1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 #include "opt_ipfw.h" 69 #include "opt_ipsec.h" 70 #include "opt_sctp.h" 71 #include "opt_route.h" 72 73 #include <sys/param.h> 74 #include <sys/kernel.h> 75 #include <sys/malloc.h> 76 #include <sys/mbuf.h> 77 #include <sys/errno.h> 78 #include <sys/priv.h> 79 #include <sys/proc.h> 80 #include <sys/protosw.h> 81 #include <sys/socket.h> 82 #include <sys/socketvar.h> 83 #include <sys/syslog.h> 84 #include <sys/ucred.h> 85 86 #include <machine/in_cksum.h> 87 88 #include <net/if.h> 89 #include <net/netisr.h> 90 #include <net/route.h> 91 #include <net/pfil.h> 92 #include <net/vnet.h> 93 94 #include <netinet/in.h> 95 #include <netinet/in_var.h> 96 #include <netinet/ip_var.h> 97 #include <netinet6/in6_var.h> 98 #include <netinet/ip6.h> 99 #include <netinet/icmp6.h> 100 #include <netinet6/ip6_var.h> 101 #include <netinet/in_pcb.h> 102 #include <netinet/tcp_var.h> 103 #include <netinet6/nd6.h> 104 105 #ifdef IPSEC 106 #include <netipsec/ipsec.h> 107 #include <netipsec/ipsec6.h> 108 #include <netipsec/key.h> 109 #include <netinet6/ip6_ipsec.h> 110 #endif /* IPSEC */ 111 #ifdef SCTP 112 #include <netinet/sctp.h> 113 #include <netinet/sctp_crc32.h> 114 #endif 115 116 #include <netinet6/ip6protosw.h> 117 #include <netinet6/scope6_var.h> 118 119 #ifdef FLOWTABLE 120 #include <net/flowtable.h> 121 #endif 122 123 extern int in6_mcast_loop; 124 125 struct ip6_exthdrs { 126 struct mbuf *ip6e_ip6; 127 struct mbuf *ip6e_hbh; 128 struct mbuf *ip6e_dest1; 129 struct mbuf *ip6e_rthdr; 130 struct mbuf *ip6e_dest2; 131 }; 132 133 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 134 struct ucred *, int); 135 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 136 struct socket *, struct sockopt *); 137 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 138 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 139 struct ucred *, int, int, int); 140 141 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 142 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 143 struct ip6_frag **); 144 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 145 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 146 static int ip6_getpmtu(struct route_in6 *, struct route_in6 *, 147 struct ifnet *, struct in6_addr *, u_long *, int *, u_int); 148 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 149 150 151 /* 152 * Make an extension header from option data. hp is the source, and 153 * mp is the destination. 154 */ 155 #define MAKE_EXTHDR(hp, mp) \ 156 do { \ 157 if (hp) { \ 158 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 159 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 160 ((eh)->ip6e_len + 1) << 3); \ 161 if (error) \ 162 goto freehdrs; \ 163 } \ 164 } while (/*CONSTCOND*/ 0) 165 166 /* 167 * Form a chain of extension headers. 168 * m is the extension header mbuf 169 * mp is the previous mbuf in the chain 170 * p is the next header 171 * i is the type of option. 172 */ 173 #define MAKE_CHAIN(m, mp, p, i)\ 174 do {\ 175 if (m) {\ 176 if (!hdrsplit) \ 177 panic("assumption failed: hdr not split"); \ 178 *mtod((m), u_char *) = *(p);\ 179 *(p) = (i);\ 180 p = mtod((m), u_char *);\ 181 (m)->m_next = (mp)->m_next;\ 182 (mp)->m_next = (m);\ 183 (mp) = (m);\ 184 }\ 185 } while (/*CONSTCOND*/ 0) 186 187 static void 188 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 189 { 190 u_short csum; 191 192 csum = in_cksum_skip(m, offset + plen, offset); 193 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 194 csum = 0xffff; 195 offset += m->m_pkthdr.csum_data; /* checksum offset */ 196 197 if (offset + sizeof(u_short) > m->m_len) { 198 printf("%s: delayed m_pullup, m->len: %d plen %u off %u " 199 "csum_flags=0x%04x\n", __func__, m->m_len, plen, offset, 200 m->m_pkthdr.csum_flags); 201 /* 202 * XXX this should not happen, but if it does, the correct 203 * behavior may be to insert the checksum in the appropriate 204 * next mbuf in the chain. 205 */ 206 return; 207 } 208 *(u_short *)(m->m_data + offset) = csum; 209 } 210 211 /* 212 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 213 * header (with pri, len, nxt, hlim, src, dst). 214 * This function may modify ver and hlim only. 215 * The mbuf chain containing the packet will be freed. 216 * The mbuf opt, if present, will not be freed. 217 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 218 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 219 * then result of route lookup is stored in ro->ro_rt. 220 * 221 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 222 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 223 * which is rt_rmx.rmx_mtu. 224 * 225 * ifpp - XXX: just for statistics 226 */ 227 int 228 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 229 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 230 struct ifnet **ifpp, struct inpcb *inp) 231 { 232 struct ip6_hdr *ip6, *mhip6; 233 struct ifnet *ifp, *origifp; 234 struct mbuf *m = m0; 235 struct mbuf *mprev = NULL; 236 int hlen, tlen, len, off; 237 struct route_in6 ip6route; 238 struct rtentry *rt = NULL; 239 struct sockaddr_in6 *dst, src_sa, dst_sa; 240 struct in6_addr odst; 241 int error = 0; 242 struct in6_ifaddr *ia = NULL; 243 u_long mtu; 244 int alwaysfrag, dontfrag; 245 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 246 struct ip6_exthdrs exthdrs; 247 struct in6_addr finaldst, src0, dst0; 248 u_int32_t zone; 249 struct route_in6 *ro_pmtu = NULL; 250 int hdrsplit = 0; 251 int needipsec = 0; 252 int sw_csum, tso; 253 #ifdef IPSEC 254 struct ipsec_output_state state; 255 struct ip6_rthdr *rh = NULL; 256 int needipsectun = 0; 257 int segleft_org = 0; 258 struct secpolicy *sp = NULL; 259 #endif /* IPSEC */ 260 struct m_tag *fwd_tag = NULL; 261 262 ip6 = mtod(m, struct ip6_hdr *); 263 if (ip6 == NULL) { 264 printf ("ip6 is NULL"); 265 goto bad; 266 } 267 268 if (inp != NULL) 269 M_SETFIB(m, inp->inp_inc.inc_fibnum); 270 271 finaldst = ip6->ip6_dst; 272 bzero(&exthdrs, sizeof(exthdrs)); 273 if (opt) { 274 /* Hop-by-Hop options header */ 275 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 276 /* Destination options header(1st part) */ 277 if (opt->ip6po_rthdr) { 278 /* 279 * Destination options header(1st part) 280 * This only makes sense with a routing header. 281 * See Section 9.2 of RFC 3542. 282 * Disabling this part just for MIP6 convenience is 283 * a bad idea. We need to think carefully about a 284 * way to make the advanced API coexist with MIP6 285 * options, which might automatically be inserted in 286 * the kernel. 287 */ 288 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 289 } 290 /* Routing header */ 291 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 292 /* Destination options header(2nd part) */ 293 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 294 } 295 296 #ifdef IPSEC 297 /* 298 * IPSec checking which handles several cases. 299 * FAST IPSEC: We re-injected the packet. 300 */ 301 switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp, &sp)) 302 { 303 case 1: /* Bad packet */ 304 goto freehdrs; 305 case -1: /* Do IPSec */ 306 needipsec = 1; 307 /* 308 * Do delayed checksums now, as we may send before returning. 309 */ 310 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 311 plen = m->m_pkthdr.len - sizeof(*ip6); 312 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 313 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 314 } 315 #ifdef SCTP 316 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 317 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 318 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 319 } 320 #endif 321 case 0: /* No IPSec */ 322 default: 323 break; 324 } 325 #endif /* IPSEC */ 326 327 /* 328 * Calculate the total length of the extension header chain. 329 * Keep the length of the unfragmentable part for fragmentation. 330 */ 331 optlen = 0; 332 if (exthdrs.ip6e_hbh) 333 optlen += exthdrs.ip6e_hbh->m_len; 334 if (exthdrs.ip6e_dest1) 335 optlen += exthdrs.ip6e_dest1->m_len; 336 if (exthdrs.ip6e_rthdr) 337 optlen += exthdrs.ip6e_rthdr->m_len; 338 unfragpartlen = optlen + sizeof(struct ip6_hdr); 339 340 /* NOTE: we don't add AH/ESP length here. do that later. */ 341 if (exthdrs.ip6e_dest2) 342 optlen += exthdrs.ip6e_dest2->m_len; 343 344 /* 345 * If we need IPsec, or there is at least one extension header, 346 * separate IP6 header from the payload. 347 */ 348 if ((needipsec || optlen) && !hdrsplit) { 349 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 350 m = NULL; 351 goto freehdrs; 352 } 353 m = exthdrs.ip6e_ip6; 354 hdrsplit++; 355 } 356 357 /* adjust pointer */ 358 ip6 = mtod(m, struct ip6_hdr *); 359 360 /* adjust mbuf packet header length */ 361 m->m_pkthdr.len += optlen; 362 plen = m->m_pkthdr.len - sizeof(*ip6); 363 364 /* If this is a jumbo payload, insert a jumbo payload option. */ 365 if (plen > IPV6_MAXPACKET) { 366 if (!hdrsplit) { 367 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 368 m = NULL; 369 goto freehdrs; 370 } 371 m = exthdrs.ip6e_ip6; 372 hdrsplit++; 373 } 374 /* adjust pointer */ 375 ip6 = mtod(m, struct ip6_hdr *); 376 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 377 goto freehdrs; 378 ip6->ip6_plen = 0; 379 } else 380 ip6->ip6_plen = htons(plen); 381 382 /* 383 * Concatenate headers and fill in next header fields. 384 * Here we have, on "m" 385 * IPv6 payload 386 * and we insert headers accordingly. Finally, we should be getting: 387 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 388 * 389 * during the header composing process, "m" points to IPv6 header. 390 * "mprev" points to an extension header prior to esp. 391 */ 392 u_char *nexthdrp = &ip6->ip6_nxt; 393 mprev = m; 394 395 /* 396 * we treat dest2 specially. this makes IPsec processing 397 * much easier. the goal here is to make mprev point the 398 * mbuf prior to dest2. 399 * 400 * result: IPv6 dest2 payload 401 * m and mprev will point to IPv6 header. 402 */ 403 if (exthdrs.ip6e_dest2) { 404 if (!hdrsplit) 405 panic("assumption failed: hdr not split"); 406 exthdrs.ip6e_dest2->m_next = m->m_next; 407 m->m_next = exthdrs.ip6e_dest2; 408 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 409 ip6->ip6_nxt = IPPROTO_DSTOPTS; 410 } 411 412 /* 413 * result: IPv6 hbh dest1 rthdr dest2 payload 414 * m will point to IPv6 header. mprev will point to the 415 * extension header prior to dest2 (rthdr in the above case). 416 */ 417 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 418 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 419 IPPROTO_DSTOPTS); 420 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 421 IPPROTO_ROUTING); 422 423 #ifdef IPSEC 424 if (!needipsec) 425 goto skip_ipsec2; 426 427 /* 428 * pointers after IPsec headers are not valid any more. 429 * other pointers need a great care too. 430 * (IPsec routines should not mangle mbufs prior to AH/ESP) 431 */ 432 exthdrs.ip6e_dest2 = NULL; 433 434 if (exthdrs.ip6e_rthdr) { 435 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 436 segleft_org = rh->ip6r_segleft; 437 rh->ip6r_segleft = 0; 438 } 439 440 bzero(&state, sizeof(state)); 441 state.m = m; 442 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 443 &needipsectun); 444 m = state.m; 445 if (error == EJUSTRETURN) { 446 /* 447 * We had a SP with a level of 'use' and no SA. We 448 * will just continue to process the packet without 449 * IPsec processing. 450 */ 451 ; 452 } else if (error) { 453 /* mbuf is already reclaimed in ipsec6_output_trans. */ 454 m = NULL; 455 switch (error) { 456 case EHOSTUNREACH: 457 case ENETUNREACH: 458 case EMSGSIZE: 459 case ENOBUFS: 460 case ENOMEM: 461 break; 462 default: 463 printf("[%s:%d] (ipsec): error code %d\n", 464 __func__, __LINE__, error); 465 /* FALLTHROUGH */ 466 case ENOENT: 467 /* don't show these error codes to the user */ 468 error = 0; 469 break; 470 } 471 goto bad; 472 } else if (!needipsectun) { 473 /* 474 * In the FAST IPSec case we have already 475 * re-injected the packet and it has been freed 476 * by the ipsec_done() function. So, just clean 477 * up after ourselves. 478 */ 479 m = NULL; 480 goto done; 481 } 482 if (exthdrs.ip6e_rthdr) { 483 /* ah6_output doesn't modify mbuf chain */ 484 rh->ip6r_segleft = segleft_org; 485 } 486 skip_ipsec2:; 487 #endif /* IPSEC */ 488 489 /* 490 * If there is a routing header, discard the packet. 491 */ 492 if (exthdrs.ip6e_rthdr) { 493 error = EINVAL; 494 goto bad; 495 } 496 497 /* Source address validation */ 498 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 499 (flags & IPV6_UNSPECSRC) == 0) { 500 error = EOPNOTSUPP; 501 V_ip6stat.ip6s_badscope++; 502 goto bad; 503 } 504 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 505 error = EOPNOTSUPP; 506 V_ip6stat.ip6s_badscope++; 507 goto bad; 508 } 509 510 V_ip6stat.ip6s_localout++; 511 512 /* 513 * Route packet. 514 */ 515 if (ro == 0) { 516 ro = &ip6route; 517 bzero((caddr_t)ro, sizeof(*ro)); 518 } 519 ro_pmtu = ro; 520 if (opt && opt->ip6po_rthdr) 521 ro = &opt->ip6po_route; 522 dst = (struct sockaddr_in6 *)&ro->ro_dst; 523 #ifdef FLOWTABLE 524 if (ro->ro_rt == NULL) { 525 struct flentry *fle; 526 527 /* 528 * The flow table returns route entries valid for up to 30 529 * seconds; we rely on the remainder of ip_output() taking no 530 * longer than that long for the stability of ro_rt. The 531 * flow ID assignment must have happened before this point. 532 */ 533 fle = flowtable_lookup_mbuf(V_ip6_ft, m, AF_INET6); 534 if (fle != NULL) 535 flow_to_route_in6(fle, ro); 536 } 537 #endif 538 again: 539 /* 540 * if specified, try to fill in the traffic class field. 541 * do not override if a non-zero value is already set. 542 * we check the diffserv field and the ecn field separately. 543 */ 544 if (opt && opt->ip6po_tclass >= 0) { 545 int mask = 0; 546 547 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 548 mask |= 0xfc; 549 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 550 mask |= 0x03; 551 if (mask != 0) 552 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 553 } 554 555 /* fill in or override the hop limit field, if necessary. */ 556 if (opt && opt->ip6po_hlim != -1) 557 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 558 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 559 if (im6o != NULL) 560 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 561 else 562 ip6->ip6_hlim = V_ip6_defmcasthlim; 563 } 564 565 #ifdef IPSEC 566 /* 567 * We may re-inject packets into the stack here. 568 */ 569 if (needipsec && needipsectun) { 570 struct ipsec_output_state state; 571 572 /* 573 * All the extension headers will become inaccessible 574 * (since they can be encrypted). 575 * Don't panic, we need no more updates to extension headers 576 * on inner IPv6 packet (since they are now encapsulated). 577 * 578 * IPv6 [ESP|AH] IPv6 [extension headers] payload 579 */ 580 bzero(&exthdrs, sizeof(exthdrs)); 581 exthdrs.ip6e_ip6 = m; 582 583 bzero(&state, sizeof(state)); 584 state.m = m; 585 state.ro = (struct route *)ro; 586 state.dst = (struct sockaddr *)dst; 587 588 error = ipsec6_output_tunnel(&state, sp, flags); 589 590 m = state.m; 591 ro = (struct route_in6 *)state.ro; 592 dst = (struct sockaddr_in6 *)state.dst; 593 if (error == EJUSTRETURN) { 594 /* 595 * We had a SP with a level of 'use' and no SA. We 596 * will just continue to process the packet without 597 * IPsec processing. 598 */ 599 ; 600 } else if (error) { 601 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 602 m0 = m = NULL; 603 m = NULL; 604 switch (error) { 605 case EHOSTUNREACH: 606 case ENETUNREACH: 607 case EMSGSIZE: 608 case ENOBUFS: 609 case ENOMEM: 610 break; 611 default: 612 printf("[%s:%d] (ipsec): error code %d\n", 613 __func__, __LINE__, error); 614 /* FALLTHROUGH */ 615 case ENOENT: 616 /* don't show these error codes to the user */ 617 error = 0; 618 break; 619 } 620 goto bad; 621 } else { 622 /* 623 * In the FAST IPSec case we have already 624 * re-injected the packet and it has been freed 625 * by the ipsec_done() function. So, just clean 626 * up after ourselves. 627 */ 628 m = NULL; 629 goto done; 630 } 631 632 exthdrs.ip6e_ip6 = m; 633 } 634 #endif /* IPSEC */ 635 636 /* adjust pointer */ 637 ip6 = mtod(m, struct ip6_hdr *); 638 639 if (ro->ro_rt && fwd_tag == NULL) { 640 rt = ro->ro_rt; 641 ifp = ro->ro_rt->rt_ifp; 642 } else { 643 if (fwd_tag == NULL) { 644 bzero(&dst_sa, sizeof(dst_sa)); 645 dst_sa.sin6_family = AF_INET6; 646 dst_sa.sin6_len = sizeof(dst_sa); 647 dst_sa.sin6_addr = ip6->ip6_dst; 648 } 649 error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp, 650 &rt, inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m)); 651 if (error != 0) { 652 if (ifp != NULL) 653 in6_ifstat_inc(ifp, ifs6_out_discard); 654 goto bad; 655 } 656 } 657 if (rt == NULL) { 658 /* 659 * If in6_selectroute() does not return a route entry, 660 * dst may not have been updated. 661 */ 662 *dst = dst_sa; /* XXX */ 663 } 664 665 /* 666 * then rt (for unicast) and ifp must be non-NULL valid values. 667 */ 668 if ((flags & IPV6_FORWARDING) == 0) { 669 /* XXX: the FORWARDING flag can be set for mrouting. */ 670 in6_ifstat_inc(ifp, ifs6_out_request); 671 } 672 if (rt != NULL) { 673 ia = (struct in6_ifaddr *)(rt->rt_ifa); 674 rt->rt_use++; 675 } 676 677 678 /* 679 * The outgoing interface must be in the zone of source and 680 * destination addresses. 681 */ 682 origifp = ifp; 683 684 src0 = ip6->ip6_src; 685 if (in6_setscope(&src0, origifp, &zone)) 686 goto badscope; 687 bzero(&src_sa, sizeof(src_sa)); 688 src_sa.sin6_family = AF_INET6; 689 src_sa.sin6_len = sizeof(src_sa); 690 src_sa.sin6_addr = ip6->ip6_src; 691 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 692 goto badscope; 693 694 dst0 = ip6->ip6_dst; 695 if (in6_setscope(&dst0, origifp, &zone)) 696 goto badscope; 697 /* re-initialize to be sure */ 698 bzero(&dst_sa, sizeof(dst_sa)); 699 dst_sa.sin6_family = AF_INET6; 700 dst_sa.sin6_len = sizeof(dst_sa); 701 dst_sa.sin6_addr = ip6->ip6_dst; 702 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 703 goto badscope; 704 } 705 706 /* We should use ia_ifp to support the case of 707 * sending packets to an address of our own. 708 */ 709 if (ia != NULL && ia->ia_ifp) 710 ifp = ia->ia_ifp; 711 712 /* scope check is done. */ 713 goto routefound; 714 715 badscope: 716 V_ip6stat.ip6s_badscope++; 717 in6_ifstat_inc(origifp, ifs6_out_discard); 718 if (error == 0) 719 error = EHOSTUNREACH; /* XXX */ 720 goto bad; 721 722 routefound: 723 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 724 if (opt && opt->ip6po_nextroute.ro_rt) { 725 /* 726 * The nexthop is explicitly specified by the 727 * application. We assume the next hop is an IPv6 728 * address. 729 */ 730 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 731 } 732 else if ((rt->rt_flags & RTF_GATEWAY)) 733 dst = (struct sockaddr_in6 *)rt->rt_gateway; 734 } 735 736 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 737 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 738 } else { 739 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 740 in6_ifstat_inc(ifp, ifs6_out_mcast); 741 /* 742 * Confirm that the outgoing interface supports multicast. 743 */ 744 if (!(ifp->if_flags & IFF_MULTICAST)) { 745 V_ip6stat.ip6s_noroute++; 746 in6_ifstat_inc(ifp, ifs6_out_discard); 747 error = ENETUNREACH; 748 goto bad; 749 } 750 if ((im6o == NULL && in6_mcast_loop) || 751 (im6o && im6o->im6o_multicast_loop)) { 752 /* 753 * Loop back multicast datagram if not expressly 754 * forbidden to do so, even if we have not joined 755 * the address; protocols will filter it later, 756 * thus deferring a hash lookup and lock acquisition 757 * at the expense of an m_copym(). 758 */ 759 ip6_mloopback(ifp, m, dst); 760 } else { 761 /* 762 * If we are acting as a multicast router, perform 763 * multicast forwarding as if the packet had just 764 * arrived on the interface to which we are about 765 * to send. The multicast forwarding function 766 * recursively calls this function, using the 767 * IPV6_FORWARDING flag to prevent infinite recursion. 768 * 769 * Multicasts that are looped back by ip6_mloopback(), 770 * above, will be forwarded by the ip6_input() routine, 771 * if necessary. 772 */ 773 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 774 /* 775 * XXX: ip6_mforward expects that rcvif is NULL 776 * when it is called from the originating path. 777 * However, it is not always the case, since 778 * some versions of MGETHDR() does not 779 * initialize the field. 780 */ 781 m->m_pkthdr.rcvif = NULL; 782 if (ip6_mforward(ip6, ifp, m) != 0) { 783 m_freem(m); 784 goto done; 785 } 786 } 787 } 788 /* 789 * Multicasts with a hoplimit of zero may be looped back, 790 * above, but must not be transmitted on a network. 791 * Also, multicasts addressed to the loopback interface 792 * are not sent -- the above call to ip6_mloopback() will 793 * loop back a copy if this host actually belongs to the 794 * destination group on the loopback interface. 795 */ 796 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 797 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 798 m_freem(m); 799 goto done; 800 } 801 } 802 803 /* 804 * Fill the outgoing inteface to tell the upper layer 805 * to increment per-interface statistics. 806 */ 807 if (ifpp) 808 *ifpp = ifp; 809 810 /* Determine path MTU. */ 811 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 812 &alwaysfrag, inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m))) != 0) 813 goto bad; 814 815 /* 816 * The caller of this function may specify to use the minimum MTU 817 * in some cases. 818 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 819 * setting. The logic is a bit complicated; by default, unicast 820 * packets will follow path MTU while multicast packets will be sent at 821 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 822 * including unicast ones will be sent at the minimum MTU. Multicast 823 * packets will always be sent at the minimum MTU unless 824 * IP6PO_MINMTU_DISABLE is explicitly specified. 825 * See RFC 3542 for more details. 826 */ 827 if (mtu > IPV6_MMTU) { 828 if ((flags & IPV6_MINMTU)) 829 mtu = IPV6_MMTU; 830 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 831 mtu = IPV6_MMTU; 832 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 833 (opt == NULL || 834 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 835 mtu = IPV6_MMTU; 836 } 837 } 838 839 /* 840 * clear embedded scope identifiers if necessary. 841 * in6_clearscope will touch the addresses only when necessary. 842 */ 843 in6_clearscope(&ip6->ip6_src); 844 in6_clearscope(&ip6->ip6_dst); 845 846 /* 847 * If the outgoing packet contains a hop-by-hop options header, 848 * it must be examined and processed even by the source node. 849 * (RFC 2460, section 4.) 850 */ 851 if (exthdrs.ip6e_hbh) { 852 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 853 u_int32_t dummy; /* XXX unused */ 854 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 855 856 #ifdef DIAGNOSTIC 857 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 858 panic("ip6e_hbh is not contiguous"); 859 #endif 860 /* 861 * XXX: if we have to send an ICMPv6 error to the sender, 862 * we need the M_LOOP flag since icmp6_error() expects 863 * the IPv6 and the hop-by-hop options header are 864 * contiguous unless the flag is set. 865 */ 866 m->m_flags |= M_LOOP; 867 m->m_pkthdr.rcvif = ifp; 868 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 869 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 870 &dummy, &plen) < 0) { 871 /* m was already freed at this point */ 872 error = EINVAL;/* better error? */ 873 goto done; 874 } 875 m->m_flags &= ~M_LOOP; /* XXX */ 876 m->m_pkthdr.rcvif = NULL; 877 } 878 879 /* Jump over all PFIL processing if hooks are not active. */ 880 if (!PFIL_HOOKED(&V_inet6_pfil_hook)) 881 goto passout; 882 883 odst = ip6->ip6_dst; 884 /* Run through list of hooks for output packets. */ 885 error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp); 886 if (error != 0 || m == NULL) 887 goto done; 888 ip6 = mtod(m, struct ip6_hdr *); 889 890 /* See if destination IP address was changed by packet filter. */ 891 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 892 m->m_flags |= M_SKIP_FIREWALL; 893 /* If destination is now ourself drop to ip6_input(). */ 894 if (in6_localip(&ip6->ip6_dst)) { 895 m->m_flags |= M_FASTFWD_OURS; 896 if (m->m_pkthdr.rcvif == NULL) 897 m->m_pkthdr.rcvif = V_loif; 898 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 899 m->m_pkthdr.csum_flags |= 900 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 901 m->m_pkthdr.csum_data = 0xffff; 902 } 903 #ifdef SCTP 904 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 905 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 906 #endif 907 error = netisr_queue(NETISR_IPV6, m); 908 goto done; 909 } else 910 goto again; /* Redo the routing table lookup. */ 911 } 912 913 /* See if local, if yes, send it to netisr. */ 914 if (m->m_flags & M_FASTFWD_OURS) { 915 if (m->m_pkthdr.rcvif == NULL) 916 m->m_pkthdr.rcvif = V_loif; 917 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 918 m->m_pkthdr.csum_flags |= 919 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 920 m->m_pkthdr.csum_data = 0xffff; 921 } 922 #ifdef SCTP 923 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 924 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 925 #endif 926 error = netisr_queue(NETISR_IPV6, m); 927 goto done; 928 } 929 /* Or forward to some other address? */ 930 if ((m->m_flags & M_IP6_NEXTHOP) && 931 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 932 dst = (struct sockaddr_in6 *)&ro->ro_dst; 933 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 934 m->m_flags |= M_SKIP_FIREWALL; 935 m->m_flags &= ~M_IP6_NEXTHOP; 936 m_tag_delete(m, fwd_tag); 937 goto again; 938 } 939 940 passout: 941 /* 942 * Send the packet to the outgoing interface. 943 * If necessary, do IPv6 fragmentation before sending. 944 * 945 * the logic here is rather complex: 946 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 947 * 1-a: send as is if tlen <= path mtu 948 * 1-b: fragment if tlen > path mtu 949 * 950 * 2: if user asks us not to fragment (dontfrag == 1) 951 * 2-a: send as is if tlen <= interface mtu 952 * 2-b: error if tlen > interface mtu 953 * 954 * 3: if we always need to attach fragment header (alwaysfrag == 1) 955 * always fragment 956 * 957 * 4: if dontfrag == 1 && alwaysfrag == 1 958 * error, as we cannot handle this conflicting request 959 */ 960 sw_csum = m->m_pkthdr.csum_flags; 961 if (!hdrsplit) { 962 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 963 sw_csum &= ~ifp->if_hwassist; 964 } else 965 tso = 0; 966 /* 967 * If we added extension headers, we will not do TSO and calculate the 968 * checksums ourselves for now. 969 * XXX-BZ Need a framework to know when the NIC can handle it, even 970 * with ext. hdrs. 971 */ 972 if (sw_csum & CSUM_DELAY_DATA_IPV6) { 973 sw_csum &= ~CSUM_DELAY_DATA_IPV6; 974 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 975 } 976 #ifdef SCTP 977 if (sw_csum & CSUM_SCTP_IPV6) { 978 sw_csum &= ~CSUM_SCTP_IPV6; 979 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 980 } 981 #endif 982 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 983 tlen = m->m_pkthdr.len; 984 985 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 986 dontfrag = 1; 987 else 988 dontfrag = 0; 989 if (dontfrag && alwaysfrag) { /* case 4 */ 990 /* conflicting request - can't transmit */ 991 error = EMSGSIZE; 992 goto bad; 993 } 994 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ 995 /* 996 * Even if the DONTFRAG option is specified, we cannot send the 997 * packet when the data length is larger than the MTU of the 998 * outgoing interface. 999 * Notify the error by sending IPV6_PATHMTU ancillary data as 1000 * well as returning an error code (the latter is not described 1001 * in the API spec.) 1002 */ 1003 u_int32_t mtu32; 1004 struct ip6ctlparam ip6cp; 1005 1006 mtu32 = (u_int32_t)mtu; 1007 bzero(&ip6cp, sizeof(ip6cp)); 1008 ip6cp.ip6c_cmdarg = (void *)&mtu32; 1009 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 1010 (void *)&ip6cp); 1011 1012 error = EMSGSIZE; 1013 goto bad; 1014 } 1015 1016 /* 1017 * transmit packet without fragmentation 1018 */ 1019 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 1020 struct in6_ifaddr *ia6; 1021 1022 ip6 = mtod(m, struct ip6_hdr *); 1023 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1024 if (ia6) { 1025 /* Record statistics for this interface address. */ 1026 ia6->ia_ifa.if_opackets++; 1027 ia6->ia_ifa.if_obytes += m->m_pkthdr.len; 1028 ifa_free(&ia6->ia_ifa); 1029 } 1030 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1031 goto done; 1032 } 1033 1034 /* 1035 * try to fragment the packet. case 1-b and 3 1036 */ 1037 if (mtu < IPV6_MMTU) { 1038 /* path MTU cannot be less than IPV6_MMTU */ 1039 error = EMSGSIZE; 1040 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1041 goto bad; 1042 } else if (ip6->ip6_plen == 0) { 1043 /* jumbo payload cannot be fragmented */ 1044 error = EMSGSIZE; 1045 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1046 goto bad; 1047 } else { 1048 struct mbuf **mnext, *m_frgpart; 1049 struct ip6_frag *ip6f; 1050 u_int32_t id = htonl(ip6_randomid()); 1051 u_char nextproto; 1052 1053 int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len; 1054 1055 /* 1056 * Too large for the destination or interface; 1057 * fragment if possible. 1058 * Must be able to put at least 8 bytes per fragment. 1059 */ 1060 hlen = unfragpartlen; 1061 if (mtu > IPV6_MAXPACKET) 1062 mtu = IPV6_MAXPACKET; 1063 1064 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 1065 if (len < 8) { 1066 error = EMSGSIZE; 1067 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1068 goto bad; 1069 } 1070 1071 /* 1072 * Verify that we have any chance at all of being able to queue 1073 * the packet or packet fragments 1074 */ 1075 if (qslots <= 0 || ((u_int)qslots * (mtu - hlen) 1076 < tlen /* - hlen */)) { 1077 error = ENOBUFS; 1078 V_ip6stat.ip6s_odropped++; 1079 goto bad; 1080 } 1081 1082 1083 /* 1084 * If the interface will not calculate checksums on 1085 * fragmented packets, then do it here. 1086 * XXX-BZ handle the hw offloading case. Need flags. 1087 */ 1088 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1089 in6_delayed_cksum(m, plen, hlen); 1090 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 1091 } 1092 #ifdef SCTP 1093 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 1094 sctp_delayed_cksum(m, hlen); 1095 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 1096 } 1097 #endif 1098 mnext = &m->m_nextpkt; 1099 1100 /* 1101 * Change the next header field of the last header in the 1102 * unfragmentable part. 1103 */ 1104 if (exthdrs.ip6e_rthdr) { 1105 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1106 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1107 } else if (exthdrs.ip6e_dest1) { 1108 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1109 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1110 } else if (exthdrs.ip6e_hbh) { 1111 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1112 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1113 } else { 1114 nextproto = ip6->ip6_nxt; 1115 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1116 } 1117 1118 /* 1119 * Loop through length of segment after first fragment, 1120 * make new header and copy data of each part and link onto 1121 * chain. 1122 */ 1123 m0 = m; 1124 for (off = hlen; off < tlen; off += len) { 1125 MGETHDR(m, M_NOWAIT, MT_HEADER); 1126 if (!m) { 1127 error = ENOBUFS; 1128 V_ip6stat.ip6s_odropped++; 1129 goto sendorfree; 1130 } 1131 m->m_pkthdr.rcvif = NULL; 1132 m->m_flags = m0->m_flags & M_COPYFLAGS; /* incl. FIB */ 1133 *mnext = m; 1134 mnext = &m->m_nextpkt; 1135 m->m_data += max_linkhdr; 1136 mhip6 = mtod(m, struct ip6_hdr *); 1137 *mhip6 = *ip6; 1138 m->m_len = sizeof(*mhip6); 1139 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 1140 if (error) { 1141 V_ip6stat.ip6s_odropped++; 1142 goto sendorfree; 1143 } 1144 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 1145 if (off + len >= tlen) 1146 len = tlen - off; 1147 else 1148 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1149 mhip6->ip6_plen = htons((u_short)(len + hlen + 1150 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 1151 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 1152 error = ENOBUFS; 1153 V_ip6stat.ip6s_odropped++; 1154 goto sendorfree; 1155 } 1156 m_cat(m, m_frgpart); 1157 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1158 m->m_pkthdr.rcvif = NULL; 1159 ip6f->ip6f_reserved = 0; 1160 ip6f->ip6f_ident = id; 1161 ip6f->ip6f_nxt = nextproto; 1162 V_ip6stat.ip6s_ofragments++; 1163 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1164 } 1165 1166 in6_ifstat_inc(ifp, ifs6_out_fragok); 1167 } 1168 1169 /* 1170 * Remove leading garbages. 1171 */ 1172 sendorfree: 1173 m = m0->m_nextpkt; 1174 m0->m_nextpkt = 0; 1175 m_freem(m0); 1176 for (m0 = m; m; m = m0) { 1177 m0 = m->m_nextpkt; 1178 m->m_nextpkt = 0; 1179 if (error == 0) { 1180 /* Record statistics for this interface address. */ 1181 if (ia) { 1182 ia->ia_ifa.if_opackets++; 1183 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 1184 } 1185 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1186 } else 1187 m_freem(m); 1188 } 1189 1190 if (error == 0) 1191 V_ip6stat.ip6s_fragmented++; 1192 1193 done: 1194 if (ro == &ip6route) 1195 RO_RTFREE(ro); 1196 if (ro_pmtu == &ip6route) 1197 RO_RTFREE(ro_pmtu); 1198 #ifdef IPSEC 1199 if (sp != NULL) 1200 KEY_FREESP(&sp); 1201 #endif 1202 1203 return (error); 1204 1205 freehdrs: 1206 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1207 m_freem(exthdrs.ip6e_dest1); 1208 m_freem(exthdrs.ip6e_rthdr); 1209 m_freem(exthdrs.ip6e_dest2); 1210 /* FALLTHROUGH */ 1211 bad: 1212 if (m) 1213 m_freem(m); 1214 goto done; 1215 } 1216 1217 static int 1218 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1219 { 1220 struct mbuf *m; 1221 1222 if (hlen > MCLBYTES) 1223 return (ENOBUFS); /* XXX */ 1224 1225 MGET(m, M_NOWAIT, MT_DATA); 1226 if (!m) 1227 return (ENOBUFS); 1228 1229 if (hlen > MLEN) { 1230 MCLGET(m, M_NOWAIT); 1231 if ((m->m_flags & M_EXT) == 0) { 1232 m_free(m); 1233 return (ENOBUFS); 1234 } 1235 } 1236 m->m_len = hlen; 1237 if (hdr) 1238 bcopy(hdr, mtod(m, caddr_t), hlen); 1239 1240 *mp = m; 1241 return (0); 1242 } 1243 1244 /* 1245 * Insert jumbo payload option. 1246 */ 1247 static int 1248 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1249 { 1250 struct mbuf *mopt; 1251 u_char *optbuf; 1252 u_int32_t v; 1253 1254 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1255 1256 /* 1257 * If there is no hop-by-hop options header, allocate new one. 1258 * If there is one but it doesn't have enough space to store the 1259 * jumbo payload option, allocate a cluster to store the whole options. 1260 * Otherwise, use it to store the options. 1261 */ 1262 if (exthdrs->ip6e_hbh == 0) { 1263 MGET(mopt, M_NOWAIT, MT_DATA); 1264 if (mopt == 0) 1265 return (ENOBUFS); 1266 mopt->m_len = JUMBOOPTLEN; 1267 optbuf = mtod(mopt, u_char *); 1268 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1269 exthdrs->ip6e_hbh = mopt; 1270 } else { 1271 struct ip6_hbh *hbh; 1272 1273 mopt = exthdrs->ip6e_hbh; 1274 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1275 /* 1276 * XXX assumption: 1277 * - exthdrs->ip6e_hbh is not referenced from places 1278 * other than exthdrs. 1279 * - exthdrs->ip6e_hbh is not an mbuf chain. 1280 */ 1281 int oldoptlen = mopt->m_len; 1282 struct mbuf *n; 1283 1284 /* 1285 * XXX: give up if the whole (new) hbh header does 1286 * not fit even in an mbuf cluster. 1287 */ 1288 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1289 return (ENOBUFS); 1290 1291 /* 1292 * As a consequence, we must always prepare a cluster 1293 * at this point. 1294 */ 1295 MGET(n, M_NOWAIT, MT_DATA); 1296 if (n) { 1297 MCLGET(n, M_NOWAIT); 1298 if ((n->m_flags & M_EXT) == 0) { 1299 m_freem(n); 1300 n = NULL; 1301 } 1302 } 1303 if (!n) 1304 return (ENOBUFS); 1305 n->m_len = oldoptlen + JUMBOOPTLEN; 1306 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1307 oldoptlen); 1308 optbuf = mtod(n, caddr_t) + oldoptlen; 1309 m_freem(mopt); 1310 mopt = exthdrs->ip6e_hbh = n; 1311 } else { 1312 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1313 mopt->m_len += JUMBOOPTLEN; 1314 } 1315 optbuf[0] = IP6OPT_PADN; 1316 optbuf[1] = 1; 1317 1318 /* 1319 * Adjust the header length according to the pad and 1320 * the jumbo payload option. 1321 */ 1322 hbh = mtod(mopt, struct ip6_hbh *); 1323 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1324 } 1325 1326 /* fill in the option. */ 1327 optbuf[2] = IP6OPT_JUMBO; 1328 optbuf[3] = 4; 1329 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1330 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1331 1332 /* finally, adjust the packet header length */ 1333 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1334 1335 return (0); 1336 #undef JUMBOOPTLEN 1337 } 1338 1339 /* 1340 * Insert fragment header and copy unfragmentable header portions. 1341 */ 1342 static int 1343 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1344 struct ip6_frag **frghdrp) 1345 { 1346 struct mbuf *n, *mlast; 1347 1348 if (hlen > sizeof(struct ip6_hdr)) { 1349 n = m_copym(m0, sizeof(struct ip6_hdr), 1350 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1351 if (n == 0) 1352 return (ENOBUFS); 1353 m->m_next = n; 1354 } else 1355 n = m; 1356 1357 /* Search for the last mbuf of unfragmentable part. */ 1358 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1359 ; 1360 1361 if ((mlast->m_flags & M_EXT) == 0 && 1362 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1363 /* use the trailing space of the last mbuf for the fragment hdr */ 1364 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1365 mlast->m_len); 1366 mlast->m_len += sizeof(struct ip6_frag); 1367 m->m_pkthdr.len += sizeof(struct ip6_frag); 1368 } else { 1369 /* allocate a new mbuf for the fragment header */ 1370 struct mbuf *mfrg; 1371 1372 MGET(mfrg, M_NOWAIT, MT_DATA); 1373 if (mfrg == 0) 1374 return (ENOBUFS); 1375 mfrg->m_len = sizeof(struct ip6_frag); 1376 *frghdrp = mtod(mfrg, struct ip6_frag *); 1377 mlast->m_next = mfrg; 1378 } 1379 1380 return (0); 1381 } 1382 1383 static int 1384 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro, 1385 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup, 1386 int *alwaysfragp, u_int fibnum) 1387 { 1388 u_int32_t mtu = 0; 1389 int alwaysfrag = 0; 1390 int error = 0; 1391 1392 if (ro_pmtu != ro) { 1393 /* The first hop and the final destination may differ. */ 1394 struct sockaddr_in6 *sa6_dst = 1395 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1396 if (ro_pmtu->ro_rt && 1397 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 || 1398 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) { 1399 RTFREE(ro_pmtu->ro_rt); 1400 ro_pmtu->ro_rt = (struct rtentry *)NULL; 1401 } 1402 if (ro_pmtu->ro_rt == NULL) { 1403 bzero(sa6_dst, sizeof(*sa6_dst)); 1404 sa6_dst->sin6_family = AF_INET6; 1405 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1406 sa6_dst->sin6_addr = *dst; 1407 1408 in6_rtalloc(ro_pmtu, fibnum); 1409 } 1410 } 1411 if (ro_pmtu->ro_rt) { 1412 u_int32_t ifmtu; 1413 struct in_conninfo inc; 1414 1415 bzero(&inc, sizeof(inc)); 1416 inc.inc_flags |= INC_ISIPV6; 1417 inc.inc6_faddr = *dst; 1418 1419 if (ifp == NULL) 1420 ifp = ro_pmtu->ro_rt->rt_ifp; 1421 ifmtu = IN6_LINKMTU(ifp); 1422 mtu = tcp_hc_getmtu(&inc); 1423 if (mtu) 1424 mtu = min(mtu, ro_pmtu->ro_rt->rt_rmx.rmx_mtu); 1425 else 1426 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 1427 if (mtu == 0) 1428 mtu = ifmtu; 1429 else if (mtu < IPV6_MMTU) { 1430 /* 1431 * RFC2460 section 5, last paragraph: 1432 * if we record ICMPv6 too big message with 1433 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1434 * or smaller, with framgent header attached. 1435 * (fragment header is needed regardless from the 1436 * packet size, for translators to identify packets) 1437 */ 1438 alwaysfrag = 1; 1439 mtu = IPV6_MMTU; 1440 } else if (mtu > ifmtu) { 1441 /* 1442 * The MTU on the route is larger than the MTU on 1443 * the interface! This shouldn't happen, unless the 1444 * MTU of the interface has been changed after the 1445 * interface was brought up. Change the MTU in the 1446 * route to match the interface MTU (as long as the 1447 * field isn't locked). 1448 */ 1449 mtu = ifmtu; 1450 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; 1451 } 1452 } else if (ifp) { 1453 mtu = IN6_LINKMTU(ifp); 1454 } else 1455 error = EHOSTUNREACH; /* XXX */ 1456 1457 *mtup = mtu; 1458 if (alwaysfragp) 1459 *alwaysfragp = alwaysfrag; 1460 return (error); 1461 } 1462 1463 /* 1464 * IP6 socket option processing. 1465 */ 1466 int 1467 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1468 { 1469 int optdatalen, uproto; 1470 void *optdata; 1471 struct inpcb *in6p = sotoinpcb(so); 1472 int error, optval; 1473 int level, op, optname; 1474 int optlen; 1475 struct thread *td; 1476 1477 level = sopt->sopt_level; 1478 op = sopt->sopt_dir; 1479 optname = sopt->sopt_name; 1480 optlen = sopt->sopt_valsize; 1481 td = sopt->sopt_td; 1482 error = 0; 1483 optval = 0; 1484 uproto = (int)so->so_proto->pr_protocol; 1485 1486 if (level != IPPROTO_IPV6) { 1487 error = EINVAL; 1488 1489 if (sopt->sopt_level == SOL_SOCKET && 1490 sopt->sopt_dir == SOPT_SET) { 1491 switch (sopt->sopt_name) { 1492 case SO_REUSEADDR: 1493 INP_WLOCK(in6p); 1494 if (IN_MULTICAST(ntohl(in6p->inp_laddr.s_addr))) { 1495 if ((so->so_options & 1496 (SO_REUSEADDR | SO_REUSEPORT)) != 0) 1497 in6p->inp_flags2 |= INP_REUSEPORT; 1498 else 1499 in6p->inp_flags2 &= ~INP_REUSEPORT; 1500 } 1501 INP_WUNLOCK(in6p); 1502 error = 0; 1503 break; 1504 case SO_REUSEPORT: 1505 INP_WLOCK(in6p); 1506 if ((so->so_options & SO_REUSEPORT) != 0) 1507 in6p->inp_flags2 |= INP_REUSEPORT; 1508 else 1509 in6p->inp_flags2 &= ~INP_REUSEPORT; 1510 INP_WUNLOCK(in6p); 1511 error = 0; 1512 break; 1513 case SO_SETFIB: 1514 INP_WLOCK(in6p); 1515 in6p->inp_inc.inc_fibnum = so->so_fibnum; 1516 INP_WUNLOCK(in6p); 1517 error = 0; 1518 break; 1519 default: 1520 break; 1521 } 1522 } 1523 } else { /* level == IPPROTO_IPV6 */ 1524 switch (op) { 1525 1526 case SOPT_SET: 1527 switch (optname) { 1528 case IPV6_2292PKTOPTIONS: 1529 #ifdef IPV6_PKTOPTIONS 1530 case IPV6_PKTOPTIONS: 1531 #endif 1532 { 1533 struct mbuf *m; 1534 1535 error = soopt_getm(sopt, &m); /* XXX */ 1536 if (error != 0) 1537 break; 1538 error = soopt_mcopyin(sopt, m); /* XXX */ 1539 if (error != 0) 1540 break; 1541 error = ip6_pcbopts(&in6p->in6p_outputopts, 1542 m, so, sopt); 1543 m_freem(m); /* XXX */ 1544 break; 1545 } 1546 1547 /* 1548 * Use of some Hop-by-Hop options or some 1549 * Destination options, might require special 1550 * privilege. That is, normal applications 1551 * (without special privilege) might be forbidden 1552 * from setting certain options in outgoing packets, 1553 * and might never see certain options in received 1554 * packets. [RFC 2292 Section 6] 1555 * KAME specific note: 1556 * KAME prevents non-privileged users from sending or 1557 * receiving ANY hbh/dst options in order to avoid 1558 * overhead of parsing options in the kernel. 1559 */ 1560 case IPV6_RECVHOPOPTS: 1561 case IPV6_RECVDSTOPTS: 1562 case IPV6_RECVRTHDRDSTOPTS: 1563 if (td != NULL) { 1564 error = priv_check(td, 1565 PRIV_NETINET_SETHDROPTS); 1566 if (error) 1567 break; 1568 } 1569 /* FALLTHROUGH */ 1570 case IPV6_UNICAST_HOPS: 1571 case IPV6_HOPLIMIT: 1572 case IPV6_FAITH: 1573 1574 case IPV6_RECVPKTINFO: 1575 case IPV6_RECVHOPLIMIT: 1576 case IPV6_RECVRTHDR: 1577 case IPV6_RECVPATHMTU: 1578 case IPV6_RECVTCLASS: 1579 case IPV6_V6ONLY: 1580 case IPV6_AUTOFLOWLABEL: 1581 case IPV6_BINDANY: 1582 if (optname == IPV6_BINDANY && td != NULL) { 1583 error = priv_check(td, 1584 PRIV_NETINET_BINDANY); 1585 if (error) 1586 break; 1587 } 1588 1589 if (optlen != sizeof(int)) { 1590 error = EINVAL; 1591 break; 1592 } 1593 error = sooptcopyin(sopt, &optval, 1594 sizeof optval, sizeof optval); 1595 if (error) 1596 break; 1597 switch (optname) { 1598 1599 case IPV6_UNICAST_HOPS: 1600 if (optval < -1 || optval >= 256) 1601 error = EINVAL; 1602 else { 1603 /* -1 = kernel default */ 1604 in6p->in6p_hops = optval; 1605 if ((in6p->inp_vflag & 1606 INP_IPV4) != 0) 1607 in6p->inp_ip_ttl = optval; 1608 } 1609 break; 1610 #define OPTSET(bit) \ 1611 do { \ 1612 INP_WLOCK(in6p); \ 1613 if (optval) \ 1614 in6p->inp_flags |= (bit); \ 1615 else \ 1616 in6p->inp_flags &= ~(bit); \ 1617 INP_WUNLOCK(in6p); \ 1618 } while (/*CONSTCOND*/ 0) 1619 #define OPTSET2292(bit) \ 1620 do { \ 1621 INP_WLOCK(in6p); \ 1622 in6p->inp_flags |= IN6P_RFC2292; \ 1623 if (optval) \ 1624 in6p->inp_flags |= (bit); \ 1625 else \ 1626 in6p->inp_flags &= ~(bit); \ 1627 INP_WUNLOCK(in6p); \ 1628 } while (/*CONSTCOND*/ 0) 1629 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1630 1631 case IPV6_RECVPKTINFO: 1632 /* cannot mix with RFC2292 */ 1633 if (OPTBIT(IN6P_RFC2292)) { 1634 error = EINVAL; 1635 break; 1636 } 1637 OPTSET(IN6P_PKTINFO); 1638 break; 1639 1640 case IPV6_HOPLIMIT: 1641 { 1642 struct ip6_pktopts **optp; 1643 1644 /* cannot mix with RFC2292 */ 1645 if (OPTBIT(IN6P_RFC2292)) { 1646 error = EINVAL; 1647 break; 1648 } 1649 optp = &in6p->in6p_outputopts; 1650 error = ip6_pcbopt(IPV6_HOPLIMIT, 1651 (u_char *)&optval, sizeof(optval), 1652 optp, (td != NULL) ? td->td_ucred : 1653 NULL, uproto); 1654 break; 1655 } 1656 1657 case IPV6_RECVHOPLIMIT: 1658 /* cannot mix with RFC2292 */ 1659 if (OPTBIT(IN6P_RFC2292)) { 1660 error = EINVAL; 1661 break; 1662 } 1663 OPTSET(IN6P_HOPLIMIT); 1664 break; 1665 1666 case IPV6_RECVHOPOPTS: 1667 /* cannot mix with RFC2292 */ 1668 if (OPTBIT(IN6P_RFC2292)) { 1669 error = EINVAL; 1670 break; 1671 } 1672 OPTSET(IN6P_HOPOPTS); 1673 break; 1674 1675 case IPV6_RECVDSTOPTS: 1676 /* cannot mix with RFC2292 */ 1677 if (OPTBIT(IN6P_RFC2292)) { 1678 error = EINVAL; 1679 break; 1680 } 1681 OPTSET(IN6P_DSTOPTS); 1682 break; 1683 1684 case IPV6_RECVRTHDRDSTOPTS: 1685 /* cannot mix with RFC2292 */ 1686 if (OPTBIT(IN6P_RFC2292)) { 1687 error = EINVAL; 1688 break; 1689 } 1690 OPTSET(IN6P_RTHDRDSTOPTS); 1691 break; 1692 1693 case IPV6_RECVRTHDR: 1694 /* cannot mix with RFC2292 */ 1695 if (OPTBIT(IN6P_RFC2292)) { 1696 error = EINVAL; 1697 break; 1698 } 1699 OPTSET(IN6P_RTHDR); 1700 break; 1701 1702 case IPV6_FAITH: 1703 OPTSET(INP_FAITH); 1704 break; 1705 1706 case IPV6_RECVPATHMTU: 1707 /* 1708 * We ignore this option for TCP 1709 * sockets. 1710 * (RFC3542 leaves this case 1711 * unspecified.) 1712 */ 1713 if (uproto != IPPROTO_TCP) 1714 OPTSET(IN6P_MTU); 1715 break; 1716 1717 case IPV6_V6ONLY: 1718 /* 1719 * make setsockopt(IPV6_V6ONLY) 1720 * available only prior to bind(2). 1721 * see ipng mailing list, Jun 22 2001. 1722 */ 1723 if (in6p->inp_lport || 1724 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1725 error = EINVAL; 1726 break; 1727 } 1728 OPTSET(IN6P_IPV6_V6ONLY); 1729 if (optval) 1730 in6p->inp_vflag &= ~INP_IPV4; 1731 else 1732 in6p->inp_vflag |= INP_IPV4; 1733 break; 1734 case IPV6_RECVTCLASS: 1735 /* cannot mix with RFC2292 XXX */ 1736 if (OPTBIT(IN6P_RFC2292)) { 1737 error = EINVAL; 1738 break; 1739 } 1740 OPTSET(IN6P_TCLASS); 1741 break; 1742 case IPV6_AUTOFLOWLABEL: 1743 OPTSET(IN6P_AUTOFLOWLABEL); 1744 break; 1745 1746 case IPV6_BINDANY: 1747 OPTSET(INP_BINDANY); 1748 break; 1749 } 1750 break; 1751 1752 case IPV6_TCLASS: 1753 case IPV6_DONTFRAG: 1754 case IPV6_USE_MIN_MTU: 1755 case IPV6_PREFER_TEMPADDR: 1756 if (optlen != sizeof(optval)) { 1757 error = EINVAL; 1758 break; 1759 } 1760 error = sooptcopyin(sopt, &optval, 1761 sizeof optval, sizeof optval); 1762 if (error) 1763 break; 1764 { 1765 struct ip6_pktopts **optp; 1766 optp = &in6p->in6p_outputopts; 1767 error = ip6_pcbopt(optname, 1768 (u_char *)&optval, sizeof(optval), 1769 optp, (td != NULL) ? td->td_ucred : 1770 NULL, uproto); 1771 break; 1772 } 1773 1774 case IPV6_2292PKTINFO: 1775 case IPV6_2292HOPLIMIT: 1776 case IPV6_2292HOPOPTS: 1777 case IPV6_2292DSTOPTS: 1778 case IPV6_2292RTHDR: 1779 /* RFC 2292 */ 1780 if (optlen != sizeof(int)) { 1781 error = EINVAL; 1782 break; 1783 } 1784 error = sooptcopyin(sopt, &optval, 1785 sizeof optval, sizeof optval); 1786 if (error) 1787 break; 1788 switch (optname) { 1789 case IPV6_2292PKTINFO: 1790 OPTSET2292(IN6P_PKTINFO); 1791 break; 1792 case IPV6_2292HOPLIMIT: 1793 OPTSET2292(IN6P_HOPLIMIT); 1794 break; 1795 case IPV6_2292HOPOPTS: 1796 /* 1797 * Check super-user privilege. 1798 * See comments for IPV6_RECVHOPOPTS. 1799 */ 1800 if (td != NULL) { 1801 error = priv_check(td, 1802 PRIV_NETINET_SETHDROPTS); 1803 if (error) 1804 return (error); 1805 } 1806 OPTSET2292(IN6P_HOPOPTS); 1807 break; 1808 case IPV6_2292DSTOPTS: 1809 if (td != NULL) { 1810 error = priv_check(td, 1811 PRIV_NETINET_SETHDROPTS); 1812 if (error) 1813 return (error); 1814 } 1815 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1816 break; 1817 case IPV6_2292RTHDR: 1818 OPTSET2292(IN6P_RTHDR); 1819 break; 1820 } 1821 break; 1822 case IPV6_PKTINFO: 1823 case IPV6_HOPOPTS: 1824 case IPV6_RTHDR: 1825 case IPV6_DSTOPTS: 1826 case IPV6_RTHDRDSTOPTS: 1827 case IPV6_NEXTHOP: 1828 { 1829 /* new advanced API (RFC3542) */ 1830 u_char *optbuf; 1831 u_char optbuf_storage[MCLBYTES]; 1832 int optlen; 1833 struct ip6_pktopts **optp; 1834 1835 /* cannot mix with RFC2292 */ 1836 if (OPTBIT(IN6P_RFC2292)) { 1837 error = EINVAL; 1838 break; 1839 } 1840 1841 /* 1842 * We only ensure valsize is not too large 1843 * here. Further validation will be done 1844 * later. 1845 */ 1846 error = sooptcopyin(sopt, optbuf_storage, 1847 sizeof(optbuf_storage), 0); 1848 if (error) 1849 break; 1850 optlen = sopt->sopt_valsize; 1851 optbuf = optbuf_storage; 1852 optp = &in6p->in6p_outputopts; 1853 error = ip6_pcbopt(optname, optbuf, optlen, 1854 optp, (td != NULL) ? td->td_ucred : NULL, 1855 uproto); 1856 break; 1857 } 1858 #undef OPTSET 1859 1860 case IPV6_MULTICAST_IF: 1861 case IPV6_MULTICAST_HOPS: 1862 case IPV6_MULTICAST_LOOP: 1863 case IPV6_JOIN_GROUP: 1864 case IPV6_LEAVE_GROUP: 1865 case IPV6_MSFILTER: 1866 case MCAST_BLOCK_SOURCE: 1867 case MCAST_UNBLOCK_SOURCE: 1868 case MCAST_JOIN_GROUP: 1869 case MCAST_LEAVE_GROUP: 1870 case MCAST_JOIN_SOURCE_GROUP: 1871 case MCAST_LEAVE_SOURCE_GROUP: 1872 error = ip6_setmoptions(in6p, sopt); 1873 break; 1874 1875 case IPV6_PORTRANGE: 1876 error = sooptcopyin(sopt, &optval, 1877 sizeof optval, sizeof optval); 1878 if (error) 1879 break; 1880 1881 INP_WLOCK(in6p); 1882 switch (optval) { 1883 case IPV6_PORTRANGE_DEFAULT: 1884 in6p->inp_flags &= ~(INP_LOWPORT); 1885 in6p->inp_flags &= ~(INP_HIGHPORT); 1886 break; 1887 1888 case IPV6_PORTRANGE_HIGH: 1889 in6p->inp_flags &= ~(INP_LOWPORT); 1890 in6p->inp_flags |= INP_HIGHPORT; 1891 break; 1892 1893 case IPV6_PORTRANGE_LOW: 1894 in6p->inp_flags &= ~(INP_HIGHPORT); 1895 in6p->inp_flags |= INP_LOWPORT; 1896 break; 1897 1898 default: 1899 error = EINVAL; 1900 break; 1901 } 1902 INP_WUNLOCK(in6p); 1903 break; 1904 1905 #ifdef IPSEC 1906 case IPV6_IPSEC_POLICY: 1907 { 1908 caddr_t req; 1909 struct mbuf *m; 1910 1911 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1912 break; 1913 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1914 break; 1915 req = mtod(m, caddr_t); 1916 error = ipsec_set_policy(in6p, optname, req, 1917 m->m_len, (sopt->sopt_td != NULL) ? 1918 sopt->sopt_td->td_ucred : NULL); 1919 m_freem(m); 1920 break; 1921 } 1922 #endif /* IPSEC */ 1923 1924 default: 1925 error = ENOPROTOOPT; 1926 break; 1927 } 1928 break; 1929 1930 case SOPT_GET: 1931 switch (optname) { 1932 1933 case IPV6_2292PKTOPTIONS: 1934 #ifdef IPV6_PKTOPTIONS 1935 case IPV6_PKTOPTIONS: 1936 #endif 1937 /* 1938 * RFC3542 (effectively) deprecated the 1939 * semantics of the 2292-style pktoptions. 1940 * Since it was not reliable in nature (i.e., 1941 * applications had to expect the lack of some 1942 * information after all), it would make sense 1943 * to simplify this part by always returning 1944 * empty data. 1945 */ 1946 sopt->sopt_valsize = 0; 1947 break; 1948 1949 case IPV6_RECVHOPOPTS: 1950 case IPV6_RECVDSTOPTS: 1951 case IPV6_RECVRTHDRDSTOPTS: 1952 case IPV6_UNICAST_HOPS: 1953 case IPV6_RECVPKTINFO: 1954 case IPV6_RECVHOPLIMIT: 1955 case IPV6_RECVRTHDR: 1956 case IPV6_RECVPATHMTU: 1957 1958 case IPV6_FAITH: 1959 case IPV6_V6ONLY: 1960 case IPV6_PORTRANGE: 1961 case IPV6_RECVTCLASS: 1962 case IPV6_AUTOFLOWLABEL: 1963 case IPV6_BINDANY: 1964 switch (optname) { 1965 1966 case IPV6_RECVHOPOPTS: 1967 optval = OPTBIT(IN6P_HOPOPTS); 1968 break; 1969 1970 case IPV6_RECVDSTOPTS: 1971 optval = OPTBIT(IN6P_DSTOPTS); 1972 break; 1973 1974 case IPV6_RECVRTHDRDSTOPTS: 1975 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1976 break; 1977 1978 case IPV6_UNICAST_HOPS: 1979 optval = in6p->in6p_hops; 1980 break; 1981 1982 case IPV6_RECVPKTINFO: 1983 optval = OPTBIT(IN6P_PKTINFO); 1984 break; 1985 1986 case IPV6_RECVHOPLIMIT: 1987 optval = OPTBIT(IN6P_HOPLIMIT); 1988 break; 1989 1990 case IPV6_RECVRTHDR: 1991 optval = OPTBIT(IN6P_RTHDR); 1992 break; 1993 1994 case IPV6_RECVPATHMTU: 1995 optval = OPTBIT(IN6P_MTU); 1996 break; 1997 1998 case IPV6_FAITH: 1999 optval = OPTBIT(INP_FAITH); 2000 break; 2001 2002 case IPV6_V6ONLY: 2003 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2004 break; 2005 2006 case IPV6_PORTRANGE: 2007 { 2008 int flags; 2009 flags = in6p->inp_flags; 2010 if (flags & INP_HIGHPORT) 2011 optval = IPV6_PORTRANGE_HIGH; 2012 else if (flags & INP_LOWPORT) 2013 optval = IPV6_PORTRANGE_LOW; 2014 else 2015 optval = 0; 2016 break; 2017 } 2018 case IPV6_RECVTCLASS: 2019 optval = OPTBIT(IN6P_TCLASS); 2020 break; 2021 2022 case IPV6_AUTOFLOWLABEL: 2023 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2024 break; 2025 2026 case IPV6_BINDANY: 2027 optval = OPTBIT(INP_BINDANY); 2028 break; 2029 } 2030 if (error) 2031 break; 2032 error = sooptcopyout(sopt, &optval, 2033 sizeof optval); 2034 break; 2035 2036 case IPV6_PATHMTU: 2037 { 2038 u_long pmtu = 0; 2039 struct ip6_mtuinfo mtuinfo; 2040 struct route_in6 sro; 2041 2042 bzero(&sro, sizeof(sro)); 2043 2044 if (!(so->so_state & SS_ISCONNECTED)) 2045 return (ENOTCONN); 2046 /* 2047 * XXX: we dot not consider the case of source 2048 * routing, or optional information to specify 2049 * the outgoing interface. 2050 */ 2051 error = ip6_getpmtu(&sro, NULL, NULL, 2052 &in6p->in6p_faddr, &pmtu, NULL, 2053 so->so_fibnum); 2054 if (sro.ro_rt) 2055 RTFREE(sro.ro_rt); 2056 if (error) 2057 break; 2058 if (pmtu > IPV6_MAXPACKET) 2059 pmtu = IPV6_MAXPACKET; 2060 2061 bzero(&mtuinfo, sizeof(mtuinfo)); 2062 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2063 optdata = (void *)&mtuinfo; 2064 optdatalen = sizeof(mtuinfo); 2065 error = sooptcopyout(sopt, optdata, 2066 optdatalen); 2067 break; 2068 } 2069 2070 case IPV6_2292PKTINFO: 2071 case IPV6_2292HOPLIMIT: 2072 case IPV6_2292HOPOPTS: 2073 case IPV6_2292RTHDR: 2074 case IPV6_2292DSTOPTS: 2075 switch (optname) { 2076 case IPV6_2292PKTINFO: 2077 optval = OPTBIT(IN6P_PKTINFO); 2078 break; 2079 case IPV6_2292HOPLIMIT: 2080 optval = OPTBIT(IN6P_HOPLIMIT); 2081 break; 2082 case IPV6_2292HOPOPTS: 2083 optval = OPTBIT(IN6P_HOPOPTS); 2084 break; 2085 case IPV6_2292RTHDR: 2086 optval = OPTBIT(IN6P_RTHDR); 2087 break; 2088 case IPV6_2292DSTOPTS: 2089 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2090 break; 2091 } 2092 error = sooptcopyout(sopt, &optval, 2093 sizeof optval); 2094 break; 2095 case IPV6_PKTINFO: 2096 case IPV6_HOPOPTS: 2097 case IPV6_RTHDR: 2098 case IPV6_DSTOPTS: 2099 case IPV6_RTHDRDSTOPTS: 2100 case IPV6_NEXTHOP: 2101 case IPV6_TCLASS: 2102 case IPV6_DONTFRAG: 2103 case IPV6_USE_MIN_MTU: 2104 case IPV6_PREFER_TEMPADDR: 2105 error = ip6_getpcbopt(in6p->in6p_outputopts, 2106 optname, sopt); 2107 break; 2108 2109 case IPV6_MULTICAST_IF: 2110 case IPV6_MULTICAST_HOPS: 2111 case IPV6_MULTICAST_LOOP: 2112 case IPV6_MSFILTER: 2113 error = ip6_getmoptions(in6p, sopt); 2114 break; 2115 2116 #ifdef IPSEC 2117 case IPV6_IPSEC_POLICY: 2118 { 2119 caddr_t req = NULL; 2120 size_t len = 0; 2121 struct mbuf *m = NULL; 2122 struct mbuf **mp = &m; 2123 size_t ovalsize = sopt->sopt_valsize; 2124 caddr_t oval = (caddr_t)sopt->sopt_val; 2125 2126 error = soopt_getm(sopt, &m); /* XXX */ 2127 if (error != 0) 2128 break; 2129 error = soopt_mcopyin(sopt, m); /* XXX */ 2130 if (error != 0) 2131 break; 2132 sopt->sopt_valsize = ovalsize; 2133 sopt->sopt_val = oval; 2134 if (m) { 2135 req = mtod(m, caddr_t); 2136 len = m->m_len; 2137 } 2138 error = ipsec_get_policy(in6p, req, len, mp); 2139 if (error == 0) 2140 error = soopt_mcopyout(sopt, m); /* XXX */ 2141 if (error == 0 && m) 2142 m_freem(m); 2143 break; 2144 } 2145 #endif /* IPSEC */ 2146 2147 default: 2148 error = ENOPROTOOPT; 2149 break; 2150 } 2151 break; 2152 } 2153 } 2154 return (error); 2155 } 2156 2157 int 2158 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2159 { 2160 int error = 0, optval, optlen; 2161 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2162 struct inpcb *in6p = sotoinpcb(so); 2163 int level, op, optname; 2164 2165 level = sopt->sopt_level; 2166 op = sopt->sopt_dir; 2167 optname = sopt->sopt_name; 2168 optlen = sopt->sopt_valsize; 2169 2170 if (level != IPPROTO_IPV6) { 2171 return (EINVAL); 2172 } 2173 2174 switch (optname) { 2175 case IPV6_CHECKSUM: 2176 /* 2177 * For ICMPv6 sockets, no modification allowed for checksum 2178 * offset, permit "no change" values to help existing apps. 2179 * 2180 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2181 * for an ICMPv6 socket will fail." 2182 * The current behavior does not meet RFC3542. 2183 */ 2184 switch (op) { 2185 case SOPT_SET: 2186 if (optlen != sizeof(int)) { 2187 error = EINVAL; 2188 break; 2189 } 2190 error = sooptcopyin(sopt, &optval, sizeof(optval), 2191 sizeof(optval)); 2192 if (error) 2193 break; 2194 if ((optval % 2) != 0) { 2195 /* the API assumes even offset values */ 2196 error = EINVAL; 2197 } else if (so->so_proto->pr_protocol == 2198 IPPROTO_ICMPV6) { 2199 if (optval != icmp6off) 2200 error = EINVAL; 2201 } else 2202 in6p->in6p_cksum = optval; 2203 break; 2204 2205 case SOPT_GET: 2206 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2207 optval = icmp6off; 2208 else 2209 optval = in6p->in6p_cksum; 2210 2211 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2212 break; 2213 2214 default: 2215 error = EINVAL; 2216 break; 2217 } 2218 break; 2219 2220 default: 2221 error = ENOPROTOOPT; 2222 break; 2223 } 2224 2225 return (error); 2226 } 2227 2228 /* 2229 * Set up IP6 options in pcb for insertion in output packets or 2230 * specifying behavior of outgoing packets. 2231 */ 2232 static int 2233 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2234 struct socket *so, struct sockopt *sopt) 2235 { 2236 struct ip6_pktopts *opt = *pktopt; 2237 int error = 0; 2238 struct thread *td = sopt->sopt_td; 2239 2240 /* turn off any old options. */ 2241 if (opt) { 2242 #ifdef DIAGNOSTIC 2243 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2244 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2245 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2246 printf("ip6_pcbopts: all specified options are cleared.\n"); 2247 #endif 2248 ip6_clearpktopts(opt, -1); 2249 } else 2250 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2251 *pktopt = NULL; 2252 2253 if (!m || m->m_len == 0) { 2254 /* 2255 * Only turning off any previous options, regardless of 2256 * whether the opt is just created or given. 2257 */ 2258 free(opt, M_IP6OPT); 2259 return (0); 2260 } 2261 2262 /* set options specified by user. */ 2263 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2264 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2265 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2266 free(opt, M_IP6OPT); 2267 return (error); 2268 } 2269 *pktopt = opt; 2270 return (0); 2271 } 2272 2273 /* 2274 * initialize ip6_pktopts. beware that there are non-zero default values in 2275 * the struct. 2276 */ 2277 void 2278 ip6_initpktopts(struct ip6_pktopts *opt) 2279 { 2280 2281 bzero(opt, sizeof(*opt)); 2282 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2283 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2284 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2285 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2286 } 2287 2288 static int 2289 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2290 struct ucred *cred, int uproto) 2291 { 2292 struct ip6_pktopts *opt; 2293 2294 if (*pktopt == NULL) { 2295 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2296 M_WAITOK); 2297 ip6_initpktopts(*pktopt); 2298 } 2299 opt = *pktopt; 2300 2301 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2302 } 2303 2304 static int 2305 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2306 { 2307 void *optdata = NULL; 2308 int optdatalen = 0; 2309 struct ip6_ext *ip6e; 2310 int error = 0; 2311 struct in6_pktinfo null_pktinfo; 2312 int deftclass = 0, on; 2313 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2314 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2315 2316 switch (optname) { 2317 case IPV6_PKTINFO: 2318 if (pktopt && pktopt->ip6po_pktinfo) 2319 optdata = (void *)pktopt->ip6po_pktinfo; 2320 else { 2321 /* XXX: we don't have to do this every time... */ 2322 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2323 optdata = (void *)&null_pktinfo; 2324 } 2325 optdatalen = sizeof(struct in6_pktinfo); 2326 break; 2327 case IPV6_TCLASS: 2328 if (pktopt && pktopt->ip6po_tclass >= 0) 2329 optdata = (void *)&pktopt->ip6po_tclass; 2330 else 2331 optdata = (void *)&deftclass; 2332 optdatalen = sizeof(int); 2333 break; 2334 case IPV6_HOPOPTS: 2335 if (pktopt && pktopt->ip6po_hbh) { 2336 optdata = (void *)pktopt->ip6po_hbh; 2337 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2338 optdatalen = (ip6e->ip6e_len + 1) << 3; 2339 } 2340 break; 2341 case IPV6_RTHDR: 2342 if (pktopt && pktopt->ip6po_rthdr) { 2343 optdata = (void *)pktopt->ip6po_rthdr; 2344 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2345 optdatalen = (ip6e->ip6e_len + 1) << 3; 2346 } 2347 break; 2348 case IPV6_RTHDRDSTOPTS: 2349 if (pktopt && pktopt->ip6po_dest1) { 2350 optdata = (void *)pktopt->ip6po_dest1; 2351 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2352 optdatalen = (ip6e->ip6e_len + 1) << 3; 2353 } 2354 break; 2355 case IPV6_DSTOPTS: 2356 if (pktopt && pktopt->ip6po_dest2) { 2357 optdata = (void *)pktopt->ip6po_dest2; 2358 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2359 optdatalen = (ip6e->ip6e_len + 1) << 3; 2360 } 2361 break; 2362 case IPV6_NEXTHOP: 2363 if (pktopt && pktopt->ip6po_nexthop) { 2364 optdata = (void *)pktopt->ip6po_nexthop; 2365 optdatalen = pktopt->ip6po_nexthop->sa_len; 2366 } 2367 break; 2368 case IPV6_USE_MIN_MTU: 2369 if (pktopt) 2370 optdata = (void *)&pktopt->ip6po_minmtu; 2371 else 2372 optdata = (void *)&defminmtu; 2373 optdatalen = sizeof(int); 2374 break; 2375 case IPV6_DONTFRAG: 2376 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2377 on = 1; 2378 else 2379 on = 0; 2380 optdata = (void *)&on; 2381 optdatalen = sizeof(on); 2382 break; 2383 case IPV6_PREFER_TEMPADDR: 2384 if (pktopt) 2385 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2386 else 2387 optdata = (void *)&defpreftemp; 2388 optdatalen = sizeof(int); 2389 break; 2390 default: /* should not happen */ 2391 #ifdef DIAGNOSTIC 2392 panic("ip6_getpcbopt: unexpected option\n"); 2393 #endif 2394 return (ENOPROTOOPT); 2395 } 2396 2397 error = sooptcopyout(sopt, optdata, optdatalen); 2398 2399 return (error); 2400 } 2401 2402 void 2403 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2404 { 2405 if (pktopt == NULL) 2406 return; 2407 2408 if (optname == -1 || optname == IPV6_PKTINFO) { 2409 if (pktopt->ip6po_pktinfo) 2410 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2411 pktopt->ip6po_pktinfo = NULL; 2412 } 2413 if (optname == -1 || optname == IPV6_HOPLIMIT) 2414 pktopt->ip6po_hlim = -1; 2415 if (optname == -1 || optname == IPV6_TCLASS) 2416 pktopt->ip6po_tclass = -1; 2417 if (optname == -1 || optname == IPV6_NEXTHOP) { 2418 if (pktopt->ip6po_nextroute.ro_rt) { 2419 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2420 pktopt->ip6po_nextroute.ro_rt = NULL; 2421 } 2422 if (pktopt->ip6po_nexthop) 2423 free(pktopt->ip6po_nexthop, M_IP6OPT); 2424 pktopt->ip6po_nexthop = NULL; 2425 } 2426 if (optname == -1 || optname == IPV6_HOPOPTS) { 2427 if (pktopt->ip6po_hbh) 2428 free(pktopt->ip6po_hbh, M_IP6OPT); 2429 pktopt->ip6po_hbh = NULL; 2430 } 2431 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2432 if (pktopt->ip6po_dest1) 2433 free(pktopt->ip6po_dest1, M_IP6OPT); 2434 pktopt->ip6po_dest1 = NULL; 2435 } 2436 if (optname == -1 || optname == IPV6_RTHDR) { 2437 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2438 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2439 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2440 if (pktopt->ip6po_route.ro_rt) { 2441 RTFREE(pktopt->ip6po_route.ro_rt); 2442 pktopt->ip6po_route.ro_rt = NULL; 2443 } 2444 } 2445 if (optname == -1 || optname == IPV6_DSTOPTS) { 2446 if (pktopt->ip6po_dest2) 2447 free(pktopt->ip6po_dest2, M_IP6OPT); 2448 pktopt->ip6po_dest2 = NULL; 2449 } 2450 } 2451 2452 #define PKTOPT_EXTHDRCPY(type) \ 2453 do {\ 2454 if (src->type) {\ 2455 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2456 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2457 if (dst->type == NULL && canwait == M_NOWAIT)\ 2458 goto bad;\ 2459 bcopy(src->type, dst->type, hlen);\ 2460 }\ 2461 } while (/*CONSTCOND*/ 0) 2462 2463 static int 2464 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2465 { 2466 if (dst == NULL || src == NULL) { 2467 printf("ip6_clearpktopts: invalid argument\n"); 2468 return (EINVAL); 2469 } 2470 2471 dst->ip6po_hlim = src->ip6po_hlim; 2472 dst->ip6po_tclass = src->ip6po_tclass; 2473 dst->ip6po_flags = src->ip6po_flags; 2474 dst->ip6po_minmtu = src->ip6po_minmtu; 2475 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2476 if (src->ip6po_pktinfo) { 2477 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2478 M_IP6OPT, canwait); 2479 if (dst->ip6po_pktinfo == NULL) 2480 goto bad; 2481 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2482 } 2483 if (src->ip6po_nexthop) { 2484 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2485 M_IP6OPT, canwait); 2486 if (dst->ip6po_nexthop == NULL) 2487 goto bad; 2488 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2489 src->ip6po_nexthop->sa_len); 2490 } 2491 PKTOPT_EXTHDRCPY(ip6po_hbh); 2492 PKTOPT_EXTHDRCPY(ip6po_dest1); 2493 PKTOPT_EXTHDRCPY(ip6po_dest2); 2494 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2495 return (0); 2496 2497 bad: 2498 ip6_clearpktopts(dst, -1); 2499 return (ENOBUFS); 2500 } 2501 #undef PKTOPT_EXTHDRCPY 2502 2503 struct ip6_pktopts * 2504 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2505 { 2506 int error; 2507 struct ip6_pktopts *dst; 2508 2509 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2510 if (dst == NULL) 2511 return (NULL); 2512 ip6_initpktopts(dst); 2513 2514 if ((error = copypktopts(dst, src, canwait)) != 0) { 2515 free(dst, M_IP6OPT); 2516 return (NULL); 2517 } 2518 2519 return (dst); 2520 } 2521 2522 void 2523 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2524 { 2525 if (pktopt == NULL) 2526 return; 2527 2528 ip6_clearpktopts(pktopt, -1); 2529 2530 free(pktopt, M_IP6OPT); 2531 } 2532 2533 /* 2534 * Set IPv6 outgoing packet options based on advanced API. 2535 */ 2536 int 2537 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2538 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2539 { 2540 struct cmsghdr *cm = 0; 2541 2542 if (control == NULL || opt == NULL) 2543 return (EINVAL); 2544 2545 ip6_initpktopts(opt); 2546 if (stickyopt) { 2547 int error; 2548 2549 /* 2550 * If stickyopt is provided, make a local copy of the options 2551 * for this particular packet, then override them by ancillary 2552 * objects. 2553 * XXX: copypktopts() does not copy the cached route to a next 2554 * hop (if any). This is not very good in terms of efficiency, 2555 * but we can allow this since this option should be rarely 2556 * used. 2557 */ 2558 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2559 return (error); 2560 } 2561 2562 /* 2563 * XXX: Currently, we assume all the optional information is stored 2564 * in a single mbuf. 2565 */ 2566 if (control->m_next) 2567 return (EINVAL); 2568 2569 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2570 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2571 int error; 2572 2573 if (control->m_len < CMSG_LEN(0)) 2574 return (EINVAL); 2575 2576 cm = mtod(control, struct cmsghdr *); 2577 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2578 return (EINVAL); 2579 if (cm->cmsg_level != IPPROTO_IPV6) 2580 continue; 2581 2582 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2583 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2584 if (error) 2585 return (error); 2586 } 2587 2588 return (0); 2589 } 2590 2591 /* 2592 * Set a particular packet option, as a sticky option or an ancillary data 2593 * item. "len" can be 0 only when it's a sticky option. 2594 * We have 4 cases of combination of "sticky" and "cmsg": 2595 * "sticky=0, cmsg=0": impossible 2596 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2597 * "sticky=1, cmsg=0": RFC3542 socket option 2598 * "sticky=1, cmsg=1": RFC2292 socket option 2599 */ 2600 static int 2601 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2602 struct ucred *cred, int sticky, int cmsg, int uproto) 2603 { 2604 int minmtupolicy, preftemp; 2605 int error; 2606 2607 if (!sticky && !cmsg) { 2608 #ifdef DIAGNOSTIC 2609 printf("ip6_setpktopt: impossible case\n"); 2610 #endif 2611 return (EINVAL); 2612 } 2613 2614 /* 2615 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2616 * not be specified in the context of RFC3542. Conversely, 2617 * RFC3542 types should not be specified in the context of RFC2292. 2618 */ 2619 if (!cmsg) { 2620 switch (optname) { 2621 case IPV6_2292PKTINFO: 2622 case IPV6_2292HOPLIMIT: 2623 case IPV6_2292NEXTHOP: 2624 case IPV6_2292HOPOPTS: 2625 case IPV6_2292DSTOPTS: 2626 case IPV6_2292RTHDR: 2627 case IPV6_2292PKTOPTIONS: 2628 return (ENOPROTOOPT); 2629 } 2630 } 2631 if (sticky && cmsg) { 2632 switch (optname) { 2633 case IPV6_PKTINFO: 2634 case IPV6_HOPLIMIT: 2635 case IPV6_NEXTHOP: 2636 case IPV6_HOPOPTS: 2637 case IPV6_DSTOPTS: 2638 case IPV6_RTHDRDSTOPTS: 2639 case IPV6_RTHDR: 2640 case IPV6_USE_MIN_MTU: 2641 case IPV6_DONTFRAG: 2642 case IPV6_TCLASS: 2643 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2644 return (ENOPROTOOPT); 2645 } 2646 } 2647 2648 switch (optname) { 2649 case IPV6_2292PKTINFO: 2650 case IPV6_PKTINFO: 2651 { 2652 struct ifnet *ifp = NULL; 2653 struct in6_pktinfo *pktinfo; 2654 2655 if (len != sizeof(struct in6_pktinfo)) 2656 return (EINVAL); 2657 2658 pktinfo = (struct in6_pktinfo *)buf; 2659 2660 /* 2661 * An application can clear any sticky IPV6_PKTINFO option by 2662 * doing a "regular" setsockopt with ipi6_addr being 2663 * in6addr_any and ipi6_ifindex being zero. 2664 * [RFC 3542, Section 6] 2665 */ 2666 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2667 pktinfo->ipi6_ifindex == 0 && 2668 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2669 ip6_clearpktopts(opt, optname); 2670 break; 2671 } 2672 2673 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2674 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2675 return (EINVAL); 2676 } 2677 2678 /* validate the interface index if specified. */ 2679 if (pktinfo->ipi6_ifindex > V_if_index || 2680 pktinfo->ipi6_ifindex < 0) { 2681 return (ENXIO); 2682 } 2683 if (pktinfo->ipi6_ifindex) { 2684 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2685 if (ifp == NULL) 2686 return (ENXIO); 2687 } 2688 2689 /* 2690 * We store the address anyway, and let in6_selectsrc() 2691 * validate the specified address. This is because ipi6_addr 2692 * may not have enough information about its scope zone, and 2693 * we may need additional information (such as outgoing 2694 * interface or the scope zone of a destination address) to 2695 * disambiguate the scope. 2696 * XXX: the delay of the validation may confuse the 2697 * application when it is used as a sticky option. 2698 */ 2699 if (opt->ip6po_pktinfo == NULL) { 2700 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2701 M_IP6OPT, M_NOWAIT); 2702 if (opt->ip6po_pktinfo == NULL) 2703 return (ENOBUFS); 2704 } 2705 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2706 break; 2707 } 2708 2709 case IPV6_2292HOPLIMIT: 2710 case IPV6_HOPLIMIT: 2711 { 2712 int *hlimp; 2713 2714 /* 2715 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2716 * to simplify the ordering among hoplimit options. 2717 */ 2718 if (optname == IPV6_HOPLIMIT && sticky) 2719 return (ENOPROTOOPT); 2720 2721 if (len != sizeof(int)) 2722 return (EINVAL); 2723 hlimp = (int *)buf; 2724 if (*hlimp < -1 || *hlimp > 255) 2725 return (EINVAL); 2726 2727 opt->ip6po_hlim = *hlimp; 2728 break; 2729 } 2730 2731 case IPV6_TCLASS: 2732 { 2733 int tclass; 2734 2735 if (len != sizeof(int)) 2736 return (EINVAL); 2737 tclass = *(int *)buf; 2738 if (tclass < -1 || tclass > 255) 2739 return (EINVAL); 2740 2741 opt->ip6po_tclass = tclass; 2742 break; 2743 } 2744 2745 case IPV6_2292NEXTHOP: 2746 case IPV6_NEXTHOP: 2747 if (cred != NULL) { 2748 error = priv_check_cred(cred, 2749 PRIV_NETINET_SETHDROPTS, 0); 2750 if (error) 2751 return (error); 2752 } 2753 2754 if (len == 0) { /* just remove the option */ 2755 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2756 break; 2757 } 2758 2759 /* check if cmsg_len is large enough for sa_len */ 2760 if (len < sizeof(struct sockaddr) || len < *buf) 2761 return (EINVAL); 2762 2763 switch (((struct sockaddr *)buf)->sa_family) { 2764 case AF_INET6: 2765 { 2766 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2767 int error; 2768 2769 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2770 return (EINVAL); 2771 2772 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2773 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2774 return (EINVAL); 2775 } 2776 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2777 != 0) { 2778 return (error); 2779 } 2780 break; 2781 } 2782 case AF_LINK: /* should eventually be supported */ 2783 default: 2784 return (EAFNOSUPPORT); 2785 } 2786 2787 /* turn off the previous option, then set the new option. */ 2788 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2789 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2790 if (opt->ip6po_nexthop == NULL) 2791 return (ENOBUFS); 2792 bcopy(buf, opt->ip6po_nexthop, *buf); 2793 break; 2794 2795 case IPV6_2292HOPOPTS: 2796 case IPV6_HOPOPTS: 2797 { 2798 struct ip6_hbh *hbh; 2799 int hbhlen; 2800 2801 /* 2802 * XXX: We don't allow a non-privileged user to set ANY HbH 2803 * options, since per-option restriction has too much 2804 * overhead. 2805 */ 2806 if (cred != NULL) { 2807 error = priv_check_cred(cred, 2808 PRIV_NETINET_SETHDROPTS, 0); 2809 if (error) 2810 return (error); 2811 } 2812 2813 if (len == 0) { 2814 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2815 break; /* just remove the option */ 2816 } 2817 2818 /* message length validation */ 2819 if (len < sizeof(struct ip6_hbh)) 2820 return (EINVAL); 2821 hbh = (struct ip6_hbh *)buf; 2822 hbhlen = (hbh->ip6h_len + 1) << 3; 2823 if (len != hbhlen) 2824 return (EINVAL); 2825 2826 /* turn off the previous option, then set the new option. */ 2827 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2828 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2829 if (opt->ip6po_hbh == NULL) 2830 return (ENOBUFS); 2831 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2832 2833 break; 2834 } 2835 2836 case IPV6_2292DSTOPTS: 2837 case IPV6_DSTOPTS: 2838 case IPV6_RTHDRDSTOPTS: 2839 { 2840 struct ip6_dest *dest, **newdest = NULL; 2841 int destlen; 2842 2843 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2844 error = priv_check_cred(cred, 2845 PRIV_NETINET_SETHDROPTS, 0); 2846 if (error) 2847 return (error); 2848 } 2849 2850 if (len == 0) { 2851 ip6_clearpktopts(opt, optname); 2852 break; /* just remove the option */ 2853 } 2854 2855 /* message length validation */ 2856 if (len < sizeof(struct ip6_dest)) 2857 return (EINVAL); 2858 dest = (struct ip6_dest *)buf; 2859 destlen = (dest->ip6d_len + 1) << 3; 2860 if (len != destlen) 2861 return (EINVAL); 2862 2863 /* 2864 * Determine the position that the destination options header 2865 * should be inserted; before or after the routing header. 2866 */ 2867 switch (optname) { 2868 case IPV6_2292DSTOPTS: 2869 /* 2870 * The old advacned API is ambiguous on this point. 2871 * Our approach is to determine the position based 2872 * according to the existence of a routing header. 2873 * Note, however, that this depends on the order of the 2874 * extension headers in the ancillary data; the 1st 2875 * part of the destination options header must appear 2876 * before the routing header in the ancillary data, 2877 * too. 2878 * RFC3542 solved the ambiguity by introducing 2879 * separate ancillary data or option types. 2880 */ 2881 if (opt->ip6po_rthdr == NULL) 2882 newdest = &opt->ip6po_dest1; 2883 else 2884 newdest = &opt->ip6po_dest2; 2885 break; 2886 case IPV6_RTHDRDSTOPTS: 2887 newdest = &opt->ip6po_dest1; 2888 break; 2889 case IPV6_DSTOPTS: 2890 newdest = &opt->ip6po_dest2; 2891 break; 2892 } 2893 2894 /* turn off the previous option, then set the new option. */ 2895 ip6_clearpktopts(opt, optname); 2896 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2897 if (*newdest == NULL) 2898 return (ENOBUFS); 2899 bcopy(dest, *newdest, destlen); 2900 2901 break; 2902 } 2903 2904 case IPV6_2292RTHDR: 2905 case IPV6_RTHDR: 2906 { 2907 struct ip6_rthdr *rth; 2908 int rthlen; 2909 2910 if (len == 0) { 2911 ip6_clearpktopts(opt, IPV6_RTHDR); 2912 break; /* just remove the option */ 2913 } 2914 2915 /* message length validation */ 2916 if (len < sizeof(struct ip6_rthdr)) 2917 return (EINVAL); 2918 rth = (struct ip6_rthdr *)buf; 2919 rthlen = (rth->ip6r_len + 1) << 3; 2920 if (len != rthlen) 2921 return (EINVAL); 2922 2923 switch (rth->ip6r_type) { 2924 case IPV6_RTHDR_TYPE_0: 2925 if (rth->ip6r_len == 0) /* must contain one addr */ 2926 return (EINVAL); 2927 if (rth->ip6r_len % 2) /* length must be even */ 2928 return (EINVAL); 2929 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2930 return (EINVAL); 2931 break; 2932 default: 2933 return (EINVAL); /* not supported */ 2934 } 2935 2936 /* turn off the previous option */ 2937 ip6_clearpktopts(opt, IPV6_RTHDR); 2938 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2939 if (opt->ip6po_rthdr == NULL) 2940 return (ENOBUFS); 2941 bcopy(rth, opt->ip6po_rthdr, rthlen); 2942 2943 break; 2944 } 2945 2946 case IPV6_USE_MIN_MTU: 2947 if (len != sizeof(int)) 2948 return (EINVAL); 2949 minmtupolicy = *(int *)buf; 2950 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2951 minmtupolicy != IP6PO_MINMTU_DISABLE && 2952 minmtupolicy != IP6PO_MINMTU_ALL) { 2953 return (EINVAL); 2954 } 2955 opt->ip6po_minmtu = minmtupolicy; 2956 break; 2957 2958 case IPV6_DONTFRAG: 2959 if (len != sizeof(int)) 2960 return (EINVAL); 2961 2962 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2963 /* 2964 * we ignore this option for TCP sockets. 2965 * (RFC3542 leaves this case unspecified.) 2966 */ 2967 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2968 } else 2969 opt->ip6po_flags |= IP6PO_DONTFRAG; 2970 break; 2971 2972 case IPV6_PREFER_TEMPADDR: 2973 if (len != sizeof(int)) 2974 return (EINVAL); 2975 preftemp = *(int *)buf; 2976 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 2977 preftemp != IP6PO_TEMPADDR_NOTPREFER && 2978 preftemp != IP6PO_TEMPADDR_PREFER) { 2979 return (EINVAL); 2980 } 2981 opt->ip6po_prefer_tempaddr = preftemp; 2982 break; 2983 2984 default: 2985 return (ENOPROTOOPT); 2986 } /* end of switch */ 2987 2988 return (0); 2989 } 2990 2991 /* 2992 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2993 * packet to the input queue of a specified interface. Note that this 2994 * calls the output routine of the loopback "driver", but with an interface 2995 * pointer that might NOT be &loif -- easier than replicating that code here. 2996 */ 2997 void 2998 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 2999 { 3000 struct mbuf *copym; 3001 struct ip6_hdr *ip6; 3002 3003 copym = m_copy(m, 0, M_COPYALL); 3004 if (copym == NULL) 3005 return; 3006 3007 /* 3008 * Make sure to deep-copy IPv6 header portion in case the data 3009 * is in an mbuf cluster, so that we can safely override the IPv6 3010 * header portion later. 3011 */ 3012 if ((copym->m_flags & M_EXT) != 0 || 3013 copym->m_len < sizeof(struct ip6_hdr)) { 3014 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3015 if (copym == NULL) 3016 return; 3017 } 3018 3019 #ifdef DIAGNOSTIC 3020 if (copym->m_len < sizeof(*ip6)) { 3021 m_freem(copym); 3022 return; 3023 } 3024 #endif 3025 3026 ip6 = mtod(copym, struct ip6_hdr *); 3027 /* 3028 * clear embedded scope identifiers if necessary. 3029 * in6_clearscope will touch the addresses only when necessary. 3030 */ 3031 in6_clearscope(&ip6->ip6_src); 3032 in6_clearscope(&ip6->ip6_dst); 3033 3034 (void)if_simloop(ifp, copym, dst->sin6_family, 0); 3035 } 3036 3037 /* 3038 * Chop IPv6 header off from the payload. 3039 */ 3040 static int 3041 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3042 { 3043 struct mbuf *mh; 3044 struct ip6_hdr *ip6; 3045 3046 ip6 = mtod(m, struct ip6_hdr *); 3047 if (m->m_len > sizeof(*ip6)) { 3048 MGETHDR(mh, M_NOWAIT, MT_HEADER); 3049 if (mh == 0) { 3050 m_freem(m); 3051 return ENOBUFS; 3052 } 3053 M_MOVE_PKTHDR(mh, m); 3054 MH_ALIGN(mh, sizeof(*ip6)); 3055 m->m_len -= sizeof(*ip6); 3056 m->m_data += sizeof(*ip6); 3057 mh->m_next = m; 3058 m = mh; 3059 m->m_len = sizeof(*ip6); 3060 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3061 } 3062 exthdrs->ip6e_ip6 = m; 3063 return 0; 3064 } 3065 3066 /* 3067 * Compute IPv6 extension header length. 3068 */ 3069 int 3070 ip6_optlen(struct inpcb *in6p) 3071 { 3072 int len; 3073 3074 if (!in6p->in6p_outputopts) 3075 return 0; 3076 3077 len = 0; 3078 #define elen(x) \ 3079 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3080 3081 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3082 if (in6p->in6p_outputopts->ip6po_rthdr) 3083 /* dest1 is valid with rthdr only */ 3084 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3085 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3086 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3087 return len; 3088 #undef elen 3089 } 3090