1 /* $FreeBSD$ */ 2 /* $KAME: ip6_output.c,v 1.180 2001/05/21 05:37:50 jinmei Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Berkeley and its contributors. 49 * 4. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 66 */ 67 68 #include "opt_ip6fw.h" 69 #include "opt_inet.h" 70 #include "opt_inet6.h" 71 #include "opt_ipsec.h" 72 #include "opt_pfil_hooks.h" 73 74 #include <sys/param.h> 75 #include <sys/malloc.h> 76 #include <sys/mbuf.h> 77 #include <sys/proc.h> 78 #include <sys/errno.h> 79 #include <sys/protosw.h> 80 #include <sys/socket.h> 81 #include <sys/socketvar.h> 82 #include <sys/systm.h> 83 #include <sys/kernel.h> 84 85 #include <net/if.h> 86 #include <net/route.h> 87 #ifdef PFIL_HOOKS 88 #include <net/pfil.h> 89 #endif 90 91 #include <netinet/in.h> 92 #include <netinet/in_var.h> 93 #include <netinet6/in6_var.h> 94 #include <netinet/ip6.h> 95 #include <netinet/icmp6.h> 96 #include <netinet6/ip6_var.h> 97 #include <netinet/in_pcb.h> 98 #include <netinet6/nd6.h> 99 100 #ifdef IPSEC 101 #include <netinet6/ipsec.h> 102 #ifdef INET6 103 #include <netinet6/ipsec6.h> 104 #endif 105 #include <netkey/key.h> 106 #endif /* IPSEC */ 107 108 #include <netinet6/ip6_fw.h> 109 110 #include <net/net_osdep.h> 111 112 #include <netinet6/ip6protosw.h> 113 114 static MALLOC_DEFINE(M_IPMOPTS, "ip6_moptions", "internet multicast options"); 115 116 struct ip6_exthdrs { 117 struct mbuf *ip6e_ip6; 118 struct mbuf *ip6e_hbh; 119 struct mbuf *ip6e_dest1; 120 struct mbuf *ip6e_rthdr; 121 struct mbuf *ip6e_dest2; 122 }; 123 124 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 125 struct socket *, struct sockopt *sopt)); 126 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *)); 127 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **)); 128 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int)); 129 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 130 struct ip6_frag **)); 131 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t)); 132 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *)); 133 134 /* 135 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 136 * header (with pri, len, nxt, hlim, src, dst). 137 * This function may modify ver and hlim only. 138 * The mbuf chain containing the packet will be freed. 139 * The mbuf opt, if present, will not be freed. 140 * 141 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 142 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 143 * which is rt_rmx.rmx_mtu. 144 */ 145 int 146 ip6_output(m0, opt, ro, flags, im6o, ifpp) 147 struct mbuf *m0; 148 struct ip6_pktopts *opt; 149 struct route_in6 *ro; 150 int flags; 151 struct ip6_moptions *im6o; 152 struct ifnet **ifpp; /* XXX: just for statistics */ 153 { 154 struct ip6_hdr *ip6, *mhip6; 155 struct ifnet *ifp, *origifp; 156 struct mbuf *m = m0; 157 int hlen, tlen, len, off; 158 struct route_in6 ip6route; 159 struct sockaddr_in6 *dst; 160 int error = 0; 161 struct in6_ifaddr *ia = NULL; 162 u_long mtu; 163 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 164 struct ip6_exthdrs exthdrs; 165 struct in6_addr finaldst; 166 struct route_in6 *ro_pmtu = NULL; 167 int hdrsplit = 0; 168 int needipsec = 0; 169 #ifdef PFIL_HOOKS 170 struct packet_filter_hook *pfh; 171 struct mbuf *m1; 172 int rv; 173 #endif /* PFIL_HOOKS */ 174 #ifdef IPSEC 175 int needipsectun = 0; 176 struct socket *so; 177 struct secpolicy *sp = NULL; 178 179 /* for AH processing. stupid to have "socket" variable in IP layer... */ 180 so = ipsec_getsocket(m); 181 (void)ipsec_setsocket(m, NULL); 182 ip6 = mtod(m, struct ip6_hdr *); 183 #endif /* IPSEC */ 184 185 #define MAKE_EXTHDR(hp, mp) \ 186 do { \ 187 if (hp) { \ 188 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 189 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 190 ((eh)->ip6e_len + 1) << 3); \ 191 if (error) \ 192 goto freehdrs; \ 193 } \ 194 } while (0) 195 196 bzero(&exthdrs, sizeof(exthdrs)); 197 198 if (opt) { 199 /* Hop-by-Hop options header */ 200 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 201 /* Destination options header(1st part) */ 202 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 203 /* Routing header */ 204 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 205 /* Destination options header(2nd part) */ 206 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 207 } 208 209 #ifdef IPSEC 210 /* get a security policy for this packet */ 211 if (so == NULL) 212 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 213 else 214 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error); 215 216 if (sp == NULL) { 217 ipsec6stat.out_inval++; 218 goto freehdrs; 219 } 220 221 error = 0; 222 223 /* check policy */ 224 switch (sp->policy) { 225 case IPSEC_POLICY_DISCARD: 226 /* 227 * This packet is just discarded. 228 */ 229 ipsec6stat.out_polvio++; 230 goto freehdrs; 231 232 case IPSEC_POLICY_BYPASS: 233 case IPSEC_POLICY_NONE: 234 /* no need to do IPsec. */ 235 needipsec = 0; 236 break; 237 238 case IPSEC_POLICY_IPSEC: 239 if (sp->req == NULL) { 240 /* acquire a policy */ 241 error = key_spdacquire(sp); 242 goto freehdrs; 243 } 244 needipsec = 1; 245 break; 246 247 case IPSEC_POLICY_ENTRUST: 248 default: 249 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 250 } 251 #endif /* IPSEC */ 252 253 /* 254 * Calculate the total length of the extension header chain. 255 * Keep the length of the unfragmentable part for fragmentation. 256 */ 257 optlen = 0; 258 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 259 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 260 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 261 unfragpartlen = optlen + sizeof(struct ip6_hdr); 262 /* NOTE: we don't add AH/ESP length here. do that later. */ 263 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 264 265 /* 266 * If we need IPsec, or there is at least one extension header, 267 * separate IP6 header from the payload. 268 */ 269 if ((needipsec || optlen) && !hdrsplit) { 270 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 271 m = NULL; 272 goto freehdrs; 273 } 274 m = exthdrs.ip6e_ip6; 275 hdrsplit++; 276 } 277 278 /* adjust pointer */ 279 ip6 = mtod(m, struct ip6_hdr *); 280 281 /* adjust mbuf packet header length */ 282 m->m_pkthdr.len += optlen; 283 plen = m->m_pkthdr.len - sizeof(*ip6); 284 285 /* If this is a jumbo payload, insert a jumbo payload option. */ 286 if (plen > IPV6_MAXPACKET) { 287 if (!hdrsplit) { 288 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 289 m = NULL; 290 goto freehdrs; 291 } 292 m = exthdrs.ip6e_ip6; 293 hdrsplit++; 294 } 295 /* adjust pointer */ 296 ip6 = mtod(m, struct ip6_hdr *); 297 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 298 goto freehdrs; 299 ip6->ip6_plen = 0; 300 } else 301 ip6->ip6_plen = htons(plen); 302 303 /* 304 * Concatenate headers and fill in next header fields. 305 * Here we have, on "m" 306 * IPv6 payload 307 * and we insert headers accordingly. Finally, we should be getting: 308 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 309 * 310 * during the header composing process, "m" points to IPv6 header. 311 * "mprev" points to an extension header prior to esp. 312 */ 313 { 314 u_char *nexthdrp = &ip6->ip6_nxt; 315 struct mbuf *mprev = m; 316 317 /* 318 * we treat dest2 specially. this makes IPsec processing 319 * much easier. 320 * 321 * result: IPv6 dest2 payload 322 * m and mprev will point to IPv6 header. 323 */ 324 if (exthdrs.ip6e_dest2) { 325 if (!hdrsplit) 326 panic("assumption failed: hdr not split"); 327 exthdrs.ip6e_dest2->m_next = m->m_next; 328 m->m_next = exthdrs.ip6e_dest2; 329 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 330 ip6->ip6_nxt = IPPROTO_DSTOPTS; 331 } 332 333 #define MAKE_CHAIN(m, mp, p, i)\ 334 do {\ 335 if (m) {\ 336 if (!hdrsplit) \ 337 panic("assumption failed: hdr not split"); \ 338 *mtod((m), u_char *) = *(p);\ 339 *(p) = (i);\ 340 p = mtod((m), u_char *);\ 341 (m)->m_next = (mp)->m_next;\ 342 (mp)->m_next = (m);\ 343 (mp) = (m);\ 344 }\ 345 } while (0) 346 /* 347 * result: IPv6 hbh dest1 rthdr dest2 payload 348 * m will point to IPv6 header. mprev will point to the 349 * extension header prior to dest2 (rthdr in the above case). 350 */ 351 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, 352 nexthdrp, IPPROTO_HOPOPTS); 353 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, 354 nexthdrp, IPPROTO_DSTOPTS); 355 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, 356 nexthdrp, IPPROTO_ROUTING); 357 358 #ifdef IPSEC 359 if (!needipsec) 360 goto skip_ipsec2; 361 362 /* 363 * pointers after IPsec headers are not valid any more. 364 * other pointers need a great care too. 365 * (IPsec routines should not mangle mbufs prior to AH/ESP) 366 */ 367 exthdrs.ip6e_dest2 = NULL; 368 369 { 370 struct ip6_rthdr *rh = NULL; 371 int segleft_org = 0; 372 struct ipsec_output_state state; 373 374 if (exthdrs.ip6e_rthdr) { 375 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 376 segleft_org = rh->ip6r_segleft; 377 rh->ip6r_segleft = 0; 378 } 379 380 bzero(&state, sizeof(state)); 381 state.m = m; 382 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 383 &needipsectun); 384 m = state.m; 385 if (error) { 386 /* mbuf is already reclaimed in ipsec6_output_trans. */ 387 m = NULL; 388 switch (error) { 389 case EHOSTUNREACH: 390 case ENETUNREACH: 391 case EMSGSIZE: 392 case ENOBUFS: 393 case ENOMEM: 394 break; 395 default: 396 printf("ip6_output (ipsec): error code %d\n", error); 397 /*fall through*/ 398 case ENOENT: 399 /* don't show these error codes to the user */ 400 error = 0; 401 break; 402 } 403 goto bad; 404 } 405 if (exthdrs.ip6e_rthdr) { 406 /* ah6_output doesn't modify mbuf chain */ 407 rh->ip6r_segleft = segleft_org; 408 } 409 } 410 skip_ipsec2:; 411 #endif 412 } 413 414 /* 415 * If there is a routing header, replace destination address field 416 * with the first hop of the routing header. 417 */ 418 if (exthdrs.ip6e_rthdr) { 419 struct ip6_rthdr *rh = 420 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 421 struct ip6_rthdr *)); 422 struct ip6_rthdr0 *rh0; 423 424 finaldst = ip6->ip6_dst; 425 switch (rh->ip6r_type) { 426 case IPV6_RTHDR_TYPE_0: 427 rh0 = (struct ip6_rthdr0 *)rh; 428 ip6->ip6_dst = rh0->ip6r0_addr[0]; 429 bcopy((caddr_t)&rh0->ip6r0_addr[1], 430 (caddr_t)&rh0->ip6r0_addr[0], 431 sizeof(struct in6_addr)*(rh0->ip6r0_segleft - 1) 432 ); 433 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst; 434 break; 435 default: /* is it possible? */ 436 error = EINVAL; 437 goto bad; 438 } 439 } 440 441 /* Source address validation */ 442 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 443 (flags & IPV6_DADOUTPUT) == 0) { 444 error = EOPNOTSUPP; 445 ip6stat.ip6s_badscope++; 446 goto bad; 447 } 448 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 449 error = EOPNOTSUPP; 450 ip6stat.ip6s_badscope++; 451 goto bad; 452 } 453 454 ip6stat.ip6s_localout++; 455 456 /* 457 * Route packet. 458 */ 459 if (ro == 0) { 460 ro = &ip6route; 461 bzero((caddr_t)ro, sizeof(*ro)); 462 } 463 ro_pmtu = ro; 464 if (opt && opt->ip6po_rthdr) 465 ro = &opt->ip6po_route; 466 dst = (struct sockaddr_in6 *)&ro->ro_dst; 467 /* 468 * If there is a cached route, 469 * check that it is to the same destination 470 * and is still up. If not, free it and try again. 471 */ 472 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 473 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) { 474 RTFREE(ro->ro_rt); 475 ro->ro_rt = (struct rtentry *)0; 476 } 477 if (ro->ro_rt == 0) { 478 bzero(dst, sizeof(*dst)); 479 dst->sin6_family = AF_INET6; 480 dst->sin6_len = sizeof(struct sockaddr_in6); 481 dst->sin6_addr = ip6->ip6_dst; 482 #ifdef SCOPEDROUTING 483 /* XXX: sin6_scope_id should already be fixed at this point */ 484 if (IN6_IS_SCOPE_LINKLOCAL(&dst->sin6_addr)) 485 dst->sin6_scope_id = ntohs(dst->sin6_addr.s6_addr16[1]); 486 #endif 487 } 488 #ifdef IPSEC 489 if (needipsec && needipsectun) { 490 struct ipsec_output_state state; 491 492 /* 493 * All the extension headers will become inaccessible 494 * (since they can be encrypted). 495 * Don't panic, we need no more updates to extension headers 496 * on inner IPv6 packet (since they are now encapsulated). 497 * 498 * IPv6 [ESP|AH] IPv6 [extension headers] payload 499 */ 500 bzero(&exthdrs, sizeof(exthdrs)); 501 exthdrs.ip6e_ip6 = m; 502 503 bzero(&state, sizeof(state)); 504 state.m = m; 505 state.ro = (struct route *)ro; 506 state.dst = (struct sockaddr *)dst; 507 508 error = ipsec6_output_tunnel(&state, sp, flags); 509 510 m = state.m; 511 ro = (struct route_in6 *)state.ro; 512 dst = (struct sockaddr_in6 *)state.dst; 513 if (error) { 514 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 515 m0 = m = NULL; 516 m = NULL; 517 switch (error) { 518 case EHOSTUNREACH: 519 case ENETUNREACH: 520 case EMSGSIZE: 521 case ENOBUFS: 522 case ENOMEM: 523 break; 524 default: 525 printf("ip6_output (ipsec): error code %d\n", error); 526 /*fall through*/ 527 case ENOENT: 528 /* don't show these error codes to the user */ 529 error = 0; 530 break; 531 } 532 goto bad; 533 } 534 535 exthdrs.ip6e_ip6 = m; 536 } 537 #endif /*IPSEC*/ 538 539 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 540 /* Unicast */ 541 542 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa)) 543 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) 544 /* xxx 545 * interface selection comes here 546 * if an interface is specified from an upper layer, 547 * ifp must point it. 548 */ 549 if (ro->ro_rt == 0) { 550 /* 551 * non-bsdi always clone routes, if parent is 552 * PRF_CLONING. 553 */ 554 rtalloc((struct route *)ro); 555 } 556 if (ro->ro_rt == 0) { 557 ip6stat.ip6s_noroute++; 558 error = EHOSTUNREACH; 559 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */ 560 goto bad; 561 } 562 ia = ifatoia6(ro->ro_rt->rt_ifa); 563 ifp = ro->ro_rt->rt_ifp; 564 ro->ro_rt->rt_use++; 565 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 566 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway; 567 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 568 569 in6_ifstat_inc(ifp, ifs6_out_request); 570 571 /* 572 * Check if the outgoing interface conflicts with 573 * the interface specified by ifi6_ifindex (if specified). 574 * Note that loopback interface is always okay. 575 * (this may happen when we are sending a packet to one of 576 * our own addresses.) 577 */ 578 if (opt && opt->ip6po_pktinfo 579 && opt->ip6po_pktinfo->ipi6_ifindex) { 580 if (!(ifp->if_flags & IFF_LOOPBACK) 581 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) { 582 ip6stat.ip6s_noroute++; 583 in6_ifstat_inc(ifp, ifs6_out_discard); 584 error = EHOSTUNREACH; 585 goto bad; 586 } 587 } 588 589 if (opt && opt->ip6po_hlim != -1) 590 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 591 } else { 592 /* Multicast */ 593 struct in6_multi *in6m; 594 595 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 596 597 /* 598 * See if the caller provided any multicast options 599 */ 600 ifp = NULL; 601 if (im6o != NULL) { 602 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 603 if (im6o->im6o_multicast_ifp != NULL) 604 ifp = im6o->im6o_multicast_ifp; 605 } else 606 ip6->ip6_hlim = ip6_defmcasthlim; 607 608 /* 609 * See if the caller provided the outgoing interface 610 * as an ancillary data. 611 * Boundary check for ifindex is assumed to be already done. 612 */ 613 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex) 614 ifp = ifnet_byindex(opt->ip6po_pktinfo->ipi6_ifindex); 615 616 /* 617 * If the destination is a node-local scope multicast, 618 * the packet should be loop-backed only. 619 */ 620 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) { 621 /* 622 * If the outgoing interface is already specified, 623 * it should be a loopback interface. 624 */ 625 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) { 626 ip6stat.ip6s_badscope++; 627 error = ENETUNREACH; /* XXX: better error? */ 628 /* XXX correct ifp? */ 629 in6_ifstat_inc(ifp, ifs6_out_discard); 630 goto bad; 631 } else { 632 ifp = &loif[0]; 633 } 634 } 635 636 if (opt && opt->ip6po_hlim != -1) 637 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 638 639 /* 640 * If caller did not provide an interface lookup a 641 * default in the routing table. This is either a 642 * default for the speicfied group (i.e. a host 643 * route), or a multicast default (a route for the 644 * ``net'' ff00::/8). 645 */ 646 if (ifp == NULL) { 647 if (ro->ro_rt == 0) { 648 ro->ro_rt = rtalloc1((struct sockaddr *) 649 &ro->ro_dst, 0, 0UL); 650 } 651 if (ro->ro_rt == 0) { 652 ip6stat.ip6s_noroute++; 653 error = EHOSTUNREACH; 654 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */ 655 goto bad; 656 } 657 ia = ifatoia6(ro->ro_rt->rt_ifa); 658 ifp = ro->ro_rt->rt_ifp; 659 ro->ro_rt->rt_use++; 660 } 661 662 if ((flags & IPV6_FORWARDING) == 0) 663 in6_ifstat_inc(ifp, ifs6_out_request); 664 in6_ifstat_inc(ifp, ifs6_out_mcast); 665 666 /* 667 * Confirm that the outgoing interface supports multicast. 668 */ 669 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 670 ip6stat.ip6s_noroute++; 671 in6_ifstat_inc(ifp, ifs6_out_discard); 672 error = ENETUNREACH; 673 goto bad; 674 } 675 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 676 if (in6m != NULL && 677 (im6o == NULL || im6o->im6o_multicast_loop)) { 678 /* 679 * If we belong to the destination multicast group 680 * on the outgoing interface, and the caller did not 681 * forbid loopback, loop back a copy. 682 */ 683 ip6_mloopback(ifp, m, dst); 684 } else { 685 /* 686 * If we are acting as a multicast router, perform 687 * multicast forwarding as if the packet had just 688 * arrived on the interface to which we are about 689 * to send. The multicast forwarding function 690 * recursively calls this function, using the 691 * IPV6_FORWARDING flag to prevent infinite recursion. 692 * 693 * Multicasts that are looped back by ip6_mloopback(), 694 * above, will be forwarded by the ip6_input() routine, 695 * if necessary. 696 */ 697 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 698 if (ip6_mforward(ip6, ifp, m) != 0) { 699 m_freem(m); 700 goto done; 701 } 702 } 703 } 704 /* 705 * Multicasts with a hoplimit of zero may be looped back, 706 * above, but must not be transmitted on a network. 707 * Also, multicasts addressed to the loopback interface 708 * are not sent -- the above call to ip6_mloopback() will 709 * loop back a copy if this host actually belongs to the 710 * destination group on the loopback interface. 711 */ 712 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) { 713 m_freem(m); 714 goto done; 715 } 716 } 717 718 /* 719 * Fill the outgoing inteface to tell the upper layer 720 * to increment per-interface statistics. 721 */ 722 if (ifpp) 723 *ifpp = ifp; 724 725 /* 726 * Determine path MTU. 727 */ 728 if (ro_pmtu != ro) { 729 /* The first hop and the final destination may differ. */ 730 struct sockaddr_in6 *sin6_fin = 731 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 732 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 733 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr, 734 &finaldst))) { 735 RTFREE(ro_pmtu->ro_rt); 736 ro_pmtu->ro_rt = (struct rtentry *)0; 737 } 738 if (ro_pmtu->ro_rt == 0) { 739 bzero(sin6_fin, sizeof(*sin6_fin)); 740 sin6_fin->sin6_family = AF_INET6; 741 sin6_fin->sin6_len = sizeof(struct sockaddr_in6); 742 sin6_fin->sin6_addr = finaldst; 743 744 rtalloc((struct route *)ro_pmtu); 745 } 746 } 747 if (ro_pmtu->ro_rt != NULL) { 748 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu; 749 750 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 751 if (mtu > ifmtu || mtu == 0) { 752 /* 753 * The MTU on the route is larger than the MTU on 754 * the interface! This shouldn't happen, unless the 755 * MTU of the interface has been changed after the 756 * interface was brought up. Change the MTU in the 757 * route to match the interface MTU (as long as the 758 * field isn't locked). 759 * 760 * if MTU on the route is 0, we need to fix the MTU. 761 * this case happens with path MTU discovery timeouts. 762 */ 763 mtu = ifmtu; 764 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0) 765 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */ 766 } 767 } else { 768 mtu = nd_ifinfo[ifp->if_index].linkmtu; 769 } 770 771 /* 772 * advanced API (IPV6_USE_MIN_MTU) overrides mtu setting 773 */ 774 if ((flags & IPV6_MINMTU) != 0 && mtu > IPV6_MMTU) 775 mtu = IPV6_MMTU; 776 777 /* Fake scoped addresses */ 778 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 779 /* 780 * If source or destination address is a scoped address, and 781 * the packet is going to be sent to a loopback interface, 782 * we should keep the original interface. 783 */ 784 785 /* 786 * XXX: this is a very experimental and temporary solution. 787 * We eventually have sockaddr_in6 and use the sin6_scope_id 788 * field of the structure here. 789 * We rely on the consistency between two scope zone ids 790 * of source add destination, which should already be assured 791 * larger scopes than link will be supported in the near 792 * future. 793 */ 794 origifp = NULL; 795 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 796 origifp = ifnet_byindex(ntohs(ip6->ip6_src.s6_addr16[1])); 797 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 798 origifp = ifnet_byindex(ntohs(ip6->ip6_dst.s6_addr16[1])); 799 /* 800 * XXX: origifp can be NULL even in those two cases above. 801 * For example, if we remove the (only) link-local address 802 * from the loopback interface, and try to send a link-local 803 * address without link-id information. Then the source 804 * address is ::1, and the destination address is the 805 * link-local address with its s6_addr16[1] being zero. 806 * What is worse, if the packet goes to the loopback interface 807 * by a default rejected route, the null pointer would be 808 * passed to looutput, and the kernel would hang. 809 * The following last resort would prevent such disaster. 810 */ 811 if (origifp == NULL) 812 origifp = ifp; 813 } 814 else 815 origifp = ifp; 816 #ifndef SCOPEDROUTING 817 /* 818 * clear embedded scope identifiers if necessary. 819 * in6_clearscope will touch the addresses only when necessary. 820 */ 821 in6_clearscope(&ip6->ip6_src); 822 in6_clearscope(&ip6->ip6_dst); 823 #endif 824 825 /* 826 * Check with the firewall... 827 */ 828 if (ip6_fw_enable && ip6_fw_chk_ptr) { 829 u_short port = 0; 830 m->m_pkthdr.rcvif = NULL; /*XXX*/ 831 /* If ipfw says divert, we have to just drop packet */ 832 if ((*ip6_fw_chk_ptr)(&ip6, ifp, &port, &m)) { 833 m_freem(m); 834 goto done; 835 } 836 if (!m) { 837 error = EACCES; 838 goto done; 839 } 840 } 841 842 /* 843 * If the outgoing packet contains a hop-by-hop options header, 844 * it must be examined and processed even by the source node. 845 * (RFC 2460, section 4.) 846 */ 847 if (exthdrs.ip6e_hbh) { 848 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 849 u_int32_t dummy1; /* XXX unused */ 850 u_int32_t dummy2; /* XXX unused */ 851 852 #ifdef DIAGNOSTIC 853 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 854 panic("ip6e_hbh is not continuous"); 855 #endif 856 /* 857 * XXX: if we have to send an ICMPv6 error to the sender, 858 * we need the M_LOOP flag since icmp6_error() expects 859 * the IPv6 and the hop-by-hop options header are 860 * continuous unless the flag is set. 861 */ 862 m->m_flags |= M_LOOP; 863 m->m_pkthdr.rcvif = ifp; 864 if (ip6_process_hopopts(m, 865 (u_int8_t *)(hbh + 1), 866 ((hbh->ip6h_len + 1) << 3) - 867 sizeof(struct ip6_hbh), 868 &dummy1, &dummy2) < 0) { 869 /* m was already freed at this point */ 870 error = EINVAL;/* better error? */ 871 goto done; 872 } 873 m->m_flags &= ~M_LOOP; /* XXX */ 874 m->m_pkthdr.rcvif = NULL; 875 } 876 877 #ifdef PFIL_HOOKS 878 /* 879 * Run through list of hooks for output packets. 880 */ 881 m1 = m; 882 pfh = pfil_hook_get(PFIL_OUT, &inet6sw[ip6_protox[IPPROTO_IPV6]].pr_pfh); 883 for (; pfh; pfh = pfh->pfil_link.tqe_next) 884 if (pfh->pfil_func) { 885 rv = pfh->pfil_func(ip6, sizeof(*ip6), ifp, 1, &m1); 886 if (rv) { 887 error = EHOSTUNREACH; 888 goto done; 889 } 890 m = m1; 891 if (m == NULL) 892 goto done; 893 ip6 = mtod(m, struct ip6_hdr *); 894 } 895 #endif /* PFIL_HOOKS */ 896 /* 897 * Send the packet to the outgoing interface. 898 * If necessary, do IPv6 fragmentation before sending. 899 */ 900 tlen = m->m_pkthdr.len; 901 if (tlen <= mtu 902 #ifdef notyet 903 /* 904 * On any link that cannot convey a 1280-octet packet in one piece, 905 * link-specific fragmentation and reassembly must be provided at 906 * a layer below IPv6. [RFC 2460, sec.5] 907 * Thus if the interface has ability of link-level fragmentation, 908 * we can just send the packet even if the packet size is 909 * larger than the link's MTU. 910 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet... 911 */ 912 913 || ifp->if_flags & IFF_FRAGMENTABLE 914 #endif 915 ) 916 { 917 /* Record statistics for this interface address. */ 918 if (ia && !(flags & IPV6_FORWARDING)) { 919 ia->ia_ifa.if_opackets++; 920 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 921 } 922 #ifdef IPSEC 923 /* clean ipsec history once it goes out of the node */ 924 ipsec_delaux(m); 925 #endif 926 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 927 goto done; 928 } else if (mtu < IPV6_MMTU) { 929 /* 930 * note that path MTU is never less than IPV6_MMTU 931 * (see icmp6_input). 932 */ 933 error = EMSGSIZE; 934 in6_ifstat_inc(ifp, ifs6_out_fragfail); 935 goto bad; 936 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */ 937 error = EMSGSIZE; 938 in6_ifstat_inc(ifp, ifs6_out_fragfail); 939 goto bad; 940 } else { 941 struct mbuf **mnext, *m_frgpart; 942 struct ip6_frag *ip6f; 943 u_int32_t id = htonl(ip6_id++); 944 u_char nextproto; 945 946 /* 947 * Too large for the destination or interface; 948 * fragment if possible. 949 * Must be able to put at least 8 bytes per fragment. 950 */ 951 hlen = unfragpartlen; 952 if (mtu > IPV6_MAXPACKET) 953 mtu = IPV6_MAXPACKET; 954 955 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 956 if (len < 8) { 957 error = EMSGSIZE; 958 in6_ifstat_inc(ifp, ifs6_out_fragfail); 959 goto bad; 960 } 961 962 mnext = &m->m_nextpkt; 963 964 /* 965 * Change the next header field of the last header in the 966 * unfragmentable part. 967 */ 968 if (exthdrs.ip6e_rthdr) { 969 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 970 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 971 } else if (exthdrs.ip6e_dest1) { 972 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 973 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 974 } else if (exthdrs.ip6e_hbh) { 975 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 976 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 977 } else { 978 nextproto = ip6->ip6_nxt; 979 ip6->ip6_nxt = IPPROTO_FRAGMENT; 980 } 981 982 /* 983 * Loop through length of segment after first fragment, 984 * make new header and copy data of each part and link onto chain. 985 */ 986 m0 = m; 987 for (off = hlen; off < tlen; off += len) { 988 MGETHDR(m, M_DONTWAIT, MT_HEADER); 989 if (!m) { 990 error = ENOBUFS; 991 ip6stat.ip6s_odropped++; 992 goto sendorfree; 993 } 994 m->m_pkthdr.rcvif = NULL; 995 m->m_flags = m0->m_flags & M_COPYFLAGS; 996 *mnext = m; 997 mnext = &m->m_nextpkt; 998 m->m_data += max_linkhdr; 999 mhip6 = mtod(m, struct ip6_hdr *); 1000 *mhip6 = *ip6; 1001 m->m_len = sizeof(*mhip6); 1002 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 1003 if (error) { 1004 ip6stat.ip6s_odropped++; 1005 goto sendorfree; 1006 } 1007 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 1008 if (off + len >= tlen) 1009 len = tlen - off; 1010 else 1011 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1012 mhip6->ip6_plen = htons((u_short)(len + hlen + 1013 sizeof(*ip6f) - 1014 sizeof(struct ip6_hdr))); 1015 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 1016 error = ENOBUFS; 1017 ip6stat.ip6s_odropped++; 1018 goto sendorfree; 1019 } 1020 m_cat(m, m_frgpart); 1021 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1022 m->m_pkthdr.rcvif = (struct ifnet *)0; 1023 ip6f->ip6f_reserved = 0; 1024 ip6f->ip6f_ident = id; 1025 ip6f->ip6f_nxt = nextproto; 1026 ip6stat.ip6s_ofragments++; 1027 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1028 } 1029 1030 in6_ifstat_inc(ifp, ifs6_out_fragok); 1031 } 1032 1033 /* 1034 * Remove leading garbages. 1035 */ 1036 sendorfree: 1037 m = m0->m_nextpkt; 1038 m0->m_nextpkt = 0; 1039 m_freem(m0); 1040 for (m0 = m; m; m = m0) { 1041 m0 = m->m_nextpkt; 1042 m->m_nextpkt = 0; 1043 if (error == 0) { 1044 /* Record statistics for this interface address. */ 1045 if (ia) { 1046 ia->ia_ifa.if_opackets++; 1047 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 1048 } 1049 #ifdef IPSEC 1050 /* clean ipsec history once it goes out of the node */ 1051 ipsec_delaux(m); 1052 #endif 1053 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1054 } else 1055 m_freem(m); 1056 } 1057 1058 if (error == 0) 1059 ip6stat.ip6s_fragmented++; 1060 1061 done: 1062 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1063 RTFREE(ro->ro_rt); 1064 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1065 RTFREE(ro_pmtu->ro_rt); 1066 } 1067 1068 #ifdef IPSEC 1069 if (sp != NULL) 1070 key_freesp(sp); 1071 #endif /* IPSEC */ 1072 1073 return(error); 1074 1075 freehdrs: 1076 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1077 m_freem(exthdrs.ip6e_dest1); 1078 m_freem(exthdrs.ip6e_rthdr); 1079 m_freem(exthdrs.ip6e_dest2); 1080 /* fall through */ 1081 bad: 1082 m_freem(m); 1083 goto done; 1084 } 1085 1086 static int 1087 ip6_copyexthdr(mp, hdr, hlen) 1088 struct mbuf **mp; 1089 caddr_t hdr; 1090 int hlen; 1091 { 1092 struct mbuf *m; 1093 1094 if (hlen > MCLBYTES) 1095 return(ENOBUFS); /* XXX */ 1096 1097 MGET(m, M_DONTWAIT, MT_DATA); 1098 if (!m) 1099 return(ENOBUFS); 1100 1101 if (hlen > MLEN) { 1102 MCLGET(m, M_DONTWAIT); 1103 if ((m->m_flags & M_EXT) == 0) { 1104 m_free(m); 1105 return(ENOBUFS); 1106 } 1107 } 1108 m->m_len = hlen; 1109 if (hdr) 1110 bcopy(hdr, mtod(m, caddr_t), hlen); 1111 1112 *mp = m; 1113 return(0); 1114 } 1115 1116 /* 1117 * Insert jumbo payload option. 1118 */ 1119 static int 1120 ip6_insert_jumboopt(exthdrs, plen) 1121 struct ip6_exthdrs *exthdrs; 1122 u_int32_t plen; 1123 { 1124 struct mbuf *mopt; 1125 u_char *optbuf; 1126 u_int32_t v; 1127 1128 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1129 1130 /* 1131 * If there is no hop-by-hop options header, allocate new one. 1132 * If there is one but it doesn't have enough space to store the 1133 * jumbo payload option, allocate a cluster to store the whole options. 1134 * Otherwise, use it to store the options. 1135 */ 1136 if (exthdrs->ip6e_hbh == 0) { 1137 MGET(mopt, M_DONTWAIT, MT_DATA); 1138 if (mopt == 0) 1139 return(ENOBUFS); 1140 mopt->m_len = JUMBOOPTLEN; 1141 optbuf = mtod(mopt, u_char *); 1142 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1143 exthdrs->ip6e_hbh = mopt; 1144 } else { 1145 struct ip6_hbh *hbh; 1146 1147 mopt = exthdrs->ip6e_hbh; 1148 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1149 /* 1150 * XXX assumption: 1151 * - exthdrs->ip6e_hbh is not referenced from places 1152 * other than exthdrs. 1153 * - exthdrs->ip6e_hbh is not an mbuf chain. 1154 */ 1155 int oldoptlen = mopt->m_len; 1156 struct mbuf *n; 1157 1158 /* 1159 * XXX: give up if the whole (new) hbh header does 1160 * not fit even in an mbuf cluster. 1161 */ 1162 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1163 return(ENOBUFS); 1164 1165 /* 1166 * As a consequence, we must always prepare a cluster 1167 * at this point. 1168 */ 1169 MGET(n, M_DONTWAIT, MT_DATA); 1170 if (n) { 1171 MCLGET(n, M_DONTWAIT); 1172 if ((n->m_flags & M_EXT) == 0) { 1173 m_freem(n); 1174 n = NULL; 1175 } 1176 } 1177 if (!n) 1178 return(ENOBUFS); 1179 n->m_len = oldoptlen + JUMBOOPTLEN; 1180 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1181 oldoptlen); 1182 optbuf = mtod(n, caddr_t) + oldoptlen; 1183 m_freem(mopt); 1184 mopt = exthdrs->ip6e_hbh = n; 1185 } else { 1186 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1187 mopt->m_len += JUMBOOPTLEN; 1188 } 1189 optbuf[0] = IP6OPT_PADN; 1190 optbuf[1] = 1; 1191 1192 /* 1193 * Adjust the header length according to the pad and 1194 * the jumbo payload option. 1195 */ 1196 hbh = mtod(mopt, struct ip6_hbh *); 1197 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1198 } 1199 1200 /* fill in the option. */ 1201 optbuf[2] = IP6OPT_JUMBO; 1202 optbuf[3] = 4; 1203 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1204 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1205 1206 /* finally, adjust the packet header length */ 1207 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1208 1209 return(0); 1210 #undef JUMBOOPTLEN 1211 } 1212 1213 /* 1214 * Insert fragment header and copy unfragmentable header portions. 1215 */ 1216 static int 1217 ip6_insertfraghdr(m0, m, hlen, frghdrp) 1218 struct mbuf *m0, *m; 1219 int hlen; 1220 struct ip6_frag **frghdrp; 1221 { 1222 struct mbuf *n, *mlast; 1223 1224 if (hlen > sizeof(struct ip6_hdr)) { 1225 n = m_copym(m0, sizeof(struct ip6_hdr), 1226 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1227 if (n == 0) 1228 return(ENOBUFS); 1229 m->m_next = n; 1230 } else 1231 n = m; 1232 1233 /* Search for the last mbuf of unfragmentable part. */ 1234 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1235 ; 1236 1237 if ((mlast->m_flags & M_EXT) == 0 && 1238 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1239 /* use the trailing space of the last mbuf for the fragment hdr */ 1240 *frghdrp = 1241 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len); 1242 mlast->m_len += sizeof(struct ip6_frag); 1243 m->m_pkthdr.len += sizeof(struct ip6_frag); 1244 } else { 1245 /* allocate a new mbuf for the fragment header */ 1246 struct mbuf *mfrg; 1247 1248 MGET(mfrg, M_DONTWAIT, MT_DATA); 1249 if (mfrg == 0) 1250 return(ENOBUFS); 1251 mfrg->m_len = sizeof(struct ip6_frag); 1252 *frghdrp = mtod(mfrg, struct ip6_frag *); 1253 mlast->m_next = mfrg; 1254 } 1255 1256 return(0); 1257 } 1258 1259 /* 1260 * IP6 socket option processing. 1261 */ 1262 int 1263 ip6_ctloutput(so, sopt) 1264 struct socket *so; 1265 struct sockopt *sopt; 1266 { 1267 int privileged; 1268 struct inpcb *in6p = sotoinpcb(so); 1269 int error, optval; 1270 int level, op, optname; 1271 int optlen; 1272 struct thread *td; 1273 1274 if (sopt) { 1275 level = sopt->sopt_level; 1276 op = sopt->sopt_dir; 1277 optname = sopt->sopt_name; 1278 optlen = sopt->sopt_valsize; 1279 td = sopt->sopt_td; 1280 } else { 1281 panic("ip6_ctloutput: arg soopt is NULL"); 1282 } 1283 error = optval = 0; 1284 1285 privileged = (td == 0 || suser_td(td)) ? 0 : 1; 1286 1287 if (level == IPPROTO_IPV6) { 1288 switch (op) { 1289 1290 case SOPT_SET: 1291 switch (optname) { 1292 case IPV6_PKTOPTIONS: 1293 { 1294 struct mbuf *m; 1295 1296 error = soopt_getm(sopt, &m); /* XXX */ 1297 if (error != NULL) 1298 break; 1299 error = soopt_mcopyin(sopt, m); /* XXX */ 1300 if (error != NULL) 1301 break; 1302 error = ip6_pcbopts(&in6p->in6p_outputopts, 1303 m, so, sopt); 1304 m_freem(m); /* XXX */ 1305 break; 1306 } 1307 1308 /* 1309 * Use of some Hop-by-Hop options or some 1310 * Destination options, might require special 1311 * privilege. That is, normal applications 1312 * (without special privilege) might be forbidden 1313 * from setting certain options in outgoing packets, 1314 * and might never see certain options in received 1315 * packets. [RFC 2292 Section 6] 1316 * KAME specific note: 1317 * KAME prevents non-privileged users from sending or 1318 * receiving ANY hbh/dst options in order to avoid 1319 * overhead of parsing options in the kernel. 1320 */ 1321 case IPV6_UNICAST_HOPS: 1322 case IPV6_CHECKSUM: 1323 case IPV6_FAITH: 1324 1325 case IPV6_V6ONLY: 1326 if (optlen != sizeof(int)) { 1327 error = EINVAL; 1328 break; 1329 } 1330 error = sooptcopyin(sopt, &optval, 1331 sizeof optval, sizeof optval); 1332 if (error) 1333 break; 1334 switch (optname) { 1335 1336 case IPV6_UNICAST_HOPS: 1337 if (optval < -1 || optval >= 256) 1338 error = EINVAL; 1339 else { 1340 /* -1 = kernel default */ 1341 in6p->in6p_hops = optval; 1342 1343 if ((in6p->in6p_vflag & 1344 INP_IPV4) != 0) 1345 in6p->inp_ip_ttl = optval; 1346 } 1347 break; 1348 #define OPTSET(bit) \ 1349 do { \ 1350 if (optval) \ 1351 in6p->in6p_flags |= (bit); \ 1352 else \ 1353 in6p->in6p_flags &= ~(bit); \ 1354 } while (0) 1355 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) 1356 1357 case IPV6_CHECKSUM: 1358 in6p->in6p_cksum = optval; 1359 break; 1360 1361 case IPV6_FAITH: 1362 OPTSET(IN6P_FAITH); 1363 break; 1364 1365 case IPV6_V6ONLY: 1366 /* 1367 * make setsockopt(IPV6_V6ONLY) 1368 * available only prior to bind(2). 1369 * see ipng mailing list, Jun 22 2001. 1370 */ 1371 if (in6p->in6p_lport || 1372 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) 1373 { 1374 error = EINVAL; 1375 break; 1376 } 1377 /* 1378 * XXX: BINDV6ONLY should be integrated 1379 * into V6ONLY. 1380 */ 1381 OPTSET(IN6P_BINDV6ONLY); 1382 OPTSET(IN6P_IPV6_V6ONLY); 1383 break; 1384 } 1385 break; 1386 1387 case IPV6_PKTINFO: 1388 case IPV6_HOPLIMIT: 1389 case IPV6_HOPOPTS: 1390 case IPV6_DSTOPTS: 1391 case IPV6_RTHDR: 1392 /* RFC 2292 */ 1393 if (optlen != sizeof(int)) { 1394 error = EINVAL; 1395 break; 1396 } 1397 error = sooptcopyin(sopt, &optval, 1398 sizeof optval, sizeof optval); 1399 if (error) 1400 break; 1401 switch (optname) { 1402 case IPV6_PKTINFO: 1403 OPTSET(IN6P_PKTINFO); 1404 break; 1405 case IPV6_HOPLIMIT: 1406 OPTSET(IN6P_HOPLIMIT); 1407 break; 1408 case IPV6_HOPOPTS: 1409 /* 1410 * Check super-user privilege. 1411 * See comments for IPV6_RECVHOPOPTS. 1412 */ 1413 if (!privileged) 1414 return(EPERM); 1415 OPTSET(IN6P_HOPOPTS); 1416 break; 1417 case IPV6_DSTOPTS: 1418 if (!privileged) 1419 return(EPERM); 1420 OPTSET(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1421 break; 1422 case IPV6_RTHDR: 1423 OPTSET(IN6P_RTHDR); 1424 break; 1425 } 1426 break; 1427 #undef OPTSET 1428 1429 case IPV6_MULTICAST_IF: 1430 case IPV6_MULTICAST_HOPS: 1431 case IPV6_MULTICAST_LOOP: 1432 case IPV6_JOIN_GROUP: 1433 case IPV6_LEAVE_GROUP: 1434 { 1435 struct mbuf *m; 1436 if (sopt->sopt_valsize > MLEN) { 1437 error = EMSGSIZE; 1438 break; 1439 } 1440 /* XXX */ 1441 MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_HEADER); 1442 if (m == 0) { 1443 error = ENOBUFS; 1444 break; 1445 } 1446 m->m_len = sopt->sopt_valsize; 1447 error = sooptcopyin(sopt, mtod(m, char *), 1448 m->m_len, m->m_len); 1449 error = ip6_setmoptions(sopt->sopt_name, 1450 &in6p->in6p_moptions, 1451 m); 1452 (void)m_free(m); 1453 } 1454 break; 1455 1456 case IPV6_PORTRANGE: 1457 error = sooptcopyin(sopt, &optval, 1458 sizeof optval, sizeof optval); 1459 if (error) 1460 break; 1461 1462 switch (optval) { 1463 case IPV6_PORTRANGE_DEFAULT: 1464 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1465 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1466 break; 1467 1468 case IPV6_PORTRANGE_HIGH: 1469 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1470 in6p->in6p_flags |= IN6P_HIGHPORT; 1471 break; 1472 1473 case IPV6_PORTRANGE_LOW: 1474 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1475 in6p->in6p_flags |= IN6P_LOWPORT; 1476 break; 1477 1478 default: 1479 error = EINVAL; 1480 break; 1481 } 1482 break; 1483 1484 #ifdef IPSEC 1485 case IPV6_IPSEC_POLICY: 1486 { 1487 caddr_t req = NULL; 1488 size_t len = 0; 1489 struct mbuf *m; 1490 1491 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1492 break; 1493 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1494 break; 1495 if (m) { 1496 req = mtod(m, caddr_t); 1497 len = m->m_len; 1498 } 1499 error = ipsec6_set_policy(in6p, optname, req, 1500 len, privileged); 1501 m_freem(m); 1502 } 1503 break; 1504 #endif /* KAME IPSEC */ 1505 1506 case IPV6_FW_ADD: 1507 case IPV6_FW_DEL: 1508 case IPV6_FW_FLUSH: 1509 case IPV6_FW_ZERO: 1510 { 1511 struct mbuf *m; 1512 struct mbuf **mp = &m; 1513 1514 if (ip6_fw_ctl_ptr == NULL) 1515 return EINVAL; 1516 /* XXX */ 1517 if ((error = soopt_getm(sopt, &m)) != 0) 1518 break; 1519 /* XXX */ 1520 if ((error = soopt_mcopyin(sopt, m)) != 0) 1521 break; 1522 error = (*ip6_fw_ctl_ptr)(optname, mp); 1523 m = *mp; 1524 } 1525 break; 1526 1527 default: 1528 error = ENOPROTOOPT; 1529 break; 1530 } 1531 break; 1532 1533 case SOPT_GET: 1534 switch (optname) { 1535 1536 case IPV6_PKTOPTIONS: 1537 if (in6p->in6p_options) { 1538 struct mbuf *m; 1539 m = m_copym(in6p->in6p_options, 1540 0, M_COPYALL, M_TRYWAIT); 1541 error = soopt_mcopyout(sopt, m); 1542 if (error == 0) 1543 m_freem(m); 1544 } else 1545 sopt->sopt_valsize = 0; 1546 break; 1547 1548 case IPV6_UNICAST_HOPS: 1549 case IPV6_CHECKSUM: 1550 1551 case IPV6_FAITH: 1552 case IPV6_V6ONLY: 1553 case IPV6_PORTRANGE: 1554 switch (optname) { 1555 1556 case IPV6_UNICAST_HOPS: 1557 optval = in6p->in6p_hops; 1558 break; 1559 1560 case IPV6_CHECKSUM: 1561 optval = in6p->in6p_cksum; 1562 break; 1563 1564 case IPV6_FAITH: 1565 optval = OPTBIT(IN6P_FAITH); 1566 break; 1567 1568 case IPV6_V6ONLY: 1569 /* XXX: see the setopt case. */ 1570 optval = OPTBIT(IN6P_BINDV6ONLY); 1571 break; 1572 1573 case IPV6_PORTRANGE: 1574 { 1575 int flags; 1576 flags = in6p->in6p_flags; 1577 if (flags & IN6P_HIGHPORT) 1578 optval = IPV6_PORTRANGE_HIGH; 1579 else if (flags & IN6P_LOWPORT) 1580 optval = IPV6_PORTRANGE_LOW; 1581 else 1582 optval = 0; 1583 break; 1584 } 1585 } 1586 error = sooptcopyout(sopt, &optval, 1587 sizeof optval); 1588 break; 1589 1590 case IPV6_PKTINFO: 1591 case IPV6_HOPLIMIT: 1592 case IPV6_HOPOPTS: 1593 case IPV6_RTHDR: 1594 case IPV6_DSTOPTS: 1595 if (optname == IPV6_HOPOPTS || 1596 optname == IPV6_DSTOPTS || 1597 !privileged) 1598 return(EPERM); 1599 switch (optname) { 1600 case IPV6_PKTINFO: 1601 optval = OPTBIT(IN6P_PKTINFO); 1602 break; 1603 case IPV6_HOPLIMIT: 1604 optval = OPTBIT(IN6P_HOPLIMIT); 1605 break; 1606 case IPV6_HOPOPTS: 1607 if (!privileged) 1608 return(EPERM); 1609 optval = OPTBIT(IN6P_HOPOPTS); 1610 break; 1611 case IPV6_RTHDR: 1612 optval = OPTBIT(IN6P_RTHDR); 1613 break; 1614 case IPV6_DSTOPTS: 1615 if (!privileged) 1616 return(EPERM); 1617 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1618 break; 1619 } 1620 error = sooptcopyout(sopt, &optval, 1621 sizeof optval); 1622 break; 1623 1624 case IPV6_MULTICAST_IF: 1625 case IPV6_MULTICAST_HOPS: 1626 case IPV6_MULTICAST_LOOP: 1627 case IPV6_JOIN_GROUP: 1628 case IPV6_LEAVE_GROUP: 1629 { 1630 struct mbuf *m; 1631 error = ip6_getmoptions(sopt->sopt_name, 1632 in6p->in6p_moptions, &m); 1633 if (error == 0) 1634 error = sooptcopyout(sopt, 1635 mtod(m, char *), m->m_len); 1636 m_freem(m); 1637 } 1638 break; 1639 1640 #ifdef IPSEC 1641 case IPV6_IPSEC_POLICY: 1642 { 1643 caddr_t req = NULL; 1644 size_t len = 0; 1645 struct mbuf *m = NULL; 1646 struct mbuf **mp = &m; 1647 1648 error = soopt_getm(sopt, &m); /* XXX */ 1649 if (error != NULL) 1650 break; 1651 error = soopt_mcopyin(sopt, m); /* XXX */ 1652 if (error != NULL) 1653 break; 1654 if (m) { 1655 req = mtod(m, caddr_t); 1656 len = m->m_len; 1657 } 1658 error = ipsec6_get_policy(in6p, req, len, mp); 1659 if (error == 0) 1660 error = soopt_mcopyout(sopt, m); /*XXX*/ 1661 if (error == 0 && m) 1662 m_freem(m); 1663 break; 1664 } 1665 #endif /* KAME IPSEC */ 1666 1667 case IPV6_FW_GET: 1668 { 1669 struct mbuf *m; 1670 struct mbuf **mp = &m; 1671 1672 if (ip6_fw_ctl_ptr == NULL) 1673 { 1674 return EINVAL; 1675 } 1676 error = (*ip6_fw_ctl_ptr)(optname, mp); 1677 if (error == 0) 1678 error = soopt_mcopyout(sopt, m); /* XXX */ 1679 if (error == 0 && m) 1680 m_freem(m); 1681 } 1682 break; 1683 1684 default: 1685 error = ENOPROTOOPT; 1686 break; 1687 } 1688 break; 1689 } 1690 } else { 1691 error = EINVAL; 1692 } 1693 return(error); 1694 } 1695 1696 /* 1697 * Set up IP6 options in pcb for insertion in output packets or 1698 * specifying behavior of outgoing packets. 1699 */ 1700 static int 1701 ip6_pcbopts(pktopt, m, so, sopt) 1702 struct ip6_pktopts **pktopt; 1703 struct mbuf *m; 1704 struct socket *so; 1705 struct sockopt *sopt; 1706 { 1707 struct ip6_pktopts *opt = *pktopt; 1708 int error = 0; 1709 struct thread *td = sopt->sopt_td; 1710 int priv = 0; 1711 1712 /* turn off any old options. */ 1713 if (opt) { 1714 #ifdef DIAGNOSTIC 1715 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 1716 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 1717 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 1718 printf("ip6_pcbopts: all specified options are cleared.\n"); 1719 #endif 1720 ip6_clearpktopts(opt, 1, -1); 1721 } else 1722 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 1723 *pktopt = NULL; 1724 1725 if (!m || m->m_len == 0) { 1726 /* 1727 * Only turning off any previous options. 1728 */ 1729 if (opt) 1730 free(opt, M_IP6OPT); 1731 return(0); 1732 } 1733 1734 /* set options specified by user. */ 1735 if (td && !suser_td(td)) 1736 priv = 1; 1737 if ((error = ip6_setpktoptions(m, opt, priv, 1)) != 0) { 1738 ip6_clearpktopts(opt, 1, -1); /* XXX: discard all options */ 1739 return(error); 1740 } 1741 *pktopt = opt; 1742 return(0); 1743 } 1744 1745 /* 1746 * initialize ip6_pktopts. beware that there are non-zero default values in 1747 * the struct. 1748 */ 1749 void 1750 init_ip6pktopts(opt) 1751 struct ip6_pktopts *opt; 1752 { 1753 1754 bzero(opt, sizeof(*opt)); 1755 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 1756 } 1757 1758 void 1759 ip6_clearpktopts(pktopt, needfree, optname) 1760 struct ip6_pktopts *pktopt; 1761 int needfree, optname; 1762 { 1763 if (pktopt == NULL) 1764 return; 1765 1766 if (optname == -1) { 1767 if (needfree && pktopt->ip6po_pktinfo) 1768 free(pktopt->ip6po_pktinfo, M_IP6OPT); 1769 pktopt->ip6po_pktinfo = NULL; 1770 } 1771 if (optname == -1) 1772 pktopt->ip6po_hlim = -1; 1773 if (optname == -1) { 1774 if (needfree && pktopt->ip6po_nexthop) 1775 free(pktopt->ip6po_nexthop, M_IP6OPT); 1776 pktopt->ip6po_nexthop = NULL; 1777 } 1778 if (optname == -1) { 1779 if (needfree && pktopt->ip6po_hbh) 1780 free(pktopt->ip6po_hbh, M_IP6OPT); 1781 pktopt->ip6po_hbh = NULL; 1782 } 1783 if (optname == -1) { 1784 if (needfree && pktopt->ip6po_dest1) 1785 free(pktopt->ip6po_dest1, M_IP6OPT); 1786 pktopt->ip6po_dest1 = NULL; 1787 } 1788 if (optname == -1) { 1789 if (needfree && pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 1790 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 1791 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 1792 if (pktopt->ip6po_route.ro_rt) { 1793 RTFREE(pktopt->ip6po_route.ro_rt); 1794 pktopt->ip6po_route.ro_rt = NULL; 1795 } 1796 } 1797 if (optname == -1) { 1798 if (needfree && pktopt->ip6po_dest2) 1799 free(pktopt->ip6po_dest2, M_IP6OPT); 1800 pktopt->ip6po_dest2 = NULL; 1801 } 1802 } 1803 1804 #define PKTOPT_EXTHDRCPY(type) \ 1805 do {\ 1806 if (src->type) {\ 1807 int hlen =\ 1808 (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 1809 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 1810 if (dst->type == NULL && canwait == M_NOWAIT)\ 1811 goto bad;\ 1812 bcopy(src->type, dst->type, hlen);\ 1813 }\ 1814 } while (0) 1815 1816 struct ip6_pktopts * 1817 ip6_copypktopts(src, canwait) 1818 struct ip6_pktopts *src; 1819 int canwait; 1820 { 1821 struct ip6_pktopts *dst; 1822 1823 if (src == NULL) { 1824 printf("ip6_clearpktopts: invalid argument\n"); 1825 return(NULL); 1826 } 1827 1828 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 1829 if (dst == NULL && canwait == M_NOWAIT) 1830 goto bad; 1831 bzero(dst, sizeof(*dst)); 1832 1833 dst->ip6po_hlim = src->ip6po_hlim; 1834 if (src->ip6po_pktinfo) { 1835 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 1836 M_IP6OPT, canwait); 1837 if (dst->ip6po_pktinfo == NULL && canwait == M_NOWAIT) 1838 goto bad; 1839 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 1840 } 1841 if (src->ip6po_nexthop) { 1842 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 1843 M_IP6OPT, canwait); 1844 if (dst->ip6po_nexthop == NULL && canwait == M_NOWAIT) 1845 goto bad; 1846 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 1847 src->ip6po_nexthop->sa_len); 1848 } 1849 PKTOPT_EXTHDRCPY(ip6po_hbh); 1850 PKTOPT_EXTHDRCPY(ip6po_dest1); 1851 PKTOPT_EXTHDRCPY(ip6po_dest2); 1852 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 1853 return(dst); 1854 1855 bad: 1856 printf("ip6_copypktopts: copy failed"); 1857 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT); 1858 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT); 1859 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT); 1860 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT); 1861 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT); 1862 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT); 1863 return(NULL); 1864 } 1865 #undef PKTOPT_EXTHDRCPY 1866 1867 void 1868 ip6_freepcbopts(pktopt) 1869 struct ip6_pktopts *pktopt; 1870 { 1871 if (pktopt == NULL) 1872 return; 1873 1874 ip6_clearpktopts(pktopt, 1, -1); 1875 1876 free(pktopt, M_IP6OPT); 1877 } 1878 1879 /* 1880 * Set the IP6 multicast options in response to user setsockopt(). 1881 */ 1882 static int 1883 ip6_setmoptions(optname, im6op, m) 1884 int optname; 1885 struct ip6_moptions **im6op; 1886 struct mbuf *m; 1887 { 1888 int error = 0; 1889 u_int loop, ifindex; 1890 struct ipv6_mreq *mreq; 1891 struct ifnet *ifp; 1892 struct ip6_moptions *im6o = *im6op; 1893 struct route_in6 ro; 1894 struct sockaddr_in6 *dst; 1895 struct in6_multi_mship *imm; 1896 struct thread *td = curthread; /* XXX */ 1897 1898 if (im6o == NULL) { 1899 /* 1900 * No multicast option buffer attached to the pcb; 1901 * allocate one and initialize to default values. 1902 */ 1903 im6o = (struct ip6_moptions *) 1904 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 1905 1906 if (im6o == NULL) 1907 return(ENOBUFS); 1908 *im6op = im6o; 1909 im6o->im6o_multicast_ifp = NULL; 1910 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1911 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 1912 LIST_INIT(&im6o->im6o_memberships); 1913 } 1914 1915 switch (optname) { 1916 1917 case IPV6_MULTICAST_IF: 1918 /* 1919 * Select the interface for outgoing multicast packets. 1920 */ 1921 if (m == NULL || m->m_len != sizeof(u_int)) { 1922 error = EINVAL; 1923 break; 1924 } 1925 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex)); 1926 if (ifindex < 0 || if_index < ifindex) { 1927 error = ENXIO; /* XXX EINVAL? */ 1928 break; 1929 } 1930 ifp = ifnet_byindex(ifindex); 1931 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1932 error = EADDRNOTAVAIL; 1933 break; 1934 } 1935 im6o->im6o_multicast_ifp = ifp; 1936 break; 1937 1938 case IPV6_MULTICAST_HOPS: 1939 { 1940 /* 1941 * Set the IP6 hoplimit for outgoing multicast packets. 1942 */ 1943 int optval; 1944 if (m == NULL || m->m_len != sizeof(int)) { 1945 error = EINVAL; 1946 break; 1947 } 1948 bcopy(mtod(m, u_int *), &optval, sizeof(optval)); 1949 if (optval < -1 || optval >= 256) 1950 error = EINVAL; 1951 else if (optval == -1) 1952 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1953 else 1954 im6o->im6o_multicast_hlim = optval; 1955 break; 1956 } 1957 1958 case IPV6_MULTICAST_LOOP: 1959 /* 1960 * Set the loopback flag for outgoing multicast packets. 1961 * Must be zero or one. 1962 */ 1963 if (m == NULL || m->m_len != sizeof(u_int)) { 1964 error = EINVAL; 1965 break; 1966 } 1967 bcopy(mtod(m, u_int *), &loop, sizeof(loop)); 1968 if (loop > 1) { 1969 error = EINVAL; 1970 break; 1971 } 1972 im6o->im6o_multicast_loop = loop; 1973 break; 1974 1975 case IPV6_JOIN_GROUP: 1976 /* 1977 * Add a multicast group membership. 1978 * Group must be a valid IP6 multicast address. 1979 */ 1980 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1981 error = EINVAL; 1982 break; 1983 } 1984 mreq = mtod(m, struct ipv6_mreq *); 1985 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1986 /* 1987 * We use the unspecified address to specify to accept 1988 * all multicast addresses. Only super user is allowed 1989 * to do this. 1990 */ 1991 if (suser_td(td)) 1992 { 1993 error = EACCES; 1994 break; 1995 } 1996 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1997 error = EINVAL; 1998 break; 1999 } 2000 2001 /* 2002 * If the interface is specified, validate it. 2003 */ 2004 if (mreq->ipv6mr_interface < 0 2005 || if_index < mreq->ipv6mr_interface) { 2006 error = ENXIO; /* XXX EINVAL? */ 2007 break; 2008 } 2009 /* 2010 * If no interface was explicitly specified, choose an 2011 * appropriate one according to the given multicast address. 2012 */ 2013 if (mreq->ipv6mr_interface == 0) { 2014 /* 2015 * If the multicast address is in node-local scope, 2016 * the interface should be a loopback interface. 2017 * Otherwise, look up the routing table for the 2018 * address, and choose the outgoing interface. 2019 * XXX: is it a good approach? 2020 */ 2021 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) { 2022 ifp = &loif[0]; 2023 } else { 2024 ro.ro_rt = NULL; 2025 dst = (struct sockaddr_in6 *)&ro.ro_dst; 2026 bzero(dst, sizeof(*dst)); 2027 dst->sin6_len = sizeof(struct sockaddr_in6); 2028 dst->sin6_family = AF_INET6; 2029 dst->sin6_addr = mreq->ipv6mr_multiaddr; 2030 rtalloc((struct route *)&ro); 2031 if (ro.ro_rt == NULL) { 2032 error = EADDRNOTAVAIL; 2033 break; 2034 } 2035 ifp = ro.ro_rt->rt_ifp; 2036 rtfree(ro.ro_rt); 2037 } 2038 } else 2039 ifp = ifnet_byindex(mreq->ipv6mr_interface); 2040 2041 /* 2042 * See if we found an interface, and confirm that it 2043 * supports multicast 2044 */ 2045 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2046 error = EADDRNOTAVAIL; 2047 break; 2048 } 2049 /* 2050 * Put interface index into the multicast address, 2051 * if the address has link-local scope. 2052 */ 2053 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 2054 mreq->ipv6mr_multiaddr.s6_addr16[1] 2055 = htons(mreq->ipv6mr_interface); 2056 } 2057 /* 2058 * See if the membership already exists. 2059 */ 2060 for (imm = im6o->im6o_memberships.lh_first; 2061 imm != NULL; imm = imm->i6mm_chain.le_next) 2062 if (imm->i6mm_maddr->in6m_ifp == ifp && 2063 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2064 &mreq->ipv6mr_multiaddr)) 2065 break; 2066 if (imm != NULL) { 2067 error = EADDRINUSE; 2068 break; 2069 } 2070 /* 2071 * Everything looks good; add a new record to the multicast 2072 * address list for the given interface. 2073 */ 2074 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK); 2075 if (imm == NULL) { 2076 error = ENOBUFS; 2077 break; 2078 } 2079 if ((imm->i6mm_maddr = 2080 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) { 2081 free(imm, M_IPMADDR); 2082 break; 2083 } 2084 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2085 break; 2086 2087 case IPV6_LEAVE_GROUP: 2088 /* 2089 * Drop a multicast group membership. 2090 * Group must be a valid IP6 multicast address. 2091 */ 2092 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2093 error = EINVAL; 2094 break; 2095 } 2096 mreq = mtod(m, struct ipv6_mreq *); 2097 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2098 if (suser_td(td)) { 2099 error = EACCES; 2100 break; 2101 } 2102 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2103 error = EINVAL; 2104 break; 2105 } 2106 /* 2107 * If an interface address was specified, get a pointer 2108 * to its ifnet structure. 2109 */ 2110 if (mreq->ipv6mr_interface < 0 2111 || if_index < mreq->ipv6mr_interface) { 2112 error = ENXIO; /* XXX EINVAL? */ 2113 break; 2114 } 2115 ifp = ifnet_byindex(mreq->ipv6mr_interface); 2116 /* 2117 * Put interface index into the multicast address, 2118 * if the address has link-local scope. 2119 */ 2120 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 2121 mreq->ipv6mr_multiaddr.s6_addr16[1] 2122 = htons(mreq->ipv6mr_interface); 2123 } 2124 /* 2125 * Find the membership in the membership list. 2126 */ 2127 for (imm = im6o->im6o_memberships.lh_first; 2128 imm != NULL; imm = imm->i6mm_chain.le_next) { 2129 if ((ifp == NULL || 2130 imm->i6mm_maddr->in6m_ifp == ifp) && 2131 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2132 &mreq->ipv6mr_multiaddr)) 2133 break; 2134 } 2135 if (imm == NULL) { 2136 /* Unable to resolve interface */ 2137 error = EADDRNOTAVAIL; 2138 break; 2139 } 2140 /* 2141 * Give up the multicast address record to which the 2142 * membership points. 2143 */ 2144 LIST_REMOVE(imm, i6mm_chain); 2145 in6_delmulti(imm->i6mm_maddr); 2146 free(imm, M_IPMADDR); 2147 break; 2148 2149 default: 2150 error = EOPNOTSUPP; 2151 break; 2152 } 2153 2154 /* 2155 * If all options have default values, no need to keep the mbuf. 2156 */ 2157 if (im6o->im6o_multicast_ifp == NULL && 2158 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2159 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2160 im6o->im6o_memberships.lh_first == NULL) { 2161 free(*im6op, M_IPMOPTS); 2162 *im6op = NULL; 2163 } 2164 2165 return(error); 2166 } 2167 2168 /* 2169 * Return the IP6 multicast options in response to user getsockopt(). 2170 */ 2171 static int 2172 ip6_getmoptions(optname, im6o, mp) 2173 int optname; 2174 struct ip6_moptions *im6o; 2175 struct mbuf **mp; 2176 { 2177 u_int *hlim, *loop, *ifindex; 2178 2179 *mp = m_get(M_TRYWAIT, MT_HEADER); /*XXX*/ 2180 2181 switch (optname) { 2182 2183 case IPV6_MULTICAST_IF: 2184 ifindex = mtod(*mp, u_int *); 2185 (*mp)->m_len = sizeof(u_int); 2186 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 2187 *ifindex = 0; 2188 else 2189 *ifindex = im6o->im6o_multicast_ifp->if_index; 2190 return(0); 2191 2192 case IPV6_MULTICAST_HOPS: 2193 hlim = mtod(*mp, u_int *); 2194 (*mp)->m_len = sizeof(u_int); 2195 if (im6o == NULL) 2196 *hlim = ip6_defmcasthlim; 2197 else 2198 *hlim = im6o->im6o_multicast_hlim; 2199 return(0); 2200 2201 case IPV6_MULTICAST_LOOP: 2202 loop = mtod(*mp, u_int *); 2203 (*mp)->m_len = sizeof(u_int); 2204 if (im6o == NULL) 2205 *loop = ip6_defmcasthlim; 2206 else 2207 *loop = im6o->im6o_multicast_loop; 2208 return(0); 2209 2210 default: 2211 return(EOPNOTSUPP); 2212 } 2213 } 2214 2215 /* 2216 * Discard the IP6 multicast options. 2217 */ 2218 void 2219 ip6_freemoptions(im6o) 2220 struct ip6_moptions *im6o; 2221 { 2222 struct in6_multi_mship *imm; 2223 2224 if (im6o == NULL) 2225 return; 2226 2227 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 2228 LIST_REMOVE(imm, i6mm_chain); 2229 if (imm->i6mm_maddr) 2230 in6_delmulti(imm->i6mm_maddr); 2231 free(imm, M_IPMADDR); 2232 } 2233 free(im6o, M_IPMOPTS); 2234 } 2235 2236 /* 2237 * Set IPv6 outgoing packet options based on advanced API. 2238 */ 2239 int 2240 ip6_setpktoptions(control, opt, priv, needcopy) 2241 struct mbuf *control; 2242 struct ip6_pktopts *opt; 2243 int priv, needcopy; 2244 { 2245 struct cmsghdr *cm = 0; 2246 2247 if (control == 0 || opt == 0) 2248 return(EINVAL); 2249 2250 init_ip6pktopts(opt); 2251 2252 /* 2253 * XXX: Currently, we assume all the optional information is stored 2254 * in a single mbuf. 2255 */ 2256 if (control->m_next) 2257 return(EINVAL); 2258 2259 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2260 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2261 cm = mtod(control, struct cmsghdr *); 2262 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2263 return(EINVAL); 2264 if (cm->cmsg_level != IPPROTO_IPV6) 2265 continue; 2266 2267 /* 2268 * XXX should check if RFC2292 API is mixed with 2292bis API 2269 */ 2270 switch (cm->cmsg_type) { 2271 case IPV6_PKTINFO: 2272 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo))) 2273 return(EINVAL); 2274 if (needcopy) { 2275 /* XXX: Is it really WAITOK? */ 2276 opt->ip6po_pktinfo = 2277 malloc(sizeof(struct in6_pktinfo), 2278 M_IP6OPT, M_WAITOK); 2279 bcopy(CMSG_DATA(cm), opt->ip6po_pktinfo, 2280 sizeof(struct in6_pktinfo)); 2281 } else 2282 opt->ip6po_pktinfo = 2283 (struct in6_pktinfo *)CMSG_DATA(cm); 2284 if (opt->ip6po_pktinfo->ipi6_ifindex && 2285 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr)) 2286 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] = 2287 htons(opt->ip6po_pktinfo->ipi6_ifindex); 2288 2289 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index 2290 || opt->ip6po_pktinfo->ipi6_ifindex < 0) { 2291 return(ENXIO); 2292 } 2293 2294 /* 2295 * Check if the requested source address is indeed a 2296 * unicast address assigned to the node, and can be 2297 * used as the packet's source address. 2298 */ 2299 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) { 2300 struct in6_ifaddr *ia6; 2301 struct sockaddr_in6 sin6; 2302 2303 bzero(&sin6, sizeof(sin6)); 2304 sin6.sin6_len = sizeof(sin6); 2305 sin6.sin6_family = AF_INET6; 2306 sin6.sin6_addr = 2307 opt->ip6po_pktinfo->ipi6_addr; 2308 ia6 = (struct in6_ifaddr *)ifa_ifwithaddr(sin6tosa(&sin6)); 2309 if (ia6 == NULL || 2310 (ia6->ia6_flags & (IN6_IFF_ANYCAST | 2311 IN6_IFF_NOTREADY)) != 0) 2312 return(EADDRNOTAVAIL); 2313 } 2314 break; 2315 2316 case IPV6_HOPLIMIT: 2317 if (cm->cmsg_len != CMSG_LEN(sizeof(int))) 2318 return(EINVAL); 2319 2320 opt->ip6po_hlim = *(int *)CMSG_DATA(cm); 2321 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255) 2322 return(EINVAL); 2323 break; 2324 2325 case IPV6_NEXTHOP: 2326 if (!priv) 2327 return(EPERM); 2328 2329 if (cm->cmsg_len < sizeof(u_char) || 2330 /* check if cmsg_len is large enough for sa_len */ 2331 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm))) 2332 return(EINVAL); 2333 2334 if (needcopy) { 2335 opt->ip6po_nexthop = 2336 malloc(*CMSG_DATA(cm), 2337 M_IP6OPT, M_WAITOK); 2338 bcopy(CMSG_DATA(cm), 2339 opt->ip6po_nexthop, 2340 *CMSG_DATA(cm)); 2341 } else 2342 opt->ip6po_nexthop = 2343 (struct sockaddr *)CMSG_DATA(cm); 2344 break; 2345 2346 case IPV6_HOPOPTS: 2347 { 2348 struct ip6_hbh *hbh; 2349 int hbhlen; 2350 2351 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh))) 2352 return(EINVAL); 2353 hbh = (struct ip6_hbh *)CMSG_DATA(cm); 2354 hbhlen = (hbh->ip6h_len + 1) << 3; 2355 if (cm->cmsg_len != CMSG_LEN(hbhlen)) 2356 return(EINVAL); 2357 2358 if (needcopy) { 2359 opt->ip6po_hbh = 2360 malloc(hbhlen, M_IP6OPT, M_WAITOK); 2361 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2362 } else 2363 opt->ip6po_hbh = hbh; 2364 break; 2365 } 2366 2367 case IPV6_DSTOPTS: 2368 { 2369 struct ip6_dest *dest, **newdest; 2370 int destlen; 2371 2372 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest))) 2373 return(EINVAL); 2374 dest = (struct ip6_dest *)CMSG_DATA(cm); 2375 destlen = (dest->ip6d_len + 1) << 3; 2376 if (cm->cmsg_len != CMSG_LEN(destlen)) 2377 return(EINVAL); 2378 2379 /* 2380 * The old advacned API is ambiguous on this 2381 * point. Our approach is to determine the 2382 * position based according to the existence 2383 * of a routing header. Note, however, that 2384 * this depends on the order of the extension 2385 * headers in the ancillary data; the 1st part 2386 * of the destination options header must 2387 * appear before the routing header in the 2388 * ancillary data, too. 2389 * RFC2292bis solved the ambiguity by 2390 * introducing separate cmsg types. 2391 */ 2392 if (opt->ip6po_rthdr == NULL) 2393 newdest = &opt->ip6po_dest1; 2394 else 2395 newdest = &opt->ip6po_dest2; 2396 2397 if (needcopy) { 2398 *newdest = malloc(destlen, M_IP6OPT, M_WAITOK); 2399 bcopy(dest, *newdest, destlen); 2400 } else 2401 *newdest = dest; 2402 2403 break; 2404 } 2405 2406 case IPV6_RTHDR: 2407 { 2408 struct ip6_rthdr *rth; 2409 int rthlen; 2410 2411 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr))) 2412 return(EINVAL); 2413 rth = (struct ip6_rthdr *)CMSG_DATA(cm); 2414 rthlen = (rth->ip6r_len + 1) << 3; 2415 if (cm->cmsg_len != CMSG_LEN(rthlen)) 2416 return(EINVAL); 2417 2418 switch (rth->ip6r_type) { 2419 case IPV6_RTHDR_TYPE_0: 2420 /* must contain one addr */ 2421 if (rth->ip6r_len == 0) 2422 return(EINVAL); 2423 /* length must be even */ 2424 if (rth->ip6r_len % 2) 2425 return(EINVAL); 2426 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2427 return(EINVAL); 2428 break; 2429 default: 2430 return(EINVAL); /* not supported */ 2431 } 2432 2433 if (needcopy) { 2434 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, 2435 M_WAITOK); 2436 bcopy(rth, opt->ip6po_rthdr, rthlen); 2437 } else 2438 opt->ip6po_rthdr = rth; 2439 2440 break; 2441 } 2442 2443 default: 2444 return(ENOPROTOOPT); 2445 } 2446 } 2447 2448 return(0); 2449 } 2450 2451 /* 2452 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2453 * packet to the input queue of a specified interface. Note that this 2454 * calls the output routine of the loopback "driver", but with an interface 2455 * pointer that might NOT be &loif -- easier than replicating that code here. 2456 */ 2457 void 2458 ip6_mloopback(ifp, m, dst) 2459 struct ifnet *ifp; 2460 struct mbuf *m; 2461 struct sockaddr_in6 *dst; 2462 { 2463 struct mbuf *copym; 2464 struct ip6_hdr *ip6; 2465 2466 copym = m_copy(m, 0, M_COPYALL); 2467 if (copym == NULL) 2468 return; 2469 2470 /* 2471 * Make sure to deep-copy IPv6 header portion in case the data 2472 * is in an mbuf cluster, so that we can safely override the IPv6 2473 * header portion later. 2474 */ 2475 if ((copym->m_flags & M_EXT) != 0 || 2476 copym->m_len < sizeof(struct ip6_hdr)) { 2477 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2478 if (copym == NULL) 2479 return; 2480 } 2481 2482 #ifdef DIAGNOSTIC 2483 if (copym->m_len < sizeof(*ip6)) { 2484 m_freem(copym); 2485 return; 2486 } 2487 #endif 2488 2489 ip6 = mtod(copym, struct ip6_hdr *); 2490 #ifndef SCOPEDROUTING 2491 /* 2492 * clear embedded scope identifiers if necessary. 2493 * in6_clearscope will touch the addresses only when necessary. 2494 */ 2495 in6_clearscope(&ip6->ip6_src); 2496 in6_clearscope(&ip6->ip6_dst); 2497 #endif 2498 2499 (void)if_simloop(ifp, copym, dst->sin6_family, NULL); 2500 } 2501 2502 /* 2503 * Chop IPv6 header off from the payload. 2504 */ 2505 static int 2506 ip6_splithdr(m, exthdrs) 2507 struct mbuf *m; 2508 struct ip6_exthdrs *exthdrs; 2509 { 2510 struct mbuf *mh; 2511 struct ip6_hdr *ip6; 2512 2513 ip6 = mtod(m, struct ip6_hdr *); 2514 if (m->m_len > sizeof(*ip6)) { 2515 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 2516 if (mh == 0) { 2517 m_freem(m); 2518 return ENOBUFS; 2519 } 2520 M_COPY_PKTHDR(mh, m); 2521 MH_ALIGN(mh, sizeof(*ip6)); 2522 m->m_flags &= ~M_PKTHDR; 2523 m->m_len -= sizeof(*ip6); 2524 m->m_data += sizeof(*ip6); 2525 mh->m_next = m; 2526 m = mh; 2527 m->m_len = sizeof(*ip6); 2528 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2529 } 2530 exthdrs->ip6e_ip6 = m; 2531 return 0; 2532 } 2533 2534 /* 2535 * Compute IPv6 extension header length. 2536 */ 2537 int 2538 ip6_optlen(in6p) 2539 struct in6pcb *in6p; 2540 { 2541 int len; 2542 2543 if (!in6p->in6p_outputopts) 2544 return 0; 2545 2546 len = 0; 2547 #define elen(x) \ 2548 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 2549 2550 len += elen(in6p->in6p_outputopts->ip6po_hbh); 2551 if (in6p->in6p_outputopts->ip6po_rthdr) 2552 /* dest1 is valid with rthdr only */ 2553 len += elen(in6p->in6p_outputopts->ip6po_dest1); 2554 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 2555 len += elen(in6p->in6p_outputopts->ip6po_dest2); 2556 return len; 2557 #undef elen 2558 } 2559