1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 32 */ 33 34 /*- 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 */ 62 63 #include "opt_inet.h" 64 #include "opt_inet6.h" 65 #include "opt_ipsec.h" 66 #include "opt_kern_tls.h" 67 #include "opt_ratelimit.h" 68 #include "opt_route.h" 69 #include "opt_rss.h" 70 #include "opt_sctp.h" 71 72 #include <sys/param.h> 73 #include <sys/kernel.h> 74 #include <sys/ktls.h> 75 #include <sys/malloc.h> 76 #include <sys/mbuf.h> 77 #include <sys/errno.h> 78 #include <sys/priv.h> 79 #include <sys/proc.h> 80 #include <sys/protosw.h> 81 #include <sys/socket.h> 82 #include <sys/socketvar.h> 83 #include <sys/syslog.h> 84 #include <sys/ucred.h> 85 86 #include <machine/in_cksum.h> 87 88 #include <net/if.h> 89 #include <net/if_var.h> 90 #include <net/if_private.h> 91 #include <net/if_vlan_var.h> 92 #include <net/if_llatbl.h> 93 #include <net/ethernet.h> 94 #include <net/netisr.h> 95 #include <net/route.h> 96 #include <net/route/nhop.h> 97 #include <net/pfil.h> 98 #include <net/rss_config.h> 99 #include <net/vnet.h> 100 101 #include <netinet/in.h> 102 #include <netinet/in_var.h> 103 #include <netinet/ip_var.h> 104 #include <netinet6/in6_fib.h> 105 #include <netinet6/in6_var.h> 106 #include <netinet/ip6.h> 107 #include <netinet/icmp6.h> 108 #include <netinet6/ip6_var.h> 109 #include <netinet/in_pcb.h> 110 #include <netinet/tcp_var.h> 111 #include <netinet6/nd6.h> 112 #include <netinet6/in6_rss.h> 113 114 #include <netipsec/ipsec_support.h> 115 #if defined(SCTP) || defined(SCTP_SUPPORT) 116 #include <netinet/sctp.h> 117 #include <netinet/sctp_crc32.h> 118 #endif 119 120 #include <netinet6/scope6_var.h> 121 122 extern int in6_mcast_loop; 123 124 struct ip6_exthdrs { 125 struct mbuf *ip6e_ip6; 126 struct mbuf *ip6e_hbh; 127 struct mbuf *ip6e_dest1; 128 struct mbuf *ip6e_rthdr; 129 struct mbuf *ip6e_dest2; 130 }; 131 132 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 133 134 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 135 struct ucred *, int); 136 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 137 struct socket *, struct sockopt *); 138 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *); 139 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 140 struct ucred *, int, int, int); 141 142 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 143 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 144 struct ip6_frag **); 145 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 146 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 147 static void ip6_getpmtu(struct route_in6 *, int, 148 struct ifnet *, const struct in6_addr *, u_long *, u_int, u_int); 149 static void ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 150 u_long *, u_int); 151 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 152 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 153 154 /* 155 * Make an extension header from option data. hp is the source, 156 * mp is the destination, and _ol is the optlen. 157 */ 158 #define MAKE_EXTHDR(hp, mp, _ol) \ 159 do { \ 160 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 161 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 162 ((eh)->ip6e_len + 1) << 3); \ 163 if (error) \ 164 goto freehdrs; \ 165 (_ol) += (*(mp))->m_len; \ 166 } while (/*CONSTCOND*/ 0) 167 168 /* 169 * Form a chain of extension headers. 170 * m is the extension header mbuf 171 * mp is the previous mbuf in the chain 172 * p is the next header 173 * i is the type of option. 174 */ 175 #define MAKE_CHAIN(m, mp, p, i)\ 176 do {\ 177 if (m) {\ 178 if (!hdrsplit) \ 179 panic("%s:%d: assumption failed: "\ 180 "hdr not split: hdrsplit %d exthdrs %p",\ 181 __func__, __LINE__, hdrsplit, &exthdrs);\ 182 *mtod((m), u_char *) = *(p);\ 183 *(p) = (i);\ 184 p = mtod((m), u_char *);\ 185 (m)->m_next = (mp)->m_next;\ 186 (mp)->m_next = (m);\ 187 (mp) = (m);\ 188 }\ 189 } while (/*CONSTCOND*/ 0) 190 191 void 192 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 193 { 194 u_short csum; 195 196 csum = in_cksum_skip(m, offset + plen, offset); 197 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 198 csum = 0xffff; 199 offset += m->m_pkthdr.csum_data; /* checksum offset */ 200 201 if (offset + sizeof(csum) > m->m_len) 202 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 203 else 204 *(u_short *)mtodo(m, offset) = csum; 205 } 206 207 static void 208 ip6_output_delayed_csum(struct mbuf *m, struct ifnet *ifp, int csum_flags, 209 int plen, int optlen) 210 { 211 212 KASSERT((plen >= optlen), ("%s:%d: plen %d < optlen %d, m %p, ifp %p " 213 "csum_flags %#x", 214 __func__, __LINE__, plen, optlen, m, ifp, csum_flags)); 215 216 if (csum_flags & CSUM_DELAY_DATA_IPV6) { 217 in6_delayed_cksum(m, plen - optlen, 218 sizeof(struct ip6_hdr) + optlen); 219 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 220 } 221 #if defined(SCTP) || defined(SCTP_SUPPORT) 222 if (csum_flags & CSUM_SCTP_IPV6) { 223 sctp_delayed_cksum(m, sizeof(struct ip6_hdr) + optlen); 224 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 225 } 226 #endif 227 } 228 229 int 230 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 231 int fraglen , uint32_t id) 232 { 233 struct mbuf *m, **mnext, *m_frgpart; 234 struct ip6_hdr *ip6, *mhip6; 235 struct ip6_frag *ip6f; 236 int off; 237 int error; 238 int tlen = m0->m_pkthdr.len; 239 240 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); 241 242 m = m0; 243 ip6 = mtod(m, struct ip6_hdr *); 244 mnext = &m->m_nextpkt; 245 246 for (off = hlen; off < tlen; off += fraglen) { 247 m = m_gethdr(M_NOWAIT, MT_DATA); 248 if (!m) { 249 IP6STAT_INC(ip6s_odropped); 250 return (ENOBUFS); 251 } 252 253 /* 254 * Make sure the complete packet header gets copied 255 * from the originating mbuf to the newly created 256 * mbuf. This also ensures that existing firewall 257 * classification(s), VLAN tags and so on get copied 258 * to the resulting fragmented packet(s): 259 */ 260 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 261 m_free(m); 262 IP6STAT_INC(ip6s_odropped); 263 return (ENOBUFS); 264 } 265 266 *mnext = m; 267 mnext = &m->m_nextpkt; 268 m->m_data += max_linkhdr; 269 mhip6 = mtod(m, struct ip6_hdr *); 270 *mhip6 = *ip6; 271 m->m_len = sizeof(*mhip6); 272 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 273 if (error) { 274 IP6STAT_INC(ip6s_odropped); 275 return (error); 276 } 277 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 278 if (off + fraglen >= tlen) 279 fraglen = tlen - off; 280 else 281 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 282 mhip6->ip6_plen = htons((u_short)(fraglen + hlen + 283 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 284 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { 285 IP6STAT_INC(ip6s_odropped); 286 return (ENOBUFS); 287 } 288 m_cat(m, m_frgpart); 289 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); 290 ip6f->ip6f_reserved = 0; 291 ip6f->ip6f_ident = id; 292 ip6f->ip6f_nxt = nextproto; 293 IP6STAT_INC(ip6s_ofragments); 294 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 295 } 296 297 return (0); 298 } 299 300 static int 301 ip6_output_send(struct inpcb *inp, struct ifnet *ifp, struct ifnet *origifp, 302 struct mbuf *m, struct sockaddr_in6 *dst, struct route_in6 *ro, 303 bool stamp_tag) 304 { 305 #ifdef KERN_TLS 306 struct ktls_session *tls = NULL; 307 #endif 308 struct m_snd_tag *mst; 309 int error; 310 311 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 312 mst = NULL; 313 314 #ifdef KERN_TLS 315 /* 316 * If this is an unencrypted TLS record, save a reference to 317 * the record. This local reference is used to call 318 * ktls_output_eagain after the mbuf has been freed (thus 319 * dropping the mbuf's reference) in if_output. 320 */ 321 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 322 tls = ktls_hold(m->m_next->m_epg_tls); 323 mst = tls->snd_tag; 324 325 /* 326 * If a TLS session doesn't have a valid tag, it must 327 * have had an earlier ifp mismatch, so drop this 328 * packet. 329 */ 330 if (mst == NULL) { 331 m_freem(m); 332 error = EAGAIN; 333 goto done; 334 } 335 /* 336 * Always stamp tags that include NIC ktls. 337 */ 338 stamp_tag = true; 339 } 340 #endif 341 #ifdef RATELIMIT 342 if (inp != NULL && mst == NULL) { 343 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 344 (inp->inp_snd_tag != NULL && 345 inp->inp_snd_tag->ifp != ifp)) 346 in_pcboutput_txrtlmt(inp, ifp, m); 347 348 if (inp->inp_snd_tag != NULL) 349 mst = inp->inp_snd_tag; 350 } 351 #endif 352 if (stamp_tag && mst != NULL) { 353 KASSERT(m->m_pkthdr.rcvif == NULL, 354 ("trying to add a send tag to a forwarded packet")); 355 if (mst->ifp != ifp) { 356 m_freem(m); 357 error = EAGAIN; 358 goto done; 359 } 360 361 /* stamp send tag on mbuf */ 362 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 363 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 364 } 365 366 error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro); 367 368 done: 369 /* Check for route change invalidating send tags. */ 370 #ifdef KERN_TLS 371 if (tls != NULL) { 372 if (error == EAGAIN) 373 error = ktls_output_eagain(inp, tls); 374 ktls_free(tls); 375 } 376 #endif 377 #ifdef RATELIMIT 378 if (error == EAGAIN) 379 in_pcboutput_eagain(inp); 380 #endif 381 return (error); 382 } 383 384 /* 385 * IP6 output. 386 * The packet in mbuf chain m contains a skeletal IP6 header (with pri, len, 387 * nxt, hlim, src, dst). 388 * This function may modify ver and hlim only. 389 * The mbuf chain containing the packet will be freed. 390 * The mbuf opt, if present, will not be freed. 391 * If route_in6 ro is present and has ro_nh initialized, route lookup would be 392 * skipped and ro->ro_nh would be used. If ro is present but ro->ro_nh is NULL, 393 * then result of route lookup is stored in ro->ro_nh. 394 * 395 * Type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and nd_ifinfo.linkmtu 396 * is uint32_t. So we use u_long to hold largest one, which is rt_mtu. 397 * 398 * ifpp - XXX: just for statistics 399 */ 400 int 401 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 402 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 403 struct ifnet **ifpp, struct inpcb *inp) 404 { 405 struct ip6_hdr *ip6; 406 struct ifnet *ifp, *origifp; 407 struct mbuf *m = m0; 408 struct mbuf *mprev; 409 struct route_in6 *ro_pmtu; 410 struct nhop_object *nh; 411 struct sockaddr_in6 *dst, sin6, src_sa, dst_sa; 412 struct in6_addr odst; 413 u_char *nexthdrp; 414 int tlen, len; 415 int error = 0; 416 int vlan_pcp = -1; 417 struct in6_ifaddr *ia = NULL; 418 u_long mtu; 419 int dontfrag; 420 u_int32_t optlen, plen = 0, unfragpartlen; 421 struct ip6_exthdrs exthdrs; 422 struct in6_addr src0, dst0; 423 u_int32_t zone; 424 bool hdrsplit; 425 int sw_csum, tso; 426 int needfiblookup; 427 uint32_t fibnum; 428 struct m_tag *fwd_tag = NULL; 429 uint32_t id; 430 uint32_t optvalid; 431 432 NET_EPOCH_ASSERT(); 433 434 if (inp != NULL) { 435 INP_LOCK_ASSERT(inp); 436 M_SETFIB(m, inp->inp_inc.inc_fibnum); 437 if ((flags & IP_NODEFAULTFLOWID) == 0) { 438 /* Unconditionally set flowid. */ 439 m->m_pkthdr.flowid = inp->inp_flowid; 440 M_HASHTYPE_SET(m, inp->inp_flowtype); 441 } 442 if ((inp->inp_flags2 & INP_2PCP_SET) != 0) 443 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >> 444 INP_2PCP_SHIFT; 445 #ifdef NUMA 446 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 447 #endif 448 } 449 450 /* Source address validation. */ 451 ip6 = mtod(m, struct ip6_hdr *); 452 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 453 (flags & IPV6_UNSPECSRC) == 0) { 454 error = EOPNOTSUPP; 455 IP6STAT_INC(ip6s_badscope); 456 goto bad; 457 } 458 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 459 error = EOPNOTSUPP; 460 IP6STAT_INC(ip6s_badscope); 461 goto bad; 462 } 463 464 /* 465 * If we are given packet options to add extension headers prepare them. 466 * Calculate the total length of the extension header chain. 467 * Keep the length of the unfragmentable part for fragmentation. 468 */ 469 bzero(&exthdrs, sizeof(exthdrs)); 470 optlen = optvalid = 0; 471 unfragpartlen = sizeof(struct ip6_hdr); 472 if (opt) { 473 optvalid = opt->ip6po_valid; 474 475 /* Hop-by-Hop options header. */ 476 if ((optvalid & IP6PO_VALID_HBH) != 0) 477 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh, optlen); 478 479 /* Destination options header (1st part). */ 480 if ((optvalid & IP6PO_VALID_RHINFO) != 0) { 481 #ifndef RTHDR_SUPPORT_IMPLEMENTED 482 /* 483 * If there is a routing header, discard the packet 484 * right away here. RH0/1 are obsolete and we do not 485 * currently support RH2/3/4. 486 * People trying to use RH253/254 may want to disable 487 * this check. 488 * The moment we do support any routing header (again) 489 * this block should check the routing type more 490 * selectively. 491 */ 492 error = EINVAL; 493 goto bad; 494 #endif 495 496 /* 497 * Destination options header (1st part). 498 * This only makes sense with a routing header. 499 * See Section 9.2 of RFC 3542. 500 * Disabling this part just for MIP6 convenience is 501 * a bad idea. We need to think carefully about a 502 * way to make the advanced API coexist with MIP6 503 * options, which might automatically be inserted in 504 * the kernel. 505 */ 506 if ((optvalid & IP6PO_VALID_DEST1) != 0) 507 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1, 508 optlen); 509 } 510 /* Routing header. */ 511 if ((optvalid & IP6PO_VALID_RHINFO) != 0) 512 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr, optlen); 513 514 unfragpartlen += optlen; 515 516 /* 517 * NOTE: we don't add AH/ESP length here (done in 518 * ip6_ipsec_output()). 519 */ 520 521 /* Destination options header (2nd part). */ 522 if ((optvalid & IP6PO_VALID_DEST2) != 0) 523 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2, optlen); 524 } 525 526 /* 527 * If there is at least one extension header, 528 * separate IP6 header from the payload. 529 */ 530 hdrsplit = false; 531 if (optlen) { 532 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 533 m = NULL; 534 goto freehdrs; 535 } 536 m = exthdrs.ip6e_ip6; 537 ip6 = mtod(m, struct ip6_hdr *); 538 hdrsplit = true; 539 } 540 541 /* Adjust mbuf packet header length. */ 542 m->m_pkthdr.len += optlen; 543 plen = m->m_pkthdr.len - sizeof(*ip6); 544 545 /* If this is a jumbo payload, insert a jumbo payload option. */ 546 if (plen > IPV6_MAXPACKET) { 547 if (!hdrsplit) { 548 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 549 m = NULL; 550 goto freehdrs; 551 } 552 m = exthdrs.ip6e_ip6; 553 ip6 = mtod(m, struct ip6_hdr *); 554 hdrsplit = true; 555 } 556 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 557 goto freehdrs; 558 ip6->ip6_plen = 0; 559 } else 560 ip6->ip6_plen = htons(plen); 561 nexthdrp = &ip6->ip6_nxt; 562 563 if (optlen) { 564 /* 565 * Concatenate headers and fill in next header fields. 566 * Here we have, on "m" 567 * IPv6 payload 568 * and we insert headers accordingly. 569 * Finally, we should be getting: 570 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]. 571 * 572 * During the header composing process "m" points to IPv6 573 * header. "mprev" points to an extension header prior to esp. 574 */ 575 mprev = m; 576 577 /* 578 * We treat dest2 specially. This makes IPsec processing 579 * much easier. The goal here is to make mprev point the 580 * mbuf prior to dest2. 581 * 582 * Result: IPv6 dest2 payload. 583 * m and mprev will point to IPv6 header. 584 */ 585 if (exthdrs.ip6e_dest2) { 586 if (!hdrsplit) 587 panic("%s:%d: assumption failed: " 588 "hdr not split: hdrsplit %d exthdrs %p", 589 __func__, __LINE__, hdrsplit, &exthdrs); 590 exthdrs.ip6e_dest2->m_next = m->m_next; 591 m->m_next = exthdrs.ip6e_dest2; 592 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 593 ip6->ip6_nxt = IPPROTO_DSTOPTS; 594 } 595 596 /* 597 * Result: IPv6 hbh dest1 rthdr dest2 payload. 598 * m will point to IPv6 header. mprev will point to the 599 * extension header prior to dest2 (rthdr in the above case). 600 */ 601 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 602 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 603 IPPROTO_DSTOPTS); 604 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 605 IPPROTO_ROUTING); 606 } 607 608 IP6STAT_INC(ip6s_localout); 609 610 /* Route packet. */ 611 ro_pmtu = ro; 612 if ((optvalid & IP6PO_VALID_RHINFO) != 0) 613 ro = &opt->ip6po_route; 614 if (ro != NULL) 615 dst = (struct sockaddr_in6 *)&ro->ro_dst; 616 else 617 dst = &sin6; 618 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 619 620 again: 621 /* 622 * If specified, try to fill in the traffic class field. 623 * Do not override if a non-zero value is already set. 624 * We check the diffserv field and the ECN field separately. 625 */ 626 if ((optvalid & IP6PO_VALID_TC) != 0){ 627 int mask = 0; 628 629 if (IPV6_DSCP(ip6) == 0) 630 mask |= 0xfc; 631 if (IPV6_ECN(ip6) == 0) 632 mask |= 0x03; 633 if (mask != 0) 634 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 635 } 636 637 /* Fill in or override the hop limit field, if necessary. */ 638 if ((optvalid & IP6PO_VALID_HLIM) != 0) 639 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 640 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 641 if (im6o != NULL) 642 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 643 else 644 ip6->ip6_hlim = V_ip6_defmcasthlim; 645 } 646 647 if (ro == NULL || ro->ro_nh == NULL) { 648 bzero(dst, sizeof(*dst)); 649 dst->sin6_family = AF_INET6; 650 dst->sin6_len = sizeof(*dst); 651 dst->sin6_addr = ip6->ip6_dst; 652 } 653 /* 654 * Validate route against routing table changes. 655 * Make sure that the address family is set in route. 656 */ 657 nh = NULL; 658 ifp = NULL; 659 mtu = 0; 660 if (ro != NULL) { 661 if (ro->ro_nh != NULL && inp != NULL) { 662 ro->ro_dst.sin6_family = AF_INET6; /* XXX KASSERT? */ 663 NH_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, 664 fibnum); 665 } 666 if (ro->ro_nh != NULL && fwd_tag == NULL && 667 (!NH_IS_VALID(ro->ro_nh) || 668 ro->ro_dst.sin6_family != AF_INET6 || 669 !IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst))) 670 RO_INVALIDATE_CACHE(ro); 671 672 if (ro->ro_nh != NULL && fwd_tag == NULL && 673 ro->ro_dst.sin6_family == AF_INET6 && 674 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 675 /* Nexthop is valid and contains valid ifp */ 676 nh = ro->ro_nh; 677 } else { 678 if (ro->ro_lle) 679 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 680 ro->ro_lle = NULL; 681 if (fwd_tag == NULL) { 682 bzero(&dst_sa, sizeof(dst_sa)); 683 dst_sa.sin6_family = AF_INET6; 684 dst_sa.sin6_len = sizeof(dst_sa); 685 dst_sa.sin6_addr = ip6->ip6_dst; 686 } 687 error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, 688 &nh, fibnum, m->m_pkthdr.flowid); 689 if (error != 0) { 690 IP6STAT_INC(ip6s_noroute); 691 if (ifp != NULL) 692 in6_ifstat_inc(ifp, ifs6_out_discard); 693 goto bad; 694 } 695 /* 696 * At this point at least @ifp is not NULL 697 * Can be the case when dst is multicast, link-local or 698 * interface is explicitly specificed by the caller. 699 */ 700 } 701 if (nh == NULL) { 702 /* 703 * If in6_selectroute() does not return a nexthop 704 * dst may not have been updated. 705 */ 706 *dst = dst_sa; /* XXX */ 707 origifp = ifp; 708 mtu = ifp->if_mtu; 709 } else { 710 ifp = nh->nh_ifp; 711 origifp = nh->nh_aifp; 712 ia = (struct in6_ifaddr *)(nh->nh_ifa); 713 counter_u64_add(nh->nh_pksent, 1); 714 } 715 } else { 716 struct nhop_object *nh; 717 struct in6_addr kdst; 718 uint32_t scopeid; 719 720 if (fwd_tag == NULL) { 721 bzero(&dst_sa, sizeof(dst_sa)); 722 dst_sa.sin6_family = AF_INET6; 723 dst_sa.sin6_len = sizeof(dst_sa); 724 dst_sa.sin6_addr = ip6->ip6_dst; 725 } 726 727 if (IN6_IS_ADDR_MULTICAST(&dst_sa.sin6_addr) && 728 im6o != NULL && 729 (ifp = im6o->im6o_multicast_ifp) != NULL) { 730 /* We do not need a route lookup. */ 731 *dst = dst_sa; /* XXX */ 732 origifp = ifp; 733 goto nonh6lookup; 734 } 735 736 in6_splitscope(&dst_sa.sin6_addr, &kdst, &scopeid); 737 738 if (IN6_IS_ADDR_MC_LINKLOCAL(&dst_sa.sin6_addr) || 739 IN6_IS_ADDR_MC_NODELOCAL(&dst_sa.sin6_addr)) { 740 if (scopeid > 0) { 741 ifp = in6_getlinkifnet(scopeid); 742 if (ifp == NULL) { 743 error = EHOSTUNREACH; 744 goto bad; 745 } 746 *dst = dst_sa; /* XXX */ 747 origifp = ifp; 748 goto nonh6lookup; 749 } 750 } 751 752 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 753 m->m_pkthdr.flowid); 754 if (nh == NULL) { 755 IP6STAT_INC(ip6s_noroute); 756 /* No ifp in6_ifstat_inc(ifp, ifs6_out_discard); */ 757 error = EHOSTUNREACH; 758 goto bad; 759 } 760 761 ifp = nh->nh_ifp; 762 origifp = nh->nh_aifp; 763 ia = ifatoia6(nh->nh_ifa); 764 if (nh->nh_flags & NHF_GATEWAY) 765 dst->sin6_addr = nh->gw6_sa.sin6_addr; 766 else if (fwd_tag != NULL) 767 dst->sin6_addr = dst_sa.sin6_addr; 768 nonh6lookup: 769 ; 770 } 771 /* 772 * At this point ifp MUST be pointing to the valid transmit ifp. 773 * origifp MUST be valid and pointing to either the same ifp or, 774 * in case of loopback output, to the interface which ip6_src 775 * belongs to. 776 * Examples: 777 * fe80::1%em0 -> fe80::2%em0 -> ifp=em0, origifp=em0 778 * fe80::1%em0 -> fe80::1%em0 -> ifp=lo0, origifp=em0 779 * ::1 -> ::1 -> ifp=lo0, origifp=lo0 780 * 781 * mtu can be 0 and will be refined later. 782 */ 783 KASSERT((ifp != NULL), ("output interface must not be NULL")); 784 KASSERT((origifp != NULL), ("output address interface must not be NULL")); 785 786 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 787 /* 788 * IPSec checking which handles several cases. 789 * FAST IPSEC: We re-injected the packet. 790 * XXX: need scope argument. 791 */ 792 if (IPSEC_ENABLED(ipv6)) { 793 if ((error = IPSEC_OUTPUT(ipv6, ifp, m, inp, mtu == 0 ? 794 ifp->if_mtu : mtu)) != 0) { 795 if (error == EINPROGRESS) 796 error = 0; 797 goto done; 798 } 799 } 800 #endif /* IPSEC */ 801 802 if ((flags & IPV6_FORWARDING) == 0) { 803 /* XXX: the FORWARDING flag can be set for mrouting. */ 804 in6_ifstat_inc(ifp, ifs6_out_request); 805 } 806 807 /* Setup data structures for scope ID checks. */ 808 src0 = ip6->ip6_src; 809 bzero(&src_sa, sizeof(src_sa)); 810 src_sa.sin6_family = AF_INET6; 811 src_sa.sin6_len = sizeof(src_sa); 812 src_sa.sin6_addr = ip6->ip6_src; 813 814 dst0 = ip6->ip6_dst; 815 /* Re-initialize to be sure. */ 816 bzero(&dst_sa, sizeof(dst_sa)); 817 dst_sa.sin6_family = AF_INET6; 818 dst_sa.sin6_len = sizeof(dst_sa); 819 dst_sa.sin6_addr = ip6->ip6_dst; 820 821 /* Check for valid scope ID. */ 822 if (in6_setscope(&src0, origifp, &zone) == 0 && 823 sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id && 824 in6_setscope(&dst0, origifp, &zone) == 0 && 825 sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) { 826 /* 827 * The outgoing interface is in the zone of the source 828 * and destination addresses. 829 * 830 */ 831 } else if ((origifp->if_flags & IFF_LOOPBACK) == 0 || 832 sa6_recoverscope(&src_sa) != 0 || 833 sa6_recoverscope(&dst_sa) != 0 || 834 dst_sa.sin6_scope_id == 0 || 835 (src_sa.sin6_scope_id != 0 && 836 src_sa.sin6_scope_id != dst_sa.sin6_scope_id) || 837 ifnet_byindex(dst_sa.sin6_scope_id) == NULL) { 838 /* 839 * If the destination network interface is not a 840 * loopback interface, or the destination network 841 * address has no scope ID, or the source address has 842 * a scope ID set which is different from the 843 * destination address one, or there is no network 844 * interface representing this scope ID, the address 845 * pair is considered invalid. 846 */ 847 IP6STAT_INC(ip6s_badscope); 848 in6_ifstat_inc(origifp, ifs6_out_discard); 849 if (error == 0) 850 error = EHOSTUNREACH; /* XXX */ 851 goto bad; 852 } 853 /* All scope ID checks are successful. */ 854 855 if (nh && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 856 if ((optvalid & IP6PO_VALID_NHINFO) != 0) { 857 /* 858 * The nexthop is explicitly specified by the 859 * application. We assume the next hop is an IPv6 860 * address. 861 */ 862 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 863 } 864 else if ((nh->nh_flags & NHF_GATEWAY)) 865 dst = &nh->gw6_sa; 866 } 867 868 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 869 m->m_flags &= ~(M_BCAST | M_MCAST); /* Just in case. */ 870 } else { 871 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 872 in6_ifstat_inc(ifp, ifs6_out_mcast); 873 874 /* Confirm that the outgoing interface supports multicast. */ 875 if (!(ifp->if_flags & IFF_MULTICAST)) { 876 IP6STAT_INC(ip6s_noroute); 877 in6_ifstat_inc(ifp, ifs6_out_discard); 878 error = ENETUNREACH; 879 goto bad; 880 } 881 if ((im6o == NULL && in6_mcast_loop) || 882 (im6o && im6o->im6o_multicast_loop)) { 883 /* 884 * Loop back multicast datagram if not expressly 885 * forbidden to do so, even if we have not joined 886 * the address; protocols will filter it later, 887 * thus deferring a hash lookup and lock acquisition 888 * at the expense of an m_copym(). 889 */ 890 ip6_mloopback(ifp, m); 891 } else { 892 /* 893 * If we are acting as a multicast router, perform 894 * multicast forwarding as if the packet had just 895 * arrived on the interface to which we are about 896 * to send. The multicast forwarding function 897 * recursively calls this function, using the 898 * IPV6_FORWARDING flag to prevent infinite recursion. 899 * 900 * Multicasts that are looped back by ip6_mloopback(), 901 * above, will be forwarded by the ip6_input() routine, 902 * if necessary. 903 */ 904 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 905 /* 906 * XXX: ip6_mforward expects that rcvif is NULL 907 * when it is called from the originating path. 908 * However, it may not always be the case. 909 */ 910 m->m_pkthdr.rcvif = NULL; 911 if (ip6_mforward(ip6, ifp, m) != 0) { 912 m_freem(m); 913 goto done; 914 } 915 } 916 } 917 /* 918 * Multicasts with a hoplimit of zero may be looped back, 919 * above, but must not be transmitted on a network. 920 * Also, multicasts addressed to the loopback interface 921 * are not sent -- the above call to ip6_mloopback() will 922 * loop back a copy if this host actually belongs to the 923 * destination group on the loopback interface. 924 */ 925 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 926 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 927 m_freem(m); 928 goto done; 929 } 930 } 931 932 /* 933 * Fill the outgoing inteface to tell the upper layer 934 * to increment per-interface statistics. 935 */ 936 if (ifpp) 937 *ifpp = ifp; 938 939 /* Determine path MTU. */ 940 ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, &mtu, fibnum, 941 *nexthdrp); 942 KASSERT(mtu > 0, ("%s:%d: mtu %ld, ro_pmtu %p ro %p ifp %p fibnum %u", 943 __func__, __LINE__, mtu, ro_pmtu, ro, ifp, fibnum)); 944 945 /* 946 * The caller of this function may specify to use the minimum MTU 947 * in some cases. 948 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 949 * setting. The logic is a bit complicated; by default, unicast 950 * packets will follow path MTU while multicast packets will be sent at 951 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 952 * including unicast ones will be sent at the minimum MTU. Multicast 953 * packets will always be sent at the minimum MTU unless 954 * IP6PO_MINMTU_DISABLE is explicitly specified. 955 * See RFC 3542 for more details. 956 */ 957 if (mtu > IPV6_MMTU) { 958 if ((flags & IPV6_MINMTU)) 959 mtu = IPV6_MMTU; 960 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 961 mtu = IPV6_MMTU; 962 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 963 (opt == NULL || 964 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 965 mtu = IPV6_MMTU; 966 } 967 } 968 969 /* 970 * Clear embedded scope identifiers if necessary. 971 * in6_clearscope() will touch the addresses only when necessary. 972 */ 973 in6_clearscope(&ip6->ip6_src); 974 in6_clearscope(&ip6->ip6_dst); 975 976 /* 977 * If the outgoing packet contains a hop-by-hop options header, 978 * it must be examined and processed even by the source node. 979 * (RFC 2460, section 4.) 980 */ 981 if (exthdrs.ip6e_hbh) { 982 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 983 u_int32_t dummy; /* XXX unused */ 984 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 985 986 #ifdef DIAGNOSTIC 987 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 988 panic("ip6e_hbh is not contiguous"); 989 #endif 990 /* 991 * XXX: if we have to send an ICMPv6 error to the sender, 992 * we need the M_LOOP flag since icmp6_error() expects 993 * the IPv6 and the hop-by-hop options header are 994 * contiguous unless the flag is set. 995 */ 996 m->m_flags |= M_LOOP; 997 m->m_pkthdr.rcvif = ifp; 998 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 999 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 1000 &dummy, &plen) < 0) { 1001 /* m was already freed at this point. */ 1002 error = EINVAL;/* better error? */ 1003 goto done; 1004 } 1005 m->m_flags &= ~M_LOOP; /* XXX */ 1006 m->m_pkthdr.rcvif = NULL; 1007 } 1008 1009 /* Jump over all PFIL processing if hooks are not active. */ 1010 if (!PFIL_HOOKED_OUT(V_inet6_pfil_head)) 1011 goto passout; 1012 1013 odst = ip6->ip6_dst; 1014 /* Run through list of hooks for output packets. */ 1015 switch (pfil_mbuf_out(V_inet6_pfil_head, &m, ifp, inp)) { 1016 case PFIL_PASS: 1017 ip6 = mtod(m, struct ip6_hdr *); 1018 break; 1019 case PFIL_DROPPED: 1020 error = EACCES; 1021 /* FALLTHROUGH */ 1022 case PFIL_CONSUMED: 1023 goto done; 1024 } 1025 1026 needfiblookup = 0; 1027 /* See if destination IP address was changed by packet filter. */ 1028 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 1029 m->m_flags |= M_SKIP_FIREWALL; 1030 /* If destination is now ourself drop to ip6_input(). */ 1031 if (in6_localip(&ip6->ip6_dst)) { 1032 m->m_flags |= M_FASTFWD_OURS; 1033 if (m->m_pkthdr.rcvif == NULL) 1034 m->m_pkthdr.rcvif = V_loif; 1035 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1036 m->m_pkthdr.csum_flags |= 1037 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1038 m->m_pkthdr.csum_data = 0xffff; 1039 } 1040 #if defined(SCTP) || defined(SCTP_SUPPORT) 1041 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1042 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1043 #endif 1044 error = netisr_queue(NETISR_IPV6, m); 1045 goto done; 1046 } else { 1047 if (ro != NULL) 1048 RO_INVALIDATE_CACHE(ro); 1049 needfiblookup = 1; /* Redo the routing table lookup. */ 1050 } 1051 } 1052 /* See if fib was changed by packet filter. */ 1053 if (fibnum != M_GETFIB(m)) { 1054 m->m_flags |= M_SKIP_FIREWALL; 1055 fibnum = M_GETFIB(m); 1056 if (ro != NULL) 1057 RO_INVALIDATE_CACHE(ro); 1058 needfiblookup = 1; 1059 } 1060 if (needfiblookup) 1061 goto again; 1062 1063 /* See if local, if yes, send it to netisr. */ 1064 if (m->m_flags & M_FASTFWD_OURS) { 1065 if (m->m_pkthdr.rcvif == NULL) 1066 m->m_pkthdr.rcvif = V_loif; 1067 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1068 m->m_pkthdr.csum_flags |= 1069 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1070 m->m_pkthdr.csum_data = 0xffff; 1071 } 1072 #if defined(SCTP) || defined(SCTP_SUPPORT) 1073 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1074 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1075 #endif 1076 error = netisr_queue(NETISR_IPV6, m); 1077 goto done; 1078 } 1079 /* Or forward to some other address? */ 1080 if ((m->m_flags & M_IP6_NEXTHOP) && 1081 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 1082 if (ro != NULL) 1083 dst = (struct sockaddr_in6 *)&ro->ro_dst; 1084 else 1085 dst = &sin6; 1086 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 1087 m->m_flags |= M_SKIP_FIREWALL; 1088 m->m_flags &= ~M_IP6_NEXTHOP; 1089 m_tag_delete(m, fwd_tag); 1090 goto again; 1091 } 1092 1093 passout: 1094 if (vlan_pcp > -1) 1095 EVL_APPLY_PRI(m, vlan_pcp); 1096 1097 /* Ensure the packet data is mapped if the interface requires it. */ 1098 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 1099 struct mbuf *m1; 1100 1101 error = mb_unmapped_to_ext(m, &m1); 1102 if (error != 0) { 1103 if (error == EINVAL) { 1104 if_printf(ifp, "TLS packet\n"); 1105 /* XXXKIB */ 1106 } else if (error == ENOMEM) { 1107 error = ENOBUFS; 1108 } 1109 IP6STAT_INC(ip6s_odropped); 1110 return (error); 1111 } else { 1112 m = m1; 1113 } 1114 } 1115 1116 /* 1117 * Send the packet to the outgoing interface. 1118 * If necessary, do IPv6 fragmentation before sending. 1119 * 1120 * 1: normal case (dontfrag == 0) 1121 * 1-a: send as is if tlen <= path mtu 1122 * 1-b: fragment if tlen > path mtu 1123 * 1124 * 2: if user asks us not to fragment (dontfrag == 1) 1125 * 2-a: send as is if tlen <= interface mtu 1126 * 2-b: error if tlen > interface mtu 1127 */ 1128 sw_csum = m->m_pkthdr.csum_flags; 1129 if (!hdrsplit) { 1130 tso = ((sw_csum & ifp->if_hwassist & 1131 (CSUM_TSO | CSUM_INNER_TSO)) != 0) ? 1 : 0; 1132 sw_csum &= ~ifp->if_hwassist; 1133 } else 1134 tso = 0; 1135 /* 1136 * If we added extension headers, we will not do TSO and calculate the 1137 * checksums ourselves for now. 1138 * XXX-BZ Need a framework to know when the NIC can handle it, even 1139 * with ext. hdrs. 1140 */ 1141 ip6_output_delayed_csum(m, ifp, sw_csum, plen, optlen); 1142 /* XXX-BZ m->m_pkthdr.csum_flags &= ~ifp->if_hwassist; */ 1143 tlen = m->m_pkthdr.len; 1144 1145 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 1146 dontfrag = 1; 1147 else 1148 dontfrag = 0; 1149 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* Case 2-b. */ 1150 /* 1151 * If the DONTFRAG option is specified, we cannot send the 1152 * packet when the data length is larger than the MTU of the 1153 * outgoing interface. 1154 * Notify the error by sending IPV6_PATHMTU ancillary data if 1155 * application wanted to know the MTU value. Also return an 1156 * error code (this is not described in the API spec). 1157 */ 1158 if (inp != NULL) 1159 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 1160 error = EMSGSIZE; 1161 goto bad; 1162 } 1163 1164 /* Transmit packet without fragmentation. */ 1165 if (dontfrag || tlen <= mtu) { /* Cases 1-a and 2-a. */ 1166 struct in6_ifaddr *ia6; 1167 1168 ip6 = mtod(m, struct ip6_hdr *); 1169 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1170 if (ia6) { 1171 /* Record statistics for this interface address. */ 1172 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 1173 counter_u64_add(ia6->ia_ifa.ifa_obytes, 1174 m->m_pkthdr.len); 1175 } 1176 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1177 (flags & IP_NO_SND_TAG_RL) ? false : true); 1178 goto done; 1179 } 1180 1181 /* Try to fragment the packet. Case 1-b. */ 1182 if (mtu < IPV6_MMTU) { 1183 /* Path MTU cannot be less than IPV6_MMTU. */ 1184 error = EMSGSIZE; 1185 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1186 goto bad; 1187 } else if (ip6->ip6_plen == 0) { 1188 /* Jumbo payload cannot be fragmented. */ 1189 error = EMSGSIZE; 1190 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1191 goto bad; 1192 } else { 1193 u_char nextproto; 1194 1195 /* 1196 * Too large for the destination or interface; 1197 * fragment if possible. 1198 * Must be able to put at least 8 bytes per fragment. 1199 */ 1200 if (mtu > IPV6_MAXPACKET) 1201 mtu = IPV6_MAXPACKET; 1202 1203 len = (mtu - unfragpartlen - sizeof(struct ip6_frag)) & ~7; 1204 if (len < 8) { 1205 error = EMSGSIZE; 1206 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1207 goto bad; 1208 } 1209 1210 /* 1211 * If the interface will not calculate checksums on 1212 * fragmented packets, then do it here. 1213 * XXX-BZ handle the hw offloading case. Need flags. 1214 */ 1215 ip6_output_delayed_csum(m, ifp, m->m_pkthdr.csum_flags, plen, 1216 optlen); 1217 1218 /* 1219 * Change the next header field of the last header in the 1220 * unfragmentable part. 1221 */ 1222 if (exthdrs.ip6e_rthdr) { 1223 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1224 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1225 } else if (exthdrs.ip6e_dest1) { 1226 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1227 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1228 } else if (exthdrs.ip6e_hbh) { 1229 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1230 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1231 } else { 1232 ip6 = mtod(m, struct ip6_hdr *); 1233 nextproto = ip6->ip6_nxt; 1234 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1235 } 1236 1237 /* 1238 * Loop through length of segment after first fragment, 1239 * make new header and copy data of each part and link onto 1240 * chain. 1241 */ 1242 m0 = m; 1243 id = htonl(ip6_randomid()); 1244 error = ip6_fragment(ifp, m, unfragpartlen, nextproto,len, id); 1245 if (error != 0) 1246 goto sendorfree; 1247 1248 in6_ifstat_inc(ifp, ifs6_out_fragok); 1249 } 1250 1251 /* Remove leading garbage. */ 1252 sendorfree: 1253 m = m0->m_nextpkt; 1254 m0->m_nextpkt = 0; 1255 m_freem(m0); 1256 for (; m; m = m0) { 1257 m0 = m->m_nextpkt; 1258 m->m_nextpkt = 0; 1259 if (error == 0) { 1260 /* Record statistics for this interface address. */ 1261 if (ia) { 1262 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1263 counter_u64_add(ia->ia_ifa.ifa_obytes, 1264 m->m_pkthdr.len); 1265 } 1266 if (vlan_pcp > -1) 1267 EVL_APPLY_PRI(m, vlan_pcp); 1268 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1269 true); 1270 } else 1271 m_freem(m); 1272 } 1273 1274 if (error == 0) 1275 IP6STAT_INC(ip6s_fragmented); 1276 1277 done: 1278 return (error); 1279 1280 freehdrs: 1281 m_freem(exthdrs.ip6e_hbh); /* m_freem() checks if mbuf is NULL. */ 1282 m_freem(exthdrs.ip6e_dest1); 1283 m_freem(exthdrs.ip6e_rthdr); 1284 m_freem(exthdrs.ip6e_dest2); 1285 /* FALLTHROUGH */ 1286 bad: 1287 if (m) 1288 m_freem(m); 1289 goto done; 1290 } 1291 1292 static int 1293 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1294 { 1295 struct mbuf *m; 1296 1297 if (hlen > MCLBYTES) 1298 return (ENOBUFS); /* XXX */ 1299 1300 if (hlen > MLEN) 1301 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1302 else 1303 m = m_get(M_NOWAIT, MT_DATA); 1304 if (m == NULL) 1305 return (ENOBUFS); 1306 m->m_len = hlen; 1307 if (hdr) 1308 bcopy(hdr, mtod(m, caddr_t), hlen); 1309 1310 *mp = m; 1311 return (0); 1312 } 1313 1314 /* 1315 * Insert jumbo payload option. 1316 */ 1317 static int 1318 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1319 { 1320 struct mbuf *mopt; 1321 u_char *optbuf; 1322 u_int32_t v; 1323 1324 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1325 1326 /* 1327 * If there is no hop-by-hop options header, allocate new one. 1328 * If there is one but it doesn't have enough space to store the 1329 * jumbo payload option, allocate a cluster to store the whole options. 1330 * Otherwise, use it to store the options. 1331 */ 1332 if (exthdrs->ip6e_hbh == NULL) { 1333 mopt = m_get(M_NOWAIT, MT_DATA); 1334 if (mopt == NULL) 1335 return (ENOBUFS); 1336 mopt->m_len = JUMBOOPTLEN; 1337 optbuf = mtod(mopt, u_char *); 1338 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1339 exthdrs->ip6e_hbh = mopt; 1340 } else { 1341 struct ip6_hbh *hbh; 1342 1343 mopt = exthdrs->ip6e_hbh; 1344 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1345 /* 1346 * XXX assumption: 1347 * - exthdrs->ip6e_hbh is not referenced from places 1348 * other than exthdrs. 1349 * - exthdrs->ip6e_hbh is not an mbuf chain. 1350 */ 1351 int oldoptlen = mopt->m_len; 1352 struct mbuf *n; 1353 1354 /* 1355 * XXX: give up if the whole (new) hbh header does 1356 * not fit even in an mbuf cluster. 1357 */ 1358 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1359 return (ENOBUFS); 1360 1361 /* 1362 * As a consequence, we must always prepare a cluster 1363 * at this point. 1364 */ 1365 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1366 if (n == NULL) 1367 return (ENOBUFS); 1368 n->m_len = oldoptlen + JUMBOOPTLEN; 1369 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1370 oldoptlen); 1371 optbuf = mtod(n, caddr_t) + oldoptlen; 1372 m_freem(mopt); 1373 mopt = exthdrs->ip6e_hbh = n; 1374 } else { 1375 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1376 mopt->m_len += JUMBOOPTLEN; 1377 } 1378 optbuf[0] = IP6OPT_PADN; 1379 optbuf[1] = 1; 1380 1381 /* 1382 * Adjust the header length according to the pad and 1383 * the jumbo payload option. 1384 */ 1385 hbh = mtod(mopt, struct ip6_hbh *); 1386 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1387 } 1388 1389 /* fill in the option. */ 1390 optbuf[2] = IP6OPT_JUMBO; 1391 optbuf[3] = 4; 1392 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1393 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1394 1395 /* finally, adjust the packet header length */ 1396 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1397 1398 return (0); 1399 #undef JUMBOOPTLEN 1400 } 1401 1402 /* 1403 * Insert fragment header and copy unfragmentable header portions. 1404 */ 1405 static int 1406 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1407 struct ip6_frag **frghdrp) 1408 { 1409 struct mbuf *n, *mlast; 1410 1411 if (hlen > sizeof(struct ip6_hdr)) { 1412 n = m_copym(m0, sizeof(struct ip6_hdr), 1413 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1414 if (n == NULL) 1415 return (ENOBUFS); 1416 m->m_next = n; 1417 } else 1418 n = m; 1419 1420 /* Search for the last mbuf of unfragmentable part. */ 1421 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1422 ; 1423 1424 if (M_WRITABLE(mlast) && 1425 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1426 /* use the trailing space of the last mbuf for the fragment hdr */ 1427 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1428 mlast->m_len); 1429 mlast->m_len += sizeof(struct ip6_frag); 1430 m->m_pkthdr.len += sizeof(struct ip6_frag); 1431 } else { 1432 /* allocate a new mbuf for the fragment header */ 1433 struct mbuf *mfrg; 1434 1435 mfrg = m_get(M_NOWAIT, MT_DATA); 1436 if (mfrg == NULL) 1437 return (ENOBUFS); 1438 mfrg->m_len = sizeof(struct ip6_frag); 1439 *frghdrp = mtod(mfrg, struct ip6_frag *); 1440 mlast->m_next = mfrg; 1441 } 1442 1443 return (0); 1444 } 1445 1446 /* 1447 * Calculates IPv6 path mtu for destination @dst. 1448 * Resulting MTU is stored in @mtup. 1449 * 1450 * Returns 0 on success. 1451 */ 1452 static int 1453 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1454 { 1455 struct epoch_tracker et; 1456 struct nhop_object *nh; 1457 struct in6_addr kdst; 1458 uint32_t scopeid; 1459 int error; 1460 1461 in6_splitscope(dst, &kdst, &scopeid); 1462 1463 NET_EPOCH_ENTER(et); 1464 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1465 if (nh != NULL) { 1466 ip6_calcmtu(nh->nh_ifp, dst, nh->nh_mtu, mtup, 0); 1467 error = 0; 1468 } else 1469 error = EHOSTUNREACH; 1470 NET_EPOCH_EXIT(et); 1471 1472 return (error); 1473 } 1474 1475 /* 1476 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1477 * and cached data in @ro_pmtu. 1478 * MTU from (successful) route lookup is saved (along with dst) 1479 * inside @ro_pmtu to avoid subsequent route lookups after packet 1480 * filter processing. 1481 * 1482 * Stores mtu into @mtup. 1483 */ 1484 static void 1485 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1486 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1487 u_int fibnum, u_int proto) 1488 { 1489 struct nhop_object *nh; 1490 struct in6_addr kdst; 1491 uint32_t scopeid; 1492 struct sockaddr_in6 *sa6_dst, sin6; 1493 u_long mtu; 1494 1495 NET_EPOCH_ASSERT(); 1496 1497 mtu = 0; 1498 if (ro_pmtu == NULL || do_lookup) { 1499 /* 1500 * Here ro_pmtu has final destination address, while 1501 * ro might represent immediate destination. 1502 * Use ro_pmtu destination since mtu might differ. 1503 */ 1504 if (ro_pmtu != NULL) { 1505 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1506 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1507 ro_pmtu->ro_mtu = 0; 1508 } else 1509 sa6_dst = &sin6; 1510 1511 if (ro_pmtu == NULL || ro_pmtu->ro_mtu == 0) { 1512 bzero(sa6_dst, sizeof(*sa6_dst)); 1513 sa6_dst->sin6_family = AF_INET6; 1514 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1515 sa6_dst->sin6_addr = *dst; 1516 1517 in6_splitscope(dst, &kdst, &scopeid); 1518 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1519 if (nh != NULL) { 1520 mtu = nh->nh_mtu; 1521 if (ro_pmtu != NULL) 1522 ro_pmtu->ro_mtu = mtu; 1523 } 1524 } else 1525 mtu = ro_pmtu->ro_mtu; 1526 } 1527 1528 if (ro_pmtu != NULL && ro_pmtu->ro_nh != NULL) 1529 mtu = ro_pmtu->ro_nh->nh_mtu; 1530 1531 ip6_calcmtu(ifp, dst, mtu, mtup, proto); 1532 } 1533 1534 /* 1535 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1536 * hostcache data for @dst. 1537 * Stores mtu into @mtup. 1538 */ 1539 static void 1540 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1541 u_long *mtup, u_int proto) 1542 { 1543 u_long mtu = 0; 1544 1545 if (rt_mtu > 0) { 1546 /* Skip the hostcache if the protocol handles PMTU changes. */ 1547 if (proto != IPPROTO_TCP && proto != IPPROTO_SCTP) { 1548 struct in_conninfo inc = { 1549 .inc_flags = INC_ISIPV6, 1550 .inc6_faddr = *dst, 1551 }; 1552 1553 mtu = tcp_hc_getmtu(&inc); 1554 } 1555 1556 if (mtu) 1557 mtu = min(mtu, rt_mtu); 1558 else 1559 mtu = rt_mtu; 1560 } 1561 1562 if (mtu == 0) 1563 mtu = IN6_LINKMTU(ifp); 1564 1565 *mtup = mtu; 1566 } 1567 1568 /* 1569 * IP6 socket option processing. 1570 */ 1571 int 1572 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1573 { 1574 int optdatalen, uproto; 1575 void *optdata; 1576 struct inpcb *inp = sotoinpcb(so); 1577 int error, optval; 1578 int level, op, optname; 1579 int optlen; 1580 struct thread *td; 1581 #ifdef RSS 1582 uint32_t rss_bucket; 1583 int retval; 1584 #endif 1585 1586 /* 1587 * Don't use more than a quarter of mbuf clusters. N.B.: 1588 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1589 * on LP64 architectures, so cast to u_long to avoid undefined 1590 * behavior. ILP32 architectures cannot have nmbclusters 1591 * large enough to overflow for other reasons. 1592 */ 1593 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1594 1595 level = sopt->sopt_level; 1596 op = sopt->sopt_dir; 1597 optname = sopt->sopt_name; 1598 optlen = sopt->sopt_valsize; 1599 td = sopt->sopt_td; 1600 error = 0; 1601 optval = 0; 1602 uproto = (int)so->so_proto->pr_protocol; 1603 1604 if (level != IPPROTO_IPV6) { 1605 error = EINVAL; 1606 1607 if (sopt->sopt_level == SOL_SOCKET && 1608 sopt->sopt_dir == SOPT_SET) { 1609 switch (sopt->sopt_name) { 1610 case SO_SETFIB: 1611 error = sooptcopyin(sopt, &optval, 1612 sizeof(optval), sizeof(optval)); 1613 if (error != 0) 1614 break; 1615 1616 INP_WLOCK(inp); 1617 if ((inp->inp_flags & INP_BOUNDFIB) != 0 && 1618 optval != so->so_fibnum) { 1619 INP_WUNLOCK(inp); 1620 error = EISCONN; 1621 break; 1622 } 1623 error = sosetfib(inp->inp_socket, optval); 1624 if (error == 0) 1625 inp->inp_inc.inc_fibnum = optval; 1626 INP_WUNLOCK(inp); 1627 break; 1628 case SO_MAX_PACING_RATE: 1629 #ifdef RATELIMIT 1630 INP_WLOCK(inp); 1631 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1632 INP_WUNLOCK(inp); 1633 error = 0; 1634 #else 1635 error = EOPNOTSUPP; 1636 #endif 1637 break; 1638 default: 1639 break; 1640 } 1641 } 1642 } else { /* level == IPPROTO_IPV6 */ 1643 switch (op) { 1644 case SOPT_SET: 1645 switch (optname) { 1646 case IPV6_2292PKTOPTIONS: 1647 #ifdef IPV6_PKTOPTIONS 1648 case IPV6_PKTOPTIONS: 1649 #endif 1650 { 1651 struct mbuf *m; 1652 1653 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1654 printf("ip6_ctloutput: mbuf limit hit\n"); 1655 error = ENOBUFS; 1656 break; 1657 } 1658 1659 error = soopt_getm(sopt, &m); /* XXX */ 1660 if (error != 0) 1661 break; 1662 error = soopt_mcopyin(sopt, m); /* XXX */ 1663 if (error != 0) 1664 break; 1665 INP_WLOCK(inp); 1666 error = ip6_pcbopts(&inp->in6p_outputopts, m, 1667 so, sopt); 1668 INP_WUNLOCK(inp); 1669 m_freem(m); /* XXX */ 1670 break; 1671 } 1672 1673 /* 1674 * Use of some Hop-by-Hop options or some 1675 * Destination options, might require special 1676 * privilege. That is, normal applications 1677 * (without special privilege) might be forbidden 1678 * from setting certain options in outgoing packets, 1679 * and might never see certain options in received 1680 * packets. [RFC 2292 Section 6] 1681 * KAME specific note: 1682 * KAME prevents non-privileged users from sending or 1683 * receiving ANY hbh/dst options in order to avoid 1684 * overhead of parsing options in the kernel. 1685 */ 1686 case IPV6_RECVHOPOPTS: 1687 case IPV6_RECVDSTOPTS: 1688 case IPV6_RECVRTHDRDSTOPTS: 1689 if (td != NULL) { 1690 error = priv_check(td, 1691 PRIV_NETINET_SETHDROPTS); 1692 if (error) 1693 break; 1694 } 1695 /* FALLTHROUGH */ 1696 case IPV6_UNICAST_HOPS: 1697 case IPV6_HOPLIMIT: 1698 1699 case IPV6_RECVPKTINFO: 1700 case IPV6_RECVHOPLIMIT: 1701 case IPV6_RECVRTHDR: 1702 case IPV6_RECVPATHMTU: 1703 case IPV6_RECVTCLASS: 1704 case IPV6_RECVFLOWID: 1705 #ifdef RSS 1706 case IPV6_RECVRSSBUCKETID: 1707 #endif 1708 case IPV6_V6ONLY: 1709 case IPV6_AUTOFLOWLABEL: 1710 case IPV6_ORIGDSTADDR: 1711 case IPV6_BINDANY: 1712 case IPV6_VLAN_PCP: 1713 if (optname == IPV6_BINDANY && td != NULL) { 1714 error = priv_check(td, 1715 PRIV_NETINET_BINDANY); 1716 if (error) 1717 break; 1718 } 1719 1720 if (optlen != sizeof(int)) { 1721 error = EINVAL; 1722 break; 1723 } 1724 error = sooptcopyin(sopt, &optval, 1725 sizeof optval, sizeof optval); 1726 if (error) 1727 break; 1728 switch (optname) { 1729 case IPV6_UNICAST_HOPS: 1730 if (optval < -1 || optval >= 256) 1731 error = EINVAL; 1732 else { 1733 /* -1 = kernel default */ 1734 inp->in6p_hops = optval; 1735 if ((inp->inp_vflag & 1736 INP_IPV4) != 0) 1737 inp->inp_ip_ttl = optval; 1738 } 1739 break; 1740 #define OPTSET(bit) \ 1741 do { \ 1742 INP_WLOCK(inp); \ 1743 if (optval) \ 1744 inp->inp_flags |= (bit); \ 1745 else \ 1746 inp->inp_flags &= ~(bit); \ 1747 INP_WUNLOCK(inp); \ 1748 } while (/*CONSTCOND*/ 0) 1749 #define OPTSET2292(bit) \ 1750 do { \ 1751 INP_WLOCK(inp); \ 1752 inp->inp_flags |= IN6P_RFC2292; \ 1753 if (optval) \ 1754 inp->inp_flags |= (bit); \ 1755 else \ 1756 inp->inp_flags &= ~(bit); \ 1757 INP_WUNLOCK(inp); \ 1758 } while (/*CONSTCOND*/ 0) 1759 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1760 1761 #define OPTSET2_N(bit, val) do { \ 1762 if (val) \ 1763 inp->inp_flags2 |= bit; \ 1764 else \ 1765 inp->inp_flags2 &= ~bit; \ 1766 } while (0) 1767 #define OPTSET2(bit, val) do { \ 1768 INP_WLOCK(inp); \ 1769 OPTSET2_N(bit, val); \ 1770 INP_WUNLOCK(inp); \ 1771 } while (0) 1772 #define OPTBIT2(bit) (inp->inp_flags2 & (bit) ? 1 : 0) 1773 #define OPTSET2292_EXCLUSIVE(bit) \ 1774 do { \ 1775 INP_WLOCK(inp); \ 1776 if (OPTBIT(IN6P_RFC2292)) { \ 1777 error = EINVAL; \ 1778 } else { \ 1779 if (optval) \ 1780 inp->inp_flags |= (bit); \ 1781 else \ 1782 inp->inp_flags &= ~(bit); \ 1783 } \ 1784 INP_WUNLOCK(inp); \ 1785 } while (/*CONSTCOND*/ 0) 1786 1787 case IPV6_RECVPKTINFO: 1788 OPTSET2292_EXCLUSIVE(IN6P_PKTINFO); 1789 break; 1790 1791 case IPV6_HOPLIMIT: 1792 { 1793 struct ip6_pktopts **optp; 1794 1795 /* cannot mix with RFC2292 */ 1796 if (OPTBIT(IN6P_RFC2292)) { 1797 error = EINVAL; 1798 break; 1799 } 1800 INP_WLOCK(inp); 1801 if (inp->inp_flags & INP_DROPPED) { 1802 INP_WUNLOCK(inp); 1803 return (ECONNRESET); 1804 } 1805 optp = &inp->in6p_outputopts; 1806 error = ip6_pcbopt(IPV6_HOPLIMIT, 1807 (u_char *)&optval, sizeof(optval), 1808 optp, (td != NULL) ? td->td_ucred : 1809 NULL, uproto); 1810 INP_WUNLOCK(inp); 1811 break; 1812 } 1813 1814 case IPV6_RECVHOPLIMIT: 1815 OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT); 1816 break; 1817 1818 case IPV6_RECVHOPOPTS: 1819 OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS); 1820 break; 1821 1822 case IPV6_RECVDSTOPTS: 1823 OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS); 1824 break; 1825 1826 case IPV6_RECVRTHDRDSTOPTS: 1827 OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS); 1828 break; 1829 1830 case IPV6_RECVRTHDR: 1831 OPTSET2292_EXCLUSIVE(IN6P_RTHDR); 1832 break; 1833 1834 case IPV6_RECVPATHMTU: 1835 /* 1836 * We ignore this option for TCP 1837 * sockets. 1838 * (RFC3542 leaves this case 1839 * unspecified.) 1840 */ 1841 if (uproto != IPPROTO_TCP) 1842 OPTSET(IN6P_MTU); 1843 break; 1844 1845 case IPV6_RECVFLOWID: 1846 OPTSET2(INP_RECVFLOWID, optval); 1847 break; 1848 1849 #ifdef RSS 1850 case IPV6_RECVRSSBUCKETID: 1851 OPTSET2(INP_RECVRSSBUCKETID, optval); 1852 break; 1853 #endif 1854 1855 case IPV6_V6ONLY: 1856 INP_WLOCK(inp); 1857 if (inp->inp_lport || 1858 !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { 1859 /* 1860 * The socket is already bound. 1861 */ 1862 INP_WUNLOCK(inp); 1863 error = EINVAL; 1864 break; 1865 } 1866 if (optval) { 1867 inp->inp_flags |= IN6P_IPV6_V6ONLY; 1868 inp->inp_vflag &= ~INP_IPV4; 1869 } else { 1870 inp->inp_flags &= ~IN6P_IPV6_V6ONLY; 1871 inp->inp_vflag |= INP_IPV4; 1872 } 1873 INP_WUNLOCK(inp); 1874 break; 1875 case IPV6_RECVTCLASS: 1876 /* cannot mix with RFC2292 XXX */ 1877 OPTSET2292_EXCLUSIVE(IN6P_TCLASS); 1878 break; 1879 case IPV6_AUTOFLOWLABEL: 1880 OPTSET(IN6P_AUTOFLOWLABEL); 1881 break; 1882 1883 case IPV6_ORIGDSTADDR: 1884 OPTSET2(INP_ORIGDSTADDR, optval); 1885 break; 1886 case IPV6_BINDANY: 1887 OPTSET(INP_BINDANY); 1888 break; 1889 case IPV6_VLAN_PCP: 1890 if ((optval >= -1) && (optval <= 1891 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) { 1892 if (optval == -1) { 1893 INP_WLOCK(inp); 1894 inp->inp_flags2 &= 1895 ~(INP_2PCP_SET | 1896 INP_2PCP_MASK); 1897 INP_WUNLOCK(inp); 1898 } else { 1899 INP_WLOCK(inp); 1900 inp->inp_flags2 |= 1901 INP_2PCP_SET; 1902 inp->inp_flags2 &= 1903 ~INP_2PCP_MASK; 1904 inp->inp_flags2 |= 1905 optval << 1906 INP_2PCP_SHIFT; 1907 INP_WUNLOCK(inp); 1908 } 1909 } else 1910 error = EINVAL; 1911 break; 1912 } 1913 break; 1914 1915 case IPV6_TCLASS: 1916 case IPV6_DONTFRAG: 1917 case IPV6_USE_MIN_MTU: 1918 case IPV6_PREFER_TEMPADDR: 1919 if (optlen != sizeof(optval)) { 1920 error = EINVAL; 1921 break; 1922 } 1923 error = sooptcopyin(sopt, &optval, 1924 sizeof optval, sizeof optval); 1925 if (error) 1926 break; 1927 { 1928 struct ip6_pktopts **optp; 1929 INP_WLOCK(inp); 1930 if (inp->inp_flags & INP_DROPPED) { 1931 INP_WUNLOCK(inp); 1932 return (ECONNRESET); 1933 } 1934 optp = &inp->in6p_outputopts; 1935 error = ip6_pcbopt(optname, 1936 (u_char *)&optval, sizeof(optval), 1937 optp, (td != NULL) ? td->td_ucred : 1938 NULL, uproto); 1939 INP_WUNLOCK(inp); 1940 break; 1941 } 1942 1943 case IPV6_2292PKTINFO: 1944 case IPV6_2292HOPLIMIT: 1945 case IPV6_2292HOPOPTS: 1946 case IPV6_2292DSTOPTS: 1947 case IPV6_2292RTHDR: 1948 /* RFC 2292 */ 1949 if (optlen != sizeof(int)) { 1950 error = EINVAL; 1951 break; 1952 } 1953 error = sooptcopyin(sopt, &optval, 1954 sizeof optval, sizeof optval); 1955 if (error) 1956 break; 1957 switch (optname) { 1958 case IPV6_2292PKTINFO: 1959 OPTSET2292(IN6P_PKTINFO); 1960 break; 1961 case IPV6_2292HOPLIMIT: 1962 OPTSET2292(IN6P_HOPLIMIT); 1963 break; 1964 case IPV6_2292HOPOPTS: 1965 /* 1966 * Check super-user privilege. 1967 * See comments for IPV6_RECVHOPOPTS. 1968 */ 1969 if (td != NULL) { 1970 error = priv_check(td, 1971 PRIV_NETINET_SETHDROPTS); 1972 if (error) 1973 return (error); 1974 } 1975 OPTSET2292(IN6P_HOPOPTS); 1976 break; 1977 case IPV6_2292DSTOPTS: 1978 if (td != NULL) { 1979 error = priv_check(td, 1980 PRIV_NETINET_SETHDROPTS); 1981 if (error) 1982 return (error); 1983 } 1984 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1985 break; 1986 case IPV6_2292RTHDR: 1987 OPTSET2292(IN6P_RTHDR); 1988 break; 1989 } 1990 break; 1991 case IPV6_PKTINFO: 1992 case IPV6_HOPOPTS: 1993 case IPV6_RTHDR: 1994 case IPV6_DSTOPTS: 1995 case IPV6_RTHDRDSTOPTS: 1996 case IPV6_NEXTHOP: 1997 { 1998 /* new advanced API (RFC3542) */ 1999 u_char *optbuf; 2000 u_char optbuf_storage[MCLBYTES]; 2001 int optlen; 2002 struct ip6_pktopts **optp; 2003 2004 /* cannot mix with RFC2292 */ 2005 if (OPTBIT(IN6P_RFC2292)) { 2006 error = EINVAL; 2007 break; 2008 } 2009 2010 /* 2011 * We only ensure valsize is not too large 2012 * here. Further validation will be done 2013 * later. 2014 */ 2015 error = sooptcopyin(sopt, optbuf_storage, 2016 sizeof(optbuf_storage), 0); 2017 if (error) 2018 break; 2019 optlen = sopt->sopt_valsize; 2020 optbuf = optbuf_storage; 2021 INP_WLOCK(inp); 2022 if (inp->inp_flags & INP_DROPPED) { 2023 INP_WUNLOCK(inp); 2024 return (ECONNRESET); 2025 } 2026 optp = &inp->in6p_outputopts; 2027 error = ip6_pcbopt(optname, optbuf, optlen, 2028 optp, (td != NULL) ? td->td_ucred : NULL, 2029 uproto); 2030 INP_WUNLOCK(inp); 2031 break; 2032 } 2033 #undef OPTSET 2034 2035 case IPV6_MULTICAST_IF: 2036 case IPV6_MULTICAST_HOPS: 2037 case IPV6_MULTICAST_LOOP: 2038 case IPV6_JOIN_GROUP: 2039 case IPV6_LEAVE_GROUP: 2040 case IPV6_MSFILTER: 2041 case MCAST_BLOCK_SOURCE: 2042 case MCAST_UNBLOCK_SOURCE: 2043 case MCAST_JOIN_GROUP: 2044 case MCAST_LEAVE_GROUP: 2045 case MCAST_JOIN_SOURCE_GROUP: 2046 case MCAST_LEAVE_SOURCE_GROUP: 2047 error = ip6_setmoptions(inp, sopt); 2048 break; 2049 2050 case IPV6_PORTRANGE: 2051 error = sooptcopyin(sopt, &optval, 2052 sizeof optval, sizeof optval); 2053 if (error) 2054 break; 2055 2056 INP_WLOCK(inp); 2057 switch (optval) { 2058 case IPV6_PORTRANGE_DEFAULT: 2059 inp->inp_flags &= ~(INP_LOWPORT); 2060 inp->inp_flags &= ~(INP_HIGHPORT); 2061 break; 2062 2063 case IPV6_PORTRANGE_HIGH: 2064 inp->inp_flags &= ~(INP_LOWPORT); 2065 inp->inp_flags |= INP_HIGHPORT; 2066 break; 2067 2068 case IPV6_PORTRANGE_LOW: 2069 inp->inp_flags &= ~(INP_HIGHPORT); 2070 inp->inp_flags |= INP_LOWPORT; 2071 break; 2072 2073 default: 2074 error = EINVAL; 2075 break; 2076 } 2077 INP_WUNLOCK(inp); 2078 break; 2079 2080 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2081 case IPV6_IPSEC_POLICY: 2082 if (IPSEC_ENABLED(ipv6)) { 2083 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2084 break; 2085 } 2086 /* FALLTHROUGH */ 2087 #endif /* IPSEC */ 2088 2089 default: 2090 error = ENOPROTOOPT; 2091 break; 2092 } 2093 break; 2094 2095 case SOPT_GET: 2096 switch (optname) { 2097 case IPV6_2292PKTOPTIONS: 2098 #ifdef IPV6_PKTOPTIONS 2099 case IPV6_PKTOPTIONS: 2100 #endif 2101 /* 2102 * RFC3542 (effectively) deprecated the 2103 * semantics of the 2292-style pktoptions. 2104 * Since it was not reliable in nature (i.e., 2105 * applications had to expect the lack of some 2106 * information after all), it would make sense 2107 * to simplify this part by always returning 2108 * empty data. 2109 */ 2110 sopt->sopt_valsize = 0; 2111 break; 2112 2113 case IPV6_RECVHOPOPTS: 2114 case IPV6_RECVDSTOPTS: 2115 case IPV6_RECVRTHDRDSTOPTS: 2116 case IPV6_UNICAST_HOPS: 2117 case IPV6_RECVPKTINFO: 2118 case IPV6_RECVHOPLIMIT: 2119 case IPV6_RECVRTHDR: 2120 case IPV6_RECVPATHMTU: 2121 2122 case IPV6_V6ONLY: 2123 case IPV6_PORTRANGE: 2124 case IPV6_RECVTCLASS: 2125 case IPV6_AUTOFLOWLABEL: 2126 case IPV6_BINDANY: 2127 case IPV6_FLOWID: 2128 case IPV6_FLOWTYPE: 2129 case IPV6_RECVFLOWID: 2130 #ifdef RSS 2131 case IPV6_RSSBUCKETID: 2132 case IPV6_RECVRSSBUCKETID: 2133 #endif 2134 case IPV6_VLAN_PCP: 2135 switch (optname) { 2136 case IPV6_RECVHOPOPTS: 2137 optval = OPTBIT(IN6P_HOPOPTS); 2138 break; 2139 2140 case IPV6_RECVDSTOPTS: 2141 optval = OPTBIT(IN6P_DSTOPTS); 2142 break; 2143 2144 case IPV6_RECVRTHDRDSTOPTS: 2145 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 2146 break; 2147 2148 case IPV6_UNICAST_HOPS: 2149 optval = inp->in6p_hops; 2150 break; 2151 2152 case IPV6_RECVPKTINFO: 2153 optval = OPTBIT(IN6P_PKTINFO); 2154 break; 2155 2156 case IPV6_RECVHOPLIMIT: 2157 optval = OPTBIT(IN6P_HOPLIMIT); 2158 break; 2159 2160 case IPV6_RECVRTHDR: 2161 optval = OPTBIT(IN6P_RTHDR); 2162 break; 2163 2164 case IPV6_RECVPATHMTU: 2165 optval = OPTBIT(IN6P_MTU); 2166 break; 2167 2168 case IPV6_V6ONLY: 2169 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2170 break; 2171 2172 case IPV6_PORTRANGE: 2173 { 2174 int flags; 2175 flags = inp->inp_flags; 2176 if (flags & INP_HIGHPORT) 2177 optval = IPV6_PORTRANGE_HIGH; 2178 else if (flags & INP_LOWPORT) 2179 optval = IPV6_PORTRANGE_LOW; 2180 else 2181 optval = 0; 2182 break; 2183 } 2184 case IPV6_RECVTCLASS: 2185 optval = OPTBIT(IN6P_TCLASS); 2186 break; 2187 2188 case IPV6_AUTOFLOWLABEL: 2189 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2190 break; 2191 2192 case IPV6_ORIGDSTADDR: 2193 optval = OPTBIT2(INP_ORIGDSTADDR); 2194 break; 2195 2196 case IPV6_BINDANY: 2197 optval = OPTBIT(INP_BINDANY); 2198 break; 2199 2200 case IPV6_FLOWID: 2201 optval = inp->inp_flowid; 2202 break; 2203 2204 case IPV6_FLOWTYPE: 2205 optval = inp->inp_flowtype; 2206 break; 2207 2208 case IPV6_RECVFLOWID: 2209 optval = OPTBIT2(INP_RECVFLOWID); 2210 break; 2211 #ifdef RSS 2212 case IPV6_RSSBUCKETID: 2213 retval = 2214 rss_hash2bucket(inp->inp_flowid, 2215 inp->inp_flowtype, 2216 &rss_bucket); 2217 if (retval == 0) 2218 optval = rss_bucket; 2219 else 2220 error = EINVAL; 2221 break; 2222 2223 case IPV6_RECVRSSBUCKETID: 2224 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2225 break; 2226 #endif 2227 2228 2229 case IPV6_VLAN_PCP: 2230 if (OPTBIT2(INP_2PCP_SET)) { 2231 optval = (inp->inp_flags2 & 2232 INP_2PCP_MASK) >> 2233 INP_2PCP_SHIFT; 2234 } else { 2235 optval = -1; 2236 } 2237 break; 2238 } 2239 2240 if (error) 2241 break; 2242 error = sooptcopyout(sopt, &optval, 2243 sizeof optval); 2244 break; 2245 2246 case IPV6_PATHMTU: 2247 { 2248 u_long pmtu = 0; 2249 struct ip6_mtuinfo mtuinfo; 2250 struct in6_addr addr; 2251 2252 if (!(so->so_state & SS_ISCONNECTED)) 2253 return (ENOTCONN); 2254 /* 2255 * XXX: we dot not consider the case of source 2256 * routing, or optional information to specify 2257 * the outgoing interface. 2258 * Copy faddr out of inp to avoid holding lock 2259 * on inp during route lookup. 2260 */ 2261 INP_RLOCK(inp); 2262 bcopy(&inp->in6p_faddr, &addr, sizeof(addr)); 2263 INP_RUNLOCK(inp); 2264 error = ip6_getpmtu_ctl(so->so_fibnum, 2265 &addr, &pmtu); 2266 if (error) 2267 break; 2268 if (pmtu > IPV6_MAXPACKET) 2269 pmtu = IPV6_MAXPACKET; 2270 2271 bzero(&mtuinfo, sizeof(mtuinfo)); 2272 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2273 optdata = (void *)&mtuinfo; 2274 optdatalen = sizeof(mtuinfo); 2275 error = sooptcopyout(sopt, optdata, 2276 optdatalen); 2277 break; 2278 } 2279 2280 case IPV6_2292PKTINFO: 2281 case IPV6_2292HOPLIMIT: 2282 case IPV6_2292HOPOPTS: 2283 case IPV6_2292RTHDR: 2284 case IPV6_2292DSTOPTS: 2285 switch (optname) { 2286 case IPV6_2292PKTINFO: 2287 optval = OPTBIT(IN6P_PKTINFO); 2288 break; 2289 case IPV6_2292HOPLIMIT: 2290 optval = OPTBIT(IN6P_HOPLIMIT); 2291 break; 2292 case IPV6_2292HOPOPTS: 2293 optval = OPTBIT(IN6P_HOPOPTS); 2294 break; 2295 case IPV6_2292RTHDR: 2296 optval = OPTBIT(IN6P_RTHDR); 2297 break; 2298 case IPV6_2292DSTOPTS: 2299 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2300 break; 2301 } 2302 error = sooptcopyout(sopt, &optval, 2303 sizeof optval); 2304 break; 2305 case IPV6_PKTINFO: 2306 case IPV6_HOPOPTS: 2307 case IPV6_RTHDR: 2308 case IPV6_DSTOPTS: 2309 case IPV6_RTHDRDSTOPTS: 2310 case IPV6_NEXTHOP: 2311 case IPV6_TCLASS: 2312 case IPV6_DONTFRAG: 2313 case IPV6_USE_MIN_MTU: 2314 case IPV6_PREFER_TEMPADDR: 2315 error = ip6_getpcbopt(inp, optname, sopt); 2316 break; 2317 2318 case IPV6_MULTICAST_IF: 2319 case IPV6_MULTICAST_HOPS: 2320 case IPV6_MULTICAST_LOOP: 2321 case IPV6_MSFILTER: 2322 error = ip6_getmoptions(inp, sopt); 2323 break; 2324 2325 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2326 case IPV6_IPSEC_POLICY: 2327 if (IPSEC_ENABLED(ipv6)) { 2328 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2329 break; 2330 } 2331 /* FALLTHROUGH */ 2332 #endif /* IPSEC */ 2333 default: 2334 error = ENOPROTOOPT; 2335 break; 2336 } 2337 break; 2338 } 2339 } 2340 return (error); 2341 } 2342 2343 int 2344 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2345 { 2346 int error = 0, optval, optlen; 2347 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2348 struct inpcb *inp = sotoinpcb(so); 2349 int level, op, optname; 2350 2351 level = sopt->sopt_level; 2352 op = sopt->sopt_dir; 2353 optname = sopt->sopt_name; 2354 optlen = sopt->sopt_valsize; 2355 2356 if (level != IPPROTO_IPV6) { 2357 return (EINVAL); 2358 } 2359 2360 switch (optname) { 2361 case IPV6_CHECKSUM: 2362 /* 2363 * For ICMPv6 sockets, no modification allowed for checksum 2364 * offset, permit "no change" values to help existing apps. 2365 * 2366 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2367 * for an ICMPv6 socket will fail." 2368 * The current behavior does not meet RFC3542. 2369 */ 2370 switch (op) { 2371 case SOPT_SET: 2372 if (optlen != sizeof(int)) { 2373 error = EINVAL; 2374 break; 2375 } 2376 error = sooptcopyin(sopt, &optval, sizeof(optval), 2377 sizeof(optval)); 2378 if (error) 2379 break; 2380 if (optval < -1 || (optval % 2) != 0) { 2381 /* 2382 * The API assumes non-negative even offset 2383 * values or -1 as a special value. 2384 */ 2385 error = EINVAL; 2386 } else if (inp->inp_ip_p == IPPROTO_ICMPV6) { 2387 if (optval != icmp6off) 2388 error = EINVAL; 2389 } else 2390 inp->in6p_cksum = optval; 2391 break; 2392 2393 case SOPT_GET: 2394 if (inp->inp_ip_p == IPPROTO_ICMPV6) 2395 optval = icmp6off; 2396 else 2397 optval = inp->in6p_cksum; 2398 2399 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2400 break; 2401 2402 default: 2403 error = EINVAL; 2404 break; 2405 } 2406 break; 2407 2408 default: 2409 error = ENOPROTOOPT; 2410 break; 2411 } 2412 2413 return (error); 2414 } 2415 2416 /* 2417 * Set up IP6 options in pcb for insertion in output packets or 2418 * specifying behavior of outgoing packets. 2419 */ 2420 static int 2421 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2422 struct socket *so, struct sockopt *sopt) 2423 { 2424 struct ip6_pktopts *opt = *pktopt; 2425 int error = 0; 2426 struct thread *td = sopt->sopt_td; 2427 struct epoch_tracker et; 2428 2429 /* turn off any old options. */ 2430 if (opt) { 2431 #ifdef DIAGNOSTIC 2432 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2433 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2434 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2435 printf("ip6_pcbopts: all specified options are cleared.\n"); 2436 #endif 2437 ip6_clearpktopts(opt, -1); 2438 } else { 2439 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 2440 if (opt == NULL) 2441 return (ENOMEM); 2442 } 2443 *pktopt = NULL; 2444 2445 if (!m || m->m_len == 0) { 2446 /* 2447 * Only turning off any previous options, regardless of 2448 * whether the opt is just created or given. 2449 */ 2450 free(opt, M_IP6OPT); 2451 return (0); 2452 } 2453 2454 /* set options specified by user. */ 2455 NET_EPOCH_ENTER(et); 2456 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2457 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2458 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2459 free(opt, M_IP6OPT); 2460 NET_EPOCH_EXIT(et); 2461 return (error); 2462 } 2463 NET_EPOCH_EXIT(et); 2464 *pktopt = opt; 2465 return (0); 2466 } 2467 2468 /* 2469 * initialize ip6_pktopts. beware that there are non-zero default values in 2470 * the struct. 2471 */ 2472 void 2473 ip6_initpktopts(struct ip6_pktopts *opt) 2474 { 2475 2476 bzero(opt, sizeof(*opt)); 2477 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2478 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2479 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2480 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2481 } 2482 2483 static int 2484 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2485 struct ucred *cred, int uproto) 2486 { 2487 struct epoch_tracker et; 2488 struct ip6_pktopts *opt; 2489 int ret; 2490 2491 if (*pktopt == NULL) { 2492 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2493 M_NOWAIT); 2494 if (*pktopt == NULL) 2495 return (ENOBUFS); 2496 ip6_initpktopts(*pktopt); 2497 } 2498 opt = *pktopt; 2499 2500 NET_EPOCH_ENTER(et); 2501 ret = ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto); 2502 NET_EPOCH_EXIT(et); 2503 2504 return (ret); 2505 } 2506 2507 #define GET_PKTOPT_VAR(field, lenexpr) do { \ 2508 if (pktopt && pktopt->field) { \ 2509 INP_RUNLOCK(inp); \ 2510 optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \ 2511 malloc_optdata = true; \ 2512 INP_RLOCK(inp); \ 2513 if (inp->inp_flags & INP_DROPPED) { \ 2514 INP_RUNLOCK(inp); \ 2515 free(optdata, M_TEMP); \ 2516 return (ECONNRESET); \ 2517 } \ 2518 pktopt = inp->in6p_outputopts; \ 2519 if (pktopt && pktopt->field) { \ 2520 optdatalen = min(lenexpr, sopt->sopt_valsize); \ 2521 bcopy(pktopt->field, optdata, optdatalen); \ 2522 } else { \ 2523 free(optdata, M_TEMP); \ 2524 optdata = NULL; \ 2525 malloc_optdata = false; \ 2526 } \ 2527 } \ 2528 } while(0) 2529 2530 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \ 2531 (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3) 2532 2533 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \ 2534 pktopt->field->sa_len) 2535 2536 static int 2537 ip6_getpcbopt(struct inpcb *inp, int optname, struct sockopt *sopt) 2538 { 2539 void *optdata = NULL; 2540 bool malloc_optdata = false; 2541 int optdatalen = 0; 2542 int error = 0; 2543 struct in6_pktinfo null_pktinfo; 2544 int deftclass = 0, on; 2545 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2546 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2547 struct ip6_pktopts *pktopt; 2548 2549 INP_RLOCK(inp); 2550 pktopt = inp->in6p_outputopts; 2551 2552 switch (optname) { 2553 case IPV6_PKTINFO: 2554 optdata = (void *)&null_pktinfo; 2555 if (pktopt && pktopt->ip6po_pktinfo) { 2556 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2557 sizeof(null_pktinfo)); 2558 in6_clearscope(&null_pktinfo.ipi6_addr); 2559 } else { 2560 /* XXX: we don't have to do this every time... */ 2561 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2562 } 2563 optdatalen = sizeof(struct in6_pktinfo); 2564 break; 2565 case IPV6_TCLASS: 2566 if (pktopt && pktopt->ip6po_tclass >= 0) 2567 deftclass = pktopt->ip6po_tclass; 2568 optdata = (void *)&deftclass; 2569 optdatalen = sizeof(int); 2570 break; 2571 case IPV6_HOPOPTS: 2572 GET_PKTOPT_EXT_HDR(ip6po_hbh); 2573 break; 2574 case IPV6_RTHDR: 2575 GET_PKTOPT_EXT_HDR(ip6po_rthdr); 2576 break; 2577 case IPV6_RTHDRDSTOPTS: 2578 GET_PKTOPT_EXT_HDR(ip6po_dest1); 2579 break; 2580 case IPV6_DSTOPTS: 2581 GET_PKTOPT_EXT_HDR(ip6po_dest2); 2582 break; 2583 case IPV6_NEXTHOP: 2584 GET_PKTOPT_SOCKADDR(ip6po_nexthop); 2585 break; 2586 case IPV6_USE_MIN_MTU: 2587 if (pktopt) 2588 defminmtu = pktopt->ip6po_minmtu; 2589 optdata = (void *)&defminmtu; 2590 optdatalen = sizeof(int); 2591 break; 2592 case IPV6_DONTFRAG: 2593 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2594 on = 1; 2595 else 2596 on = 0; 2597 optdata = (void *)&on; 2598 optdatalen = sizeof(on); 2599 break; 2600 case IPV6_PREFER_TEMPADDR: 2601 if (pktopt) 2602 defpreftemp = pktopt->ip6po_prefer_tempaddr; 2603 optdata = (void *)&defpreftemp; 2604 optdatalen = sizeof(int); 2605 break; 2606 default: /* should not happen */ 2607 #ifdef DIAGNOSTIC 2608 panic("ip6_getpcbopt: unexpected option\n"); 2609 #endif 2610 INP_RUNLOCK(inp); 2611 return (ENOPROTOOPT); 2612 } 2613 INP_RUNLOCK(inp); 2614 2615 error = sooptcopyout(sopt, optdata, optdatalen); 2616 if (malloc_optdata) 2617 free(optdata, M_TEMP); 2618 2619 return (error); 2620 } 2621 2622 void 2623 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2624 { 2625 if (pktopt == NULL) 2626 return; 2627 2628 if (optname == -1 || optname == IPV6_PKTINFO) { 2629 if (pktopt->ip6po_pktinfo) 2630 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2631 pktopt->ip6po_pktinfo = NULL; 2632 } 2633 if (optname == -1 || optname == IPV6_HOPLIMIT) { 2634 pktopt->ip6po_hlim = -1; 2635 pktopt->ip6po_valid &= ~IP6PO_VALID_HLIM; 2636 } 2637 if (optname == -1 || optname == IPV6_TCLASS) { 2638 pktopt->ip6po_tclass = -1; 2639 pktopt->ip6po_valid &= ~IP6PO_VALID_TC; 2640 } 2641 if (optname == -1 || optname == IPV6_NEXTHOP) { 2642 if (pktopt->ip6po_nextroute.ro_nh) { 2643 NH_FREE(pktopt->ip6po_nextroute.ro_nh); 2644 pktopt->ip6po_nextroute.ro_nh = NULL; 2645 } 2646 if (pktopt->ip6po_nexthop) 2647 free(pktopt->ip6po_nexthop, M_IP6OPT); 2648 pktopt->ip6po_nexthop = NULL; 2649 pktopt->ip6po_valid &= ~IP6PO_VALID_NHINFO; 2650 } 2651 if (optname == -1 || optname == IPV6_HOPOPTS) { 2652 if (pktopt->ip6po_hbh) 2653 free(pktopt->ip6po_hbh, M_IP6OPT); 2654 pktopt->ip6po_hbh = NULL; 2655 pktopt->ip6po_valid &= ~IP6PO_VALID_HBH; 2656 } 2657 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2658 if (pktopt->ip6po_dest1) 2659 free(pktopt->ip6po_dest1, M_IP6OPT); 2660 pktopt->ip6po_dest1 = NULL; 2661 pktopt->ip6po_valid &= ~IP6PO_VALID_DEST1; 2662 } 2663 if (optname == -1 || optname == IPV6_RTHDR) { 2664 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2665 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2666 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2667 if (pktopt->ip6po_route.ro_nh) { 2668 NH_FREE(pktopt->ip6po_route.ro_nh); 2669 pktopt->ip6po_route.ro_nh = NULL; 2670 } 2671 pktopt->ip6po_valid &= ~IP6PO_VALID_RHINFO; 2672 } 2673 if (optname == -1 || optname == IPV6_DSTOPTS) { 2674 if (pktopt->ip6po_dest2) 2675 free(pktopt->ip6po_dest2, M_IP6OPT); 2676 pktopt->ip6po_dest2 = NULL; 2677 pktopt->ip6po_valid &= ~IP6PO_VALID_DEST2; 2678 } 2679 } 2680 2681 #define PKTOPT_EXTHDRCPY(type) \ 2682 do {\ 2683 if (src->type) {\ 2684 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2685 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2686 if (dst->type == NULL)\ 2687 goto bad;\ 2688 bcopy(src->type, dst->type, hlen);\ 2689 }\ 2690 } while (/*CONSTCOND*/ 0) 2691 2692 static int 2693 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2694 { 2695 if (dst == NULL || src == NULL) { 2696 printf("ip6_clearpktopts: invalid argument\n"); 2697 return (EINVAL); 2698 } 2699 2700 dst->ip6po_hlim = src->ip6po_hlim; 2701 dst->ip6po_tclass = src->ip6po_tclass; 2702 dst->ip6po_flags = src->ip6po_flags; 2703 dst->ip6po_minmtu = src->ip6po_minmtu; 2704 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2705 if (src->ip6po_pktinfo) { 2706 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2707 M_IP6OPT, canwait); 2708 if (dst->ip6po_pktinfo == NULL) 2709 goto bad; 2710 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2711 } 2712 if (src->ip6po_nexthop) { 2713 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2714 M_IP6OPT, canwait); 2715 if (dst->ip6po_nexthop == NULL) 2716 goto bad; 2717 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2718 src->ip6po_nexthop->sa_len); 2719 } 2720 PKTOPT_EXTHDRCPY(ip6po_hbh); 2721 PKTOPT_EXTHDRCPY(ip6po_dest1); 2722 PKTOPT_EXTHDRCPY(ip6po_dest2); 2723 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2724 dst->ip6po_valid = src->ip6po_valid; 2725 return (0); 2726 2727 bad: 2728 ip6_clearpktopts(dst, -1); 2729 return (ENOBUFS); 2730 } 2731 #undef PKTOPT_EXTHDRCPY 2732 2733 struct ip6_pktopts * 2734 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2735 { 2736 int error; 2737 struct ip6_pktopts *dst; 2738 2739 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2740 if (dst == NULL) 2741 return (NULL); 2742 ip6_initpktopts(dst); 2743 2744 if ((error = copypktopts(dst, src, canwait)) != 0) { 2745 free(dst, M_IP6OPT); 2746 return (NULL); 2747 } 2748 2749 return (dst); 2750 } 2751 2752 void 2753 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2754 { 2755 if (pktopt == NULL) 2756 return; 2757 2758 ip6_clearpktopts(pktopt, -1); 2759 2760 free(pktopt, M_IP6OPT); 2761 } 2762 2763 /* 2764 * Set IPv6 outgoing packet options based on advanced API. 2765 */ 2766 int 2767 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2768 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2769 { 2770 struct cmsghdr *cm = NULL; 2771 2772 if (control == NULL || opt == NULL) 2773 return (EINVAL); 2774 2775 /* 2776 * ip6_setpktopt can call ifnet_byindex(), so it's imperative that we 2777 * are in the network epoch here. 2778 */ 2779 NET_EPOCH_ASSERT(); 2780 2781 ip6_initpktopts(opt); 2782 if (stickyopt) { 2783 int error; 2784 2785 /* 2786 * If stickyopt is provided, make a local copy of the options 2787 * for this particular packet, then override them by ancillary 2788 * objects. 2789 * XXX: copypktopts() does not copy the cached route to a next 2790 * hop (if any). This is not very good in terms of efficiency, 2791 * but we can allow this since this option should be rarely 2792 * used. 2793 */ 2794 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2795 return (error); 2796 } 2797 2798 /* 2799 * XXX: Currently, we assume all the optional information is stored 2800 * in a single mbuf. 2801 */ 2802 if (control->m_next) 2803 return (EINVAL); 2804 2805 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2806 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2807 int error; 2808 2809 if (control->m_len < CMSG_LEN(0)) 2810 return (EINVAL); 2811 2812 cm = mtod(control, struct cmsghdr *); 2813 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2814 return (EINVAL); 2815 if (cm->cmsg_level != IPPROTO_IPV6) 2816 continue; 2817 2818 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2819 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2820 if (error) 2821 return (error); 2822 } 2823 2824 return (0); 2825 } 2826 2827 /* 2828 * Set a particular packet option, as a sticky option or an ancillary data 2829 * item. "len" can be 0 only when it's a sticky option. 2830 * We have 4 cases of combination of "sticky" and "cmsg": 2831 * "sticky=0, cmsg=0": impossible 2832 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2833 * "sticky=1, cmsg=0": RFC3542 socket option 2834 * "sticky=1, cmsg=1": RFC2292 socket option 2835 */ 2836 static int 2837 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2838 struct ucred *cred, int sticky, int cmsg, int uproto) 2839 { 2840 int minmtupolicy, preftemp; 2841 int error; 2842 2843 NET_EPOCH_ASSERT(); 2844 2845 if (!sticky && !cmsg) { 2846 #ifdef DIAGNOSTIC 2847 printf("ip6_setpktopt: impossible case\n"); 2848 #endif 2849 return (EINVAL); 2850 } 2851 2852 /* 2853 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2854 * not be specified in the context of RFC3542. Conversely, 2855 * RFC3542 types should not be specified in the context of RFC2292. 2856 */ 2857 if (!cmsg) { 2858 switch (optname) { 2859 case IPV6_2292PKTINFO: 2860 case IPV6_2292HOPLIMIT: 2861 case IPV6_2292NEXTHOP: 2862 case IPV6_2292HOPOPTS: 2863 case IPV6_2292DSTOPTS: 2864 case IPV6_2292RTHDR: 2865 case IPV6_2292PKTOPTIONS: 2866 return (ENOPROTOOPT); 2867 } 2868 } 2869 if (sticky && cmsg) { 2870 switch (optname) { 2871 case IPV6_PKTINFO: 2872 case IPV6_HOPLIMIT: 2873 case IPV6_NEXTHOP: 2874 case IPV6_HOPOPTS: 2875 case IPV6_DSTOPTS: 2876 case IPV6_RTHDRDSTOPTS: 2877 case IPV6_RTHDR: 2878 case IPV6_USE_MIN_MTU: 2879 case IPV6_DONTFRAG: 2880 case IPV6_TCLASS: 2881 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2882 return (ENOPROTOOPT); 2883 } 2884 } 2885 2886 switch (optname) { 2887 case IPV6_2292PKTINFO: 2888 case IPV6_PKTINFO: 2889 { 2890 struct ifnet *ifp = NULL; 2891 struct in6_pktinfo *pktinfo; 2892 2893 if (len != sizeof(struct in6_pktinfo)) 2894 return (EINVAL); 2895 2896 pktinfo = (struct in6_pktinfo *)buf; 2897 2898 /* 2899 * An application can clear any sticky IPV6_PKTINFO option by 2900 * doing a "regular" setsockopt with ipi6_addr being 2901 * in6addr_any and ipi6_ifindex being zero. 2902 * [RFC 3542, Section 6] 2903 */ 2904 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2905 pktinfo->ipi6_ifindex == 0 && 2906 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2907 ip6_clearpktopts(opt, optname); 2908 break; 2909 } 2910 2911 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2912 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2913 return (EINVAL); 2914 } 2915 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2916 return (EINVAL); 2917 /* validate the interface index if specified. */ 2918 if (pktinfo->ipi6_ifindex) { 2919 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2920 if (ifp == NULL) 2921 return (ENXIO); 2922 } 2923 if (ifp != NULL && (ifp->if_inet6 == NULL || 2924 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2925 return (ENETDOWN); 2926 2927 if (ifp != NULL && 2928 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2929 struct in6_ifaddr *ia; 2930 2931 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2932 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2933 if (ia == NULL) 2934 return (EADDRNOTAVAIL); 2935 ifa_free(&ia->ia_ifa); 2936 } 2937 /* 2938 * We store the address anyway, and let in6_selectsrc() 2939 * validate the specified address. This is because ipi6_addr 2940 * may not have enough information about its scope zone, and 2941 * we may need additional information (such as outgoing 2942 * interface or the scope zone of a destination address) to 2943 * disambiguate the scope. 2944 * XXX: the delay of the validation may confuse the 2945 * application when it is used as a sticky option. 2946 */ 2947 if (opt->ip6po_pktinfo == NULL) { 2948 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2949 M_IP6OPT, M_NOWAIT); 2950 if (opt->ip6po_pktinfo == NULL) 2951 return (ENOBUFS); 2952 } 2953 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2954 opt->ip6po_valid |= IP6PO_VALID_PKTINFO; 2955 break; 2956 } 2957 2958 case IPV6_2292HOPLIMIT: 2959 case IPV6_HOPLIMIT: 2960 { 2961 int *hlimp; 2962 2963 /* 2964 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2965 * to simplify the ordering among hoplimit options. 2966 */ 2967 if (optname == IPV6_HOPLIMIT && sticky) 2968 return (ENOPROTOOPT); 2969 2970 if (len != sizeof(int)) 2971 return (EINVAL); 2972 hlimp = (int *)buf; 2973 if (*hlimp < -1 || *hlimp > 255) 2974 return (EINVAL); 2975 2976 opt->ip6po_hlim = *hlimp; 2977 opt->ip6po_valid |= IP6PO_VALID_HLIM; 2978 break; 2979 } 2980 2981 case IPV6_TCLASS: 2982 { 2983 int tclass; 2984 2985 if (len != sizeof(int)) 2986 return (EINVAL); 2987 tclass = *(int *)buf; 2988 if (tclass < -1 || tclass > 255) 2989 return (EINVAL); 2990 2991 opt->ip6po_tclass = tclass; 2992 opt->ip6po_valid |= IP6PO_VALID_TC; 2993 break; 2994 } 2995 2996 case IPV6_2292NEXTHOP: 2997 case IPV6_NEXTHOP: 2998 if (cred != NULL) { 2999 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3000 if (error) 3001 return (error); 3002 } 3003 3004 if (len == 0) { /* just remove the option */ 3005 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3006 break; 3007 } 3008 3009 /* check if cmsg_len is large enough for sa_len */ 3010 if (len < sizeof(struct sockaddr) || len < *buf) 3011 return (EINVAL); 3012 3013 switch (((struct sockaddr *)buf)->sa_family) { 3014 case AF_INET6: 3015 { 3016 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3017 int error; 3018 3019 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3020 return (EINVAL); 3021 3022 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3023 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3024 return (EINVAL); 3025 } 3026 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 3027 != 0) { 3028 return (error); 3029 } 3030 break; 3031 } 3032 case AF_LINK: /* should eventually be supported */ 3033 default: 3034 return (EAFNOSUPPORT); 3035 } 3036 3037 /* turn off the previous option, then set the new option. */ 3038 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3039 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3040 if (opt->ip6po_nexthop == NULL) 3041 return (ENOBUFS); 3042 bcopy(buf, opt->ip6po_nexthop, *buf); 3043 opt->ip6po_valid |= IP6PO_VALID_NHINFO; 3044 break; 3045 3046 case IPV6_2292HOPOPTS: 3047 case IPV6_HOPOPTS: 3048 { 3049 struct ip6_hbh *hbh; 3050 int hbhlen; 3051 3052 /* 3053 * XXX: We don't allow a non-privileged user to set ANY HbH 3054 * options, since per-option restriction has too much 3055 * overhead. 3056 */ 3057 if (cred != NULL) { 3058 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3059 if (error) 3060 return (error); 3061 } 3062 3063 if (len == 0) { 3064 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3065 break; /* just remove the option */ 3066 } 3067 3068 /* message length validation */ 3069 if (len < sizeof(struct ip6_hbh)) 3070 return (EINVAL); 3071 hbh = (struct ip6_hbh *)buf; 3072 hbhlen = (hbh->ip6h_len + 1) << 3; 3073 if (len != hbhlen) 3074 return (EINVAL); 3075 3076 /* turn off the previous option, then set the new option. */ 3077 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3078 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3079 if (opt->ip6po_hbh == NULL) 3080 return (ENOBUFS); 3081 bcopy(hbh, opt->ip6po_hbh, hbhlen); 3082 opt->ip6po_valid |= IP6PO_VALID_HBH; 3083 3084 break; 3085 } 3086 3087 case IPV6_2292DSTOPTS: 3088 case IPV6_DSTOPTS: 3089 case IPV6_RTHDRDSTOPTS: 3090 { 3091 struct ip6_dest *dest, **newdest = NULL; 3092 int destlen; 3093 3094 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 3095 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3096 if (error) 3097 return (error); 3098 } 3099 3100 if (len == 0) { 3101 ip6_clearpktopts(opt, optname); 3102 break; /* just remove the option */ 3103 } 3104 3105 /* message length validation */ 3106 if (len < sizeof(struct ip6_dest)) 3107 return (EINVAL); 3108 dest = (struct ip6_dest *)buf; 3109 destlen = (dest->ip6d_len + 1) << 3; 3110 if (len != destlen) 3111 return (EINVAL); 3112 3113 /* 3114 * Determine the position that the destination options header 3115 * should be inserted; before or after the routing header. 3116 */ 3117 switch (optname) { 3118 case IPV6_2292DSTOPTS: 3119 /* 3120 * The old advacned API is ambiguous on this point. 3121 * Our approach is to determine the position based 3122 * according to the existence of a routing header. 3123 * Note, however, that this depends on the order of the 3124 * extension headers in the ancillary data; the 1st 3125 * part of the destination options header must appear 3126 * before the routing header in the ancillary data, 3127 * too. 3128 * RFC3542 solved the ambiguity by introducing 3129 * separate ancillary data or option types. 3130 */ 3131 if (opt->ip6po_rthdr == NULL) 3132 newdest = &opt->ip6po_dest1; 3133 else 3134 newdest = &opt->ip6po_dest2; 3135 break; 3136 case IPV6_RTHDRDSTOPTS: 3137 newdest = &opt->ip6po_dest1; 3138 break; 3139 case IPV6_DSTOPTS: 3140 newdest = &opt->ip6po_dest2; 3141 break; 3142 } 3143 3144 /* turn off the previous option, then set the new option. */ 3145 ip6_clearpktopts(opt, optname); 3146 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3147 if (*newdest == NULL) 3148 return (ENOBUFS); 3149 bcopy(dest, *newdest, destlen); 3150 if (newdest == &opt->ip6po_dest1) 3151 opt->ip6po_valid |= IP6PO_VALID_DEST1; 3152 else 3153 opt->ip6po_valid |= IP6PO_VALID_DEST2; 3154 3155 break; 3156 } 3157 3158 case IPV6_2292RTHDR: 3159 case IPV6_RTHDR: 3160 { 3161 struct ip6_rthdr *rth; 3162 int rthlen; 3163 3164 if (len == 0) { 3165 ip6_clearpktopts(opt, IPV6_RTHDR); 3166 break; /* just remove the option */ 3167 } 3168 3169 /* message length validation */ 3170 if (len < sizeof(struct ip6_rthdr)) 3171 return (EINVAL); 3172 rth = (struct ip6_rthdr *)buf; 3173 rthlen = (rth->ip6r_len + 1) << 3; 3174 if (len != rthlen) 3175 return (EINVAL); 3176 3177 switch (rth->ip6r_type) { 3178 case IPV6_RTHDR_TYPE_0: 3179 if (rth->ip6r_len == 0) /* must contain one addr */ 3180 return (EINVAL); 3181 if (rth->ip6r_len % 2) /* length must be even */ 3182 return (EINVAL); 3183 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3184 return (EINVAL); 3185 break; 3186 default: 3187 return (EINVAL); /* not supported */ 3188 } 3189 3190 /* turn off the previous option */ 3191 ip6_clearpktopts(opt, IPV6_RTHDR); 3192 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3193 if (opt->ip6po_rthdr == NULL) 3194 return (ENOBUFS); 3195 bcopy(rth, opt->ip6po_rthdr, rthlen); 3196 opt->ip6po_valid |= IP6PO_VALID_RHINFO; 3197 3198 break; 3199 } 3200 3201 case IPV6_USE_MIN_MTU: 3202 if (len != sizeof(int)) 3203 return (EINVAL); 3204 minmtupolicy = *(int *)buf; 3205 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3206 minmtupolicy != IP6PO_MINMTU_DISABLE && 3207 minmtupolicy != IP6PO_MINMTU_ALL) { 3208 return (EINVAL); 3209 } 3210 opt->ip6po_minmtu = minmtupolicy; 3211 break; 3212 3213 case IPV6_DONTFRAG: 3214 if (len != sizeof(int)) 3215 return (EINVAL); 3216 3217 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3218 /* 3219 * we ignore this option for TCP sockets. 3220 * (RFC3542 leaves this case unspecified.) 3221 */ 3222 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3223 } else 3224 opt->ip6po_flags |= IP6PO_DONTFRAG; 3225 break; 3226 3227 case IPV6_PREFER_TEMPADDR: 3228 if (len != sizeof(int)) 3229 return (EINVAL); 3230 preftemp = *(int *)buf; 3231 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3232 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3233 preftemp != IP6PO_TEMPADDR_PREFER) { 3234 return (EINVAL); 3235 } 3236 opt->ip6po_prefer_tempaddr = preftemp; 3237 break; 3238 3239 default: 3240 return (ENOPROTOOPT); 3241 } /* end of switch */ 3242 3243 return (0); 3244 } 3245 3246 /* 3247 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3248 * packet to the input queue of a specified interface. Note that this 3249 * calls the output routine of the loopback "driver", but with an interface 3250 * pointer that might NOT be &loif -- easier than replicating that code here. 3251 */ 3252 void 3253 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3254 { 3255 struct mbuf *copym; 3256 struct ip6_hdr *ip6; 3257 3258 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3259 if (copym == NULL) 3260 return; 3261 3262 /* 3263 * Make sure to deep-copy IPv6 header portion in case the data 3264 * is in an mbuf cluster, so that we can safely override the IPv6 3265 * header portion later. 3266 */ 3267 if (!M_WRITABLE(copym) || 3268 copym->m_len < sizeof(struct ip6_hdr)) { 3269 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3270 if (copym == NULL) 3271 return; 3272 } 3273 ip6 = mtod(copym, struct ip6_hdr *); 3274 /* 3275 * clear embedded scope identifiers if necessary. 3276 * in6_clearscope will touch the addresses only when necessary. 3277 */ 3278 in6_clearscope(&ip6->ip6_src); 3279 in6_clearscope(&ip6->ip6_dst); 3280 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3281 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3282 CSUM_PSEUDO_HDR; 3283 copym->m_pkthdr.csum_data = 0xffff; 3284 } 3285 if_simloop(ifp, copym, AF_INET6, 0); 3286 } 3287 3288 /* 3289 * Chop IPv6 header off from the payload. 3290 */ 3291 static int 3292 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3293 { 3294 struct mbuf *mh; 3295 struct ip6_hdr *ip6; 3296 3297 ip6 = mtod(m, struct ip6_hdr *); 3298 if (m->m_len > sizeof(*ip6)) { 3299 mh = m_gethdr(M_NOWAIT, MT_DATA); 3300 if (mh == NULL) { 3301 m_freem(m); 3302 return ENOBUFS; 3303 } 3304 m_move_pkthdr(mh, m); 3305 M_ALIGN(mh, sizeof(*ip6)); 3306 m->m_len -= sizeof(*ip6); 3307 m->m_data += sizeof(*ip6); 3308 mh->m_next = m; 3309 m = mh; 3310 m->m_len = sizeof(*ip6); 3311 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3312 } 3313 exthdrs->ip6e_ip6 = m; 3314 return 0; 3315 } 3316 3317 /* 3318 * Compute IPv6 extension header length. 3319 */ 3320 int 3321 ip6_optlen(struct inpcb *inp) 3322 { 3323 int len; 3324 3325 if (!inp->in6p_outputopts) 3326 return 0; 3327 3328 len = 0; 3329 #define elen(x) \ 3330 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3331 3332 len += elen(inp->in6p_outputopts->ip6po_hbh); 3333 if (inp->in6p_outputopts->ip6po_rthdr) 3334 /* dest1 is valid with rthdr only */ 3335 len += elen(inp->in6p_outputopts->ip6po_dest1); 3336 len += elen(inp->in6p_outputopts->ip6po_rthdr); 3337 len += elen(inp->in6p_outputopts->ip6po_dest2); 3338 return len; 3339 #undef elen 3340 } 3341