1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 32 */ 33 34 /*- 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 */ 62 63 #include <sys/cdefs.h> 64 #include "opt_inet.h" 65 #include "opt_inet6.h" 66 #include "opt_ipsec.h" 67 #include "opt_kern_tls.h" 68 #include "opt_ratelimit.h" 69 #include "opt_route.h" 70 #include "opt_rss.h" 71 #include "opt_sctp.h" 72 73 #include <sys/param.h> 74 #include <sys/kernel.h> 75 #include <sys/ktls.h> 76 #include <sys/malloc.h> 77 #include <sys/mbuf.h> 78 #include <sys/errno.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/protosw.h> 82 #include <sys/socket.h> 83 #include <sys/socketvar.h> 84 #include <sys/syslog.h> 85 #include <sys/ucred.h> 86 87 #include <machine/in_cksum.h> 88 89 #include <net/if.h> 90 #include <net/if_var.h> 91 #include <net/if_private.h> 92 #include <net/if_vlan_var.h> 93 #include <net/if_llatbl.h> 94 #include <net/ethernet.h> 95 #include <net/netisr.h> 96 #include <net/route.h> 97 #include <net/route/nhop.h> 98 #include <net/pfil.h> 99 #include <net/rss_config.h> 100 #include <net/vnet.h> 101 102 #include <netinet/in.h> 103 #include <netinet/in_var.h> 104 #include <netinet/ip_var.h> 105 #include <netinet6/in6_fib.h> 106 #include <netinet6/in6_var.h> 107 #include <netinet/ip6.h> 108 #include <netinet/icmp6.h> 109 #include <netinet6/ip6_var.h> 110 #include <netinet/in_pcb.h> 111 #include <netinet/tcp_var.h> 112 #include <netinet6/nd6.h> 113 #include <netinet6/in6_rss.h> 114 115 #include <netipsec/ipsec_support.h> 116 #if defined(SCTP) || defined(SCTP_SUPPORT) 117 #include <netinet/sctp.h> 118 #include <netinet/sctp_crc32.h> 119 #endif 120 121 #include <netinet6/scope6_var.h> 122 123 extern int in6_mcast_loop; 124 125 struct ip6_exthdrs { 126 struct mbuf *ip6e_ip6; 127 struct mbuf *ip6e_hbh; 128 struct mbuf *ip6e_dest1; 129 struct mbuf *ip6e_rthdr; 130 struct mbuf *ip6e_dest2; 131 }; 132 133 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 134 135 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 136 struct ucred *, int); 137 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 138 struct socket *, struct sockopt *); 139 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *); 140 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 141 struct ucred *, int, int, int); 142 143 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 144 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 145 struct ip6_frag **); 146 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 147 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 148 static int ip6_getpmtu(struct route_in6 *, int, 149 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 150 u_int); 151 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 152 u_long *, int *, u_int); 153 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 154 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 155 156 /* 157 * Make an extension header from option data. hp is the source, 158 * mp is the destination, and _ol is the optlen. 159 */ 160 #define MAKE_EXTHDR(hp, mp, _ol) \ 161 do { \ 162 if (hp) { \ 163 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 164 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 165 ((eh)->ip6e_len + 1) << 3); \ 166 if (error) \ 167 goto freehdrs; \ 168 (_ol) += (*(mp))->m_len; \ 169 } \ 170 } while (/*CONSTCOND*/ 0) 171 172 /* 173 * Form a chain of extension headers. 174 * m is the extension header mbuf 175 * mp is the previous mbuf in the chain 176 * p is the next header 177 * i is the type of option. 178 */ 179 #define MAKE_CHAIN(m, mp, p, i)\ 180 do {\ 181 if (m) {\ 182 if (!hdrsplit) \ 183 panic("%s:%d: assumption failed: "\ 184 "hdr not split: hdrsplit %d exthdrs %p",\ 185 __func__, __LINE__, hdrsplit, &exthdrs);\ 186 *mtod((m), u_char *) = *(p);\ 187 *(p) = (i);\ 188 p = mtod((m), u_char *);\ 189 (m)->m_next = (mp)->m_next;\ 190 (mp)->m_next = (m);\ 191 (mp) = (m);\ 192 }\ 193 } while (/*CONSTCOND*/ 0) 194 195 void 196 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 197 { 198 u_short csum; 199 200 csum = in_cksum_skip(m, offset + plen, offset); 201 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 202 csum = 0xffff; 203 offset += m->m_pkthdr.csum_data; /* checksum offset */ 204 205 if (offset + sizeof(csum) > m->m_len) 206 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 207 else 208 *(u_short *)mtodo(m, offset) = csum; 209 } 210 211 static void 212 ip6_output_delayed_csum(struct mbuf *m, struct ifnet *ifp, int csum_flags, 213 int plen, int optlen) 214 { 215 216 KASSERT((plen >= optlen), ("%s:%d: plen %d < optlen %d, m %p, ifp %p " 217 "csum_flags %#x", 218 __func__, __LINE__, plen, optlen, m, ifp, csum_flags)); 219 220 if (csum_flags & CSUM_DELAY_DATA_IPV6) { 221 in6_delayed_cksum(m, plen - optlen, 222 sizeof(struct ip6_hdr) + optlen); 223 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 224 } 225 #if defined(SCTP) || defined(SCTP_SUPPORT) 226 if (csum_flags & CSUM_SCTP_IPV6) { 227 sctp_delayed_cksum(m, sizeof(struct ip6_hdr) + optlen); 228 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 229 } 230 #endif 231 } 232 233 int 234 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 235 int fraglen , uint32_t id) 236 { 237 struct mbuf *m, **mnext, *m_frgpart; 238 struct ip6_hdr *ip6, *mhip6; 239 struct ip6_frag *ip6f; 240 int off; 241 int error; 242 int tlen = m0->m_pkthdr.len; 243 244 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); 245 246 m = m0; 247 ip6 = mtod(m, struct ip6_hdr *); 248 mnext = &m->m_nextpkt; 249 250 for (off = hlen; off < tlen; off += fraglen) { 251 m = m_gethdr(M_NOWAIT, MT_DATA); 252 if (!m) { 253 IP6STAT_INC(ip6s_odropped); 254 return (ENOBUFS); 255 } 256 257 /* 258 * Make sure the complete packet header gets copied 259 * from the originating mbuf to the newly created 260 * mbuf. This also ensures that existing firewall 261 * classification(s), VLAN tags and so on get copied 262 * to the resulting fragmented packet(s): 263 */ 264 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 265 m_free(m); 266 IP6STAT_INC(ip6s_odropped); 267 return (ENOBUFS); 268 } 269 270 *mnext = m; 271 mnext = &m->m_nextpkt; 272 m->m_data += max_linkhdr; 273 mhip6 = mtod(m, struct ip6_hdr *); 274 *mhip6 = *ip6; 275 m->m_len = sizeof(*mhip6); 276 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 277 if (error) { 278 IP6STAT_INC(ip6s_odropped); 279 return (error); 280 } 281 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 282 if (off + fraglen >= tlen) 283 fraglen = tlen - off; 284 else 285 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 286 mhip6->ip6_plen = htons((u_short)(fraglen + hlen + 287 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 288 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { 289 IP6STAT_INC(ip6s_odropped); 290 return (ENOBUFS); 291 } 292 m_cat(m, m_frgpart); 293 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); 294 ip6f->ip6f_reserved = 0; 295 ip6f->ip6f_ident = id; 296 ip6f->ip6f_nxt = nextproto; 297 IP6STAT_INC(ip6s_ofragments); 298 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 299 } 300 301 return (0); 302 } 303 304 static int 305 ip6_output_send(struct inpcb *inp, struct ifnet *ifp, struct ifnet *origifp, 306 struct mbuf *m, struct sockaddr_in6 *dst, struct route_in6 *ro, 307 bool stamp_tag) 308 { 309 #ifdef KERN_TLS 310 struct ktls_session *tls = NULL; 311 #endif 312 struct m_snd_tag *mst; 313 int error; 314 315 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 316 mst = NULL; 317 318 #ifdef KERN_TLS 319 /* 320 * If this is an unencrypted TLS record, save a reference to 321 * the record. This local reference is used to call 322 * ktls_output_eagain after the mbuf has been freed (thus 323 * dropping the mbuf's reference) in if_output. 324 */ 325 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 326 tls = ktls_hold(m->m_next->m_epg_tls); 327 mst = tls->snd_tag; 328 329 /* 330 * If a TLS session doesn't have a valid tag, it must 331 * have had an earlier ifp mismatch, so drop this 332 * packet. 333 */ 334 if (mst == NULL) { 335 m_freem(m); 336 error = EAGAIN; 337 goto done; 338 } 339 /* 340 * Always stamp tags that include NIC ktls. 341 */ 342 stamp_tag = true; 343 } 344 #endif 345 #ifdef RATELIMIT 346 if (inp != NULL && mst == NULL) { 347 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 348 (inp->inp_snd_tag != NULL && 349 inp->inp_snd_tag->ifp != ifp)) 350 in_pcboutput_txrtlmt(inp, ifp, m); 351 352 if (inp->inp_snd_tag != NULL) 353 mst = inp->inp_snd_tag; 354 } 355 #endif 356 if (stamp_tag && mst != NULL) { 357 KASSERT(m->m_pkthdr.rcvif == NULL, 358 ("trying to add a send tag to a forwarded packet")); 359 if (mst->ifp != ifp) { 360 m_freem(m); 361 error = EAGAIN; 362 goto done; 363 } 364 365 /* stamp send tag on mbuf */ 366 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 367 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 368 } 369 370 error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro); 371 372 done: 373 /* Check for route change invalidating send tags. */ 374 #ifdef KERN_TLS 375 if (tls != NULL) { 376 if (error == EAGAIN) 377 error = ktls_output_eagain(inp, tls); 378 ktls_free(tls); 379 } 380 #endif 381 #ifdef RATELIMIT 382 if (error == EAGAIN) 383 in_pcboutput_eagain(inp); 384 #endif 385 return (error); 386 } 387 388 /* 389 * IP6 output. 390 * The packet in mbuf chain m contains a skeletal IP6 header (with pri, len, 391 * nxt, hlim, src, dst). 392 * This function may modify ver and hlim only. 393 * The mbuf chain containing the packet will be freed. 394 * The mbuf opt, if present, will not be freed. 395 * If route_in6 ro is present and has ro_nh initialized, route lookup would be 396 * skipped and ro->ro_nh would be used. If ro is present but ro->ro_nh is NULL, 397 * then result of route lookup is stored in ro->ro_nh. 398 * 399 * Type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and nd_ifinfo.linkmtu 400 * is uint32_t. So we use u_long to hold largest one, which is rt_mtu. 401 * 402 * ifpp - XXX: just for statistics 403 */ 404 int 405 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 406 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 407 struct ifnet **ifpp, struct inpcb *inp) 408 { 409 struct ip6_hdr *ip6; 410 struct ifnet *ifp, *origifp; 411 struct mbuf *m = m0; 412 struct mbuf *mprev; 413 struct route_in6 *ro_pmtu; 414 struct nhop_object *nh; 415 struct sockaddr_in6 *dst, sin6, src_sa, dst_sa; 416 struct in6_addr odst; 417 u_char *nexthdrp; 418 int tlen, len; 419 int error = 0; 420 int vlan_pcp = -1; 421 struct in6_ifaddr *ia = NULL; 422 u_long mtu; 423 int alwaysfrag, dontfrag; 424 u_int32_t optlen, plen = 0, unfragpartlen; 425 struct ip6_exthdrs exthdrs; 426 struct in6_addr src0, dst0; 427 u_int32_t zone; 428 bool hdrsplit; 429 int sw_csum, tso; 430 int needfiblookup; 431 uint32_t fibnum; 432 struct m_tag *fwd_tag = NULL; 433 uint32_t id; 434 435 NET_EPOCH_ASSERT(); 436 437 if (inp != NULL) { 438 INP_LOCK_ASSERT(inp); 439 M_SETFIB(m, inp->inp_inc.inc_fibnum); 440 if ((flags & IP_NODEFAULTFLOWID) == 0) { 441 /* Unconditionally set flowid. */ 442 m->m_pkthdr.flowid = inp->inp_flowid; 443 M_HASHTYPE_SET(m, inp->inp_flowtype); 444 } 445 if ((inp->inp_flags2 & INP_2PCP_SET) != 0) 446 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >> 447 INP_2PCP_SHIFT; 448 #ifdef NUMA 449 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 450 #endif 451 } 452 453 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 454 /* 455 * IPSec checking which handles several cases. 456 * FAST IPSEC: We re-injected the packet. 457 * XXX: need scope argument. 458 */ 459 if (IPSEC_ENABLED(ipv6)) { 460 m = mb_unmapped_to_ext(m); 461 if (m == NULL) { 462 IP6STAT_INC(ip6s_odropped); 463 error = ENOBUFS; 464 goto bad; 465 } 466 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { 467 if (error == EINPROGRESS) 468 error = 0; 469 goto done; 470 } 471 } 472 #endif /* IPSEC */ 473 474 /* Source address validation. */ 475 ip6 = mtod(m, struct ip6_hdr *); 476 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 477 (flags & IPV6_UNSPECSRC) == 0) { 478 error = EOPNOTSUPP; 479 IP6STAT_INC(ip6s_badscope); 480 goto bad; 481 } 482 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 483 error = EOPNOTSUPP; 484 IP6STAT_INC(ip6s_badscope); 485 goto bad; 486 } 487 488 /* 489 * If we are given packet options to add extension headers prepare them. 490 * Calculate the total length of the extension header chain. 491 * Keep the length of the unfragmentable part for fragmentation. 492 */ 493 bzero(&exthdrs, sizeof(exthdrs)); 494 optlen = 0; 495 unfragpartlen = sizeof(struct ip6_hdr); 496 if (opt) { 497 /* Hop-by-Hop options header. */ 498 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh, optlen); 499 500 /* Destination options header (1st part). */ 501 if (opt->ip6po_rthdr) { 502 #ifndef RTHDR_SUPPORT_IMPLEMENTED 503 /* 504 * If there is a routing header, discard the packet 505 * right away here. RH0/1 are obsolete and we do not 506 * currently support RH2/3/4. 507 * People trying to use RH253/254 may want to disable 508 * this check. 509 * The moment we do support any routing header (again) 510 * this block should check the routing type more 511 * selectively. 512 */ 513 error = EINVAL; 514 goto bad; 515 #endif 516 517 /* 518 * Destination options header (1st part). 519 * This only makes sense with a routing header. 520 * See Section 9.2 of RFC 3542. 521 * Disabling this part just for MIP6 convenience is 522 * a bad idea. We need to think carefully about a 523 * way to make the advanced API coexist with MIP6 524 * options, which might automatically be inserted in 525 * the kernel. 526 */ 527 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1, 528 optlen); 529 } 530 /* Routing header. */ 531 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr, optlen); 532 533 unfragpartlen += optlen; 534 535 /* 536 * NOTE: we don't add AH/ESP length here (done in 537 * ip6_ipsec_output()). 538 */ 539 540 /* Destination options header (2nd part). */ 541 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2, optlen); 542 } 543 544 /* 545 * If there is at least one extension header, 546 * separate IP6 header from the payload. 547 */ 548 hdrsplit = false; 549 if (optlen) { 550 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 551 m = NULL; 552 goto freehdrs; 553 } 554 m = exthdrs.ip6e_ip6; 555 ip6 = mtod(m, struct ip6_hdr *); 556 hdrsplit = true; 557 } 558 559 /* Adjust mbuf packet header length. */ 560 m->m_pkthdr.len += optlen; 561 plen = m->m_pkthdr.len - sizeof(*ip6); 562 563 /* If this is a jumbo payload, insert a jumbo payload option. */ 564 if (plen > IPV6_MAXPACKET) { 565 if (!hdrsplit) { 566 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 567 m = NULL; 568 goto freehdrs; 569 } 570 m = exthdrs.ip6e_ip6; 571 ip6 = mtod(m, struct ip6_hdr *); 572 hdrsplit = true; 573 } 574 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 575 goto freehdrs; 576 ip6->ip6_plen = 0; 577 } else 578 ip6->ip6_plen = htons(plen); 579 nexthdrp = &ip6->ip6_nxt; 580 581 if (optlen) { 582 /* 583 * Concatenate headers and fill in next header fields. 584 * Here we have, on "m" 585 * IPv6 payload 586 * and we insert headers accordingly. 587 * Finally, we should be getting: 588 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]. 589 * 590 * During the header composing process "m" points to IPv6 591 * header. "mprev" points to an extension header prior to esp. 592 */ 593 mprev = m; 594 595 /* 596 * We treat dest2 specially. This makes IPsec processing 597 * much easier. The goal here is to make mprev point the 598 * mbuf prior to dest2. 599 * 600 * Result: IPv6 dest2 payload. 601 * m and mprev will point to IPv6 header. 602 */ 603 if (exthdrs.ip6e_dest2) { 604 if (!hdrsplit) 605 panic("%s:%d: assumption failed: " 606 "hdr not split: hdrsplit %d exthdrs %p", 607 __func__, __LINE__, hdrsplit, &exthdrs); 608 exthdrs.ip6e_dest2->m_next = m->m_next; 609 m->m_next = exthdrs.ip6e_dest2; 610 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 611 ip6->ip6_nxt = IPPROTO_DSTOPTS; 612 } 613 614 /* 615 * Result: IPv6 hbh dest1 rthdr dest2 payload. 616 * m will point to IPv6 header. mprev will point to the 617 * extension header prior to dest2 (rthdr in the above case). 618 */ 619 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 620 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 621 IPPROTO_DSTOPTS); 622 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 623 IPPROTO_ROUTING); 624 } 625 626 IP6STAT_INC(ip6s_localout); 627 628 /* Route packet. */ 629 ro_pmtu = ro; 630 if (opt && opt->ip6po_rthdr) 631 ro = &opt->ip6po_route; 632 if (ro != NULL) 633 dst = (struct sockaddr_in6 *)&ro->ro_dst; 634 else 635 dst = &sin6; 636 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 637 638 again: 639 /* 640 * If specified, try to fill in the traffic class field. 641 * Do not override if a non-zero value is already set. 642 * We check the diffserv field and the ECN field separately. 643 */ 644 if (opt && opt->ip6po_tclass >= 0) { 645 int mask = 0; 646 647 if (IPV6_DSCP(ip6) == 0) 648 mask |= 0xfc; 649 if (IPV6_ECN(ip6) == 0) 650 mask |= 0x03; 651 if (mask != 0) 652 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 653 } 654 655 /* Fill in or override the hop limit field, if necessary. */ 656 if (opt && opt->ip6po_hlim != -1) 657 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 658 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 659 if (im6o != NULL) 660 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 661 else 662 ip6->ip6_hlim = V_ip6_defmcasthlim; 663 } 664 665 if (ro == NULL || ro->ro_nh == NULL) { 666 bzero(dst, sizeof(*dst)); 667 dst->sin6_family = AF_INET6; 668 dst->sin6_len = sizeof(*dst); 669 dst->sin6_addr = ip6->ip6_dst; 670 } 671 /* 672 * Validate route against routing table changes. 673 * Make sure that the address family is set in route. 674 */ 675 nh = NULL; 676 ifp = NULL; 677 mtu = 0; 678 if (ro != NULL) { 679 if (ro->ro_nh != NULL && inp != NULL) { 680 ro->ro_dst.sin6_family = AF_INET6; /* XXX KASSERT? */ 681 NH_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, 682 fibnum); 683 } 684 if (ro->ro_nh != NULL && fwd_tag == NULL && 685 (!NH_IS_VALID(ro->ro_nh) || 686 ro->ro_dst.sin6_family != AF_INET6 || 687 !IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst))) 688 RO_INVALIDATE_CACHE(ro); 689 690 if (ro->ro_nh != NULL && fwd_tag == NULL && 691 ro->ro_dst.sin6_family == AF_INET6 && 692 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 693 /* Nexthop is valid and contains valid ifp */ 694 nh = ro->ro_nh; 695 } else { 696 if (ro->ro_lle) 697 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 698 ro->ro_lle = NULL; 699 if (fwd_tag == NULL) { 700 bzero(&dst_sa, sizeof(dst_sa)); 701 dst_sa.sin6_family = AF_INET6; 702 dst_sa.sin6_len = sizeof(dst_sa); 703 dst_sa.sin6_addr = ip6->ip6_dst; 704 } 705 error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, 706 &nh, fibnum, m->m_pkthdr.flowid); 707 if (error != 0) { 708 IP6STAT_INC(ip6s_noroute); 709 if (ifp != NULL) 710 in6_ifstat_inc(ifp, ifs6_out_discard); 711 goto bad; 712 } 713 /* 714 * At this point at least @ifp is not NULL 715 * Can be the case when dst is multicast, link-local or 716 * interface is explicitly specificed by the caller. 717 */ 718 } 719 if (nh == NULL) { 720 /* 721 * If in6_selectroute() does not return a nexthop 722 * dst may not have been updated. 723 */ 724 *dst = dst_sa; /* XXX */ 725 origifp = ifp; 726 mtu = ifp->if_mtu; 727 } else { 728 ifp = nh->nh_ifp; 729 origifp = nh->nh_aifp; 730 ia = (struct in6_ifaddr *)(nh->nh_ifa); 731 counter_u64_add(nh->nh_pksent, 1); 732 } 733 } else { 734 struct nhop_object *nh; 735 struct in6_addr kdst; 736 uint32_t scopeid; 737 738 if (fwd_tag == NULL) { 739 bzero(&dst_sa, sizeof(dst_sa)); 740 dst_sa.sin6_family = AF_INET6; 741 dst_sa.sin6_len = sizeof(dst_sa); 742 dst_sa.sin6_addr = ip6->ip6_dst; 743 } 744 745 if (IN6_IS_ADDR_MULTICAST(&dst_sa.sin6_addr) && 746 im6o != NULL && 747 (ifp = im6o->im6o_multicast_ifp) != NULL) { 748 /* We do not need a route lookup. */ 749 *dst = dst_sa; /* XXX */ 750 origifp = ifp; 751 goto nonh6lookup; 752 } 753 754 in6_splitscope(&dst_sa.sin6_addr, &kdst, &scopeid); 755 756 if (IN6_IS_ADDR_MC_LINKLOCAL(&dst_sa.sin6_addr) || 757 IN6_IS_ADDR_MC_NODELOCAL(&dst_sa.sin6_addr)) { 758 if (scopeid > 0) { 759 ifp = in6_getlinkifnet(scopeid); 760 if (ifp == NULL) { 761 error = EHOSTUNREACH; 762 goto bad; 763 } 764 *dst = dst_sa; /* XXX */ 765 origifp = ifp; 766 goto nonh6lookup; 767 } 768 } 769 770 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 771 m->m_pkthdr.flowid); 772 if (nh == NULL) { 773 IP6STAT_INC(ip6s_noroute); 774 /* No ifp in6_ifstat_inc(ifp, ifs6_out_discard); */ 775 error = EHOSTUNREACH; 776 goto bad; 777 } 778 779 ifp = nh->nh_ifp; 780 origifp = nh->nh_aifp; 781 ia = ifatoia6(nh->nh_ifa); 782 if (nh->nh_flags & NHF_GATEWAY) 783 dst->sin6_addr = nh->gw6_sa.sin6_addr; 784 else if (fwd_tag != NULL) 785 dst->sin6_addr = dst_sa.sin6_addr; 786 nonh6lookup: 787 ; 788 } 789 /* 790 * At this point ifp MUST be pointing to the valid transmit ifp. 791 * origifp MUST be valid and pointing to either the same ifp or, 792 * in case of loopback output, to the interface which ip6_src 793 * belongs to. 794 * Examples: 795 * fe80::1%em0 -> fe80::2%em0 -> ifp=em0, origifp=em0 796 * fe80::1%em0 -> fe80::1%em0 -> ifp=lo0, origifp=em0 797 * ::1 -> ::1 -> ifp=lo0, origifp=lo0 798 * 799 * mtu can be 0 and will be refined later. 800 */ 801 KASSERT((ifp != NULL), ("output interface must not be NULL")); 802 KASSERT((origifp != NULL), ("output address interface must not be NULL")); 803 804 if ((flags & IPV6_FORWARDING) == 0) { 805 /* XXX: the FORWARDING flag can be set for mrouting. */ 806 in6_ifstat_inc(ifp, ifs6_out_request); 807 } 808 809 /* Setup data structures for scope ID checks. */ 810 src0 = ip6->ip6_src; 811 bzero(&src_sa, sizeof(src_sa)); 812 src_sa.sin6_family = AF_INET6; 813 src_sa.sin6_len = sizeof(src_sa); 814 src_sa.sin6_addr = ip6->ip6_src; 815 816 dst0 = ip6->ip6_dst; 817 /* Re-initialize to be sure. */ 818 bzero(&dst_sa, sizeof(dst_sa)); 819 dst_sa.sin6_family = AF_INET6; 820 dst_sa.sin6_len = sizeof(dst_sa); 821 dst_sa.sin6_addr = ip6->ip6_dst; 822 823 /* Check for valid scope ID. */ 824 if (in6_setscope(&src0, origifp, &zone) == 0 && 825 sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id && 826 in6_setscope(&dst0, origifp, &zone) == 0 && 827 sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) { 828 /* 829 * The outgoing interface is in the zone of the source 830 * and destination addresses. 831 * 832 */ 833 } else if ((origifp->if_flags & IFF_LOOPBACK) == 0 || 834 sa6_recoverscope(&src_sa) != 0 || 835 sa6_recoverscope(&dst_sa) != 0 || 836 dst_sa.sin6_scope_id == 0 || 837 (src_sa.sin6_scope_id != 0 && 838 src_sa.sin6_scope_id != dst_sa.sin6_scope_id) || 839 ifnet_byindex(dst_sa.sin6_scope_id) == NULL) { 840 /* 841 * If the destination network interface is not a 842 * loopback interface, or the destination network 843 * address has no scope ID, or the source address has 844 * a scope ID set which is different from the 845 * destination address one, or there is no network 846 * interface representing this scope ID, the address 847 * pair is considered invalid. 848 */ 849 IP6STAT_INC(ip6s_badscope); 850 in6_ifstat_inc(origifp, ifs6_out_discard); 851 if (error == 0) 852 error = EHOSTUNREACH; /* XXX */ 853 goto bad; 854 } 855 /* All scope ID checks are successful. */ 856 857 if (nh && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 858 if (opt && opt->ip6po_nextroute.ro_nh) { 859 /* 860 * The nexthop is explicitly specified by the 861 * application. We assume the next hop is an IPv6 862 * address. 863 */ 864 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 865 } 866 else if ((nh->nh_flags & NHF_GATEWAY)) 867 dst = &nh->gw6_sa; 868 } 869 870 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 871 m->m_flags &= ~(M_BCAST | M_MCAST); /* Just in case. */ 872 } else { 873 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 874 in6_ifstat_inc(ifp, ifs6_out_mcast); 875 876 /* Confirm that the outgoing interface supports multicast. */ 877 if (!(ifp->if_flags & IFF_MULTICAST)) { 878 IP6STAT_INC(ip6s_noroute); 879 in6_ifstat_inc(ifp, ifs6_out_discard); 880 error = ENETUNREACH; 881 goto bad; 882 } 883 if ((im6o == NULL && in6_mcast_loop) || 884 (im6o && im6o->im6o_multicast_loop)) { 885 /* 886 * Loop back multicast datagram if not expressly 887 * forbidden to do so, even if we have not joined 888 * the address; protocols will filter it later, 889 * thus deferring a hash lookup and lock acquisition 890 * at the expense of an m_copym(). 891 */ 892 ip6_mloopback(ifp, m); 893 } else { 894 /* 895 * If we are acting as a multicast router, perform 896 * multicast forwarding as if the packet had just 897 * arrived on the interface to which we are about 898 * to send. The multicast forwarding function 899 * recursively calls this function, using the 900 * IPV6_FORWARDING flag to prevent infinite recursion. 901 * 902 * Multicasts that are looped back by ip6_mloopback(), 903 * above, will be forwarded by the ip6_input() routine, 904 * if necessary. 905 */ 906 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 907 /* 908 * XXX: ip6_mforward expects that rcvif is NULL 909 * when it is called from the originating path. 910 * However, it may not always be the case. 911 */ 912 m->m_pkthdr.rcvif = NULL; 913 if (ip6_mforward(ip6, ifp, m) != 0) { 914 m_freem(m); 915 goto done; 916 } 917 } 918 } 919 /* 920 * Multicasts with a hoplimit of zero may be looped back, 921 * above, but must not be transmitted on a network. 922 * Also, multicasts addressed to the loopback interface 923 * are not sent -- the above call to ip6_mloopback() will 924 * loop back a copy if this host actually belongs to the 925 * destination group on the loopback interface. 926 */ 927 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 928 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 929 m_freem(m); 930 goto done; 931 } 932 } 933 934 /* 935 * Fill the outgoing inteface to tell the upper layer 936 * to increment per-interface statistics. 937 */ 938 if (ifpp) 939 *ifpp = ifp; 940 941 /* Determine path MTU. */ 942 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 943 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 944 goto bad; 945 KASSERT(mtu > 0, ("%s:%d: mtu %ld, ro_pmtu %p ro %p ifp %p " 946 "alwaysfrag %d fibnum %u\n", __func__, __LINE__, mtu, ro_pmtu, ro, 947 ifp, alwaysfrag, fibnum)); 948 949 /* 950 * The caller of this function may specify to use the minimum MTU 951 * in some cases. 952 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 953 * setting. The logic is a bit complicated; by default, unicast 954 * packets will follow path MTU while multicast packets will be sent at 955 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 956 * including unicast ones will be sent at the minimum MTU. Multicast 957 * packets will always be sent at the minimum MTU unless 958 * IP6PO_MINMTU_DISABLE is explicitly specified. 959 * See RFC 3542 for more details. 960 */ 961 if (mtu > IPV6_MMTU) { 962 if ((flags & IPV6_MINMTU)) 963 mtu = IPV6_MMTU; 964 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 965 mtu = IPV6_MMTU; 966 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 967 (opt == NULL || 968 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 969 mtu = IPV6_MMTU; 970 } 971 } 972 973 /* 974 * Clear embedded scope identifiers if necessary. 975 * in6_clearscope() will touch the addresses only when necessary. 976 */ 977 in6_clearscope(&ip6->ip6_src); 978 in6_clearscope(&ip6->ip6_dst); 979 980 /* 981 * If the outgoing packet contains a hop-by-hop options header, 982 * it must be examined and processed even by the source node. 983 * (RFC 2460, section 4.) 984 */ 985 if (exthdrs.ip6e_hbh) { 986 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 987 u_int32_t dummy; /* XXX unused */ 988 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 989 990 #ifdef DIAGNOSTIC 991 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 992 panic("ip6e_hbh is not contiguous"); 993 #endif 994 /* 995 * XXX: if we have to send an ICMPv6 error to the sender, 996 * we need the M_LOOP flag since icmp6_error() expects 997 * the IPv6 and the hop-by-hop options header are 998 * contiguous unless the flag is set. 999 */ 1000 m->m_flags |= M_LOOP; 1001 m->m_pkthdr.rcvif = ifp; 1002 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 1003 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 1004 &dummy, &plen) < 0) { 1005 /* m was already freed at this point. */ 1006 error = EINVAL;/* better error? */ 1007 goto done; 1008 } 1009 m->m_flags &= ~M_LOOP; /* XXX */ 1010 m->m_pkthdr.rcvif = NULL; 1011 } 1012 1013 /* Jump over all PFIL processing if hooks are not active. */ 1014 if (!PFIL_HOOKED_OUT(V_inet6_pfil_head)) 1015 goto passout; 1016 1017 odst = ip6->ip6_dst; 1018 /* Run through list of hooks for output packets. */ 1019 switch (pfil_mbuf_out(V_inet6_pfil_head, &m, ifp, inp)) { 1020 case PFIL_PASS: 1021 ip6 = mtod(m, struct ip6_hdr *); 1022 break; 1023 case PFIL_DROPPED: 1024 error = EACCES; 1025 /* FALLTHROUGH */ 1026 case PFIL_CONSUMED: 1027 goto done; 1028 } 1029 1030 needfiblookup = 0; 1031 /* See if destination IP address was changed by packet filter. */ 1032 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 1033 m->m_flags |= M_SKIP_FIREWALL; 1034 /* If destination is now ourself drop to ip6_input(). */ 1035 if (in6_localip(&ip6->ip6_dst)) { 1036 m->m_flags |= M_FASTFWD_OURS; 1037 if (m->m_pkthdr.rcvif == NULL) 1038 m->m_pkthdr.rcvif = V_loif; 1039 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1040 m->m_pkthdr.csum_flags |= 1041 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1042 m->m_pkthdr.csum_data = 0xffff; 1043 } 1044 #if defined(SCTP) || defined(SCTP_SUPPORT) 1045 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1046 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1047 #endif 1048 error = netisr_queue(NETISR_IPV6, m); 1049 goto done; 1050 } else { 1051 if (ro != NULL) 1052 RO_INVALIDATE_CACHE(ro); 1053 needfiblookup = 1; /* Redo the routing table lookup. */ 1054 } 1055 } 1056 /* See if fib was changed by packet filter. */ 1057 if (fibnum != M_GETFIB(m)) { 1058 m->m_flags |= M_SKIP_FIREWALL; 1059 fibnum = M_GETFIB(m); 1060 if (ro != NULL) 1061 RO_INVALIDATE_CACHE(ro); 1062 needfiblookup = 1; 1063 } 1064 if (needfiblookup) 1065 goto again; 1066 1067 /* See if local, if yes, send it to netisr. */ 1068 if (m->m_flags & M_FASTFWD_OURS) { 1069 if (m->m_pkthdr.rcvif == NULL) 1070 m->m_pkthdr.rcvif = V_loif; 1071 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1072 m->m_pkthdr.csum_flags |= 1073 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1074 m->m_pkthdr.csum_data = 0xffff; 1075 } 1076 #if defined(SCTP) || defined(SCTP_SUPPORT) 1077 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1078 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1079 #endif 1080 error = netisr_queue(NETISR_IPV6, m); 1081 goto done; 1082 } 1083 /* Or forward to some other address? */ 1084 if ((m->m_flags & M_IP6_NEXTHOP) && 1085 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 1086 if (ro != NULL) 1087 dst = (struct sockaddr_in6 *)&ro->ro_dst; 1088 else 1089 dst = &sin6; 1090 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 1091 m->m_flags |= M_SKIP_FIREWALL; 1092 m->m_flags &= ~M_IP6_NEXTHOP; 1093 m_tag_delete(m, fwd_tag); 1094 goto again; 1095 } 1096 1097 passout: 1098 if (vlan_pcp > -1) 1099 EVL_APPLY_PRI(m, vlan_pcp); 1100 1101 /* Ensure the packet data is mapped if the interface requires it. */ 1102 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 1103 m = mb_unmapped_to_ext(m); 1104 if (m == NULL) { 1105 IP6STAT_INC(ip6s_odropped); 1106 return (ENOBUFS); 1107 } 1108 } 1109 1110 /* 1111 * Send the packet to the outgoing interface. 1112 * If necessary, do IPv6 fragmentation before sending. 1113 * 1114 * The logic here is rather complex: 1115 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 1116 * 1-a: send as is if tlen <= path mtu 1117 * 1-b: fragment if tlen > path mtu 1118 * 1119 * 2: if user asks us not to fragment (dontfrag == 1) 1120 * 2-a: send as is if tlen <= interface mtu 1121 * 2-b: error if tlen > interface mtu 1122 * 1123 * 3: if we always need to attach fragment header (alwaysfrag == 1) 1124 * always fragment 1125 * 1126 * 4: if dontfrag == 1 && alwaysfrag == 1 1127 * error, as we cannot handle this conflicting request. 1128 */ 1129 sw_csum = m->m_pkthdr.csum_flags; 1130 if (!hdrsplit) { 1131 tso = ((sw_csum & ifp->if_hwassist & 1132 (CSUM_TSO | CSUM_INNER_TSO)) != 0) ? 1 : 0; 1133 sw_csum &= ~ifp->if_hwassist; 1134 } else 1135 tso = 0; 1136 /* 1137 * If we added extension headers, we will not do TSO and calculate the 1138 * checksums ourselves for now. 1139 * XXX-BZ Need a framework to know when the NIC can handle it, even 1140 * with ext. hdrs. 1141 */ 1142 ip6_output_delayed_csum(m, ifp, sw_csum, plen, optlen); 1143 /* XXX-BZ m->m_pkthdr.csum_flags &= ~ifp->if_hwassist; */ 1144 tlen = m->m_pkthdr.len; 1145 1146 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 1147 dontfrag = 1; 1148 else 1149 dontfrag = 0; 1150 if (dontfrag && alwaysfrag) { /* Case 4. */ 1151 /* Conflicting request - can't transmit. */ 1152 error = EMSGSIZE; 1153 goto bad; 1154 } 1155 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* Case 2-b. */ 1156 /* 1157 * Even if the DONTFRAG option is specified, we cannot send the 1158 * packet when the data length is larger than the MTU of the 1159 * outgoing interface. 1160 * Notify the error by sending IPV6_PATHMTU ancillary data if 1161 * application wanted to know the MTU value. Also return an 1162 * error code (this is not described in the API spec). 1163 */ 1164 if (inp != NULL) 1165 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 1166 error = EMSGSIZE; 1167 goto bad; 1168 } 1169 1170 /* Transmit packet without fragmentation. */ 1171 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* Cases 1-a and 2-a. */ 1172 struct in6_ifaddr *ia6; 1173 1174 ip6 = mtod(m, struct ip6_hdr *); 1175 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1176 if (ia6) { 1177 /* Record statistics for this interface address. */ 1178 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 1179 counter_u64_add(ia6->ia_ifa.ifa_obytes, 1180 m->m_pkthdr.len); 1181 } 1182 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1183 (flags & IP_NO_SND_TAG_RL) ? false : true); 1184 goto done; 1185 } 1186 1187 /* Try to fragment the packet. Cases 1-b and 3. */ 1188 if (mtu < IPV6_MMTU) { 1189 /* Path MTU cannot be less than IPV6_MMTU. */ 1190 error = EMSGSIZE; 1191 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1192 goto bad; 1193 } else if (ip6->ip6_plen == 0) { 1194 /* Jumbo payload cannot be fragmented. */ 1195 error = EMSGSIZE; 1196 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1197 goto bad; 1198 } else { 1199 u_char nextproto; 1200 1201 /* 1202 * Too large for the destination or interface; 1203 * fragment if possible. 1204 * Must be able to put at least 8 bytes per fragment. 1205 */ 1206 if (mtu > IPV6_MAXPACKET) 1207 mtu = IPV6_MAXPACKET; 1208 1209 len = (mtu - unfragpartlen - sizeof(struct ip6_frag)) & ~7; 1210 if (len < 8) { 1211 error = EMSGSIZE; 1212 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1213 goto bad; 1214 } 1215 1216 /* 1217 * If the interface will not calculate checksums on 1218 * fragmented packets, then do it here. 1219 * XXX-BZ handle the hw offloading case. Need flags. 1220 */ 1221 ip6_output_delayed_csum(m, ifp, m->m_pkthdr.csum_flags, plen, 1222 optlen); 1223 1224 /* 1225 * Change the next header field of the last header in the 1226 * unfragmentable part. 1227 */ 1228 if (exthdrs.ip6e_rthdr) { 1229 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1230 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1231 } else if (exthdrs.ip6e_dest1) { 1232 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1233 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1234 } else if (exthdrs.ip6e_hbh) { 1235 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1236 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1237 } else { 1238 ip6 = mtod(m, struct ip6_hdr *); 1239 nextproto = ip6->ip6_nxt; 1240 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1241 } 1242 1243 /* 1244 * Loop through length of segment after first fragment, 1245 * make new header and copy data of each part and link onto 1246 * chain. 1247 */ 1248 m0 = m; 1249 id = htonl(ip6_randomid()); 1250 error = ip6_fragment(ifp, m, unfragpartlen, nextproto,len, id); 1251 if (error != 0) 1252 goto sendorfree; 1253 1254 in6_ifstat_inc(ifp, ifs6_out_fragok); 1255 } 1256 1257 /* Remove leading garbage. */ 1258 sendorfree: 1259 m = m0->m_nextpkt; 1260 m0->m_nextpkt = 0; 1261 m_freem(m0); 1262 for (; m; m = m0) { 1263 m0 = m->m_nextpkt; 1264 m->m_nextpkt = 0; 1265 if (error == 0) { 1266 /* Record statistics for this interface address. */ 1267 if (ia) { 1268 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1269 counter_u64_add(ia->ia_ifa.ifa_obytes, 1270 m->m_pkthdr.len); 1271 } 1272 if (vlan_pcp > -1) 1273 EVL_APPLY_PRI(m, vlan_pcp); 1274 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1275 true); 1276 } else 1277 m_freem(m); 1278 } 1279 1280 if (error == 0) 1281 IP6STAT_INC(ip6s_fragmented); 1282 1283 done: 1284 return (error); 1285 1286 freehdrs: 1287 m_freem(exthdrs.ip6e_hbh); /* m_freem() checks if mbuf is NULL. */ 1288 m_freem(exthdrs.ip6e_dest1); 1289 m_freem(exthdrs.ip6e_rthdr); 1290 m_freem(exthdrs.ip6e_dest2); 1291 /* FALLTHROUGH */ 1292 bad: 1293 if (m) 1294 m_freem(m); 1295 goto done; 1296 } 1297 1298 static int 1299 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1300 { 1301 struct mbuf *m; 1302 1303 if (hlen > MCLBYTES) 1304 return (ENOBUFS); /* XXX */ 1305 1306 if (hlen > MLEN) 1307 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1308 else 1309 m = m_get(M_NOWAIT, MT_DATA); 1310 if (m == NULL) 1311 return (ENOBUFS); 1312 m->m_len = hlen; 1313 if (hdr) 1314 bcopy(hdr, mtod(m, caddr_t), hlen); 1315 1316 *mp = m; 1317 return (0); 1318 } 1319 1320 /* 1321 * Insert jumbo payload option. 1322 */ 1323 static int 1324 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1325 { 1326 struct mbuf *mopt; 1327 u_char *optbuf; 1328 u_int32_t v; 1329 1330 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1331 1332 /* 1333 * If there is no hop-by-hop options header, allocate new one. 1334 * If there is one but it doesn't have enough space to store the 1335 * jumbo payload option, allocate a cluster to store the whole options. 1336 * Otherwise, use it to store the options. 1337 */ 1338 if (exthdrs->ip6e_hbh == NULL) { 1339 mopt = m_get(M_NOWAIT, MT_DATA); 1340 if (mopt == NULL) 1341 return (ENOBUFS); 1342 mopt->m_len = JUMBOOPTLEN; 1343 optbuf = mtod(mopt, u_char *); 1344 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1345 exthdrs->ip6e_hbh = mopt; 1346 } else { 1347 struct ip6_hbh *hbh; 1348 1349 mopt = exthdrs->ip6e_hbh; 1350 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1351 /* 1352 * XXX assumption: 1353 * - exthdrs->ip6e_hbh is not referenced from places 1354 * other than exthdrs. 1355 * - exthdrs->ip6e_hbh is not an mbuf chain. 1356 */ 1357 int oldoptlen = mopt->m_len; 1358 struct mbuf *n; 1359 1360 /* 1361 * XXX: give up if the whole (new) hbh header does 1362 * not fit even in an mbuf cluster. 1363 */ 1364 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1365 return (ENOBUFS); 1366 1367 /* 1368 * As a consequence, we must always prepare a cluster 1369 * at this point. 1370 */ 1371 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1372 if (n == NULL) 1373 return (ENOBUFS); 1374 n->m_len = oldoptlen + JUMBOOPTLEN; 1375 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1376 oldoptlen); 1377 optbuf = mtod(n, caddr_t) + oldoptlen; 1378 m_freem(mopt); 1379 mopt = exthdrs->ip6e_hbh = n; 1380 } else { 1381 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1382 mopt->m_len += JUMBOOPTLEN; 1383 } 1384 optbuf[0] = IP6OPT_PADN; 1385 optbuf[1] = 1; 1386 1387 /* 1388 * Adjust the header length according to the pad and 1389 * the jumbo payload option. 1390 */ 1391 hbh = mtod(mopt, struct ip6_hbh *); 1392 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1393 } 1394 1395 /* fill in the option. */ 1396 optbuf[2] = IP6OPT_JUMBO; 1397 optbuf[3] = 4; 1398 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1399 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1400 1401 /* finally, adjust the packet header length */ 1402 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1403 1404 return (0); 1405 #undef JUMBOOPTLEN 1406 } 1407 1408 /* 1409 * Insert fragment header and copy unfragmentable header portions. 1410 */ 1411 static int 1412 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1413 struct ip6_frag **frghdrp) 1414 { 1415 struct mbuf *n, *mlast; 1416 1417 if (hlen > sizeof(struct ip6_hdr)) { 1418 n = m_copym(m0, sizeof(struct ip6_hdr), 1419 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1420 if (n == NULL) 1421 return (ENOBUFS); 1422 m->m_next = n; 1423 } else 1424 n = m; 1425 1426 /* Search for the last mbuf of unfragmentable part. */ 1427 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1428 ; 1429 1430 if (M_WRITABLE(mlast) && 1431 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1432 /* use the trailing space of the last mbuf for the fragment hdr */ 1433 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1434 mlast->m_len); 1435 mlast->m_len += sizeof(struct ip6_frag); 1436 m->m_pkthdr.len += sizeof(struct ip6_frag); 1437 } else { 1438 /* allocate a new mbuf for the fragment header */ 1439 struct mbuf *mfrg; 1440 1441 mfrg = m_get(M_NOWAIT, MT_DATA); 1442 if (mfrg == NULL) 1443 return (ENOBUFS); 1444 mfrg->m_len = sizeof(struct ip6_frag); 1445 *frghdrp = mtod(mfrg, struct ip6_frag *); 1446 mlast->m_next = mfrg; 1447 } 1448 1449 return (0); 1450 } 1451 1452 /* 1453 * Calculates IPv6 path mtu for destination @dst. 1454 * Resulting MTU is stored in @mtup. 1455 * 1456 * Returns 0 on success. 1457 */ 1458 static int 1459 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1460 { 1461 struct epoch_tracker et; 1462 struct nhop_object *nh; 1463 struct in6_addr kdst; 1464 uint32_t scopeid; 1465 int error; 1466 1467 in6_splitscope(dst, &kdst, &scopeid); 1468 1469 NET_EPOCH_ENTER(et); 1470 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1471 if (nh != NULL) 1472 error = ip6_calcmtu(nh->nh_ifp, dst, nh->nh_mtu, mtup, NULL, 0); 1473 else 1474 error = EHOSTUNREACH; 1475 NET_EPOCH_EXIT(et); 1476 1477 return (error); 1478 } 1479 1480 /* 1481 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1482 * and cached data in @ro_pmtu. 1483 * MTU from (successful) route lookup is saved (along with dst) 1484 * inside @ro_pmtu to avoid subsequent route lookups after packet 1485 * filter processing. 1486 * 1487 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1488 * Returns 0 on success. 1489 */ 1490 static int 1491 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1492 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1493 int *alwaysfragp, u_int fibnum, u_int proto) 1494 { 1495 struct nhop_object *nh; 1496 struct in6_addr kdst; 1497 uint32_t scopeid; 1498 struct sockaddr_in6 *sa6_dst, sin6; 1499 u_long mtu; 1500 1501 NET_EPOCH_ASSERT(); 1502 1503 mtu = 0; 1504 if (ro_pmtu == NULL || do_lookup) { 1505 /* 1506 * Here ro_pmtu has final destination address, while 1507 * ro might represent immediate destination. 1508 * Use ro_pmtu destination since mtu might differ. 1509 */ 1510 if (ro_pmtu != NULL) { 1511 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1512 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1513 ro_pmtu->ro_mtu = 0; 1514 } else 1515 sa6_dst = &sin6; 1516 1517 if (ro_pmtu == NULL || ro_pmtu->ro_mtu == 0) { 1518 bzero(sa6_dst, sizeof(*sa6_dst)); 1519 sa6_dst->sin6_family = AF_INET6; 1520 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1521 sa6_dst->sin6_addr = *dst; 1522 1523 in6_splitscope(dst, &kdst, &scopeid); 1524 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1525 if (nh != NULL) { 1526 mtu = nh->nh_mtu; 1527 if (ro_pmtu != NULL) 1528 ro_pmtu->ro_mtu = mtu; 1529 } 1530 } else 1531 mtu = ro_pmtu->ro_mtu; 1532 } 1533 1534 if (ro_pmtu != NULL && ro_pmtu->ro_nh != NULL) 1535 mtu = ro_pmtu->ro_nh->nh_mtu; 1536 1537 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1538 } 1539 1540 /* 1541 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1542 * hostcache data for @dst. 1543 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1544 * 1545 * Returns 0 on success. 1546 */ 1547 static int 1548 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1549 u_long *mtup, int *alwaysfragp, u_int proto) 1550 { 1551 u_long mtu = 0; 1552 int alwaysfrag = 0; 1553 int error = 0; 1554 1555 if (rt_mtu > 0) { 1556 u_int32_t ifmtu; 1557 struct in_conninfo inc; 1558 1559 bzero(&inc, sizeof(inc)); 1560 inc.inc_flags |= INC_ISIPV6; 1561 inc.inc6_faddr = *dst; 1562 1563 ifmtu = IN6_LINKMTU(ifp); 1564 1565 /* TCP is known to react to pmtu changes so skip hc */ 1566 if (proto != IPPROTO_TCP) 1567 mtu = tcp_hc_getmtu(&inc); 1568 1569 if (mtu) 1570 mtu = min(mtu, rt_mtu); 1571 else 1572 mtu = rt_mtu; 1573 if (mtu == 0) 1574 mtu = ifmtu; 1575 else if (mtu < IPV6_MMTU) { 1576 /* 1577 * RFC2460 section 5, last paragraph: 1578 * if we record ICMPv6 too big message with 1579 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1580 * or smaller, with framgent header attached. 1581 * (fragment header is needed regardless from the 1582 * packet size, for translators to identify packets) 1583 */ 1584 alwaysfrag = 1; 1585 mtu = IPV6_MMTU; 1586 } 1587 } else if (ifp) { 1588 mtu = IN6_LINKMTU(ifp); 1589 } else 1590 error = EHOSTUNREACH; /* XXX */ 1591 1592 *mtup = mtu; 1593 if (alwaysfragp) 1594 *alwaysfragp = alwaysfrag; 1595 return (error); 1596 } 1597 1598 /* 1599 * IP6 socket option processing. 1600 */ 1601 int 1602 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1603 { 1604 int optdatalen, uproto; 1605 void *optdata; 1606 struct inpcb *inp = sotoinpcb(so); 1607 int error, optval; 1608 int level, op, optname; 1609 int optlen; 1610 struct thread *td; 1611 #ifdef RSS 1612 uint32_t rss_bucket; 1613 int retval; 1614 #endif 1615 1616 /* 1617 * Don't use more than a quarter of mbuf clusters. N.B.: 1618 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1619 * on LP64 architectures, so cast to u_long to avoid undefined 1620 * behavior. ILP32 architectures cannot have nmbclusters 1621 * large enough to overflow for other reasons. 1622 */ 1623 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1624 1625 level = sopt->sopt_level; 1626 op = sopt->sopt_dir; 1627 optname = sopt->sopt_name; 1628 optlen = sopt->sopt_valsize; 1629 td = sopt->sopt_td; 1630 error = 0; 1631 optval = 0; 1632 uproto = (int)so->so_proto->pr_protocol; 1633 1634 if (level != IPPROTO_IPV6) { 1635 error = EINVAL; 1636 1637 if (sopt->sopt_level == SOL_SOCKET && 1638 sopt->sopt_dir == SOPT_SET) { 1639 switch (sopt->sopt_name) { 1640 case SO_SETFIB: 1641 INP_WLOCK(inp); 1642 inp->inp_inc.inc_fibnum = so->so_fibnum; 1643 INP_WUNLOCK(inp); 1644 error = 0; 1645 break; 1646 case SO_MAX_PACING_RATE: 1647 #ifdef RATELIMIT 1648 INP_WLOCK(inp); 1649 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1650 INP_WUNLOCK(inp); 1651 error = 0; 1652 #else 1653 error = EOPNOTSUPP; 1654 #endif 1655 break; 1656 default: 1657 break; 1658 } 1659 } 1660 } else { /* level == IPPROTO_IPV6 */ 1661 switch (op) { 1662 case SOPT_SET: 1663 switch (optname) { 1664 case IPV6_2292PKTOPTIONS: 1665 #ifdef IPV6_PKTOPTIONS 1666 case IPV6_PKTOPTIONS: 1667 #endif 1668 { 1669 struct mbuf *m; 1670 1671 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1672 printf("ip6_ctloutput: mbuf limit hit\n"); 1673 error = ENOBUFS; 1674 break; 1675 } 1676 1677 error = soopt_getm(sopt, &m); /* XXX */ 1678 if (error != 0) 1679 break; 1680 error = soopt_mcopyin(sopt, m); /* XXX */ 1681 if (error != 0) 1682 break; 1683 INP_WLOCK(inp); 1684 error = ip6_pcbopts(&inp->in6p_outputopts, m, 1685 so, sopt); 1686 INP_WUNLOCK(inp); 1687 m_freem(m); /* XXX */ 1688 break; 1689 } 1690 1691 /* 1692 * Use of some Hop-by-Hop options or some 1693 * Destination options, might require special 1694 * privilege. That is, normal applications 1695 * (without special privilege) might be forbidden 1696 * from setting certain options in outgoing packets, 1697 * and might never see certain options in received 1698 * packets. [RFC 2292 Section 6] 1699 * KAME specific note: 1700 * KAME prevents non-privileged users from sending or 1701 * receiving ANY hbh/dst options in order to avoid 1702 * overhead of parsing options in the kernel. 1703 */ 1704 case IPV6_RECVHOPOPTS: 1705 case IPV6_RECVDSTOPTS: 1706 case IPV6_RECVRTHDRDSTOPTS: 1707 if (td != NULL) { 1708 error = priv_check(td, 1709 PRIV_NETINET_SETHDROPTS); 1710 if (error) 1711 break; 1712 } 1713 /* FALLTHROUGH */ 1714 case IPV6_UNICAST_HOPS: 1715 case IPV6_HOPLIMIT: 1716 1717 case IPV6_RECVPKTINFO: 1718 case IPV6_RECVHOPLIMIT: 1719 case IPV6_RECVRTHDR: 1720 case IPV6_RECVPATHMTU: 1721 case IPV6_RECVTCLASS: 1722 case IPV6_RECVFLOWID: 1723 #ifdef RSS 1724 case IPV6_RECVRSSBUCKETID: 1725 #endif 1726 case IPV6_V6ONLY: 1727 case IPV6_AUTOFLOWLABEL: 1728 case IPV6_ORIGDSTADDR: 1729 case IPV6_BINDANY: 1730 case IPV6_VLAN_PCP: 1731 if (optname == IPV6_BINDANY && td != NULL) { 1732 error = priv_check(td, 1733 PRIV_NETINET_BINDANY); 1734 if (error) 1735 break; 1736 } 1737 1738 if (optlen != sizeof(int)) { 1739 error = EINVAL; 1740 break; 1741 } 1742 error = sooptcopyin(sopt, &optval, 1743 sizeof optval, sizeof optval); 1744 if (error) 1745 break; 1746 switch (optname) { 1747 case IPV6_UNICAST_HOPS: 1748 if (optval < -1 || optval >= 256) 1749 error = EINVAL; 1750 else { 1751 /* -1 = kernel default */ 1752 inp->in6p_hops = optval; 1753 if ((inp->inp_vflag & 1754 INP_IPV4) != 0) 1755 inp->inp_ip_ttl = optval; 1756 } 1757 break; 1758 #define OPTSET(bit) \ 1759 do { \ 1760 INP_WLOCK(inp); \ 1761 if (optval) \ 1762 inp->inp_flags |= (bit); \ 1763 else \ 1764 inp->inp_flags &= ~(bit); \ 1765 INP_WUNLOCK(inp); \ 1766 } while (/*CONSTCOND*/ 0) 1767 #define OPTSET2292(bit) \ 1768 do { \ 1769 INP_WLOCK(inp); \ 1770 inp->inp_flags |= IN6P_RFC2292; \ 1771 if (optval) \ 1772 inp->inp_flags |= (bit); \ 1773 else \ 1774 inp->inp_flags &= ~(bit); \ 1775 INP_WUNLOCK(inp); \ 1776 } while (/*CONSTCOND*/ 0) 1777 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1778 1779 #define OPTSET2_N(bit, val) do { \ 1780 if (val) \ 1781 inp->inp_flags2 |= bit; \ 1782 else \ 1783 inp->inp_flags2 &= ~bit; \ 1784 } while (0) 1785 #define OPTSET2(bit, val) do { \ 1786 INP_WLOCK(inp); \ 1787 OPTSET2_N(bit, val); \ 1788 INP_WUNLOCK(inp); \ 1789 } while (0) 1790 #define OPTBIT2(bit) (inp->inp_flags2 & (bit) ? 1 : 0) 1791 #define OPTSET2292_EXCLUSIVE(bit) \ 1792 do { \ 1793 INP_WLOCK(inp); \ 1794 if (OPTBIT(IN6P_RFC2292)) { \ 1795 error = EINVAL; \ 1796 } else { \ 1797 if (optval) \ 1798 inp->inp_flags |= (bit); \ 1799 else \ 1800 inp->inp_flags &= ~(bit); \ 1801 } \ 1802 INP_WUNLOCK(inp); \ 1803 } while (/*CONSTCOND*/ 0) 1804 1805 case IPV6_RECVPKTINFO: 1806 OPTSET2292_EXCLUSIVE(IN6P_PKTINFO); 1807 break; 1808 1809 case IPV6_HOPLIMIT: 1810 { 1811 struct ip6_pktopts **optp; 1812 1813 /* cannot mix with RFC2292 */ 1814 if (OPTBIT(IN6P_RFC2292)) { 1815 error = EINVAL; 1816 break; 1817 } 1818 INP_WLOCK(inp); 1819 if (inp->inp_flags & INP_DROPPED) { 1820 INP_WUNLOCK(inp); 1821 return (ECONNRESET); 1822 } 1823 optp = &inp->in6p_outputopts; 1824 error = ip6_pcbopt(IPV6_HOPLIMIT, 1825 (u_char *)&optval, sizeof(optval), 1826 optp, (td != NULL) ? td->td_ucred : 1827 NULL, uproto); 1828 INP_WUNLOCK(inp); 1829 break; 1830 } 1831 1832 case IPV6_RECVHOPLIMIT: 1833 OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT); 1834 break; 1835 1836 case IPV6_RECVHOPOPTS: 1837 OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS); 1838 break; 1839 1840 case IPV6_RECVDSTOPTS: 1841 OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS); 1842 break; 1843 1844 case IPV6_RECVRTHDRDSTOPTS: 1845 OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS); 1846 break; 1847 1848 case IPV6_RECVRTHDR: 1849 OPTSET2292_EXCLUSIVE(IN6P_RTHDR); 1850 break; 1851 1852 case IPV6_RECVPATHMTU: 1853 /* 1854 * We ignore this option for TCP 1855 * sockets. 1856 * (RFC3542 leaves this case 1857 * unspecified.) 1858 */ 1859 if (uproto != IPPROTO_TCP) 1860 OPTSET(IN6P_MTU); 1861 break; 1862 1863 case IPV6_RECVFLOWID: 1864 OPTSET2(INP_RECVFLOWID, optval); 1865 break; 1866 1867 #ifdef RSS 1868 case IPV6_RECVRSSBUCKETID: 1869 OPTSET2(INP_RECVRSSBUCKETID, optval); 1870 break; 1871 #endif 1872 1873 case IPV6_V6ONLY: 1874 INP_WLOCK(inp); 1875 if (inp->inp_lport || 1876 !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { 1877 /* 1878 * The socket is already bound. 1879 */ 1880 INP_WUNLOCK(inp); 1881 error = EINVAL; 1882 break; 1883 } 1884 if (optval) { 1885 inp->inp_flags |= IN6P_IPV6_V6ONLY; 1886 inp->inp_vflag &= ~INP_IPV4; 1887 } else { 1888 inp->inp_flags &= ~IN6P_IPV6_V6ONLY; 1889 inp->inp_vflag |= INP_IPV4; 1890 } 1891 INP_WUNLOCK(inp); 1892 break; 1893 case IPV6_RECVTCLASS: 1894 /* cannot mix with RFC2292 XXX */ 1895 OPTSET2292_EXCLUSIVE(IN6P_TCLASS); 1896 break; 1897 case IPV6_AUTOFLOWLABEL: 1898 OPTSET(IN6P_AUTOFLOWLABEL); 1899 break; 1900 1901 case IPV6_ORIGDSTADDR: 1902 OPTSET2(INP_ORIGDSTADDR, optval); 1903 break; 1904 case IPV6_BINDANY: 1905 OPTSET(INP_BINDANY); 1906 break; 1907 case IPV6_VLAN_PCP: 1908 if ((optval >= -1) && (optval <= 1909 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) { 1910 if (optval == -1) { 1911 INP_WLOCK(inp); 1912 inp->inp_flags2 &= 1913 ~(INP_2PCP_SET | 1914 INP_2PCP_MASK); 1915 INP_WUNLOCK(inp); 1916 } else { 1917 INP_WLOCK(inp); 1918 inp->inp_flags2 |= 1919 INP_2PCP_SET; 1920 inp->inp_flags2 &= 1921 ~INP_2PCP_MASK; 1922 inp->inp_flags2 |= 1923 optval << 1924 INP_2PCP_SHIFT; 1925 INP_WUNLOCK(inp); 1926 } 1927 } else 1928 error = EINVAL; 1929 break; 1930 } 1931 break; 1932 1933 case IPV6_TCLASS: 1934 case IPV6_DONTFRAG: 1935 case IPV6_USE_MIN_MTU: 1936 case IPV6_PREFER_TEMPADDR: 1937 if (optlen != sizeof(optval)) { 1938 error = EINVAL; 1939 break; 1940 } 1941 error = sooptcopyin(sopt, &optval, 1942 sizeof optval, sizeof optval); 1943 if (error) 1944 break; 1945 { 1946 struct ip6_pktopts **optp; 1947 INP_WLOCK(inp); 1948 if (inp->inp_flags & INP_DROPPED) { 1949 INP_WUNLOCK(inp); 1950 return (ECONNRESET); 1951 } 1952 optp = &inp->in6p_outputopts; 1953 error = ip6_pcbopt(optname, 1954 (u_char *)&optval, sizeof(optval), 1955 optp, (td != NULL) ? td->td_ucred : 1956 NULL, uproto); 1957 INP_WUNLOCK(inp); 1958 break; 1959 } 1960 1961 case IPV6_2292PKTINFO: 1962 case IPV6_2292HOPLIMIT: 1963 case IPV6_2292HOPOPTS: 1964 case IPV6_2292DSTOPTS: 1965 case IPV6_2292RTHDR: 1966 /* RFC 2292 */ 1967 if (optlen != sizeof(int)) { 1968 error = EINVAL; 1969 break; 1970 } 1971 error = sooptcopyin(sopt, &optval, 1972 sizeof optval, sizeof optval); 1973 if (error) 1974 break; 1975 switch (optname) { 1976 case IPV6_2292PKTINFO: 1977 OPTSET2292(IN6P_PKTINFO); 1978 break; 1979 case IPV6_2292HOPLIMIT: 1980 OPTSET2292(IN6P_HOPLIMIT); 1981 break; 1982 case IPV6_2292HOPOPTS: 1983 /* 1984 * Check super-user privilege. 1985 * See comments for IPV6_RECVHOPOPTS. 1986 */ 1987 if (td != NULL) { 1988 error = priv_check(td, 1989 PRIV_NETINET_SETHDROPTS); 1990 if (error) 1991 return (error); 1992 } 1993 OPTSET2292(IN6P_HOPOPTS); 1994 break; 1995 case IPV6_2292DSTOPTS: 1996 if (td != NULL) { 1997 error = priv_check(td, 1998 PRIV_NETINET_SETHDROPTS); 1999 if (error) 2000 return (error); 2001 } 2002 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 2003 break; 2004 case IPV6_2292RTHDR: 2005 OPTSET2292(IN6P_RTHDR); 2006 break; 2007 } 2008 break; 2009 case IPV6_PKTINFO: 2010 case IPV6_HOPOPTS: 2011 case IPV6_RTHDR: 2012 case IPV6_DSTOPTS: 2013 case IPV6_RTHDRDSTOPTS: 2014 case IPV6_NEXTHOP: 2015 { 2016 /* new advanced API (RFC3542) */ 2017 u_char *optbuf; 2018 u_char optbuf_storage[MCLBYTES]; 2019 int optlen; 2020 struct ip6_pktopts **optp; 2021 2022 /* cannot mix with RFC2292 */ 2023 if (OPTBIT(IN6P_RFC2292)) { 2024 error = EINVAL; 2025 break; 2026 } 2027 2028 /* 2029 * We only ensure valsize is not too large 2030 * here. Further validation will be done 2031 * later. 2032 */ 2033 error = sooptcopyin(sopt, optbuf_storage, 2034 sizeof(optbuf_storage), 0); 2035 if (error) 2036 break; 2037 optlen = sopt->sopt_valsize; 2038 optbuf = optbuf_storage; 2039 INP_WLOCK(inp); 2040 if (inp->inp_flags & INP_DROPPED) { 2041 INP_WUNLOCK(inp); 2042 return (ECONNRESET); 2043 } 2044 optp = &inp->in6p_outputopts; 2045 error = ip6_pcbopt(optname, optbuf, optlen, 2046 optp, (td != NULL) ? td->td_ucred : NULL, 2047 uproto); 2048 INP_WUNLOCK(inp); 2049 break; 2050 } 2051 #undef OPTSET 2052 2053 case IPV6_MULTICAST_IF: 2054 case IPV6_MULTICAST_HOPS: 2055 case IPV6_MULTICAST_LOOP: 2056 case IPV6_JOIN_GROUP: 2057 case IPV6_LEAVE_GROUP: 2058 case IPV6_MSFILTER: 2059 case MCAST_BLOCK_SOURCE: 2060 case MCAST_UNBLOCK_SOURCE: 2061 case MCAST_JOIN_GROUP: 2062 case MCAST_LEAVE_GROUP: 2063 case MCAST_JOIN_SOURCE_GROUP: 2064 case MCAST_LEAVE_SOURCE_GROUP: 2065 error = ip6_setmoptions(inp, sopt); 2066 break; 2067 2068 case IPV6_PORTRANGE: 2069 error = sooptcopyin(sopt, &optval, 2070 sizeof optval, sizeof optval); 2071 if (error) 2072 break; 2073 2074 INP_WLOCK(inp); 2075 switch (optval) { 2076 case IPV6_PORTRANGE_DEFAULT: 2077 inp->inp_flags &= ~(INP_LOWPORT); 2078 inp->inp_flags &= ~(INP_HIGHPORT); 2079 break; 2080 2081 case IPV6_PORTRANGE_HIGH: 2082 inp->inp_flags &= ~(INP_LOWPORT); 2083 inp->inp_flags |= INP_HIGHPORT; 2084 break; 2085 2086 case IPV6_PORTRANGE_LOW: 2087 inp->inp_flags &= ~(INP_HIGHPORT); 2088 inp->inp_flags |= INP_LOWPORT; 2089 break; 2090 2091 default: 2092 error = EINVAL; 2093 break; 2094 } 2095 INP_WUNLOCK(inp); 2096 break; 2097 2098 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2099 case IPV6_IPSEC_POLICY: 2100 if (IPSEC_ENABLED(ipv6)) { 2101 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2102 break; 2103 } 2104 /* FALLTHROUGH */ 2105 #endif /* IPSEC */ 2106 2107 default: 2108 error = ENOPROTOOPT; 2109 break; 2110 } 2111 break; 2112 2113 case SOPT_GET: 2114 switch (optname) { 2115 case IPV6_2292PKTOPTIONS: 2116 #ifdef IPV6_PKTOPTIONS 2117 case IPV6_PKTOPTIONS: 2118 #endif 2119 /* 2120 * RFC3542 (effectively) deprecated the 2121 * semantics of the 2292-style pktoptions. 2122 * Since it was not reliable in nature (i.e., 2123 * applications had to expect the lack of some 2124 * information after all), it would make sense 2125 * to simplify this part by always returning 2126 * empty data. 2127 */ 2128 sopt->sopt_valsize = 0; 2129 break; 2130 2131 case IPV6_RECVHOPOPTS: 2132 case IPV6_RECVDSTOPTS: 2133 case IPV6_RECVRTHDRDSTOPTS: 2134 case IPV6_UNICAST_HOPS: 2135 case IPV6_RECVPKTINFO: 2136 case IPV6_RECVHOPLIMIT: 2137 case IPV6_RECVRTHDR: 2138 case IPV6_RECVPATHMTU: 2139 2140 case IPV6_V6ONLY: 2141 case IPV6_PORTRANGE: 2142 case IPV6_RECVTCLASS: 2143 case IPV6_AUTOFLOWLABEL: 2144 case IPV6_BINDANY: 2145 case IPV6_FLOWID: 2146 case IPV6_FLOWTYPE: 2147 case IPV6_RECVFLOWID: 2148 #ifdef RSS 2149 case IPV6_RSSBUCKETID: 2150 case IPV6_RECVRSSBUCKETID: 2151 #endif 2152 case IPV6_VLAN_PCP: 2153 switch (optname) { 2154 case IPV6_RECVHOPOPTS: 2155 optval = OPTBIT(IN6P_HOPOPTS); 2156 break; 2157 2158 case IPV6_RECVDSTOPTS: 2159 optval = OPTBIT(IN6P_DSTOPTS); 2160 break; 2161 2162 case IPV6_RECVRTHDRDSTOPTS: 2163 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 2164 break; 2165 2166 case IPV6_UNICAST_HOPS: 2167 optval = inp->in6p_hops; 2168 break; 2169 2170 case IPV6_RECVPKTINFO: 2171 optval = OPTBIT(IN6P_PKTINFO); 2172 break; 2173 2174 case IPV6_RECVHOPLIMIT: 2175 optval = OPTBIT(IN6P_HOPLIMIT); 2176 break; 2177 2178 case IPV6_RECVRTHDR: 2179 optval = OPTBIT(IN6P_RTHDR); 2180 break; 2181 2182 case IPV6_RECVPATHMTU: 2183 optval = OPTBIT(IN6P_MTU); 2184 break; 2185 2186 case IPV6_V6ONLY: 2187 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2188 break; 2189 2190 case IPV6_PORTRANGE: 2191 { 2192 int flags; 2193 flags = inp->inp_flags; 2194 if (flags & INP_HIGHPORT) 2195 optval = IPV6_PORTRANGE_HIGH; 2196 else if (flags & INP_LOWPORT) 2197 optval = IPV6_PORTRANGE_LOW; 2198 else 2199 optval = 0; 2200 break; 2201 } 2202 case IPV6_RECVTCLASS: 2203 optval = OPTBIT(IN6P_TCLASS); 2204 break; 2205 2206 case IPV6_AUTOFLOWLABEL: 2207 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2208 break; 2209 2210 case IPV6_ORIGDSTADDR: 2211 optval = OPTBIT2(INP_ORIGDSTADDR); 2212 break; 2213 2214 case IPV6_BINDANY: 2215 optval = OPTBIT(INP_BINDANY); 2216 break; 2217 2218 case IPV6_FLOWID: 2219 optval = inp->inp_flowid; 2220 break; 2221 2222 case IPV6_FLOWTYPE: 2223 optval = inp->inp_flowtype; 2224 break; 2225 2226 case IPV6_RECVFLOWID: 2227 optval = OPTBIT2(INP_RECVFLOWID); 2228 break; 2229 #ifdef RSS 2230 case IPV6_RSSBUCKETID: 2231 retval = 2232 rss_hash2bucket(inp->inp_flowid, 2233 inp->inp_flowtype, 2234 &rss_bucket); 2235 if (retval == 0) 2236 optval = rss_bucket; 2237 else 2238 error = EINVAL; 2239 break; 2240 2241 case IPV6_RECVRSSBUCKETID: 2242 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2243 break; 2244 #endif 2245 2246 2247 case IPV6_VLAN_PCP: 2248 if (OPTBIT2(INP_2PCP_SET)) { 2249 optval = (inp->inp_flags2 & 2250 INP_2PCP_MASK) >> 2251 INP_2PCP_SHIFT; 2252 } else { 2253 optval = -1; 2254 } 2255 break; 2256 } 2257 2258 if (error) 2259 break; 2260 error = sooptcopyout(sopt, &optval, 2261 sizeof optval); 2262 break; 2263 2264 case IPV6_PATHMTU: 2265 { 2266 u_long pmtu = 0; 2267 struct ip6_mtuinfo mtuinfo; 2268 struct in6_addr addr; 2269 2270 if (!(so->so_state & SS_ISCONNECTED)) 2271 return (ENOTCONN); 2272 /* 2273 * XXX: we dot not consider the case of source 2274 * routing, or optional information to specify 2275 * the outgoing interface. 2276 * Copy faddr out of inp to avoid holding lock 2277 * on inp during route lookup. 2278 */ 2279 INP_RLOCK(inp); 2280 bcopy(&inp->in6p_faddr, &addr, sizeof(addr)); 2281 INP_RUNLOCK(inp); 2282 error = ip6_getpmtu_ctl(so->so_fibnum, 2283 &addr, &pmtu); 2284 if (error) 2285 break; 2286 if (pmtu > IPV6_MAXPACKET) 2287 pmtu = IPV6_MAXPACKET; 2288 2289 bzero(&mtuinfo, sizeof(mtuinfo)); 2290 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2291 optdata = (void *)&mtuinfo; 2292 optdatalen = sizeof(mtuinfo); 2293 error = sooptcopyout(sopt, optdata, 2294 optdatalen); 2295 break; 2296 } 2297 2298 case IPV6_2292PKTINFO: 2299 case IPV6_2292HOPLIMIT: 2300 case IPV6_2292HOPOPTS: 2301 case IPV6_2292RTHDR: 2302 case IPV6_2292DSTOPTS: 2303 switch (optname) { 2304 case IPV6_2292PKTINFO: 2305 optval = OPTBIT(IN6P_PKTINFO); 2306 break; 2307 case IPV6_2292HOPLIMIT: 2308 optval = OPTBIT(IN6P_HOPLIMIT); 2309 break; 2310 case IPV6_2292HOPOPTS: 2311 optval = OPTBIT(IN6P_HOPOPTS); 2312 break; 2313 case IPV6_2292RTHDR: 2314 optval = OPTBIT(IN6P_RTHDR); 2315 break; 2316 case IPV6_2292DSTOPTS: 2317 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2318 break; 2319 } 2320 error = sooptcopyout(sopt, &optval, 2321 sizeof optval); 2322 break; 2323 case IPV6_PKTINFO: 2324 case IPV6_HOPOPTS: 2325 case IPV6_RTHDR: 2326 case IPV6_DSTOPTS: 2327 case IPV6_RTHDRDSTOPTS: 2328 case IPV6_NEXTHOP: 2329 case IPV6_TCLASS: 2330 case IPV6_DONTFRAG: 2331 case IPV6_USE_MIN_MTU: 2332 case IPV6_PREFER_TEMPADDR: 2333 error = ip6_getpcbopt(inp, optname, sopt); 2334 break; 2335 2336 case IPV6_MULTICAST_IF: 2337 case IPV6_MULTICAST_HOPS: 2338 case IPV6_MULTICAST_LOOP: 2339 case IPV6_MSFILTER: 2340 error = ip6_getmoptions(inp, sopt); 2341 break; 2342 2343 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2344 case IPV6_IPSEC_POLICY: 2345 if (IPSEC_ENABLED(ipv6)) { 2346 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2347 break; 2348 } 2349 /* FALLTHROUGH */ 2350 #endif /* IPSEC */ 2351 default: 2352 error = ENOPROTOOPT; 2353 break; 2354 } 2355 break; 2356 } 2357 } 2358 return (error); 2359 } 2360 2361 int 2362 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2363 { 2364 int error = 0, optval, optlen; 2365 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2366 struct inpcb *inp = sotoinpcb(so); 2367 int level, op, optname; 2368 2369 level = sopt->sopt_level; 2370 op = sopt->sopt_dir; 2371 optname = sopt->sopt_name; 2372 optlen = sopt->sopt_valsize; 2373 2374 if (level != IPPROTO_IPV6) { 2375 return (EINVAL); 2376 } 2377 2378 switch (optname) { 2379 case IPV6_CHECKSUM: 2380 /* 2381 * For ICMPv6 sockets, no modification allowed for checksum 2382 * offset, permit "no change" values to help existing apps. 2383 * 2384 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2385 * for an ICMPv6 socket will fail." 2386 * The current behavior does not meet RFC3542. 2387 */ 2388 switch (op) { 2389 case SOPT_SET: 2390 if (optlen != sizeof(int)) { 2391 error = EINVAL; 2392 break; 2393 } 2394 error = sooptcopyin(sopt, &optval, sizeof(optval), 2395 sizeof(optval)); 2396 if (error) 2397 break; 2398 if (optval < -1 || (optval % 2) != 0) { 2399 /* 2400 * The API assumes non-negative even offset 2401 * values or -1 as a special value. 2402 */ 2403 error = EINVAL; 2404 } else if (inp->inp_ip_p == IPPROTO_ICMPV6) { 2405 if (optval != icmp6off) 2406 error = EINVAL; 2407 } else 2408 inp->in6p_cksum = optval; 2409 break; 2410 2411 case SOPT_GET: 2412 if (inp->inp_ip_p == IPPROTO_ICMPV6) 2413 optval = icmp6off; 2414 else 2415 optval = inp->in6p_cksum; 2416 2417 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2418 break; 2419 2420 default: 2421 error = EINVAL; 2422 break; 2423 } 2424 break; 2425 2426 default: 2427 error = ENOPROTOOPT; 2428 break; 2429 } 2430 2431 return (error); 2432 } 2433 2434 /* 2435 * Set up IP6 options in pcb for insertion in output packets or 2436 * specifying behavior of outgoing packets. 2437 */ 2438 static int 2439 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2440 struct socket *so, struct sockopt *sopt) 2441 { 2442 struct ip6_pktopts *opt = *pktopt; 2443 int error = 0; 2444 struct thread *td = sopt->sopt_td; 2445 struct epoch_tracker et; 2446 2447 /* turn off any old options. */ 2448 if (opt) { 2449 #ifdef DIAGNOSTIC 2450 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2451 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2452 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2453 printf("ip6_pcbopts: all specified options are cleared.\n"); 2454 #endif 2455 ip6_clearpktopts(opt, -1); 2456 } else { 2457 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 2458 if (opt == NULL) 2459 return (ENOMEM); 2460 } 2461 *pktopt = NULL; 2462 2463 if (!m || m->m_len == 0) { 2464 /* 2465 * Only turning off any previous options, regardless of 2466 * whether the opt is just created or given. 2467 */ 2468 free(opt, M_IP6OPT); 2469 return (0); 2470 } 2471 2472 /* set options specified by user. */ 2473 NET_EPOCH_ENTER(et); 2474 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2475 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2476 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2477 free(opt, M_IP6OPT); 2478 NET_EPOCH_EXIT(et); 2479 return (error); 2480 } 2481 NET_EPOCH_EXIT(et); 2482 *pktopt = opt; 2483 return (0); 2484 } 2485 2486 /* 2487 * initialize ip6_pktopts. beware that there are non-zero default values in 2488 * the struct. 2489 */ 2490 void 2491 ip6_initpktopts(struct ip6_pktopts *opt) 2492 { 2493 2494 bzero(opt, sizeof(*opt)); 2495 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2496 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2497 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2498 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2499 } 2500 2501 static int 2502 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2503 struct ucred *cred, int uproto) 2504 { 2505 struct epoch_tracker et; 2506 struct ip6_pktopts *opt; 2507 int ret; 2508 2509 if (*pktopt == NULL) { 2510 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2511 M_NOWAIT); 2512 if (*pktopt == NULL) 2513 return (ENOBUFS); 2514 ip6_initpktopts(*pktopt); 2515 } 2516 opt = *pktopt; 2517 2518 NET_EPOCH_ENTER(et); 2519 ret = ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto); 2520 NET_EPOCH_EXIT(et); 2521 2522 return (ret); 2523 } 2524 2525 #define GET_PKTOPT_VAR(field, lenexpr) do { \ 2526 if (pktopt && pktopt->field) { \ 2527 INP_RUNLOCK(inp); \ 2528 optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \ 2529 malloc_optdata = true; \ 2530 INP_RLOCK(inp); \ 2531 if (inp->inp_flags & INP_DROPPED) { \ 2532 INP_RUNLOCK(inp); \ 2533 free(optdata, M_TEMP); \ 2534 return (ECONNRESET); \ 2535 } \ 2536 pktopt = inp->in6p_outputopts; \ 2537 if (pktopt && pktopt->field) { \ 2538 optdatalen = min(lenexpr, sopt->sopt_valsize); \ 2539 bcopy(pktopt->field, optdata, optdatalen); \ 2540 } else { \ 2541 free(optdata, M_TEMP); \ 2542 optdata = NULL; \ 2543 malloc_optdata = false; \ 2544 } \ 2545 } \ 2546 } while(0) 2547 2548 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \ 2549 (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3) 2550 2551 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \ 2552 pktopt->field->sa_len) 2553 2554 static int 2555 ip6_getpcbopt(struct inpcb *inp, int optname, struct sockopt *sopt) 2556 { 2557 void *optdata = NULL; 2558 bool malloc_optdata = false; 2559 int optdatalen = 0; 2560 int error = 0; 2561 struct in6_pktinfo null_pktinfo; 2562 int deftclass = 0, on; 2563 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2564 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2565 struct ip6_pktopts *pktopt; 2566 2567 INP_RLOCK(inp); 2568 pktopt = inp->in6p_outputopts; 2569 2570 switch (optname) { 2571 case IPV6_PKTINFO: 2572 optdata = (void *)&null_pktinfo; 2573 if (pktopt && pktopt->ip6po_pktinfo) { 2574 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2575 sizeof(null_pktinfo)); 2576 in6_clearscope(&null_pktinfo.ipi6_addr); 2577 } else { 2578 /* XXX: we don't have to do this every time... */ 2579 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2580 } 2581 optdatalen = sizeof(struct in6_pktinfo); 2582 break; 2583 case IPV6_TCLASS: 2584 if (pktopt && pktopt->ip6po_tclass >= 0) 2585 deftclass = pktopt->ip6po_tclass; 2586 optdata = (void *)&deftclass; 2587 optdatalen = sizeof(int); 2588 break; 2589 case IPV6_HOPOPTS: 2590 GET_PKTOPT_EXT_HDR(ip6po_hbh); 2591 break; 2592 case IPV6_RTHDR: 2593 GET_PKTOPT_EXT_HDR(ip6po_rthdr); 2594 break; 2595 case IPV6_RTHDRDSTOPTS: 2596 GET_PKTOPT_EXT_HDR(ip6po_dest1); 2597 break; 2598 case IPV6_DSTOPTS: 2599 GET_PKTOPT_EXT_HDR(ip6po_dest2); 2600 break; 2601 case IPV6_NEXTHOP: 2602 GET_PKTOPT_SOCKADDR(ip6po_nexthop); 2603 break; 2604 case IPV6_USE_MIN_MTU: 2605 if (pktopt) 2606 defminmtu = pktopt->ip6po_minmtu; 2607 optdata = (void *)&defminmtu; 2608 optdatalen = sizeof(int); 2609 break; 2610 case IPV6_DONTFRAG: 2611 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2612 on = 1; 2613 else 2614 on = 0; 2615 optdata = (void *)&on; 2616 optdatalen = sizeof(on); 2617 break; 2618 case IPV6_PREFER_TEMPADDR: 2619 if (pktopt) 2620 defpreftemp = pktopt->ip6po_prefer_tempaddr; 2621 optdata = (void *)&defpreftemp; 2622 optdatalen = sizeof(int); 2623 break; 2624 default: /* should not happen */ 2625 #ifdef DIAGNOSTIC 2626 panic("ip6_getpcbopt: unexpected option\n"); 2627 #endif 2628 INP_RUNLOCK(inp); 2629 return (ENOPROTOOPT); 2630 } 2631 INP_RUNLOCK(inp); 2632 2633 error = sooptcopyout(sopt, optdata, optdatalen); 2634 if (malloc_optdata) 2635 free(optdata, M_TEMP); 2636 2637 return (error); 2638 } 2639 2640 void 2641 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2642 { 2643 if (pktopt == NULL) 2644 return; 2645 2646 if (optname == -1 || optname == IPV6_PKTINFO) { 2647 if (pktopt->ip6po_pktinfo) 2648 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2649 pktopt->ip6po_pktinfo = NULL; 2650 } 2651 if (optname == -1 || optname == IPV6_HOPLIMIT) 2652 pktopt->ip6po_hlim = -1; 2653 if (optname == -1 || optname == IPV6_TCLASS) 2654 pktopt->ip6po_tclass = -1; 2655 if (optname == -1 || optname == IPV6_NEXTHOP) { 2656 if (pktopt->ip6po_nextroute.ro_nh) { 2657 NH_FREE(pktopt->ip6po_nextroute.ro_nh); 2658 pktopt->ip6po_nextroute.ro_nh = NULL; 2659 } 2660 if (pktopt->ip6po_nexthop) 2661 free(pktopt->ip6po_nexthop, M_IP6OPT); 2662 pktopt->ip6po_nexthop = NULL; 2663 } 2664 if (optname == -1 || optname == IPV6_HOPOPTS) { 2665 if (pktopt->ip6po_hbh) 2666 free(pktopt->ip6po_hbh, M_IP6OPT); 2667 pktopt->ip6po_hbh = NULL; 2668 } 2669 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2670 if (pktopt->ip6po_dest1) 2671 free(pktopt->ip6po_dest1, M_IP6OPT); 2672 pktopt->ip6po_dest1 = NULL; 2673 } 2674 if (optname == -1 || optname == IPV6_RTHDR) { 2675 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2676 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2677 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2678 if (pktopt->ip6po_route.ro_nh) { 2679 NH_FREE(pktopt->ip6po_route.ro_nh); 2680 pktopt->ip6po_route.ro_nh = NULL; 2681 } 2682 } 2683 if (optname == -1 || optname == IPV6_DSTOPTS) { 2684 if (pktopt->ip6po_dest2) 2685 free(pktopt->ip6po_dest2, M_IP6OPT); 2686 pktopt->ip6po_dest2 = NULL; 2687 } 2688 } 2689 2690 #define PKTOPT_EXTHDRCPY(type) \ 2691 do {\ 2692 if (src->type) {\ 2693 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2694 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2695 if (dst->type == NULL)\ 2696 goto bad;\ 2697 bcopy(src->type, dst->type, hlen);\ 2698 }\ 2699 } while (/*CONSTCOND*/ 0) 2700 2701 static int 2702 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2703 { 2704 if (dst == NULL || src == NULL) { 2705 printf("ip6_clearpktopts: invalid argument\n"); 2706 return (EINVAL); 2707 } 2708 2709 dst->ip6po_hlim = src->ip6po_hlim; 2710 dst->ip6po_tclass = src->ip6po_tclass; 2711 dst->ip6po_flags = src->ip6po_flags; 2712 dst->ip6po_minmtu = src->ip6po_minmtu; 2713 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2714 if (src->ip6po_pktinfo) { 2715 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2716 M_IP6OPT, canwait); 2717 if (dst->ip6po_pktinfo == NULL) 2718 goto bad; 2719 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2720 } 2721 if (src->ip6po_nexthop) { 2722 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2723 M_IP6OPT, canwait); 2724 if (dst->ip6po_nexthop == NULL) 2725 goto bad; 2726 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2727 src->ip6po_nexthop->sa_len); 2728 } 2729 PKTOPT_EXTHDRCPY(ip6po_hbh); 2730 PKTOPT_EXTHDRCPY(ip6po_dest1); 2731 PKTOPT_EXTHDRCPY(ip6po_dest2); 2732 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2733 return (0); 2734 2735 bad: 2736 ip6_clearpktopts(dst, -1); 2737 return (ENOBUFS); 2738 } 2739 #undef PKTOPT_EXTHDRCPY 2740 2741 struct ip6_pktopts * 2742 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2743 { 2744 int error; 2745 struct ip6_pktopts *dst; 2746 2747 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2748 if (dst == NULL) 2749 return (NULL); 2750 ip6_initpktopts(dst); 2751 2752 if ((error = copypktopts(dst, src, canwait)) != 0) { 2753 free(dst, M_IP6OPT); 2754 return (NULL); 2755 } 2756 2757 return (dst); 2758 } 2759 2760 void 2761 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2762 { 2763 if (pktopt == NULL) 2764 return; 2765 2766 ip6_clearpktopts(pktopt, -1); 2767 2768 free(pktopt, M_IP6OPT); 2769 } 2770 2771 /* 2772 * Set IPv6 outgoing packet options based on advanced API. 2773 */ 2774 int 2775 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2776 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2777 { 2778 struct cmsghdr *cm = NULL; 2779 2780 if (control == NULL || opt == NULL) 2781 return (EINVAL); 2782 2783 /* 2784 * ip6_setpktopt can call ifnet_byindex(), so it's imperative that we 2785 * are in the network epoch here. 2786 */ 2787 NET_EPOCH_ASSERT(); 2788 2789 ip6_initpktopts(opt); 2790 if (stickyopt) { 2791 int error; 2792 2793 /* 2794 * If stickyopt is provided, make a local copy of the options 2795 * for this particular packet, then override them by ancillary 2796 * objects. 2797 * XXX: copypktopts() does not copy the cached route to a next 2798 * hop (if any). This is not very good in terms of efficiency, 2799 * but we can allow this since this option should be rarely 2800 * used. 2801 */ 2802 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2803 return (error); 2804 } 2805 2806 /* 2807 * XXX: Currently, we assume all the optional information is stored 2808 * in a single mbuf. 2809 */ 2810 if (control->m_next) 2811 return (EINVAL); 2812 2813 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2814 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2815 int error; 2816 2817 if (control->m_len < CMSG_LEN(0)) 2818 return (EINVAL); 2819 2820 cm = mtod(control, struct cmsghdr *); 2821 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2822 return (EINVAL); 2823 if (cm->cmsg_level != IPPROTO_IPV6) 2824 continue; 2825 2826 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2827 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2828 if (error) 2829 return (error); 2830 } 2831 2832 return (0); 2833 } 2834 2835 /* 2836 * Set a particular packet option, as a sticky option or an ancillary data 2837 * item. "len" can be 0 only when it's a sticky option. 2838 * We have 4 cases of combination of "sticky" and "cmsg": 2839 * "sticky=0, cmsg=0": impossible 2840 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2841 * "sticky=1, cmsg=0": RFC3542 socket option 2842 * "sticky=1, cmsg=1": RFC2292 socket option 2843 */ 2844 static int 2845 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2846 struct ucred *cred, int sticky, int cmsg, int uproto) 2847 { 2848 int minmtupolicy, preftemp; 2849 int error; 2850 2851 NET_EPOCH_ASSERT(); 2852 2853 if (!sticky && !cmsg) { 2854 #ifdef DIAGNOSTIC 2855 printf("ip6_setpktopt: impossible case\n"); 2856 #endif 2857 return (EINVAL); 2858 } 2859 2860 /* 2861 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2862 * not be specified in the context of RFC3542. Conversely, 2863 * RFC3542 types should not be specified in the context of RFC2292. 2864 */ 2865 if (!cmsg) { 2866 switch (optname) { 2867 case IPV6_2292PKTINFO: 2868 case IPV6_2292HOPLIMIT: 2869 case IPV6_2292NEXTHOP: 2870 case IPV6_2292HOPOPTS: 2871 case IPV6_2292DSTOPTS: 2872 case IPV6_2292RTHDR: 2873 case IPV6_2292PKTOPTIONS: 2874 return (ENOPROTOOPT); 2875 } 2876 } 2877 if (sticky && cmsg) { 2878 switch (optname) { 2879 case IPV6_PKTINFO: 2880 case IPV6_HOPLIMIT: 2881 case IPV6_NEXTHOP: 2882 case IPV6_HOPOPTS: 2883 case IPV6_DSTOPTS: 2884 case IPV6_RTHDRDSTOPTS: 2885 case IPV6_RTHDR: 2886 case IPV6_USE_MIN_MTU: 2887 case IPV6_DONTFRAG: 2888 case IPV6_TCLASS: 2889 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2890 return (ENOPROTOOPT); 2891 } 2892 } 2893 2894 switch (optname) { 2895 case IPV6_2292PKTINFO: 2896 case IPV6_PKTINFO: 2897 { 2898 struct ifnet *ifp = NULL; 2899 struct in6_pktinfo *pktinfo; 2900 2901 if (len != sizeof(struct in6_pktinfo)) 2902 return (EINVAL); 2903 2904 pktinfo = (struct in6_pktinfo *)buf; 2905 2906 /* 2907 * An application can clear any sticky IPV6_PKTINFO option by 2908 * doing a "regular" setsockopt with ipi6_addr being 2909 * in6addr_any and ipi6_ifindex being zero. 2910 * [RFC 3542, Section 6] 2911 */ 2912 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2913 pktinfo->ipi6_ifindex == 0 && 2914 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2915 ip6_clearpktopts(opt, optname); 2916 break; 2917 } 2918 2919 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2920 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2921 return (EINVAL); 2922 } 2923 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2924 return (EINVAL); 2925 /* validate the interface index if specified. */ 2926 if (pktinfo->ipi6_ifindex) { 2927 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2928 if (ifp == NULL) 2929 return (ENXIO); 2930 } 2931 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2932 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2933 return (ENETDOWN); 2934 2935 if (ifp != NULL && 2936 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2937 struct in6_ifaddr *ia; 2938 2939 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2940 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2941 if (ia == NULL) 2942 return (EADDRNOTAVAIL); 2943 ifa_free(&ia->ia_ifa); 2944 } 2945 /* 2946 * We store the address anyway, and let in6_selectsrc() 2947 * validate the specified address. This is because ipi6_addr 2948 * may not have enough information about its scope zone, and 2949 * we may need additional information (such as outgoing 2950 * interface or the scope zone of a destination address) to 2951 * disambiguate the scope. 2952 * XXX: the delay of the validation may confuse the 2953 * application when it is used as a sticky option. 2954 */ 2955 if (opt->ip6po_pktinfo == NULL) { 2956 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2957 M_IP6OPT, M_NOWAIT); 2958 if (opt->ip6po_pktinfo == NULL) 2959 return (ENOBUFS); 2960 } 2961 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2962 break; 2963 } 2964 2965 case IPV6_2292HOPLIMIT: 2966 case IPV6_HOPLIMIT: 2967 { 2968 int *hlimp; 2969 2970 /* 2971 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2972 * to simplify the ordering among hoplimit options. 2973 */ 2974 if (optname == IPV6_HOPLIMIT && sticky) 2975 return (ENOPROTOOPT); 2976 2977 if (len != sizeof(int)) 2978 return (EINVAL); 2979 hlimp = (int *)buf; 2980 if (*hlimp < -1 || *hlimp > 255) 2981 return (EINVAL); 2982 2983 opt->ip6po_hlim = *hlimp; 2984 break; 2985 } 2986 2987 case IPV6_TCLASS: 2988 { 2989 int tclass; 2990 2991 if (len != sizeof(int)) 2992 return (EINVAL); 2993 tclass = *(int *)buf; 2994 if (tclass < -1 || tclass > 255) 2995 return (EINVAL); 2996 2997 opt->ip6po_tclass = tclass; 2998 break; 2999 } 3000 3001 case IPV6_2292NEXTHOP: 3002 case IPV6_NEXTHOP: 3003 if (cred != NULL) { 3004 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3005 if (error) 3006 return (error); 3007 } 3008 3009 if (len == 0) { /* just remove the option */ 3010 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3011 break; 3012 } 3013 3014 /* check if cmsg_len is large enough for sa_len */ 3015 if (len < sizeof(struct sockaddr) || len < *buf) 3016 return (EINVAL); 3017 3018 switch (((struct sockaddr *)buf)->sa_family) { 3019 case AF_INET6: 3020 { 3021 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3022 int error; 3023 3024 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3025 return (EINVAL); 3026 3027 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3028 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3029 return (EINVAL); 3030 } 3031 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 3032 != 0) { 3033 return (error); 3034 } 3035 break; 3036 } 3037 case AF_LINK: /* should eventually be supported */ 3038 default: 3039 return (EAFNOSUPPORT); 3040 } 3041 3042 /* turn off the previous option, then set the new option. */ 3043 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3044 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3045 if (opt->ip6po_nexthop == NULL) 3046 return (ENOBUFS); 3047 bcopy(buf, opt->ip6po_nexthop, *buf); 3048 break; 3049 3050 case IPV6_2292HOPOPTS: 3051 case IPV6_HOPOPTS: 3052 { 3053 struct ip6_hbh *hbh; 3054 int hbhlen; 3055 3056 /* 3057 * XXX: We don't allow a non-privileged user to set ANY HbH 3058 * options, since per-option restriction has too much 3059 * overhead. 3060 */ 3061 if (cred != NULL) { 3062 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3063 if (error) 3064 return (error); 3065 } 3066 3067 if (len == 0) { 3068 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3069 break; /* just remove the option */ 3070 } 3071 3072 /* message length validation */ 3073 if (len < sizeof(struct ip6_hbh)) 3074 return (EINVAL); 3075 hbh = (struct ip6_hbh *)buf; 3076 hbhlen = (hbh->ip6h_len + 1) << 3; 3077 if (len != hbhlen) 3078 return (EINVAL); 3079 3080 /* turn off the previous option, then set the new option. */ 3081 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3082 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3083 if (opt->ip6po_hbh == NULL) 3084 return (ENOBUFS); 3085 bcopy(hbh, opt->ip6po_hbh, hbhlen); 3086 3087 break; 3088 } 3089 3090 case IPV6_2292DSTOPTS: 3091 case IPV6_DSTOPTS: 3092 case IPV6_RTHDRDSTOPTS: 3093 { 3094 struct ip6_dest *dest, **newdest = NULL; 3095 int destlen; 3096 3097 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 3098 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3099 if (error) 3100 return (error); 3101 } 3102 3103 if (len == 0) { 3104 ip6_clearpktopts(opt, optname); 3105 break; /* just remove the option */ 3106 } 3107 3108 /* message length validation */ 3109 if (len < sizeof(struct ip6_dest)) 3110 return (EINVAL); 3111 dest = (struct ip6_dest *)buf; 3112 destlen = (dest->ip6d_len + 1) << 3; 3113 if (len != destlen) 3114 return (EINVAL); 3115 3116 /* 3117 * Determine the position that the destination options header 3118 * should be inserted; before or after the routing header. 3119 */ 3120 switch (optname) { 3121 case IPV6_2292DSTOPTS: 3122 /* 3123 * The old advacned API is ambiguous on this point. 3124 * Our approach is to determine the position based 3125 * according to the existence of a routing header. 3126 * Note, however, that this depends on the order of the 3127 * extension headers in the ancillary data; the 1st 3128 * part of the destination options header must appear 3129 * before the routing header in the ancillary data, 3130 * too. 3131 * RFC3542 solved the ambiguity by introducing 3132 * separate ancillary data or option types. 3133 */ 3134 if (opt->ip6po_rthdr == NULL) 3135 newdest = &opt->ip6po_dest1; 3136 else 3137 newdest = &opt->ip6po_dest2; 3138 break; 3139 case IPV6_RTHDRDSTOPTS: 3140 newdest = &opt->ip6po_dest1; 3141 break; 3142 case IPV6_DSTOPTS: 3143 newdest = &opt->ip6po_dest2; 3144 break; 3145 } 3146 3147 /* turn off the previous option, then set the new option. */ 3148 ip6_clearpktopts(opt, optname); 3149 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3150 if (*newdest == NULL) 3151 return (ENOBUFS); 3152 bcopy(dest, *newdest, destlen); 3153 3154 break; 3155 } 3156 3157 case IPV6_2292RTHDR: 3158 case IPV6_RTHDR: 3159 { 3160 struct ip6_rthdr *rth; 3161 int rthlen; 3162 3163 if (len == 0) { 3164 ip6_clearpktopts(opt, IPV6_RTHDR); 3165 break; /* just remove the option */ 3166 } 3167 3168 /* message length validation */ 3169 if (len < sizeof(struct ip6_rthdr)) 3170 return (EINVAL); 3171 rth = (struct ip6_rthdr *)buf; 3172 rthlen = (rth->ip6r_len + 1) << 3; 3173 if (len != rthlen) 3174 return (EINVAL); 3175 3176 switch (rth->ip6r_type) { 3177 case IPV6_RTHDR_TYPE_0: 3178 if (rth->ip6r_len == 0) /* must contain one addr */ 3179 return (EINVAL); 3180 if (rth->ip6r_len % 2) /* length must be even */ 3181 return (EINVAL); 3182 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3183 return (EINVAL); 3184 break; 3185 default: 3186 return (EINVAL); /* not supported */ 3187 } 3188 3189 /* turn off the previous option */ 3190 ip6_clearpktopts(opt, IPV6_RTHDR); 3191 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3192 if (opt->ip6po_rthdr == NULL) 3193 return (ENOBUFS); 3194 bcopy(rth, opt->ip6po_rthdr, rthlen); 3195 3196 break; 3197 } 3198 3199 case IPV6_USE_MIN_MTU: 3200 if (len != sizeof(int)) 3201 return (EINVAL); 3202 minmtupolicy = *(int *)buf; 3203 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3204 minmtupolicy != IP6PO_MINMTU_DISABLE && 3205 minmtupolicy != IP6PO_MINMTU_ALL) { 3206 return (EINVAL); 3207 } 3208 opt->ip6po_minmtu = minmtupolicy; 3209 break; 3210 3211 case IPV6_DONTFRAG: 3212 if (len != sizeof(int)) 3213 return (EINVAL); 3214 3215 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3216 /* 3217 * we ignore this option for TCP sockets. 3218 * (RFC3542 leaves this case unspecified.) 3219 */ 3220 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3221 } else 3222 opt->ip6po_flags |= IP6PO_DONTFRAG; 3223 break; 3224 3225 case IPV6_PREFER_TEMPADDR: 3226 if (len != sizeof(int)) 3227 return (EINVAL); 3228 preftemp = *(int *)buf; 3229 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3230 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3231 preftemp != IP6PO_TEMPADDR_PREFER) { 3232 return (EINVAL); 3233 } 3234 opt->ip6po_prefer_tempaddr = preftemp; 3235 break; 3236 3237 default: 3238 return (ENOPROTOOPT); 3239 } /* end of switch */ 3240 3241 return (0); 3242 } 3243 3244 /* 3245 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3246 * packet to the input queue of a specified interface. Note that this 3247 * calls the output routine of the loopback "driver", but with an interface 3248 * pointer that might NOT be &loif -- easier than replicating that code here. 3249 */ 3250 void 3251 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3252 { 3253 struct mbuf *copym; 3254 struct ip6_hdr *ip6; 3255 3256 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3257 if (copym == NULL) 3258 return; 3259 3260 /* 3261 * Make sure to deep-copy IPv6 header portion in case the data 3262 * is in an mbuf cluster, so that we can safely override the IPv6 3263 * header portion later. 3264 */ 3265 if (!M_WRITABLE(copym) || 3266 copym->m_len < sizeof(struct ip6_hdr)) { 3267 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3268 if (copym == NULL) 3269 return; 3270 } 3271 ip6 = mtod(copym, struct ip6_hdr *); 3272 /* 3273 * clear embedded scope identifiers if necessary. 3274 * in6_clearscope will touch the addresses only when necessary. 3275 */ 3276 in6_clearscope(&ip6->ip6_src); 3277 in6_clearscope(&ip6->ip6_dst); 3278 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3279 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3280 CSUM_PSEUDO_HDR; 3281 copym->m_pkthdr.csum_data = 0xffff; 3282 } 3283 if_simloop(ifp, copym, AF_INET6, 0); 3284 } 3285 3286 /* 3287 * Chop IPv6 header off from the payload. 3288 */ 3289 static int 3290 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3291 { 3292 struct mbuf *mh; 3293 struct ip6_hdr *ip6; 3294 3295 ip6 = mtod(m, struct ip6_hdr *); 3296 if (m->m_len > sizeof(*ip6)) { 3297 mh = m_gethdr(M_NOWAIT, MT_DATA); 3298 if (mh == NULL) { 3299 m_freem(m); 3300 return ENOBUFS; 3301 } 3302 m_move_pkthdr(mh, m); 3303 M_ALIGN(mh, sizeof(*ip6)); 3304 m->m_len -= sizeof(*ip6); 3305 m->m_data += sizeof(*ip6); 3306 mh->m_next = m; 3307 m = mh; 3308 m->m_len = sizeof(*ip6); 3309 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3310 } 3311 exthdrs->ip6e_ip6 = m; 3312 return 0; 3313 } 3314 3315 /* 3316 * Compute IPv6 extension header length. 3317 */ 3318 int 3319 ip6_optlen(struct inpcb *inp) 3320 { 3321 int len; 3322 3323 if (!inp->in6p_outputopts) 3324 return 0; 3325 3326 len = 0; 3327 #define elen(x) \ 3328 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3329 3330 len += elen(inp->in6p_outputopts->ip6po_hbh); 3331 if (inp->in6p_outputopts->ip6po_rthdr) 3332 /* dest1 is valid with rthdr only */ 3333 len += elen(inp->in6p_outputopts->ip6po_dest1); 3334 len += elen(inp->in6p_outputopts->ip6po_rthdr); 3335 len += elen(inp->in6p_outputopts->ip6po_dest2); 3336 return len; 3337 #undef elen 3338 } 3339