1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 #include "opt_ipsec.h" 69 #include "opt_sctp.h" 70 71 #include <sys/param.h> 72 #include <sys/kernel.h> 73 #include <sys/malloc.h> 74 #include <sys/mbuf.h> 75 #include <sys/errno.h> 76 #include <sys/priv.h> 77 #include <sys/proc.h> 78 #include <sys/protosw.h> 79 #include <sys/socket.h> 80 #include <sys/socketvar.h> 81 #include <sys/syslog.h> 82 #include <sys/ucred.h> 83 84 #include <net/if.h> 85 #include <net/netisr.h> 86 #include <net/route.h> 87 #include <net/pfil.h> 88 #include <net/vnet.h> 89 90 #include <netinet/in.h> 91 #include <netinet/in_var.h> 92 #include <netinet6/in6_var.h> 93 #include <netinet/ip6.h> 94 #include <netinet/icmp6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet/in_pcb.h> 97 #include <netinet/tcp_var.h> 98 #include <netinet6/nd6.h> 99 100 #ifdef IPSEC 101 #include <netipsec/ipsec.h> 102 #include <netipsec/ipsec6.h> 103 #include <netipsec/key.h> 104 #include <netinet6/ip6_ipsec.h> 105 #endif /* IPSEC */ 106 #ifdef SCTP 107 #include <netinet/sctp.h> 108 #include <netinet/sctp_crc32.h> 109 #endif 110 111 #include <netinet6/ip6protosw.h> 112 #include <netinet6/scope6_var.h> 113 114 extern int in6_mcast_loop; 115 116 struct ip6_exthdrs { 117 struct mbuf *ip6e_ip6; 118 struct mbuf *ip6e_hbh; 119 struct mbuf *ip6e_dest1; 120 struct mbuf *ip6e_rthdr; 121 struct mbuf *ip6e_dest2; 122 }; 123 124 static int ip6_pcbopt __P((int, u_char *, int, struct ip6_pktopts **, 125 struct ucred *, int)); 126 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 127 struct socket *, struct sockopt *)); 128 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 129 static int ip6_setpktopt __P((int, u_char *, int, struct ip6_pktopts *, 130 struct ucred *, int, int, int)); 131 132 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 133 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 134 struct ip6_frag **)); 135 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 136 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 137 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *, 138 struct ifnet *, struct in6_addr *, u_long *, int *)); 139 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 140 141 142 /* 143 * Make an extension header from option data. hp is the source, and 144 * mp is the destination. 145 */ 146 #define MAKE_EXTHDR(hp, mp) \ 147 do { \ 148 if (hp) { \ 149 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 150 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 151 ((eh)->ip6e_len + 1) << 3); \ 152 if (error) \ 153 goto freehdrs; \ 154 } \ 155 } while (/*CONSTCOND*/ 0) 156 157 /* 158 * Form a chain of extension headers. 159 * m is the extension header mbuf 160 * mp is the previous mbuf in the chain 161 * p is the next header 162 * i is the type of option. 163 */ 164 #define MAKE_CHAIN(m, mp, p, i)\ 165 do {\ 166 if (m) {\ 167 if (!hdrsplit) \ 168 panic("assumption failed: hdr not split"); \ 169 *mtod((m), u_char *) = *(p);\ 170 *(p) = (i);\ 171 p = mtod((m), u_char *);\ 172 (m)->m_next = (mp)->m_next;\ 173 (mp)->m_next = (m);\ 174 (mp) = (m);\ 175 }\ 176 } while (/*CONSTCOND*/ 0) 177 178 /* 179 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 180 * header (with pri, len, nxt, hlim, src, dst). 181 * This function may modify ver and hlim only. 182 * The mbuf chain containing the packet will be freed. 183 * The mbuf opt, if present, will not be freed. 184 * 185 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 186 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 187 * which is rt_rmx.rmx_mtu. 188 * 189 * ifpp - XXX: just for statistics 190 */ 191 int 192 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 193 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 194 struct ifnet **ifpp, struct inpcb *inp) 195 { 196 struct ip6_hdr *ip6, *mhip6; 197 struct ifnet *ifp, *origifp; 198 struct mbuf *m = m0; 199 struct mbuf *mprev = NULL; 200 int hlen, tlen, len, off; 201 struct route_in6 ip6route; 202 struct rtentry *rt = NULL; 203 struct sockaddr_in6 *dst, src_sa, dst_sa; 204 struct in6_addr odst; 205 int error = 0; 206 struct in6_ifaddr *ia = NULL; 207 u_long mtu; 208 int alwaysfrag, dontfrag; 209 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 210 struct ip6_exthdrs exthdrs; 211 struct in6_addr finaldst, src0, dst0; 212 u_int32_t zone; 213 struct route_in6 *ro_pmtu = NULL; 214 int hdrsplit = 0; 215 int needipsec = 0; 216 #ifdef SCTP 217 int sw_csum; 218 #endif 219 #ifdef IPSEC 220 struct ipsec_output_state state; 221 struct ip6_rthdr *rh = NULL; 222 int needipsectun = 0; 223 int segleft_org = 0; 224 struct secpolicy *sp = NULL; 225 #endif /* IPSEC */ 226 227 ip6 = mtod(m, struct ip6_hdr *); 228 if (ip6 == NULL) { 229 printf ("ip6 is NULL"); 230 goto bad; 231 } 232 233 finaldst = ip6->ip6_dst; 234 235 bzero(&exthdrs, sizeof(exthdrs)); 236 237 if (opt) { 238 /* Hop-by-Hop options header */ 239 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 240 /* Destination options header(1st part) */ 241 if (opt->ip6po_rthdr) { 242 /* 243 * Destination options header(1st part) 244 * This only makes sense with a routing header. 245 * See Section 9.2 of RFC 3542. 246 * Disabling this part just for MIP6 convenience is 247 * a bad idea. We need to think carefully about a 248 * way to make the advanced API coexist with MIP6 249 * options, which might automatically be inserted in 250 * the kernel. 251 */ 252 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 253 } 254 /* Routing header */ 255 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 256 /* Destination options header(2nd part) */ 257 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 258 } 259 260 /* 261 * IPSec checking which handles several cases. 262 * FAST IPSEC: We re-injected the packet. 263 */ 264 #ifdef IPSEC 265 switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp, &sp)) 266 { 267 case 1: /* Bad packet */ 268 goto freehdrs; 269 case -1: /* Do IPSec */ 270 needipsec = 1; 271 case 0: /* No IPSec */ 272 default: 273 break; 274 } 275 #endif /* IPSEC */ 276 277 /* 278 * Calculate the total length of the extension header chain. 279 * Keep the length of the unfragmentable part for fragmentation. 280 */ 281 optlen = 0; 282 if (exthdrs.ip6e_hbh) 283 optlen += exthdrs.ip6e_hbh->m_len; 284 if (exthdrs.ip6e_dest1) 285 optlen += exthdrs.ip6e_dest1->m_len; 286 if (exthdrs.ip6e_rthdr) 287 optlen += exthdrs.ip6e_rthdr->m_len; 288 unfragpartlen = optlen + sizeof(struct ip6_hdr); 289 290 /* NOTE: we don't add AH/ESP length here. do that later. */ 291 if (exthdrs.ip6e_dest2) 292 optlen += exthdrs.ip6e_dest2->m_len; 293 294 /* 295 * If we need IPsec, or there is at least one extension header, 296 * separate IP6 header from the payload. 297 */ 298 if ((needipsec || optlen) && !hdrsplit) { 299 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 300 m = NULL; 301 goto freehdrs; 302 } 303 m = exthdrs.ip6e_ip6; 304 hdrsplit++; 305 } 306 307 /* adjust pointer */ 308 ip6 = mtod(m, struct ip6_hdr *); 309 310 /* adjust mbuf packet header length */ 311 m->m_pkthdr.len += optlen; 312 plen = m->m_pkthdr.len - sizeof(*ip6); 313 314 /* If this is a jumbo payload, insert a jumbo payload option. */ 315 if (plen > IPV6_MAXPACKET) { 316 if (!hdrsplit) { 317 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 318 m = NULL; 319 goto freehdrs; 320 } 321 m = exthdrs.ip6e_ip6; 322 hdrsplit++; 323 } 324 /* adjust pointer */ 325 ip6 = mtod(m, struct ip6_hdr *); 326 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 327 goto freehdrs; 328 ip6->ip6_plen = 0; 329 } else 330 ip6->ip6_plen = htons(plen); 331 332 /* 333 * Concatenate headers and fill in next header fields. 334 * Here we have, on "m" 335 * IPv6 payload 336 * and we insert headers accordingly. Finally, we should be getting: 337 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 338 * 339 * during the header composing process, "m" points to IPv6 header. 340 * "mprev" points to an extension header prior to esp. 341 */ 342 u_char *nexthdrp = &ip6->ip6_nxt; 343 mprev = m; 344 345 /* 346 * we treat dest2 specially. this makes IPsec processing 347 * much easier. the goal here is to make mprev point the 348 * mbuf prior to dest2. 349 * 350 * result: IPv6 dest2 payload 351 * m and mprev will point to IPv6 header. 352 */ 353 if (exthdrs.ip6e_dest2) { 354 if (!hdrsplit) 355 panic("assumption failed: hdr not split"); 356 exthdrs.ip6e_dest2->m_next = m->m_next; 357 m->m_next = exthdrs.ip6e_dest2; 358 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 359 ip6->ip6_nxt = IPPROTO_DSTOPTS; 360 } 361 362 /* 363 * result: IPv6 hbh dest1 rthdr dest2 payload 364 * m will point to IPv6 header. mprev will point to the 365 * extension header prior to dest2 (rthdr in the above case). 366 */ 367 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 368 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 369 IPPROTO_DSTOPTS); 370 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 371 IPPROTO_ROUTING); 372 373 #ifdef IPSEC 374 if (!needipsec) 375 goto skip_ipsec2; 376 377 /* 378 * pointers after IPsec headers are not valid any more. 379 * other pointers need a great care too. 380 * (IPsec routines should not mangle mbufs prior to AH/ESP) 381 */ 382 exthdrs.ip6e_dest2 = NULL; 383 384 if (exthdrs.ip6e_rthdr) { 385 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 386 segleft_org = rh->ip6r_segleft; 387 rh->ip6r_segleft = 0; 388 } 389 390 bzero(&state, sizeof(state)); 391 state.m = m; 392 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 393 &needipsectun); 394 m = state.m; 395 if (error == EJUSTRETURN) { 396 /* 397 * We had a SP with a level of 'use' and no SA. We 398 * will just continue to process the packet without 399 * IPsec processing. 400 */ 401 ; 402 } else if (error) { 403 /* mbuf is already reclaimed in ipsec6_output_trans. */ 404 m = NULL; 405 switch (error) { 406 case EHOSTUNREACH: 407 case ENETUNREACH: 408 case EMSGSIZE: 409 case ENOBUFS: 410 case ENOMEM: 411 break; 412 default: 413 printf("[%s:%d] (ipsec): error code %d\n", 414 __func__, __LINE__, error); 415 /* FALLTHROUGH */ 416 case ENOENT: 417 /* don't show these error codes to the user */ 418 error = 0; 419 break; 420 } 421 goto bad; 422 } else if (!needipsectun) { 423 /* 424 * In the FAST IPSec case we have already 425 * re-injected the packet and it has been freed 426 * by the ipsec_done() function. So, just clean 427 * up after ourselves. 428 */ 429 m = NULL; 430 goto done; 431 } 432 if (exthdrs.ip6e_rthdr) { 433 /* ah6_output doesn't modify mbuf chain */ 434 rh->ip6r_segleft = segleft_org; 435 } 436 skip_ipsec2:; 437 #endif /* IPSEC */ 438 439 /* 440 * If there is a routing header, discard the packet. 441 */ 442 if (exthdrs.ip6e_rthdr) { 443 error = EINVAL; 444 goto bad; 445 } 446 447 /* Source address validation */ 448 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 449 (flags & IPV6_UNSPECSRC) == 0) { 450 error = EOPNOTSUPP; 451 V_ip6stat.ip6s_badscope++; 452 goto bad; 453 } 454 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 455 error = EOPNOTSUPP; 456 V_ip6stat.ip6s_badscope++; 457 goto bad; 458 } 459 460 V_ip6stat.ip6s_localout++; 461 462 /* 463 * Route packet. 464 */ 465 if (ro == 0) { 466 ro = &ip6route; 467 bzero((caddr_t)ro, sizeof(*ro)); 468 } 469 ro_pmtu = ro; 470 if (opt && opt->ip6po_rthdr) 471 ro = &opt->ip6po_route; 472 dst = (struct sockaddr_in6 *)&ro->ro_dst; 473 474 again: 475 /* 476 * if specified, try to fill in the traffic class field. 477 * do not override if a non-zero value is already set. 478 * we check the diffserv field and the ecn field separately. 479 */ 480 if (opt && opt->ip6po_tclass >= 0) { 481 int mask = 0; 482 483 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 484 mask |= 0xfc; 485 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 486 mask |= 0x03; 487 if (mask != 0) 488 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 489 } 490 491 /* fill in or override the hop limit field, if necessary. */ 492 if (opt && opt->ip6po_hlim != -1) 493 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 494 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 495 if (im6o != NULL) 496 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 497 else 498 ip6->ip6_hlim = V_ip6_defmcasthlim; 499 } 500 501 #ifdef IPSEC 502 /* 503 * We may re-inject packets into the stack here. 504 */ 505 if (needipsec && needipsectun) { 506 struct ipsec_output_state state; 507 508 /* 509 * All the extension headers will become inaccessible 510 * (since they can be encrypted). 511 * Don't panic, we need no more updates to extension headers 512 * on inner IPv6 packet (since they are now encapsulated). 513 * 514 * IPv6 [ESP|AH] IPv6 [extension headers] payload 515 */ 516 bzero(&exthdrs, sizeof(exthdrs)); 517 exthdrs.ip6e_ip6 = m; 518 519 bzero(&state, sizeof(state)); 520 state.m = m; 521 state.ro = (struct route *)ro; 522 state.dst = (struct sockaddr *)dst; 523 524 error = ipsec6_output_tunnel(&state, sp, flags); 525 526 m = state.m; 527 ro = (struct route_in6 *)state.ro; 528 dst = (struct sockaddr_in6 *)state.dst; 529 if (error == EJUSTRETURN) { 530 /* 531 * We had a SP with a level of 'use' and no SA. We 532 * will just continue to process the packet without 533 * IPsec processing. 534 */ 535 ; 536 } else if (error) { 537 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 538 m0 = m = NULL; 539 m = NULL; 540 switch (error) { 541 case EHOSTUNREACH: 542 case ENETUNREACH: 543 case EMSGSIZE: 544 case ENOBUFS: 545 case ENOMEM: 546 break; 547 default: 548 printf("[%s:%d] (ipsec): error code %d\n", 549 __func__, __LINE__, error); 550 /* FALLTHROUGH */ 551 case ENOENT: 552 /* don't show these error codes to the user */ 553 error = 0; 554 break; 555 } 556 goto bad; 557 } else { 558 /* 559 * In the FAST IPSec case we have already 560 * re-injected the packet and it has been freed 561 * by the ipsec_done() function. So, just clean 562 * up after ourselves. 563 */ 564 m = NULL; 565 goto done; 566 } 567 568 exthdrs.ip6e_ip6 = m; 569 } 570 #endif /* IPSEC */ 571 572 /* adjust pointer */ 573 ip6 = mtod(m, struct ip6_hdr *); 574 575 bzero(&dst_sa, sizeof(dst_sa)); 576 dst_sa.sin6_family = AF_INET6; 577 dst_sa.sin6_len = sizeof(dst_sa); 578 dst_sa.sin6_addr = ip6->ip6_dst; 579 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro, 580 &ifp, &rt)) != 0) { 581 switch (error) { 582 case EHOSTUNREACH: 583 V_ip6stat.ip6s_noroute++; 584 break; 585 case EADDRNOTAVAIL: 586 default: 587 break; /* XXX statistics? */ 588 } 589 if (ifp != NULL) 590 in6_ifstat_inc(ifp, ifs6_out_discard); 591 goto bad; 592 } 593 if (rt == NULL) { 594 /* 595 * If in6_selectroute() does not return a route entry, 596 * dst may not have been updated. 597 */ 598 *dst = dst_sa; /* XXX */ 599 } 600 601 /* 602 * then rt (for unicast) and ifp must be non-NULL valid values. 603 */ 604 if ((flags & IPV6_FORWARDING) == 0) { 605 /* XXX: the FORWARDING flag can be set for mrouting. */ 606 in6_ifstat_inc(ifp, ifs6_out_request); 607 } 608 if (rt != NULL) { 609 ia = (struct in6_ifaddr *)(rt->rt_ifa); 610 rt->rt_use++; 611 } 612 613 614 /* 615 * The outgoing interface must be in the zone of source and 616 * destination addresses. 617 */ 618 origifp = ifp; 619 620 src0 = ip6->ip6_src; 621 if (in6_setscope(&src0, origifp, &zone)) 622 goto badscope; 623 bzero(&src_sa, sizeof(src_sa)); 624 src_sa.sin6_family = AF_INET6; 625 src_sa.sin6_len = sizeof(src_sa); 626 src_sa.sin6_addr = ip6->ip6_src; 627 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 628 goto badscope; 629 630 dst0 = ip6->ip6_dst; 631 if (in6_setscope(&dst0, origifp, &zone)) 632 goto badscope; 633 /* re-initialize to be sure */ 634 bzero(&dst_sa, sizeof(dst_sa)); 635 dst_sa.sin6_family = AF_INET6; 636 dst_sa.sin6_len = sizeof(dst_sa); 637 dst_sa.sin6_addr = ip6->ip6_dst; 638 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 639 goto badscope; 640 } 641 642 /* We should use ia_ifp to support the case of 643 * sending packets to an address of our own. 644 */ 645 if (ia != NULL && ia->ia_ifp) 646 ifp = ia->ia_ifp; 647 648 /* scope check is done. */ 649 goto routefound; 650 651 badscope: 652 V_ip6stat.ip6s_badscope++; 653 in6_ifstat_inc(origifp, ifs6_out_discard); 654 if (error == 0) 655 error = EHOSTUNREACH; /* XXX */ 656 goto bad; 657 658 routefound: 659 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 660 if (opt && opt->ip6po_nextroute.ro_rt) { 661 /* 662 * The nexthop is explicitly specified by the 663 * application. We assume the next hop is an IPv6 664 * address. 665 */ 666 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 667 } 668 else if ((rt->rt_flags & RTF_GATEWAY)) 669 dst = (struct sockaddr_in6 *)rt->rt_gateway; 670 } 671 672 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 673 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 674 } else { 675 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 676 in6_ifstat_inc(ifp, ifs6_out_mcast); 677 /* 678 * Confirm that the outgoing interface supports multicast. 679 */ 680 if (!(ifp->if_flags & IFF_MULTICAST)) { 681 V_ip6stat.ip6s_noroute++; 682 in6_ifstat_inc(ifp, ifs6_out_discard); 683 error = ENETUNREACH; 684 goto bad; 685 } 686 if ((im6o == NULL && in6_mcast_loop) || 687 (im6o && im6o->im6o_multicast_loop)) { 688 /* 689 * Loop back multicast datagram if not expressly 690 * forbidden to do so, even if we have not joined 691 * the address; protocols will filter it later, 692 * thus deferring a hash lookup and lock acquisition 693 * at the expense of an m_copym(). 694 */ 695 ip6_mloopback(ifp, m, dst); 696 } else { 697 /* 698 * If we are acting as a multicast router, perform 699 * multicast forwarding as if the packet had just 700 * arrived on the interface to which we are about 701 * to send. The multicast forwarding function 702 * recursively calls this function, using the 703 * IPV6_FORWARDING flag to prevent infinite recursion. 704 * 705 * Multicasts that are looped back by ip6_mloopback(), 706 * above, will be forwarded by the ip6_input() routine, 707 * if necessary. 708 */ 709 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 710 /* 711 * XXX: ip6_mforward expects that rcvif is NULL 712 * when it is called from the originating path. 713 * However, it is not always the case, since 714 * some versions of MGETHDR() does not 715 * initialize the field. 716 */ 717 m->m_pkthdr.rcvif = NULL; 718 if (ip6_mforward(ip6, ifp, m) != 0) { 719 m_freem(m); 720 goto done; 721 } 722 } 723 } 724 /* 725 * Multicasts with a hoplimit of zero may be looped back, 726 * above, but must not be transmitted on a network. 727 * Also, multicasts addressed to the loopback interface 728 * are not sent -- the above call to ip6_mloopback() will 729 * loop back a copy if this host actually belongs to the 730 * destination group on the loopback interface. 731 */ 732 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 733 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 734 m_freem(m); 735 goto done; 736 } 737 } 738 739 /* 740 * Fill the outgoing inteface to tell the upper layer 741 * to increment per-interface statistics. 742 */ 743 if (ifpp) 744 *ifpp = ifp; 745 746 /* Determine path MTU. */ 747 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 748 &alwaysfrag)) != 0) 749 goto bad; 750 751 /* 752 * The caller of this function may specify to use the minimum MTU 753 * in some cases. 754 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 755 * setting. The logic is a bit complicated; by default, unicast 756 * packets will follow path MTU while multicast packets will be sent at 757 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 758 * including unicast ones will be sent at the minimum MTU. Multicast 759 * packets will always be sent at the minimum MTU unless 760 * IP6PO_MINMTU_DISABLE is explicitly specified. 761 * See RFC 3542 for more details. 762 */ 763 if (mtu > IPV6_MMTU) { 764 if ((flags & IPV6_MINMTU)) 765 mtu = IPV6_MMTU; 766 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 767 mtu = IPV6_MMTU; 768 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 769 (opt == NULL || 770 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 771 mtu = IPV6_MMTU; 772 } 773 } 774 775 /* 776 * clear embedded scope identifiers if necessary. 777 * in6_clearscope will touch the addresses only when necessary. 778 */ 779 in6_clearscope(&ip6->ip6_src); 780 in6_clearscope(&ip6->ip6_dst); 781 782 /* 783 * If the outgoing packet contains a hop-by-hop options header, 784 * it must be examined and processed even by the source node. 785 * (RFC 2460, section 4.) 786 */ 787 if (exthdrs.ip6e_hbh) { 788 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 789 u_int32_t dummy; /* XXX unused */ 790 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 791 792 #ifdef DIAGNOSTIC 793 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 794 panic("ip6e_hbh is not continuous"); 795 #endif 796 /* 797 * XXX: if we have to send an ICMPv6 error to the sender, 798 * we need the M_LOOP flag since icmp6_error() expects 799 * the IPv6 and the hop-by-hop options header are 800 * continuous unless the flag is set. 801 */ 802 m->m_flags |= M_LOOP; 803 m->m_pkthdr.rcvif = ifp; 804 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 805 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 806 &dummy, &plen) < 0) { 807 /* m was already freed at this point */ 808 error = EINVAL;/* better error? */ 809 goto done; 810 } 811 m->m_flags &= ~M_LOOP; /* XXX */ 812 m->m_pkthdr.rcvif = NULL; 813 } 814 815 /* Jump over all PFIL processing if hooks are not active. */ 816 if (!PFIL_HOOKED(&V_inet6_pfil_hook)) 817 goto passout; 818 819 odst = ip6->ip6_dst; 820 /* Run through list of hooks for output packets. */ 821 error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp); 822 if (error != 0 || m == NULL) 823 goto done; 824 ip6 = mtod(m, struct ip6_hdr *); 825 826 /* See if destination IP address was changed by packet filter. */ 827 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 828 m->m_flags |= M_SKIP_FIREWALL; 829 /* If destination is now ourself drop to ip6_input(). */ 830 if (in6_localaddr(&ip6->ip6_dst)) { 831 if (m->m_pkthdr.rcvif == NULL) 832 m->m_pkthdr.rcvif = V_loif; 833 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 834 m->m_pkthdr.csum_flags |= 835 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 836 m->m_pkthdr.csum_data = 0xffff; 837 } 838 m->m_pkthdr.csum_flags |= 839 CSUM_IP_CHECKED | CSUM_IP_VALID; 840 #ifdef SCTP 841 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 842 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 843 #endif 844 error = netisr_queue(NETISR_IPV6, m); 845 goto done; 846 } else 847 goto again; /* Redo the routing table lookup. */ 848 } 849 850 /* XXX: IPFIREWALL_FORWARD */ 851 852 passout: 853 /* 854 * Send the packet to the outgoing interface. 855 * If necessary, do IPv6 fragmentation before sending. 856 * 857 * the logic here is rather complex: 858 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 859 * 1-a: send as is if tlen <= path mtu 860 * 1-b: fragment if tlen > path mtu 861 * 862 * 2: if user asks us not to fragment (dontfrag == 1) 863 * 2-a: send as is if tlen <= interface mtu 864 * 2-b: error if tlen > interface mtu 865 * 866 * 3: if we always need to attach fragment header (alwaysfrag == 1) 867 * always fragment 868 * 869 * 4: if dontfrag == 1 && alwaysfrag == 1 870 * error, as we cannot handle this conflicting request 871 */ 872 #ifdef SCTP 873 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist; 874 if (sw_csum & CSUM_SCTP) { 875 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 876 sw_csum &= ~CSUM_SCTP; 877 } 878 #endif 879 tlen = m->m_pkthdr.len; 880 881 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 882 dontfrag = 1; 883 else 884 dontfrag = 0; 885 if (dontfrag && alwaysfrag) { /* case 4 */ 886 /* conflicting request - can't transmit */ 887 error = EMSGSIZE; 888 goto bad; 889 } 890 if (dontfrag && tlen > IN6_LINKMTU(ifp)) { /* case 2-b */ 891 /* 892 * Even if the DONTFRAG option is specified, we cannot send the 893 * packet when the data length is larger than the MTU of the 894 * outgoing interface. 895 * Notify the error by sending IPV6_PATHMTU ancillary data as 896 * well as returning an error code (the latter is not described 897 * in the API spec.) 898 */ 899 u_int32_t mtu32; 900 struct ip6ctlparam ip6cp; 901 902 mtu32 = (u_int32_t)mtu; 903 bzero(&ip6cp, sizeof(ip6cp)); 904 ip6cp.ip6c_cmdarg = (void *)&mtu32; 905 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 906 (void *)&ip6cp); 907 908 error = EMSGSIZE; 909 goto bad; 910 } 911 912 /* 913 * transmit packet without fragmentation 914 */ 915 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 916 struct in6_ifaddr *ia6; 917 918 ip6 = mtod(m, struct ip6_hdr *); 919 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 920 if (ia6) { 921 /* Record statistics for this interface address. */ 922 ia6->ia_ifa.if_opackets++; 923 ia6->ia_ifa.if_obytes += m->m_pkthdr.len; 924 ifa_free(&ia6->ia_ifa); 925 } 926 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 927 goto done; 928 } 929 930 /* 931 * try to fragment the packet. case 1-b and 3 932 */ 933 if (mtu < IPV6_MMTU) { 934 /* path MTU cannot be less than IPV6_MMTU */ 935 error = EMSGSIZE; 936 in6_ifstat_inc(ifp, ifs6_out_fragfail); 937 goto bad; 938 } else if (ip6->ip6_plen == 0) { 939 /* jumbo payload cannot be fragmented */ 940 error = EMSGSIZE; 941 in6_ifstat_inc(ifp, ifs6_out_fragfail); 942 goto bad; 943 } else { 944 struct mbuf **mnext, *m_frgpart; 945 struct ip6_frag *ip6f; 946 u_int32_t id = htonl(ip6_randomid()); 947 u_char nextproto; 948 949 int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len; 950 951 /* 952 * Too large for the destination or interface; 953 * fragment if possible. 954 * Must be able to put at least 8 bytes per fragment. 955 */ 956 hlen = unfragpartlen; 957 if (mtu > IPV6_MAXPACKET) 958 mtu = IPV6_MAXPACKET; 959 960 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 961 if (len < 8) { 962 error = EMSGSIZE; 963 in6_ifstat_inc(ifp, ifs6_out_fragfail); 964 goto bad; 965 } 966 967 /* 968 * Verify that we have any chance at all of being able to queue 969 * the packet or packet fragments 970 */ 971 if (qslots <= 0 || ((u_int)qslots * (mtu - hlen) 972 < tlen /* - hlen */)) { 973 error = ENOBUFS; 974 V_ip6stat.ip6s_odropped++; 975 goto bad; 976 } 977 978 mnext = &m->m_nextpkt; 979 980 /* 981 * Change the next header field of the last header in the 982 * unfragmentable part. 983 */ 984 if (exthdrs.ip6e_rthdr) { 985 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 986 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 987 } else if (exthdrs.ip6e_dest1) { 988 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 989 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 990 } else if (exthdrs.ip6e_hbh) { 991 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 992 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 993 } else { 994 nextproto = ip6->ip6_nxt; 995 ip6->ip6_nxt = IPPROTO_FRAGMENT; 996 } 997 998 /* 999 * Loop through length of segment after first fragment, 1000 * make new header and copy data of each part and link onto 1001 * chain. 1002 */ 1003 m0 = m; 1004 for (off = hlen; off < tlen; off += len) { 1005 MGETHDR(m, M_DONTWAIT, MT_HEADER); 1006 if (!m) { 1007 error = ENOBUFS; 1008 V_ip6stat.ip6s_odropped++; 1009 goto sendorfree; 1010 } 1011 m->m_pkthdr.rcvif = NULL; 1012 m->m_flags = m0->m_flags & M_COPYFLAGS; 1013 *mnext = m; 1014 mnext = &m->m_nextpkt; 1015 m->m_data += max_linkhdr; 1016 mhip6 = mtod(m, struct ip6_hdr *); 1017 *mhip6 = *ip6; 1018 m->m_len = sizeof(*mhip6); 1019 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 1020 if (error) { 1021 V_ip6stat.ip6s_odropped++; 1022 goto sendorfree; 1023 } 1024 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 1025 if (off + len >= tlen) 1026 len = tlen - off; 1027 else 1028 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1029 mhip6->ip6_plen = htons((u_short)(len + hlen + 1030 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 1031 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 1032 error = ENOBUFS; 1033 V_ip6stat.ip6s_odropped++; 1034 goto sendorfree; 1035 } 1036 m_cat(m, m_frgpart); 1037 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1038 m->m_pkthdr.rcvif = NULL; 1039 ip6f->ip6f_reserved = 0; 1040 ip6f->ip6f_ident = id; 1041 ip6f->ip6f_nxt = nextproto; 1042 V_ip6stat.ip6s_ofragments++; 1043 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1044 } 1045 1046 in6_ifstat_inc(ifp, ifs6_out_fragok); 1047 } 1048 1049 /* 1050 * Remove leading garbages. 1051 */ 1052 sendorfree: 1053 m = m0->m_nextpkt; 1054 m0->m_nextpkt = 0; 1055 m_freem(m0); 1056 for (m0 = m; m; m = m0) { 1057 m0 = m->m_nextpkt; 1058 m->m_nextpkt = 0; 1059 if (error == 0) { 1060 /* Record statistics for this interface address. */ 1061 if (ia) { 1062 ia->ia_ifa.if_opackets++; 1063 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 1064 } 1065 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1066 } else 1067 m_freem(m); 1068 } 1069 1070 if (error == 0) 1071 V_ip6stat.ip6s_fragmented++; 1072 1073 done: 1074 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1075 RTFREE(ro->ro_rt); 1076 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1077 RTFREE(ro_pmtu->ro_rt); 1078 } 1079 #ifdef IPSEC 1080 if (sp != NULL) 1081 KEY_FREESP(&sp); 1082 #endif 1083 1084 return (error); 1085 1086 freehdrs: 1087 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1088 m_freem(exthdrs.ip6e_dest1); 1089 m_freem(exthdrs.ip6e_rthdr); 1090 m_freem(exthdrs.ip6e_dest2); 1091 /* FALLTHROUGH */ 1092 bad: 1093 if (m) 1094 m_freem(m); 1095 goto done; 1096 } 1097 1098 static int 1099 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1100 { 1101 struct mbuf *m; 1102 1103 if (hlen > MCLBYTES) 1104 return (ENOBUFS); /* XXX */ 1105 1106 MGET(m, M_DONTWAIT, MT_DATA); 1107 if (!m) 1108 return (ENOBUFS); 1109 1110 if (hlen > MLEN) { 1111 MCLGET(m, M_DONTWAIT); 1112 if ((m->m_flags & M_EXT) == 0) { 1113 m_free(m); 1114 return (ENOBUFS); 1115 } 1116 } 1117 m->m_len = hlen; 1118 if (hdr) 1119 bcopy(hdr, mtod(m, caddr_t), hlen); 1120 1121 *mp = m; 1122 return (0); 1123 } 1124 1125 /* 1126 * Insert jumbo payload option. 1127 */ 1128 static int 1129 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1130 { 1131 struct mbuf *mopt; 1132 u_char *optbuf; 1133 u_int32_t v; 1134 1135 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1136 1137 /* 1138 * If there is no hop-by-hop options header, allocate new one. 1139 * If there is one but it doesn't have enough space to store the 1140 * jumbo payload option, allocate a cluster to store the whole options. 1141 * Otherwise, use it to store the options. 1142 */ 1143 if (exthdrs->ip6e_hbh == 0) { 1144 MGET(mopt, M_DONTWAIT, MT_DATA); 1145 if (mopt == 0) 1146 return (ENOBUFS); 1147 mopt->m_len = JUMBOOPTLEN; 1148 optbuf = mtod(mopt, u_char *); 1149 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1150 exthdrs->ip6e_hbh = mopt; 1151 } else { 1152 struct ip6_hbh *hbh; 1153 1154 mopt = exthdrs->ip6e_hbh; 1155 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1156 /* 1157 * XXX assumption: 1158 * - exthdrs->ip6e_hbh is not referenced from places 1159 * other than exthdrs. 1160 * - exthdrs->ip6e_hbh is not an mbuf chain. 1161 */ 1162 int oldoptlen = mopt->m_len; 1163 struct mbuf *n; 1164 1165 /* 1166 * XXX: give up if the whole (new) hbh header does 1167 * not fit even in an mbuf cluster. 1168 */ 1169 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1170 return (ENOBUFS); 1171 1172 /* 1173 * As a consequence, we must always prepare a cluster 1174 * at this point. 1175 */ 1176 MGET(n, M_DONTWAIT, MT_DATA); 1177 if (n) { 1178 MCLGET(n, M_DONTWAIT); 1179 if ((n->m_flags & M_EXT) == 0) { 1180 m_freem(n); 1181 n = NULL; 1182 } 1183 } 1184 if (!n) 1185 return (ENOBUFS); 1186 n->m_len = oldoptlen + JUMBOOPTLEN; 1187 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1188 oldoptlen); 1189 optbuf = mtod(n, caddr_t) + oldoptlen; 1190 m_freem(mopt); 1191 mopt = exthdrs->ip6e_hbh = n; 1192 } else { 1193 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1194 mopt->m_len += JUMBOOPTLEN; 1195 } 1196 optbuf[0] = IP6OPT_PADN; 1197 optbuf[1] = 1; 1198 1199 /* 1200 * Adjust the header length according to the pad and 1201 * the jumbo payload option. 1202 */ 1203 hbh = mtod(mopt, struct ip6_hbh *); 1204 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1205 } 1206 1207 /* fill in the option. */ 1208 optbuf[2] = IP6OPT_JUMBO; 1209 optbuf[3] = 4; 1210 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1211 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1212 1213 /* finally, adjust the packet header length */ 1214 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1215 1216 return (0); 1217 #undef JUMBOOPTLEN 1218 } 1219 1220 /* 1221 * Insert fragment header and copy unfragmentable header portions. 1222 */ 1223 static int 1224 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1225 struct ip6_frag **frghdrp) 1226 { 1227 struct mbuf *n, *mlast; 1228 1229 if (hlen > sizeof(struct ip6_hdr)) { 1230 n = m_copym(m0, sizeof(struct ip6_hdr), 1231 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1232 if (n == 0) 1233 return (ENOBUFS); 1234 m->m_next = n; 1235 } else 1236 n = m; 1237 1238 /* Search for the last mbuf of unfragmentable part. */ 1239 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1240 ; 1241 1242 if ((mlast->m_flags & M_EXT) == 0 && 1243 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1244 /* use the trailing space of the last mbuf for the fragment hdr */ 1245 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1246 mlast->m_len); 1247 mlast->m_len += sizeof(struct ip6_frag); 1248 m->m_pkthdr.len += sizeof(struct ip6_frag); 1249 } else { 1250 /* allocate a new mbuf for the fragment header */ 1251 struct mbuf *mfrg; 1252 1253 MGET(mfrg, M_DONTWAIT, MT_DATA); 1254 if (mfrg == 0) 1255 return (ENOBUFS); 1256 mfrg->m_len = sizeof(struct ip6_frag); 1257 *frghdrp = mtod(mfrg, struct ip6_frag *); 1258 mlast->m_next = mfrg; 1259 } 1260 1261 return (0); 1262 } 1263 1264 static int 1265 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro, 1266 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup, 1267 int *alwaysfragp) 1268 { 1269 u_int32_t mtu = 0; 1270 int alwaysfrag = 0; 1271 int error = 0; 1272 1273 if (ro_pmtu != ro) { 1274 /* The first hop and the final destination may differ. */ 1275 struct sockaddr_in6 *sa6_dst = 1276 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1277 if (ro_pmtu->ro_rt && 1278 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 || 1279 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) { 1280 RTFREE(ro_pmtu->ro_rt); 1281 ro_pmtu->ro_rt = (struct rtentry *)NULL; 1282 } 1283 if (ro_pmtu->ro_rt == NULL) { 1284 bzero(sa6_dst, sizeof(*sa6_dst)); 1285 sa6_dst->sin6_family = AF_INET6; 1286 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1287 sa6_dst->sin6_addr = *dst; 1288 1289 rtalloc((struct route *)ro_pmtu); 1290 } 1291 } 1292 if (ro_pmtu->ro_rt) { 1293 u_int32_t ifmtu; 1294 struct in_conninfo inc; 1295 1296 bzero(&inc, sizeof(inc)); 1297 inc.inc_flags |= INC_ISIPV6; 1298 inc.inc6_faddr = *dst; 1299 1300 if (ifp == NULL) 1301 ifp = ro_pmtu->ro_rt->rt_ifp; 1302 ifmtu = IN6_LINKMTU(ifp); 1303 mtu = tcp_hc_getmtu(&inc); 1304 if (mtu) 1305 mtu = min(mtu, ro_pmtu->ro_rt->rt_rmx.rmx_mtu); 1306 else 1307 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 1308 if (mtu == 0) 1309 mtu = ifmtu; 1310 else if (mtu < IPV6_MMTU) { 1311 /* 1312 * RFC2460 section 5, last paragraph: 1313 * if we record ICMPv6 too big message with 1314 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1315 * or smaller, with framgent header attached. 1316 * (fragment header is needed regardless from the 1317 * packet size, for translators to identify packets) 1318 */ 1319 alwaysfrag = 1; 1320 mtu = IPV6_MMTU; 1321 } else if (mtu > ifmtu) { 1322 /* 1323 * The MTU on the route is larger than the MTU on 1324 * the interface! This shouldn't happen, unless the 1325 * MTU of the interface has been changed after the 1326 * interface was brought up. Change the MTU in the 1327 * route to match the interface MTU (as long as the 1328 * field isn't locked). 1329 */ 1330 mtu = ifmtu; 1331 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; 1332 } 1333 } else if (ifp) { 1334 mtu = IN6_LINKMTU(ifp); 1335 } else 1336 error = EHOSTUNREACH; /* XXX */ 1337 1338 *mtup = mtu; 1339 if (alwaysfragp) 1340 *alwaysfragp = alwaysfrag; 1341 return (error); 1342 } 1343 1344 /* 1345 * IP6 socket option processing. 1346 */ 1347 int 1348 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1349 { 1350 int optdatalen, uproto; 1351 void *optdata; 1352 struct inpcb *in6p = sotoinpcb(so); 1353 int error, optval; 1354 int level, op, optname; 1355 int optlen; 1356 struct thread *td; 1357 1358 level = sopt->sopt_level; 1359 op = sopt->sopt_dir; 1360 optname = sopt->sopt_name; 1361 optlen = sopt->sopt_valsize; 1362 td = sopt->sopt_td; 1363 error = 0; 1364 optval = 0; 1365 uproto = (int)so->so_proto->pr_protocol; 1366 1367 if (level == IPPROTO_IPV6) { 1368 switch (op) { 1369 1370 case SOPT_SET: 1371 switch (optname) { 1372 case IPV6_2292PKTOPTIONS: 1373 #ifdef IPV6_PKTOPTIONS 1374 case IPV6_PKTOPTIONS: 1375 #endif 1376 { 1377 struct mbuf *m; 1378 1379 error = soopt_getm(sopt, &m); /* XXX */ 1380 if (error != 0) 1381 break; 1382 error = soopt_mcopyin(sopt, m); /* XXX */ 1383 if (error != 0) 1384 break; 1385 error = ip6_pcbopts(&in6p->in6p_outputopts, 1386 m, so, sopt); 1387 m_freem(m); /* XXX */ 1388 break; 1389 } 1390 1391 /* 1392 * Use of some Hop-by-Hop options or some 1393 * Destination options, might require special 1394 * privilege. That is, normal applications 1395 * (without special privilege) might be forbidden 1396 * from setting certain options in outgoing packets, 1397 * and might never see certain options in received 1398 * packets. [RFC 2292 Section 6] 1399 * KAME specific note: 1400 * KAME prevents non-privileged users from sending or 1401 * receiving ANY hbh/dst options in order to avoid 1402 * overhead of parsing options in the kernel. 1403 */ 1404 case IPV6_RECVHOPOPTS: 1405 case IPV6_RECVDSTOPTS: 1406 case IPV6_RECVRTHDRDSTOPTS: 1407 if (td != NULL) { 1408 error = priv_check(td, 1409 PRIV_NETINET_SETHDROPTS); 1410 if (error) 1411 break; 1412 } 1413 /* FALLTHROUGH */ 1414 case IPV6_UNICAST_HOPS: 1415 case IPV6_HOPLIMIT: 1416 case IPV6_FAITH: 1417 1418 case IPV6_RECVPKTINFO: 1419 case IPV6_RECVHOPLIMIT: 1420 case IPV6_RECVRTHDR: 1421 case IPV6_RECVPATHMTU: 1422 case IPV6_RECVTCLASS: 1423 case IPV6_V6ONLY: 1424 case IPV6_AUTOFLOWLABEL: 1425 case IPV6_BINDANY: 1426 if (optname == IPV6_BINDANY && td != NULL) { 1427 error = priv_check(td, 1428 PRIV_NETINET_BINDANY); 1429 if (error) 1430 break; 1431 } 1432 1433 if (optlen != sizeof(int)) { 1434 error = EINVAL; 1435 break; 1436 } 1437 error = sooptcopyin(sopt, &optval, 1438 sizeof optval, sizeof optval); 1439 if (error) 1440 break; 1441 switch (optname) { 1442 1443 case IPV6_UNICAST_HOPS: 1444 if (optval < -1 || optval >= 256) 1445 error = EINVAL; 1446 else { 1447 /* -1 = kernel default */ 1448 in6p->in6p_hops = optval; 1449 if ((in6p->inp_vflag & 1450 INP_IPV4) != 0) 1451 in6p->inp_ip_ttl = optval; 1452 } 1453 break; 1454 #define OPTSET(bit) \ 1455 do { \ 1456 if (optval) \ 1457 in6p->inp_flags |= (bit); \ 1458 else \ 1459 in6p->inp_flags &= ~(bit); \ 1460 } while (/*CONSTCOND*/ 0) 1461 #define OPTSET2292(bit) \ 1462 do { \ 1463 in6p->inp_flags |= IN6P_RFC2292; \ 1464 if (optval) \ 1465 in6p->inp_flags |= (bit); \ 1466 else \ 1467 in6p->inp_flags &= ~(bit); \ 1468 } while (/*CONSTCOND*/ 0) 1469 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1470 1471 case IPV6_RECVPKTINFO: 1472 /* cannot mix with RFC2292 */ 1473 if (OPTBIT(IN6P_RFC2292)) { 1474 error = EINVAL; 1475 break; 1476 } 1477 OPTSET(IN6P_PKTINFO); 1478 break; 1479 1480 case IPV6_HOPLIMIT: 1481 { 1482 struct ip6_pktopts **optp; 1483 1484 /* cannot mix with RFC2292 */ 1485 if (OPTBIT(IN6P_RFC2292)) { 1486 error = EINVAL; 1487 break; 1488 } 1489 optp = &in6p->in6p_outputopts; 1490 error = ip6_pcbopt(IPV6_HOPLIMIT, 1491 (u_char *)&optval, sizeof(optval), 1492 optp, (td != NULL) ? td->td_ucred : 1493 NULL, uproto); 1494 break; 1495 } 1496 1497 case IPV6_RECVHOPLIMIT: 1498 /* cannot mix with RFC2292 */ 1499 if (OPTBIT(IN6P_RFC2292)) { 1500 error = EINVAL; 1501 break; 1502 } 1503 OPTSET(IN6P_HOPLIMIT); 1504 break; 1505 1506 case IPV6_RECVHOPOPTS: 1507 /* cannot mix with RFC2292 */ 1508 if (OPTBIT(IN6P_RFC2292)) { 1509 error = EINVAL; 1510 break; 1511 } 1512 OPTSET(IN6P_HOPOPTS); 1513 break; 1514 1515 case IPV6_RECVDSTOPTS: 1516 /* cannot mix with RFC2292 */ 1517 if (OPTBIT(IN6P_RFC2292)) { 1518 error = EINVAL; 1519 break; 1520 } 1521 OPTSET(IN6P_DSTOPTS); 1522 break; 1523 1524 case IPV6_RECVRTHDRDSTOPTS: 1525 /* cannot mix with RFC2292 */ 1526 if (OPTBIT(IN6P_RFC2292)) { 1527 error = EINVAL; 1528 break; 1529 } 1530 OPTSET(IN6P_RTHDRDSTOPTS); 1531 break; 1532 1533 case IPV6_RECVRTHDR: 1534 /* cannot mix with RFC2292 */ 1535 if (OPTBIT(IN6P_RFC2292)) { 1536 error = EINVAL; 1537 break; 1538 } 1539 OPTSET(IN6P_RTHDR); 1540 break; 1541 1542 case IPV6_FAITH: 1543 OPTSET(INP_FAITH); 1544 break; 1545 1546 case IPV6_RECVPATHMTU: 1547 /* 1548 * We ignore this option for TCP 1549 * sockets. 1550 * (RFC3542 leaves this case 1551 * unspecified.) 1552 */ 1553 if (uproto != IPPROTO_TCP) 1554 OPTSET(IN6P_MTU); 1555 break; 1556 1557 case IPV6_V6ONLY: 1558 /* 1559 * make setsockopt(IPV6_V6ONLY) 1560 * available only prior to bind(2). 1561 * see ipng mailing list, Jun 22 2001. 1562 */ 1563 if (in6p->inp_lport || 1564 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1565 error = EINVAL; 1566 break; 1567 } 1568 OPTSET(IN6P_IPV6_V6ONLY); 1569 if (optval) 1570 in6p->inp_vflag &= ~INP_IPV4; 1571 else 1572 in6p->inp_vflag |= INP_IPV4; 1573 break; 1574 case IPV6_RECVTCLASS: 1575 /* cannot mix with RFC2292 XXX */ 1576 if (OPTBIT(IN6P_RFC2292)) { 1577 error = EINVAL; 1578 break; 1579 } 1580 OPTSET(IN6P_TCLASS); 1581 break; 1582 case IPV6_AUTOFLOWLABEL: 1583 OPTSET(IN6P_AUTOFLOWLABEL); 1584 break; 1585 1586 case IPV6_BINDANY: 1587 OPTSET(INP_BINDANY); 1588 break; 1589 } 1590 break; 1591 1592 case IPV6_TCLASS: 1593 case IPV6_DONTFRAG: 1594 case IPV6_USE_MIN_MTU: 1595 case IPV6_PREFER_TEMPADDR: 1596 if (optlen != sizeof(optval)) { 1597 error = EINVAL; 1598 break; 1599 } 1600 error = sooptcopyin(sopt, &optval, 1601 sizeof optval, sizeof optval); 1602 if (error) 1603 break; 1604 { 1605 struct ip6_pktopts **optp; 1606 optp = &in6p->in6p_outputopts; 1607 error = ip6_pcbopt(optname, 1608 (u_char *)&optval, sizeof(optval), 1609 optp, (td != NULL) ? td->td_ucred : 1610 NULL, uproto); 1611 break; 1612 } 1613 1614 case IPV6_2292PKTINFO: 1615 case IPV6_2292HOPLIMIT: 1616 case IPV6_2292HOPOPTS: 1617 case IPV6_2292DSTOPTS: 1618 case IPV6_2292RTHDR: 1619 /* RFC 2292 */ 1620 if (optlen != sizeof(int)) { 1621 error = EINVAL; 1622 break; 1623 } 1624 error = sooptcopyin(sopt, &optval, 1625 sizeof optval, sizeof optval); 1626 if (error) 1627 break; 1628 switch (optname) { 1629 case IPV6_2292PKTINFO: 1630 OPTSET2292(IN6P_PKTINFO); 1631 break; 1632 case IPV6_2292HOPLIMIT: 1633 OPTSET2292(IN6P_HOPLIMIT); 1634 break; 1635 case IPV6_2292HOPOPTS: 1636 /* 1637 * Check super-user privilege. 1638 * See comments for IPV6_RECVHOPOPTS. 1639 */ 1640 if (td != NULL) { 1641 error = priv_check(td, 1642 PRIV_NETINET_SETHDROPTS); 1643 if (error) 1644 return (error); 1645 } 1646 OPTSET2292(IN6P_HOPOPTS); 1647 break; 1648 case IPV6_2292DSTOPTS: 1649 if (td != NULL) { 1650 error = priv_check(td, 1651 PRIV_NETINET_SETHDROPTS); 1652 if (error) 1653 return (error); 1654 } 1655 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1656 break; 1657 case IPV6_2292RTHDR: 1658 OPTSET2292(IN6P_RTHDR); 1659 break; 1660 } 1661 break; 1662 case IPV6_PKTINFO: 1663 case IPV6_HOPOPTS: 1664 case IPV6_RTHDR: 1665 case IPV6_DSTOPTS: 1666 case IPV6_RTHDRDSTOPTS: 1667 case IPV6_NEXTHOP: 1668 { 1669 /* new advanced API (RFC3542) */ 1670 u_char *optbuf; 1671 u_char optbuf_storage[MCLBYTES]; 1672 int optlen; 1673 struct ip6_pktopts **optp; 1674 1675 /* cannot mix with RFC2292 */ 1676 if (OPTBIT(IN6P_RFC2292)) { 1677 error = EINVAL; 1678 break; 1679 } 1680 1681 /* 1682 * We only ensure valsize is not too large 1683 * here. Further validation will be done 1684 * later. 1685 */ 1686 error = sooptcopyin(sopt, optbuf_storage, 1687 sizeof(optbuf_storage), 0); 1688 if (error) 1689 break; 1690 optlen = sopt->sopt_valsize; 1691 optbuf = optbuf_storage; 1692 optp = &in6p->in6p_outputopts; 1693 error = ip6_pcbopt(optname, optbuf, optlen, 1694 optp, (td != NULL) ? td->td_ucred : NULL, 1695 uproto); 1696 break; 1697 } 1698 #undef OPTSET 1699 1700 case IPV6_MULTICAST_IF: 1701 case IPV6_MULTICAST_HOPS: 1702 case IPV6_MULTICAST_LOOP: 1703 case IPV6_JOIN_GROUP: 1704 case IPV6_LEAVE_GROUP: 1705 case IPV6_MSFILTER: 1706 case MCAST_BLOCK_SOURCE: 1707 case MCAST_UNBLOCK_SOURCE: 1708 case MCAST_JOIN_GROUP: 1709 case MCAST_LEAVE_GROUP: 1710 case MCAST_JOIN_SOURCE_GROUP: 1711 case MCAST_LEAVE_SOURCE_GROUP: 1712 error = ip6_setmoptions(in6p, sopt); 1713 break; 1714 1715 case IPV6_PORTRANGE: 1716 error = sooptcopyin(sopt, &optval, 1717 sizeof optval, sizeof optval); 1718 if (error) 1719 break; 1720 1721 switch (optval) { 1722 case IPV6_PORTRANGE_DEFAULT: 1723 in6p->inp_flags &= ~(INP_LOWPORT); 1724 in6p->inp_flags &= ~(INP_HIGHPORT); 1725 break; 1726 1727 case IPV6_PORTRANGE_HIGH: 1728 in6p->inp_flags &= ~(INP_LOWPORT); 1729 in6p->inp_flags |= INP_HIGHPORT; 1730 break; 1731 1732 case IPV6_PORTRANGE_LOW: 1733 in6p->inp_flags &= ~(INP_HIGHPORT); 1734 in6p->inp_flags |= INP_LOWPORT; 1735 break; 1736 1737 default: 1738 error = EINVAL; 1739 break; 1740 } 1741 break; 1742 1743 #ifdef IPSEC 1744 case IPV6_IPSEC_POLICY: 1745 { 1746 caddr_t req; 1747 struct mbuf *m; 1748 1749 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1750 break; 1751 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1752 break; 1753 req = mtod(m, caddr_t); 1754 error = ipsec_set_policy(in6p, optname, req, 1755 m->m_len, (sopt->sopt_td != NULL) ? 1756 sopt->sopt_td->td_ucred : NULL); 1757 m_freem(m); 1758 break; 1759 } 1760 #endif /* IPSEC */ 1761 1762 default: 1763 error = ENOPROTOOPT; 1764 break; 1765 } 1766 break; 1767 1768 case SOPT_GET: 1769 switch (optname) { 1770 1771 case IPV6_2292PKTOPTIONS: 1772 #ifdef IPV6_PKTOPTIONS 1773 case IPV6_PKTOPTIONS: 1774 #endif 1775 /* 1776 * RFC3542 (effectively) deprecated the 1777 * semantics of the 2292-style pktoptions. 1778 * Since it was not reliable in nature (i.e., 1779 * applications had to expect the lack of some 1780 * information after all), it would make sense 1781 * to simplify this part by always returning 1782 * empty data. 1783 */ 1784 sopt->sopt_valsize = 0; 1785 break; 1786 1787 case IPV6_RECVHOPOPTS: 1788 case IPV6_RECVDSTOPTS: 1789 case IPV6_RECVRTHDRDSTOPTS: 1790 case IPV6_UNICAST_HOPS: 1791 case IPV6_RECVPKTINFO: 1792 case IPV6_RECVHOPLIMIT: 1793 case IPV6_RECVRTHDR: 1794 case IPV6_RECVPATHMTU: 1795 1796 case IPV6_FAITH: 1797 case IPV6_V6ONLY: 1798 case IPV6_PORTRANGE: 1799 case IPV6_RECVTCLASS: 1800 case IPV6_AUTOFLOWLABEL: 1801 switch (optname) { 1802 1803 case IPV6_RECVHOPOPTS: 1804 optval = OPTBIT(IN6P_HOPOPTS); 1805 break; 1806 1807 case IPV6_RECVDSTOPTS: 1808 optval = OPTBIT(IN6P_DSTOPTS); 1809 break; 1810 1811 case IPV6_RECVRTHDRDSTOPTS: 1812 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1813 break; 1814 1815 case IPV6_UNICAST_HOPS: 1816 optval = in6p->in6p_hops; 1817 break; 1818 1819 case IPV6_RECVPKTINFO: 1820 optval = OPTBIT(IN6P_PKTINFO); 1821 break; 1822 1823 case IPV6_RECVHOPLIMIT: 1824 optval = OPTBIT(IN6P_HOPLIMIT); 1825 break; 1826 1827 case IPV6_RECVRTHDR: 1828 optval = OPTBIT(IN6P_RTHDR); 1829 break; 1830 1831 case IPV6_RECVPATHMTU: 1832 optval = OPTBIT(IN6P_MTU); 1833 break; 1834 1835 case IPV6_FAITH: 1836 optval = OPTBIT(INP_FAITH); 1837 break; 1838 1839 case IPV6_V6ONLY: 1840 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1841 break; 1842 1843 case IPV6_PORTRANGE: 1844 { 1845 int flags; 1846 flags = in6p->inp_flags; 1847 if (flags & INP_HIGHPORT) 1848 optval = IPV6_PORTRANGE_HIGH; 1849 else if (flags & INP_LOWPORT) 1850 optval = IPV6_PORTRANGE_LOW; 1851 else 1852 optval = 0; 1853 break; 1854 } 1855 case IPV6_RECVTCLASS: 1856 optval = OPTBIT(IN6P_TCLASS); 1857 break; 1858 1859 case IPV6_AUTOFLOWLABEL: 1860 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 1861 break; 1862 1863 case IPV6_BINDANY: 1864 optval = OPTBIT(INP_BINDANY); 1865 break; 1866 } 1867 if (error) 1868 break; 1869 error = sooptcopyout(sopt, &optval, 1870 sizeof optval); 1871 break; 1872 1873 case IPV6_PATHMTU: 1874 { 1875 u_long pmtu = 0; 1876 struct ip6_mtuinfo mtuinfo; 1877 struct route_in6 sro; 1878 1879 bzero(&sro, sizeof(sro)); 1880 1881 if (!(so->so_state & SS_ISCONNECTED)) 1882 return (ENOTCONN); 1883 /* 1884 * XXX: we dot not consider the case of source 1885 * routing, or optional information to specify 1886 * the outgoing interface. 1887 */ 1888 error = ip6_getpmtu(&sro, NULL, NULL, 1889 &in6p->in6p_faddr, &pmtu, NULL); 1890 if (sro.ro_rt) 1891 RTFREE(sro.ro_rt); 1892 if (error) 1893 break; 1894 if (pmtu > IPV6_MAXPACKET) 1895 pmtu = IPV6_MAXPACKET; 1896 1897 bzero(&mtuinfo, sizeof(mtuinfo)); 1898 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1899 optdata = (void *)&mtuinfo; 1900 optdatalen = sizeof(mtuinfo); 1901 error = sooptcopyout(sopt, optdata, 1902 optdatalen); 1903 break; 1904 } 1905 1906 case IPV6_2292PKTINFO: 1907 case IPV6_2292HOPLIMIT: 1908 case IPV6_2292HOPOPTS: 1909 case IPV6_2292RTHDR: 1910 case IPV6_2292DSTOPTS: 1911 switch (optname) { 1912 case IPV6_2292PKTINFO: 1913 optval = OPTBIT(IN6P_PKTINFO); 1914 break; 1915 case IPV6_2292HOPLIMIT: 1916 optval = OPTBIT(IN6P_HOPLIMIT); 1917 break; 1918 case IPV6_2292HOPOPTS: 1919 optval = OPTBIT(IN6P_HOPOPTS); 1920 break; 1921 case IPV6_2292RTHDR: 1922 optval = OPTBIT(IN6P_RTHDR); 1923 break; 1924 case IPV6_2292DSTOPTS: 1925 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1926 break; 1927 } 1928 error = sooptcopyout(sopt, &optval, 1929 sizeof optval); 1930 break; 1931 case IPV6_PKTINFO: 1932 case IPV6_HOPOPTS: 1933 case IPV6_RTHDR: 1934 case IPV6_DSTOPTS: 1935 case IPV6_RTHDRDSTOPTS: 1936 case IPV6_NEXTHOP: 1937 case IPV6_TCLASS: 1938 case IPV6_DONTFRAG: 1939 case IPV6_USE_MIN_MTU: 1940 case IPV6_PREFER_TEMPADDR: 1941 error = ip6_getpcbopt(in6p->in6p_outputopts, 1942 optname, sopt); 1943 break; 1944 1945 case IPV6_MULTICAST_IF: 1946 case IPV6_MULTICAST_HOPS: 1947 case IPV6_MULTICAST_LOOP: 1948 case IPV6_MSFILTER: 1949 error = ip6_getmoptions(in6p, sopt); 1950 break; 1951 1952 #ifdef IPSEC 1953 case IPV6_IPSEC_POLICY: 1954 { 1955 caddr_t req = NULL; 1956 size_t len = 0; 1957 struct mbuf *m = NULL; 1958 struct mbuf **mp = &m; 1959 size_t ovalsize = sopt->sopt_valsize; 1960 caddr_t oval = (caddr_t)sopt->sopt_val; 1961 1962 error = soopt_getm(sopt, &m); /* XXX */ 1963 if (error != 0) 1964 break; 1965 error = soopt_mcopyin(sopt, m); /* XXX */ 1966 if (error != 0) 1967 break; 1968 sopt->sopt_valsize = ovalsize; 1969 sopt->sopt_val = oval; 1970 if (m) { 1971 req = mtod(m, caddr_t); 1972 len = m->m_len; 1973 } 1974 error = ipsec_get_policy(in6p, req, len, mp); 1975 if (error == 0) 1976 error = soopt_mcopyout(sopt, m); /* XXX */ 1977 if (error == 0 && m) 1978 m_freem(m); 1979 break; 1980 } 1981 #endif /* IPSEC */ 1982 1983 default: 1984 error = ENOPROTOOPT; 1985 break; 1986 } 1987 break; 1988 } 1989 } else { /* level != IPPROTO_IPV6 */ 1990 error = EINVAL; 1991 } 1992 return (error); 1993 } 1994 1995 int 1996 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 1997 { 1998 int error = 0, optval, optlen; 1999 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2000 struct inpcb *in6p = sotoinpcb(so); 2001 int level, op, optname; 2002 2003 level = sopt->sopt_level; 2004 op = sopt->sopt_dir; 2005 optname = sopt->sopt_name; 2006 optlen = sopt->sopt_valsize; 2007 2008 if (level != IPPROTO_IPV6) { 2009 return (EINVAL); 2010 } 2011 2012 switch (optname) { 2013 case IPV6_CHECKSUM: 2014 /* 2015 * For ICMPv6 sockets, no modification allowed for checksum 2016 * offset, permit "no change" values to help existing apps. 2017 * 2018 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2019 * for an ICMPv6 socket will fail." 2020 * The current behavior does not meet RFC3542. 2021 */ 2022 switch (op) { 2023 case SOPT_SET: 2024 if (optlen != sizeof(int)) { 2025 error = EINVAL; 2026 break; 2027 } 2028 error = sooptcopyin(sopt, &optval, sizeof(optval), 2029 sizeof(optval)); 2030 if (error) 2031 break; 2032 if ((optval % 2) != 0) { 2033 /* the API assumes even offset values */ 2034 error = EINVAL; 2035 } else if (so->so_proto->pr_protocol == 2036 IPPROTO_ICMPV6) { 2037 if (optval != icmp6off) 2038 error = EINVAL; 2039 } else 2040 in6p->in6p_cksum = optval; 2041 break; 2042 2043 case SOPT_GET: 2044 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2045 optval = icmp6off; 2046 else 2047 optval = in6p->in6p_cksum; 2048 2049 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2050 break; 2051 2052 default: 2053 error = EINVAL; 2054 break; 2055 } 2056 break; 2057 2058 default: 2059 error = ENOPROTOOPT; 2060 break; 2061 } 2062 2063 return (error); 2064 } 2065 2066 /* 2067 * Set up IP6 options in pcb for insertion in output packets or 2068 * specifying behavior of outgoing packets. 2069 */ 2070 static int 2071 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2072 struct socket *so, struct sockopt *sopt) 2073 { 2074 struct ip6_pktopts *opt = *pktopt; 2075 int error = 0; 2076 struct thread *td = sopt->sopt_td; 2077 2078 /* turn off any old options. */ 2079 if (opt) { 2080 #ifdef DIAGNOSTIC 2081 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2082 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2083 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2084 printf("ip6_pcbopts: all specified options are cleared.\n"); 2085 #endif 2086 ip6_clearpktopts(opt, -1); 2087 } else 2088 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2089 *pktopt = NULL; 2090 2091 if (!m || m->m_len == 0) { 2092 /* 2093 * Only turning off any previous options, regardless of 2094 * whether the opt is just created or given. 2095 */ 2096 free(opt, M_IP6OPT); 2097 return (0); 2098 } 2099 2100 /* set options specified by user. */ 2101 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2102 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2103 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2104 free(opt, M_IP6OPT); 2105 return (error); 2106 } 2107 *pktopt = opt; 2108 return (0); 2109 } 2110 2111 /* 2112 * initialize ip6_pktopts. beware that there are non-zero default values in 2113 * the struct. 2114 */ 2115 void 2116 ip6_initpktopts(struct ip6_pktopts *opt) 2117 { 2118 2119 bzero(opt, sizeof(*opt)); 2120 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2121 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2122 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2123 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2124 } 2125 2126 static int 2127 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2128 struct ucred *cred, int uproto) 2129 { 2130 struct ip6_pktopts *opt; 2131 2132 if (*pktopt == NULL) { 2133 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2134 M_WAITOK); 2135 ip6_initpktopts(*pktopt); 2136 } 2137 opt = *pktopt; 2138 2139 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2140 } 2141 2142 static int 2143 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2144 { 2145 void *optdata = NULL; 2146 int optdatalen = 0; 2147 struct ip6_ext *ip6e; 2148 int error = 0; 2149 struct in6_pktinfo null_pktinfo; 2150 int deftclass = 0, on; 2151 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2152 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2153 2154 switch (optname) { 2155 case IPV6_PKTINFO: 2156 if (pktopt && pktopt->ip6po_pktinfo) 2157 optdata = (void *)pktopt->ip6po_pktinfo; 2158 else { 2159 /* XXX: we don't have to do this every time... */ 2160 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2161 optdata = (void *)&null_pktinfo; 2162 } 2163 optdatalen = sizeof(struct in6_pktinfo); 2164 break; 2165 case IPV6_TCLASS: 2166 if (pktopt && pktopt->ip6po_tclass >= 0) 2167 optdata = (void *)&pktopt->ip6po_tclass; 2168 else 2169 optdata = (void *)&deftclass; 2170 optdatalen = sizeof(int); 2171 break; 2172 case IPV6_HOPOPTS: 2173 if (pktopt && pktopt->ip6po_hbh) { 2174 optdata = (void *)pktopt->ip6po_hbh; 2175 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2176 optdatalen = (ip6e->ip6e_len + 1) << 3; 2177 } 2178 break; 2179 case IPV6_RTHDR: 2180 if (pktopt && pktopt->ip6po_rthdr) { 2181 optdata = (void *)pktopt->ip6po_rthdr; 2182 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2183 optdatalen = (ip6e->ip6e_len + 1) << 3; 2184 } 2185 break; 2186 case IPV6_RTHDRDSTOPTS: 2187 if (pktopt && pktopt->ip6po_dest1) { 2188 optdata = (void *)pktopt->ip6po_dest1; 2189 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2190 optdatalen = (ip6e->ip6e_len + 1) << 3; 2191 } 2192 break; 2193 case IPV6_DSTOPTS: 2194 if (pktopt && pktopt->ip6po_dest2) { 2195 optdata = (void *)pktopt->ip6po_dest2; 2196 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2197 optdatalen = (ip6e->ip6e_len + 1) << 3; 2198 } 2199 break; 2200 case IPV6_NEXTHOP: 2201 if (pktopt && pktopt->ip6po_nexthop) { 2202 optdata = (void *)pktopt->ip6po_nexthop; 2203 optdatalen = pktopt->ip6po_nexthop->sa_len; 2204 } 2205 break; 2206 case IPV6_USE_MIN_MTU: 2207 if (pktopt) 2208 optdata = (void *)&pktopt->ip6po_minmtu; 2209 else 2210 optdata = (void *)&defminmtu; 2211 optdatalen = sizeof(int); 2212 break; 2213 case IPV6_DONTFRAG: 2214 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2215 on = 1; 2216 else 2217 on = 0; 2218 optdata = (void *)&on; 2219 optdatalen = sizeof(on); 2220 break; 2221 case IPV6_PREFER_TEMPADDR: 2222 if (pktopt) 2223 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2224 else 2225 optdata = (void *)&defpreftemp; 2226 optdatalen = sizeof(int); 2227 break; 2228 default: /* should not happen */ 2229 #ifdef DIAGNOSTIC 2230 panic("ip6_getpcbopt: unexpected option\n"); 2231 #endif 2232 return (ENOPROTOOPT); 2233 } 2234 2235 error = sooptcopyout(sopt, optdata, optdatalen); 2236 2237 return (error); 2238 } 2239 2240 void 2241 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2242 { 2243 if (pktopt == NULL) 2244 return; 2245 2246 if (optname == -1 || optname == IPV6_PKTINFO) { 2247 if (pktopt->ip6po_pktinfo) 2248 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2249 pktopt->ip6po_pktinfo = NULL; 2250 } 2251 if (optname == -1 || optname == IPV6_HOPLIMIT) 2252 pktopt->ip6po_hlim = -1; 2253 if (optname == -1 || optname == IPV6_TCLASS) 2254 pktopt->ip6po_tclass = -1; 2255 if (optname == -1 || optname == IPV6_NEXTHOP) { 2256 if (pktopt->ip6po_nextroute.ro_rt) { 2257 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2258 pktopt->ip6po_nextroute.ro_rt = NULL; 2259 } 2260 if (pktopt->ip6po_nexthop) 2261 free(pktopt->ip6po_nexthop, M_IP6OPT); 2262 pktopt->ip6po_nexthop = NULL; 2263 } 2264 if (optname == -1 || optname == IPV6_HOPOPTS) { 2265 if (pktopt->ip6po_hbh) 2266 free(pktopt->ip6po_hbh, M_IP6OPT); 2267 pktopt->ip6po_hbh = NULL; 2268 } 2269 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2270 if (pktopt->ip6po_dest1) 2271 free(pktopt->ip6po_dest1, M_IP6OPT); 2272 pktopt->ip6po_dest1 = NULL; 2273 } 2274 if (optname == -1 || optname == IPV6_RTHDR) { 2275 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2276 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2277 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2278 if (pktopt->ip6po_route.ro_rt) { 2279 RTFREE(pktopt->ip6po_route.ro_rt); 2280 pktopt->ip6po_route.ro_rt = NULL; 2281 } 2282 } 2283 if (optname == -1 || optname == IPV6_DSTOPTS) { 2284 if (pktopt->ip6po_dest2) 2285 free(pktopt->ip6po_dest2, M_IP6OPT); 2286 pktopt->ip6po_dest2 = NULL; 2287 } 2288 } 2289 2290 #define PKTOPT_EXTHDRCPY(type) \ 2291 do {\ 2292 if (src->type) {\ 2293 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2294 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2295 if (dst->type == NULL && canwait == M_NOWAIT)\ 2296 goto bad;\ 2297 bcopy(src->type, dst->type, hlen);\ 2298 }\ 2299 } while (/*CONSTCOND*/ 0) 2300 2301 static int 2302 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2303 { 2304 if (dst == NULL || src == NULL) { 2305 printf("ip6_clearpktopts: invalid argument\n"); 2306 return (EINVAL); 2307 } 2308 2309 dst->ip6po_hlim = src->ip6po_hlim; 2310 dst->ip6po_tclass = src->ip6po_tclass; 2311 dst->ip6po_flags = src->ip6po_flags; 2312 if (src->ip6po_pktinfo) { 2313 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2314 M_IP6OPT, canwait); 2315 if (dst->ip6po_pktinfo == NULL) 2316 goto bad; 2317 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2318 } 2319 if (src->ip6po_nexthop) { 2320 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2321 M_IP6OPT, canwait); 2322 if (dst->ip6po_nexthop == NULL) 2323 goto bad; 2324 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2325 src->ip6po_nexthop->sa_len); 2326 } 2327 PKTOPT_EXTHDRCPY(ip6po_hbh); 2328 PKTOPT_EXTHDRCPY(ip6po_dest1); 2329 PKTOPT_EXTHDRCPY(ip6po_dest2); 2330 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2331 return (0); 2332 2333 bad: 2334 ip6_clearpktopts(dst, -1); 2335 return (ENOBUFS); 2336 } 2337 #undef PKTOPT_EXTHDRCPY 2338 2339 struct ip6_pktopts * 2340 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2341 { 2342 int error; 2343 struct ip6_pktopts *dst; 2344 2345 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2346 if (dst == NULL) 2347 return (NULL); 2348 ip6_initpktopts(dst); 2349 2350 if ((error = copypktopts(dst, src, canwait)) != 0) { 2351 free(dst, M_IP6OPT); 2352 return (NULL); 2353 } 2354 2355 return (dst); 2356 } 2357 2358 void 2359 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2360 { 2361 if (pktopt == NULL) 2362 return; 2363 2364 ip6_clearpktopts(pktopt, -1); 2365 2366 free(pktopt, M_IP6OPT); 2367 } 2368 2369 /* 2370 * Set IPv6 outgoing packet options based on advanced API. 2371 */ 2372 int 2373 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2374 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2375 { 2376 struct cmsghdr *cm = 0; 2377 2378 if (control == NULL || opt == NULL) 2379 return (EINVAL); 2380 2381 ip6_initpktopts(opt); 2382 if (stickyopt) { 2383 int error; 2384 2385 /* 2386 * If stickyopt is provided, make a local copy of the options 2387 * for this particular packet, then override them by ancillary 2388 * objects. 2389 * XXX: copypktopts() does not copy the cached route to a next 2390 * hop (if any). This is not very good in terms of efficiency, 2391 * but we can allow this since this option should be rarely 2392 * used. 2393 */ 2394 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2395 return (error); 2396 } 2397 2398 /* 2399 * XXX: Currently, we assume all the optional information is stored 2400 * in a single mbuf. 2401 */ 2402 if (control->m_next) 2403 return (EINVAL); 2404 2405 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2406 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2407 int error; 2408 2409 if (control->m_len < CMSG_LEN(0)) 2410 return (EINVAL); 2411 2412 cm = mtod(control, struct cmsghdr *); 2413 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2414 return (EINVAL); 2415 if (cm->cmsg_level != IPPROTO_IPV6) 2416 continue; 2417 2418 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2419 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2420 if (error) 2421 return (error); 2422 } 2423 2424 return (0); 2425 } 2426 2427 /* 2428 * Set a particular packet option, as a sticky option or an ancillary data 2429 * item. "len" can be 0 only when it's a sticky option. 2430 * We have 4 cases of combination of "sticky" and "cmsg": 2431 * "sticky=0, cmsg=0": impossible 2432 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2433 * "sticky=1, cmsg=0": RFC3542 socket option 2434 * "sticky=1, cmsg=1": RFC2292 socket option 2435 */ 2436 static int 2437 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2438 struct ucred *cred, int sticky, int cmsg, int uproto) 2439 { 2440 int minmtupolicy, preftemp; 2441 int error; 2442 2443 if (!sticky && !cmsg) { 2444 #ifdef DIAGNOSTIC 2445 printf("ip6_setpktopt: impossible case\n"); 2446 #endif 2447 return (EINVAL); 2448 } 2449 2450 /* 2451 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2452 * not be specified in the context of RFC3542. Conversely, 2453 * RFC3542 types should not be specified in the context of RFC2292. 2454 */ 2455 if (!cmsg) { 2456 switch (optname) { 2457 case IPV6_2292PKTINFO: 2458 case IPV6_2292HOPLIMIT: 2459 case IPV6_2292NEXTHOP: 2460 case IPV6_2292HOPOPTS: 2461 case IPV6_2292DSTOPTS: 2462 case IPV6_2292RTHDR: 2463 case IPV6_2292PKTOPTIONS: 2464 return (ENOPROTOOPT); 2465 } 2466 } 2467 if (sticky && cmsg) { 2468 switch (optname) { 2469 case IPV6_PKTINFO: 2470 case IPV6_HOPLIMIT: 2471 case IPV6_NEXTHOP: 2472 case IPV6_HOPOPTS: 2473 case IPV6_DSTOPTS: 2474 case IPV6_RTHDRDSTOPTS: 2475 case IPV6_RTHDR: 2476 case IPV6_USE_MIN_MTU: 2477 case IPV6_DONTFRAG: 2478 case IPV6_TCLASS: 2479 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2480 return (ENOPROTOOPT); 2481 } 2482 } 2483 2484 switch (optname) { 2485 case IPV6_2292PKTINFO: 2486 case IPV6_PKTINFO: 2487 { 2488 struct ifnet *ifp = NULL; 2489 struct in6_pktinfo *pktinfo; 2490 2491 if (len != sizeof(struct in6_pktinfo)) 2492 return (EINVAL); 2493 2494 pktinfo = (struct in6_pktinfo *)buf; 2495 2496 /* 2497 * An application can clear any sticky IPV6_PKTINFO option by 2498 * doing a "regular" setsockopt with ipi6_addr being 2499 * in6addr_any and ipi6_ifindex being zero. 2500 * [RFC 3542, Section 6] 2501 */ 2502 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2503 pktinfo->ipi6_ifindex == 0 && 2504 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2505 ip6_clearpktopts(opt, optname); 2506 break; 2507 } 2508 2509 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2510 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2511 return (EINVAL); 2512 } 2513 2514 /* validate the interface index if specified. */ 2515 if (pktinfo->ipi6_ifindex > V_if_index || 2516 pktinfo->ipi6_ifindex < 0) { 2517 return (ENXIO); 2518 } 2519 if (pktinfo->ipi6_ifindex) { 2520 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2521 if (ifp == NULL) 2522 return (ENXIO); 2523 } 2524 2525 /* 2526 * We store the address anyway, and let in6_selectsrc() 2527 * validate the specified address. This is because ipi6_addr 2528 * may not have enough information about its scope zone, and 2529 * we may need additional information (such as outgoing 2530 * interface or the scope zone of a destination address) to 2531 * disambiguate the scope. 2532 * XXX: the delay of the validation may confuse the 2533 * application when it is used as a sticky option. 2534 */ 2535 if (opt->ip6po_pktinfo == NULL) { 2536 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2537 M_IP6OPT, M_NOWAIT); 2538 if (opt->ip6po_pktinfo == NULL) 2539 return (ENOBUFS); 2540 } 2541 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2542 break; 2543 } 2544 2545 case IPV6_2292HOPLIMIT: 2546 case IPV6_HOPLIMIT: 2547 { 2548 int *hlimp; 2549 2550 /* 2551 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2552 * to simplify the ordering among hoplimit options. 2553 */ 2554 if (optname == IPV6_HOPLIMIT && sticky) 2555 return (ENOPROTOOPT); 2556 2557 if (len != sizeof(int)) 2558 return (EINVAL); 2559 hlimp = (int *)buf; 2560 if (*hlimp < -1 || *hlimp > 255) 2561 return (EINVAL); 2562 2563 opt->ip6po_hlim = *hlimp; 2564 break; 2565 } 2566 2567 case IPV6_TCLASS: 2568 { 2569 int tclass; 2570 2571 if (len != sizeof(int)) 2572 return (EINVAL); 2573 tclass = *(int *)buf; 2574 if (tclass < -1 || tclass > 255) 2575 return (EINVAL); 2576 2577 opt->ip6po_tclass = tclass; 2578 break; 2579 } 2580 2581 case IPV6_2292NEXTHOP: 2582 case IPV6_NEXTHOP: 2583 if (cred != NULL) { 2584 error = priv_check_cred(cred, 2585 PRIV_NETINET_SETHDROPTS, 0); 2586 if (error) 2587 return (error); 2588 } 2589 2590 if (len == 0) { /* just remove the option */ 2591 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2592 break; 2593 } 2594 2595 /* check if cmsg_len is large enough for sa_len */ 2596 if (len < sizeof(struct sockaddr) || len < *buf) 2597 return (EINVAL); 2598 2599 switch (((struct sockaddr *)buf)->sa_family) { 2600 case AF_INET6: 2601 { 2602 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2603 int error; 2604 2605 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2606 return (EINVAL); 2607 2608 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2609 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2610 return (EINVAL); 2611 } 2612 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2613 != 0) { 2614 return (error); 2615 } 2616 break; 2617 } 2618 case AF_LINK: /* should eventually be supported */ 2619 default: 2620 return (EAFNOSUPPORT); 2621 } 2622 2623 /* turn off the previous option, then set the new option. */ 2624 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2625 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2626 if (opt->ip6po_nexthop == NULL) 2627 return (ENOBUFS); 2628 bcopy(buf, opt->ip6po_nexthop, *buf); 2629 break; 2630 2631 case IPV6_2292HOPOPTS: 2632 case IPV6_HOPOPTS: 2633 { 2634 struct ip6_hbh *hbh; 2635 int hbhlen; 2636 2637 /* 2638 * XXX: We don't allow a non-privileged user to set ANY HbH 2639 * options, since per-option restriction has too much 2640 * overhead. 2641 */ 2642 if (cred != NULL) { 2643 error = priv_check_cred(cred, 2644 PRIV_NETINET_SETHDROPTS, 0); 2645 if (error) 2646 return (error); 2647 } 2648 2649 if (len == 0) { 2650 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2651 break; /* just remove the option */ 2652 } 2653 2654 /* message length validation */ 2655 if (len < sizeof(struct ip6_hbh)) 2656 return (EINVAL); 2657 hbh = (struct ip6_hbh *)buf; 2658 hbhlen = (hbh->ip6h_len + 1) << 3; 2659 if (len != hbhlen) 2660 return (EINVAL); 2661 2662 /* turn off the previous option, then set the new option. */ 2663 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2664 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2665 if (opt->ip6po_hbh == NULL) 2666 return (ENOBUFS); 2667 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2668 2669 break; 2670 } 2671 2672 case IPV6_2292DSTOPTS: 2673 case IPV6_DSTOPTS: 2674 case IPV6_RTHDRDSTOPTS: 2675 { 2676 struct ip6_dest *dest, **newdest = NULL; 2677 int destlen; 2678 2679 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2680 error = priv_check_cred(cred, 2681 PRIV_NETINET_SETHDROPTS, 0); 2682 if (error) 2683 return (error); 2684 } 2685 2686 if (len == 0) { 2687 ip6_clearpktopts(opt, optname); 2688 break; /* just remove the option */ 2689 } 2690 2691 /* message length validation */ 2692 if (len < sizeof(struct ip6_dest)) 2693 return (EINVAL); 2694 dest = (struct ip6_dest *)buf; 2695 destlen = (dest->ip6d_len + 1) << 3; 2696 if (len != destlen) 2697 return (EINVAL); 2698 2699 /* 2700 * Determine the position that the destination options header 2701 * should be inserted; before or after the routing header. 2702 */ 2703 switch (optname) { 2704 case IPV6_2292DSTOPTS: 2705 /* 2706 * The old advacned API is ambiguous on this point. 2707 * Our approach is to determine the position based 2708 * according to the existence of a routing header. 2709 * Note, however, that this depends on the order of the 2710 * extension headers in the ancillary data; the 1st 2711 * part of the destination options header must appear 2712 * before the routing header in the ancillary data, 2713 * too. 2714 * RFC3542 solved the ambiguity by introducing 2715 * separate ancillary data or option types. 2716 */ 2717 if (opt->ip6po_rthdr == NULL) 2718 newdest = &opt->ip6po_dest1; 2719 else 2720 newdest = &opt->ip6po_dest2; 2721 break; 2722 case IPV6_RTHDRDSTOPTS: 2723 newdest = &opt->ip6po_dest1; 2724 break; 2725 case IPV6_DSTOPTS: 2726 newdest = &opt->ip6po_dest2; 2727 break; 2728 } 2729 2730 /* turn off the previous option, then set the new option. */ 2731 ip6_clearpktopts(opt, optname); 2732 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2733 if (*newdest == NULL) 2734 return (ENOBUFS); 2735 bcopy(dest, *newdest, destlen); 2736 2737 break; 2738 } 2739 2740 case IPV6_2292RTHDR: 2741 case IPV6_RTHDR: 2742 { 2743 struct ip6_rthdr *rth; 2744 int rthlen; 2745 2746 if (len == 0) { 2747 ip6_clearpktopts(opt, IPV6_RTHDR); 2748 break; /* just remove the option */ 2749 } 2750 2751 /* message length validation */ 2752 if (len < sizeof(struct ip6_rthdr)) 2753 return (EINVAL); 2754 rth = (struct ip6_rthdr *)buf; 2755 rthlen = (rth->ip6r_len + 1) << 3; 2756 if (len != rthlen) 2757 return (EINVAL); 2758 2759 switch (rth->ip6r_type) { 2760 case IPV6_RTHDR_TYPE_0: 2761 if (rth->ip6r_len == 0) /* must contain one addr */ 2762 return (EINVAL); 2763 if (rth->ip6r_len % 2) /* length must be even */ 2764 return (EINVAL); 2765 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2766 return (EINVAL); 2767 break; 2768 default: 2769 return (EINVAL); /* not supported */ 2770 } 2771 2772 /* turn off the previous option */ 2773 ip6_clearpktopts(opt, IPV6_RTHDR); 2774 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2775 if (opt->ip6po_rthdr == NULL) 2776 return (ENOBUFS); 2777 bcopy(rth, opt->ip6po_rthdr, rthlen); 2778 2779 break; 2780 } 2781 2782 case IPV6_USE_MIN_MTU: 2783 if (len != sizeof(int)) 2784 return (EINVAL); 2785 minmtupolicy = *(int *)buf; 2786 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2787 minmtupolicy != IP6PO_MINMTU_DISABLE && 2788 minmtupolicy != IP6PO_MINMTU_ALL) { 2789 return (EINVAL); 2790 } 2791 opt->ip6po_minmtu = minmtupolicy; 2792 break; 2793 2794 case IPV6_DONTFRAG: 2795 if (len != sizeof(int)) 2796 return (EINVAL); 2797 2798 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2799 /* 2800 * we ignore this option for TCP sockets. 2801 * (RFC3542 leaves this case unspecified.) 2802 */ 2803 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2804 } else 2805 opt->ip6po_flags |= IP6PO_DONTFRAG; 2806 break; 2807 2808 case IPV6_PREFER_TEMPADDR: 2809 if (len != sizeof(int)) 2810 return (EINVAL); 2811 preftemp = *(int *)buf; 2812 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 2813 preftemp != IP6PO_TEMPADDR_NOTPREFER && 2814 preftemp != IP6PO_TEMPADDR_PREFER) { 2815 return (EINVAL); 2816 } 2817 opt->ip6po_prefer_tempaddr = preftemp; 2818 break; 2819 2820 default: 2821 return (ENOPROTOOPT); 2822 } /* end of switch */ 2823 2824 return (0); 2825 } 2826 2827 /* 2828 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2829 * packet to the input queue of a specified interface. Note that this 2830 * calls the output routine of the loopback "driver", but with an interface 2831 * pointer that might NOT be &loif -- easier than replicating that code here. 2832 */ 2833 void 2834 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 2835 { 2836 struct mbuf *copym; 2837 struct ip6_hdr *ip6; 2838 2839 copym = m_copy(m, 0, M_COPYALL); 2840 if (copym == NULL) 2841 return; 2842 2843 /* 2844 * Make sure to deep-copy IPv6 header portion in case the data 2845 * is in an mbuf cluster, so that we can safely override the IPv6 2846 * header portion later. 2847 */ 2848 if ((copym->m_flags & M_EXT) != 0 || 2849 copym->m_len < sizeof(struct ip6_hdr)) { 2850 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2851 if (copym == NULL) 2852 return; 2853 } 2854 2855 #ifdef DIAGNOSTIC 2856 if (copym->m_len < sizeof(*ip6)) { 2857 m_freem(copym); 2858 return; 2859 } 2860 #endif 2861 2862 ip6 = mtod(copym, struct ip6_hdr *); 2863 /* 2864 * clear embedded scope identifiers if necessary. 2865 * in6_clearscope will touch the addresses only when necessary. 2866 */ 2867 in6_clearscope(&ip6->ip6_src); 2868 in6_clearscope(&ip6->ip6_dst); 2869 2870 (void)if_simloop(ifp, copym, dst->sin6_family, 0); 2871 } 2872 2873 /* 2874 * Chop IPv6 header off from the payload. 2875 */ 2876 static int 2877 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 2878 { 2879 struct mbuf *mh; 2880 struct ip6_hdr *ip6; 2881 2882 ip6 = mtod(m, struct ip6_hdr *); 2883 if (m->m_len > sizeof(*ip6)) { 2884 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 2885 if (mh == 0) { 2886 m_freem(m); 2887 return ENOBUFS; 2888 } 2889 M_MOVE_PKTHDR(mh, m); 2890 MH_ALIGN(mh, sizeof(*ip6)); 2891 m->m_len -= sizeof(*ip6); 2892 m->m_data += sizeof(*ip6); 2893 mh->m_next = m; 2894 m = mh; 2895 m->m_len = sizeof(*ip6); 2896 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2897 } 2898 exthdrs->ip6e_ip6 = m; 2899 return 0; 2900 } 2901 2902 /* 2903 * Compute IPv6 extension header length. 2904 */ 2905 int 2906 ip6_optlen(struct inpcb *in6p) 2907 { 2908 int len; 2909 2910 if (!in6p->in6p_outputopts) 2911 return 0; 2912 2913 len = 0; 2914 #define elen(x) \ 2915 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 2916 2917 len += elen(in6p->in6p_outputopts->ip6po_hbh); 2918 if (in6p->in6p_outputopts->ip6po_rthdr) 2919 /* dest1 is valid with rthdr only */ 2920 len += elen(in6p->in6p_outputopts->ip6po_dest1); 2921 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 2922 len += elen(in6p->in6p_outputopts->ip6po_dest2); 2923 return len; 2924 #undef elen 2925 } 2926