct mbuf *m; 1493 1494 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1495 printf("ip6_ctloutput: mbuf limit hit\n"); 1496 error = ENOBUFS; 1497 break; 1498 } 1499 1500 error = soopt_getm(sopt, &m); /* XXX */ 1501 if (error != 0) 1502 break; 1503 error = soopt_mcopyin(sopt, m); /* XXX */ 1504 if (error != 0) 1505 break; 1506 error = ip6_pcbopts(&in6p->in6p_outputopts, 1507 m, so, sopt); 1508 m_freem(m); /* XXX */ 1509 break; 1510 } 1511 1512 /* 1513 * Use of some Hop-by-Hop options or some 1514 * Destination options, might require special 1515 * privilege. That is, normal applications 1516 * (without special privilege) might be forbidden 1517 * from setting certain options in outgoing packets, 1518 * and might never see certain options in received 1519 * packets. [RFC 2292 Section 6] 1520 * KAME specific note: 1521 * KAME prevents non-privileged users from sending or 1522 * receiving ANY hbh/dst options in order to avoid 1523 * overhead of parsing options in the kernel. 1524 */ 1525 case IPV6_RECVHOPOPTS: 1526 case IPV6_RECVDSTOPTS: 1527 case IPV6_RECVRTHDRDSTOPTS: 1528 if (td != NULL) { 1529 error = priv_check(td, 1530 PRIV_NETINET_SETHDROPTS); 1531 if (error) 1532 break; 1533 } 1534 /* FALLTHROUGH */ 1535 case IPV6_UNICAST_HOPS: 1536 case IPV6_HOPLIMIT: 1537 1538 case IPV6_RECVPKTINFO: 1539 case IPV6_RECVHOPLIMIT: 1540 case IPV6_RECVRTHDR: 1541 case IPV6_RECVPATHMTU: 1542 case IPV6_RECVTCLASS: 1543 case IPV6_RECVFLOWID: 1544 #ifdef RSS 1545 case IPV6_RECVRSSBUCKETID: 1546 #endif 1547 case IPV6_V6ONLY: 1548 case IPV6_AUTOFLOWLABEL: 1549 case IPV6_ORIGDSTADDR: 1550 case IPV6_BINDANY: 1551 case IPV6_BINDMULTI: 1552 #ifdef RSS 1553 case IPV6_RSS_LISTEN_BUCKET: 1554 #endif 1555 if (optname == IPV6_BINDANY && td != NULL) { 1556 error = priv_check(td, 1557 PRIV_NETINET_BINDANY); 1558 if (error) 1559 break; 1560 } 1561 1562 if (optlen != sizeof(int)) { 1563 error = EINVAL; 1564 break; 1565 } 1566 error = sooptcopyin(sopt, &optval, 1567 sizeof optval, sizeof optval); 1568 if (error) 1569 break; 1570 switch (optname) { 1571 1572 case IPV6_UNICAST_HOPS: 1573 if (optval < -1 || optval >= 256) 1574 error = EINVAL; 1575 else { 1576 /* -1 = kernel default */ 1577 in6p->in6p_hops = optval; 1578 if ((in6p->inp_vflag & 1579 INP_IPV4) != 0) 1580 in6p->inp_ip_ttl = optval; 1581 } 1582 break; 1583 #define OPTSET(bit) \ 1584 do { \ 1585 INP_WLOCK(in6p); \ 1586 if (optval) \ 1587 in6p->inp_flags |= (bit); \ 1588 else \ 1589 in6p->inp_flags &= ~(bit); \ 1590 INP_WUNLOCK(in6p); \ 1591 } while (/*CONSTCOND*/ 0) 1592 #define OPTSET2292(bit) \ 1593 do { \ 1594 INP_WLOCK(in6p); \ 1595 in6p->inp_flags |= IN6P_RFC2292; \ 1596 if (optval) \ 1597 in6p->inp_flags |= (bit); \ 1598 else \ 1599 in6p->inp_flags &= ~(bit); \ 1600 INP_WUNLOCK(in6p); \ 1601 } while (/*CONSTCOND*/ 0) 1602 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1603 1604 #define OPTSET2(bit, val) do { \ 1605 INP_WLOCK(in6p); \ 1606 if (val) \ 1607 in6p->inp_flags2 |= bit; \ 1608 else \ 1609 in6p->inp_flags2 &= ~bit; \ 1610 INP_WUNLOCK(in6p); \ 1611 } while (0) 1612 #define OPTBIT2(bit) (in6p->inp_flags2 & (bit) ? 1 : 0) 1613 1614 case IPV6_RECVPKTINFO: 1615 /* cannot mix with RFC2292 */ 1616 if (OPTBIT(IN6P_RFC2292)) { 1617 error = EINVAL; 1618 break; 1619 } 1620 OPTSET(IN6P_PKTINFO); 1621 break; 1622 1623 case IPV6_HOPLIMIT: 1624 { 1625 struct ip6_pktopts **optp; 1626 1627 /* cannot mix with RFC2292 */ 1628 if (OPTBIT(IN6P_RFC2292)) { 1629 error = EINVAL; 1630 break; 1631 } 1632 optp = &in6p->in6p_outputopts; 1633 error = ip6_pcbopt(IPV6_HOPLIMIT, 1634 (u_char *)&optval, sizeof(optval), 1635 optp, (td != NULL) ? td->td_ucred : 1636 NULL, uproto); 1637 break; 1638 } 1639 1640 case IPV6_RECVHOPLIMIT: 1641 /* cannot mix with RFC2292 */ 1642 if (OPTBIT(IN6P_RFC2292)) { 1643 error = EINVAL; 1644 break; 1645 } 1646 OPTSET(IN6P_HOPLIMIT); 1647 break; 1648 1649 case IPV6_RECVHOPOPTS: 1650 /* cannot mix with RFC2292 */ 1651 if (OPTBIT(IN6P_RFC2292)) { 1652 error = EINVAL; 1653 break; 1654 } 1655 OPTSET(IN6P_HOPOPTS); 1656 break; 1657 1658 case IPV6_RECVDSTOPTS: 1659 /* cannot mix with RFC2292 */ 1660 if (OPTBIT(IN6P_RFC2292)) { 1661 error = EINVAL; 1662 break; 1663 } 1664 OPTSET(IN6P_DSTOPTS); 1665 break; 1666 1667 case IPV6_RECVRTHDRDSTOPTS: 1668 /* cannot mix with RFC2292 */ 1669 if (OPTBIT(IN6P_RFC2292)) { 1670 error = EINVAL; 1671 break; 1672 } 1673 OPTSET(IN6P_RTHDRDSTOPTS); 1674 break; 1675 1676 case IPV6_RECVRTHDR: 1677 /* cannot mix with RFC2292 */ 1678 if (OPTBIT(IN6P_RFC2292)) { 1679 error = EINVAL; 1680 break; 1681 } 1682 OPTSET(IN6P_RTHDR); 1683 break; 1684 1685 case IPV6_RECVPATHMTU: 1686 /* 1687 * We ignore this option for TCP 1688 * sockets. 1689 * (RFC3542 leaves this case 1690 * unspecified.) 1691 */ 1692 if (uproto != IPPROTO_TCP) 1693 OPTSET(IN6P_MTU); 1694 break; 1695 1696 case IPV6_RECVFLOWID: 1697 OPTSET2(INP_RECVFLOWID, optval); 1698 break; 1699 1700 #ifdef RSS 1701 case IPV6_RECVRSSBUCKETID: 1702 OPTSET2(INP_RECVRSSBUCKETID, optval); 1703 break; 1704 #endif 1705 1706 case IPV6_V6ONLY: 1707 /* 1708 * make setsockopt(IPV6_V6ONLY) 1709 * available only prior to bind(2). 1710 * see ipng mailing list, Jun 22 2001. 1711 */ 1712 if (in6p->inp_lport || 1713 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1714 error = EINVAL; 1715 break; 1716 } 1717 OPTSET(IN6P_IPV6_V6ONLY); 1718 if (optval) 1719 in6p->inp_vflag &= ~INP_IPV4; 1720 else 1721 in6p->inp_vflag |= INP_IPV4; 1722 break; 1723 case IPV6_RECVTCLASS: 1724 /* cannot mix with RFC2292 XXX */ 1725 if (OPTBIT(IN6P_RFC2292)) { 1726 error = EINVAL; 1727 break; 1728 } 1729 OPTSET(IN6P_TCLASS); 1730 break; 1731 case IPV6_AUTOFLOWLABEL: 1732 OPTSET(IN6P_AUTOFLOWLABEL); 1733 break; 1734 1735 case IPV6_ORIGDSTADDR: 1736 OPTSET2(INP_ORIGDSTADDR, optval); 1737 break; 1738 case IPV6_BINDANY: 1739 OPTSET(INP_BINDANY); 1740 break; 1741 1742 case IPV6_BINDMULTI: 1743 OPTSET2(INP_BINDMULTI, optval); 1744 break; 1745 #ifdef RSS 1746 case IPV6_RSS_LISTEN_BUCKET: 1747 if ((optval >= 0) && 1748 (optval < rss_getnumbuckets())) { 1749 in6p->inp_rss_listen_bucket = optval; 1750 OPTSET2(INP_RSS_BUCKET_SET, 1); 1751 } else { 1752 error = EINVAL; 1753 } 1754 break; 1755 #endif 1756 } 1757 break; 1758 1759 case IPV6_TCLASS: 1760 case IPV6_DONTFRAG: 1761 case IPV6_USE_MIN_MTU: 1762 case IPV6_PREFER_TEMPADDR: 1763 if (optlen != sizeof(optval)) { 1764 error = EINVAL; 1765 break; 1766 } 1767 error = sooptcopyin(sopt, &optval, 1768 sizeof optval, sizeof optval); 1769 if (error) 1770 break; 1771 { 1772 struct ip6_pktopts **optp; 1773 optp = &in6p->in6p_outputopts; 1774 error = ip6_pcbopt(optname, 1775 (u_char *)&optval, sizeof(optval), 1776 optp, (td != NULL) ? td->td_ucred : 1777 NULL, uproto); 1778 break; 1779 } 1780 1781 case IPV6_2292PKTINFO: 1782 case IPV6_2292HOPLIMIT: 1783 case IPV6_2292HOPOPTS: 1784 case IPV6_2292DSTOPTS: 1785 case IPV6_2292RTHDR: 1786 /* RFC 2292 */ 1787 if (optlen != sizeof(int)) { 1788 error = EINVAL; 1789 break; 1790 } 1791 error = sooptcopyin(sopt, &optval, 1792 sizeof optval, sizeof optval); 1793 if (error) 1794 break; 1795 switch (optname) { 1796 case IPV6_2292PKTINFO: 1797 OPTSET2292(IN6P_PKTINFO); 1798 break; 1799 case IPV6_2292HOPLIMIT: 1800 OPTSET2292(IN6P_HOPLIMIT); 1801 break; 1802 case IPV6_2292HOPOPTS: 1803 /* 1804 * Check super-user privilege. 1805 * See comments for IPV6_RECVHOPOPTS. 1806 */ 1807 if (td != NULL) { 1808 error = priv_check(td, 1809 PRIV_NETINET_SETHDROPTS); 1810 if (error) 1811 return (error); 1812 } 1813 OPTSET2292(IN6P_HOPOPTS); 1814 break; 1815 case IPV6_2292DSTOPTS: 1816 if (td != NULL) { 1817 error = priv_check(td, 1818 PRIV_NETINET_SETHDROPTS); 1819 if (error) 1820 return (error); 1821 } 1822 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1823 break; 1824 case IPV6_2292RTHDR: 1825 OPTSET2292(IN6P_RTHDR); 1826 break; 1827 } 1828 break; 1829 case IPV6_PKTINFO: 1830 case IPV6_HOPOPTS: 1831 case IPV6_RTHDR: 1832 case IPV6_DSTOPTS: 1833 case IPV6_RTHDRDSTOPTS: 1834 case IPV6_NEXTHOP: 1835 { 1836 /* new advanced API (RFC3542) */ 1837 u_char *optbuf; 1838 u_char optbuf_storage[MCLBYTES]; 1839 int optlen; 1840 struct ip6_pktopts **optp; 1841 1842 /* cannot mix with RFC2292 */ 1843 if (OPTBIT(IN6P_RFC2292)) { 1844 error = EINVAL; 1845 break; 1846 } 1847 1848 /* 1849 * We only ensure valsize is not too large 1850 * here. Further validation will be done 1851 * later. 1852 */ 1853 error = sooptcopyin(sopt, optbuf_storage, 1854 sizeof(optbuf_storage), 0); 1855 if (error) 1856 break; 1857 optlen = sopt->sopt_valsize; 1858 optbuf = optbuf_storage; 1859 optp = &in6p->in6p_outputopts; 1860 error = ip6_pcbopt(optname, optbuf, optlen, 1861 optp, (td != NULL) ? td->td_ucred : NULL, 1862 uproto); 1863 break; 1864 } 1865 #undef OPTSET 1866 1867 case IPV6_MULTICAST_IF: 1868 case IPV6_MULTICAST_HOPS: 1869 case IPV6_MULTICAST_LOOP: 1870 case IPV6_JOIN_GROUP: 1871 case IPV6_LEAVE_GROUP: 1872 case IPV6_MSFILTER: 1873 case MCAST_BLOCK_SOURCE: 1874 case MCAST_UNBLOCK_SOURCE: 1875 case MCAST_JOIN_GROUP: 1876 case MCAST_LEAVE_GROUP: 1877 case MCAST_JOIN_SOURCE_GROUP: 1878 case MCAST_LEAVE_SOURCE_GROUP: 1879 error = ip6_setmoptions(in6p, sopt); 1880 break; 1881 1882 case IPV6_PORTRANGE: 1883 error = sooptcopyin(sopt, &optval, 1884 sizeof optval, sizeof optval); 1885 if (error) 1886 break; 1887 1888 INP_WLOCK(in6p); 1889 switch (optval) { 1890 case IPV6_PORTRANGE_DEFAULT: 1891 in6p->inp_flags &= ~(INP_LOWPORT); 1892 in6p->inp_flags &= ~(INP_HIGHPORT); 1893 break; 1894 1895 case IPV6_PORTRANGE_HIGH: 1896 in6p->inp_flags &= ~(INP_LOWPORT); 1897 in6p->inp_flags |= INP_HIGHPORT; 1898 break; 1899 1900 case IPV6_PORTRANGE_LOW: 1901 in6p->inp_flags &= ~(INP_HIGHPORT); 1902 in6p->inp_flags |= INP_LOWPORT; 1903 break; 1904 1905 default: 1906 error = EINVAL; 1907 break; 1908 } 1909 INP_WUNLOCK(in6p); 1910 break; 1911 1912 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1913 case IPV6_IPSEC_POLICY: 1914 if (IPSEC_ENABLED(ipv6)) { 1915 error = IPSEC_PCBCTL(ipv6, in6p, sopt); 1916 break; 1917 } 1918 /* FALLTHROUGH */ 1919 #endif /* IPSEC */ 1920 1921 default: 1922 error = ENOPROTOOPT; 1923 break; 1924 } 1925 break; 1926 1927 case SOPT_GET: 1928 switch (optname) { 1929 1930 case IPV6_2292PKTOPTIONS: 1931 #ifdef IPV6_PKTOPTIONS 1932 case IPV6_PKTOPTIONS: 1933 #endif 1934 /* 1935 * RFC3542 (effectively) deprecated the 1936 * semantics of the 2292-style pktoptions. 1937 * Since it was not reliable in nature (i.e., 1938 * applications had to expect the lack of some 1939 * information after all), it would make sense 1940 * to simplify this part by always returning 1941 * empty data. 1942 */ 1943 sopt->sopt_valsize = 0; 1944 break; 1945 1946 case IPV6_RECVHOPOPTS: 1947 case IPV6_RECVDSTOPTS: 1948 case IPV6_RECVRTHDRDSTOPTS: 1949 case IPV6_UNICAST_HOPS: 1950 case IPV6_RECVPKTINFO: 1951 case IPV6_RECVHOPLIMIT: 1952 case IPV6_RECVRTHDR: 1953 case IPV6_RECVPATHMTU: 1954 1955 case IPV6_V6ONLY: 1956 case IPV6_PORTRANGE: 1957 case IPV6_RECVTCLASS: 1958 case IPV6_AUTOFLOWLABEL: 1959 case IPV6_BINDANY: 1960 case IPV6_FLOWID: 1961 case IPV6_FLOWTYPE: 1962 case IPV6_RECVFLOWID: 1963 #ifdef RSS 1964 case IPV6_RSSBUCKETID: 1965 case IPV6_RECVRSSBUCKETID: 1966 #endif 1967 case IPV6_BINDMULTI: 1968 switch (optname) { 1969 1970 case IPV6_RECVHOPOPTS: 1971 optval = OPTBIT(IN6P_HOPOPTS); 1972 break; 1973 1974 case IPV6_RECVDSTOPTS: 1975 optval = OPTBIT(IN6P_DSTOPTS); 1976 break; 1977 1978 case IPV6_RECVRTHDRDSTOPTS: 1979 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1980 break; 1981 1982 case IPV6_UNICAST_HOPS: 1983 optval = in6p->in6p_hops; 1984 break; 1985 1986 case IPV6_RECVPKTINFO: 1987 optval = OPTBIT(IN6P_PKTINFO); 1988 break; 1989 1990 case IPV6_RECVHOPLIMIT: 1991 optval = OPTBIT(IN6P_HOPLIMIT); 1992 break; 1993 1994 case IPV6_RECVRTHDR: 1995 optval = OPTBIT(IN6P_RTHDR); 1996 break; 1997 1998 case IPV6_RECVPATHMTU: 1999 optval = OPTBIT(IN6P_MTU); 2000 break; 2001 2002 case IPV6_V6ONLY: 2003 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2004 break; 2005 2006 case IPV6_PORTRANGE: 2007 { 2008 int flags; 2009 flags = in6p->inp_flags; 2010 if (flags & INP_HIGHPORT) 2011 optval = IPV6_PORTRANGE_HIGH; 2012 else if (flags & INP_LOWPORT) 2013 optval = IPV6_PORTRANGE_LOW; 2014 else 2015 optval = 0; 2016 break; 2017 } 2018 case IPV6_RECVTCLASS: 2019 optval = OPTBIT(IN6P_TCLASS); 2020 break; 2021 2022 case IPV6_AUTOFLOWLABEL: 2023 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2024 break; 2025 2026 case IPV6_ORIGDSTADDR: 2027 optval = OPTBIT2(INP_ORIGDSTADDR); 2028 break; 2029 2030 case IPV6_BINDANY: 2031 optval = OPTBIT(INP_BINDANY); 2032 break; 2033 2034 case IPV6_FLOWID: 2035 optval = in6p->inp_flowid; 2036 break; 2037 2038 case IPV6_FLOWTYPE: 2039 optval = in6p->inp_flowtype; 2040 break; 2041 2042 case IPV6_RECVFLOWID: 2043 optval = OPTBIT2(INP_RECVFLOWID); 2044 break; 2045 #ifdef RSS 2046 case IPV6_RSSBUCKETID: 2047 retval = 2048 rss_hash2bucket(in6p->inp_flowid, 2049 in6p->inp_flowtype, 2050 &rss_bucket); 2051 if (retval == 0) 2052 optval = rss_bucket; 2053 else 2054 error = EINVAL; 2055 break; 2056 2057 case IPV6_RECVRSSBUCKETID: 2058 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2059 break; 2060 #endif 2061 2062 case IPV6_BINDMULTI: 2063 optval = OPTBIT2(INP_BINDMULTI); 2064 break; 2065 2066 } 2067 if (error) 2068 break; 2069 error = sooptcopyout(sopt, &optval, 2070 sizeof optval); 2071 break; 2072 2073 case IPV6_PATHMTU: 2074 { 2075 u_long pmtu = 0; 2076 struct ip6_mtuinfo mtuinfo; 2077 2078 if (!(so->so_state & SS_ISCONNECTED)) 2079 return (ENOTCONN); 2080 /* 2081 * XXX: we dot not consider the case of source 2082 * routing, or optional information to specify 2083 * the outgoing interface. 2084 */ 2085 error = ip6_getpmtu_ctl(so->so_fibnum, 2086 &in6p->in6p_faddr, &pmtu); 2087 if (error) 2088 break; 2089 if (pmtu > IPV6_MAXPACKET) 2090 pmtu = IPV6_MAXPACKET; 2091 2092 bzero(&mtuinfo, sizeof(mtuinfo)); 2093 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2094 optdata = (void *)&mtuinfo; 2095 optdatalen = sizeof(mtuinfo); 2096 error = sooptcopyout(sopt, optdata, 2097 optdatalen); 2098 break; 2099 } 2100 2101 case IPV6_2292PKTINFO: 2102 case IPV6_2292HOPLIMIT: 2103 case IPV6_2292HOPOPTS: 2104 case IPV6_2292RTHDR: 2105 case IPV6_2292DSTOPTS: 2106 switch (optname) { 2107 case IPV6_2292PKTINFO: 2108 optval = OPTBIT(IN6P_PKTINFO); 2109 break; 2110 case IPV6_2292HOPLIMIT: 2111 optval = OPTBIT(IN6P_HOPLIMIT); 2112 break; 2113 case IPV6_2292HOPOPTS: 2114 optval = OPTBIT(IN6P_HOPOPTS); 2115 break; 2116 case IPV6_2292RTHDR: 2117 optval = OPTBIT(IN6P_RTHDR); 2118 break; 2119 case IPV6_2292DSTOPTS: 2120 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2121 break; 2122 } 2123 error = sooptcopyout(sopt, &optval, 2124 sizeof optval); 2125 break; 2126 case IPV6_PKTINFO: 2127 case IPV6_HOPOPTS: 2128 case IPV6_RTHDR: 2129 case IPV6_DSTOPTS: 2130 case IPV6_RTHDRDSTOPTS: 2131 case IPV6_NEXTHOP: 2132 case IPV6_TCLASS: 2133 case IPV6_DONTFRAG: 2134 case IPV6_USE_MIN_MTU: 2135 case IPV6_PREFER_TEMPADDR: 2136 error = ip6_getpcbopt(in6p->in6p_outputopts, 2137 optname, sopt); 2138 break; 2139 2140 case IPV6_MULTICAST_IF: 2141 case IPV6_MULTICAST_HOPS: 2142 case IPV6_MULTICAST_LOOP: 2143 case IPV6_MSFILTER: 2144 error = ip6_getmoptions(in6p, sopt); 2145 break; 2146 2147 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2148 case IPV6_IPSEC_POLICY: 2149 if (IPSEC_ENABLED(ipv6)) { 2150 error = IPSEC_PCBCTL(ipv6, in6p, sopt); 2151 break; 2152 } 2153 /* FALLTHROUGH */ 2154 #endif /* IPSEC */ 2155 default: 2156 error = ENOPROTOOPT; 2157 break; 2158 } 2159 break; 2160 } 2161 } 2162 return (error); 2163 } 2164 2165 int 2166 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2167 { 2168 int error = 0, optval, optlen; 2169 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2170 struct inpcb *in6p = sotoinpcb(so); 2171 int level, op, optname; 2172 2173 level = sopt->sopt_level; 2174 op = sopt->sopt_dir; 2175 optname = sopt->sopt_name; 2176 optlen = sopt->sopt_valsize; 2177 2178 if (level != IPPROTO_IPV6) { 2179 return (EINVAL); 2180 } 2181 2182 switch (optname) { 2183 case IPV6_CHECKSUM: 2184 /* 2185 * For ICMPv6 sockets, no modification allowed for checksum 2186 * offset, permit "no change" values to help existing apps. 2187 * 2188 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2189 * for an ICMPv6 socket will fail." 2190 * The current behavior does not meet RFC3542. 2191 */ 2192 switch (op) { 2193 case SOPT_SET: 2194 if (optlen != sizeof(int)) { 2195 error = EINVAL; 2196 break; 2197 } 2198 error = sooptcopyin(sopt, &optval, sizeof(optval), 2199 sizeof(optval)); 2200 if (error) 2201 break; 2202 if ((optval % 2) != 0) { 2203 /* the API assumes even offset values */ 2204 error = EINVAL; 2205 } else if (so->so_proto->pr_protocol == 2206 IPPROTO_ICMPV6) { 2207 if (optval != icmp6off) 2208 error = EINVAL; 2209 } else 2210 in6p->in6p_cksum = optval; 2211 break; 2212 2213 case SOPT_GET: 2214 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2215 optval = icmp6off; 2216 else 2217 optval = in6p->in6p_cksum; 2218 2219 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2220 break; 2221 2222 default: 2223 error = EINVAL; 2224 break; 2225 } 2226 break; 2227 2228 default: 2229 error = ENOPROTOOPT; 2230 break; 2231 } 2232 2233 return (error); 2234 } 2235 2236 /* 2237 * Set up IP6 options in pcb for insertion in output packets or 2238 * specifying behavior of outgoing packets. 2239 */ 2240 static int 2241 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2242 struct socket *so, struct sockopt *sopt) 2243 { 2244 struct ip6_pktopts *opt = *pktopt; 2245 int error = 0; 2246 struct thread *td = sopt->sopt_td; 2247 2248 /* turn off any old options. */ 2249 if (opt) { 2250 #ifdef DIAGNOSTIC 2251 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2252 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2253 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2254 printf("ip6_pcbopts: all specified options are cleared.\n"); 2255 #endif 2256 ip6_clearpktopts(opt, -1); 2257 } else 2258 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2259 *pktopt = NULL; 2260 2261 if (!m || m->m_len == 0) { 2262 /* 2263 * Only turning off any previous options, regardless of 2264 * whether the opt is just created or given. 2265 */ 2266 free(opt, M_IP6OPT); 2267 return (0); 2268 } 2269 2270 /* set options specified by user. */ 2271 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2272 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2273 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2274 free(opt, M_IP6OPT); 2275 return (error); 2276 } 2277 *pktopt = opt; 2278 return (0); 2279 } 2280 2281 /* 2282 * initialize ip6_pktopts. beware that there are non-zero default values in 2283 * the struct. 2284 */ 2285 void 2286 ip6_initpktopts(struct ip6_pktopts *opt) 2287 { 2288 2289 bzero(opt, sizeof(*opt)); 2290 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2291 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2292 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2293 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2294 } 2295 2296 static int 2297 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2298 struct ucred *cred, int uproto) 2299 { 2300 struct ip6_pktopts *opt; 2301 2302 if (*pktopt == NULL) { 2303 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2304 M_WAITOK); 2305 ip6_initpktopts(*pktopt); 2306 } 2307 opt = *pktopt; 2308 2309 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2310 } 2311 2312 static int 2313 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2314 { 2315 void *optdata = NULL; 2316 int optdatalen = 0; 2317 struct ip6_ext *ip6e; 2318 int error = 0; 2319 struct in6_pktinfo null_pktinfo; 2320 int deftclass = 0, on; 2321 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2322 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2323 2324 switch (optname) { 2325 case IPV6_PKTINFO: 2326 optdata = (void *)&null_pktinfo; 2327 if (pktopt && pktopt->ip6po_pktinfo) { 2328 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2329 sizeof(null_pktinfo)); 2330 in6_clearscope(&null_pktinfo.ipi6_addr); 2331 } else { 2332 /* XXX: we don't have to do this every time... */ 2333 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2334 } 2335 optdatalen = sizeof(struct in6_pktinfo); 2336 break; 2337 case IPV6_TCLASS: 2338 if (pktopt && pktopt->ip6po_tclass >= 0) 2339 optdata = (void *)&pktopt->ip6po_tclass; 2340 else 2341 optdata = (void *)&deftclass; 2342 optdatalen = sizeof(int); 2343 break; 2344 case IPV6_HOPOPTS: 2345 if (pktopt && pktopt->ip6po_hbh) { 2346 optdata = (void *)pktopt->ip6po_hbh; 2347 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2348 optdatalen = (ip6e->ip6e_len + 1) << 3; 2349 } 2350 break; 2351 case IPV6_RTHDR: 2352 if (pktopt && pktopt->ip6po_rthdr) { 2353 optdata = (void *)pktopt->ip6po_rthdr; 2354 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2355 optdatalen = (ip6e->ip6e_len + 1) << 3; 2356 } 2357 break; 2358 case IPV6_RTHDRDSTOPTS: 2359 if (pktopt && pktopt->ip6po_dest1) { 2360 optdata = (void *)pktopt->ip6po_dest1; 2361 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2362 optdatalen = (ip6e->ip6e_len + 1) << 3; 2363 } 2364 break; 2365 case IPV6_DSTOPTS: 2366 if (pktopt && pktopt->ip6po_dest2) { 2367 optdata = (void *)pktopt->ip6po_dest2; 2368 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2369 optdatalen = (ip6e->ip6e_len + 1) << 3; 2370 } 2371 break; 2372 case IPV6_NEXTHOP: 2373 if (pktopt && pktopt->ip6po_nexthop) { 2374 optdata = (void *)pktopt->ip6po_nexthop; 2375 optdatalen = pktopt->ip6po_nexthop->sa_len; 2376 } 2377 break; 2378 case IPV6_USE_MIN_MTU: 2379 if (pktopt) 2380 optdata = (void *)&pktopt->ip6po_minmtu; 2381 else 2382 optdata = (void *)&defminmtu; 2383 optdatalen = sizeof(int); 2384 break; 2385 case IPV6_DONTFRAG: 2386 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2387 on = 1; 2388 else 2389 on = 0; 2390 optdata = (void *)&on; 2391 optdatalen = sizeof(on); 2392 break; 2393 case IPV6_PREFER_TEMPADDR: 2394 if (pktopt) 2395 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2396 else 2397 optdata = (void *)&defpreftemp; 2398 optdatalen = sizeof(int); 2399 break; 2400 default: /* should not happen */ 2401 #ifdef DIAGNOSTIC 2402 panic("ip6_getpcbopt: unexpected option\n"); 2403 #endif 2404 return (ENOPROTOOPT); 2405 } 2406 2407 error = sooptcopyout(sopt, optdata, optdatalen); 2408 2409 return (error); 2410 } 2411 2412 void 2413 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2414 { 2415 if (pktopt == NULL) 2416 return; 2417 2418 if (optname == -1 || optname == IPV6_PKTINFO) { 2419 if (pktopt->ip6po_pktinfo) 2420 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2421 pktopt->ip6po_pktinfo = NULL; 2422 } 2423 if (optname == -1 || optname == IPV6_HOPLIMIT) 2424 pktopt->ip6po_hlim = -1; 2425 if (optname == -1 || optname == IPV6_TCLASS) 2426 pktopt->ip6po_tclass = -1; 2427 if (optname == -1 || optname == IPV6_NEXTHOP) { 2428 if (pktopt->ip6po_nextroute.ro_rt) { 2429 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2430 pktopt->ip6po_nextroute.ro_rt = NULL; 2431 } 2432 if (pktopt->ip6po_nexthop) 2433 free(pktopt->ip6po_nexthop, M_IP6OPT); 2434 pktopt->ip6po_nexthop = NULL; 2435 } 2436 if (optname == -1 || optname == IPV6_HOPOPTS) { 2437 if (pktopt->ip6po_hbh) 2438 free(pktopt->ip6po_hbh, M_IP6OPT); 2439 pktopt->ip6po_hbh = NULL; 2440 } 2441 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2442 if (pktopt->ip6po_dest1) 2443 free(pktopt->ip6po_dest1, M_IP6OPT); 2444 pktopt->ip6po_dest1 = NULL; 2445 } 2446 if (optname == -1 || optname == IPV6_RTHDR) { 2447 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2448 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2449 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2450 if (pktopt->ip6po_route.ro_rt) { 2451 RTFREE(pktopt->ip6po_route.ro_rt); 2452 pktopt->ip6po_route.ro_rt = NULL; 2453 } 2454 } 2455 if (optname == -1 || optname == IPV6_DSTOPTS) { 2456 if (pktopt->ip6po_dest2) 2457 free(pktopt->ip6po_dest2, M_IP6OPT); 2458 pktopt->ip6po_dest2 = NULL; 2459 } 2460 } 2461 2462 #define PKTOPT_EXTHDRCPY(type) \ 2463 do {\ 2464 if (src->type) {\ 2465 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2466 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2467 if (dst->type == NULL && canwait == M_NOWAIT)\ 2468 goto bad;\ 2469 bcopy(src->type, dst->type, hlen);\ 2470 }\ 2471 } while (/*CONSTCOND*/ 0) 2472 2473 static int 2474 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2475 { 2476 if (dst == NULL || src == NULL) { 2477 printf("ip6_clearpktopts: invalid argument\n"); 2478 return (EINVAL); 2479 } 2480 2481 dst->ip6po_hlim = src->ip6po_hlim; 2482 dst->ip6po_tclass = src->ip6po_tclass; 2483 dst->ip6po_flags = src->ip6po_flags; 2484 dst->ip6po_minmtu = src->ip6po_minmtu; 2485 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2486 if (src->ip6po_pktinfo) { 2487 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2488 M_IP6OPT, canwait); 2489 if (dst->ip6po_pktinfo == NULL) 2490 goto bad; 2491 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2492 } 2493 if (src->ip6po_nexthop) { 2494 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2495 M_IP6OPT, canwait); 2496 if (dst->ip6po_nexthop == NULL) 2497 goto bad; 2498 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2499 src->ip6po_nexthop->sa_len); 2500 } 2501 PKTOPT_EXTHDRCPY(ip6po_hbh); 2502 PKTOPT_EXTHDRCPY(ip6po_dest1); 2503 PKTOPT_EXTHDRCPY(ip6po_dest2); 2504 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2505 return (0); 2506 2507 bad: 2508 ip6_clearpktopts(dst, -1); 2509 return (ENOBUFS); 2510 } 2511 #undef PKTOPT_EXTHDRCPY 2512 2513 struct ip6_pktopts * 2514 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2515 { 2516 int error; 2517 struct ip6_pktopts *dst; 2518 2519 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2520 if (dst == NULL) 2521 return (NULL); 2522 ip6_initpktopts(dst); 2523 2524 if ((error = copypktopts(dst, src, canwait)) != 0) { 2525 free(dst, M_IP6OPT); 2526 return (NULL); 2527 } 2528 2529 return (dst); 2530 } 2531 2532 void 2533 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2534 { 2535 if (pktopt == NULL) 2536 return; 2537 2538 ip6_clearpktopts(pktopt, -1); 2539 2540 free(pktopt, M_IP6OPT); 2541 } 2542 2543 /* 2544 * Set IPv6 outgoing packet options based on advanced API. 2545 */ 2546 int 2547 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2548 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2549 { 2550 struct cmsghdr *cm = NULL; 2551 2552 if (control == NULL || opt == NULL) 2553 return (EINVAL); 2554 2555 ip6_initpktopts(opt); 2556 if (stickyopt) { 2557 int error; 2558 2559 /* 2560 * If stickyopt is provided, make a local copy of the options 2561 * for this particular packet, then override them by ancillary 2562 * objects. 2563 * XXX: copypktopts() does not copy the cached route to a next 2564 * hop (if any). This is not very good in terms of efficiency, 2565 * but we can allow this since this option should be rarely 2566 * used. 2567 */ 2568 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2569 return (error); 2570 } 2571 2572 /* 2573 * XXX: Currently, we assume all the optional information is stored 2574 * in a single mbuf. 2575 */ 2576 if (control->m_next) 2577 return (EINVAL); 2578 2579 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2580 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2581 int error; 2582 2583 if (control->m_len < CMSG_LEN(0)) 2584 return (EINVAL); 2585 2586 cm = mtod(control, struct cmsghdr *); 2587 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2588 return (EINVAL); 2589 if (cm->cmsg_level != IPPROTO_IPV6) 2590 continue; 2591 2592 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2593 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2594 if (error) 2595 return (error); 2596 } 2597 2598 return (0); 2599 } 2600 2601 /* 2602 * Set a particular packet option, as a sticky option or an ancillary data 2603 * item. "len" can be 0 only when it's a sticky option. 2604 * We have 4 cases of combination of "sticky" and "cmsg": 2605 * "sticky=0, cmsg=0": impossible 2606 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2607 * "sticky=1, cmsg=0": RFC3542 socket option 2608 * "sticky=1, cmsg=1": RFC2292 socket option 2609 */ 2610 static int 2611 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2612 struct ucred *cred, int sticky, int cmsg, int uproto) 2613 { 2614 int minmtupolicy, preftemp; 2615 int error; 2616 2617 if (!sticky && !cmsg) { 2618 #ifdef DIAGNOSTIC 2619 printf("ip6_setpktopt: impossible case\n"); 2620 #endif 2621 return (EINVAL); 2622 } 2623 2624 /* 2625 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2626 * not be specified in the context of RFC3542. Conversely, 2627 * RFC3542 types should not be specified in the context of RFC2292. 2628 */ 2629 if (!cmsg) { 2630 switch (optname) { 2631 case IPV6_2292PKTINFO: 2632 case IPV6_2292HOPLIMIT: 2633 case IPV6_2292NEXTHOP: 2634 case IPV6_2292HOPOPTS: 2635 case IPV6_2292DSTOPTS: 2636 case IPV6_2292RTHDR: 2637 case IPV6_2292PKTOPTIONS: 2638 return (ENOPROTOOPT); 2639 } 2640 } 2641 if (sticky && cmsg) { 2642 switch (optname) { 2643 case IPV6_PKTINFO: 2644 case IPV6_HOPLIMIT: 2645 case IPV6_NEXTHOP: 2646 case IPV6_HOPOPTS: 2647 case IPV6_DSTOPTS: 2648 case IPV6_RTHDRDSTOPTS: 2649 case IPV6_RTHDR: 2650 case IPV6_USE_MIN_MTU: 2651 case IPV6_DONTFRAG: 2652 case IPV6_TCLASS: 2653 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2654 return (ENOPROTOOPT); 2655 } 2656 } 2657 2658 switch (optname) { 2659 case IPV6_2292PKTINFO: 2660 case IPV6_PKTINFO: 2661 { 2662 struct ifnet *ifp = NULL; 2663 struct in6_pktinfo *pktinfo; 2664 2665 if (len != sizeof(struct in6_pktinfo)) 2666 return (EINVAL); 2667 2668 pktinfo = (struct in6_pktinfo *)buf; 2669 2670 /* 2671 * An application can clear any sticky IPV6_PKTINFO option by 2672 * doing a "regular" setsockopt with ipi6_addr being 2673 * in6addr_any and ipi6_ifindex being zero. 2674 * [RFC 3542, Section 6] 2675 */ 2676 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2677 pktinfo->ipi6_ifindex == 0 && 2678 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2679 ip6_clearpktopts(opt, optname); 2680 break; 2681 } 2682 2683 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2684 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2685 return (EINVAL); 2686 } 2687 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2688 return (EINVAL); 2689 /* validate the interface index if specified. */ 2690 if (pktinfo->ipi6_ifindex > V_if_index) 2691 return (ENXIO); 2692 if (pktinfo->ipi6_ifindex) { 2693 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2694 if (ifp == NULL) 2695 return (ENXIO); 2696 } 2697 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2698 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2699 return (ENETDOWN); 2700 2701 if (ifp != NULL && 2702 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2703 struct in6_ifaddr *ia; 2704 2705 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2706 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2707 if (ia == NULL) 2708 return (EADDRNOTAVAIL); 2709 ifa_free(&ia->ia_ifa); 2710 } 2711 /* 2712 * We store the address anyway, and let in6_selectsrc() 2713 * validate the specified address. This is because ipi6_addr 2714 * may not have enough information about its scope zone, and 2715 * we may need additional information (such as outgoing 2716 * interface or the scope zone of a destination address) to 2717 * disambiguate the scope. 2718 * XXX: the delay of the validation may confuse the 2719 * application when it is used as a sticky option. 2720 */ 2721 if (opt->ip6po_pktinfo == NULL) { 2722 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2723 M_IP6OPT, M_NOWAIT); 2724 if (opt->ip6po_pktinfo == NULL) 2725 return (ENOBUFS); 2726 } 2727 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2728 break; 2729 } 2730 2731 case IPV6_2292HOPLIMIT: 2732 case IPV6_HOPLIMIT: 2733 { 2734 int *hlimp; 2735 2736 /* 2737 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2738 * to simplify the ordering among hoplimit options. 2739 */ 2740 if (optname == IPV6_HOPLIMIT && sticky) 2741 return (ENOPROTOOPT); 2742 2743 if (len != sizeof(int)) 2744 return (EINVAL); 2745 hlimp = (int *)buf; 2746 if (*hlimp < -1 || *hlimp > 255) 2747 return (EINVAL); 2748 2749 opt->ip6po_hlim = *hlimp; 2750 break; 2751 } 2752 2753 case IPV6_TCLASS: 2754 { 2755 int tclass; 2756 2757 if (len != sizeof(int)) 2758 return (EINVAL); 2759 tclass = *(int *)buf; 2760 if (tclass < -1 || tclass > 255) 2761 return (EINVAL); 2762 2763 opt->ip6po_tclass = tclass; 2764 break; 2765 } 2766 2767 case IPV6_2292NEXTHOP: 2768 case IPV6_NEXTHOP: 2769 if (cred != NULL) { 2770 error = priv_check_cred(cred, 2771 PRIV_NETINET_SETHDROPTS, 0); 2772 if (error) 2773 return (error); 2774 } 2775 2776 if (len == 0) { /* just remove the option */ 2777 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2778 break; 2779 } 2780 2781 /* check if cmsg_len is large enough for sa_len */ 2782 if (len < sizeof(struct sockaddr) || len < *buf) 2783 return (EINVAL); 2784 2785 switch (((struct sockaddr *)buf)->sa_family) { 2786 case AF_INET6: 2787 { 2788 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2789 int error; 2790 2791 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2792 return (EINVAL); 2793 2794 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2795 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2796 return (EINVAL); 2797 } 2798 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2799 != 0) { 2800 return (error); 2801 } 2802 break; 2803 } 2804 case AF_LINK: /* should eventually be supported */ 2805 default: 2806 return (EAFNOSUPPORT); 2807 } 2808 2809 /* turn off the previous option, then set the new option. */ 2810 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2811 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2812 if (opt->ip6po_nexthop == NULL) 2813 return (ENOBUFS); 2814 bcopy(buf, opt->ip6po_nexthop, *buf); 2815 break; 2816 2817 case IPV6_2292HOPOPTS: 2818 case IPV6_HOPOPTS: 2819 { 2820 struct ip6_hbh *hbh; 2821 int hbhlen; 2822 2823 /* 2824 * XXX: We don't allow a non-privileged user to set ANY HbH 2825 * options, since per-option restriction has too much 2826 * overhead. 2827 */ 2828 if (cred != NULL) { 2829 error = priv_check_cred(cred, 2830 PRIV_NETINET_SETHDROPTS, 0); 2831 if (error) 2832 return (error); 2833 } 2834 2835 if (len == 0) { 2836 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2837 break; /* just remove the option */ 2838 } 2839 2840 /* message length validation */ 2841 if (len < sizeof(struct ip6_hbh)) 2842 return (EINVAL); 2843 hbh = (struct ip6_hbh *)buf; 2844 hbhlen = (hbh->ip6h_len + 1) << 3; 2845 if (len != hbhlen) 2846 return (EINVAL); 2847 2848 /* turn off the previous option, then set the new option. */ 2849 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2850 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2851 if (opt->ip6po_hbh == NULL) 2852 return (ENOBUFS); 2853 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2854 2855 break; 2856 } 2857 2858 case IPV6_2292DSTOPTS: 2859 case IPV6_DSTOPTS: 2860 case IPV6_RTHDRDSTOPTS: 2861 { 2862 struct ip6_dest *dest, **newdest = NULL; 2863 int destlen; 2864 2865 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2866 error = priv_check_cred(cred, 2867 PRIV_NETINET_SETHDROPTS, 0); 2868 if (error) 2869 return (error); 2870 } 2871 2872 if (len == 0) { 2873 ip6_clearpktopts(opt, optname); 2874 break; /* just remove the option */ 2875 } 2876 2877 /* message length validation */ 2878 if (len < sizeof(struct ip6_dest)) 2879 return (EINVAL); 2880 dest = (struct ip6_dest *)buf; 2881 destlen = (dest->ip6d_len + 1) << 3; 2882 if (len != destlen) 2883 return (EINVAL); 2884 2885 /* 2886 * Determine the position that the destination options header 2887 * should be inserted; before or after the routing header. 2888 */ 2889 switch (optname) { 2890 case IPV6_2292DSTOPTS: 2891 /* 2892 * The old advacned API is ambiguous on this point. 2893 * Our approach is to determine the position based 2894 * according to the existence of a routing header. 2895 * Note, however, that this depends on the order of the 2896 * extension headers in the ancillary data; the 1st 2897 * part of the destination options header must appear 2898 * before the routing header in the ancillary data, 2899 * too. 2900 * RFC3542 solved the ambiguity by introducing 2901 * separate ancillary data or option types. 2902 */ 2903 if (opt->ip6po_rthdr == NULL) 2904 newdest = &opt->ip6po_dest1; 2905 else 2906 newdest = &opt->ip6po_dest2; 2907 break; 2908 case IPV6_RTHDRDSTOPTS: 2909 newdest = &opt->ip6po_dest1; 2910 break; 2911 case IPV6_DSTOPTS: 2912 newdest = &opt->ip6po_dest2; 2913 break; 2914 } 2915 2916 /* turn off the previous option, then set the new option. */ 2917 ip6_clearpktopts(opt, optname); 2918 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2919 if (*newdest == NULL) 2920 return (ENOBUFS); 2921 bcopy(dest, *newdest, destlen); 2922 2923 break; 2924 } 2925 2926 case IPV6_2292RTHDR: 2927 case IPV6_RTHDR: 2928 { 2929 struct ip6_rthdr *rth; 2930 int rthlen; 2931 2932 if (len == 0) { 2933 ip6_clearpktopts(opt, IPV6_RTHDR); 2934 break; /* just remove the option */ 2935 } 2936 2937 /* message length validation */ 2938 if (len < sizeof(struct ip6_rthdr)) 2939 return (EINVAL); 2940 rth = (struct ip6_rthdr *)buf; 2941 rthlen = (rth->ip6r_len + 1) << 3; 2942 if (len != rthlen) 2943 return (EINVAL); 2944 2945 switch (rth->ip6r_type) { 2946 case IPV6_RTHDR_TYPE_0: 2947 if (rth->ip6r_len == 0) /* must contain one addr */ 2948 return (EINVAL); 2949 if (rth->ip6r_len % 2) /* length must be even */ 2950 return (EINVAL); 2951 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2952 return (EINVAL); 2953 break; 2954 default: 2955 return (EINVAL); /* not supported */ 2956 } 2957 2958 /* turn off the previous option */ 2959 ip6_clearpktopts(opt, IPV6_RTHDR); 2960 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2961 if (opt->ip6po_rthdr == NULL) 2962 return (ENOBUFS); 2963 bcopy(rth, opt->ip6po_rthdr, rthlen); 2964 2965 break; 2966 } 2967 2968 case IPV6_USE_MIN_MTU: 2969 if (len != sizeof(int)) 2970 return (EINVAL); 2971 minmtupolicy = *(int *)buf; 2972 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2973 minmtupolicy != IP6PO_MINMTU_DISABLE && 2974 minmtupolicy != IP6PO_MINMTU_ALL) { 2975 return (EINVAL); 2976 } 2977 opt->ip6po_minmtu = minmtupolicy; 2978 break; 2979 2980 case IPV6_DONTFRAG: 2981 if (len != sizeof(int)) 2982 return (EINVAL); 2983 2984 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2985 /* 2986 * we ignore this option for TCP sockets. 2987 * (RFC3542 leaves this case unspecified.) 2988 */ 2989 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2990 } else 2991 opt->ip6po_flags |= IP6PO_DONTFRAG; 2992 break; 2993 2994 case IPV6_PREFER_TEMPADDR: 2995 if (len != sizeof(int)) 2996 return (EINVAL); 2997 preftemp = *(int *)buf; 2998 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 2999 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3000 preftemp != IP6PO_TEMPADDR_PREFER) { 3001 return (EINVAL); 3002 } 3003 opt->ip6po_prefer_tempaddr = preftemp; 3004 break; 3005 3006 default: 3007 return (ENOPROTOOPT); 3008 } /* end of switch */ 3009 3010 return (0); 3011 } 3012 3013 /* 3014 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3015 * packet to the input queue of a specified interface. Note that this 3016 * calls the output routine of the loopback "driver", but with an interface 3017 * pointer that might NOT be &loif -- easier than replicating that code here. 3018 */ 3019 void 3020 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3021 { 3022 struct mbuf *copym; 3023 struct ip6_hdr *ip6; 3024 3025 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3026 if (copym == NULL) 3027 return; 3028 3029 /* 3030 * Make sure to deep-copy IPv6 header portion in case the data 3031 * is in an mbuf cluster, so that we can safely override the IPv6 3032 * header portion later. 3033 */ 3034 if (!M_WRITABLE(copym) || 3035 copym->m_len < sizeof(struct ip6_hdr)) { 3036 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3037 if (copym == NULL) 3038 return; 3039 } 3040 ip6 = mtod(copym, struct ip6_hdr *); 3041 /* 3042 * clear embedded scope identifiers if necessary. 3043 * in6_clearscope will touch the addresses only when necessary. 3044 */ 3045 in6_clearscope(&ip6->ip6_src); 3046 in6_clearscope(&ip6->ip6_dst); 3047 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3048 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3049 CSUM_PSEUDO_HDR; 3050 copym->m_pkthdr.csum_data = 0xffff; 3051 } 3052 if_simloop(ifp, copym, AF_INET6, 0); 3053 } 3054 3055 /* 3056 * Chop IPv6 header off from the payload. 3057 */ 3058 static int 3059 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3060 { 3061 struct mbuf *mh; 3062 struct ip6_hdr *ip6; 3063 3064 ip6 = mtod(m, struct ip6_hdr *); 3065 if (m->m_len > sizeof(*ip6)) { 3066 mh = m_gethdr(M_NOWAIT, MT_DATA); 3067 if (mh == NULL) { 3068 m_freem(m); 3069 return ENOBUFS; 3070 } 3071 m_move_pkthdr(mh, m); 3072 M_ALIGN(mh, sizeof(*ip6)); 3073 m->m_len -= sizeof(*ip6); 3074 m->m_data += sizeof(*ip6); 3075 mh->m_next = m; 3076 m = mh; 3077 m->m_len = sizeof(*ip6); 3078 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3079 } 3080 exthdrs->ip6e_ip6 = m; 3081 return 0; 3082 } 3083 3084 /* 3085 * Compute IPv6 extension header length. 3086 */ 3087 int 3088 ip6_optlen(struct inpcb *in6p) 3089 { 3090 int len; 3091 3092 if (!in6p->in6p_outputopts) 3093 return 0; 3094 3095 len = 0; 3096 #define elen(x) \ 3097 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3098 3099 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3100 if (in6p->in6p_outputopts->ip6po_rthdr) 3101 /* dest1 is valid with rthdr only */ 3102 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3103 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3104 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3105 return len; 3106 #undef elen 3107 } 3108