1 /* $FreeBSD$ */ 2 /* $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 4. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 62 */ 63 64 #include "opt_ip6fw.h" 65 #include "opt_inet.h" 66 #include "opt_inet6.h" 67 #include "opt_ipsec.h" 68 69 #include <sys/param.h> 70 #include <sys/malloc.h> 71 #include <sys/mbuf.h> 72 #include <sys/proc.h> 73 #include <sys/errno.h> 74 #include <sys/protosw.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/systm.h> 78 #include <sys/kernel.h> 79 80 #include <net/if.h> 81 #include <net/route.h> 82 #include <net/pfil.h> 83 84 #include <netinet/in.h> 85 #include <netinet/in_var.h> 86 #include <netinet6/in6_var.h> 87 #include <netinet/ip6.h> 88 #include <netinet/icmp6.h> 89 #include <netinet6/ip6_var.h> 90 #include <netinet/in_pcb.h> 91 #include <netinet/tcp_var.h> 92 #include <netinet6/nd6.h> 93 94 #ifdef IPSEC 95 #include <netinet6/ipsec.h> 96 #ifdef INET6 97 #include <netinet6/ipsec6.h> 98 #endif 99 #include <netkey/key.h> 100 #endif /* IPSEC */ 101 102 #ifdef FAST_IPSEC 103 #include <netipsec/ipsec.h> 104 #include <netipsec/ipsec6.h> 105 #include <netipsec/key.h> 106 #endif /* FAST_IPSEC */ 107 108 #include <netinet6/ip6_fw.h> 109 110 #include <net/net_osdep.h> 111 112 #include <netinet6/ip6protosw.h> 113 114 static MALLOC_DEFINE(M_IPMOPTS, "ip6_moptions", "internet multicast options"); 115 116 struct ip6_exthdrs { 117 struct mbuf *ip6e_ip6; 118 struct mbuf *ip6e_hbh; 119 struct mbuf *ip6e_dest1; 120 struct mbuf *ip6e_rthdr; 121 struct mbuf *ip6e_dest2; 122 }; 123 124 static int ip6_pcbopt __P((int, u_char *, int, struct ip6_pktopts **, 125 int, int)); 126 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 127 struct socket *, struct sockopt *)); 128 static int ip6_getpcbopt __P((struct ip6_pktopts *, int, struct sockopt *)); 129 static int ip6_setpktoption __P((int, u_char *, int, struct ip6_pktopts *, int, 130 int, int, int)); 131 132 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *)); 133 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **)); 134 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int)); 135 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 136 struct ip6_frag **)); 137 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t)); 138 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *)); 139 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *, 140 struct ifnet *, struct in6_addr *, u_long *, int *)); 141 142 143 /* 144 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 145 * header (with pri, len, nxt, hlim, src, dst). 146 * This function may modify ver and hlim only. 147 * The mbuf chain containing the packet will be freed. 148 * The mbuf opt, if present, will not be freed. 149 * 150 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 151 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 152 * which is rt_rmx.rmx_mtu. 153 */ 154 int 155 ip6_output(m0, opt, ro, flags, im6o, ifpp, inp) 156 struct mbuf *m0; 157 struct ip6_pktopts *opt; 158 struct route_in6 *ro; 159 int flags; 160 struct ip6_moptions *im6o; 161 struct ifnet **ifpp; /* XXX: just for statistics */ 162 struct inpcb *inp; 163 { 164 struct ip6_hdr *ip6, *mhip6; 165 struct ifnet *ifp, *origifp; 166 struct mbuf *m = m0; 167 int hlen, tlen, len, off; 168 struct route_in6 ip6route; 169 struct sockaddr_in6 *dst; 170 int error = 0; 171 struct in6_ifaddr *ia = NULL; 172 u_long mtu; 173 int alwaysfrag, dontfrag; 174 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 175 struct ip6_exthdrs exthdrs; 176 struct in6_addr finaldst; 177 struct route_in6 *ro_pmtu = NULL; 178 int hdrsplit = 0; 179 int needipsec = 0; 180 #if defined(IPSEC) || defined(FAST_IPSEC) 181 int needipsectun = 0; 182 struct secpolicy *sp = NULL; 183 #endif /*IPSEC || FAST_IPSEC*/ 184 185 ip6 = mtod(m, struct ip6_hdr *); 186 finaldst = ip6->ip6_dst; 187 188 #define MAKE_EXTHDR(hp, mp) \ 189 do { \ 190 if (hp) { \ 191 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 192 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 193 ((eh)->ip6e_len + 1) << 3); \ 194 if (error) \ 195 goto freehdrs; \ 196 } \ 197 } while (/*CONSTCOND*/ 0) 198 199 bzero(&exthdrs, sizeof(exthdrs)); 200 201 if (opt) { 202 /* Hop-by-Hop options header */ 203 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 204 /* Destination options header(1st part) */ 205 if (opt->ip6po_rthdr) { 206 /* 207 * Destination options header(1st part) 208 * This only makes sence with a routing header. 209 * See Section 9.2 of RFC 3542. 210 * Disabling this part just for MIP6 convenience is 211 * a bad idea. We need to think carefully about a 212 * way to make the advanced API coexist with MIP6 213 * options, which might automatically be inserted in 214 * the kernel. 215 */ 216 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 217 } 218 /* Routing header */ 219 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 220 /* Destination options header(2nd part) */ 221 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 222 } 223 224 #ifdef IPSEC 225 /* get a security policy for this packet */ 226 if (inp == NULL) 227 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 228 else 229 sp = ipsec6_getpolicybypcb(m, IPSEC_DIR_OUTBOUND, inp, &error); 230 231 if (sp == NULL) { 232 ipsec6stat.out_inval++; 233 goto freehdrs; 234 } 235 236 error = 0; 237 238 /* check policy */ 239 switch (sp->policy) { 240 case IPSEC_POLICY_DISCARD: 241 /* 242 * This packet is just discarded. 243 */ 244 ipsec6stat.out_polvio++; 245 goto freehdrs; 246 247 case IPSEC_POLICY_BYPASS: 248 case IPSEC_POLICY_NONE: 249 /* no need to do IPsec. */ 250 needipsec = 0; 251 break; 252 253 case IPSEC_POLICY_IPSEC: 254 if (sp->req == NULL) { 255 /* acquire a policy */ 256 error = key_spdacquire(sp); 257 goto freehdrs; 258 } 259 needipsec = 1; 260 break; 261 262 case IPSEC_POLICY_ENTRUST: 263 default: 264 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 265 } 266 #endif /* IPSEC */ 267 #ifdef FAST_IPSEC 268 /* get a security policy for this packet */ 269 if (inp == NULL) 270 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 271 else 272 sp = ipsec_getpolicybysock(m, IPSEC_DIR_OUTBOUND, inp, &error); 273 274 if (sp == NULL) { 275 newipsecstat.ips_out_inval++; 276 goto freehdrs; 277 } 278 279 error = 0; 280 281 /* check policy */ 282 switch (sp->policy) { 283 case IPSEC_POLICY_DISCARD: 284 /* 285 * This packet is just discarded. 286 */ 287 newipsecstat.ips_out_polvio++; 288 goto freehdrs; 289 290 case IPSEC_POLICY_BYPASS: 291 case IPSEC_POLICY_NONE: 292 /* no need to do IPsec. */ 293 needipsec = 0; 294 break; 295 296 case IPSEC_POLICY_IPSEC: 297 if (sp->req == NULL) { 298 /* acquire a policy */ 299 error = key_spdacquire(sp); 300 goto freehdrs; 301 } 302 needipsec = 1; 303 break; 304 305 case IPSEC_POLICY_ENTRUST: 306 default: 307 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 308 } 309 #endif /* FAST_IPSEC */ 310 311 /* 312 * Calculate the total length of the extension header chain. 313 * Keep the length of the unfragmentable part for fragmentation. 314 */ 315 optlen = 0; 316 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 317 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 318 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 319 unfragpartlen = optlen + sizeof(struct ip6_hdr); 320 /* NOTE: we don't add AH/ESP length here. do that later. */ 321 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 322 323 /* 324 * If we need IPsec, or there is at least one extension header, 325 * separate IP6 header from the payload. 326 */ 327 if ((needipsec || optlen) && !hdrsplit) { 328 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 329 m = NULL; 330 goto freehdrs; 331 } 332 m = exthdrs.ip6e_ip6; 333 hdrsplit++; 334 } 335 336 /* adjust pointer */ 337 ip6 = mtod(m, struct ip6_hdr *); 338 339 /* adjust mbuf packet header length */ 340 m->m_pkthdr.len += optlen; 341 plen = m->m_pkthdr.len - sizeof(*ip6); 342 343 /* If this is a jumbo payload, insert a jumbo payload option. */ 344 if (plen > IPV6_MAXPACKET) { 345 if (!hdrsplit) { 346 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 347 m = NULL; 348 goto freehdrs; 349 } 350 m = exthdrs.ip6e_ip6; 351 hdrsplit++; 352 } 353 /* adjust pointer */ 354 ip6 = mtod(m, struct ip6_hdr *); 355 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 356 goto freehdrs; 357 ip6->ip6_plen = 0; 358 } else 359 ip6->ip6_plen = htons(plen); 360 361 /* 362 * Concatenate headers and fill in next header fields. 363 * Here we have, on "m" 364 * IPv6 payload 365 * and we insert headers accordingly. Finally, we should be getting: 366 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 367 * 368 * during the header composing process, "m" points to IPv6 header. 369 * "mprev" points to an extension header prior to esp. 370 */ 371 { 372 u_char *nexthdrp = &ip6->ip6_nxt; 373 struct mbuf *mprev = m; 374 375 /* 376 * we treat dest2 specially. this makes IPsec processing 377 * much easier. the goal here is to make mprev point the 378 * mbuf prior to dest2. 379 * 380 * result: IPv6 dest2 payload 381 * m and mprev will point to IPv6 header. 382 */ 383 if (exthdrs.ip6e_dest2) { 384 if (!hdrsplit) 385 panic("assumption failed: hdr not split"); 386 exthdrs.ip6e_dest2->m_next = m->m_next; 387 m->m_next = exthdrs.ip6e_dest2; 388 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 389 ip6->ip6_nxt = IPPROTO_DSTOPTS; 390 } 391 392 #define MAKE_CHAIN(m, mp, p, i)\ 393 do {\ 394 if (m) {\ 395 if (!hdrsplit) \ 396 panic("assumption failed: hdr not split"); \ 397 *mtod((m), u_char *) = *(p);\ 398 *(p) = (i);\ 399 p = mtod((m), u_char *);\ 400 (m)->m_next = (mp)->m_next;\ 401 (mp)->m_next = (m);\ 402 (mp) = (m);\ 403 }\ 404 } while (/*CONSTCOND*/ 0) 405 /* 406 * result: IPv6 hbh dest1 rthdr dest2 payload 407 * m will point to IPv6 header. mprev will point to the 408 * extension header prior to dest2 (rthdr in the above case). 409 */ 410 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 411 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 412 IPPROTO_DSTOPTS); 413 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 414 IPPROTO_ROUTING); 415 416 #if defined(IPSEC) || defined(FAST_IPSEC) 417 if (!needipsec) 418 goto skip_ipsec2; 419 420 /* 421 * pointers after IPsec headers are not valid any more. 422 * other pointers need a great care too. 423 * (IPsec routines should not mangle mbufs prior to AH/ESP) 424 */ 425 exthdrs.ip6e_dest2 = NULL; 426 427 { 428 struct ip6_rthdr *rh = NULL; 429 int segleft_org = 0; 430 struct ipsec_output_state state; 431 432 if (exthdrs.ip6e_rthdr) { 433 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 434 segleft_org = rh->ip6r_segleft; 435 rh->ip6r_segleft = 0; 436 } 437 438 bzero(&state, sizeof(state)); 439 state.m = m; 440 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 441 &needipsectun); 442 m = state.m; 443 if (error) { 444 /* mbuf is already reclaimed in ipsec6_output_trans. */ 445 m = NULL; 446 switch (error) { 447 case EHOSTUNREACH: 448 case ENETUNREACH: 449 case EMSGSIZE: 450 case ENOBUFS: 451 case ENOMEM: 452 break; 453 default: 454 printf("ip6_output (ipsec): error code %d\n", error); 455 /* FALLTHROUGH */ 456 case ENOENT: 457 /* don't show these error codes to the user */ 458 error = 0; 459 break; 460 } 461 goto bad; 462 } 463 if (exthdrs.ip6e_rthdr) { 464 /* ah6_output doesn't modify mbuf chain */ 465 rh->ip6r_segleft = segleft_org; 466 } 467 } 468 skip_ipsec2:; 469 #endif 470 } 471 472 /* 473 * If there is a routing header, replace the destination address field 474 * with the first hop of the routing header. 475 */ 476 if (exthdrs.ip6e_rthdr) { 477 struct ip6_rthdr *rh = 478 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 479 struct ip6_rthdr *)); 480 struct ip6_rthdr0 *rh0; 481 struct in6_addr *addrs; 482 483 switch (rh->ip6r_type) { 484 case IPV6_RTHDR_TYPE_0: 485 rh0 = (struct ip6_rthdr0 *)rh; 486 addrs = (struct in6_addr *)(rh0 + 1); 487 488 ip6->ip6_dst = *addrs; 489 bcopy((caddr_t)(addrs + 1), (caddr_t)addrs, 490 sizeof(struct in6_addr)*(rh0->ip6r0_segleft - 1) 491 ); 492 *(addrs + rh0->ip6r0_segleft - 1) = finaldst; 493 break; 494 default: /* is it possible? */ 495 error = EINVAL; 496 goto bad; 497 } 498 } 499 500 /* Source address validation */ 501 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 502 (flags & IPV6_DADOUTPUT) == 0) { 503 error = EOPNOTSUPP; 504 ip6stat.ip6s_badscope++; 505 goto bad; 506 } 507 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 508 error = EOPNOTSUPP; 509 ip6stat.ip6s_badscope++; 510 goto bad; 511 } 512 513 ip6stat.ip6s_localout++; 514 515 /* 516 * Route packet. 517 */ 518 if (ro == 0) { 519 ro = &ip6route; 520 bzero((caddr_t)ro, sizeof(*ro)); 521 } 522 ro_pmtu = ro; 523 if (opt && opt->ip6po_rthdr) 524 ro = &opt->ip6po_route; 525 dst = (struct sockaddr_in6 *)&ro->ro_dst; 526 527 /* 528 * If there is a cached route, 529 * check that it is to the same destination 530 * and is still up. If not, free it and try again. 531 */ 532 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 533 dst->sin6_family != AF_INET6 || 534 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) { 535 RTFREE(ro->ro_rt); 536 ro->ro_rt = (struct rtentry *)0; 537 } 538 if (ro->ro_rt == 0) { 539 bzero(dst, sizeof(*dst)); 540 dst->sin6_family = AF_INET6; 541 dst->sin6_len = sizeof(struct sockaddr_in6); 542 dst->sin6_addr = ip6->ip6_dst; 543 } 544 545 /* 546 * if specified, try to fill in the traffic class field. 547 * do not override if a non-zero value is already set. 548 * we check the diffserv field and the ecn field separately. 549 */ 550 if (opt && opt->ip6po_tclass >= 0) { 551 int mask = 0; 552 553 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 554 mask |= 0xfc; 555 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 556 mask |= 0x03; 557 if (mask != 0) 558 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 559 } 560 561 /* fill in or override the hop limit field, if necessary. */ 562 if (opt && opt->ip6po_hlim != -1) 563 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 564 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 565 if (im6o != NULL) 566 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 567 else 568 ip6->ip6_hlim = ip6_defmcasthlim; 569 } 570 571 #if defined(IPSEC) || defined(FAST_IPSEC) 572 if (needipsec && needipsectun) { 573 struct ipsec_output_state state; 574 575 /* 576 * All the extension headers will become inaccessible 577 * (since they can be encrypted). 578 * Don't panic, we need no more updates to extension headers 579 * on inner IPv6 packet (since they are now encapsulated). 580 * 581 * IPv6 [ESP|AH] IPv6 [extension headers] payload 582 */ 583 bzero(&exthdrs, sizeof(exthdrs)); 584 exthdrs.ip6e_ip6 = m; 585 586 bzero(&state, sizeof(state)); 587 state.m = m; 588 state.ro = (struct route *)ro; 589 state.dst = (struct sockaddr *)dst; 590 591 error = ipsec6_output_tunnel(&state, sp, flags); 592 593 m = state.m; 594 ro = (struct route_in6 *)state.ro; 595 dst = (struct sockaddr_in6 *)state.dst; 596 if (error) { 597 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 598 m0 = m = NULL; 599 m = NULL; 600 switch (error) { 601 case EHOSTUNREACH: 602 case ENETUNREACH: 603 case EMSGSIZE: 604 case ENOBUFS: 605 case ENOMEM: 606 break; 607 default: 608 printf("ip6_output (ipsec): error code %d\n", error); 609 /* FALLTHROUGH */ 610 case ENOENT: 611 /* don't show these error codes to the user */ 612 error = 0; 613 break; 614 } 615 goto bad; 616 } 617 618 exthdrs.ip6e_ip6 = m; 619 } 620 #endif /* IPSEC */ 621 622 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 623 /* Unicast */ 624 625 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa)) 626 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) 627 /* xxx 628 * interface selection comes here 629 * if an interface is specified from an upper layer, 630 * ifp must point it. 631 */ 632 if (ro->ro_rt == 0) { 633 /* 634 * non-bsdi always clone routes, if parent is 635 * PRF_CLONING. 636 */ 637 rtalloc((struct route *)ro); 638 } 639 if (ro->ro_rt == 0) { 640 ip6stat.ip6s_noroute++; 641 error = EHOSTUNREACH; 642 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */ 643 goto bad; 644 } 645 /* XXX rt not locked */ 646 ia = ifatoia6(ro->ro_rt->rt_ifa); 647 ifp = ro->ro_rt->rt_ifp; 648 ro->ro_rt->rt_rmx.rmx_pksent++; 649 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 650 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway; 651 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 652 653 in6_ifstat_inc(ifp, ifs6_out_request); 654 655 /* 656 * Check if the outgoing interface conflicts with 657 * the interface specified by ifi6_ifindex (if specified). 658 * Note that loopback interface is always okay. 659 * (this may happen when we are sending a packet to one of 660 * our own addresses.) 661 */ 662 if (opt && opt->ip6po_pktinfo 663 && opt->ip6po_pktinfo->ipi6_ifindex) { 664 if (!(ifp->if_flags & IFF_LOOPBACK) 665 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) { 666 ip6stat.ip6s_noroute++; 667 in6_ifstat_inc(ifp, ifs6_out_discard); 668 error = EHOSTUNREACH; 669 goto bad; 670 } 671 } 672 673 if (opt && opt->ip6po_hlim != -1) 674 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 675 } else { 676 /* Multicast */ 677 struct in6_multi *in6m; 678 679 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 680 681 /* 682 * See if the caller provided any multicast options 683 */ 684 ifp = NULL; 685 if (im6o != NULL) { 686 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 687 if (im6o->im6o_multicast_ifp != NULL) 688 ifp = im6o->im6o_multicast_ifp; 689 } else 690 ip6->ip6_hlim = ip6_defmcasthlim; 691 692 /* 693 * See if the caller provided the outgoing interface 694 * as an ancillary data. 695 * Boundary check for ifindex is assumed to be already done. 696 */ 697 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex) 698 ifp = ifnet_byindex(opt->ip6po_pktinfo->ipi6_ifindex); 699 700 /* 701 * If the destination is a node-local scope multicast, 702 * the packet should be loop-backed only. 703 */ 704 if (IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 705 /* 706 * If the outgoing interface is already specified, 707 * it should be a loopback interface. 708 */ 709 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) { 710 ip6stat.ip6s_badscope++; 711 error = ENETUNREACH; /* XXX: better error? */ 712 /* XXX correct ifp? */ 713 in6_ifstat_inc(ifp, ifs6_out_discard); 714 goto bad; 715 } else { 716 ifp = &loif[0]; 717 } 718 } 719 720 if (opt && opt->ip6po_hlim != -1) 721 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 722 723 /* 724 * If caller did not provide an interface lookup a 725 * default in the routing table. This is either a 726 * default for the speicfied group (i.e. a host 727 * route), or a multicast default (a route for the 728 * ``net'' ff00::/8). 729 */ 730 if (ifp == NULL) { 731 if (ro->ro_rt == 0) 732 ro->ro_rt = rtalloc1((struct sockaddr *) 733 &ro->ro_dst, 0, 0UL); 734 else 735 RT_LOCK(ro->ro_rt); 736 if (ro->ro_rt == 0) { 737 ip6stat.ip6s_noroute++; 738 error = EHOSTUNREACH; 739 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */ 740 goto bad; 741 } 742 ia = ifatoia6(ro->ro_rt->rt_ifa); 743 ifp = ro->ro_rt->rt_ifp; 744 ro->ro_rt->rt_rmx.rmx_pksent++; 745 RT_UNLOCK(ro->ro_rt); 746 } 747 748 if ((flags & IPV6_FORWARDING) == 0) 749 in6_ifstat_inc(ifp, ifs6_out_request); 750 in6_ifstat_inc(ifp, ifs6_out_mcast); 751 752 /* 753 * Confirm that the outgoing interface supports multicast. 754 */ 755 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 756 ip6stat.ip6s_noroute++; 757 in6_ifstat_inc(ifp, ifs6_out_discard); 758 error = ENETUNREACH; 759 goto bad; 760 } 761 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 762 if (in6m != NULL && 763 (im6o == NULL || im6o->im6o_multicast_loop)) { 764 /* 765 * If we belong to the destination multicast group 766 * on the outgoing interface, and the caller did not 767 * forbid loopback, loop back a copy. 768 */ 769 ip6_mloopback(ifp, m, dst); 770 } else { 771 /* 772 * If we are acting as a multicast router, perform 773 * multicast forwarding as if the packet had just 774 * arrived on the interface to which we are about 775 * to send. The multicast forwarding function 776 * recursively calls this function, using the 777 * IPV6_FORWARDING flag to prevent infinite recursion. 778 * 779 * Multicasts that are looped back by ip6_mloopback(), 780 * above, will be forwarded by the ip6_input() routine, 781 * if necessary. 782 */ 783 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 784 if (ip6_mforward(ip6, ifp, m) != 0) { 785 m_freem(m); 786 goto done; 787 } 788 } 789 } 790 /* 791 * Multicasts with a hoplimit of zero may be looped back, 792 * above, but must not be transmitted on a network. 793 * Also, multicasts addressed to the loopback interface 794 * are not sent -- the above call to ip6_mloopback() will 795 * loop back a copy if this host actually belongs to the 796 * destination group on the loopback interface. 797 */ 798 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 799 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 800 m_freem(m); 801 goto done; 802 } 803 } 804 805 /* 806 * Fill the outgoing inteface to tell the upper layer 807 * to increment per-interface statistics. 808 */ 809 if (ifpp) 810 *ifpp = ifp; 811 812 /* Determine path MTU. */ 813 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 814 &alwaysfrag)) != 0) 815 goto bad; 816 817 /* 818 * The caller of this function may specify to use the minimum MTU 819 * in some cases. 820 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 821 * setting. The logic is a bit complicated; by default, unicast 822 * packets will follow path MTU while multicast packets will be sent at 823 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 824 * including unicast ones will be sent at the minimum MTU. Multicast 825 * packets will always be sent at the minimum MTU unless 826 * IP6PO_MINMTU_DISABLE is explicitly specified. 827 * See RFC 3542 for more details. 828 */ 829 if (mtu > IPV6_MMTU) { 830 if ((flags & IPV6_MINMTU)) 831 mtu = IPV6_MMTU; 832 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 833 mtu = IPV6_MMTU; 834 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 835 (opt == NULL || 836 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 837 mtu = IPV6_MMTU; 838 } 839 } 840 841 /* Fake scoped addresses */ 842 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 843 /* 844 * If source or destination address is a scoped address, and 845 * the packet is going to be sent to a loopback interface, 846 * we should keep the original interface. 847 */ 848 849 /* 850 * XXX: this is a very experimental and temporary solution. 851 * We eventually have sockaddr_in6 and use the sin6_scope_id 852 * field of the structure here. 853 * We rely on the consistency between two scope zone ids 854 * of source and destination, which should already be assured. 855 * Larger scopes than link will be supported in the future. 856 */ 857 origifp = NULL; 858 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 859 origifp = ifnet_byindex(ntohs(ip6->ip6_src.s6_addr16[1])); 860 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 861 origifp = ifnet_byindex(ntohs(ip6->ip6_dst.s6_addr16[1])); 862 /* 863 * XXX: origifp can be NULL even in those two cases above. 864 * For example, if we remove the (only) link-local address 865 * from the loopback interface, and try to send a link-local 866 * address without link-id information. Then the source 867 * address is ::1, and the destination address is the 868 * link-local address with its s6_addr16[1] being zero. 869 * What is worse, if the packet goes to the loopback interface 870 * by a default rejected route, the null pointer would be 871 * passed to looutput, and the kernel would hang. 872 * The following last resort would prevent such disaster. 873 */ 874 if (origifp == NULL) 875 origifp = ifp; 876 } 877 else 878 origifp = ifp; 879 /* 880 * clear embedded scope identifiers if necessary. 881 * in6_clearscope will touch the addresses only when necessary. 882 */ 883 in6_clearscope(&ip6->ip6_src); 884 in6_clearscope(&ip6->ip6_dst); 885 886 /* 887 * Check with the firewall... 888 */ 889 if (ip6_fw_enable && ip6_fw_chk_ptr) { 890 u_short port = 0; 891 m->m_pkthdr.rcvif = NULL; /* XXX */ 892 /* If ipfw says divert, we have to just drop packet */ 893 if ((*ip6_fw_chk_ptr)(&ip6, ifp, &port, &m)) { 894 m_freem(m); 895 goto done; 896 } 897 if (!m) { 898 error = EACCES; 899 goto done; 900 } 901 } 902 903 /* 904 * If the outgoing packet contains a hop-by-hop options header, 905 * it must be examined and processed even by the source node. 906 * (RFC 2460, section 4.) 907 */ 908 if (exthdrs.ip6e_hbh) { 909 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 910 u_int32_t dummy1; /* XXX unused */ 911 u_int32_t dummy2; /* XXX unused */ 912 913 #ifdef DIAGNOSTIC 914 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 915 panic("ip6e_hbh is not continuous"); 916 #endif 917 /* 918 * XXX: if we have to send an ICMPv6 error to the sender, 919 * we need the M_LOOP flag since icmp6_error() expects 920 * the IPv6 and the hop-by-hop options header are 921 * continuous unless the flag is set. 922 */ 923 m->m_flags |= M_LOOP; 924 m->m_pkthdr.rcvif = ifp; 925 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 926 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 927 &dummy1, &dummy2) < 0) { 928 /* m was already freed at this point */ 929 error = EINVAL;/* better error? */ 930 goto done; 931 } 932 m->m_flags &= ~M_LOOP; /* XXX */ 933 m->m_pkthdr.rcvif = NULL; 934 } 935 936 /* Jump over all PFIL processing if hooks are not active. */ 937 if (inet6_pfil_hook.ph_busy_count == -1) 938 goto passout; 939 940 /* Run through list of hooks for output packets. */ 941 error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT); 942 if (error != 0 || m == NULL) 943 goto done; 944 ip6 = mtod(m, struct ip6_hdr *); 945 946 passout: 947 /* 948 * Send the packet to the outgoing interface. 949 * If necessary, do IPv6 fragmentation before sending. 950 * 951 * the logic here is rather complex: 952 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 953 * 1-a: send as is if tlen <= path mtu 954 * 1-b: fragment if tlen > path mtu 955 * 956 * 2: if user asks us not to fragment (dontfrag == 1) 957 * 2-a: send as is if tlen <= interface mtu 958 * 2-b: error if tlen > interface mtu 959 * 960 * 3: if we always need to attach fragment header (alwaysfrag == 1) 961 * always fragment 962 * 963 * 4: if dontfrag == 1 && alwaysfrag == 1 964 * error, as we cannot handle this conflicting request 965 */ 966 tlen = m->m_pkthdr.len; 967 968 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 969 dontfrag = 1; 970 else 971 dontfrag = 0; 972 if (dontfrag && alwaysfrag) { /* case 4 */ 973 /* conflicting request - can't transmit */ 974 error = EMSGSIZE; 975 goto bad; 976 } 977 if (dontfrag && tlen > IN6_LINKMTU(ifp)) { /* case 2-b */ 978 /* 979 * Even if the DONTFRAG option is specified, we cannot send the 980 * packet when the data length is larger than the MTU of the 981 * outgoing interface. 982 * Notify the error by sending IPV6_PATHMTU ancillary data as 983 * well as returning an error code (the latter is not described 984 * in the API spec.) 985 */ 986 u_int32_t mtu32; 987 struct ip6ctlparam ip6cp; 988 989 mtu32 = (u_int32_t)mtu; 990 bzero(&ip6cp, sizeof(ip6cp)); 991 ip6cp.ip6c_cmdarg = (void *)&mtu32; 992 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 993 (void *)&ip6cp); 994 995 error = EMSGSIZE; 996 goto bad; 997 } 998 999 /* 1000 * transmit packet without fragmentation 1001 */ 1002 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 1003 struct in6_ifaddr *ia6; 1004 1005 ip6 = mtod(m, struct ip6_hdr *); 1006 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1007 if (ia6) { 1008 /* Record statistics for this interface address. */ 1009 ia6->ia_ifa.if_opackets++; 1010 ia6->ia_ifa.if_obytes += m->m_pkthdr.len; 1011 } 1012 #ifdef IPSEC 1013 /* clean ipsec history once it goes out of the node */ 1014 ipsec_delaux(m); 1015 #endif 1016 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1017 goto done; 1018 } 1019 1020 /* 1021 * try to fragment the packet. case 1-b and 3 1022 */ 1023 if (mtu < IPV6_MMTU) { 1024 /* path MTU cannot be less than IPV6_MMTU */ 1025 error = EMSGSIZE; 1026 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1027 goto bad; 1028 } else if (ip6->ip6_plen == 0) { 1029 /* jumbo payload cannot be fragmented */ 1030 error = EMSGSIZE; 1031 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1032 goto bad; 1033 } else { 1034 struct mbuf **mnext, *m_frgpart; 1035 struct ip6_frag *ip6f; 1036 u_int32_t id = htonl(ip6_randomid()); 1037 u_char nextproto; 1038 struct ip6ctlparam ip6cp; 1039 u_int32_t mtu32; 1040 int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len; 1041 1042 /* 1043 * Too large for the destination or interface; 1044 * fragment if possible. 1045 * Must be able to put at least 8 bytes per fragment. 1046 */ 1047 hlen = unfragpartlen; 1048 if (mtu > IPV6_MAXPACKET) 1049 mtu = IPV6_MAXPACKET; 1050 1051 /* Notify a proper path MTU to applications. */ 1052 mtu32 = (u_int32_t)mtu; 1053 bzero(&ip6cp, sizeof(ip6cp)); 1054 ip6cp.ip6c_cmdarg = (void *)&mtu32; 1055 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 1056 (void *)&ip6cp); 1057 1058 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 1059 if (len < 8) { 1060 error = EMSGSIZE; 1061 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1062 goto bad; 1063 } 1064 1065 /* 1066 * Verify that we have any chance at all of being able to queue 1067 * the packet or packet fragments 1068 */ 1069 if (qslots <= 0 || ((u_int)qslots * (mtu - hlen) 1070 < tlen /* - hlen */)) { 1071 error = ENOBUFS; 1072 ip6stat.ip6s_odropped++; 1073 goto bad; 1074 } 1075 1076 mnext = &m->m_nextpkt; 1077 1078 /* 1079 * Change the next header field of the last header in the 1080 * unfragmentable part. 1081 */ 1082 if (exthdrs.ip6e_rthdr) { 1083 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1084 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1085 } else if (exthdrs.ip6e_dest1) { 1086 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1087 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1088 } else if (exthdrs.ip6e_hbh) { 1089 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1090 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1091 } else { 1092 nextproto = ip6->ip6_nxt; 1093 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1094 } 1095 1096 /* 1097 * Loop through length of segment after first fragment, 1098 * make new header and copy data of each part and link onto 1099 * chain. 1100 */ 1101 m0 = m; 1102 for (off = hlen; off < tlen; off += len) { 1103 MGETHDR(m, M_DONTWAIT, MT_HEADER); 1104 if (!m) { 1105 error = ENOBUFS; 1106 ip6stat.ip6s_odropped++; 1107 goto sendorfree; 1108 } 1109 m->m_pkthdr.rcvif = NULL; 1110 m->m_flags = m0->m_flags & M_COPYFLAGS; 1111 *mnext = m; 1112 mnext = &m->m_nextpkt; 1113 m->m_data += max_linkhdr; 1114 mhip6 = mtod(m, struct ip6_hdr *); 1115 *mhip6 = *ip6; 1116 m->m_len = sizeof(*mhip6); 1117 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 1118 if (error) { 1119 ip6stat.ip6s_odropped++; 1120 goto sendorfree; 1121 } 1122 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 1123 if (off + len >= tlen) 1124 len = tlen - off; 1125 else 1126 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1127 mhip6->ip6_plen = htons((u_short)(len + hlen + 1128 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 1129 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 1130 error = ENOBUFS; 1131 ip6stat.ip6s_odropped++; 1132 goto sendorfree; 1133 } 1134 m_cat(m, m_frgpart); 1135 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1136 m->m_pkthdr.rcvif = (struct ifnet *)0; 1137 ip6f->ip6f_reserved = 0; 1138 ip6f->ip6f_ident = id; 1139 ip6f->ip6f_nxt = nextproto; 1140 ip6stat.ip6s_ofragments++; 1141 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1142 } 1143 1144 in6_ifstat_inc(ifp, ifs6_out_fragok); 1145 } 1146 1147 /* 1148 * Remove leading garbages. 1149 */ 1150 sendorfree: 1151 m = m0->m_nextpkt; 1152 m0->m_nextpkt = 0; 1153 m_freem(m0); 1154 for (m0 = m; m; m = m0) { 1155 m0 = m->m_nextpkt; 1156 m->m_nextpkt = 0; 1157 if (error == 0) { 1158 /* Record statistics for this interface address. */ 1159 if (ia) { 1160 ia->ia_ifa.if_opackets++; 1161 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 1162 } 1163 #ifdef IPSEC 1164 /* clean ipsec history once it goes out of the node */ 1165 ipsec_delaux(m); 1166 #endif 1167 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1168 } else 1169 m_freem(m); 1170 } 1171 1172 if (error == 0) 1173 ip6stat.ip6s_fragmented++; 1174 1175 done: 1176 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1177 RTFREE(ro->ro_rt); 1178 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1179 RTFREE(ro_pmtu->ro_rt); 1180 } 1181 1182 #ifdef IPSEC 1183 if (sp != NULL) 1184 key_freesp(sp); 1185 #endif /* IPSEC */ 1186 #ifdef FAST_IPSEC 1187 if (sp != NULL) 1188 KEY_FREESP(&sp); 1189 #endif /* FAST_IPSEC */ 1190 1191 return (error); 1192 1193 freehdrs: 1194 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1195 m_freem(exthdrs.ip6e_dest1); 1196 m_freem(exthdrs.ip6e_rthdr); 1197 m_freem(exthdrs.ip6e_dest2); 1198 /* FALLTHROUGH */ 1199 bad: 1200 m_freem(m); 1201 goto done; 1202 } 1203 1204 static int 1205 ip6_copyexthdr(mp, hdr, hlen) 1206 struct mbuf **mp; 1207 caddr_t hdr; 1208 int hlen; 1209 { 1210 struct mbuf *m; 1211 1212 if (hlen > MCLBYTES) 1213 return (ENOBUFS); /* XXX */ 1214 1215 MGET(m, M_DONTWAIT, MT_DATA); 1216 if (!m) 1217 return (ENOBUFS); 1218 1219 if (hlen > MLEN) { 1220 MCLGET(m, M_DONTWAIT); 1221 if ((m->m_flags & M_EXT) == 0) { 1222 m_free(m); 1223 return (ENOBUFS); 1224 } 1225 } 1226 m->m_len = hlen; 1227 if (hdr) 1228 bcopy(hdr, mtod(m, caddr_t), hlen); 1229 1230 *mp = m; 1231 return (0); 1232 } 1233 1234 /* 1235 * Insert jumbo payload option. 1236 */ 1237 static int 1238 ip6_insert_jumboopt(exthdrs, plen) 1239 struct ip6_exthdrs *exthdrs; 1240 u_int32_t plen; 1241 { 1242 struct mbuf *mopt; 1243 u_char *optbuf; 1244 u_int32_t v; 1245 1246 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1247 1248 /* 1249 * If there is no hop-by-hop options header, allocate new one. 1250 * If there is one but it doesn't have enough space to store the 1251 * jumbo payload option, allocate a cluster to store the whole options. 1252 * Otherwise, use it to store the options. 1253 */ 1254 if (exthdrs->ip6e_hbh == 0) { 1255 MGET(mopt, M_DONTWAIT, MT_DATA); 1256 if (mopt == 0) 1257 return (ENOBUFS); 1258 mopt->m_len = JUMBOOPTLEN; 1259 optbuf = mtod(mopt, u_char *); 1260 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1261 exthdrs->ip6e_hbh = mopt; 1262 } else { 1263 struct ip6_hbh *hbh; 1264 1265 mopt = exthdrs->ip6e_hbh; 1266 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1267 /* 1268 * XXX assumption: 1269 * - exthdrs->ip6e_hbh is not referenced from places 1270 * other than exthdrs. 1271 * - exthdrs->ip6e_hbh is not an mbuf chain. 1272 */ 1273 int oldoptlen = mopt->m_len; 1274 struct mbuf *n; 1275 1276 /* 1277 * XXX: give up if the whole (new) hbh header does 1278 * not fit even in an mbuf cluster. 1279 */ 1280 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1281 return (ENOBUFS); 1282 1283 /* 1284 * As a consequence, we must always prepare a cluster 1285 * at this point. 1286 */ 1287 MGET(n, M_DONTWAIT, MT_DATA); 1288 if (n) { 1289 MCLGET(n, M_DONTWAIT); 1290 if ((n->m_flags & M_EXT) == 0) { 1291 m_freem(n); 1292 n = NULL; 1293 } 1294 } 1295 if (!n) 1296 return (ENOBUFS); 1297 n->m_len = oldoptlen + JUMBOOPTLEN; 1298 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1299 oldoptlen); 1300 optbuf = mtod(n, caddr_t) + oldoptlen; 1301 m_freem(mopt); 1302 mopt = exthdrs->ip6e_hbh = n; 1303 } else { 1304 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1305 mopt->m_len += JUMBOOPTLEN; 1306 } 1307 optbuf[0] = IP6OPT_PADN; 1308 optbuf[1] = 1; 1309 1310 /* 1311 * Adjust the header length according to the pad and 1312 * the jumbo payload option. 1313 */ 1314 hbh = mtod(mopt, struct ip6_hbh *); 1315 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1316 } 1317 1318 /* fill in the option. */ 1319 optbuf[2] = IP6OPT_JUMBO; 1320 optbuf[3] = 4; 1321 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1322 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1323 1324 /* finally, adjust the packet header length */ 1325 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1326 1327 return (0); 1328 #undef JUMBOOPTLEN 1329 } 1330 1331 /* 1332 * Insert fragment header and copy unfragmentable header portions. 1333 */ 1334 static int 1335 ip6_insertfraghdr(m0, m, hlen, frghdrp) 1336 struct mbuf *m0, *m; 1337 int hlen; 1338 struct ip6_frag **frghdrp; 1339 { 1340 struct mbuf *n, *mlast; 1341 1342 if (hlen > sizeof(struct ip6_hdr)) { 1343 n = m_copym(m0, sizeof(struct ip6_hdr), 1344 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1345 if (n == 0) 1346 return (ENOBUFS); 1347 m->m_next = n; 1348 } else 1349 n = m; 1350 1351 /* Search for the last mbuf of unfragmentable part. */ 1352 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1353 ; 1354 1355 if ((mlast->m_flags & M_EXT) == 0 && 1356 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1357 /* use the trailing space of the last mbuf for the fragment hdr */ 1358 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1359 mlast->m_len); 1360 mlast->m_len += sizeof(struct ip6_frag); 1361 m->m_pkthdr.len += sizeof(struct ip6_frag); 1362 } else { 1363 /* allocate a new mbuf for the fragment header */ 1364 struct mbuf *mfrg; 1365 1366 MGET(mfrg, M_DONTWAIT, MT_DATA); 1367 if (mfrg == 0) 1368 return (ENOBUFS); 1369 mfrg->m_len = sizeof(struct ip6_frag); 1370 *frghdrp = mtod(mfrg, struct ip6_frag *); 1371 mlast->m_next = mfrg; 1372 } 1373 1374 return (0); 1375 } 1376 1377 static int 1378 ip6_getpmtu(ro_pmtu, ro, ifp, dst, mtup, alwaysfragp) 1379 struct route_in6 *ro_pmtu, *ro; 1380 struct ifnet *ifp; 1381 struct in6_addr *dst; 1382 u_long *mtup; 1383 int *alwaysfragp; 1384 { 1385 u_int32_t mtu = 0; 1386 int alwaysfrag = 0; 1387 int error = 0; 1388 1389 if (ro_pmtu != ro) { 1390 /* The first hop and the final destination may differ. */ 1391 struct sockaddr_in6 *sa6_dst = 1392 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1393 if (ro_pmtu->ro_rt && 1394 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 || 1395 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) { 1396 RTFREE(ro_pmtu->ro_rt); 1397 ro_pmtu->ro_rt = (struct rtentry *)NULL; 1398 } 1399 if (ro_pmtu->ro_rt == NULL) { 1400 bzero(sa6_dst, sizeof(*sa6_dst)); 1401 sa6_dst->sin6_family = AF_INET6; 1402 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1403 sa6_dst->sin6_addr = *dst; 1404 1405 rtalloc((struct route *)ro_pmtu); 1406 } 1407 } 1408 if (ro_pmtu->ro_rt) { 1409 u_int32_t ifmtu; 1410 struct in_conninfo inc; 1411 1412 bzero(&inc, sizeof(inc)); 1413 inc.inc_flags = 1; /* IPv6 */ 1414 inc.inc6_faddr = *dst; 1415 1416 if (ifp == NULL) 1417 ifp = ro_pmtu->ro_rt->rt_ifp; 1418 ifmtu = IN6_LINKMTU(ifp); 1419 mtu = tcp_hc_getmtu(&inc); 1420 if (mtu) 1421 mtu = min(mtu, ro_pmtu->ro_rt->rt_rmx.rmx_mtu); 1422 else 1423 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 1424 if (mtu == 0) 1425 mtu = ifmtu; 1426 else if (mtu < IPV6_MMTU) { 1427 /* 1428 * RFC2460 section 5, last paragraph: 1429 * if we record ICMPv6 too big message with 1430 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1431 * or smaller, with framgent header attached. 1432 * (fragment header is needed regardless from the 1433 * packet size, for translators to identify packets) 1434 */ 1435 alwaysfrag = 1; 1436 mtu = IPV6_MMTU; 1437 } else if (mtu > ifmtu) { 1438 /* 1439 * The MTU on the route is larger than the MTU on 1440 * the interface! This shouldn't happen, unless the 1441 * MTU of the interface has been changed after the 1442 * interface was brought up. Change the MTU in the 1443 * route to match the interface MTU (as long as the 1444 * field isn't locked). 1445 */ 1446 mtu = ifmtu; 1447 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; 1448 } 1449 } else if (ifp) { 1450 mtu = IN6_LINKMTU(ifp); 1451 } else 1452 error = EHOSTUNREACH; /* XXX */ 1453 1454 *mtup = mtu; 1455 if (alwaysfragp) 1456 *alwaysfragp = alwaysfrag; 1457 return (error); 1458 } 1459 1460 /* 1461 * IP6 socket option processing. 1462 */ 1463 int 1464 ip6_ctloutput(so, sopt) 1465 struct socket *so; 1466 struct sockopt *sopt; 1467 { 1468 int privileged, optdatalen, uproto; 1469 void *optdata; 1470 struct inpcb *in6p = sotoinpcb(so); 1471 int error, optval; 1472 int level, op, optname; 1473 int optlen; 1474 struct thread *td; 1475 1476 if (sopt) { 1477 level = sopt->sopt_level; 1478 op = sopt->sopt_dir; 1479 optname = sopt->sopt_name; 1480 optlen = sopt->sopt_valsize; 1481 td = sopt->sopt_td; 1482 } else { 1483 panic("ip6_ctloutput: arg soopt is NULL"); 1484 } 1485 error = optval = 0; 1486 1487 privileged = (td == 0 || suser(td)) ? 0 : 1; 1488 uproto = (int)so->so_proto->pr_protocol; 1489 1490 if (level == IPPROTO_IPV6) { 1491 switch (op) { 1492 1493 case SOPT_SET: 1494 switch (optname) { 1495 case IPV6_2292PKTOPTIONS: 1496 #ifdef IPV6_PKTOPTIONS 1497 case IPV6_PKTOPTIONS: 1498 #endif 1499 { 1500 struct mbuf *m; 1501 1502 error = soopt_getm(sopt, &m); /* XXX */ 1503 if (error != 0) 1504 break; 1505 error = soopt_mcopyin(sopt, m); /* XXX */ 1506 if (error != 0) 1507 break; 1508 error = ip6_pcbopts(&in6p->in6p_outputopts, 1509 m, so, sopt); 1510 m_freem(m); /* XXX */ 1511 break; 1512 } 1513 1514 /* 1515 * Use of some Hop-by-Hop options or some 1516 * Destination options, might require special 1517 * privilege. That is, normal applications 1518 * (without special privilege) might be forbidden 1519 * from setting certain options in outgoing packets, 1520 * and might never see certain options in received 1521 * packets. [RFC 2292 Section 6] 1522 * KAME specific note: 1523 * KAME prevents non-privileged users from sending or 1524 * receiving ANY hbh/dst options in order to avoid 1525 * overhead of parsing options in the kernel. 1526 */ 1527 case IPV6_RECVHOPOPTS: 1528 case IPV6_RECVDSTOPTS: 1529 case IPV6_RECVRTHDRDSTOPTS: 1530 if (!privileged) { 1531 error = EPERM; 1532 break; 1533 } 1534 /* FALLTHROUGH */ 1535 case IPV6_UNICAST_HOPS: 1536 case IPV6_HOPLIMIT: 1537 case IPV6_FAITH: 1538 1539 case IPV6_RECVPKTINFO: 1540 case IPV6_RECVHOPLIMIT: 1541 case IPV6_RECVRTHDR: 1542 case IPV6_RECVPATHMTU: 1543 case IPV6_RECVTCLASS: 1544 case IPV6_V6ONLY: 1545 case IPV6_AUTOFLOWLABEL: 1546 if (optlen != sizeof(int)) { 1547 error = EINVAL; 1548 break; 1549 } 1550 error = sooptcopyin(sopt, &optval, 1551 sizeof optval, sizeof optval); 1552 if (error) 1553 break; 1554 switch (optname) { 1555 1556 case IPV6_UNICAST_HOPS: 1557 if (optval < -1 || optval >= 256) 1558 error = EINVAL; 1559 else { 1560 /* -1 = kernel default */ 1561 in6p->in6p_hops = optval; 1562 if ((in6p->in6p_vflag & 1563 INP_IPV4) != 0) 1564 in6p->inp_ip_ttl = optval; 1565 } 1566 break; 1567 #define OPTSET(bit) \ 1568 do { \ 1569 if (optval) \ 1570 in6p->in6p_flags |= (bit); \ 1571 else \ 1572 in6p->in6p_flags &= ~(bit); \ 1573 } while (/*CONSTCOND*/ 0) 1574 #define OPTSET2292(bit) \ 1575 do { \ 1576 in6p->in6p_flags |= IN6P_RFC2292; \ 1577 if (optval) \ 1578 in6p->in6p_flags |= (bit); \ 1579 else \ 1580 in6p->in6p_flags &= ~(bit); \ 1581 } while (/*CONSTCOND*/ 0) 1582 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) 1583 1584 case IPV6_RECVPKTINFO: 1585 /* cannot mix with RFC2292 */ 1586 if (OPTBIT(IN6P_RFC2292)) { 1587 error = EINVAL; 1588 break; 1589 } 1590 OPTSET(IN6P_PKTINFO); 1591 break; 1592 1593 case IPV6_HOPLIMIT: 1594 { 1595 struct ip6_pktopts **optp; 1596 1597 /* cannot mix with RFC2292 */ 1598 if (OPTBIT(IN6P_RFC2292)) { 1599 error = EINVAL; 1600 break; 1601 } 1602 optp = &in6p->in6p_outputopts; 1603 error = ip6_pcbopt(IPV6_HOPLIMIT, 1604 (u_char *)&optval, 1605 sizeof(optval), 1606 optp, 1607 privileged, uproto); 1608 break; 1609 } 1610 1611 case IPV6_RECVHOPLIMIT: 1612 /* cannot mix with RFC2292 */ 1613 if (OPTBIT(IN6P_RFC2292)) { 1614 error = EINVAL; 1615 break; 1616 } 1617 OPTSET(IN6P_HOPLIMIT); 1618 break; 1619 1620 case IPV6_RECVHOPOPTS: 1621 /* cannot mix with RFC2292 */ 1622 if (OPTBIT(IN6P_RFC2292)) { 1623 error = EINVAL; 1624 break; 1625 } 1626 OPTSET(IN6P_HOPOPTS); 1627 break; 1628 1629 case IPV6_RECVDSTOPTS: 1630 /* cannot mix with RFC2292 */ 1631 if (OPTBIT(IN6P_RFC2292)) { 1632 error = EINVAL; 1633 break; 1634 } 1635 OPTSET(IN6P_DSTOPTS); 1636 break; 1637 1638 case IPV6_RECVRTHDRDSTOPTS: 1639 /* cannot mix with RFC2292 */ 1640 if (OPTBIT(IN6P_RFC2292)) { 1641 error = EINVAL; 1642 break; 1643 } 1644 OPTSET(IN6P_RTHDRDSTOPTS); 1645 break; 1646 1647 case IPV6_RECVRTHDR: 1648 /* cannot mix with RFC2292 */ 1649 if (OPTBIT(IN6P_RFC2292)) { 1650 error = EINVAL; 1651 break; 1652 } 1653 OPTSET(IN6P_RTHDR); 1654 break; 1655 1656 case IPV6_FAITH: 1657 OPTSET(IN6P_FAITH); 1658 break; 1659 1660 case IPV6_RECVPATHMTU: 1661 /* 1662 * We ignore this option for TCP 1663 * sockets. 1664 * (rfc2292bis leaves this case 1665 * unspecified.) 1666 */ 1667 if (uproto != IPPROTO_TCP) 1668 OPTSET(IN6P_MTU); 1669 break; 1670 1671 case IPV6_V6ONLY: 1672 /* 1673 * make setsockopt(IPV6_V6ONLY) 1674 * available only prior to bind(2). 1675 * see ipng mailing list, Jun 22 2001. 1676 */ 1677 if (in6p->in6p_lport || 1678 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1679 error = EINVAL; 1680 break; 1681 } 1682 OPTSET(IN6P_IPV6_V6ONLY); 1683 if (optval) 1684 in6p->in6p_vflag &= ~INP_IPV4; 1685 else 1686 in6p->in6p_vflag |= INP_IPV4; 1687 break; 1688 case IPV6_RECVTCLASS: 1689 /* cannot mix with RFC2292 XXX */ 1690 if (OPTBIT(IN6P_RFC2292)) { 1691 error = EINVAL; 1692 break; 1693 } 1694 OPTSET(IN6P_TCLASS); 1695 break; 1696 case IPV6_AUTOFLOWLABEL: 1697 OPTSET(IN6P_AUTOFLOWLABEL); 1698 break; 1699 1700 } 1701 break; 1702 1703 case IPV6_TCLASS: 1704 case IPV6_DONTFRAG: 1705 case IPV6_USE_MIN_MTU: 1706 case IPV6_PREFER_TEMPADDR: 1707 if (optlen != sizeof(optval)) { 1708 error = EINVAL; 1709 break; 1710 } 1711 error = sooptcopyin(sopt, &optval, 1712 sizeof optval, sizeof optval); 1713 if (error) 1714 break; 1715 { 1716 struct ip6_pktopts **optp; 1717 optp = &in6p->in6p_outputopts; 1718 error = ip6_pcbopt(optname, 1719 (u_char *)&optval, 1720 sizeof(optval), 1721 optp, 1722 privileged, uproto); 1723 break; 1724 } 1725 1726 case IPV6_2292PKTINFO: 1727 case IPV6_2292HOPLIMIT: 1728 case IPV6_2292HOPOPTS: 1729 case IPV6_2292DSTOPTS: 1730 case IPV6_2292RTHDR: 1731 /* RFC 2292 */ 1732 if (optlen != sizeof(int)) { 1733 error = EINVAL; 1734 break; 1735 } 1736 error = sooptcopyin(sopt, &optval, 1737 sizeof optval, sizeof optval); 1738 if (error) 1739 break; 1740 switch (optname) { 1741 case IPV6_2292PKTINFO: 1742 OPTSET2292(IN6P_PKTINFO); 1743 break; 1744 case IPV6_2292HOPLIMIT: 1745 OPTSET2292(IN6P_HOPLIMIT); 1746 break; 1747 case IPV6_2292HOPOPTS: 1748 /* 1749 * Check super-user privilege. 1750 * See comments for IPV6_RECVHOPOPTS. 1751 */ 1752 if (!privileged) 1753 return (EPERM); 1754 OPTSET2292(IN6P_HOPOPTS); 1755 break; 1756 case IPV6_2292DSTOPTS: 1757 if (!privileged) 1758 return (EPERM); 1759 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1760 break; 1761 case IPV6_2292RTHDR: 1762 OPTSET2292(IN6P_RTHDR); 1763 break; 1764 } 1765 break; 1766 case IPV6_PKTINFO: 1767 case IPV6_HOPOPTS: 1768 case IPV6_RTHDR: 1769 case IPV6_DSTOPTS: 1770 case IPV6_RTHDRDSTOPTS: 1771 case IPV6_NEXTHOP: 1772 { 1773 /* new advanced API (2292bis) */ 1774 u_char *optbuf; 1775 int optlen; 1776 struct ip6_pktopts **optp; 1777 1778 /* cannot mix with RFC2292 */ 1779 if (OPTBIT(IN6P_RFC2292)) { 1780 error = EINVAL; 1781 break; 1782 } 1783 1784 switch (optname) { 1785 case IPV6_HOPOPTS: 1786 case IPV6_DSTOPTS: 1787 case IPV6_RTHDRDSTOPTS: 1788 case IPV6_NEXTHOP: 1789 if (!privileged) 1790 error = EPERM; 1791 break; 1792 } 1793 if (error) 1794 break; 1795 1796 switch (optname) { 1797 case IPV6_PKTINFO: 1798 optlen = sizeof(struct in6_pktinfo); 1799 break; 1800 case IPV6_NEXTHOP: 1801 optlen = SOCK_MAXADDRLEN; 1802 break; 1803 default: 1804 optlen = IPV6_MAXOPTHDR; 1805 break; 1806 } 1807 if (sopt->sopt_valsize > optlen) { 1808 error = EINVAL; 1809 break; 1810 } 1811 1812 optlen = sopt->sopt_valsize; 1813 optbuf = malloc(optlen, M_TEMP, M_WAITOK); 1814 error = sooptcopyin(sopt, optbuf, optlen, 1815 optlen); 1816 if (error) { 1817 free(optbuf, M_TEMP); 1818 break; 1819 } 1820 1821 optp = &in6p->in6p_outputopts; 1822 error = ip6_pcbopt(optname, 1823 optbuf, optlen, 1824 optp, privileged, uproto); 1825 free(optbuf, M_TEMP); 1826 break; 1827 } 1828 #undef OPTSET 1829 1830 case IPV6_MULTICAST_IF: 1831 case IPV6_MULTICAST_HOPS: 1832 case IPV6_MULTICAST_LOOP: 1833 case IPV6_JOIN_GROUP: 1834 case IPV6_LEAVE_GROUP: 1835 { 1836 if (sopt->sopt_valsize > MLEN) { 1837 error = EMSGSIZE; 1838 break; 1839 } 1840 /* XXX */ 1841 } 1842 /* FALLTHROUGH */ 1843 { 1844 struct mbuf *m; 1845 1846 if (sopt->sopt_valsize > MCLBYTES) { 1847 error = EMSGSIZE; 1848 break; 1849 } 1850 /* XXX */ 1851 MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_HEADER); 1852 if (m == 0) { 1853 error = ENOBUFS; 1854 break; 1855 } 1856 if (sopt->sopt_valsize > MLEN) { 1857 MCLGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT); 1858 if ((m->m_flags & M_EXT) == 0) { 1859 m_free(m); 1860 error = ENOBUFS; 1861 break; 1862 } 1863 } 1864 m->m_len = sopt->sopt_valsize; 1865 error = sooptcopyin(sopt, mtod(m, char *), 1866 m->m_len, m->m_len); 1867 if (error) { 1868 (void)m_free(m); 1869 break; 1870 } 1871 error = ip6_setmoptions(sopt->sopt_name, 1872 &in6p->in6p_moptions, 1873 m); 1874 (void)m_free(m); 1875 } 1876 break; 1877 1878 case IPV6_PORTRANGE: 1879 error = sooptcopyin(sopt, &optval, 1880 sizeof optval, sizeof optval); 1881 if (error) 1882 break; 1883 1884 switch (optval) { 1885 case IPV6_PORTRANGE_DEFAULT: 1886 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1887 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1888 break; 1889 1890 case IPV6_PORTRANGE_HIGH: 1891 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1892 in6p->in6p_flags |= IN6P_HIGHPORT; 1893 break; 1894 1895 case IPV6_PORTRANGE_LOW: 1896 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1897 in6p->in6p_flags |= IN6P_LOWPORT; 1898 break; 1899 1900 default: 1901 error = EINVAL; 1902 break; 1903 } 1904 break; 1905 1906 #if defined(IPSEC) || defined(FAST_IPSEC) 1907 case IPV6_IPSEC_POLICY: 1908 { 1909 caddr_t req = NULL; 1910 size_t len = 0; 1911 struct mbuf *m; 1912 1913 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1914 break; 1915 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1916 break; 1917 if (m) { 1918 req = mtod(m, caddr_t); 1919 len = m->m_len; 1920 } 1921 error = ipsec6_set_policy(in6p, optname, req, 1922 len, privileged); 1923 m_freem(m); 1924 } 1925 break; 1926 #endif /* KAME IPSEC */ 1927 1928 case IPV6_FW_ADD: 1929 case IPV6_FW_DEL: 1930 case IPV6_FW_FLUSH: 1931 case IPV6_FW_ZERO: 1932 { 1933 struct mbuf *m; 1934 struct mbuf **mp = &m; 1935 1936 if (ip6_fw_ctl_ptr == NULL) 1937 return EINVAL; 1938 /* XXX */ 1939 if ((error = soopt_getm(sopt, &m)) != 0) 1940 break; 1941 /* XXX */ 1942 if ((error = soopt_mcopyin(sopt, m)) != 0) 1943 break; 1944 error = (*ip6_fw_ctl_ptr)(optname, mp); 1945 m = *mp; 1946 } 1947 break; 1948 1949 default: 1950 error = ENOPROTOOPT; 1951 break; 1952 } 1953 break; 1954 1955 case SOPT_GET: 1956 switch (optname) { 1957 1958 case IPV6_2292PKTOPTIONS: 1959 #ifdef IPV6_PKTOPTIONS 1960 case IPV6_PKTOPTIONS: 1961 #endif 1962 /* 1963 * RFC3542 (effectively) deprecated the 1964 * semantics of the 2292-style pktoptions. 1965 * Since it was not reliable in nature (i.e., 1966 * applications had to expect the lack of some 1967 * information after all), it would make sense 1968 * to simplify this part by always returning 1969 * empty data. 1970 */ 1971 sopt->sopt_valsize = 0; 1972 break; 1973 1974 case IPV6_RECVHOPOPTS: 1975 case IPV6_RECVDSTOPTS: 1976 case IPV6_RECVRTHDRDSTOPTS: 1977 case IPV6_UNICAST_HOPS: 1978 case IPV6_RECVPKTINFO: 1979 case IPV6_RECVHOPLIMIT: 1980 case IPV6_RECVRTHDR: 1981 case IPV6_RECVPATHMTU: 1982 1983 case IPV6_FAITH: 1984 case IPV6_V6ONLY: 1985 case IPV6_PORTRANGE: 1986 case IPV6_RECVTCLASS: 1987 case IPV6_AUTOFLOWLABEL: 1988 switch (optname) { 1989 1990 case IPV6_RECVHOPOPTS: 1991 optval = OPTBIT(IN6P_HOPOPTS); 1992 break; 1993 1994 case IPV6_RECVDSTOPTS: 1995 optval = OPTBIT(IN6P_DSTOPTS); 1996 break; 1997 1998 case IPV6_RECVRTHDRDSTOPTS: 1999 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 2000 break; 2001 2002 case IPV6_UNICAST_HOPS: 2003 optval = in6p->in6p_hops; 2004 break; 2005 2006 case IPV6_RECVPKTINFO: 2007 optval = OPTBIT(IN6P_PKTINFO); 2008 break; 2009 2010 case IPV6_RECVHOPLIMIT: 2011 optval = OPTBIT(IN6P_HOPLIMIT); 2012 break; 2013 2014 case IPV6_RECVRTHDR: 2015 optval = OPTBIT(IN6P_RTHDR); 2016 break; 2017 2018 case IPV6_RECVPATHMTU: 2019 optval = OPTBIT(IN6P_MTU); 2020 break; 2021 2022 case IPV6_FAITH: 2023 optval = OPTBIT(IN6P_FAITH); 2024 break; 2025 2026 case IPV6_V6ONLY: 2027 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2028 break; 2029 2030 case IPV6_PORTRANGE: 2031 { 2032 int flags; 2033 flags = in6p->in6p_flags; 2034 if (flags & IN6P_HIGHPORT) 2035 optval = IPV6_PORTRANGE_HIGH; 2036 else if (flags & IN6P_LOWPORT) 2037 optval = IPV6_PORTRANGE_LOW; 2038 else 2039 optval = 0; 2040 break; 2041 } 2042 case IPV6_RECVTCLASS: 2043 optval = OPTBIT(IN6P_TCLASS); 2044 break; 2045 2046 case IPV6_AUTOFLOWLABEL: 2047 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2048 break; 2049 } 2050 if (error) 2051 break; 2052 error = sooptcopyout(sopt, &optval, 2053 sizeof optval); 2054 break; 2055 2056 case IPV6_PATHMTU: 2057 { 2058 u_long pmtu = 0; 2059 struct ip6_mtuinfo mtuinfo; 2060 struct route_in6 sro; 2061 2062 bzero(&sro, sizeof(sro)); 2063 2064 if (!(so->so_state & SS_ISCONNECTED)) 2065 return (ENOTCONN); 2066 /* 2067 * XXX: we dot not consider the case of source 2068 * routing, or optional information to specify 2069 * the outgoing interface. 2070 */ 2071 error = ip6_getpmtu(&sro, NULL, NULL, 2072 &in6p->in6p_faddr, &pmtu, NULL); 2073 if (sro.ro_rt) 2074 RTFREE(sro.ro_rt); 2075 if (error) 2076 break; 2077 if (pmtu > IPV6_MAXPACKET) 2078 pmtu = IPV6_MAXPACKET; 2079 2080 bzero(&mtuinfo, sizeof(mtuinfo)); 2081 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2082 optdata = (void *)&mtuinfo; 2083 optdatalen = sizeof(mtuinfo); 2084 error = sooptcopyout(sopt, optdata, 2085 optdatalen); 2086 break; 2087 } 2088 2089 case IPV6_2292PKTINFO: 2090 case IPV6_2292HOPLIMIT: 2091 case IPV6_2292HOPOPTS: 2092 case IPV6_2292RTHDR: 2093 case IPV6_2292DSTOPTS: 2094 switch (optname) { 2095 case IPV6_2292PKTINFO: 2096 optval = OPTBIT(IN6P_PKTINFO); 2097 break; 2098 case IPV6_2292HOPLIMIT: 2099 optval = OPTBIT(IN6P_HOPLIMIT); 2100 break; 2101 case IPV6_2292HOPOPTS: 2102 optval = OPTBIT(IN6P_HOPOPTS); 2103 break; 2104 case IPV6_2292RTHDR: 2105 optval = OPTBIT(IN6P_RTHDR); 2106 break; 2107 case IPV6_2292DSTOPTS: 2108 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2109 break; 2110 } 2111 error = sooptcopyout(sopt, &optval, 2112 sizeof optval); 2113 break; 2114 case IPV6_PKTINFO: 2115 case IPV6_HOPOPTS: 2116 case IPV6_RTHDR: 2117 case IPV6_DSTOPTS: 2118 case IPV6_RTHDRDSTOPTS: 2119 case IPV6_NEXTHOP: 2120 case IPV6_TCLASS: 2121 case IPV6_DONTFRAG: 2122 case IPV6_USE_MIN_MTU: 2123 case IPV6_PREFER_TEMPADDR: 2124 error = ip6_getpcbopt(in6p->in6p_outputopts, 2125 optname, sopt); 2126 break; 2127 2128 case IPV6_MULTICAST_IF: 2129 case IPV6_MULTICAST_HOPS: 2130 case IPV6_MULTICAST_LOOP: 2131 case IPV6_JOIN_GROUP: 2132 case IPV6_LEAVE_GROUP: 2133 { 2134 struct mbuf *m; 2135 error = ip6_getmoptions(sopt->sopt_name, 2136 in6p->in6p_moptions, &m); 2137 if (error == 0) 2138 error = sooptcopyout(sopt, 2139 mtod(m, char *), m->m_len); 2140 m_freem(m); 2141 } 2142 break; 2143 2144 #if defined(IPSEC) || defined(FAST_IPSEC) 2145 case IPV6_IPSEC_POLICY: 2146 { 2147 caddr_t req = NULL; 2148 size_t len = 0; 2149 struct mbuf *m = NULL; 2150 struct mbuf **mp = &m; 2151 size_t ovalsize = sopt->sopt_valsize; 2152 caddr_t oval = (caddr_t)sopt->sopt_val; 2153 2154 error = soopt_getm(sopt, &m); /* XXX */ 2155 if (error != 0) 2156 break; 2157 error = soopt_mcopyin(sopt, m); /* XXX */ 2158 if (error != 0) 2159 break; 2160 sopt->sopt_valsize = ovalsize; 2161 sopt->sopt_val = oval; 2162 if (m) { 2163 req = mtod(m, caddr_t); 2164 len = m->m_len; 2165 } 2166 error = ipsec6_get_policy(in6p, req, len, mp); 2167 if (error == 0) 2168 error = soopt_mcopyout(sopt, m); /* XXX */ 2169 if (error == 0 && m) 2170 m_freem(m); 2171 break; 2172 } 2173 #endif /* KAME IPSEC */ 2174 2175 case IPV6_FW_GET: 2176 { 2177 struct mbuf *m; 2178 struct mbuf **mp = &m; 2179 2180 if (ip6_fw_ctl_ptr == NULL) 2181 { 2182 return EINVAL; 2183 } 2184 error = (*ip6_fw_ctl_ptr)(optname, mp); 2185 if (error == 0) 2186 error = soopt_mcopyout(sopt, m); /* XXX */ 2187 if (error == 0 && m) 2188 m_freem(m); 2189 } 2190 break; 2191 2192 default: 2193 error = ENOPROTOOPT; 2194 break; 2195 } 2196 break; 2197 } 2198 } else { /* level != IPPROTO_IPV6 */ 2199 error = EINVAL; 2200 } 2201 return (error); 2202 } 2203 2204 int 2205 ip6_raw_ctloutput(so, sopt) 2206 struct socket *so; 2207 struct sockopt *sopt; 2208 { 2209 int error = 0, optval, optlen; 2210 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2211 struct in6pcb *in6p = sotoin6pcb(so); 2212 int level, op, optname; 2213 2214 if (sopt) { 2215 level = sopt->sopt_level; 2216 op = sopt->sopt_dir; 2217 optname = sopt->sopt_name; 2218 optlen = sopt->sopt_valsize; 2219 } else 2220 panic("ip6_raw_ctloutput: arg soopt is NULL"); 2221 2222 if (level != IPPROTO_IPV6) { 2223 return (EINVAL); 2224 } 2225 2226 switch (optname) { 2227 case IPV6_CHECKSUM: 2228 /* 2229 * For ICMPv6 sockets, no modification allowed for checksum 2230 * offset, permit "no change" values to help existing apps. 2231 * 2232 * XXX 2292bis says: "An attempt to set IPV6_CHECKSUM 2233 * for an ICMPv6 socket will fail." 2234 * The current behavior does not meet 2292bis. 2235 */ 2236 switch (op) { 2237 case SOPT_SET: 2238 if (optlen != sizeof(int)) { 2239 error = EINVAL; 2240 break; 2241 } 2242 error = sooptcopyin(sopt, &optval, sizeof(optval), 2243 sizeof(optval)); 2244 if (error) 2245 break; 2246 if ((optval % 2) != 0) { 2247 /* the API assumes even offset values */ 2248 error = EINVAL; 2249 } else if (so->so_proto->pr_protocol == 2250 IPPROTO_ICMPV6) { 2251 if (optval != icmp6off) 2252 error = EINVAL; 2253 } else 2254 in6p->in6p_cksum = optval; 2255 break; 2256 2257 case SOPT_GET: 2258 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2259 optval = icmp6off; 2260 else 2261 optval = in6p->in6p_cksum; 2262 2263 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2264 break; 2265 2266 default: 2267 error = EINVAL; 2268 break; 2269 } 2270 break; 2271 2272 default: 2273 error = ENOPROTOOPT; 2274 break; 2275 } 2276 2277 return (error); 2278 } 2279 2280 /* 2281 * Set up IP6 options in pcb for insertion in output packets or 2282 * specifying behavior of outgoing packets. 2283 */ 2284 static int 2285 ip6_pcbopts(pktopt, m, so, sopt) 2286 struct ip6_pktopts **pktopt; 2287 struct mbuf *m; 2288 struct socket *so; 2289 struct sockopt *sopt; 2290 { 2291 struct ip6_pktopts *opt = *pktopt; 2292 int error = 0; 2293 struct thread *td = sopt->sopt_td; 2294 int priv = 0; 2295 2296 /* turn off any old options. */ 2297 if (opt) { 2298 #ifdef DIAGNOSTIC 2299 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2300 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2301 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2302 printf("ip6_pcbopts: all specified options are cleared.\n"); 2303 #endif 2304 ip6_clearpktopts(opt, -1); 2305 } else 2306 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2307 *pktopt = NULL; 2308 2309 if (!m || m->m_len == 0) { 2310 /* 2311 * Only turning off any previous options, regardless of 2312 * whether the opt is just created or given. 2313 */ 2314 free(opt, M_IP6OPT); 2315 return (0); 2316 } 2317 2318 /* set options specified by user. */ 2319 if (td && !suser(td)) 2320 priv = 1; 2321 if ((error = ip6_setpktoptions(m, opt, NULL, priv, 1, 2322 so->so_proto->pr_protocol)) != 0) { 2323 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2324 free(opt, M_IP6OPT); 2325 return (error); 2326 } 2327 *pktopt = opt; 2328 return (0); 2329 } 2330 2331 /* 2332 * initialize ip6_pktopts. beware that there are non-zero default values in 2333 * the struct. 2334 */ 2335 void 2336 init_ip6pktopts(opt) 2337 struct ip6_pktopts *opt; 2338 { 2339 2340 bzero(opt, sizeof(*opt)); 2341 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2342 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2343 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2344 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2345 } 2346 2347 static int 2348 ip6_pcbopt(optname, buf, len, pktopt, priv, uproto) 2349 int optname, len, priv; 2350 u_char *buf; 2351 struct ip6_pktopts **pktopt; 2352 int uproto; 2353 { 2354 struct ip6_pktopts *opt; 2355 2356 if (*pktopt == NULL) { 2357 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2358 M_WAITOK); 2359 init_ip6pktopts(*pktopt); 2360 (*pktopt)->needfree = 1; 2361 } 2362 opt = *pktopt; 2363 2364 return (ip6_setpktoption(optname, buf, len, opt, priv, 1, 0, uproto)); 2365 } 2366 2367 static int 2368 ip6_getpcbopt(pktopt, optname, sopt) 2369 struct ip6_pktopts *pktopt; 2370 struct sockopt *sopt; 2371 int optname; 2372 { 2373 void *optdata = NULL; 2374 int optdatalen = 0; 2375 struct ip6_ext *ip6e; 2376 int error = 0; 2377 struct in6_pktinfo null_pktinfo; 2378 int deftclass = 0, on; 2379 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2380 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2381 2382 switch (optname) { 2383 case IPV6_PKTINFO: 2384 if (pktopt && pktopt->ip6po_pktinfo) 2385 optdata = (void *)pktopt->ip6po_pktinfo; 2386 else { 2387 /* XXX: we don't have to do this every time... */ 2388 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2389 optdata = (void *)&null_pktinfo; 2390 } 2391 optdatalen = sizeof(struct in6_pktinfo); 2392 break; 2393 case IPV6_TCLASS: 2394 if (pktopt && pktopt->ip6po_tclass >= 0) 2395 optdata = (void *)&pktopt->ip6po_tclass; 2396 else 2397 optdata = (void *)&deftclass; 2398 optdatalen = sizeof(int); 2399 break; 2400 case IPV6_HOPOPTS: 2401 if (pktopt && pktopt->ip6po_hbh) { 2402 optdata = (void *)pktopt->ip6po_hbh; 2403 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2404 optdatalen = (ip6e->ip6e_len + 1) << 3; 2405 } 2406 break; 2407 case IPV6_RTHDR: 2408 if (pktopt && pktopt->ip6po_rthdr) { 2409 optdata = (void *)pktopt->ip6po_rthdr; 2410 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2411 optdatalen = (ip6e->ip6e_len + 1) << 3; 2412 } 2413 break; 2414 case IPV6_RTHDRDSTOPTS: 2415 if (pktopt && pktopt->ip6po_dest1) { 2416 optdata = (void *)pktopt->ip6po_dest1; 2417 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2418 optdatalen = (ip6e->ip6e_len + 1) << 3; 2419 } 2420 break; 2421 case IPV6_DSTOPTS: 2422 if (pktopt && pktopt->ip6po_dest2) { 2423 optdata = (void *)pktopt->ip6po_dest2; 2424 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2425 optdatalen = (ip6e->ip6e_len + 1) << 3; 2426 } 2427 break; 2428 case IPV6_NEXTHOP: 2429 if (pktopt && pktopt->ip6po_nexthop) { 2430 optdata = (void *)pktopt->ip6po_nexthop; 2431 optdatalen = pktopt->ip6po_nexthop->sa_len; 2432 } 2433 break; 2434 case IPV6_USE_MIN_MTU: 2435 if (pktopt) 2436 optdata = (void *)&pktopt->ip6po_minmtu; 2437 else 2438 optdata = (void *)&defminmtu; 2439 optdatalen = sizeof(int); 2440 break; 2441 case IPV6_DONTFRAG: 2442 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2443 on = 1; 2444 else 2445 on = 0; 2446 optdata = (void *)&on; 2447 optdatalen = sizeof(on); 2448 break; 2449 case IPV6_PREFER_TEMPADDR: 2450 if (pktopt) 2451 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2452 else 2453 optdata = (void *)&defpreftemp; 2454 optdatalen = sizeof(int); 2455 break; 2456 default: /* should not happen */ 2457 #ifdef DIAGNOSTIC 2458 panic("ip6_getpcbopt: unexpected option\n"); 2459 #endif 2460 return (ENOPROTOOPT); 2461 } 2462 2463 error = sooptcopyout(sopt, optdata, optdatalen); 2464 2465 return (error); 2466 } 2467 2468 void 2469 ip6_clearpktopts(pktopt, optname) 2470 struct ip6_pktopts *pktopt; 2471 int optname; 2472 { 2473 int needfree; 2474 2475 if (pktopt == NULL) 2476 return; 2477 2478 needfree = pktopt->needfree; 2479 2480 if (optname == -1 || optname == IPV6_PKTINFO) { 2481 if (needfree && pktopt->ip6po_pktinfo) 2482 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2483 pktopt->ip6po_pktinfo = NULL; 2484 } 2485 if (optname == -1 || optname == IPV6_HOPLIMIT) 2486 pktopt->ip6po_hlim = -1; 2487 if (optname == -1 || optname == IPV6_TCLASS) 2488 pktopt->ip6po_tclass = -1; 2489 if (optname == -1 || optname == IPV6_NEXTHOP) { 2490 if (pktopt->ip6po_nextroute.ro_rt) { 2491 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2492 pktopt->ip6po_nextroute.ro_rt = NULL; 2493 } 2494 if (needfree && pktopt->ip6po_nexthop) 2495 free(pktopt->ip6po_nexthop, M_IP6OPT); 2496 pktopt->ip6po_nexthop = NULL; 2497 } 2498 if (optname == -1 || optname == IPV6_HOPOPTS) { 2499 if (needfree && pktopt->ip6po_hbh) 2500 free(pktopt->ip6po_hbh, M_IP6OPT); 2501 pktopt->ip6po_hbh = NULL; 2502 } 2503 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2504 if (needfree && pktopt->ip6po_dest1) 2505 free(pktopt->ip6po_dest1, M_IP6OPT); 2506 pktopt->ip6po_dest1 = NULL; 2507 } 2508 if (optname == -1 || optname == IPV6_RTHDR) { 2509 if (needfree && pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2510 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2511 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2512 if (pktopt->ip6po_route.ro_rt) { 2513 RTFREE(pktopt->ip6po_route.ro_rt); 2514 pktopt->ip6po_route.ro_rt = NULL; 2515 } 2516 } 2517 if (optname == -1 || optname == IPV6_DSTOPTS) { 2518 if (needfree && pktopt->ip6po_dest2) 2519 free(pktopt->ip6po_dest2, M_IP6OPT); 2520 pktopt->ip6po_dest2 = NULL; 2521 } 2522 } 2523 2524 #define PKTOPT_EXTHDRCPY(type) \ 2525 do {\ 2526 if (src->type) {\ 2527 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2528 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2529 if (dst->type == NULL && canwait == M_NOWAIT)\ 2530 goto bad;\ 2531 bcopy(src->type, dst->type, hlen);\ 2532 }\ 2533 } while (/*CONSTCOND*/ 0) 2534 2535 struct ip6_pktopts * 2536 ip6_copypktopts(src, canwait) 2537 struct ip6_pktopts *src; 2538 int canwait; 2539 { 2540 struct ip6_pktopts *dst; 2541 2542 if (src == NULL) { 2543 printf("ip6_clearpktopts: invalid argument\n"); 2544 return (NULL); 2545 } 2546 2547 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2548 if (dst == NULL && canwait == M_NOWAIT) 2549 return (NULL); 2550 bzero(dst, sizeof(*dst)); 2551 dst->needfree = 1; 2552 2553 dst->ip6po_hlim = src->ip6po_hlim; 2554 dst->ip6po_tclass = src->ip6po_tclass; 2555 dst->ip6po_flags = src->ip6po_flags; 2556 if (src->ip6po_pktinfo) { 2557 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2558 M_IP6OPT, canwait); 2559 if (dst->ip6po_pktinfo == NULL && canwait == M_NOWAIT) 2560 goto bad; 2561 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2562 } 2563 if (src->ip6po_nexthop) { 2564 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2565 M_IP6OPT, canwait); 2566 if (dst->ip6po_nexthop == NULL && canwait == M_NOWAIT) 2567 goto bad; 2568 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2569 src->ip6po_nexthop->sa_len); 2570 } 2571 PKTOPT_EXTHDRCPY(ip6po_hbh); 2572 PKTOPT_EXTHDRCPY(ip6po_dest1); 2573 PKTOPT_EXTHDRCPY(ip6po_dest2); 2574 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2575 return (dst); 2576 2577 bad: 2578 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT); 2579 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT); 2580 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT); 2581 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT); 2582 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT); 2583 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT); 2584 free(dst, M_IP6OPT); 2585 return (NULL); 2586 } 2587 #undef PKTOPT_EXTHDRCPY 2588 2589 void 2590 ip6_freepcbopts(pktopt) 2591 struct ip6_pktopts *pktopt; 2592 { 2593 if (pktopt == NULL) 2594 return; 2595 2596 ip6_clearpktopts(pktopt, -1); 2597 2598 free(pktopt, M_IP6OPT); 2599 } 2600 2601 /* 2602 * Set the IP6 multicast options in response to user setsockopt(). 2603 */ 2604 static int 2605 ip6_setmoptions(optname, im6op, m) 2606 int optname; 2607 struct ip6_moptions **im6op; 2608 struct mbuf *m; 2609 { 2610 int error = 0; 2611 u_int loop, ifindex; 2612 struct ipv6_mreq *mreq; 2613 struct ifnet *ifp; 2614 struct ip6_moptions *im6o = *im6op; 2615 struct route_in6 ro; 2616 struct sockaddr_in6 *dst; 2617 struct in6_multi_mship *imm; 2618 struct thread *td = curthread; 2619 2620 if (im6o == NULL) { 2621 /* 2622 * No multicast option buffer attached to the pcb; 2623 * allocate one and initialize to default values. 2624 */ 2625 im6o = (struct ip6_moptions *) 2626 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 2627 2628 if (im6o == NULL) 2629 return (ENOBUFS); 2630 *im6op = im6o; 2631 im6o->im6o_multicast_ifp = NULL; 2632 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2633 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 2634 LIST_INIT(&im6o->im6o_memberships); 2635 } 2636 2637 switch (optname) { 2638 2639 case IPV6_MULTICAST_IF: 2640 /* 2641 * Select the interface for outgoing multicast packets. 2642 */ 2643 if (m == NULL || m->m_len != sizeof(u_int)) { 2644 error = EINVAL; 2645 break; 2646 } 2647 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex)); 2648 if (ifindex < 0 || if_index < ifindex) { 2649 error = ENXIO; /* XXX EINVAL? */ 2650 break; 2651 } 2652 ifp = ifnet_byindex(ifindex); 2653 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2654 error = EADDRNOTAVAIL; 2655 break; 2656 } 2657 im6o->im6o_multicast_ifp = ifp; 2658 break; 2659 2660 case IPV6_MULTICAST_HOPS: 2661 { 2662 /* 2663 * Set the IP6 hoplimit for outgoing multicast packets. 2664 */ 2665 int optval; 2666 if (m == NULL || m->m_len != sizeof(int)) { 2667 error = EINVAL; 2668 break; 2669 } 2670 bcopy(mtod(m, u_int *), &optval, sizeof(optval)); 2671 if (optval < -1 || optval >= 256) 2672 error = EINVAL; 2673 else if (optval == -1) 2674 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2675 else 2676 im6o->im6o_multicast_hlim = optval; 2677 break; 2678 } 2679 2680 case IPV6_MULTICAST_LOOP: 2681 /* 2682 * Set the loopback flag for outgoing multicast packets. 2683 * Must be zero or one. 2684 */ 2685 if (m == NULL || m->m_len != sizeof(u_int)) { 2686 error = EINVAL; 2687 break; 2688 } 2689 bcopy(mtod(m, u_int *), &loop, sizeof(loop)); 2690 if (loop > 1) { 2691 error = EINVAL; 2692 break; 2693 } 2694 im6o->im6o_multicast_loop = loop; 2695 break; 2696 2697 case IPV6_JOIN_GROUP: 2698 /* 2699 * Add a multicast group membership. 2700 * Group must be a valid IP6 multicast address. 2701 */ 2702 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2703 error = EINVAL; 2704 break; 2705 } 2706 mreq = mtod(m, struct ipv6_mreq *); 2707 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2708 /* 2709 * We use the unspecified address to specify to accept 2710 * all multicast addresses. Only super user is allowed 2711 * to do this. 2712 */ 2713 if (suser(td)) { 2714 error = EACCES; 2715 break; 2716 } 2717 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2718 error = EINVAL; 2719 break; 2720 } 2721 2722 /* 2723 * If the interface is specified, validate it. 2724 */ 2725 if (mreq->ipv6mr_interface < 0 || 2726 if_index < mreq->ipv6mr_interface) { 2727 error = ENXIO; /* XXX EINVAL? */ 2728 break; 2729 } 2730 /* 2731 * If no interface was explicitly specified, choose an 2732 * appropriate one according to the given multicast address. 2733 */ 2734 if (mreq->ipv6mr_interface == 0) { 2735 /* 2736 * If the multicast address is in node-local scope, 2737 * the interface should be a loopback interface. 2738 * Otherwise, look up the routing table for the 2739 * address, and choose the outgoing interface. 2740 * XXX: is it a good approach? 2741 */ 2742 if (IN6_IS_ADDR_MC_INTFACELOCAL(&mreq->ipv6mr_multiaddr)) { 2743 ifp = &loif[0]; 2744 } else { 2745 ro.ro_rt = NULL; 2746 dst = (struct sockaddr_in6 *)&ro.ro_dst; 2747 bzero(dst, sizeof(*dst)); 2748 dst->sin6_len = sizeof(struct sockaddr_in6); 2749 dst->sin6_family = AF_INET6; 2750 dst->sin6_addr = mreq->ipv6mr_multiaddr; 2751 rtalloc((struct route *)&ro); 2752 if (ro.ro_rt == NULL) { 2753 error = EADDRNOTAVAIL; 2754 break; 2755 } 2756 ifp = ro.ro_rt->rt_ifp; 2757 RTFREE(ro.ro_rt); 2758 } 2759 } else 2760 ifp = ifnet_byindex(mreq->ipv6mr_interface); 2761 2762 /* 2763 * See if we found an interface, and confirm that it 2764 * supports multicast 2765 */ 2766 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2767 error = EADDRNOTAVAIL; 2768 break; 2769 } 2770 /* 2771 * Put interface index into the multicast address, 2772 * if the address has link-local scope. 2773 */ 2774 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 2775 mreq->ipv6mr_multiaddr.s6_addr16[1] = 2776 htons(ifp->if_index); 2777 } 2778 /* 2779 * See if the membership already exists. 2780 */ 2781 for (imm = im6o->im6o_memberships.lh_first; 2782 imm != NULL; imm = imm->i6mm_chain.le_next) 2783 if (imm->i6mm_maddr->in6m_ifp == ifp && 2784 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2785 &mreq->ipv6mr_multiaddr)) 2786 break; 2787 if (imm != NULL) { 2788 error = EADDRINUSE; 2789 break; 2790 } 2791 /* 2792 * Everything looks good; add a new record to the multicast 2793 * address list for the given interface. 2794 */ 2795 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK); 2796 if (imm == NULL) { 2797 error = ENOBUFS; 2798 break; 2799 } 2800 if ((imm->i6mm_maddr = 2801 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) { 2802 free(imm, M_IPMADDR); 2803 break; 2804 } 2805 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2806 break; 2807 2808 case IPV6_LEAVE_GROUP: 2809 /* 2810 * Drop a multicast group membership. 2811 * Group must be a valid IP6 multicast address. 2812 */ 2813 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2814 error = EINVAL; 2815 break; 2816 } 2817 mreq = mtod(m, struct ipv6_mreq *); 2818 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2819 if (suser(td)) { 2820 error = EACCES; 2821 break; 2822 } 2823 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2824 error = EINVAL; 2825 break; 2826 } 2827 /* 2828 * If an interface address was specified, get a pointer 2829 * to its ifnet structure. 2830 */ 2831 if (mreq->ipv6mr_interface < 0 2832 || if_index < mreq->ipv6mr_interface) { 2833 error = ENXIO; /* XXX EINVAL? */ 2834 break; 2835 } 2836 ifp = ifnet_byindex(mreq->ipv6mr_interface); 2837 /* 2838 * Put interface index into the multicast address, 2839 * if the address has link-local scope. 2840 */ 2841 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 2842 mreq->ipv6mr_multiaddr.s6_addr16[1] 2843 = htons(mreq->ipv6mr_interface); 2844 } 2845 2846 /* 2847 * Find the membership in the membership list. 2848 */ 2849 for (imm = im6o->im6o_memberships.lh_first; 2850 imm != NULL; imm = imm->i6mm_chain.le_next) { 2851 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) && 2852 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2853 &mreq->ipv6mr_multiaddr)) 2854 break; 2855 } 2856 if (imm == NULL) { 2857 /* Unable to resolve interface */ 2858 error = EADDRNOTAVAIL; 2859 break; 2860 } 2861 /* 2862 * Give up the multicast address record to which the 2863 * membership points. 2864 */ 2865 LIST_REMOVE(imm, i6mm_chain); 2866 in6_delmulti(imm->i6mm_maddr); 2867 free(imm, M_IPMADDR); 2868 break; 2869 2870 default: 2871 error = EOPNOTSUPP; 2872 break; 2873 } 2874 2875 /* 2876 * If all options have default values, no need to keep the mbuf. 2877 */ 2878 if (im6o->im6o_multicast_ifp == NULL && 2879 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2880 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2881 im6o->im6o_memberships.lh_first == NULL) { 2882 free(*im6op, M_IPMOPTS); 2883 *im6op = NULL; 2884 } 2885 2886 return (error); 2887 } 2888 2889 /* 2890 * Return the IP6 multicast options in response to user getsockopt(). 2891 */ 2892 static int 2893 ip6_getmoptions(optname, im6o, mp) 2894 int optname; 2895 struct ip6_moptions *im6o; 2896 struct mbuf **mp; 2897 { 2898 u_int *hlim, *loop, *ifindex; 2899 2900 *mp = m_get(M_TRYWAIT, MT_HEADER); /* XXX */ 2901 2902 switch (optname) { 2903 2904 case IPV6_MULTICAST_IF: 2905 ifindex = mtod(*mp, u_int *); 2906 (*mp)->m_len = sizeof(u_int); 2907 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 2908 *ifindex = 0; 2909 else 2910 *ifindex = im6o->im6o_multicast_ifp->if_index; 2911 return (0); 2912 2913 case IPV6_MULTICAST_HOPS: 2914 hlim = mtod(*mp, u_int *); 2915 (*mp)->m_len = sizeof(u_int); 2916 if (im6o == NULL) 2917 *hlim = ip6_defmcasthlim; 2918 else 2919 *hlim = im6o->im6o_multicast_hlim; 2920 return (0); 2921 2922 case IPV6_MULTICAST_LOOP: 2923 loop = mtod(*mp, u_int *); 2924 (*mp)->m_len = sizeof(u_int); 2925 if (im6o == NULL) 2926 *loop = ip6_defmcasthlim; 2927 else 2928 *loop = im6o->im6o_multicast_loop; 2929 return (0); 2930 2931 default: 2932 return (EOPNOTSUPP); 2933 } 2934 } 2935 2936 /* 2937 * Discard the IP6 multicast options. 2938 */ 2939 void 2940 ip6_freemoptions(im6o) 2941 struct ip6_moptions *im6o; 2942 { 2943 struct in6_multi_mship *imm; 2944 2945 if (im6o == NULL) 2946 return; 2947 2948 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 2949 LIST_REMOVE(imm, i6mm_chain); 2950 if (imm->i6mm_maddr) 2951 in6_delmulti(imm->i6mm_maddr); 2952 free(imm, M_IPMADDR); 2953 } 2954 free(im6o, M_IPMOPTS); 2955 } 2956 2957 /* 2958 * Set IPv6 outgoing packet options based on advanced API. 2959 */ 2960 int 2961 ip6_setpktoptions(control, opt, stickyopt, priv, needcopy, uproto) 2962 struct mbuf *control; 2963 struct ip6_pktopts *opt, *stickyopt; 2964 int priv, needcopy, uproto; 2965 { 2966 struct cmsghdr *cm = 0; 2967 2968 if (control == 0 || opt == 0) 2969 return (EINVAL); 2970 2971 if (stickyopt) { 2972 /* 2973 * If stickyopt is provided, make a local copy of the options 2974 * for this particular packet, then override them by ancillary 2975 * objects. 2976 * XXX: need to gain a reference for the cached route of the 2977 * next hop in case of the overriding. 2978 */ 2979 *opt = *stickyopt; 2980 if (opt->ip6po_nextroute.ro_rt) { 2981 RT_LOCK(opt->ip6po_nextroute.ro_rt); 2982 RT_ADDREF(opt->ip6po_nextroute.ro_rt); 2983 RT_UNLOCK(opt->ip6po_nextroute.ro_rt); 2984 } 2985 } else 2986 init_ip6pktopts(opt); 2987 opt->needfree = needcopy; 2988 2989 /* 2990 * XXX: Currently, we assume all the optional information is stored 2991 * in a single mbuf. 2992 */ 2993 if (control->m_next) 2994 return (EINVAL); 2995 2996 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2997 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2998 int error; 2999 3000 if (control->m_len < CMSG_LEN(0)) 3001 return (EINVAL); 3002 3003 cm = mtod(control, struct cmsghdr *); 3004 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 3005 return (EINVAL); 3006 if (cm->cmsg_level != IPPROTO_IPV6) 3007 continue; 3008 3009 error = ip6_setpktoption(cm->cmsg_type, CMSG_DATA(cm), 3010 cm->cmsg_len - CMSG_LEN(0), opt, priv, needcopy, 1, uproto); 3011 if (error) 3012 return (error); 3013 } 3014 3015 return (0); 3016 } 3017 3018 /* 3019 * Set a particular packet option, as a sticky option or an ancillary data 3020 * item. "len" can be 0 only when it's a sticky option. 3021 * We have 4 cases of combination of "sticky" and "cmsg": 3022 * "sticky=0, cmsg=0": impossible 3023 * "sticky=0, cmsg=1": RFC2292 or rfc2292bis ancillary data 3024 * "sticky=1, cmsg=0": rfc2292bis socket option 3025 * "sticky=1, cmsg=1": RFC2292 socket option 3026 */ 3027 static int 3028 ip6_setpktoption(optname, buf, len, opt, priv, sticky, cmsg, uproto) 3029 int optname, len, priv, sticky, cmsg, uproto; 3030 u_char *buf; 3031 struct ip6_pktopts *opt; 3032 { 3033 int minmtupolicy, preftemp; 3034 3035 if (!sticky && !cmsg) { 3036 #ifdef DIAGNOSTIC 3037 printf("ip6_setpktoption: impossible case\n"); 3038 #endif 3039 return (EINVAL); 3040 } 3041 3042 /* 3043 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 3044 * not be specified in the context of rfc2292bis. Conversely, 3045 * rfc2292bis types should not be specified in the context of RFC2292. 3046 */ 3047 if (!cmsg) { 3048 switch (optname) { 3049 case IPV6_2292PKTINFO: 3050 case IPV6_2292HOPLIMIT: 3051 case IPV6_2292NEXTHOP: 3052 case IPV6_2292HOPOPTS: 3053 case IPV6_2292DSTOPTS: 3054 case IPV6_2292RTHDR: 3055 case IPV6_2292PKTOPTIONS: 3056 return (ENOPROTOOPT); 3057 } 3058 } 3059 if (sticky && cmsg) { 3060 switch (optname) { 3061 case IPV6_PKTINFO: 3062 case IPV6_HOPLIMIT: 3063 case IPV6_NEXTHOP: 3064 case IPV6_HOPOPTS: 3065 case IPV6_DSTOPTS: 3066 case IPV6_RTHDRDSTOPTS: 3067 case IPV6_RTHDR: 3068 case IPV6_USE_MIN_MTU: 3069 case IPV6_DONTFRAG: 3070 case IPV6_TCLASS: 3071 case IPV6_PREFER_TEMPADDR: /* XXX: not an rfc2292bis option */ 3072 return (ENOPROTOOPT); 3073 } 3074 } 3075 3076 switch (optname) { 3077 case IPV6_2292PKTINFO: 3078 case IPV6_PKTINFO: 3079 { 3080 struct ifnet *ifp = NULL; 3081 struct in6_pktinfo *pktinfo; 3082 3083 if (len != sizeof(struct in6_pktinfo)) 3084 return (EINVAL); 3085 3086 pktinfo = (struct in6_pktinfo *)buf; 3087 3088 /* 3089 * An application can clear any sticky IPV6_PKTINFO option by 3090 * doing a "regular" setsockopt with ipi6_addr being 3091 * in6addr_any and ipi6_ifindex being zero. 3092 * [RFC 3542, Section 6] 3093 */ 3094 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 3095 pktinfo->ipi6_ifindex == 0 && 3096 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 3097 ip6_clearpktopts(opt, optname); 3098 break; 3099 } 3100 3101 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 3102 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 3103 return (EINVAL); 3104 } 3105 3106 /* validate the interface index if specified. */ 3107 if (pktinfo->ipi6_ifindex > if_index || 3108 pktinfo->ipi6_ifindex < 0) { 3109 return (ENXIO); 3110 } 3111 if (pktinfo->ipi6_ifindex) { 3112 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 3113 if (ifp == NULL) 3114 return (ENXIO); 3115 } 3116 3117 /* 3118 * We store the address anyway, and let in6_selectsrc() 3119 * validate the specified address. This is because ipi6_addr 3120 * may not have enough information about its scope zone, and 3121 * we may need additional information (such as outgoing 3122 * interface or the scope zone of a destination address) to 3123 * disambiguate the scope. 3124 * XXX: the delay of the validation may confuse the 3125 * application when it is used as a sticky option. 3126 */ 3127 if (sticky) { 3128 if (opt->ip6po_pktinfo == NULL) { 3129 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 3130 M_IP6OPT, M_WAITOK); 3131 } 3132 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 3133 } else 3134 opt->ip6po_pktinfo = pktinfo; 3135 break; 3136 } 3137 3138 case IPV6_2292HOPLIMIT: 3139 case IPV6_HOPLIMIT: 3140 { 3141 int *hlimp; 3142 3143 /* 3144 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 3145 * to simplify the ordering among hoplimit options. 3146 */ 3147 if (optname == IPV6_HOPLIMIT && sticky) 3148 return (ENOPROTOOPT); 3149 3150 if (len != sizeof(int)) 3151 return (EINVAL); 3152 hlimp = (int *)buf; 3153 if (*hlimp < -1 || *hlimp > 255) 3154 return (EINVAL); 3155 3156 opt->ip6po_hlim = *hlimp; 3157 break; 3158 } 3159 3160 case IPV6_TCLASS: 3161 { 3162 int tclass; 3163 3164 if (len != sizeof(int)) 3165 return (EINVAL); 3166 tclass = *(int *)buf; 3167 if (tclass < -1 || tclass > 255) 3168 return (EINVAL); 3169 3170 opt->ip6po_tclass = tclass; 3171 break; 3172 } 3173 3174 case IPV6_2292NEXTHOP: 3175 case IPV6_NEXTHOP: 3176 if (!priv) 3177 return (EPERM); 3178 3179 if (len == 0) { /* just remove the option */ 3180 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3181 break; 3182 } 3183 3184 /* check if cmsg_len is large enough for sa_len */ 3185 if (len < sizeof(struct sockaddr) || len < *buf) 3186 return (EINVAL); 3187 3188 switch (((struct sockaddr *)buf)->sa_family) { 3189 case AF_INET6: 3190 { 3191 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3192 #if 0 3193 int error; 3194 #endif 3195 3196 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3197 return (EINVAL); 3198 3199 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3200 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3201 return (EINVAL); 3202 } 3203 #if 0 3204 if ((error = scope6_check_id(sa6, ip6_use_defzone)) 3205 != 0) { 3206 return (error); 3207 } 3208 #endif 3209 sa6->sin6_scope_id = 0; /* XXX */ 3210 break; 3211 } 3212 case AF_LINK: /* should eventually be supported */ 3213 default: 3214 return (EAFNOSUPPORT); 3215 } 3216 3217 /* turn off the previous option, then set the new option. */ 3218 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3219 if (sticky) { 3220 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_WAITOK); 3221 bcopy(buf, opt->ip6po_nexthop, *buf); 3222 } else 3223 opt->ip6po_nexthop = (struct sockaddr *)buf; 3224 break; 3225 3226 case IPV6_2292HOPOPTS: 3227 case IPV6_HOPOPTS: 3228 { 3229 struct ip6_hbh *hbh; 3230 int hbhlen; 3231 3232 /* 3233 * XXX: We don't allow a non-privileged user to set ANY HbH 3234 * options, since per-option restriction has too much 3235 * overhead. 3236 */ 3237 if (!priv) 3238 return (EPERM); 3239 3240 if (len == 0) { 3241 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3242 break; /* just remove the option */ 3243 } 3244 3245 /* message length validation */ 3246 if (len < sizeof(struct ip6_hbh)) 3247 return (EINVAL); 3248 hbh = (struct ip6_hbh *)buf; 3249 hbhlen = (hbh->ip6h_len + 1) << 3; 3250 if (len != hbhlen) 3251 return (EINVAL); 3252 3253 /* turn off the previous option, then set the new option. */ 3254 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3255 if (sticky) { 3256 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_WAITOK); 3257 bcopy(hbh, opt->ip6po_hbh, hbhlen); 3258 } else 3259 opt->ip6po_hbh = hbh; 3260 3261 break; 3262 } 3263 3264 case IPV6_2292DSTOPTS: 3265 case IPV6_DSTOPTS: 3266 case IPV6_RTHDRDSTOPTS: 3267 { 3268 struct ip6_dest *dest, **newdest = NULL; 3269 int destlen; 3270 3271 if (!priv) /* XXX: see the comment for IPV6_HOPOPTS */ 3272 return (EPERM); 3273 3274 if (len == 0) { 3275 ip6_clearpktopts(opt, optname); 3276 break; /* just remove the option */ 3277 } 3278 3279 /* message length validation */ 3280 if (len < sizeof(struct ip6_dest)) 3281 return (EINVAL); 3282 dest = (struct ip6_dest *)buf; 3283 destlen = (dest->ip6d_len + 1) << 3; 3284 if (len != destlen) 3285 return (EINVAL); 3286 3287 /* 3288 * Determine the position that the destination options header 3289 * should be inserted; before or after the routing header. 3290 */ 3291 switch (optname) { 3292 case IPV6_2292DSTOPTS: 3293 /* 3294 * The old advacned API is ambiguous on this point. 3295 * Our approach is to determine the position based 3296 * according to the existence of a routing header. 3297 * Note, however, that this depends on the order of the 3298 * extension headers in the ancillary data; the 1st 3299 * part of the destination options header must appear 3300 * before the routing header in the ancillary data, 3301 * too. 3302 * RFC2292bis solved the ambiguity by introducing 3303 * separate ancillary data or option types. 3304 */ 3305 if (opt->ip6po_rthdr == NULL) 3306 newdest = &opt->ip6po_dest1; 3307 else 3308 newdest = &opt->ip6po_dest2; 3309 break; 3310 case IPV6_RTHDRDSTOPTS: 3311 newdest = &opt->ip6po_dest1; 3312 break; 3313 case IPV6_DSTOPTS: 3314 newdest = &opt->ip6po_dest2; 3315 break; 3316 } 3317 3318 /* turn off the previous option, then set the new option. */ 3319 ip6_clearpktopts(opt, optname); 3320 if (sticky) { 3321 *newdest = malloc(destlen, M_IP6OPT, M_WAITOK); 3322 bcopy(dest, *newdest, destlen); 3323 } else 3324 *newdest = dest; 3325 3326 break; 3327 } 3328 3329 case IPV6_2292RTHDR: 3330 case IPV6_RTHDR: 3331 { 3332 struct ip6_rthdr *rth; 3333 int rthlen; 3334 3335 if (len == 0) { 3336 ip6_clearpktopts(opt, IPV6_RTHDR); 3337 break; /* just remove the option */ 3338 } 3339 3340 /* message length validation */ 3341 if (len < sizeof(struct ip6_rthdr)) 3342 return (EINVAL); 3343 rth = (struct ip6_rthdr *)buf; 3344 rthlen = (rth->ip6r_len + 1) << 3; 3345 if (len != rthlen) 3346 return (EINVAL); 3347 3348 switch (rth->ip6r_type) { 3349 case IPV6_RTHDR_TYPE_0: 3350 if (rth->ip6r_len == 0) /* must contain one addr */ 3351 return (EINVAL); 3352 if (rth->ip6r_len % 2) /* length must be even */ 3353 return (EINVAL); 3354 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3355 return (EINVAL); 3356 break; 3357 default: 3358 return (EINVAL); /* not supported */ 3359 } 3360 3361 /* turn off the previous option */ 3362 ip6_clearpktopts(opt, IPV6_RTHDR); 3363 if (sticky) { 3364 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_WAITOK); 3365 bcopy(rth, opt->ip6po_rthdr, rthlen); 3366 } else 3367 opt->ip6po_rthdr = rth; 3368 3369 break; 3370 } 3371 3372 case IPV6_USE_MIN_MTU: 3373 if (len != sizeof(int)) 3374 return (EINVAL); 3375 minmtupolicy = *(int *)buf; 3376 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3377 minmtupolicy != IP6PO_MINMTU_DISABLE && 3378 minmtupolicy != IP6PO_MINMTU_ALL) { 3379 return (EINVAL); 3380 } 3381 opt->ip6po_minmtu = minmtupolicy; 3382 break; 3383 3384 case IPV6_DONTFRAG: 3385 if (len != sizeof(int)) 3386 return (EINVAL); 3387 3388 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3389 /* 3390 * we ignore this option for TCP sockets. 3391 * (rfc2292bis leaves this case unspecified.) 3392 */ 3393 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3394 } else 3395 opt->ip6po_flags |= IP6PO_DONTFRAG; 3396 break; 3397 3398 case IPV6_PREFER_TEMPADDR: 3399 if (len != sizeof(int)) 3400 return (EINVAL); 3401 preftemp = *(int *)buf; 3402 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3403 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3404 preftemp != IP6PO_TEMPADDR_PREFER) { 3405 return (EINVAL); 3406 } 3407 opt->ip6po_prefer_tempaddr = preftemp; 3408 break; 3409 3410 default: 3411 return (ENOPROTOOPT); 3412 } /* end of switch */ 3413 3414 return (0); 3415 } 3416 3417 /* 3418 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3419 * packet to the input queue of a specified interface. Note that this 3420 * calls the output routine of the loopback "driver", but with an interface 3421 * pointer that might NOT be &loif -- easier than replicating that code here. 3422 */ 3423 void 3424 ip6_mloopback(ifp, m, dst) 3425 struct ifnet *ifp; 3426 struct mbuf *m; 3427 struct sockaddr_in6 *dst; 3428 { 3429 struct mbuf *copym; 3430 struct ip6_hdr *ip6; 3431 3432 copym = m_copy(m, 0, M_COPYALL); 3433 if (copym == NULL) 3434 return; 3435 3436 /* 3437 * Make sure to deep-copy IPv6 header portion in case the data 3438 * is in an mbuf cluster, so that we can safely override the IPv6 3439 * header portion later. 3440 */ 3441 if ((copym->m_flags & M_EXT) != 0 || 3442 copym->m_len < sizeof(struct ip6_hdr)) { 3443 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3444 if (copym == NULL) 3445 return; 3446 } 3447 3448 #ifdef DIAGNOSTIC 3449 if (copym->m_len < sizeof(*ip6)) { 3450 m_freem(copym); 3451 return; 3452 } 3453 #endif 3454 3455 ip6 = mtod(copym, struct ip6_hdr *); 3456 /* 3457 * clear embedded scope identifiers if necessary. 3458 * in6_clearscope will touch the addresses only when necessary. 3459 */ 3460 in6_clearscope(&ip6->ip6_src); 3461 in6_clearscope(&ip6->ip6_dst); 3462 3463 (void)if_simloop(ifp, copym, dst->sin6_family, 0); 3464 } 3465 3466 /* 3467 * Chop IPv6 header off from the payload. 3468 */ 3469 static int 3470 ip6_splithdr(m, exthdrs) 3471 struct mbuf *m; 3472 struct ip6_exthdrs *exthdrs; 3473 { 3474 struct mbuf *mh; 3475 struct ip6_hdr *ip6; 3476 3477 ip6 = mtod(m, struct ip6_hdr *); 3478 if (m->m_len > sizeof(*ip6)) { 3479 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3480 if (mh == 0) { 3481 m_freem(m); 3482 return ENOBUFS; 3483 } 3484 M_MOVE_PKTHDR(mh, m); 3485 MH_ALIGN(mh, sizeof(*ip6)); 3486 m->m_len -= sizeof(*ip6); 3487 m->m_data += sizeof(*ip6); 3488 mh->m_next = m; 3489 m = mh; 3490 m->m_len = sizeof(*ip6); 3491 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3492 } 3493 exthdrs->ip6e_ip6 = m; 3494 return 0; 3495 } 3496 3497 /* 3498 * Compute IPv6 extension header length. 3499 */ 3500 int 3501 ip6_optlen(in6p) 3502 struct in6pcb *in6p; 3503 { 3504 int len; 3505 3506 if (!in6p->in6p_outputopts) 3507 return 0; 3508 3509 len = 0; 3510 #define elen(x) \ 3511 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3512 3513 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3514 if (in6p->in6p_outputopts->ip6po_rthdr) 3515 /* dest1 is valid with rthdr only */ 3516 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3517 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3518 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3519 return len; 3520 #undef elen 3521 } 3522