xref: /freebsd/sys/netinet6/ip6_output.c (revision c4e127e24dc9f1322ebe7ade0991de7022010bf1)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	$KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $
32  */
33 
34 /*-
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include "opt_inet.h"
69 #include "opt_inet6.h"
70 #include "opt_ipsec.h"
71 #include "opt_ratelimit.h"
72 #include "opt_route.h"
73 #include "opt_rss.h"
74 #include "opt_sctp.h"
75 
76 #include <sys/param.h>
77 #include <sys/kernel.h>
78 #include <sys/malloc.h>
79 #include <sys/mbuf.h>
80 #include <sys/errno.h>
81 #include <sys/priv.h>
82 #include <sys/proc.h>
83 #include <sys/protosw.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/syslog.h>
87 #include <sys/ucred.h>
88 
89 #include <machine/in_cksum.h>
90 
91 #include <net/if.h>
92 #include <net/if_var.h>
93 #include <net/if_llatbl.h>
94 #include <net/netisr.h>
95 #include <net/route.h>
96 #include <net/pfil.h>
97 #include <net/rss_config.h>
98 #include <net/vnet.h>
99 
100 #include <netinet/in.h>
101 #include <netinet/in_var.h>
102 #include <netinet/ip_var.h>
103 #include <netinet6/in6_fib.h>
104 #include <netinet6/in6_var.h>
105 #include <netinet/ip6.h>
106 #include <netinet/icmp6.h>
107 #include <netinet6/ip6_var.h>
108 #include <netinet/in_pcb.h>
109 #include <netinet/tcp_var.h>
110 #include <netinet6/nd6.h>
111 #include <netinet6/in6_rss.h>
112 
113 #include <netipsec/ipsec_support.h>
114 #ifdef SCTP
115 #include <netinet/sctp.h>
116 #include <netinet/sctp_crc32.h>
117 #endif
118 
119 #include <netinet6/ip6protosw.h>
120 #include <netinet6/scope6_var.h>
121 
122 extern int in6_mcast_loop;
123 
124 struct ip6_exthdrs {
125 	struct mbuf *ip6e_ip6;
126 	struct mbuf *ip6e_hbh;
127 	struct mbuf *ip6e_dest1;
128 	struct mbuf *ip6e_rthdr;
129 	struct mbuf *ip6e_dest2;
130 };
131 
132 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
133 
134 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
135 			   struct ucred *, int);
136 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *,
137 	struct socket *, struct sockopt *);
138 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *);
139 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *,
140 	struct ucred *, int, int, int);
141 
142 static int ip6_copyexthdr(struct mbuf **, caddr_t, int);
143 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
144 	struct ip6_frag **);
145 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
146 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
147 static int ip6_getpmtu(struct route_in6 *, int,
148 	struct ifnet *, const struct in6_addr *, u_long *, int *, u_int,
149 	u_int);
150 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long,
151 	u_long *, int *, u_int);
152 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *);
153 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
154 
155 
156 /*
157  * Make an extension header from option data.  hp is the source, and
158  * mp is the destination.
159  */
160 #define MAKE_EXTHDR(hp, mp)						\
161     do {								\
162 	if (hp) {							\
163 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
164 		error = ip6_copyexthdr((mp), (caddr_t)(hp),		\
165 		    ((eh)->ip6e_len + 1) << 3);				\
166 		if (error)						\
167 			goto freehdrs;					\
168 	}								\
169     } while (/*CONSTCOND*/ 0)
170 
171 /*
172  * Form a chain of extension headers.
173  * m is the extension header mbuf
174  * mp is the previous mbuf in the chain
175  * p is the next header
176  * i is the type of option.
177  */
178 #define MAKE_CHAIN(m, mp, p, i)\
179     do {\
180 	if (m) {\
181 		if (!hdrsplit) \
182 			panic("assumption failed: hdr not split"); \
183 		*mtod((m), u_char *) = *(p);\
184 		*(p) = (i);\
185 		p = mtod((m), u_char *);\
186 		(m)->m_next = (mp)->m_next;\
187 		(mp)->m_next = (m);\
188 		(mp) = (m);\
189 	}\
190     } while (/*CONSTCOND*/ 0)
191 
192 void
193 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset)
194 {
195 	u_short csum;
196 
197 	csum = in_cksum_skip(m, offset + plen, offset);
198 	if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0)
199 		csum = 0xffff;
200 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
201 
202 	if (offset + sizeof(csum) > m->m_len)
203 		m_copyback(m, offset, sizeof(csum), (caddr_t)&csum);
204 	else
205 		*(u_short *)mtodo(m, offset) = csum;
206 }
207 
208 int
209 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto,
210     int fraglen , uint32_t id)
211 {
212 	struct mbuf *m, **mnext, *m_frgpart;
213 	struct ip6_hdr *ip6, *mhip6;
214 	struct ip6_frag *ip6f;
215 	int off;
216 	int error;
217 	int tlen = m0->m_pkthdr.len;
218 
219 	KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8"));
220 
221 	m = m0;
222 	ip6 = mtod(m, struct ip6_hdr *);
223 	mnext = &m->m_nextpkt;
224 
225 	for (off = hlen; off < tlen; off += fraglen) {
226 		m = m_gethdr(M_NOWAIT, MT_DATA);
227 		if (!m) {
228 			IP6STAT_INC(ip6s_odropped);
229 			return (ENOBUFS);
230 		}
231 
232 		/*
233 		 * Make sure the complete packet header gets copied
234 		 * from the originating mbuf to the newly created
235 		 * mbuf. This also ensures that existing firewall
236 		 * classification(s), VLAN tags and so on get copied
237 		 * to the resulting fragmented packet(s):
238 		 */
239 		if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) {
240 			m_free(m);
241 			IP6STAT_INC(ip6s_odropped);
242 			return (ENOBUFS);
243 		}
244 
245 		*mnext = m;
246 		mnext = &m->m_nextpkt;
247 		m->m_data += max_linkhdr;
248 		mhip6 = mtod(m, struct ip6_hdr *);
249 		*mhip6 = *ip6;
250 		m->m_len = sizeof(*mhip6);
251 		error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
252 		if (error) {
253 			IP6STAT_INC(ip6s_odropped);
254 			return (error);
255 		}
256 		ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
257 		if (off + fraglen >= tlen)
258 			fraglen = tlen - off;
259 		else
260 			ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
261 		mhip6->ip6_plen = htons((u_short)(fraglen + hlen +
262 		    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
263 		if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) {
264 			IP6STAT_INC(ip6s_odropped);
265 			return (ENOBUFS);
266 		}
267 		m_cat(m, m_frgpart);
268 		m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f);
269 		ip6f->ip6f_reserved = 0;
270 		ip6f->ip6f_ident = id;
271 		ip6f->ip6f_nxt = nextproto;
272 		IP6STAT_INC(ip6s_ofragments);
273 		in6_ifstat_inc(ifp, ifs6_out_fragcreat);
274 	}
275 
276 	return (0);
277 }
278 
279 static int
280 ip6_output_send(struct inpcb *inp, struct ifnet *ifp, struct ifnet *origifp,
281     struct mbuf *m, struct sockaddr_in6 *dst, struct route_in6 *ro)
282 {
283 	struct m_snd_tag *mst;
284 	int error;
285 
286 	MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
287 	mst = NULL;
288 
289 #ifdef RATELIMIT
290 	if (inp != NULL) {
291 		if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 ||
292 		    (inp->inp_snd_tag != NULL &&
293 		    inp->inp_snd_tag->ifp != ifp))
294 			in_pcboutput_txrtlmt(inp, ifp, m);
295 
296 		if (inp->inp_snd_tag != NULL)
297 			mst = inp->inp_snd_tag;
298 	}
299 #endif
300 	if (mst != NULL) {
301 		KASSERT(m->m_pkthdr.rcvif == NULL,
302 		    ("trying to add a send tag to a forwarded packet"));
303 		if (mst->ifp != ifp) {
304 			error = EAGAIN;
305 			goto done;
306 		}
307 
308 		/* stamp send tag on mbuf */
309 		m->m_pkthdr.snd_tag = m_snd_tag_ref(mst);
310 		m->m_pkthdr.csum_flags |= CSUM_SND_TAG;
311 	}
312 
313 	error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro);
314 
315 done:
316 	/* Check for route change invalidating send tags. */
317 #ifdef RATELIMIT
318 	if (error == EAGAIN)
319 		in_pcboutput_eagain(inp);
320 #endif
321 	return (error);
322 }
323 
324 /*
325  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
326  * header (with pri, len, nxt, hlim, src, dst).
327  * This function may modify ver and hlim only.
328  * The mbuf chain containing the packet will be freed.
329  * The mbuf opt, if present, will not be freed.
330  * If route_in6 ro is present and has ro_rt initialized, route lookup would be
331  * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
332  * then result of route lookup is stored in ro->ro_rt.
333  *
334  * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and
335  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
336  * which is rt_mtu.
337  *
338  * ifpp - XXX: just for statistics
339  */
340 /*
341  * XXX TODO: no flowid is assigned for outbound flows?
342  */
343 int
344 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt,
345     struct route_in6 *ro, int flags, struct ip6_moptions *im6o,
346     struct ifnet **ifpp, struct inpcb *inp)
347 {
348 	struct ip6_hdr *ip6;
349 	struct ifnet *ifp, *origifp;
350 	struct mbuf *m = m0;
351 	struct mbuf *mprev = NULL;
352 	int hlen, tlen, len;
353 	struct route_in6 ip6route;
354 	struct rtentry *rt = NULL;
355 	struct sockaddr_in6 *dst, src_sa, dst_sa;
356 	struct in6_addr odst;
357 	int error = 0;
358 	struct in6_ifaddr *ia = NULL;
359 	u_long mtu;
360 	int alwaysfrag, dontfrag;
361 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
362 	struct ip6_exthdrs exthdrs;
363 	struct in6_addr src0, dst0;
364 	u_int32_t zone;
365 	struct route_in6 *ro_pmtu = NULL;
366 	int hdrsplit = 0;
367 	int sw_csum, tso;
368 	int needfiblookup;
369 	uint32_t fibnum;
370 	struct m_tag *fwd_tag = NULL;
371 	uint32_t id;
372 
373 	if (inp != NULL) {
374 		INP_LOCK_ASSERT(inp);
375 		M_SETFIB(m, inp->inp_inc.inc_fibnum);
376 		if ((flags & IP_NODEFAULTFLOWID) == 0) {
377 			/* unconditionally set flowid */
378 			m->m_pkthdr.flowid = inp->inp_flowid;
379 			M_HASHTYPE_SET(m, inp->inp_flowtype);
380 		}
381 #ifdef NUMA
382 		m->m_pkthdr.numa_domain = inp->inp_numa_domain;
383 #endif
384 	}
385 
386 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
387 	/*
388 	 * IPSec checking which handles several cases.
389 	 * FAST IPSEC: We re-injected the packet.
390 	 * XXX: need scope argument.
391 	 */
392 	if (IPSEC_ENABLED(ipv6)) {
393 		if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) {
394 			if (error == EINPROGRESS)
395 				error = 0;
396 			goto done;
397 		}
398 	}
399 #endif /* IPSEC */
400 
401 	bzero(&exthdrs, sizeof(exthdrs));
402 	if (opt) {
403 		/* Hop-by-Hop options header */
404 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
405 		/* Destination options header(1st part) */
406 		if (opt->ip6po_rthdr) {
407 			/*
408 			 * Destination options header(1st part)
409 			 * This only makes sense with a routing header.
410 			 * See Section 9.2 of RFC 3542.
411 			 * Disabling this part just for MIP6 convenience is
412 			 * a bad idea.  We need to think carefully about a
413 			 * way to make the advanced API coexist with MIP6
414 			 * options, which might automatically be inserted in
415 			 * the kernel.
416 			 */
417 			MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
418 		}
419 		/* Routing header */
420 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
421 		/* Destination options header(2nd part) */
422 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
423 	}
424 
425 	/*
426 	 * Calculate the total length of the extension header chain.
427 	 * Keep the length of the unfragmentable part for fragmentation.
428 	 */
429 	optlen = 0;
430 	if (exthdrs.ip6e_hbh)
431 		optlen += exthdrs.ip6e_hbh->m_len;
432 	if (exthdrs.ip6e_dest1)
433 		optlen += exthdrs.ip6e_dest1->m_len;
434 	if (exthdrs.ip6e_rthdr)
435 		optlen += exthdrs.ip6e_rthdr->m_len;
436 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
437 
438 	/* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */
439 	if (exthdrs.ip6e_dest2)
440 		optlen += exthdrs.ip6e_dest2->m_len;
441 
442 	/*
443 	 * If there is at least one extension header,
444 	 * separate IP6 header from the payload.
445 	 */
446 	if (optlen && !hdrsplit) {
447 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
448 			m = NULL;
449 			goto freehdrs;
450 		}
451 		m = exthdrs.ip6e_ip6;
452 		hdrsplit++;
453 	}
454 
455 	ip6 = mtod(m, struct ip6_hdr *);
456 
457 	/* adjust mbuf packet header length */
458 	m->m_pkthdr.len += optlen;
459 	plen = m->m_pkthdr.len - sizeof(*ip6);
460 
461 	/* If this is a jumbo payload, insert a jumbo payload option. */
462 	if (plen > IPV6_MAXPACKET) {
463 		if (!hdrsplit) {
464 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
465 				m = NULL;
466 				goto freehdrs;
467 			}
468 			m = exthdrs.ip6e_ip6;
469 			hdrsplit++;
470 		}
471 		/* adjust pointer */
472 		ip6 = mtod(m, struct ip6_hdr *);
473 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
474 			goto freehdrs;
475 		ip6->ip6_plen = 0;
476 	} else
477 		ip6->ip6_plen = htons(plen);
478 
479 	/*
480 	 * Concatenate headers and fill in next header fields.
481 	 * Here we have, on "m"
482 	 *	IPv6 payload
483 	 * and we insert headers accordingly.  Finally, we should be getting:
484 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
485 	 *
486 	 * during the header composing process, "m" points to IPv6 header.
487 	 * "mprev" points to an extension header prior to esp.
488 	 */
489 	u_char *nexthdrp = &ip6->ip6_nxt;
490 	mprev = m;
491 
492 	/*
493 	 * we treat dest2 specially.  this makes IPsec processing
494 	 * much easier.  the goal here is to make mprev point the
495 	 * mbuf prior to dest2.
496 	 *
497 	 * result: IPv6 dest2 payload
498 	 * m and mprev will point to IPv6 header.
499 	 */
500 	if (exthdrs.ip6e_dest2) {
501 		if (!hdrsplit)
502 			panic("assumption failed: hdr not split");
503 		exthdrs.ip6e_dest2->m_next = m->m_next;
504 		m->m_next = exthdrs.ip6e_dest2;
505 		*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
506 		ip6->ip6_nxt = IPPROTO_DSTOPTS;
507 	}
508 
509 	/*
510 	 * result: IPv6 hbh dest1 rthdr dest2 payload
511 	 * m will point to IPv6 header.  mprev will point to the
512 	 * extension header prior to dest2 (rthdr in the above case).
513 	 */
514 	MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
515 	MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
516 		   IPPROTO_DSTOPTS);
517 	MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
518 		   IPPROTO_ROUTING);
519 
520 	/*
521 	 * If there is a routing header, discard the packet.
522 	 */
523 	if (exthdrs.ip6e_rthdr) {
524 		 error = EINVAL;
525 		 goto bad;
526 	}
527 
528 	/* Source address validation */
529 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
530 	    (flags & IPV6_UNSPECSRC) == 0) {
531 		error = EOPNOTSUPP;
532 		IP6STAT_INC(ip6s_badscope);
533 		goto bad;
534 	}
535 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
536 		error = EOPNOTSUPP;
537 		IP6STAT_INC(ip6s_badscope);
538 		goto bad;
539 	}
540 
541 	IP6STAT_INC(ip6s_localout);
542 
543 	/*
544 	 * Route packet.
545 	 */
546 	if (ro == NULL) {
547 		ro = &ip6route;
548 		bzero((caddr_t)ro, sizeof(*ro));
549 	}
550 	ro_pmtu = ro;
551 	if (opt && opt->ip6po_rthdr)
552 		ro = &opt->ip6po_route;
553 	dst = (struct sockaddr_in6 *)&ro->ro_dst;
554 	fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m);
555 again:
556 	/*
557 	 * if specified, try to fill in the traffic class field.
558 	 * do not override if a non-zero value is already set.
559 	 * we check the diffserv field and the ecn field separately.
560 	 */
561 	if (opt && opt->ip6po_tclass >= 0) {
562 		int mask = 0;
563 
564 		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
565 			mask |= 0xfc;
566 		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
567 			mask |= 0x03;
568 		if (mask != 0)
569 			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
570 	}
571 
572 	/* fill in or override the hop limit field, if necessary. */
573 	if (opt && opt->ip6po_hlim != -1)
574 		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
575 	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
576 		if (im6o != NULL)
577 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
578 		else
579 			ip6->ip6_hlim = V_ip6_defmcasthlim;
580 	}
581 	/*
582 	 * Validate route against routing table additions;
583 	 * a better/more specific route might have been added.
584 	 * Make sure address family is set in route.
585 	 */
586 	if (inp) {
587 		ro->ro_dst.sin6_family = AF_INET6;
588 		RT_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, fibnum);
589 	}
590 	if (ro->ro_rt && fwd_tag == NULL && (ro->ro_rt->rt_flags & RTF_UP) &&
591 	    ro->ro_dst.sin6_family == AF_INET6 &&
592 	    IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) {
593 		rt = ro->ro_rt;
594 		ifp = ro->ro_rt->rt_ifp;
595 	} else {
596 		if (ro->ro_lle)
597 			LLE_FREE(ro->ro_lle);	/* zeros ro_lle */
598 		ro->ro_lle = NULL;
599 		if (fwd_tag == NULL) {
600 			bzero(&dst_sa, sizeof(dst_sa));
601 			dst_sa.sin6_family = AF_INET6;
602 			dst_sa.sin6_len = sizeof(dst_sa);
603 			dst_sa.sin6_addr = ip6->ip6_dst;
604 		}
605 		error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp,
606 		    &rt, fibnum);
607 		if (error != 0) {
608 			if (ifp != NULL)
609 				in6_ifstat_inc(ifp, ifs6_out_discard);
610 			goto bad;
611 		}
612 	}
613 	if (rt == NULL) {
614 		/*
615 		 * If in6_selectroute() does not return a route entry,
616 		 * dst may not have been updated.
617 		 */
618 		*dst = dst_sa;	/* XXX */
619 	}
620 
621 	/*
622 	 * then rt (for unicast) and ifp must be non-NULL valid values.
623 	 */
624 	if ((flags & IPV6_FORWARDING) == 0) {
625 		/* XXX: the FORWARDING flag can be set for mrouting. */
626 		in6_ifstat_inc(ifp, ifs6_out_request);
627 	}
628 	if (rt != NULL) {
629 		ia = (struct in6_ifaddr *)(rt->rt_ifa);
630 		counter_u64_add(rt->rt_pksent, 1);
631 	}
632 
633 	/* Setup data structures for scope ID checks. */
634 	src0 = ip6->ip6_src;
635 	bzero(&src_sa, sizeof(src_sa));
636 	src_sa.sin6_family = AF_INET6;
637 	src_sa.sin6_len = sizeof(src_sa);
638 	src_sa.sin6_addr = ip6->ip6_src;
639 
640 	dst0 = ip6->ip6_dst;
641 	/* re-initialize to be sure */
642 	bzero(&dst_sa, sizeof(dst_sa));
643 	dst_sa.sin6_family = AF_INET6;
644 	dst_sa.sin6_len = sizeof(dst_sa);
645 	dst_sa.sin6_addr = ip6->ip6_dst;
646 
647 	/* Check for valid scope ID. */
648 	if (in6_setscope(&src0, ifp, &zone) == 0 &&
649 	    sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id &&
650 	    in6_setscope(&dst0, ifp, &zone) == 0 &&
651 	    sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) {
652 		/*
653 		 * The outgoing interface is in the zone of the source
654 		 * and destination addresses.
655 		 *
656 		 * Because the loopback interface cannot receive
657 		 * packets with a different scope ID than its own,
658 		 * there is a trick is to pretend the outgoing packet
659 		 * was received by the real network interface, by
660 		 * setting "origifp" different from "ifp". This is
661 		 * only allowed when "ifp" is a loopback network
662 		 * interface. Refer to code in nd6_output_ifp() for
663 		 * more details.
664 		 */
665 		origifp = ifp;
666 
667 		/*
668 		 * We should use ia_ifp to support the case of sending
669 		 * packets to an address of our own.
670 		 */
671 		if (ia != NULL && ia->ia_ifp)
672 			ifp = ia->ia_ifp;
673 
674 	} else if ((ifp->if_flags & IFF_LOOPBACK) == 0 ||
675 	    sa6_recoverscope(&src_sa) != 0 ||
676 	    sa6_recoverscope(&dst_sa) != 0 ||
677 	    dst_sa.sin6_scope_id == 0 ||
678 	    (src_sa.sin6_scope_id != 0 &&
679 	    src_sa.sin6_scope_id != dst_sa.sin6_scope_id) ||
680 	    (origifp = ifnet_byindex(dst_sa.sin6_scope_id)) == NULL) {
681 		/*
682 		 * If the destination network interface is not a
683 		 * loopback interface, or the destination network
684 		 * address has no scope ID, or the source address has
685 		 * a scope ID set which is different from the
686 		 * destination address one, or there is no network
687 		 * interface representing this scope ID, the address
688 		 * pair is considered invalid.
689 		 */
690 		IP6STAT_INC(ip6s_badscope);
691 		in6_ifstat_inc(ifp, ifs6_out_discard);
692 		if (error == 0)
693 			error = EHOSTUNREACH; /* XXX */
694 		goto bad;
695 	}
696 
697 	/* All scope ID checks are successful. */
698 
699 	if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
700 		if (opt && opt->ip6po_nextroute.ro_rt) {
701 			/*
702 			 * The nexthop is explicitly specified by the
703 			 * application.  We assume the next hop is an IPv6
704 			 * address.
705 			 */
706 			dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
707 		}
708 		else if ((rt->rt_flags & RTF_GATEWAY))
709 			dst = (struct sockaddr_in6 *)rt->rt_gateway;
710 	}
711 
712 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
713 		m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
714 	} else {
715 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
716 		in6_ifstat_inc(ifp, ifs6_out_mcast);
717 		/*
718 		 * Confirm that the outgoing interface supports multicast.
719 		 */
720 		if (!(ifp->if_flags & IFF_MULTICAST)) {
721 			IP6STAT_INC(ip6s_noroute);
722 			in6_ifstat_inc(ifp, ifs6_out_discard);
723 			error = ENETUNREACH;
724 			goto bad;
725 		}
726 		if ((im6o == NULL && in6_mcast_loop) ||
727 		    (im6o && im6o->im6o_multicast_loop)) {
728 			/*
729 			 * Loop back multicast datagram if not expressly
730 			 * forbidden to do so, even if we have not joined
731 			 * the address; protocols will filter it later,
732 			 * thus deferring a hash lookup and lock acquisition
733 			 * at the expense of an m_copym().
734 			 */
735 			ip6_mloopback(ifp, m);
736 		} else {
737 			/*
738 			 * If we are acting as a multicast router, perform
739 			 * multicast forwarding as if the packet had just
740 			 * arrived on the interface to which we are about
741 			 * to send.  The multicast forwarding function
742 			 * recursively calls this function, using the
743 			 * IPV6_FORWARDING flag to prevent infinite recursion.
744 			 *
745 			 * Multicasts that are looped back by ip6_mloopback(),
746 			 * above, will be forwarded by the ip6_input() routine,
747 			 * if necessary.
748 			 */
749 			if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
750 				/*
751 				 * XXX: ip6_mforward expects that rcvif is NULL
752 				 * when it is called from the originating path.
753 				 * However, it may not always be the case.
754 				 */
755 				m->m_pkthdr.rcvif = NULL;
756 				if (ip6_mforward(ip6, ifp, m) != 0) {
757 					m_freem(m);
758 					goto done;
759 				}
760 			}
761 		}
762 		/*
763 		 * Multicasts with a hoplimit of zero may be looped back,
764 		 * above, but must not be transmitted on a network.
765 		 * Also, multicasts addressed to the loopback interface
766 		 * are not sent -- the above call to ip6_mloopback() will
767 		 * loop back a copy if this host actually belongs to the
768 		 * destination group on the loopback interface.
769 		 */
770 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
771 		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
772 			m_freem(m);
773 			goto done;
774 		}
775 	}
776 
777 	/*
778 	 * Fill the outgoing inteface to tell the upper layer
779 	 * to increment per-interface statistics.
780 	 */
781 	if (ifpp)
782 		*ifpp = ifp;
783 
784 	/* Determine path MTU. */
785 	if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst,
786 		    &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0)
787 		goto bad;
788 
789 	/*
790 	 * The caller of this function may specify to use the minimum MTU
791 	 * in some cases.
792 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
793 	 * setting.  The logic is a bit complicated; by default, unicast
794 	 * packets will follow path MTU while multicast packets will be sent at
795 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
796 	 * including unicast ones will be sent at the minimum MTU.  Multicast
797 	 * packets will always be sent at the minimum MTU unless
798 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
799 	 * See RFC 3542 for more details.
800 	 */
801 	if (mtu > IPV6_MMTU) {
802 		if ((flags & IPV6_MINMTU))
803 			mtu = IPV6_MMTU;
804 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
805 			mtu = IPV6_MMTU;
806 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
807 			 (opt == NULL ||
808 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
809 			mtu = IPV6_MMTU;
810 		}
811 	}
812 
813 	/*
814 	 * clear embedded scope identifiers if necessary.
815 	 * in6_clearscope will touch the addresses only when necessary.
816 	 */
817 	in6_clearscope(&ip6->ip6_src);
818 	in6_clearscope(&ip6->ip6_dst);
819 
820 	/*
821 	 * If the outgoing packet contains a hop-by-hop options header,
822 	 * it must be examined and processed even by the source node.
823 	 * (RFC 2460, section 4.)
824 	 */
825 	if (exthdrs.ip6e_hbh) {
826 		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
827 		u_int32_t dummy; /* XXX unused */
828 		u_int32_t plen = 0; /* XXX: ip6_process will check the value */
829 
830 #ifdef DIAGNOSTIC
831 		if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
832 			panic("ip6e_hbh is not contiguous");
833 #endif
834 		/*
835 		 *  XXX: if we have to send an ICMPv6 error to the sender,
836 		 *       we need the M_LOOP flag since icmp6_error() expects
837 		 *       the IPv6 and the hop-by-hop options header are
838 		 *       contiguous unless the flag is set.
839 		 */
840 		m->m_flags |= M_LOOP;
841 		m->m_pkthdr.rcvif = ifp;
842 		if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
843 		    ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
844 		    &dummy, &plen) < 0) {
845 			/* m was already freed at this point */
846 			error = EINVAL;/* better error? */
847 			goto done;
848 		}
849 		m->m_flags &= ~M_LOOP; /* XXX */
850 		m->m_pkthdr.rcvif = NULL;
851 	}
852 
853 	/* Jump over all PFIL processing if hooks are not active. */
854 	if (!PFIL_HOOKED_OUT(V_inet6_pfil_head))
855 		goto passout;
856 
857 	odst = ip6->ip6_dst;
858 	/* Run through list of hooks for output packets. */
859 	switch (pfil_run_hooks(V_inet6_pfil_head, &m, ifp, PFIL_OUT, inp)) {
860 	case PFIL_PASS:
861 		ip6 = mtod(m, struct ip6_hdr *);
862 		break;
863 	case PFIL_DROPPED:
864 		error = EPERM;
865 		/* FALLTHROUGH */
866 	case PFIL_CONSUMED:
867 		goto done;
868 	}
869 
870 	needfiblookup = 0;
871 	/* See if destination IP address was changed by packet filter. */
872 	if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) {
873 		m->m_flags |= M_SKIP_FIREWALL;
874 		/* If destination is now ourself drop to ip6_input(). */
875 		if (in6_localip(&ip6->ip6_dst)) {
876 			m->m_flags |= M_FASTFWD_OURS;
877 			if (m->m_pkthdr.rcvif == NULL)
878 				m->m_pkthdr.rcvif = V_loif;
879 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
880 				m->m_pkthdr.csum_flags |=
881 				    CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR;
882 				m->m_pkthdr.csum_data = 0xffff;
883 			}
884 #ifdef SCTP
885 			if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6)
886 				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
887 #endif
888 			error = netisr_queue(NETISR_IPV6, m);
889 			goto done;
890 		} else {
891 			RO_INVALIDATE_CACHE(ro);
892 			needfiblookup = 1; /* Redo the routing table lookup. */
893 		}
894 	}
895 	/* See if fib was changed by packet filter. */
896 	if (fibnum != M_GETFIB(m)) {
897 		m->m_flags |= M_SKIP_FIREWALL;
898 		fibnum = M_GETFIB(m);
899 		RO_INVALIDATE_CACHE(ro);
900 		needfiblookup = 1;
901 	}
902 	if (needfiblookup)
903 		goto again;
904 
905 	/* See if local, if yes, send it to netisr. */
906 	if (m->m_flags & M_FASTFWD_OURS) {
907 		if (m->m_pkthdr.rcvif == NULL)
908 			m->m_pkthdr.rcvif = V_loif;
909 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
910 			m->m_pkthdr.csum_flags |=
911 			    CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR;
912 			m->m_pkthdr.csum_data = 0xffff;
913 		}
914 #ifdef SCTP
915 		if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6)
916 			m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
917 #endif
918 		error = netisr_queue(NETISR_IPV6, m);
919 		goto done;
920 	}
921 	/* Or forward to some other address? */
922 	if ((m->m_flags & M_IP6_NEXTHOP) &&
923 	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
924 		dst = (struct sockaddr_in6 *)&ro->ro_dst;
925 		bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6));
926 		m->m_flags |= M_SKIP_FIREWALL;
927 		m->m_flags &= ~M_IP6_NEXTHOP;
928 		m_tag_delete(m, fwd_tag);
929 		goto again;
930 	}
931 
932 passout:
933 	/*
934 	 * Send the packet to the outgoing interface.
935 	 * If necessary, do IPv6 fragmentation before sending.
936 	 *
937 	 * the logic here is rather complex:
938 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
939 	 * 1-a:	send as is if tlen <= path mtu
940 	 * 1-b:	fragment if tlen > path mtu
941 	 *
942 	 * 2: if user asks us not to fragment (dontfrag == 1)
943 	 * 2-a:	send as is if tlen <= interface mtu
944 	 * 2-b:	error if tlen > interface mtu
945 	 *
946 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
947 	 *	always fragment
948 	 *
949 	 * 4: if dontfrag == 1 && alwaysfrag == 1
950 	 *	error, as we cannot handle this conflicting request
951 	 */
952 	sw_csum = m->m_pkthdr.csum_flags;
953 	if (!hdrsplit) {
954 		tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0;
955 		sw_csum &= ~ifp->if_hwassist;
956 	} else
957 		tso = 0;
958 	/*
959 	 * If we added extension headers, we will not do TSO and calculate the
960 	 * checksums ourselves for now.
961 	 * XXX-BZ  Need a framework to know when the NIC can handle it, even
962 	 * with ext. hdrs.
963 	 */
964 	if (sw_csum & CSUM_DELAY_DATA_IPV6) {
965 		sw_csum &= ~CSUM_DELAY_DATA_IPV6;
966 		in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr));
967 	}
968 #ifdef SCTP
969 	if (sw_csum & CSUM_SCTP_IPV6) {
970 		sw_csum &= ~CSUM_SCTP_IPV6;
971 		sctp_delayed_cksum(m, sizeof(struct ip6_hdr));
972 	}
973 #endif
974 	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
975 	tlen = m->m_pkthdr.len;
976 
977 	if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso)
978 		dontfrag = 1;
979 	else
980 		dontfrag = 0;
981 	if (dontfrag && alwaysfrag) {	/* case 4 */
982 		/* conflicting request - can't transmit */
983 		error = EMSGSIZE;
984 		goto bad;
985 	}
986 	if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) {	/* case 2-b */
987 		/*
988 		 * Even if the DONTFRAG option is specified, we cannot send the
989 		 * packet when the data length is larger than the MTU of the
990 		 * outgoing interface.
991 		 * Notify the error by sending IPV6_PATHMTU ancillary data if
992 		 * application wanted to know the MTU value. Also return an
993 		 * error code (this is not described in the API spec).
994 		 */
995 		if (inp != NULL)
996 			ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu);
997 		error = EMSGSIZE;
998 		goto bad;
999 	}
1000 
1001 	/*
1002 	 * transmit packet without fragmentation
1003 	 */
1004 	if (dontfrag || (!alwaysfrag && tlen <= mtu)) {	/* case 1-a and 2-a */
1005 		struct in6_ifaddr *ia6;
1006 
1007 		ip6 = mtod(m, struct ip6_hdr *);
1008 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1009 		if (ia6) {
1010 			/* Record statistics for this interface address. */
1011 			counter_u64_add(ia6->ia_ifa.ifa_opackets, 1);
1012 			counter_u64_add(ia6->ia_ifa.ifa_obytes,
1013 			    m->m_pkthdr.len);
1014 			ifa_free(&ia6->ia_ifa);
1015 		}
1016 		error = ip6_output_send(inp, ifp, origifp, m, dst, ro);
1017 		goto done;
1018 	}
1019 
1020 	/*
1021 	 * try to fragment the packet.  case 1-b and 3
1022 	 */
1023 	if (mtu < IPV6_MMTU) {
1024 		/* path MTU cannot be less than IPV6_MMTU */
1025 		error = EMSGSIZE;
1026 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
1027 		goto bad;
1028 	} else if (ip6->ip6_plen == 0) {
1029 		/* jumbo payload cannot be fragmented */
1030 		error = EMSGSIZE;
1031 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
1032 		goto bad;
1033 	} else {
1034 		u_char nextproto;
1035 
1036 		/*
1037 		 * Too large for the destination or interface;
1038 		 * fragment if possible.
1039 		 * Must be able to put at least 8 bytes per fragment.
1040 		 */
1041 		hlen = unfragpartlen;
1042 		if (mtu > IPV6_MAXPACKET)
1043 			mtu = IPV6_MAXPACKET;
1044 
1045 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
1046 		if (len < 8) {
1047 			error = EMSGSIZE;
1048 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
1049 			goto bad;
1050 		}
1051 
1052 		/*
1053 		 * If the interface will not calculate checksums on
1054 		 * fragmented packets, then do it here.
1055 		 * XXX-BZ handle the hw offloading case.  Need flags.
1056 		 */
1057 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
1058 			in6_delayed_cksum(m, plen, hlen);
1059 			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
1060 		}
1061 #ifdef SCTP
1062 		if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) {
1063 			sctp_delayed_cksum(m, hlen);
1064 			m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6;
1065 		}
1066 #endif
1067 		/*
1068 		 * Change the next header field of the last header in the
1069 		 * unfragmentable part.
1070 		 */
1071 		if (exthdrs.ip6e_rthdr) {
1072 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
1073 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
1074 		} else if (exthdrs.ip6e_dest1) {
1075 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
1076 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
1077 		} else if (exthdrs.ip6e_hbh) {
1078 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
1079 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
1080 		} else {
1081 			nextproto = ip6->ip6_nxt;
1082 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
1083 		}
1084 
1085 		/*
1086 		 * Loop through length of segment after first fragment,
1087 		 * make new header and copy data of each part and link onto
1088 		 * chain.
1089 		 */
1090 		m0 = m;
1091 		id = htonl(ip6_randomid());
1092 		if ((error = ip6_fragment(ifp, m, hlen, nextproto, len, id)))
1093 			goto sendorfree;
1094 
1095 		in6_ifstat_inc(ifp, ifs6_out_fragok);
1096 	}
1097 
1098 	/*
1099 	 * Remove leading garbages.
1100 	 */
1101 sendorfree:
1102 	m = m0->m_nextpkt;
1103 	m0->m_nextpkt = 0;
1104 	m_freem(m0);
1105 	for (; m; m = m0) {
1106 		m0 = m->m_nextpkt;
1107 		m->m_nextpkt = 0;
1108 		if (error == 0) {
1109 			/* Record statistics for this interface address. */
1110 			if (ia) {
1111 				counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
1112 				counter_u64_add(ia->ia_ifa.ifa_obytes,
1113 				    m->m_pkthdr.len);
1114 			}
1115 			error = ip6_output_send(inp, ifp, origifp, m, dst, ro);
1116 		} else
1117 			m_freem(m);
1118 	}
1119 
1120 	if (error == 0)
1121 		IP6STAT_INC(ip6s_fragmented);
1122 
1123 done:
1124 	if (ro == &ip6route)
1125 		RO_RTFREE(ro);
1126 	return (error);
1127 
1128 freehdrs:
1129 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
1130 	m_freem(exthdrs.ip6e_dest1);
1131 	m_freem(exthdrs.ip6e_rthdr);
1132 	m_freem(exthdrs.ip6e_dest2);
1133 	/* FALLTHROUGH */
1134 bad:
1135 	if (m)
1136 		m_freem(m);
1137 	goto done;
1138 }
1139 
1140 static int
1141 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen)
1142 {
1143 	struct mbuf *m;
1144 
1145 	if (hlen > MCLBYTES)
1146 		return (ENOBUFS); /* XXX */
1147 
1148 	if (hlen > MLEN)
1149 		m = m_getcl(M_NOWAIT, MT_DATA, 0);
1150 	else
1151 		m = m_get(M_NOWAIT, MT_DATA);
1152 	if (m == NULL)
1153 		return (ENOBUFS);
1154 	m->m_len = hlen;
1155 	if (hdr)
1156 		bcopy(hdr, mtod(m, caddr_t), hlen);
1157 
1158 	*mp = m;
1159 	return (0);
1160 }
1161 
1162 /*
1163  * Insert jumbo payload option.
1164  */
1165 static int
1166 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1167 {
1168 	struct mbuf *mopt;
1169 	u_char *optbuf;
1170 	u_int32_t v;
1171 
1172 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
1173 
1174 	/*
1175 	 * If there is no hop-by-hop options header, allocate new one.
1176 	 * If there is one but it doesn't have enough space to store the
1177 	 * jumbo payload option, allocate a cluster to store the whole options.
1178 	 * Otherwise, use it to store the options.
1179 	 */
1180 	if (exthdrs->ip6e_hbh == NULL) {
1181 		mopt = m_get(M_NOWAIT, MT_DATA);
1182 		if (mopt == NULL)
1183 			return (ENOBUFS);
1184 		mopt->m_len = JUMBOOPTLEN;
1185 		optbuf = mtod(mopt, u_char *);
1186 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
1187 		exthdrs->ip6e_hbh = mopt;
1188 	} else {
1189 		struct ip6_hbh *hbh;
1190 
1191 		mopt = exthdrs->ip6e_hbh;
1192 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1193 			/*
1194 			 * XXX assumption:
1195 			 * - exthdrs->ip6e_hbh is not referenced from places
1196 			 *   other than exthdrs.
1197 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
1198 			 */
1199 			int oldoptlen = mopt->m_len;
1200 			struct mbuf *n;
1201 
1202 			/*
1203 			 * XXX: give up if the whole (new) hbh header does
1204 			 * not fit even in an mbuf cluster.
1205 			 */
1206 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1207 				return (ENOBUFS);
1208 
1209 			/*
1210 			 * As a consequence, we must always prepare a cluster
1211 			 * at this point.
1212 			 */
1213 			n = m_getcl(M_NOWAIT, MT_DATA, 0);
1214 			if (n == NULL)
1215 				return (ENOBUFS);
1216 			n->m_len = oldoptlen + JUMBOOPTLEN;
1217 			bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1218 			    oldoptlen);
1219 			optbuf = mtod(n, caddr_t) + oldoptlen;
1220 			m_freem(mopt);
1221 			mopt = exthdrs->ip6e_hbh = n;
1222 		} else {
1223 			optbuf = mtod(mopt, u_char *) + mopt->m_len;
1224 			mopt->m_len += JUMBOOPTLEN;
1225 		}
1226 		optbuf[0] = IP6OPT_PADN;
1227 		optbuf[1] = 1;
1228 
1229 		/*
1230 		 * Adjust the header length according to the pad and
1231 		 * the jumbo payload option.
1232 		 */
1233 		hbh = mtod(mopt, struct ip6_hbh *);
1234 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1235 	}
1236 
1237 	/* fill in the option. */
1238 	optbuf[2] = IP6OPT_JUMBO;
1239 	optbuf[3] = 4;
1240 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1241 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1242 
1243 	/* finally, adjust the packet header length */
1244 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1245 
1246 	return (0);
1247 #undef JUMBOOPTLEN
1248 }
1249 
1250 /*
1251  * Insert fragment header and copy unfragmentable header portions.
1252  */
1253 static int
1254 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1255     struct ip6_frag **frghdrp)
1256 {
1257 	struct mbuf *n, *mlast;
1258 
1259 	if (hlen > sizeof(struct ip6_hdr)) {
1260 		n = m_copym(m0, sizeof(struct ip6_hdr),
1261 		    hlen - sizeof(struct ip6_hdr), M_NOWAIT);
1262 		if (n == NULL)
1263 			return (ENOBUFS);
1264 		m->m_next = n;
1265 	} else
1266 		n = m;
1267 
1268 	/* Search for the last mbuf of unfragmentable part. */
1269 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1270 		;
1271 
1272 	if (M_WRITABLE(mlast) &&
1273 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1274 		/* use the trailing space of the last mbuf for the fragment hdr */
1275 		*frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1276 		    mlast->m_len);
1277 		mlast->m_len += sizeof(struct ip6_frag);
1278 		m->m_pkthdr.len += sizeof(struct ip6_frag);
1279 	} else {
1280 		/* allocate a new mbuf for the fragment header */
1281 		struct mbuf *mfrg;
1282 
1283 		mfrg = m_get(M_NOWAIT, MT_DATA);
1284 		if (mfrg == NULL)
1285 			return (ENOBUFS);
1286 		mfrg->m_len = sizeof(struct ip6_frag);
1287 		*frghdrp = mtod(mfrg, struct ip6_frag *);
1288 		mlast->m_next = mfrg;
1289 	}
1290 
1291 	return (0);
1292 }
1293 
1294 /*
1295  * Calculates IPv6 path mtu for destination @dst.
1296  * Resulting MTU is stored in @mtup.
1297  *
1298  * Returns 0 on success.
1299  */
1300 static int
1301 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup)
1302 {
1303 	struct nhop6_extended nh6;
1304 	struct in6_addr kdst;
1305 	uint32_t scopeid;
1306 	struct ifnet *ifp;
1307 	u_long mtu;
1308 	int error;
1309 
1310 	in6_splitscope(dst, &kdst, &scopeid);
1311 	if (fib6_lookup_nh_ext(fibnum, &kdst, scopeid, NHR_REF, 0, &nh6) != 0)
1312 		return (EHOSTUNREACH);
1313 
1314 	ifp = nh6.nh_ifp;
1315 	mtu = nh6.nh_mtu;
1316 
1317 	error = ip6_calcmtu(ifp, dst, mtu, mtup, NULL, 0);
1318 	fib6_free_nh_ext(fibnum, &nh6);
1319 
1320 	return (error);
1321 }
1322 
1323 /*
1324  * Calculates IPv6 path MTU for @dst based on transmit @ifp,
1325  * and cached data in @ro_pmtu.
1326  * MTU from (successful) route lookup is saved (along with dst)
1327  * inside @ro_pmtu to avoid subsequent route lookups after packet
1328  * filter processing.
1329  *
1330  * Stores mtu and always-frag value into @mtup and @alwaysfragp.
1331  * Returns 0 on success.
1332  */
1333 static int
1334 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup,
1335     struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup,
1336     int *alwaysfragp, u_int fibnum, u_int proto)
1337 {
1338 	struct nhop6_basic nh6;
1339 	struct in6_addr kdst;
1340 	uint32_t scopeid;
1341 	struct sockaddr_in6 *sa6_dst;
1342 	u_long mtu;
1343 
1344 	mtu = 0;
1345 	if (do_lookup) {
1346 
1347 		/*
1348 		 * Here ro_pmtu has final destination address, while
1349 		 * ro might represent immediate destination.
1350 		 * Use ro_pmtu destination since mtu might differ.
1351 		 */
1352 		sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1353 		if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))
1354 			ro_pmtu->ro_mtu = 0;
1355 
1356 		if (ro_pmtu->ro_mtu == 0) {
1357 			bzero(sa6_dst, sizeof(*sa6_dst));
1358 			sa6_dst->sin6_family = AF_INET6;
1359 			sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1360 			sa6_dst->sin6_addr = *dst;
1361 
1362 			in6_splitscope(dst, &kdst, &scopeid);
1363 			if (fib6_lookup_nh_basic(fibnum, &kdst, scopeid, 0, 0,
1364 			    &nh6) == 0)
1365 				ro_pmtu->ro_mtu = nh6.nh_mtu;
1366 		}
1367 
1368 		mtu = ro_pmtu->ro_mtu;
1369 	}
1370 
1371 	if (ro_pmtu->ro_rt)
1372 		mtu = ro_pmtu->ro_rt->rt_mtu;
1373 
1374 	return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto));
1375 }
1376 
1377 /*
1378  * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and
1379  * hostcache data for @dst.
1380  * Stores mtu and always-frag value into @mtup and @alwaysfragp.
1381  *
1382  * Returns 0 on success.
1383  */
1384 static int
1385 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu,
1386     u_long *mtup, int *alwaysfragp, u_int proto)
1387 {
1388 	u_long mtu = 0;
1389 	int alwaysfrag = 0;
1390 	int error = 0;
1391 
1392 	if (rt_mtu > 0) {
1393 		u_int32_t ifmtu;
1394 		struct in_conninfo inc;
1395 
1396 		bzero(&inc, sizeof(inc));
1397 		inc.inc_flags |= INC_ISIPV6;
1398 		inc.inc6_faddr = *dst;
1399 
1400 		ifmtu = IN6_LINKMTU(ifp);
1401 
1402 		/* TCP is known to react to pmtu changes so skip hc */
1403 		if (proto != IPPROTO_TCP)
1404 			mtu = tcp_hc_getmtu(&inc);
1405 
1406 		if (mtu)
1407 			mtu = min(mtu, rt_mtu);
1408 		else
1409 			mtu = rt_mtu;
1410 		if (mtu == 0)
1411 			mtu = ifmtu;
1412 		else if (mtu < IPV6_MMTU) {
1413 			/*
1414 			 * RFC2460 section 5, last paragraph:
1415 			 * if we record ICMPv6 too big message with
1416 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1417 			 * or smaller, with framgent header attached.
1418 			 * (fragment header is needed regardless from the
1419 			 * packet size, for translators to identify packets)
1420 			 */
1421 			alwaysfrag = 1;
1422 			mtu = IPV6_MMTU;
1423 		}
1424 	} else if (ifp) {
1425 		mtu = IN6_LINKMTU(ifp);
1426 	} else
1427 		error = EHOSTUNREACH; /* XXX */
1428 
1429 	*mtup = mtu;
1430 	if (alwaysfragp)
1431 		*alwaysfragp = alwaysfrag;
1432 	return (error);
1433 }
1434 
1435 /*
1436  * IP6 socket option processing.
1437  */
1438 int
1439 ip6_ctloutput(struct socket *so, struct sockopt *sopt)
1440 {
1441 	int optdatalen, uproto;
1442 	void *optdata;
1443 	struct inpcb *in6p = sotoinpcb(so);
1444 	int error, optval;
1445 	int level, op, optname;
1446 	int optlen;
1447 	struct thread *td;
1448 #ifdef	RSS
1449 	uint32_t rss_bucket;
1450 	int retval;
1451 #endif
1452 
1453 /*
1454  * Don't use more than a quarter of mbuf clusters.  N.B.:
1455  * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow
1456  * on LP64 architectures, so cast to u_long to avoid undefined
1457  * behavior.  ILP32 architectures cannot have nmbclusters
1458  * large enough to overflow for other reasons.
1459  */
1460 #define IPV6_PKTOPTIONS_MBUF_LIMIT	((u_long)nmbclusters * MCLBYTES / 4)
1461 
1462 	level = sopt->sopt_level;
1463 	op = sopt->sopt_dir;
1464 	optname = sopt->sopt_name;
1465 	optlen = sopt->sopt_valsize;
1466 	td = sopt->sopt_td;
1467 	error = 0;
1468 	optval = 0;
1469 	uproto = (int)so->so_proto->pr_protocol;
1470 
1471 	if (level != IPPROTO_IPV6) {
1472 		error = EINVAL;
1473 
1474 		if (sopt->sopt_level == SOL_SOCKET &&
1475 		    sopt->sopt_dir == SOPT_SET) {
1476 			switch (sopt->sopt_name) {
1477 			case SO_REUSEADDR:
1478 				INP_WLOCK(in6p);
1479 				if ((so->so_options & SO_REUSEADDR) != 0)
1480 					in6p->inp_flags2 |= INP_REUSEADDR;
1481 				else
1482 					in6p->inp_flags2 &= ~INP_REUSEADDR;
1483 				INP_WUNLOCK(in6p);
1484 				error = 0;
1485 				break;
1486 			case SO_REUSEPORT:
1487 				INP_WLOCK(in6p);
1488 				if ((so->so_options & SO_REUSEPORT) != 0)
1489 					in6p->inp_flags2 |= INP_REUSEPORT;
1490 				else
1491 					in6p->inp_flags2 &= ~INP_REUSEPORT;
1492 				INP_WUNLOCK(in6p);
1493 				error = 0;
1494 				break;
1495 			case SO_REUSEPORT_LB:
1496 				INP_WLOCK(in6p);
1497 				if ((so->so_options & SO_REUSEPORT_LB) != 0)
1498 					in6p->inp_flags2 |= INP_REUSEPORT_LB;
1499 				else
1500 					in6p->inp_flags2 &= ~INP_REUSEPORT_LB;
1501 				INP_WUNLOCK(in6p);
1502 				error = 0;
1503 				break;
1504 			case SO_SETFIB:
1505 				INP_WLOCK(in6p);
1506 				in6p->inp_inc.inc_fibnum = so->so_fibnum;
1507 				INP_WUNLOCK(in6p);
1508 				error = 0;
1509 				break;
1510 			case SO_MAX_PACING_RATE:
1511 #ifdef RATELIMIT
1512 				INP_WLOCK(in6p);
1513 				in6p->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
1514 				INP_WUNLOCK(in6p);
1515 				error = 0;
1516 #else
1517 				error = EOPNOTSUPP;
1518 #endif
1519 				break;
1520 			default:
1521 				break;
1522 			}
1523 		}
1524 	} else {		/* level == IPPROTO_IPV6 */
1525 		switch (op) {
1526 
1527 		case SOPT_SET:
1528 			switch (optname) {
1529 			case IPV6_2292PKTOPTIONS:
1530 #ifdef IPV6_PKTOPTIONS
1531 			case IPV6_PKTOPTIONS:
1532 #endif
1533 			{
1534 				struct mbuf *m;
1535 
1536 				if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) {
1537 					printf("ip6_ctloutput: mbuf limit hit\n");
1538 					error = ENOBUFS;
1539 					break;
1540 				}
1541 
1542 				error = soopt_getm(sopt, &m); /* XXX */
1543 				if (error != 0)
1544 					break;
1545 				error = soopt_mcopyin(sopt, m); /* XXX */
1546 				if (error != 0)
1547 					break;
1548 				error = ip6_pcbopts(&in6p->in6p_outputopts,
1549 						    m, so, sopt);
1550 				m_freem(m); /* XXX */
1551 				break;
1552 			}
1553 
1554 			/*
1555 			 * Use of some Hop-by-Hop options or some
1556 			 * Destination options, might require special
1557 			 * privilege.  That is, normal applications
1558 			 * (without special privilege) might be forbidden
1559 			 * from setting certain options in outgoing packets,
1560 			 * and might never see certain options in received
1561 			 * packets. [RFC 2292 Section 6]
1562 			 * KAME specific note:
1563 			 *  KAME prevents non-privileged users from sending or
1564 			 *  receiving ANY hbh/dst options in order to avoid
1565 			 *  overhead of parsing options in the kernel.
1566 			 */
1567 			case IPV6_RECVHOPOPTS:
1568 			case IPV6_RECVDSTOPTS:
1569 			case IPV6_RECVRTHDRDSTOPTS:
1570 				if (td != NULL) {
1571 					error = priv_check(td,
1572 					    PRIV_NETINET_SETHDROPTS);
1573 					if (error)
1574 						break;
1575 				}
1576 				/* FALLTHROUGH */
1577 			case IPV6_UNICAST_HOPS:
1578 			case IPV6_HOPLIMIT:
1579 
1580 			case IPV6_RECVPKTINFO:
1581 			case IPV6_RECVHOPLIMIT:
1582 			case IPV6_RECVRTHDR:
1583 			case IPV6_RECVPATHMTU:
1584 			case IPV6_RECVTCLASS:
1585 			case IPV6_RECVFLOWID:
1586 #ifdef	RSS
1587 			case IPV6_RECVRSSBUCKETID:
1588 #endif
1589 			case IPV6_V6ONLY:
1590 			case IPV6_AUTOFLOWLABEL:
1591 			case IPV6_ORIGDSTADDR:
1592 			case IPV6_BINDANY:
1593 			case IPV6_BINDMULTI:
1594 #ifdef	RSS
1595 			case IPV6_RSS_LISTEN_BUCKET:
1596 #endif
1597 				if (optname == IPV6_BINDANY && td != NULL) {
1598 					error = priv_check(td,
1599 					    PRIV_NETINET_BINDANY);
1600 					if (error)
1601 						break;
1602 				}
1603 
1604 				if (optlen != sizeof(int)) {
1605 					error = EINVAL;
1606 					break;
1607 				}
1608 				error = sooptcopyin(sopt, &optval,
1609 					sizeof optval, sizeof optval);
1610 				if (error)
1611 					break;
1612 				switch (optname) {
1613 
1614 				case IPV6_UNICAST_HOPS:
1615 					if (optval < -1 || optval >= 256)
1616 						error = EINVAL;
1617 					else {
1618 						/* -1 = kernel default */
1619 						in6p->in6p_hops = optval;
1620 						if ((in6p->inp_vflag &
1621 						     INP_IPV4) != 0)
1622 							in6p->inp_ip_ttl = optval;
1623 					}
1624 					break;
1625 #define OPTSET(bit) \
1626 do { \
1627 	INP_WLOCK(in6p); \
1628 	if (optval) \
1629 		in6p->inp_flags |= (bit); \
1630 	else \
1631 		in6p->inp_flags &= ~(bit); \
1632 	INP_WUNLOCK(in6p); \
1633 } while (/*CONSTCOND*/ 0)
1634 #define OPTSET2292(bit) \
1635 do { \
1636 	INP_WLOCK(in6p); \
1637 	in6p->inp_flags |= IN6P_RFC2292; \
1638 	if (optval) \
1639 		in6p->inp_flags |= (bit); \
1640 	else \
1641 		in6p->inp_flags &= ~(bit); \
1642 	INP_WUNLOCK(in6p); \
1643 } while (/*CONSTCOND*/ 0)
1644 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0)
1645 
1646 #define OPTSET2_N(bit, val) do {					\
1647 	if (val)							\
1648 		in6p->inp_flags2 |= bit;				\
1649 	else								\
1650 		in6p->inp_flags2 &= ~bit;				\
1651 } while (0)
1652 #define OPTSET2(bit, val) do {						\
1653 	INP_WLOCK(in6p);						\
1654 	OPTSET2_N(bit, val);						\
1655 	INP_WUNLOCK(in6p);						\
1656 } while (0)
1657 #define OPTBIT2(bit) (in6p->inp_flags2 & (bit) ? 1 : 0)
1658 #define OPTSET2292_EXCLUSIVE(bit)					\
1659 do {									\
1660 	INP_WLOCK(in6p);						\
1661 	if (OPTBIT(IN6P_RFC2292)) {					\
1662 		error = EINVAL;						\
1663 	} else {							\
1664 		if (optval)						\
1665 			in6p->inp_flags |= (bit);			\
1666 		else							\
1667 			in6p->inp_flags &= ~(bit);			\
1668 	}								\
1669 	INP_WUNLOCK(in6p);						\
1670 } while (/*CONSTCOND*/ 0)
1671 
1672 				case IPV6_RECVPKTINFO:
1673 					OPTSET2292_EXCLUSIVE(IN6P_PKTINFO);
1674 					break;
1675 
1676 				case IPV6_HOPLIMIT:
1677 				{
1678 					struct ip6_pktopts **optp;
1679 
1680 					/* cannot mix with RFC2292 */
1681 					if (OPTBIT(IN6P_RFC2292)) {
1682 						error = EINVAL;
1683 						break;
1684 					}
1685 					INP_WLOCK(in6p);
1686 					if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
1687 						INP_WUNLOCK(in6p);
1688 						return (ECONNRESET);
1689 					}
1690 					optp = &in6p->in6p_outputopts;
1691 					error = ip6_pcbopt(IPV6_HOPLIMIT,
1692 					    (u_char *)&optval, sizeof(optval),
1693 					    optp, (td != NULL) ? td->td_ucred :
1694 					    NULL, uproto);
1695 					INP_WUNLOCK(in6p);
1696 					break;
1697 				}
1698 
1699 				case IPV6_RECVHOPLIMIT:
1700 					OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT);
1701 					break;
1702 
1703 				case IPV6_RECVHOPOPTS:
1704 					OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS);
1705 					break;
1706 
1707 				case IPV6_RECVDSTOPTS:
1708 					OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS);
1709 					break;
1710 
1711 				case IPV6_RECVRTHDRDSTOPTS:
1712 					OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS);
1713 					break;
1714 
1715 				case IPV6_RECVRTHDR:
1716 					OPTSET2292_EXCLUSIVE(IN6P_RTHDR);
1717 					break;
1718 
1719 				case IPV6_RECVPATHMTU:
1720 					/*
1721 					 * We ignore this option for TCP
1722 					 * sockets.
1723 					 * (RFC3542 leaves this case
1724 					 * unspecified.)
1725 					 */
1726 					if (uproto != IPPROTO_TCP)
1727 						OPTSET(IN6P_MTU);
1728 					break;
1729 
1730 				case IPV6_RECVFLOWID:
1731 					OPTSET2(INP_RECVFLOWID, optval);
1732 					break;
1733 
1734 #ifdef	RSS
1735 				case IPV6_RECVRSSBUCKETID:
1736 					OPTSET2(INP_RECVRSSBUCKETID, optval);
1737 					break;
1738 #endif
1739 
1740 				case IPV6_V6ONLY:
1741 					/*
1742 					 * make setsockopt(IPV6_V6ONLY)
1743 					 * available only prior to bind(2).
1744 					 * see ipng mailing list, Jun 22 2001.
1745 					 */
1746 					if (in6p->inp_lport ||
1747 					    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1748 						error = EINVAL;
1749 						break;
1750 					}
1751 					OPTSET(IN6P_IPV6_V6ONLY);
1752 					if (optval)
1753 						in6p->inp_vflag &= ~INP_IPV4;
1754 					else
1755 						in6p->inp_vflag |= INP_IPV4;
1756 					break;
1757 				case IPV6_RECVTCLASS:
1758 					/* cannot mix with RFC2292 XXX */
1759 					OPTSET2292_EXCLUSIVE(IN6P_TCLASS);
1760 					break;
1761 				case IPV6_AUTOFLOWLABEL:
1762 					OPTSET(IN6P_AUTOFLOWLABEL);
1763 					break;
1764 
1765 				case IPV6_ORIGDSTADDR:
1766 					OPTSET2(INP_ORIGDSTADDR, optval);
1767 					break;
1768 				case IPV6_BINDANY:
1769 					OPTSET(INP_BINDANY);
1770 					break;
1771 
1772 				case IPV6_BINDMULTI:
1773 					OPTSET2(INP_BINDMULTI, optval);
1774 					break;
1775 #ifdef	RSS
1776 				case IPV6_RSS_LISTEN_BUCKET:
1777 					if ((optval >= 0) &&
1778 					    (optval < rss_getnumbuckets())) {
1779 						INP_WLOCK(in6p);
1780 						in6p->inp_rss_listen_bucket = optval;
1781 						OPTSET2_N(INP_RSS_BUCKET_SET, 1);
1782 						INP_WUNLOCK(in6p);
1783 					} else {
1784 						error = EINVAL;
1785 					}
1786 					break;
1787 #endif
1788 				}
1789 				break;
1790 
1791 			case IPV6_TCLASS:
1792 			case IPV6_DONTFRAG:
1793 			case IPV6_USE_MIN_MTU:
1794 			case IPV6_PREFER_TEMPADDR:
1795 				if (optlen != sizeof(optval)) {
1796 					error = EINVAL;
1797 					break;
1798 				}
1799 				error = sooptcopyin(sopt, &optval,
1800 					sizeof optval, sizeof optval);
1801 				if (error)
1802 					break;
1803 				{
1804 					struct ip6_pktopts **optp;
1805 					INP_WLOCK(in6p);
1806 					if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
1807 						INP_WUNLOCK(in6p);
1808 						return (ECONNRESET);
1809 					}
1810 					optp = &in6p->in6p_outputopts;
1811 					error = ip6_pcbopt(optname,
1812 					    (u_char *)&optval, sizeof(optval),
1813 					    optp, (td != NULL) ? td->td_ucred :
1814 					    NULL, uproto);
1815 					INP_WUNLOCK(in6p);
1816 					break;
1817 				}
1818 
1819 			case IPV6_2292PKTINFO:
1820 			case IPV6_2292HOPLIMIT:
1821 			case IPV6_2292HOPOPTS:
1822 			case IPV6_2292DSTOPTS:
1823 			case IPV6_2292RTHDR:
1824 				/* RFC 2292 */
1825 				if (optlen != sizeof(int)) {
1826 					error = EINVAL;
1827 					break;
1828 				}
1829 				error = sooptcopyin(sopt, &optval,
1830 					sizeof optval, sizeof optval);
1831 				if (error)
1832 					break;
1833 				switch (optname) {
1834 				case IPV6_2292PKTINFO:
1835 					OPTSET2292(IN6P_PKTINFO);
1836 					break;
1837 				case IPV6_2292HOPLIMIT:
1838 					OPTSET2292(IN6P_HOPLIMIT);
1839 					break;
1840 				case IPV6_2292HOPOPTS:
1841 					/*
1842 					 * Check super-user privilege.
1843 					 * See comments for IPV6_RECVHOPOPTS.
1844 					 */
1845 					if (td != NULL) {
1846 						error = priv_check(td,
1847 						    PRIV_NETINET_SETHDROPTS);
1848 						if (error)
1849 							return (error);
1850 					}
1851 					OPTSET2292(IN6P_HOPOPTS);
1852 					break;
1853 				case IPV6_2292DSTOPTS:
1854 					if (td != NULL) {
1855 						error = priv_check(td,
1856 						    PRIV_NETINET_SETHDROPTS);
1857 						if (error)
1858 							return (error);
1859 					}
1860 					OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1861 					break;
1862 				case IPV6_2292RTHDR:
1863 					OPTSET2292(IN6P_RTHDR);
1864 					break;
1865 				}
1866 				break;
1867 			case IPV6_PKTINFO:
1868 			case IPV6_HOPOPTS:
1869 			case IPV6_RTHDR:
1870 			case IPV6_DSTOPTS:
1871 			case IPV6_RTHDRDSTOPTS:
1872 			case IPV6_NEXTHOP:
1873 			{
1874 				/* new advanced API (RFC3542) */
1875 				u_char *optbuf;
1876 				u_char optbuf_storage[MCLBYTES];
1877 				int optlen;
1878 				struct ip6_pktopts **optp;
1879 
1880 				/* cannot mix with RFC2292 */
1881 				if (OPTBIT(IN6P_RFC2292)) {
1882 					error = EINVAL;
1883 					break;
1884 				}
1885 
1886 				/*
1887 				 * We only ensure valsize is not too large
1888 				 * here.  Further validation will be done
1889 				 * later.
1890 				 */
1891 				error = sooptcopyin(sopt, optbuf_storage,
1892 				    sizeof(optbuf_storage), 0);
1893 				if (error)
1894 					break;
1895 				optlen = sopt->sopt_valsize;
1896 				optbuf = optbuf_storage;
1897 				INP_WLOCK(in6p);
1898 				if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
1899 					INP_WUNLOCK(in6p);
1900 					return (ECONNRESET);
1901 				}
1902 				optp = &in6p->in6p_outputopts;
1903 				error = ip6_pcbopt(optname, optbuf, optlen,
1904 				    optp, (td != NULL) ? td->td_ucred : NULL,
1905 				    uproto);
1906 				INP_WUNLOCK(in6p);
1907 				break;
1908 			}
1909 #undef OPTSET
1910 
1911 			case IPV6_MULTICAST_IF:
1912 			case IPV6_MULTICAST_HOPS:
1913 			case IPV6_MULTICAST_LOOP:
1914 			case IPV6_JOIN_GROUP:
1915 			case IPV6_LEAVE_GROUP:
1916 			case IPV6_MSFILTER:
1917 			case MCAST_BLOCK_SOURCE:
1918 			case MCAST_UNBLOCK_SOURCE:
1919 			case MCAST_JOIN_GROUP:
1920 			case MCAST_LEAVE_GROUP:
1921 			case MCAST_JOIN_SOURCE_GROUP:
1922 			case MCAST_LEAVE_SOURCE_GROUP:
1923 				error = ip6_setmoptions(in6p, sopt);
1924 				break;
1925 
1926 			case IPV6_PORTRANGE:
1927 				error = sooptcopyin(sopt, &optval,
1928 				    sizeof optval, sizeof optval);
1929 				if (error)
1930 					break;
1931 
1932 				INP_WLOCK(in6p);
1933 				switch (optval) {
1934 				case IPV6_PORTRANGE_DEFAULT:
1935 					in6p->inp_flags &= ~(INP_LOWPORT);
1936 					in6p->inp_flags &= ~(INP_HIGHPORT);
1937 					break;
1938 
1939 				case IPV6_PORTRANGE_HIGH:
1940 					in6p->inp_flags &= ~(INP_LOWPORT);
1941 					in6p->inp_flags |= INP_HIGHPORT;
1942 					break;
1943 
1944 				case IPV6_PORTRANGE_LOW:
1945 					in6p->inp_flags &= ~(INP_HIGHPORT);
1946 					in6p->inp_flags |= INP_LOWPORT;
1947 					break;
1948 
1949 				default:
1950 					error = EINVAL;
1951 					break;
1952 				}
1953 				INP_WUNLOCK(in6p);
1954 				break;
1955 
1956 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1957 			case IPV6_IPSEC_POLICY:
1958 				if (IPSEC_ENABLED(ipv6)) {
1959 					error = IPSEC_PCBCTL(ipv6, in6p, sopt);
1960 					break;
1961 				}
1962 				/* FALLTHROUGH */
1963 #endif /* IPSEC */
1964 
1965 			default:
1966 				error = ENOPROTOOPT;
1967 				break;
1968 			}
1969 			break;
1970 
1971 		case SOPT_GET:
1972 			switch (optname) {
1973 
1974 			case IPV6_2292PKTOPTIONS:
1975 #ifdef IPV6_PKTOPTIONS
1976 			case IPV6_PKTOPTIONS:
1977 #endif
1978 				/*
1979 				 * RFC3542 (effectively) deprecated the
1980 				 * semantics of the 2292-style pktoptions.
1981 				 * Since it was not reliable in nature (i.e.,
1982 				 * applications had to expect the lack of some
1983 				 * information after all), it would make sense
1984 				 * to simplify this part by always returning
1985 				 * empty data.
1986 				 */
1987 				sopt->sopt_valsize = 0;
1988 				break;
1989 
1990 			case IPV6_RECVHOPOPTS:
1991 			case IPV6_RECVDSTOPTS:
1992 			case IPV6_RECVRTHDRDSTOPTS:
1993 			case IPV6_UNICAST_HOPS:
1994 			case IPV6_RECVPKTINFO:
1995 			case IPV6_RECVHOPLIMIT:
1996 			case IPV6_RECVRTHDR:
1997 			case IPV6_RECVPATHMTU:
1998 
1999 			case IPV6_V6ONLY:
2000 			case IPV6_PORTRANGE:
2001 			case IPV6_RECVTCLASS:
2002 			case IPV6_AUTOFLOWLABEL:
2003 			case IPV6_BINDANY:
2004 			case IPV6_FLOWID:
2005 			case IPV6_FLOWTYPE:
2006 			case IPV6_RECVFLOWID:
2007 #ifdef	RSS
2008 			case IPV6_RSSBUCKETID:
2009 			case IPV6_RECVRSSBUCKETID:
2010 #endif
2011 			case IPV6_BINDMULTI:
2012 				switch (optname) {
2013 
2014 				case IPV6_RECVHOPOPTS:
2015 					optval = OPTBIT(IN6P_HOPOPTS);
2016 					break;
2017 
2018 				case IPV6_RECVDSTOPTS:
2019 					optval = OPTBIT(IN6P_DSTOPTS);
2020 					break;
2021 
2022 				case IPV6_RECVRTHDRDSTOPTS:
2023 					optval = OPTBIT(IN6P_RTHDRDSTOPTS);
2024 					break;
2025 
2026 				case IPV6_UNICAST_HOPS:
2027 					optval = in6p->in6p_hops;
2028 					break;
2029 
2030 				case IPV6_RECVPKTINFO:
2031 					optval = OPTBIT(IN6P_PKTINFO);
2032 					break;
2033 
2034 				case IPV6_RECVHOPLIMIT:
2035 					optval = OPTBIT(IN6P_HOPLIMIT);
2036 					break;
2037 
2038 				case IPV6_RECVRTHDR:
2039 					optval = OPTBIT(IN6P_RTHDR);
2040 					break;
2041 
2042 				case IPV6_RECVPATHMTU:
2043 					optval = OPTBIT(IN6P_MTU);
2044 					break;
2045 
2046 				case IPV6_V6ONLY:
2047 					optval = OPTBIT(IN6P_IPV6_V6ONLY);
2048 					break;
2049 
2050 				case IPV6_PORTRANGE:
2051 				    {
2052 					int flags;
2053 					flags = in6p->inp_flags;
2054 					if (flags & INP_HIGHPORT)
2055 						optval = IPV6_PORTRANGE_HIGH;
2056 					else if (flags & INP_LOWPORT)
2057 						optval = IPV6_PORTRANGE_LOW;
2058 					else
2059 						optval = 0;
2060 					break;
2061 				    }
2062 				case IPV6_RECVTCLASS:
2063 					optval = OPTBIT(IN6P_TCLASS);
2064 					break;
2065 
2066 				case IPV6_AUTOFLOWLABEL:
2067 					optval = OPTBIT(IN6P_AUTOFLOWLABEL);
2068 					break;
2069 
2070 				case IPV6_ORIGDSTADDR:
2071 					optval = OPTBIT2(INP_ORIGDSTADDR);
2072 					break;
2073 
2074 				case IPV6_BINDANY:
2075 					optval = OPTBIT(INP_BINDANY);
2076 					break;
2077 
2078 				case IPV6_FLOWID:
2079 					optval = in6p->inp_flowid;
2080 					break;
2081 
2082 				case IPV6_FLOWTYPE:
2083 					optval = in6p->inp_flowtype;
2084 					break;
2085 
2086 				case IPV6_RECVFLOWID:
2087 					optval = OPTBIT2(INP_RECVFLOWID);
2088 					break;
2089 #ifdef	RSS
2090 				case IPV6_RSSBUCKETID:
2091 					retval =
2092 					    rss_hash2bucket(in6p->inp_flowid,
2093 					    in6p->inp_flowtype,
2094 					    &rss_bucket);
2095 					if (retval == 0)
2096 						optval = rss_bucket;
2097 					else
2098 						error = EINVAL;
2099 					break;
2100 
2101 				case IPV6_RECVRSSBUCKETID:
2102 					optval = OPTBIT2(INP_RECVRSSBUCKETID);
2103 					break;
2104 #endif
2105 
2106 				case IPV6_BINDMULTI:
2107 					optval = OPTBIT2(INP_BINDMULTI);
2108 					break;
2109 
2110 				}
2111 				if (error)
2112 					break;
2113 				error = sooptcopyout(sopt, &optval,
2114 					sizeof optval);
2115 				break;
2116 
2117 			case IPV6_PATHMTU:
2118 			{
2119 				u_long pmtu = 0;
2120 				struct ip6_mtuinfo mtuinfo;
2121 				struct in6_addr addr;
2122 
2123 				if (!(so->so_state & SS_ISCONNECTED))
2124 					return (ENOTCONN);
2125 				/*
2126 				 * XXX: we dot not consider the case of source
2127 				 * routing, or optional information to specify
2128 				 * the outgoing interface.
2129 				 * Copy faddr out of in6p to avoid holding lock
2130 				 * on inp during route lookup.
2131 				 */
2132 				INP_RLOCK(in6p);
2133 				bcopy(&in6p->in6p_faddr, &addr, sizeof(addr));
2134 				INP_RUNLOCK(in6p);
2135 				error = ip6_getpmtu_ctl(so->so_fibnum,
2136 				    &addr, &pmtu);
2137 				if (error)
2138 					break;
2139 				if (pmtu > IPV6_MAXPACKET)
2140 					pmtu = IPV6_MAXPACKET;
2141 
2142 				bzero(&mtuinfo, sizeof(mtuinfo));
2143 				mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
2144 				optdata = (void *)&mtuinfo;
2145 				optdatalen = sizeof(mtuinfo);
2146 				error = sooptcopyout(sopt, optdata,
2147 				    optdatalen);
2148 				break;
2149 			}
2150 
2151 			case IPV6_2292PKTINFO:
2152 			case IPV6_2292HOPLIMIT:
2153 			case IPV6_2292HOPOPTS:
2154 			case IPV6_2292RTHDR:
2155 			case IPV6_2292DSTOPTS:
2156 				switch (optname) {
2157 				case IPV6_2292PKTINFO:
2158 					optval = OPTBIT(IN6P_PKTINFO);
2159 					break;
2160 				case IPV6_2292HOPLIMIT:
2161 					optval = OPTBIT(IN6P_HOPLIMIT);
2162 					break;
2163 				case IPV6_2292HOPOPTS:
2164 					optval = OPTBIT(IN6P_HOPOPTS);
2165 					break;
2166 				case IPV6_2292RTHDR:
2167 					optval = OPTBIT(IN6P_RTHDR);
2168 					break;
2169 				case IPV6_2292DSTOPTS:
2170 					optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
2171 					break;
2172 				}
2173 				error = sooptcopyout(sopt, &optval,
2174 				    sizeof optval);
2175 				break;
2176 			case IPV6_PKTINFO:
2177 			case IPV6_HOPOPTS:
2178 			case IPV6_RTHDR:
2179 			case IPV6_DSTOPTS:
2180 			case IPV6_RTHDRDSTOPTS:
2181 			case IPV6_NEXTHOP:
2182 			case IPV6_TCLASS:
2183 			case IPV6_DONTFRAG:
2184 			case IPV6_USE_MIN_MTU:
2185 			case IPV6_PREFER_TEMPADDR:
2186 				error = ip6_getpcbopt(in6p, optname, sopt);
2187 				break;
2188 
2189 			case IPV6_MULTICAST_IF:
2190 			case IPV6_MULTICAST_HOPS:
2191 			case IPV6_MULTICAST_LOOP:
2192 			case IPV6_MSFILTER:
2193 				error = ip6_getmoptions(in6p, sopt);
2194 				break;
2195 
2196 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
2197 			case IPV6_IPSEC_POLICY:
2198 				if (IPSEC_ENABLED(ipv6)) {
2199 					error = IPSEC_PCBCTL(ipv6, in6p, sopt);
2200 					break;
2201 				}
2202 				/* FALLTHROUGH */
2203 #endif /* IPSEC */
2204 			default:
2205 				error = ENOPROTOOPT;
2206 				break;
2207 			}
2208 			break;
2209 		}
2210 	}
2211 	return (error);
2212 }
2213 
2214 int
2215 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt)
2216 {
2217 	int error = 0, optval, optlen;
2218 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
2219 	struct inpcb *in6p = sotoinpcb(so);
2220 	int level, op, optname;
2221 
2222 	level = sopt->sopt_level;
2223 	op = sopt->sopt_dir;
2224 	optname = sopt->sopt_name;
2225 	optlen = sopt->sopt_valsize;
2226 
2227 	if (level != IPPROTO_IPV6) {
2228 		return (EINVAL);
2229 	}
2230 
2231 	switch (optname) {
2232 	case IPV6_CHECKSUM:
2233 		/*
2234 		 * For ICMPv6 sockets, no modification allowed for checksum
2235 		 * offset, permit "no change" values to help existing apps.
2236 		 *
2237 		 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
2238 		 * for an ICMPv6 socket will fail."
2239 		 * The current behavior does not meet RFC3542.
2240 		 */
2241 		switch (op) {
2242 		case SOPT_SET:
2243 			if (optlen != sizeof(int)) {
2244 				error = EINVAL;
2245 				break;
2246 			}
2247 			error = sooptcopyin(sopt, &optval, sizeof(optval),
2248 					    sizeof(optval));
2249 			if (error)
2250 				break;
2251 			if (optval < -1 || (optval % 2) != 0) {
2252 				/*
2253 				 * The API assumes non-negative even offset
2254 				 * values or -1 as a special value.
2255 				 */
2256 				error = EINVAL;
2257 			} else if (so->so_proto->pr_protocol ==
2258 			    IPPROTO_ICMPV6) {
2259 				if (optval != icmp6off)
2260 					error = EINVAL;
2261 			} else
2262 				in6p->in6p_cksum = optval;
2263 			break;
2264 
2265 		case SOPT_GET:
2266 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2267 				optval = icmp6off;
2268 			else
2269 				optval = in6p->in6p_cksum;
2270 
2271 			error = sooptcopyout(sopt, &optval, sizeof(optval));
2272 			break;
2273 
2274 		default:
2275 			error = EINVAL;
2276 			break;
2277 		}
2278 		break;
2279 
2280 	default:
2281 		error = ENOPROTOOPT;
2282 		break;
2283 	}
2284 
2285 	return (error);
2286 }
2287 
2288 /*
2289  * Set up IP6 options in pcb for insertion in output packets or
2290  * specifying behavior of outgoing packets.
2291  */
2292 static int
2293 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m,
2294     struct socket *so, struct sockopt *sopt)
2295 {
2296 	struct ip6_pktopts *opt = *pktopt;
2297 	int error = 0;
2298 	struct thread *td = sopt->sopt_td;
2299 
2300 	/* turn off any old options. */
2301 	if (opt) {
2302 #ifdef DIAGNOSTIC
2303 		if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2304 		    opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2305 		    opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2306 			printf("ip6_pcbopts: all specified options are cleared.\n");
2307 #endif
2308 		ip6_clearpktopts(opt, -1);
2309 	} else
2310 		opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2311 	*pktopt = NULL;
2312 
2313 	if (!m || m->m_len == 0) {
2314 		/*
2315 		 * Only turning off any previous options, regardless of
2316 		 * whether the opt is just created or given.
2317 		 */
2318 		free(opt, M_IP6OPT);
2319 		return (0);
2320 	}
2321 
2322 	/*  set options specified by user. */
2323 	if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ?
2324 	    td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) {
2325 		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2326 		free(opt, M_IP6OPT);
2327 		return (error);
2328 	}
2329 	*pktopt = opt;
2330 	return (0);
2331 }
2332 
2333 /*
2334  * initialize ip6_pktopts.  beware that there are non-zero default values in
2335  * the struct.
2336  */
2337 void
2338 ip6_initpktopts(struct ip6_pktopts *opt)
2339 {
2340 
2341 	bzero(opt, sizeof(*opt));
2342 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
2343 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
2344 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2345 	opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2346 }
2347 
2348 static int
2349 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2350     struct ucred *cred, int uproto)
2351 {
2352 	struct ip6_pktopts *opt;
2353 
2354 	if (*pktopt == NULL) {
2355 		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2356 		    M_NOWAIT);
2357 		if (*pktopt == NULL)
2358 			return (ENOBUFS);
2359 		ip6_initpktopts(*pktopt);
2360 	}
2361 	opt = *pktopt;
2362 
2363 	return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2364 }
2365 
2366 #define GET_PKTOPT_VAR(field, lenexpr) do {					\
2367 	if (pktopt && pktopt->field) {						\
2368 		INP_RUNLOCK(in6p);						\
2369 		optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK);		\
2370 		malloc_optdata = true;						\
2371 		INP_RLOCK(in6p);						\
2372 		if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {		\
2373 			INP_RUNLOCK(in6p);					\
2374 			free(optdata, M_TEMP);					\
2375 			return (ECONNRESET);					\
2376 		}								\
2377 		pktopt = in6p->in6p_outputopts;					\
2378 		if (pktopt && pktopt->field) {					\
2379 			optdatalen = min(lenexpr, sopt->sopt_valsize);		\
2380 			bcopy(&pktopt->field, optdata, optdatalen);		\
2381 		} else {							\
2382 			free(optdata, M_TEMP);					\
2383 			optdata = NULL;						\
2384 			malloc_optdata = false;					\
2385 		}								\
2386 	}									\
2387 } while(0)
2388 
2389 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field,				\
2390 	(((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3)
2391 
2392 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field,			\
2393 	pktopt->field->sa_len)
2394 
2395 static int
2396 ip6_getpcbopt(struct inpcb *in6p, int optname, struct sockopt *sopt)
2397 {
2398 	void *optdata = NULL;
2399 	bool malloc_optdata = false;
2400 	int optdatalen = 0;
2401 	int error = 0;
2402 	struct in6_pktinfo null_pktinfo;
2403 	int deftclass = 0, on;
2404 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
2405 	int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2406 	struct ip6_pktopts *pktopt;
2407 
2408 	INP_RLOCK(in6p);
2409 	pktopt = in6p->in6p_outputopts;
2410 
2411 	switch (optname) {
2412 	case IPV6_PKTINFO:
2413 		optdata = (void *)&null_pktinfo;
2414 		if (pktopt && pktopt->ip6po_pktinfo) {
2415 			bcopy(pktopt->ip6po_pktinfo, &null_pktinfo,
2416 			    sizeof(null_pktinfo));
2417 			in6_clearscope(&null_pktinfo.ipi6_addr);
2418 		} else {
2419 			/* XXX: we don't have to do this every time... */
2420 			bzero(&null_pktinfo, sizeof(null_pktinfo));
2421 		}
2422 		optdatalen = sizeof(struct in6_pktinfo);
2423 		break;
2424 	case IPV6_TCLASS:
2425 		if (pktopt && pktopt->ip6po_tclass >= 0)
2426 			deftclass = pktopt->ip6po_tclass;
2427 		optdata = (void *)&deftclass;
2428 		optdatalen = sizeof(int);
2429 		break;
2430 	case IPV6_HOPOPTS:
2431 		GET_PKTOPT_EXT_HDR(ip6po_hbh);
2432 		break;
2433 	case IPV6_RTHDR:
2434 		GET_PKTOPT_EXT_HDR(ip6po_rthdr);
2435 		break;
2436 	case IPV6_RTHDRDSTOPTS:
2437 		GET_PKTOPT_EXT_HDR(ip6po_dest1);
2438 		break;
2439 	case IPV6_DSTOPTS:
2440 		GET_PKTOPT_EXT_HDR(ip6po_dest2);
2441 		break;
2442 	case IPV6_NEXTHOP:
2443 		GET_PKTOPT_SOCKADDR(ip6po_nexthop);
2444 		break;
2445 	case IPV6_USE_MIN_MTU:
2446 		if (pktopt)
2447 			defminmtu = pktopt->ip6po_minmtu;
2448 		optdata = (void *)&defminmtu;
2449 		optdatalen = sizeof(int);
2450 		break;
2451 	case IPV6_DONTFRAG:
2452 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2453 			on = 1;
2454 		else
2455 			on = 0;
2456 		optdata = (void *)&on;
2457 		optdatalen = sizeof(on);
2458 		break;
2459 	case IPV6_PREFER_TEMPADDR:
2460 		if (pktopt)
2461 			defpreftemp = pktopt->ip6po_prefer_tempaddr;
2462 		optdata = (void *)&defpreftemp;
2463 		optdatalen = sizeof(int);
2464 		break;
2465 	default:		/* should not happen */
2466 #ifdef DIAGNOSTIC
2467 		panic("ip6_getpcbopt: unexpected option\n");
2468 #endif
2469 		INP_RUNLOCK(in6p);
2470 		return (ENOPROTOOPT);
2471 	}
2472 	INP_RUNLOCK(in6p);
2473 
2474 	error = sooptcopyout(sopt, optdata, optdatalen);
2475 	if (malloc_optdata)
2476 		free(optdata, M_TEMP);
2477 
2478 	return (error);
2479 }
2480 
2481 void
2482 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2483 {
2484 	if (pktopt == NULL)
2485 		return;
2486 
2487 	if (optname == -1 || optname == IPV6_PKTINFO) {
2488 		if (pktopt->ip6po_pktinfo)
2489 			free(pktopt->ip6po_pktinfo, M_IP6OPT);
2490 		pktopt->ip6po_pktinfo = NULL;
2491 	}
2492 	if (optname == -1 || optname == IPV6_HOPLIMIT)
2493 		pktopt->ip6po_hlim = -1;
2494 	if (optname == -1 || optname == IPV6_TCLASS)
2495 		pktopt->ip6po_tclass = -1;
2496 	if (optname == -1 || optname == IPV6_NEXTHOP) {
2497 		if (pktopt->ip6po_nextroute.ro_rt) {
2498 			RTFREE(pktopt->ip6po_nextroute.ro_rt);
2499 			pktopt->ip6po_nextroute.ro_rt = NULL;
2500 		}
2501 		if (pktopt->ip6po_nexthop)
2502 			free(pktopt->ip6po_nexthop, M_IP6OPT);
2503 		pktopt->ip6po_nexthop = NULL;
2504 	}
2505 	if (optname == -1 || optname == IPV6_HOPOPTS) {
2506 		if (pktopt->ip6po_hbh)
2507 			free(pktopt->ip6po_hbh, M_IP6OPT);
2508 		pktopt->ip6po_hbh = NULL;
2509 	}
2510 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2511 		if (pktopt->ip6po_dest1)
2512 			free(pktopt->ip6po_dest1, M_IP6OPT);
2513 		pktopt->ip6po_dest1 = NULL;
2514 	}
2515 	if (optname == -1 || optname == IPV6_RTHDR) {
2516 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2517 			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2518 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2519 		if (pktopt->ip6po_route.ro_rt) {
2520 			RTFREE(pktopt->ip6po_route.ro_rt);
2521 			pktopt->ip6po_route.ro_rt = NULL;
2522 		}
2523 	}
2524 	if (optname == -1 || optname == IPV6_DSTOPTS) {
2525 		if (pktopt->ip6po_dest2)
2526 			free(pktopt->ip6po_dest2, M_IP6OPT);
2527 		pktopt->ip6po_dest2 = NULL;
2528 	}
2529 }
2530 
2531 #define PKTOPT_EXTHDRCPY(type) \
2532 do {\
2533 	if (src->type) {\
2534 		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2535 		dst->type = malloc(hlen, M_IP6OPT, canwait);\
2536 		if (dst->type == NULL)\
2537 			goto bad;\
2538 		bcopy(src->type, dst->type, hlen);\
2539 	}\
2540 } while (/*CONSTCOND*/ 0)
2541 
2542 static int
2543 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2544 {
2545 	if (dst == NULL || src == NULL)  {
2546 		printf("ip6_clearpktopts: invalid argument\n");
2547 		return (EINVAL);
2548 	}
2549 
2550 	dst->ip6po_hlim = src->ip6po_hlim;
2551 	dst->ip6po_tclass = src->ip6po_tclass;
2552 	dst->ip6po_flags = src->ip6po_flags;
2553 	dst->ip6po_minmtu = src->ip6po_minmtu;
2554 	dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
2555 	if (src->ip6po_pktinfo) {
2556 		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2557 		    M_IP6OPT, canwait);
2558 		if (dst->ip6po_pktinfo == NULL)
2559 			goto bad;
2560 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2561 	}
2562 	if (src->ip6po_nexthop) {
2563 		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2564 		    M_IP6OPT, canwait);
2565 		if (dst->ip6po_nexthop == NULL)
2566 			goto bad;
2567 		bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2568 		    src->ip6po_nexthop->sa_len);
2569 	}
2570 	PKTOPT_EXTHDRCPY(ip6po_hbh);
2571 	PKTOPT_EXTHDRCPY(ip6po_dest1);
2572 	PKTOPT_EXTHDRCPY(ip6po_dest2);
2573 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2574 	return (0);
2575 
2576   bad:
2577 	ip6_clearpktopts(dst, -1);
2578 	return (ENOBUFS);
2579 }
2580 #undef PKTOPT_EXTHDRCPY
2581 
2582 struct ip6_pktopts *
2583 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2584 {
2585 	int error;
2586 	struct ip6_pktopts *dst;
2587 
2588 	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2589 	if (dst == NULL)
2590 		return (NULL);
2591 	ip6_initpktopts(dst);
2592 
2593 	if ((error = copypktopts(dst, src, canwait)) != 0) {
2594 		free(dst, M_IP6OPT);
2595 		return (NULL);
2596 	}
2597 
2598 	return (dst);
2599 }
2600 
2601 void
2602 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2603 {
2604 	if (pktopt == NULL)
2605 		return;
2606 
2607 	ip6_clearpktopts(pktopt, -1);
2608 
2609 	free(pktopt, M_IP6OPT);
2610 }
2611 
2612 /*
2613  * Set IPv6 outgoing packet options based on advanced API.
2614  */
2615 int
2616 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2617     struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto)
2618 {
2619 	struct cmsghdr *cm = NULL;
2620 
2621 	if (control == NULL || opt == NULL)
2622 		return (EINVAL);
2623 
2624 	ip6_initpktopts(opt);
2625 	if (stickyopt) {
2626 		int error;
2627 
2628 		/*
2629 		 * If stickyopt is provided, make a local copy of the options
2630 		 * for this particular packet, then override them by ancillary
2631 		 * objects.
2632 		 * XXX: copypktopts() does not copy the cached route to a next
2633 		 * hop (if any).  This is not very good in terms of efficiency,
2634 		 * but we can allow this since this option should be rarely
2635 		 * used.
2636 		 */
2637 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2638 			return (error);
2639 	}
2640 
2641 	/*
2642 	 * XXX: Currently, we assume all the optional information is stored
2643 	 * in a single mbuf.
2644 	 */
2645 	if (control->m_next)
2646 		return (EINVAL);
2647 
2648 	for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2649 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2650 		int error;
2651 
2652 		if (control->m_len < CMSG_LEN(0))
2653 			return (EINVAL);
2654 
2655 		cm = mtod(control, struct cmsghdr *);
2656 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2657 			return (EINVAL);
2658 		if (cm->cmsg_level != IPPROTO_IPV6)
2659 			continue;
2660 
2661 		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2662 		    cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2663 		if (error)
2664 			return (error);
2665 	}
2666 
2667 	return (0);
2668 }
2669 
2670 /*
2671  * Set a particular packet option, as a sticky option or an ancillary data
2672  * item.  "len" can be 0 only when it's a sticky option.
2673  * We have 4 cases of combination of "sticky" and "cmsg":
2674  * "sticky=0, cmsg=0": impossible
2675  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2676  * "sticky=1, cmsg=0": RFC3542 socket option
2677  * "sticky=1, cmsg=1": RFC2292 socket option
2678  */
2679 static int
2680 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2681     struct ucred *cred, int sticky, int cmsg, int uproto)
2682 {
2683 	int minmtupolicy, preftemp;
2684 	int error;
2685 
2686 	if (!sticky && !cmsg) {
2687 #ifdef DIAGNOSTIC
2688 		printf("ip6_setpktopt: impossible case\n");
2689 #endif
2690 		return (EINVAL);
2691 	}
2692 
2693 	/*
2694 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2695 	 * not be specified in the context of RFC3542.  Conversely,
2696 	 * RFC3542 types should not be specified in the context of RFC2292.
2697 	 */
2698 	if (!cmsg) {
2699 		switch (optname) {
2700 		case IPV6_2292PKTINFO:
2701 		case IPV6_2292HOPLIMIT:
2702 		case IPV6_2292NEXTHOP:
2703 		case IPV6_2292HOPOPTS:
2704 		case IPV6_2292DSTOPTS:
2705 		case IPV6_2292RTHDR:
2706 		case IPV6_2292PKTOPTIONS:
2707 			return (ENOPROTOOPT);
2708 		}
2709 	}
2710 	if (sticky && cmsg) {
2711 		switch (optname) {
2712 		case IPV6_PKTINFO:
2713 		case IPV6_HOPLIMIT:
2714 		case IPV6_NEXTHOP:
2715 		case IPV6_HOPOPTS:
2716 		case IPV6_DSTOPTS:
2717 		case IPV6_RTHDRDSTOPTS:
2718 		case IPV6_RTHDR:
2719 		case IPV6_USE_MIN_MTU:
2720 		case IPV6_DONTFRAG:
2721 		case IPV6_TCLASS:
2722 		case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */
2723 			return (ENOPROTOOPT);
2724 		}
2725 	}
2726 
2727 	switch (optname) {
2728 	case IPV6_2292PKTINFO:
2729 	case IPV6_PKTINFO:
2730 	{
2731 		struct ifnet *ifp = NULL;
2732 		struct in6_pktinfo *pktinfo;
2733 
2734 		if (len != sizeof(struct in6_pktinfo))
2735 			return (EINVAL);
2736 
2737 		pktinfo = (struct in6_pktinfo *)buf;
2738 
2739 		/*
2740 		 * An application can clear any sticky IPV6_PKTINFO option by
2741 		 * doing a "regular" setsockopt with ipi6_addr being
2742 		 * in6addr_any and ipi6_ifindex being zero.
2743 		 * [RFC 3542, Section 6]
2744 		 */
2745 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2746 		    pktinfo->ipi6_ifindex == 0 &&
2747 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2748 			ip6_clearpktopts(opt, optname);
2749 			break;
2750 		}
2751 
2752 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2753 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2754 			return (EINVAL);
2755 		}
2756 		if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr))
2757 			return (EINVAL);
2758 		/* validate the interface index if specified. */
2759 		if (pktinfo->ipi6_ifindex > V_if_index)
2760 			 return (ENXIO);
2761 		if (pktinfo->ipi6_ifindex) {
2762 			ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
2763 			if (ifp == NULL)
2764 				return (ENXIO);
2765 		}
2766 		if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL ||
2767 		    (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0))
2768 			return (ENETDOWN);
2769 
2770 		if (ifp != NULL &&
2771 		    !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2772 			struct in6_ifaddr *ia;
2773 
2774 			in6_setscope(&pktinfo->ipi6_addr, ifp, NULL);
2775 			ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr);
2776 			if (ia == NULL)
2777 				return (EADDRNOTAVAIL);
2778 			ifa_free(&ia->ia_ifa);
2779 		}
2780 		/*
2781 		 * We store the address anyway, and let in6_selectsrc()
2782 		 * validate the specified address.  This is because ipi6_addr
2783 		 * may not have enough information about its scope zone, and
2784 		 * we may need additional information (such as outgoing
2785 		 * interface or the scope zone of a destination address) to
2786 		 * disambiguate the scope.
2787 		 * XXX: the delay of the validation may confuse the
2788 		 * application when it is used as a sticky option.
2789 		 */
2790 		if (opt->ip6po_pktinfo == NULL) {
2791 			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2792 			    M_IP6OPT, M_NOWAIT);
2793 			if (opt->ip6po_pktinfo == NULL)
2794 				return (ENOBUFS);
2795 		}
2796 		bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
2797 		break;
2798 	}
2799 
2800 	case IPV6_2292HOPLIMIT:
2801 	case IPV6_HOPLIMIT:
2802 	{
2803 		int *hlimp;
2804 
2805 		/*
2806 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2807 		 * to simplify the ordering among hoplimit options.
2808 		 */
2809 		if (optname == IPV6_HOPLIMIT && sticky)
2810 			return (ENOPROTOOPT);
2811 
2812 		if (len != sizeof(int))
2813 			return (EINVAL);
2814 		hlimp = (int *)buf;
2815 		if (*hlimp < -1 || *hlimp > 255)
2816 			return (EINVAL);
2817 
2818 		opt->ip6po_hlim = *hlimp;
2819 		break;
2820 	}
2821 
2822 	case IPV6_TCLASS:
2823 	{
2824 		int tclass;
2825 
2826 		if (len != sizeof(int))
2827 			return (EINVAL);
2828 		tclass = *(int *)buf;
2829 		if (tclass < -1 || tclass > 255)
2830 			return (EINVAL);
2831 
2832 		opt->ip6po_tclass = tclass;
2833 		break;
2834 	}
2835 
2836 	case IPV6_2292NEXTHOP:
2837 	case IPV6_NEXTHOP:
2838 		if (cred != NULL) {
2839 			error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS);
2840 			if (error)
2841 				return (error);
2842 		}
2843 
2844 		if (len == 0) {	/* just remove the option */
2845 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
2846 			break;
2847 		}
2848 
2849 		/* check if cmsg_len is large enough for sa_len */
2850 		if (len < sizeof(struct sockaddr) || len < *buf)
2851 			return (EINVAL);
2852 
2853 		switch (((struct sockaddr *)buf)->sa_family) {
2854 		case AF_INET6:
2855 		{
2856 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
2857 			int error;
2858 
2859 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
2860 				return (EINVAL);
2861 
2862 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
2863 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
2864 				return (EINVAL);
2865 			}
2866 			if ((error = sa6_embedscope(sa6, V_ip6_use_defzone))
2867 			    != 0) {
2868 				return (error);
2869 			}
2870 			break;
2871 		}
2872 		case AF_LINK:	/* should eventually be supported */
2873 		default:
2874 			return (EAFNOSUPPORT);
2875 		}
2876 
2877 		/* turn off the previous option, then set the new option. */
2878 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
2879 		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
2880 		if (opt->ip6po_nexthop == NULL)
2881 			return (ENOBUFS);
2882 		bcopy(buf, opt->ip6po_nexthop, *buf);
2883 		break;
2884 
2885 	case IPV6_2292HOPOPTS:
2886 	case IPV6_HOPOPTS:
2887 	{
2888 		struct ip6_hbh *hbh;
2889 		int hbhlen;
2890 
2891 		/*
2892 		 * XXX: We don't allow a non-privileged user to set ANY HbH
2893 		 * options, since per-option restriction has too much
2894 		 * overhead.
2895 		 */
2896 		if (cred != NULL) {
2897 			error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS);
2898 			if (error)
2899 				return (error);
2900 		}
2901 
2902 		if (len == 0) {
2903 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
2904 			break;	/* just remove the option */
2905 		}
2906 
2907 		/* message length validation */
2908 		if (len < sizeof(struct ip6_hbh))
2909 			return (EINVAL);
2910 		hbh = (struct ip6_hbh *)buf;
2911 		hbhlen = (hbh->ip6h_len + 1) << 3;
2912 		if (len != hbhlen)
2913 			return (EINVAL);
2914 
2915 		/* turn off the previous option, then set the new option. */
2916 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
2917 		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
2918 		if (opt->ip6po_hbh == NULL)
2919 			return (ENOBUFS);
2920 		bcopy(hbh, opt->ip6po_hbh, hbhlen);
2921 
2922 		break;
2923 	}
2924 
2925 	case IPV6_2292DSTOPTS:
2926 	case IPV6_DSTOPTS:
2927 	case IPV6_RTHDRDSTOPTS:
2928 	{
2929 		struct ip6_dest *dest, **newdest = NULL;
2930 		int destlen;
2931 
2932 		if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */
2933 			error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS);
2934 			if (error)
2935 				return (error);
2936 		}
2937 
2938 		if (len == 0) {
2939 			ip6_clearpktopts(opt, optname);
2940 			break;	/* just remove the option */
2941 		}
2942 
2943 		/* message length validation */
2944 		if (len < sizeof(struct ip6_dest))
2945 			return (EINVAL);
2946 		dest = (struct ip6_dest *)buf;
2947 		destlen = (dest->ip6d_len + 1) << 3;
2948 		if (len != destlen)
2949 			return (EINVAL);
2950 
2951 		/*
2952 		 * Determine the position that the destination options header
2953 		 * should be inserted; before or after the routing header.
2954 		 */
2955 		switch (optname) {
2956 		case IPV6_2292DSTOPTS:
2957 			/*
2958 			 * The old advacned API is ambiguous on this point.
2959 			 * Our approach is to determine the position based
2960 			 * according to the existence of a routing header.
2961 			 * Note, however, that this depends on the order of the
2962 			 * extension headers in the ancillary data; the 1st
2963 			 * part of the destination options header must appear
2964 			 * before the routing header in the ancillary data,
2965 			 * too.
2966 			 * RFC3542 solved the ambiguity by introducing
2967 			 * separate ancillary data or option types.
2968 			 */
2969 			if (opt->ip6po_rthdr == NULL)
2970 				newdest = &opt->ip6po_dest1;
2971 			else
2972 				newdest = &opt->ip6po_dest2;
2973 			break;
2974 		case IPV6_RTHDRDSTOPTS:
2975 			newdest = &opt->ip6po_dest1;
2976 			break;
2977 		case IPV6_DSTOPTS:
2978 			newdest = &opt->ip6po_dest2;
2979 			break;
2980 		}
2981 
2982 		/* turn off the previous option, then set the new option. */
2983 		ip6_clearpktopts(opt, optname);
2984 		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
2985 		if (*newdest == NULL)
2986 			return (ENOBUFS);
2987 		bcopy(dest, *newdest, destlen);
2988 
2989 		break;
2990 	}
2991 
2992 	case IPV6_2292RTHDR:
2993 	case IPV6_RTHDR:
2994 	{
2995 		struct ip6_rthdr *rth;
2996 		int rthlen;
2997 
2998 		if (len == 0) {
2999 			ip6_clearpktopts(opt, IPV6_RTHDR);
3000 			break;	/* just remove the option */
3001 		}
3002 
3003 		/* message length validation */
3004 		if (len < sizeof(struct ip6_rthdr))
3005 			return (EINVAL);
3006 		rth = (struct ip6_rthdr *)buf;
3007 		rthlen = (rth->ip6r_len + 1) << 3;
3008 		if (len != rthlen)
3009 			return (EINVAL);
3010 
3011 		switch (rth->ip6r_type) {
3012 		case IPV6_RTHDR_TYPE_0:
3013 			if (rth->ip6r_len == 0)	/* must contain one addr */
3014 				return (EINVAL);
3015 			if (rth->ip6r_len % 2) /* length must be even */
3016 				return (EINVAL);
3017 			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
3018 				return (EINVAL);
3019 			break;
3020 		default:
3021 			return (EINVAL);	/* not supported */
3022 		}
3023 
3024 		/* turn off the previous option */
3025 		ip6_clearpktopts(opt, IPV6_RTHDR);
3026 		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3027 		if (opt->ip6po_rthdr == NULL)
3028 			return (ENOBUFS);
3029 		bcopy(rth, opt->ip6po_rthdr, rthlen);
3030 
3031 		break;
3032 	}
3033 
3034 	case IPV6_USE_MIN_MTU:
3035 		if (len != sizeof(int))
3036 			return (EINVAL);
3037 		minmtupolicy = *(int *)buf;
3038 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3039 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
3040 		    minmtupolicy != IP6PO_MINMTU_ALL) {
3041 			return (EINVAL);
3042 		}
3043 		opt->ip6po_minmtu = minmtupolicy;
3044 		break;
3045 
3046 	case IPV6_DONTFRAG:
3047 		if (len != sizeof(int))
3048 			return (EINVAL);
3049 
3050 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3051 			/*
3052 			 * we ignore this option for TCP sockets.
3053 			 * (RFC3542 leaves this case unspecified.)
3054 			 */
3055 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3056 		} else
3057 			opt->ip6po_flags |= IP6PO_DONTFRAG;
3058 		break;
3059 
3060 	case IPV6_PREFER_TEMPADDR:
3061 		if (len != sizeof(int))
3062 			return (EINVAL);
3063 		preftemp = *(int *)buf;
3064 		if (preftemp != IP6PO_TEMPADDR_SYSTEM &&
3065 		    preftemp != IP6PO_TEMPADDR_NOTPREFER &&
3066 		    preftemp != IP6PO_TEMPADDR_PREFER) {
3067 			return (EINVAL);
3068 		}
3069 		opt->ip6po_prefer_tempaddr = preftemp;
3070 		break;
3071 
3072 	default:
3073 		return (ENOPROTOOPT);
3074 	} /* end of switch */
3075 
3076 	return (0);
3077 }
3078 
3079 /*
3080  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3081  * packet to the input queue of a specified interface.  Note that this
3082  * calls the output routine of the loopback "driver", but with an interface
3083  * pointer that might NOT be &loif -- easier than replicating that code here.
3084  */
3085 void
3086 ip6_mloopback(struct ifnet *ifp, struct mbuf *m)
3087 {
3088 	struct mbuf *copym;
3089 	struct ip6_hdr *ip6;
3090 
3091 	copym = m_copym(m, 0, M_COPYALL, M_NOWAIT);
3092 	if (copym == NULL)
3093 		return;
3094 
3095 	/*
3096 	 * Make sure to deep-copy IPv6 header portion in case the data
3097 	 * is in an mbuf cluster, so that we can safely override the IPv6
3098 	 * header portion later.
3099 	 */
3100 	if (!M_WRITABLE(copym) ||
3101 	    copym->m_len < sizeof(struct ip6_hdr)) {
3102 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
3103 		if (copym == NULL)
3104 			return;
3105 	}
3106 	ip6 = mtod(copym, struct ip6_hdr *);
3107 	/*
3108 	 * clear embedded scope identifiers if necessary.
3109 	 * in6_clearscope will touch the addresses only when necessary.
3110 	 */
3111 	in6_clearscope(&ip6->ip6_src);
3112 	in6_clearscope(&ip6->ip6_dst);
3113 	if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
3114 		copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 |
3115 		    CSUM_PSEUDO_HDR;
3116 		copym->m_pkthdr.csum_data = 0xffff;
3117 	}
3118 	if_simloop(ifp, copym, AF_INET6, 0);
3119 }
3120 
3121 /*
3122  * Chop IPv6 header off from the payload.
3123  */
3124 static int
3125 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3126 {
3127 	struct mbuf *mh;
3128 	struct ip6_hdr *ip6;
3129 
3130 	ip6 = mtod(m, struct ip6_hdr *);
3131 	if (m->m_len > sizeof(*ip6)) {
3132 		mh = m_gethdr(M_NOWAIT, MT_DATA);
3133 		if (mh == NULL) {
3134 			m_freem(m);
3135 			return ENOBUFS;
3136 		}
3137 		m_move_pkthdr(mh, m);
3138 		M_ALIGN(mh, sizeof(*ip6));
3139 		m->m_len -= sizeof(*ip6);
3140 		m->m_data += sizeof(*ip6);
3141 		mh->m_next = m;
3142 		m = mh;
3143 		m->m_len = sizeof(*ip6);
3144 		bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
3145 	}
3146 	exthdrs->ip6e_ip6 = m;
3147 	return 0;
3148 }
3149 
3150 /*
3151  * Compute IPv6 extension header length.
3152  */
3153 int
3154 ip6_optlen(struct inpcb *in6p)
3155 {
3156 	int len;
3157 
3158 	if (!in6p->in6p_outputopts)
3159 		return 0;
3160 
3161 	len = 0;
3162 #define elen(x) \
3163     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3164 
3165 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
3166 	if (in6p->in6p_outputopts->ip6po_rthdr)
3167 		/* dest1 is valid with rthdr only */
3168 		len += elen(in6p->in6p_outputopts->ip6po_dest1);
3169 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3170 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
3171 	return len;
3172 #undef elen
3173 }
3174