1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 32 */ 33 34 /*- 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 */ 62 63 #include <sys/cdefs.h> 64 #include "opt_inet.h" 65 #include "opt_inet6.h" 66 #include "opt_ipsec.h" 67 #include "opt_kern_tls.h" 68 #include "opt_ratelimit.h" 69 #include "opt_route.h" 70 #include "opt_rss.h" 71 #include "opt_sctp.h" 72 73 #include <sys/param.h> 74 #include <sys/kernel.h> 75 #include <sys/ktls.h> 76 #include <sys/malloc.h> 77 #include <sys/mbuf.h> 78 #include <sys/errno.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/protosw.h> 82 #include <sys/socket.h> 83 #include <sys/socketvar.h> 84 #include <sys/syslog.h> 85 #include <sys/ucred.h> 86 87 #include <machine/in_cksum.h> 88 89 #include <net/if.h> 90 #include <net/if_var.h> 91 #include <net/if_private.h> 92 #include <net/if_vlan_var.h> 93 #include <net/if_llatbl.h> 94 #include <net/ethernet.h> 95 #include <net/netisr.h> 96 #include <net/route.h> 97 #include <net/route/nhop.h> 98 #include <net/pfil.h> 99 #include <net/rss_config.h> 100 #include <net/vnet.h> 101 102 #include <netinet/in.h> 103 #include <netinet/in_var.h> 104 #include <netinet/ip_var.h> 105 #include <netinet6/in6_fib.h> 106 #include <netinet6/in6_var.h> 107 #include <netinet/ip6.h> 108 #include <netinet/icmp6.h> 109 #include <netinet6/ip6_var.h> 110 #include <netinet/in_pcb.h> 111 #include <netinet/tcp_var.h> 112 #include <netinet6/nd6.h> 113 #include <netinet6/in6_rss.h> 114 115 #include <netipsec/ipsec_support.h> 116 #if defined(SCTP) || defined(SCTP_SUPPORT) 117 #include <netinet/sctp.h> 118 #include <netinet/sctp_crc32.h> 119 #endif 120 121 #include <netinet6/scope6_var.h> 122 123 extern int in6_mcast_loop; 124 125 struct ip6_exthdrs { 126 struct mbuf *ip6e_ip6; 127 struct mbuf *ip6e_hbh; 128 struct mbuf *ip6e_dest1; 129 struct mbuf *ip6e_rthdr; 130 struct mbuf *ip6e_dest2; 131 }; 132 133 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 134 135 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 136 struct ucred *, int); 137 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 138 struct socket *, struct sockopt *); 139 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *); 140 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 141 struct ucred *, int, int, int); 142 143 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 144 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 145 struct ip6_frag **); 146 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 147 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 148 static int ip6_getpmtu(struct route_in6 *, int, 149 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 150 u_int); 151 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 152 u_long *, int *, u_int); 153 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 154 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 155 156 /* 157 * Make an extension header from option data. hp is the source, 158 * mp is the destination, and _ol is the optlen. 159 */ 160 #define MAKE_EXTHDR(hp, mp, _ol) \ 161 do { \ 162 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 163 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 164 ((eh)->ip6e_len + 1) << 3); \ 165 if (error) \ 166 goto freehdrs; \ 167 (_ol) += (*(mp))->m_len; \ 168 } while (/*CONSTCOND*/ 0) 169 170 /* 171 * Form a chain of extension headers. 172 * m is the extension header mbuf 173 * mp is the previous mbuf in the chain 174 * p is the next header 175 * i is the type of option. 176 */ 177 #define MAKE_CHAIN(m, mp, p, i)\ 178 do {\ 179 if (m) {\ 180 if (!hdrsplit) \ 181 panic("%s:%d: assumption failed: "\ 182 "hdr not split: hdrsplit %d exthdrs %p",\ 183 __func__, __LINE__, hdrsplit, &exthdrs);\ 184 *mtod((m), u_char *) = *(p);\ 185 *(p) = (i);\ 186 p = mtod((m), u_char *);\ 187 (m)->m_next = (mp)->m_next;\ 188 (mp)->m_next = (m);\ 189 (mp) = (m);\ 190 }\ 191 } while (/*CONSTCOND*/ 0) 192 193 void 194 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 195 { 196 u_short csum; 197 198 csum = in_cksum_skip(m, offset + plen, offset); 199 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 200 csum = 0xffff; 201 offset += m->m_pkthdr.csum_data; /* checksum offset */ 202 203 if (offset + sizeof(csum) > m->m_len) 204 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 205 else 206 *(u_short *)mtodo(m, offset) = csum; 207 } 208 209 static void 210 ip6_output_delayed_csum(struct mbuf *m, struct ifnet *ifp, int csum_flags, 211 int plen, int optlen) 212 { 213 214 KASSERT((plen >= optlen), ("%s:%d: plen %d < optlen %d, m %p, ifp %p " 215 "csum_flags %#x", 216 __func__, __LINE__, plen, optlen, m, ifp, csum_flags)); 217 218 if (csum_flags & CSUM_DELAY_DATA_IPV6) { 219 in6_delayed_cksum(m, plen - optlen, 220 sizeof(struct ip6_hdr) + optlen); 221 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 222 } 223 #if defined(SCTP) || defined(SCTP_SUPPORT) 224 if (csum_flags & CSUM_SCTP_IPV6) { 225 sctp_delayed_cksum(m, sizeof(struct ip6_hdr) + optlen); 226 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 227 } 228 #endif 229 } 230 231 int 232 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 233 int fraglen , uint32_t id) 234 { 235 struct mbuf *m, **mnext, *m_frgpart; 236 struct ip6_hdr *ip6, *mhip6; 237 struct ip6_frag *ip6f; 238 int off; 239 int error; 240 int tlen = m0->m_pkthdr.len; 241 242 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); 243 244 m = m0; 245 ip6 = mtod(m, struct ip6_hdr *); 246 mnext = &m->m_nextpkt; 247 248 for (off = hlen; off < tlen; off += fraglen) { 249 m = m_gethdr(M_NOWAIT, MT_DATA); 250 if (!m) { 251 IP6STAT_INC(ip6s_odropped); 252 return (ENOBUFS); 253 } 254 255 /* 256 * Make sure the complete packet header gets copied 257 * from the originating mbuf to the newly created 258 * mbuf. This also ensures that existing firewall 259 * classification(s), VLAN tags and so on get copied 260 * to the resulting fragmented packet(s): 261 */ 262 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 263 m_free(m); 264 IP6STAT_INC(ip6s_odropped); 265 return (ENOBUFS); 266 } 267 268 *mnext = m; 269 mnext = &m->m_nextpkt; 270 m->m_data += max_linkhdr; 271 mhip6 = mtod(m, struct ip6_hdr *); 272 *mhip6 = *ip6; 273 m->m_len = sizeof(*mhip6); 274 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 275 if (error) { 276 IP6STAT_INC(ip6s_odropped); 277 return (error); 278 } 279 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 280 if (off + fraglen >= tlen) 281 fraglen = tlen - off; 282 else 283 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 284 mhip6->ip6_plen = htons((u_short)(fraglen + hlen + 285 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 286 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { 287 IP6STAT_INC(ip6s_odropped); 288 return (ENOBUFS); 289 } 290 m_cat(m, m_frgpart); 291 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); 292 ip6f->ip6f_reserved = 0; 293 ip6f->ip6f_ident = id; 294 ip6f->ip6f_nxt = nextproto; 295 IP6STAT_INC(ip6s_ofragments); 296 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 297 } 298 299 return (0); 300 } 301 302 static int 303 ip6_output_send(struct inpcb *inp, struct ifnet *ifp, struct ifnet *origifp, 304 struct mbuf *m, struct sockaddr_in6 *dst, struct route_in6 *ro, 305 bool stamp_tag) 306 { 307 #ifdef KERN_TLS 308 struct ktls_session *tls = NULL; 309 #endif 310 struct m_snd_tag *mst; 311 int error; 312 313 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 314 mst = NULL; 315 316 #ifdef KERN_TLS 317 /* 318 * If this is an unencrypted TLS record, save a reference to 319 * the record. This local reference is used to call 320 * ktls_output_eagain after the mbuf has been freed (thus 321 * dropping the mbuf's reference) in if_output. 322 */ 323 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 324 tls = ktls_hold(m->m_next->m_epg_tls); 325 mst = tls->snd_tag; 326 327 /* 328 * If a TLS session doesn't have a valid tag, it must 329 * have had an earlier ifp mismatch, so drop this 330 * packet. 331 */ 332 if (mst == NULL) { 333 m_freem(m); 334 error = EAGAIN; 335 goto done; 336 } 337 /* 338 * Always stamp tags that include NIC ktls. 339 */ 340 stamp_tag = true; 341 } 342 #endif 343 #ifdef RATELIMIT 344 if (inp != NULL && mst == NULL) { 345 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 346 (inp->inp_snd_tag != NULL && 347 inp->inp_snd_tag->ifp != ifp)) 348 in_pcboutput_txrtlmt(inp, ifp, m); 349 350 if (inp->inp_snd_tag != NULL) 351 mst = inp->inp_snd_tag; 352 } 353 #endif 354 if (stamp_tag && mst != NULL) { 355 KASSERT(m->m_pkthdr.rcvif == NULL, 356 ("trying to add a send tag to a forwarded packet")); 357 if (mst->ifp != ifp) { 358 m_freem(m); 359 error = EAGAIN; 360 goto done; 361 } 362 363 /* stamp send tag on mbuf */ 364 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 365 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 366 } 367 368 error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro); 369 370 done: 371 /* Check for route change invalidating send tags. */ 372 #ifdef KERN_TLS 373 if (tls != NULL) { 374 if (error == EAGAIN) 375 error = ktls_output_eagain(inp, tls); 376 ktls_free(tls); 377 } 378 #endif 379 #ifdef RATELIMIT 380 if (error == EAGAIN) 381 in_pcboutput_eagain(inp); 382 #endif 383 return (error); 384 } 385 386 /* 387 * IP6 output. 388 * The packet in mbuf chain m contains a skeletal IP6 header (with pri, len, 389 * nxt, hlim, src, dst). 390 * This function may modify ver and hlim only. 391 * The mbuf chain containing the packet will be freed. 392 * The mbuf opt, if present, will not be freed. 393 * If route_in6 ro is present and has ro_nh initialized, route lookup would be 394 * skipped and ro->ro_nh would be used. If ro is present but ro->ro_nh is NULL, 395 * then result of route lookup is stored in ro->ro_nh. 396 * 397 * Type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and nd_ifinfo.linkmtu 398 * is uint32_t. So we use u_long to hold largest one, which is rt_mtu. 399 * 400 * ifpp - XXX: just for statistics 401 */ 402 int 403 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 404 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 405 struct ifnet **ifpp, struct inpcb *inp) 406 { 407 struct ip6_hdr *ip6; 408 struct ifnet *ifp, *origifp; 409 struct mbuf *m = m0; 410 struct mbuf *mprev; 411 struct route_in6 *ro_pmtu; 412 struct nhop_object *nh; 413 struct sockaddr_in6 *dst, sin6, src_sa, dst_sa; 414 struct in6_addr odst; 415 u_char *nexthdrp; 416 int tlen, len; 417 int error = 0; 418 int vlan_pcp = -1; 419 struct in6_ifaddr *ia = NULL; 420 u_long mtu; 421 int alwaysfrag, dontfrag; 422 u_int32_t optlen, plen = 0, unfragpartlen; 423 struct ip6_exthdrs exthdrs; 424 struct in6_addr src0, dst0; 425 u_int32_t zone; 426 bool hdrsplit; 427 int sw_csum, tso; 428 int needfiblookup; 429 uint32_t fibnum; 430 struct m_tag *fwd_tag = NULL; 431 uint32_t id; 432 uint32_t optvalid; 433 434 NET_EPOCH_ASSERT(); 435 436 if (inp != NULL) { 437 INP_LOCK_ASSERT(inp); 438 M_SETFIB(m, inp->inp_inc.inc_fibnum); 439 if ((flags & IP_NODEFAULTFLOWID) == 0) { 440 /* Unconditionally set flowid. */ 441 m->m_pkthdr.flowid = inp->inp_flowid; 442 M_HASHTYPE_SET(m, inp->inp_flowtype); 443 } 444 if ((inp->inp_flags2 & INP_2PCP_SET) != 0) 445 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >> 446 INP_2PCP_SHIFT; 447 #ifdef NUMA 448 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 449 #endif 450 } 451 452 /* Source address validation. */ 453 ip6 = mtod(m, struct ip6_hdr *); 454 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 455 (flags & IPV6_UNSPECSRC) == 0) { 456 error = EOPNOTSUPP; 457 IP6STAT_INC(ip6s_badscope); 458 goto bad; 459 } 460 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 461 error = EOPNOTSUPP; 462 IP6STAT_INC(ip6s_badscope); 463 goto bad; 464 } 465 466 /* 467 * If we are given packet options to add extension headers prepare them. 468 * Calculate the total length of the extension header chain. 469 * Keep the length of the unfragmentable part for fragmentation. 470 */ 471 bzero(&exthdrs, sizeof(exthdrs)); 472 optlen = optvalid = 0; 473 unfragpartlen = sizeof(struct ip6_hdr); 474 if (opt) { 475 optvalid = opt->ip6po_valid; 476 477 /* Hop-by-Hop options header. */ 478 if ((optvalid & IP6PO_VALID_HBH) != 0) 479 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh, optlen); 480 481 /* Destination options header (1st part). */ 482 if ((optvalid & IP6PO_VALID_RHINFO) != 0) { 483 #ifndef RTHDR_SUPPORT_IMPLEMENTED 484 /* 485 * If there is a routing header, discard the packet 486 * right away here. RH0/1 are obsolete and we do not 487 * currently support RH2/3/4. 488 * People trying to use RH253/254 may want to disable 489 * this check. 490 * The moment we do support any routing header (again) 491 * this block should check the routing type more 492 * selectively. 493 */ 494 error = EINVAL; 495 goto bad; 496 #endif 497 498 /* 499 * Destination options header (1st part). 500 * This only makes sense with a routing header. 501 * See Section 9.2 of RFC 3542. 502 * Disabling this part just for MIP6 convenience is 503 * a bad idea. We need to think carefully about a 504 * way to make the advanced API coexist with MIP6 505 * options, which might automatically be inserted in 506 * the kernel. 507 */ 508 if ((optvalid & IP6PO_VALID_DEST1) != 0) 509 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1, 510 optlen); 511 } 512 /* Routing header. */ 513 if ((optvalid & IP6PO_VALID_RHINFO) != 0) 514 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr, optlen); 515 516 unfragpartlen += optlen; 517 518 /* 519 * NOTE: we don't add AH/ESP length here (done in 520 * ip6_ipsec_output()). 521 */ 522 523 /* Destination options header (2nd part). */ 524 if ((optvalid & IP6PO_VALID_DEST2) != 0) 525 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2, optlen); 526 } 527 528 /* 529 * If there is at least one extension header, 530 * separate IP6 header from the payload. 531 */ 532 hdrsplit = false; 533 if (optlen) { 534 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 535 m = NULL; 536 goto freehdrs; 537 } 538 m = exthdrs.ip6e_ip6; 539 ip6 = mtod(m, struct ip6_hdr *); 540 hdrsplit = true; 541 } 542 543 /* Adjust mbuf packet header length. */ 544 m->m_pkthdr.len += optlen; 545 plen = m->m_pkthdr.len - sizeof(*ip6); 546 547 /* If this is a jumbo payload, insert a jumbo payload option. */ 548 if (plen > IPV6_MAXPACKET) { 549 if (!hdrsplit) { 550 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 551 m = NULL; 552 goto freehdrs; 553 } 554 m = exthdrs.ip6e_ip6; 555 ip6 = mtod(m, struct ip6_hdr *); 556 hdrsplit = true; 557 } 558 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 559 goto freehdrs; 560 ip6->ip6_plen = 0; 561 } else 562 ip6->ip6_plen = htons(plen); 563 nexthdrp = &ip6->ip6_nxt; 564 565 if (optlen) { 566 /* 567 * Concatenate headers and fill in next header fields. 568 * Here we have, on "m" 569 * IPv6 payload 570 * and we insert headers accordingly. 571 * Finally, we should be getting: 572 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]. 573 * 574 * During the header composing process "m" points to IPv6 575 * header. "mprev" points to an extension header prior to esp. 576 */ 577 mprev = m; 578 579 /* 580 * We treat dest2 specially. This makes IPsec processing 581 * much easier. The goal here is to make mprev point the 582 * mbuf prior to dest2. 583 * 584 * Result: IPv6 dest2 payload. 585 * m and mprev will point to IPv6 header. 586 */ 587 if (exthdrs.ip6e_dest2) { 588 if (!hdrsplit) 589 panic("%s:%d: assumption failed: " 590 "hdr not split: hdrsplit %d exthdrs %p", 591 __func__, __LINE__, hdrsplit, &exthdrs); 592 exthdrs.ip6e_dest2->m_next = m->m_next; 593 m->m_next = exthdrs.ip6e_dest2; 594 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 595 ip6->ip6_nxt = IPPROTO_DSTOPTS; 596 } 597 598 /* 599 * Result: IPv6 hbh dest1 rthdr dest2 payload. 600 * m will point to IPv6 header. mprev will point to the 601 * extension header prior to dest2 (rthdr in the above case). 602 */ 603 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 604 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 605 IPPROTO_DSTOPTS); 606 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 607 IPPROTO_ROUTING); 608 } 609 610 IP6STAT_INC(ip6s_localout); 611 612 /* Route packet. */ 613 ro_pmtu = ro; 614 if ((optvalid & IP6PO_VALID_RHINFO) != 0) 615 ro = &opt->ip6po_route; 616 if (ro != NULL) 617 dst = (struct sockaddr_in6 *)&ro->ro_dst; 618 else 619 dst = &sin6; 620 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 621 622 again: 623 /* 624 * If specified, try to fill in the traffic class field. 625 * Do not override if a non-zero value is already set. 626 * We check the diffserv field and the ECN field separately. 627 */ 628 if ((optvalid & IP6PO_VALID_TC) != 0){ 629 int mask = 0; 630 631 if (IPV6_DSCP(ip6) == 0) 632 mask |= 0xfc; 633 if (IPV6_ECN(ip6) == 0) 634 mask |= 0x03; 635 if (mask != 0) 636 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 637 } 638 639 /* Fill in or override the hop limit field, if necessary. */ 640 if ((optvalid & IP6PO_VALID_HLIM) != 0) 641 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 642 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 643 if (im6o != NULL) 644 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 645 else 646 ip6->ip6_hlim = V_ip6_defmcasthlim; 647 } 648 649 if (ro == NULL || ro->ro_nh == NULL) { 650 bzero(dst, sizeof(*dst)); 651 dst->sin6_family = AF_INET6; 652 dst->sin6_len = sizeof(*dst); 653 dst->sin6_addr = ip6->ip6_dst; 654 } 655 /* 656 * Validate route against routing table changes. 657 * Make sure that the address family is set in route. 658 */ 659 nh = NULL; 660 ifp = NULL; 661 mtu = 0; 662 if (ro != NULL) { 663 if (ro->ro_nh != NULL && inp != NULL) { 664 ro->ro_dst.sin6_family = AF_INET6; /* XXX KASSERT? */ 665 NH_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, 666 fibnum); 667 } 668 if (ro->ro_nh != NULL && fwd_tag == NULL && 669 (!NH_IS_VALID(ro->ro_nh) || 670 ro->ro_dst.sin6_family != AF_INET6 || 671 !IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst))) 672 RO_INVALIDATE_CACHE(ro); 673 674 if (ro->ro_nh != NULL && fwd_tag == NULL && 675 ro->ro_dst.sin6_family == AF_INET6 && 676 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 677 /* Nexthop is valid and contains valid ifp */ 678 nh = ro->ro_nh; 679 } else { 680 if (ro->ro_lle) 681 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 682 ro->ro_lle = NULL; 683 if (fwd_tag == NULL) { 684 bzero(&dst_sa, sizeof(dst_sa)); 685 dst_sa.sin6_family = AF_INET6; 686 dst_sa.sin6_len = sizeof(dst_sa); 687 dst_sa.sin6_addr = ip6->ip6_dst; 688 } 689 error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, 690 &nh, fibnum, m->m_pkthdr.flowid); 691 if (error != 0) { 692 IP6STAT_INC(ip6s_noroute); 693 if (ifp != NULL) 694 in6_ifstat_inc(ifp, ifs6_out_discard); 695 goto bad; 696 } 697 /* 698 * At this point at least @ifp is not NULL 699 * Can be the case when dst is multicast, link-local or 700 * interface is explicitly specificed by the caller. 701 */ 702 } 703 if (nh == NULL) { 704 /* 705 * If in6_selectroute() does not return a nexthop 706 * dst may not have been updated. 707 */ 708 *dst = dst_sa; /* XXX */ 709 origifp = ifp; 710 mtu = ifp->if_mtu; 711 } else { 712 ifp = nh->nh_ifp; 713 origifp = nh->nh_aifp; 714 ia = (struct in6_ifaddr *)(nh->nh_ifa); 715 counter_u64_add(nh->nh_pksent, 1); 716 } 717 } else { 718 struct nhop_object *nh; 719 struct in6_addr kdst; 720 uint32_t scopeid; 721 722 if (fwd_tag == NULL) { 723 bzero(&dst_sa, sizeof(dst_sa)); 724 dst_sa.sin6_family = AF_INET6; 725 dst_sa.sin6_len = sizeof(dst_sa); 726 dst_sa.sin6_addr = ip6->ip6_dst; 727 } 728 729 if (IN6_IS_ADDR_MULTICAST(&dst_sa.sin6_addr) && 730 im6o != NULL && 731 (ifp = im6o->im6o_multicast_ifp) != NULL) { 732 /* We do not need a route lookup. */ 733 *dst = dst_sa; /* XXX */ 734 origifp = ifp; 735 goto nonh6lookup; 736 } 737 738 in6_splitscope(&dst_sa.sin6_addr, &kdst, &scopeid); 739 740 if (IN6_IS_ADDR_MC_LINKLOCAL(&dst_sa.sin6_addr) || 741 IN6_IS_ADDR_MC_NODELOCAL(&dst_sa.sin6_addr)) { 742 if (scopeid > 0) { 743 ifp = in6_getlinkifnet(scopeid); 744 if (ifp == NULL) { 745 error = EHOSTUNREACH; 746 goto bad; 747 } 748 *dst = dst_sa; /* XXX */ 749 origifp = ifp; 750 goto nonh6lookup; 751 } 752 } 753 754 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 755 m->m_pkthdr.flowid); 756 if (nh == NULL) { 757 IP6STAT_INC(ip6s_noroute); 758 /* No ifp in6_ifstat_inc(ifp, ifs6_out_discard); */ 759 error = EHOSTUNREACH; 760 goto bad; 761 } 762 763 ifp = nh->nh_ifp; 764 origifp = nh->nh_aifp; 765 ia = ifatoia6(nh->nh_ifa); 766 if (nh->nh_flags & NHF_GATEWAY) 767 dst->sin6_addr = nh->gw6_sa.sin6_addr; 768 else if (fwd_tag != NULL) 769 dst->sin6_addr = dst_sa.sin6_addr; 770 nonh6lookup: 771 ; 772 } 773 /* 774 * At this point ifp MUST be pointing to the valid transmit ifp. 775 * origifp MUST be valid and pointing to either the same ifp or, 776 * in case of loopback output, to the interface which ip6_src 777 * belongs to. 778 * Examples: 779 * fe80::1%em0 -> fe80::2%em0 -> ifp=em0, origifp=em0 780 * fe80::1%em0 -> fe80::1%em0 -> ifp=lo0, origifp=em0 781 * ::1 -> ::1 -> ifp=lo0, origifp=lo0 782 * 783 * mtu can be 0 and will be refined later. 784 */ 785 KASSERT((ifp != NULL), ("output interface must not be NULL")); 786 KASSERT((origifp != NULL), ("output address interface must not be NULL")); 787 788 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 789 /* 790 * IPSec checking which handles several cases. 791 * FAST IPSEC: We re-injected the packet. 792 * XXX: need scope argument. 793 */ 794 if (IPSEC_ENABLED(ipv6)) { 795 m = mb_unmapped_to_ext(m); 796 if (m == NULL) { 797 IP6STAT_INC(ip6s_odropped); 798 error = ENOBUFS; 799 goto bad; 800 } 801 if ((error = IPSEC_OUTPUT(ipv6, ifp, m, inp, mtu == 0 ? 802 ifp->if_mtu : mtu)) != 0) { 803 if (error == EINPROGRESS) 804 error = 0; 805 goto done; 806 } 807 } 808 #endif /* IPSEC */ 809 810 if ((flags & IPV6_FORWARDING) == 0) { 811 /* XXX: the FORWARDING flag can be set for mrouting. */ 812 in6_ifstat_inc(ifp, ifs6_out_request); 813 } 814 815 /* Setup data structures for scope ID checks. */ 816 src0 = ip6->ip6_src; 817 bzero(&src_sa, sizeof(src_sa)); 818 src_sa.sin6_family = AF_INET6; 819 src_sa.sin6_len = sizeof(src_sa); 820 src_sa.sin6_addr = ip6->ip6_src; 821 822 dst0 = ip6->ip6_dst; 823 /* Re-initialize to be sure. */ 824 bzero(&dst_sa, sizeof(dst_sa)); 825 dst_sa.sin6_family = AF_INET6; 826 dst_sa.sin6_len = sizeof(dst_sa); 827 dst_sa.sin6_addr = ip6->ip6_dst; 828 829 /* Check for valid scope ID. */ 830 if (in6_setscope(&src0, origifp, &zone) == 0 && 831 sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id && 832 in6_setscope(&dst0, origifp, &zone) == 0 && 833 sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) { 834 /* 835 * The outgoing interface is in the zone of the source 836 * and destination addresses. 837 * 838 */ 839 } else if ((origifp->if_flags & IFF_LOOPBACK) == 0 || 840 sa6_recoverscope(&src_sa) != 0 || 841 sa6_recoverscope(&dst_sa) != 0 || 842 dst_sa.sin6_scope_id == 0 || 843 (src_sa.sin6_scope_id != 0 && 844 src_sa.sin6_scope_id != dst_sa.sin6_scope_id) || 845 ifnet_byindex(dst_sa.sin6_scope_id) == NULL) { 846 /* 847 * If the destination network interface is not a 848 * loopback interface, or the destination network 849 * address has no scope ID, or the source address has 850 * a scope ID set which is different from the 851 * destination address one, or there is no network 852 * interface representing this scope ID, the address 853 * pair is considered invalid. 854 */ 855 IP6STAT_INC(ip6s_badscope); 856 in6_ifstat_inc(origifp, ifs6_out_discard); 857 if (error == 0) 858 error = EHOSTUNREACH; /* XXX */ 859 goto bad; 860 } 861 /* All scope ID checks are successful. */ 862 863 if (nh && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 864 if ((optvalid & IP6PO_VALID_NHINFO) != 0) { 865 /* 866 * The nexthop is explicitly specified by the 867 * application. We assume the next hop is an IPv6 868 * address. 869 */ 870 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 871 } 872 else if ((nh->nh_flags & NHF_GATEWAY)) 873 dst = &nh->gw6_sa; 874 } 875 876 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 877 m->m_flags &= ~(M_BCAST | M_MCAST); /* Just in case. */ 878 } else { 879 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 880 in6_ifstat_inc(ifp, ifs6_out_mcast); 881 882 /* Confirm that the outgoing interface supports multicast. */ 883 if (!(ifp->if_flags & IFF_MULTICAST)) { 884 IP6STAT_INC(ip6s_noroute); 885 in6_ifstat_inc(ifp, ifs6_out_discard); 886 error = ENETUNREACH; 887 goto bad; 888 } 889 if ((im6o == NULL && in6_mcast_loop) || 890 (im6o && im6o->im6o_multicast_loop)) { 891 /* 892 * Loop back multicast datagram if not expressly 893 * forbidden to do so, even if we have not joined 894 * the address; protocols will filter it later, 895 * thus deferring a hash lookup and lock acquisition 896 * at the expense of an m_copym(). 897 */ 898 ip6_mloopback(ifp, m); 899 } else { 900 /* 901 * If we are acting as a multicast router, perform 902 * multicast forwarding as if the packet had just 903 * arrived on the interface to which we are about 904 * to send. The multicast forwarding function 905 * recursively calls this function, using the 906 * IPV6_FORWARDING flag to prevent infinite recursion. 907 * 908 * Multicasts that are looped back by ip6_mloopback(), 909 * above, will be forwarded by the ip6_input() routine, 910 * if necessary. 911 */ 912 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 913 /* 914 * XXX: ip6_mforward expects that rcvif is NULL 915 * when it is called from the originating path. 916 * However, it may not always be the case. 917 */ 918 m->m_pkthdr.rcvif = NULL; 919 if (ip6_mforward(ip6, ifp, m) != 0) { 920 m_freem(m); 921 goto done; 922 } 923 } 924 } 925 /* 926 * Multicasts with a hoplimit of zero may be looped back, 927 * above, but must not be transmitted on a network. 928 * Also, multicasts addressed to the loopback interface 929 * are not sent -- the above call to ip6_mloopback() will 930 * loop back a copy if this host actually belongs to the 931 * destination group on the loopback interface. 932 */ 933 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 934 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 935 m_freem(m); 936 goto done; 937 } 938 } 939 940 /* 941 * Fill the outgoing inteface to tell the upper layer 942 * to increment per-interface statistics. 943 */ 944 if (ifpp) 945 *ifpp = ifp; 946 947 /* Determine path MTU. */ 948 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 949 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 950 goto bad; 951 KASSERT(mtu > 0, ("%s:%d: mtu %ld, ro_pmtu %p ro %p ifp %p " 952 "alwaysfrag %d fibnum %u\n", __func__, __LINE__, mtu, ro_pmtu, ro, 953 ifp, alwaysfrag, fibnum)); 954 955 /* 956 * The caller of this function may specify to use the minimum MTU 957 * in some cases. 958 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 959 * setting. The logic is a bit complicated; by default, unicast 960 * packets will follow path MTU while multicast packets will be sent at 961 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 962 * including unicast ones will be sent at the minimum MTU. Multicast 963 * packets will always be sent at the minimum MTU unless 964 * IP6PO_MINMTU_DISABLE is explicitly specified. 965 * See RFC 3542 for more details. 966 */ 967 if (mtu > IPV6_MMTU) { 968 if ((flags & IPV6_MINMTU)) 969 mtu = IPV6_MMTU; 970 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 971 mtu = IPV6_MMTU; 972 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 973 (opt == NULL || 974 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 975 mtu = IPV6_MMTU; 976 } 977 } 978 979 /* 980 * Clear embedded scope identifiers if necessary. 981 * in6_clearscope() will touch the addresses only when necessary. 982 */ 983 in6_clearscope(&ip6->ip6_src); 984 in6_clearscope(&ip6->ip6_dst); 985 986 /* 987 * If the outgoing packet contains a hop-by-hop options header, 988 * it must be examined and processed even by the source node. 989 * (RFC 2460, section 4.) 990 */ 991 if (exthdrs.ip6e_hbh) { 992 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 993 u_int32_t dummy; /* XXX unused */ 994 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 995 996 #ifdef DIAGNOSTIC 997 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 998 panic("ip6e_hbh is not contiguous"); 999 #endif 1000 /* 1001 * XXX: if we have to send an ICMPv6 error to the sender, 1002 * we need the M_LOOP flag since icmp6_error() expects 1003 * the IPv6 and the hop-by-hop options header are 1004 * contiguous unless the flag is set. 1005 */ 1006 m->m_flags |= M_LOOP; 1007 m->m_pkthdr.rcvif = ifp; 1008 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 1009 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 1010 &dummy, &plen) < 0) { 1011 /* m was already freed at this point. */ 1012 error = EINVAL;/* better error? */ 1013 goto done; 1014 } 1015 m->m_flags &= ~M_LOOP; /* XXX */ 1016 m->m_pkthdr.rcvif = NULL; 1017 } 1018 1019 /* Jump over all PFIL processing if hooks are not active. */ 1020 if (!PFIL_HOOKED_OUT(V_inet6_pfil_head)) 1021 goto passout; 1022 1023 odst = ip6->ip6_dst; 1024 /* Run through list of hooks for output packets. */ 1025 switch (pfil_mbuf_out(V_inet6_pfil_head, &m, ifp, inp)) { 1026 case PFIL_PASS: 1027 ip6 = mtod(m, struct ip6_hdr *); 1028 break; 1029 case PFIL_DROPPED: 1030 error = EACCES; 1031 /* FALLTHROUGH */ 1032 case PFIL_CONSUMED: 1033 goto done; 1034 } 1035 1036 needfiblookup = 0; 1037 /* See if destination IP address was changed by packet filter. */ 1038 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 1039 m->m_flags |= M_SKIP_FIREWALL; 1040 /* If destination is now ourself drop to ip6_input(). */ 1041 if (in6_localip(&ip6->ip6_dst)) { 1042 m->m_flags |= M_FASTFWD_OURS; 1043 if (m->m_pkthdr.rcvif == NULL) 1044 m->m_pkthdr.rcvif = V_loif; 1045 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1046 m->m_pkthdr.csum_flags |= 1047 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1048 m->m_pkthdr.csum_data = 0xffff; 1049 } 1050 #if defined(SCTP) || defined(SCTP_SUPPORT) 1051 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1052 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1053 #endif 1054 error = netisr_queue(NETISR_IPV6, m); 1055 goto done; 1056 } else { 1057 if (ro != NULL) 1058 RO_INVALIDATE_CACHE(ro); 1059 needfiblookup = 1; /* Redo the routing table lookup. */ 1060 } 1061 } 1062 /* See if fib was changed by packet filter. */ 1063 if (fibnum != M_GETFIB(m)) { 1064 m->m_flags |= M_SKIP_FIREWALL; 1065 fibnum = M_GETFIB(m); 1066 if (ro != NULL) 1067 RO_INVALIDATE_CACHE(ro); 1068 needfiblookup = 1; 1069 } 1070 if (needfiblookup) 1071 goto again; 1072 1073 /* See if local, if yes, send it to netisr. */ 1074 if (m->m_flags & M_FASTFWD_OURS) { 1075 if (m->m_pkthdr.rcvif == NULL) 1076 m->m_pkthdr.rcvif = V_loif; 1077 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1078 m->m_pkthdr.csum_flags |= 1079 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1080 m->m_pkthdr.csum_data = 0xffff; 1081 } 1082 #if defined(SCTP) || defined(SCTP_SUPPORT) 1083 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1084 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1085 #endif 1086 error = netisr_queue(NETISR_IPV6, m); 1087 goto done; 1088 } 1089 /* Or forward to some other address? */ 1090 if ((m->m_flags & M_IP6_NEXTHOP) && 1091 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 1092 if (ro != NULL) 1093 dst = (struct sockaddr_in6 *)&ro->ro_dst; 1094 else 1095 dst = &sin6; 1096 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 1097 m->m_flags |= M_SKIP_FIREWALL; 1098 m->m_flags &= ~M_IP6_NEXTHOP; 1099 m_tag_delete(m, fwd_tag); 1100 goto again; 1101 } 1102 1103 passout: 1104 if (vlan_pcp > -1) 1105 EVL_APPLY_PRI(m, vlan_pcp); 1106 1107 /* Ensure the packet data is mapped if the interface requires it. */ 1108 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 1109 m = mb_unmapped_to_ext(m); 1110 if (m == NULL) { 1111 IP6STAT_INC(ip6s_odropped); 1112 return (ENOBUFS); 1113 } 1114 } 1115 1116 /* 1117 * Send the packet to the outgoing interface. 1118 * If necessary, do IPv6 fragmentation before sending. 1119 * 1120 * The logic here is rather complex: 1121 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 1122 * 1-a: send as is if tlen <= path mtu 1123 * 1-b: fragment if tlen > path mtu 1124 * 1125 * 2: if user asks us not to fragment (dontfrag == 1) 1126 * 2-a: send as is if tlen <= interface mtu 1127 * 2-b: error if tlen > interface mtu 1128 * 1129 * 3: if we always need to attach fragment header (alwaysfrag == 1) 1130 * always fragment 1131 * 1132 * 4: if dontfrag == 1 && alwaysfrag == 1 1133 * error, as we cannot handle this conflicting request. 1134 */ 1135 sw_csum = m->m_pkthdr.csum_flags; 1136 if (!hdrsplit) { 1137 tso = ((sw_csum & ifp->if_hwassist & 1138 (CSUM_TSO | CSUM_INNER_TSO)) != 0) ? 1 : 0; 1139 sw_csum &= ~ifp->if_hwassist; 1140 } else 1141 tso = 0; 1142 /* 1143 * If we added extension headers, we will not do TSO and calculate the 1144 * checksums ourselves for now. 1145 * XXX-BZ Need a framework to know when the NIC can handle it, even 1146 * with ext. hdrs. 1147 */ 1148 ip6_output_delayed_csum(m, ifp, sw_csum, plen, optlen); 1149 /* XXX-BZ m->m_pkthdr.csum_flags &= ~ifp->if_hwassist; */ 1150 tlen = m->m_pkthdr.len; 1151 1152 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 1153 dontfrag = 1; 1154 else 1155 dontfrag = 0; 1156 if (dontfrag && alwaysfrag) { /* Case 4. */ 1157 /* Conflicting request - can't transmit. */ 1158 error = EMSGSIZE; 1159 goto bad; 1160 } 1161 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* Case 2-b. */ 1162 /* 1163 * Even if the DONTFRAG option is specified, we cannot send the 1164 * packet when the data length is larger than the MTU of the 1165 * outgoing interface. 1166 * Notify the error by sending IPV6_PATHMTU ancillary data if 1167 * application wanted to know the MTU value. Also return an 1168 * error code (this is not described in the API spec). 1169 */ 1170 if (inp != NULL) 1171 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 1172 error = EMSGSIZE; 1173 goto bad; 1174 } 1175 1176 /* Transmit packet without fragmentation. */ 1177 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* Cases 1-a and 2-a. */ 1178 struct in6_ifaddr *ia6; 1179 1180 ip6 = mtod(m, struct ip6_hdr *); 1181 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1182 if (ia6) { 1183 /* Record statistics for this interface address. */ 1184 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 1185 counter_u64_add(ia6->ia_ifa.ifa_obytes, 1186 m->m_pkthdr.len); 1187 } 1188 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1189 (flags & IP_NO_SND_TAG_RL) ? false : true); 1190 goto done; 1191 } 1192 1193 /* Try to fragment the packet. Cases 1-b and 3. */ 1194 if (mtu < IPV6_MMTU) { 1195 /* Path MTU cannot be less than IPV6_MMTU. */ 1196 error = EMSGSIZE; 1197 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1198 goto bad; 1199 } else if (ip6->ip6_plen == 0) { 1200 /* Jumbo payload cannot be fragmented. */ 1201 error = EMSGSIZE; 1202 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1203 goto bad; 1204 } else { 1205 u_char nextproto; 1206 1207 /* 1208 * Too large for the destination or interface; 1209 * fragment if possible. 1210 * Must be able to put at least 8 bytes per fragment. 1211 */ 1212 if (mtu > IPV6_MAXPACKET) 1213 mtu = IPV6_MAXPACKET; 1214 1215 len = (mtu - unfragpartlen - sizeof(struct ip6_frag)) & ~7; 1216 if (len < 8) { 1217 error = EMSGSIZE; 1218 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1219 goto bad; 1220 } 1221 1222 /* 1223 * If the interface will not calculate checksums on 1224 * fragmented packets, then do it here. 1225 * XXX-BZ handle the hw offloading case. Need flags. 1226 */ 1227 ip6_output_delayed_csum(m, ifp, m->m_pkthdr.csum_flags, plen, 1228 optlen); 1229 1230 /* 1231 * Change the next header field of the last header in the 1232 * unfragmentable part. 1233 */ 1234 if (exthdrs.ip6e_rthdr) { 1235 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1236 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1237 } else if (exthdrs.ip6e_dest1) { 1238 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1239 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1240 } else if (exthdrs.ip6e_hbh) { 1241 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1242 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1243 } else { 1244 ip6 = mtod(m, struct ip6_hdr *); 1245 nextproto = ip6->ip6_nxt; 1246 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1247 } 1248 1249 /* 1250 * Loop through length of segment after first fragment, 1251 * make new header and copy data of each part and link onto 1252 * chain. 1253 */ 1254 m0 = m; 1255 id = htonl(ip6_randomid()); 1256 error = ip6_fragment(ifp, m, unfragpartlen, nextproto,len, id); 1257 if (error != 0) 1258 goto sendorfree; 1259 1260 in6_ifstat_inc(ifp, ifs6_out_fragok); 1261 } 1262 1263 /* Remove leading garbage. */ 1264 sendorfree: 1265 m = m0->m_nextpkt; 1266 m0->m_nextpkt = 0; 1267 m_freem(m0); 1268 for (; m; m = m0) { 1269 m0 = m->m_nextpkt; 1270 m->m_nextpkt = 0; 1271 if (error == 0) { 1272 /* Record statistics for this interface address. */ 1273 if (ia) { 1274 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1275 counter_u64_add(ia->ia_ifa.ifa_obytes, 1276 m->m_pkthdr.len); 1277 } 1278 if (vlan_pcp > -1) 1279 EVL_APPLY_PRI(m, vlan_pcp); 1280 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1281 true); 1282 } else 1283 m_freem(m); 1284 } 1285 1286 if (error == 0) 1287 IP6STAT_INC(ip6s_fragmented); 1288 1289 done: 1290 return (error); 1291 1292 freehdrs: 1293 m_freem(exthdrs.ip6e_hbh); /* m_freem() checks if mbuf is NULL. */ 1294 m_freem(exthdrs.ip6e_dest1); 1295 m_freem(exthdrs.ip6e_rthdr); 1296 m_freem(exthdrs.ip6e_dest2); 1297 /* FALLTHROUGH */ 1298 bad: 1299 if (m) 1300 m_freem(m); 1301 goto done; 1302 } 1303 1304 static int 1305 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1306 { 1307 struct mbuf *m; 1308 1309 if (hlen > MCLBYTES) 1310 return (ENOBUFS); /* XXX */ 1311 1312 if (hlen > MLEN) 1313 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1314 else 1315 m = m_get(M_NOWAIT, MT_DATA); 1316 if (m == NULL) 1317 return (ENOBUFS); 1318 m->m_len = hlen; 1319 if (hdr) 1320 bcopy(hdr, mtod(m, caddr_t), hlen); 1321 1322 *mp = m; 1323 return (0); 1324 } 1325 1326 /* 1327 * Insert jumbo payload option. 1328 */ 1329 static int 1330 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1331 { 1332 struct mbuf *mopt; 1333 u_char *optbuf; 1334 u_int32_t v; 1335 1336 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1337 1338 /* 1339 * If there is no hop-by-hop options header, allocate new one. 1340 * If there is one but it doesn't have enough space to store the 1341 * jumbo payload option, allocate a cluster to store the whole options. 1342 * Otherwise, use it to store the options. 1343 */ 1344 if (exthdrs->ip6e_hbh == NULL) { 1345 mopt = m_get(M_NOWAIT, MT_DATA); 1346 if (mopt == NULL) 1347 return (ENOBUFS); 1348 mopt->m_len = JUMBOOPTLEN; 1349 optbuf = mtod(mopt, u_char *); 1350 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1351 exthdrs->ip6e_hbh = mopt; 1352 } else { 1353 struct ip6_hbh *hbh; 1354 1355 mopt = exthdrs->ip6e_hbh; 1356 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1357 /* 1358 * XXX assumption: 1359 * - exthdrs->ip6e_hbh is not referenced from places 1360 * other than exthdrs. 1361 * - exthdrs->ip6e_hbh is not an mbuf chain. 1362 */ 1363 int oldoptlen = mopt->m_len; 1364 struct mbuf *n; 1365 1366 /* 1367 * XXX: give up if the whole (new) hbh header does 1368 * not fit even in an mbuf cluster. 1369 */ 1370 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1371 return (ENOBUFS); 1372 1373 /* 1374 * As a consequence, we must always prepare a cluster 1375 * at this point. 1376 */ 1377 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1378 if (n == NULL) 1379 return (ENOBUFS); 1380 n->m_len = oldoptlen + JUMBOOPTLEN; 1381 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1382 oldoptlen); 1383 optbuf = mtod(n, caddr_t) + oldoptlen; 1384 m_freem(mopt); 1385 mopt = exthdrs->ip6e_hbh = n; 1386 } else { 1387 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1388 mopt->m_len += JUMBOOPTLEN; 1389 } 1390 optbuf[0] = IP6OPT_PADN; 1391 optbuf[1] = 1; 1392 1393 /* 1394 * Adjust the header length according to the pad and 1395 * the jumbo payload option. 1396 */ 1397 hbh = mtod(mopt, struct ip6_hbh *); 1398 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1399 } 1400 1401 /* fill in the option. */ 1402 optbuf[2] = IP6OPT_JUMBO; 1403 optbuf[3] = 4; 1404 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1405 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1406 1407 /* finally, adjust the packet header length */ 1408 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1409 1410 return (0); 1411 #undef JUMBOOPTLEN 1412 } 1413 1414 /* 1415 * Insert fragment header and copy unfragmentable header portions. 1416 */ 1417 static int 1418 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1419 struct ip6_frag **frghdrp) 1420 { 1421 struct mbuf *n, *mlast; 1422 1423 if (hlen > sizeof(struct ip6_hdr)) { 1424 n = m_copym(m0, sizeof(struct ip6_hdr), 1425 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1426 if (n == NULL) 1427 return (ENOBUFS); 1428 m->m_next = n; 1429 } else 1430 n = m; 1431 1432 /* Search for the last mbuf of unfragmentable part. */ 1433 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1434 ; 1435 1436 if (M_WRITABLE(mlast) && 1437 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1438 /* use the trailing space of the last mbuf for the fragment hdr */ 1439 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1440 mlast->m_len); 1441 mlast->m_len += sizeof(struct ip6_frag); 1442 m->m_pkthdr.len += sizeof(struct ip6_frag); 1443 } else { 1444 /* allocate a new mbuf for the fragment header */ 1445 struct mbuf *mfrg; 1446 1447 mfrg = m_get(M_NOWAIT, MT_DATA); 1448 if (mfrg == NULL) 1449 return (ENOBUFS); 1450 mfrg->m_len = sizeof(struct ip6_frag); 1451 *frghdrp = mtod(mfrg, struct ip6_frag *); 1452 mlast->m_next = mfrg; 1453 } 1454 1455 return (0); 1456 } 1457 1458 /* 1459 * Calculates IPv6 path mtu for destination @dst. 1460 * Resulting MTU is stored in @mtup. 1461 * 1462 * Returns 0 on success. 1463 */ 1464 static int 1465 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1466 { 1467 struct epoch_tracker et; 1468 struct nhop_object *nh; 1469 struct in6_addr kdst; 1470 uint32_t scopeid; 1471 int error; 1472 1473 in6_splitscope(dst, &kdst, &scopeid); 1474 1475 NET_EPOCH_ENTER(et); 1476 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1477 if (nh != NULL) 1478 error = ip6_calcmtu(nh->nh_ifp, dst, nh->nh_mtu, mtup, NULL, 0); 1479 else 1480 error = EHOSTUNREACH; 1481 NET_EPOCH_EXIT(et); 1482 1483 return (error); 1484 } 1485 1486 /* 1487 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1488 * and cached data in @ro_pmtu. 1489 * MTU from (successful) route lookup is saved (along with dst) 1490 * inside @ro_pmtu to avoid subsequent route lookups after packet 1491 * filter processing. 1492 * 1493 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1494 * Returns 0 on success. 1495 */ 1496 static int 1497 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1498 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1499 int *alwaysfragp, u_int fibnum, u_int proto) 1500 { 1501 struct nhop_object *nh; 1502 struct in6_addr kdst; 1503 uint32_t scopeid; 1504 struct sockaddr_in6 *sa6_dst, sin6; 1505 u_long mtu; 1506 1507 NET_EPOCH_ASSERT(); 1508 1509 mtu = 0; 1510 if (ro_pmtu == NULL || do_lookup) { 1511 /* 1512 * Here ro_pmtu has final destination address, while 1513 * ro might represent immediate destination. 1514 * Use ro_pmtu destination since mtu might differ. 1515 */ 1516 if (ro_pmtu != NULL) { 1517 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1518 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1519 ro_pmtu->ro_mtu = 0; 1520 } else 1521 sa6_dst = &sin6; 1522 1523 if (ro_pmtu == NULL || ro_pmtu->ro_mtu == 0) { 1524 bzero(sa6_dst, sizeof(*sa6_dst)); 1525 sa6_dst->sin6_family = AF_INET6; 1526 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1527 sa6_dst->sin6_addr = *dst; 1528 1529 in6_splitscope(dst, &kdst, &scopeid); 1530 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1531 if (nh != NULL) { 1532 mtu = nh->nh_mtu; 1533 if (ro_pmtu != NULL) 1534 ro_pmtu->ro_mtu = mtu; 1535 } 1536 } else 1537 mtu = ro_pmtu->ro_mtu; 1538 } 1539 1540 if (ro_pmtu != NULL && ro_pmtu->ro_nh != NULL) 1541 mtu = ro_pmtu->ro_nh->nh_mtu; 1542 1543 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1544 } 1545 1546 /* 1547 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1548 * hostcache data for @dst. 1549 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1550 * 1551 * Returns 0 on success. 1552 */ 1553 static int 1554 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1555 u_long *mtup, int *alwaysfragp, u_int proto) 1556 { 1557 u_long mtu = 0; 1558 int alwaysfrag = 0; 1559 int error = 0; 1560 1561 if (rt_mtu > 0) { 1562 u_int32_t ifmtu; 1563 struct in_conninfo inc; 1564 1565 bzero(&inc, sizeof(inc)); 1566 inc.inc_flags |= INC_ISIPV6; 1567 inc.inc6_faddr = *dst; 1568 1569 ifmtu = IN6_LINKMTU(ifp); 1570 1571 /* TCP is known to react to pmtu changes so skip hc */ 1572 if (proto != IPPROTO_TCP) 1573 mtu = tcp_hc_getmtu(&inc); 1574 1575 if (mtu) 1576 mtu = min(mtu, rt_mtu); 1577 else 1578 mtu = rt_mtu; 1579 if (mtu == 0) 1580 mtu = ifmtu; 1581 else if (mtu < IPV6_MMTU) { 1582 /* 1583 * RFC2460 section 5, last paragraph: 1584 * if we record ICMPv6 too big message with 1585 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1586 * or smaller, with framgent header attached. 1587 * (fragment header is needed regardless from the 1588 * packet size, for translators to identify packets) 1589 */ 1590 alwaysfrag = 1; 1591 mtu = IPV6_MMTU; 1592 } 1593 } else if (ifp) { 1594 mtu = IN6_LINKMTU(ifp); 1595 } else 1596 error = EHOSTUNREACH; /* XXX */ 1597 1598 *mtup = mtu; 1599 if (alwaysfragp) 1600 *alwaysfragp = alwaysfrag; 1601 return (error); 1602 } 1603 1604 /* 1605 * IP6 socket option processing. 1606 */ 1607 int 1608 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1609 { 1610 int optdatalen, uproto; 1611 void *optdata; 1612 struct inpcb *inp = sotoinpcb(so); 1613 int error, optval; 1614 int level, op, optname; 1615 int optlen; 1616 struct thread *td; 1617 #ifdef RSS 1618 uint32_t rss_bucket; 1619 int retval; 1620 #endif 1621 1622 /* 1623 * Don't use more than a quarter of mbuf clusters. N.B.: 1624 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1625 * on LP64 architectures, so cast to u_long to avoid undefined 1626 * behavior. ILP32 architectures cannot have nmbclusters 1627 * large enough to overflow for other reasons. 1628 */ 1629 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1630 1631 level = sopt->sopt_level; 1632 op = sopt->sopt_dir; 1633 optname = sopt->sopt_name; 1634 optlen = sopt->sopt_valsize; 1635 td = sopt->sopt_td; 1636 error = 0; 1637 optval = 0; 1638 uproto = (int)so->so_proto->pr_protocol; 1639 1640 if (level != IPPROTO_IPV6) { 1641 error = EINVAL; 1642 1643 if (sopt->sopt_level == SOL_SOCKET && 1644 sopt->sopt_dir == SOPT_SET) { 1645 switch (sopt->sopt_name) { 1646 case SO_SETFIB: 1647 INP_WLOCK(inp); 1648 inp->inp_inc.inc_fibnum = so->so_fibnum; 1649 INP_WUNLOCK(inp); 1650 error = 0; 1651 break; 1652 case SO_MAX_PACING_RATE: 1653 #ifdef RATELIMIT 1654 INP_WLOCK(inp); 1655 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1656 INP_WUNLOCK(inp); 1657 error = 0; 1658 #else 1659 error = EOPNOTSUPP; 1660 #endif 1661 break; 1662 default: 1663 break; 1664 } 1665 } 1666 } else { /* level == IPPROTO_IPV6 */ 1667 switch (op) { 1668 case SOPT_SET: 1669 switch (optname) { 1670 case IPV6_2292PKTOPTIONS: 1671 #ifdef IPV6_PKTOPTIONS 1672 case IPV6_PKTOPTIONS: 1673 #endif 1674 { 1675 struct mbuf *m; 1676 1677 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1678 printf("ip6_ctloutput: mbuf limit hit\n"); 1679 error = ENOBUFS; 1680 break; 1681 } 1682 1683 error = soopt_getm(sopt, &m); /* XXX */ 1684 if (error != 0) 1685 break; 1686 error = soopt_mcopyin(sopt, m); /* XXX */ 1687 if (error != 0) 1688 break; 1689 INP_WLOCK(inp); 1690 error = ip6_pcbopts(&inp->in6p_outputopts, m, 1691 so, sopt); 1692 INP_WUNLOCK(inp); 1693 m_freem(m); /* XXX */ 1694 break; 1695 } 1696 1697 /* 1698 * Use of some Hop-by-Hop options or some 1699 * Destination options, might require special 1700 * privilege. That is, normal applications 1701 * (without special privilege) might be forbidden 1702 * from setting certain options in outgoing packets, 1703 * and might never see certain options in received 1704 * packets. [RFC 2292 Section 6] 1705 * KAME specific note: 1706 * KAME prevents non-privileged users from sending or 1707 * receiving ANY hbh/dst options in order to avoid 1708 * overhead of parsing options in the kernel. 1709 */ 1710 case IPV6_RECVHOPOPTS: 1711 case IPV6_RECVDSTOPTS: 1712 case IPV6_RECVRTHDRDSTOPTS: 1713 if (td != NULL) { 1714 error = priv_check(td, 1715 PRIV_NETINET_SETHDROPTS); 1716 if (error) 1717 break; 1718 } 1719 /* FALLTHROUGH */ 1720 case IPV6_UNICAST_HOPS: 1721 case IPV6_HOPLIMIT: 1722 1723 case IPV6_RECVPKTINFO: 1724 case IPV6_RECVHOPLIMIT: 1725 case IPV6_RECVRTHDR: 1726 case IPV6_RECVPATHMTU: 1727 case IPV6_RECVTCLASS: 1728 case IPV6_RECVFLOWID: 1729 #ifdef RSS 1730 case IPV6_RECVRSSBUCKETID: 1731 #endif 1732 case IPV6_V6ONLY: 1733 case IPV6_AUTOFLOWLABEL: 1734 case IPV6_ORIGDSTADDR: 1735 case IPV6_BINDANY: 1736 case IPV6_VLAN_PCP: 1737 if (optname == IPV6_BINDANY && td != NULL) { 1738 error = priv_check(td, 1739 PRIV_NETINET_BINDANY); 1740 if (error) 1741 break; 1742 } 1743 1744 if (optlen != sizeof(int)) { 1745 error = EINVAL; 1746 break; 1747 } 1748 error = sooptcopyin(sopt, &optval, 1749 sizeof optval, sizeof optval); 1750 if (error) 1751 break; 1752 switch (optname) { 1753 case IPV6_UNICAST_HOPS: 1754 if (optval < -1 || optval >= 256) 1755 error = EINVAL; 1756 else { 1757 /* -1 = kernel default */ 1758 inp->in6p_hops = optval; 1759 if ((inp->inp_vflag & 1760 INP_IPV4) != 0) 1761 inp->inp_ip_ttl = optval; 1762 } 1763 break; 1764 #define OPTSET(bit) \ 1765 do { \ 1766 INP_WLOCK(inp); \ 1767 if (optval) \ 1768 inp->inp_flags |= (bit); \ 1769 else \ 1770 inp->inp_flags &= ~(bit); \ 1771 INP_WUNLOCK(inp); \ 1772 } while (/*CONSTCOND*/ 0) 1773 #define OPTSET2292(bit) \ 1774 do { \ 1775 INP_WLOCK(inp); \ 1776 inp->inp_flags |= IN6P_RFC2292; \ 1777 if (optval) \ 1778 inp->inp_flags |= (bit); \ 1779 else \ 1780 inp->inp_flags &= ~(bit); \ 1781 INP_WUNLOCK(inp); \ 1782 } while (/*CONSTCOND*/ 0) 1783 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1784 1785 #define OPTSET2_N(bit, val) do { \ 1786 if (val) \ 1787 inp->inp_flags2 |= bit; \ 1788 else \ 1789 inp->inp_flags2 &= ~bit; \ 1790 } while (0) 1791 #define OPTSET2(bit, val) do { \ 1792 INP_WLOCK(inp); \ 1793 OPTSET2_N(bit, val); \ 1794 INP_WUNLOCK(inp); \ 1795 } while (0) 1796 #define OPTBIT2(bit) (inp->inp_flags2 & (bit) ? 1 : 0) 1797 #define OPTSET2292_EXCLUSIVE(bit) \ 1798 do { \ 1799 INP_WLOCK(inp); \ 1800 if (OPTBIT(IN6P_RFC2292)) { \ 1801 error = EINVAL; \ 1802 } else { \ 1803 if (optval) \ 1804 inp->inp_flags |= (bit); \ 1805 else \ 1806 inp->inp_flags &= ~(bit); \ 1807 } \ 1808 INP_WUNLOCK(inp); \ 1809 } while (/*CONSTCOND*/ 0) 1810 1811 case IPV6_RECVPKTINFO: 1812 OPTSET2292_EXCLUSIVE(IN6P_PKTINFO); 1813 break; 1814 1815 case IPV6_HOPLIMIT: 1816 { 1817 struct ip6_pktopts **optp; 1818 1819 /* cannot mix with RFC2292 */ 1820 if (OPTBIT(IN6P_RFC2292)) { 1821 error = EINVAL; 1822 break; 1823 } 1824 INP_WLOCK(inp); 1825 if (inp->inp_flags & INP_DROPPED) { 1826 INP_WUNLOCK(inp); 1827 return (ECONNRESET); 1828 } 1829 optp = &inp->in6p_outputopts; 1830 error = ip6_pcbopt(IPV6_HOPLIMIT, 1831 (u_char *)&optval, sizeof(optval), 1832 optp, (td != NULL) ? td->td_ucred : 1833 NULL, uproto); 1834 INP_WUNLOCK(inp); 1835 break; 1836 } 1837 1838 case IPV6_RECVHOPLIMIT: 1839 OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT); 1840 break; 1841 1842 case IPV6_RECVHOPOPTS: 1843 OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS); 1844 break; 1845 1846 case IPV6_RECVDSTOPTS: 1847 OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS); 1848 break; 1849 1850 case IPV6_RECVRTHDRDSTOPTS: 1851 OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS); 1852 break; 1853 1854 case IPV6_RECVRTHDR: 1855 OPTSET2292_EXCLUSIVE(IN6P_RTHDR); 1856 break; 1857 1858 case IPV6_RECVPATHMTU: 1859 /* 1860 * We ignore this option for TCP 1861 * sockets. 1862 * (RFC3542 leaves this case 1863 * unspecified.) 1864 */ 1865 if (uproto != IPPROTO_TCP) 1866 OPTSET(IN6P_MTU); 1867 break; 1868 1869 case IPV6_RECVFLOWID: 1870 OPTSET2(INP_RECVFLOWID, optval); 1871 break; 1872 1873 #ifdef RSS 1874 case IPV6_RECVRSSBUCKETID: 1875 OPTSET2(INP_RECVRSSBUCKETID, optval); 1876 break; 1877 #endif 1878 1879 case IPV6_V6ONLY: 1880 INP_WLOCK(inp); 1881 if (inp->inp_lport || 1882 !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { 1883 /* 1884 * The socket is already bound. 1885 */ 1886 INP_WUNLOCK(inp); 1887 error = EINVAL; 1888 break; 1889 } 1890 if (optval) { 1891 inp->inp_flags |= IN6P_IPV6_V6ONLY; 1892 inp->inp_vflag &= ~INP_IPV4; 1893 } else { 1894 inp->inp_flags &= ~IN6P_IPV6_V6ONLY; 1895 inp->inp_vflag |= INP_IPV4; 1896 } 1897 INP_WUNLOCK(inp); 1898 break; 1899 case IPV6_RECVTCLASS: 1900 /* cannot mix with RFC2292 XXX */ 1901 OPTSET2292_EXCLUSIVE(IN6P_TCLASS); 1902 break; 1903 case IPV6_AUTOFLOWLABEL: 1904 OPTSET(IN6P_AUTOFLOWLABEL); 1905 break; 1906 1907 case IPV6_ORIGDSTADDR: 1908 OPTSET2(INP_ORIGDSTADDR, optval); 1909 break; 1910 case IPV6_BINDANY: 1911 OPTSET(INP_BINDANY); 1912 break; 1913 case IPV6_VLAN_PCP: 1914 if ((optval >= -1) && (optval <= 1915 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) { 1916 if (optval == -1) { 1917 INP_WLOCK(inp); 1918 inp->inp_flags2 &= 1919 ~(INP_2PCP_SET | 1920 INP_2PCP_MASK); 1921 INP_WUNLOCK(inp); 1922 } else { 1923 INP_WLOCK(inp); 1924 inp->inp_flags2 |= 1925 INP_2PCP_SET; 1926 inp->inp_flags2 &= 1927 ~INP_2PCP_MASK; 1928 inp->inp_flags2 |= 1929 optval << 1930 INP_2PCP_SHIFT; 1931 INP_WUNLOCK(inp); 1932 } 1933 } else 1934 error = EINVAL; 1935 break; 1936 } 1937 break; 1938 1939 case IPV6_TCLASS: 1940 case IPV6_DONTFRAG: 1941 case IPV6_USE_MIN_MTU: 1942 case IPV6_PREFER_TEMPADDR: 1943 if (optlen != sizeof(optval)) { 1944 error = EINVAL; 1945 break; 1946 } 1947 error = sooptcopyin(sopt, &optval, 1948 sizeof optval, sizeof optval); 1949 if (error) 1950 break; 1951 { 1952 struct ip6_pktopts **optp; 1953 INP_WLOCK(inp); 1954 if (inp->inp_flags & INP_DROPPED) { 1955 INP_WUNLOCK(inp); 1956 return (ECONNRESET); 1957 } 1958 optp = &inp->in6p_outputopts; 1959 error = ip6_pcbopt(optname, 1960 (u_char *)&optval, sizeof(optval), 1961 optp, (td != NULL) ? td->td_ucred : 1962 NULL, uproto); 1963 INP_WUNLOCK(inp); 1964 break; 1965 } 1966 1967 case IPV6_2292PKTINFO: 1968 case IPV6_2292HOPLIMIT: 1969 case IPV6_2292HOPOPTS: 1970 case IPV6_2292DSTOPTS: 1971 case IPV6_2292RTHDR: 1972 /* RFC 2292 */ 1973 if (optlen != sizeof(int)) { 1974 error = EINVAL; 1975 break; 1976 } 1977 error = sooptcopyin(sopt, &optval, 1978 sizeof optval, sizeof optval); 1979 if (error) 1980 break; 1981 switch (optname) { 1982 case IPV6_2292PKTINFO: 1983 OPTSET2292(IN6P_PKTINFO); 1984 break; 1985 case IPV6_2292HOPLIMIT: 1986 OPTSET2292(IN6P_HOPLIMIT); 1987 break; 1988 case IPV6_2292HOPOPTS: 1989 /* 1990 * Check super-user privilege. 1991 * See comments for IPV6_RECVHOPOPTS. 1992 */ 1993 if (td != NULL) { 1994 error = priv_check(td, 1995 PRIV_NETINET_SETHDROPTS); 1996 if (error) 1997 return (error); 1998 } 1999 OPTSET2292(IN6P_HOPOPTS); 2000 break; 2001 case IPV6_2292DSTOPTS: 2002 if (td != NULL) { 2003 error = priv_check(td, 2004 PRIV_NETINET_SETHDROPTS); 2005 if (error) 2006 return (error); 2007 } 2008 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 2009 break; 2010 case IPV6_2292RTHDR: 2011 OPTSET2292(IN6P_RTHDR); 2012 break; 2013 } 2014 break; 2015 case IPV6_PKTINFO: 2016 case IPV6_HOPOPTS: 2017 case IPV6_RTHDR: 2018 case IPV6_DSTOPTS: 2019 case IPV6_RTHDRDSTOPTS: 2020 case IPV6_NEXTHOP: 2021 { 2022 /* new advanced API (RFC3542) */ 2023 u_char *optbuf; 2024 u_char optbuf_storage[MCLBYTES]; 2025 int optlen; 2026 struct ip6_pktopts **optp; 2027 2028 /* cannot mix with RFC2292 */ 2029 if (OPTBIT(IN6P_RFC2292)) { 2030 error = EINVAL; 2031 break; 2032 } 2033 2034 /* 2035 * We only ensure valsize is not too large 2036 * here. Further validation will be done 2037 * later. 2038 */ 2039 error = sooptcopyin(sopt, optbuf_storage, 2040 sizeof(optbuf_storage), 0); 2041 if (error) 2042 break; 2043 optlen = sopt->sopt_valsize; 2044 optbuf = optbuf_storage; 2045 INP_WLOCK(inp); 2046 if (inp->inp_flags & INP_DROPPED) { 2047 INP_WUNLOCK(inp); 2048 return (ECONNRESET); 2049 } 2050 optp = &inp->in6p_outputopts; 2051 error = ip6_pcbopt(optname, optbuf, optlen, 2052 optp, (td != NULL) ? td->td_ucred : NULL, 2053 uproto); 2054 INP_WUNLOCK(inp); 2055 break; 2056 } 2057 #undef OPTSET 2058 2059 case IPV6_MULTICAST_IF: 2060 case IPV6_MULTICAST_HOPS: 2061 case IPV6_MULTICAST_LOOP: 2062 case IPV6_JOIN_GROUP: 2063 case IPV6_LEAVE_GROUP: 2064 case IPV6_MSFILTER: 2065 case MCAST_BLOCK_SOURCE: 2066 case MCAST_UNBLOCK_SOURCE: 2067 case MCAST_JOIN_GROUP: 2068 case MCAST_LEAVE_GROUP: 2069 case MCAST_JOIN_SOURCE_GROUP: 2070 case MCAST_LEAVE_SOURCE_GROUP: 2071 error = ip6_setmoptions(inp, sopt); 2072 break; 2073 2074 case IPV6_PORTRANGE: 2075 error = sooptcopyin(sopt, &optval, 2076 sizeof optval, sizeof optval); 2077 if (error) 2078 break; 2079 2080 INP_WLOCK(inp); 2081 switch (optval) { 2082 case IPV6_PORTRANGE_DEFAULT: 2083 inp->inp_flags &= ~(INP_LOWPORT); 2084 inp->inp_flags &= ~(INP_HIGHPORT); 2085 break; 2086 2087 case IPV6_PORTRANGE_HIGH: 2088 inp->inp_flags &= ~(INP_LOWPORT); 2089 inp->inp_flags |= INP_HIGHPORT; 2090 break; 2091 2092 case IPV6_PORTRANGE_LOW: 2093 inp->inp_flags &= ~(INP_HIGHPORT); 2094 inp->inp_flags |= INP_LOWPORT; 2095 break; 2096 2097 default: 2098 error = EINVAL; 2099 break; 2100 } 2101 INP_WUNLOCK(inp); 2102 break; 2103 2104 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2105 case IPV6_IPSEC_POLICY: 2106 if (IPSEC_ENABLED(ipv6)) { 2107 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2108 break; 2109 } 2110 /* FALLTHROUGH */ 2111 #endif /* IPSEC */ 2112 2113 default: 2114 error = ENOPROTOOPT; 2115 break; 2116 } 2117 break; 2118 2119 case SOPT_GET: 2120 switch (optname) { 2121 case IPV6_2292PKTOPTIONS: 2122 #ifdef IPV6_PKTOPTIONS 2123 case IPV6_PKTOPTIONS: 2124 #endif 2125 /* 2126 * RFC3542 (effectively) deprecated the 2127 * semantics of the 2292-style pktoptions. 2128 * Since it was not reliable in nature (i.e., 2129 * applications had to expect the lack of some 2130 * information after all), it would make sense 2131 * to simplify this part by always returning 2132 * empty data. 2133 */ 2134 sopt->sopt_valsize = 0; 2135 break; 2136 2137 case IPV6_RECVHOPOPTS: 2138 case IPV6_RECVDSTOPTS: 2139 case IPV6_RECVRTHDRDSTOPTS: 2140 case IPV6_UNICAST_HOPS: 2141 case IPV6_RECVPKTINFO: 2142 case IPV6_RECVHOPLIMIT: 2143 case IPV6_RECVRTHDR: 2144 case IPV6_RECVPATHMTU: 2145 2146 case IPV6_V6ONLY: 2147 case IPV6_PORTRANGE: 2148 case IPV6_RECVTCLASS: 2149 case IPV6_AUTOFLOWLABEL: 2150 case IPV6_BINDANY: 2151 case IPV6_FLOWID: 2152 case IPV6_FLOWTYPE: 2153 case IPV6_RECVFLOWID: 2154 #ifdef RSS 2155 case IPV6_RSSBUCKETID: 2156 case IPV6_RECVRSSBUCKETID: 2157 #endif 2158 case IPV6_VLAN_PCP: 2159 switch (optname) { 2160 case IPV6_RECVHOPOPTS: 2161 optval = OPTBIT(IN6P_HOPOPTS); 2162 break; 2163 2164 case IPV6_RECVDSTOPTS: 2165 optval = OPTBIT(IN6P_DSTOPTS); 2166 break; 2167 2168 case IPV6_RECVRTHDRDSTOPTS: 2169 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 2170 break; 2171 2172 case IPV6_UNICAST_HOPS: 2173 optval = inp->in6p_hops; 2174 break; 2175 2176 case IPV6_RECVPKTINFO: 2177 optval = OPTBIT(IN6P_PKTINFO); 2178 break; 2179 2180 case IPV6_RECVHOPLIMIT: 2181 optval = OPTBIT(IN6P_HOPLIMIT); 2182 break; 2183 2184 case IPV6_RECVRTHDR: 2185 optval = OPTBIT(IN6P_RTHDR); 2186 break; 2187 2188 case IPV6_RECVPATHMTU: 2189 optval = OPTBIT(IN6P_MTU); 2190 break; 2191 2192 case IPV6_V6ONLY: 2193 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2194 break; 2195 2196 case IPV6_PORTRANGE: 2197 { 2198 int flags; 2199 flags = inp->inp_flags; 2200 if (flags & INP_HIGHPORT) 2201 optval = IPV6_PORTRANGE_HIGH; 2202 else if (flags & INP_LOWPORT) 2203 optval = IPV6_PORTRANGE_LOW; 2204 else 2205 optval = 0; 2206 break; 2207 } 2208 case IPV6_RECVTCLASS: 2209 optval = OPTBIT(IN6P_TCLASS); 2210 break; 2211 2212 case IPV6_AUTOFLOWLABEL: 2213 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2214 break; 2215 2216 case IPV6_ORIGDSTADDR: 2217 optval = OPTBIT2(INP_ORIGDSTADDR); 2218 break; 2219 2220 case IPV6_BINDANY: 2221 optval = OPTBIT(INP_BINDANY); 2222 break; 2223 2224 case IPV6_FLOWID: 2225 optval = inp->inp_flowid; 2226 break; 2227 2228 case IPV6_FLOWTYPE: 2229 optval = inp->inp_flowtype; 2230 break; 2231 2232 case IPV6_RECVFLOWID: 2233 optval = OPTBIT2(INP_RECVFLOWID); 2234 break; 2235 #ifdef RSS 2236 case IPV6_RSSBUCKETID: 2237 retval = 2238 rss_hash2bucket(inp->inp_flowid, 2239 inp->inp_flowtype, 2240 &rss_bucket); 2241 if (retval == 0) 2242 optval = rss_bucket; 2243 else 2244 error = EINVAL; 2245 break; 2246 2247 case IPV6_RECVRSSBUCKETID: 2248 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2249 break; 2250 #endif 2251 2252 2253 case IPV6_VLAN_PCP: 2254 if (OPTBIT2(INP_2PCP_SET)) { 2255 optval = (inp->inp_flags2 & 2256 INP_2PCP_MASK) >> 2257 INP_2PCP_SHIFT; 2258 } else { 2259 optval = -1; 2260 } 2261 break; 2262 } 2263 2264 if (error) 2265 break; 2266 error = sooptcopyout(sopt, &optval, 2267 sizeof optval); 2268 break; 2269 2270 case IPV6_PATHMTU: 2271 { 2272 u_long pmtu = 0; 2273 struct ip6_mtuinfo mtuinfo; 2274 struct in6_addr addr; 2275 2276 if (!(so->so_state & SS_ISCONNECTED)) 2277 return (ENOTCONN); 2278 /* 2279 * XXX: we dot not consider the case of source 2280 * routing, or optional information to specify 2281 * the outgoing interface. 2282 * Copy faddr out of inp to avoid holding lock 2283 * on inp during route lookup. 2284 */ 2285 INP_RLOCK(inp); 2286 bcopy(&inp->in6p_faddr, &addr, sizeof(addr)); 2287 INP_RUNLOCK(inp); 2288 error = ip6_getpmtu_ctl(so->so_fibnum, 2289 &addr, &pmtu); 2290 if (error) 2291 break; 2292 if (pmtu > IPV6_MAXPACKET) 2293 pmtu = IPV6_MAXPACKET; 2294 2295 bzero(&mtuinfo, sizeof(mtuinfo)); 2296 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2297 optdata = (void *)&mtuinfo; 2298 optdatalen = sizeof(mtuinfo); 2299 error = sooptcopyout(sopt, optdata, 2300 optdatalen); 2301 break; 2302 } 2303 2304 case IPV6_2292PKTINFO: 2305 case IPV6_2292HOPLIMIT: 2306 case IPV6_2292HOPOPTS: 2307 case IPV6_2292RTHDR: 2308 case IPV6_2292DSTOPTS: 2309 switch (optname) { 2310 case IPV6_2292PKTINFO: 2311 optval = OPTBIT(IN6P_PKTINFO); 2312 break; 2313 case IPV6_2292HOPLIMIT: 2314 optval = OPTBIT(IN6P_HOPLIMIT); 2315 break; 2316 case IPV6_2292HOPOPTS: 2317 optval = OPTBIT(IN6P_HOPOPTS); 2318 break; 2319 case IPV6_2292RTHDR: 2320 optval = OPTBIT(IN6P_RTHDR); 2321 break; 2322 case IPV6_2292DSTOPTS: 2323 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2324 break; 2325 } 2326 error = sooptcopyout(sopt, &optval, 2327 sizeof optval); 2328 break; 2329 case IPV6_PKTINFO: 2330 case IPV6_HOPOPTS: 2331 case IPV6_RTHDR: 2332 case IPV6_DSTOPTS: 2333 case IPV6_RTHDRDSTOPTS: 2334 case IPV6_NEXTHOP: 2335 case IPV6_TCLASS: 2336 case IPV6_DONTFRAG: 2337 case IPV6_USE_MIN_MTU: 2338 case IPV6_PREFER_TEMPADDR: 2339 error = ip6_getpcbopt(inp, optname, sopt); 2340 break; 2341 2342 case IPV6_MULTICAST_IF: 2343 case IPV6_MULTICAST_HOPS: 2344 case IPV6_MULTICAST_LOOP: 2345 case IPV6_MSFILTER: 2346 error = ip6_getmoptions(inp, sopt); 2347 break; 2348 2349 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2350 case IPV6_IPSEC_POLICY: 2351 if (IPSEC_ENABLED(ipv6)) { 2352 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2353 break; 2354 } 2355 /* FALLTHROUGH */ 2356 #endif /* IPSEC */ 2357 default: 2358 error = ENOPROTOOPT; 2359 break; 2360 } 2361 break; 2362 } 2363 } 2364 return (error); 2365 } 2366 2367 int 2368 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2369 { 2370 int error = 0, optval, optlen; 2371 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2372 struct inpcb *inp = sotoinpcb(so); 2373 int level, op, optname; 2374 2375 level = sopt->sopt_level; 2376 op = sopt->sopt_dir; 2377 optname = sopt->sopt_name; 2378 optlen = sopt->sopt_valsize; 2379 2380 if (level != IPPROTO_IPV6) { 2381 return (EINVAL); 2382 } 2383 2384 switch (optname) { 2385 case IPV6_CHECKSUM: 2386 /* 2387 * For ICMPv6 sockets, no modification allowed for checksum 2388 * offset, permit "no change" values to help existing apps. 2389 * 2390 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2391 * for an ICMPv6 socket will fail." 2392 * The current behavior does not meet RFC3542. 2393 */ 2394 switch (op) { 2395 case SOPT_SET: 2396 if (optlen != sizeof(int)) { 2397 error = EINVAL; 2398 break; 2399 } 2400 error = sooptcopyin(sopt, &optval, sizeof(optval), 2401 sizeof(optval)); 2402 if (error) 2403 break; 2404 if (optval < -1 || (optval % 2) != 0) { 2405 /* 2406 * The API assumes non-negative even offset 2407 * values or -1 as a special value. 2408 */ 2409 error = EINVAL; 2410 } else if (inp->inp_ip_p == IPPROTO_ICMPV6) { 2411 if (optval != icmp6off) 2412 error = EINVAL; 2413 } else 2414 inp->in6p_cksum = optval; 2415 break; 2416 2417 case SOPT_GET: 2418 if (inp->inp_ip_p == IPPROTO_ICMPV6) 2419 optval = icmp6off; 2420 else 2421 optval = inp->in6p_cksum; 2422 2423 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2424 break; 2425 2426 default: 2427 error = EINVAL; 2428 break; 2429 } 2430 break; 2431 2432 default: 2433 error = ENOPROTOOPT; 2434 break; 2435 } 2436 2437 return (error); 2438 } 2439 2440 /* 2441 * Set up IP6 options in pcb for insertion in output packets or 2442 * specifying behavior of outgoing packets. 2443 */ 2444 static int 2445 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2446 struct socket *so, struct sockopt *sopt) 2447 { 2448 struct ip6_pktopts *opt = *pktopt; 2449 int error = 0; 2450 struct thread *td = sopt->sopt_td; 2451 struct epoch_tracker et; 2452 2453 /* turn off any old options. */ 2454 if (opt) { 2455 #ifdef DIAGNOSTIC 2456 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2457 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2458 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2459 printf("ip6_pcbopts: all specified options are cleared.\n"); 2460 #endif 2461 ip6_clearpktopts(opt, -1); 2462 } else { 2463 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 2464 if (opt == NULL) 2465 return (ENOMEM); 2466 } 2467 *pktopt = NULL; 2468 2469 if (!m || m->m_len == 0) { 2470 /* 2471 * Only turning off any previous options, regardless of 2472 * whether the opt is just created or given. 2473 */ 2474 free(opt, M_IP6OPT); 2475 return (0); 2476 } 2477 2478 /* set options specified by user. */ 2479 NET_EPOCH_ENTER(et); 2480 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2481 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2482 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2483 free(opt, M_IP6OPT); 2484 NET_EPOCH_EXIT(et); 2485 return (error); 2486 } 2487 NET_EPOCH_EXIT(et); 2488 *pktopt = opt; 2489 return (0); 2490 } 2491 2492 /* 2493 * initialize ip6_pktopts. beware that there are non-zero default values in 2494 * the struct. 2495 */ 2496 void 2497 ip6_initpktopts(struct ip6_pktopts *opt) 2498 { 2499 2500 bzero(opt, sizeof(*opt)); 2501 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2502 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2503 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2504 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2505 } 2506 2507 static int 2508 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2509 struct ucred *cred, int uproto) 2510 { 2511 struct epoch_tracker et; 2512 struct ip6_pktopts *opt; 2513 int ret; 2514 2515 if (*pktopt == NULL) { 2516 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2517 M_NOWAIT); 2518 if (*pktopt == NULL) 2519 return (ENOBUFS); 2520 ip6_initpktopts(*pktopt); 2521 } 2522 opt = *pktopt; 2523 2524 NET_EPOCH_ENTER(et); 2525 ret = ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto); 2526 NET_EPOCH_EXIT(et); 2527 2528 return (ret); 2529 } 2530 2531 #define GET_PKTOPT_VAR(field, lenexpr) do { \ 2532 if (pktopt && pktopt->field) { \ 2533 INP_RUNLOCK(inp); \ 2534 optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \ 2535 malloc_optdata = true; \ 2536 INP_RLOCK(inp); \ 2537 if (inp->inp_flags & INP_DROPPED) { \ 2538 INP_RUNLOCK(inp); \ 2539 free(optdata, M_TEMP); \ 2540 return (ECONNRESET); \ 2541 } \ 2542 pktopt = inp->in6p_outputopts; \ 2543 if (pktopt && pktopt->field) { \ 2544 optdatalen = min(lenexpr, sopt->sopt_valsize); \ 2545 bcopy(pktopt->field, optdata, optdatalen); \ 2546 } else { \ 2547 free(optdata, M_TEMP); \ 2548 optdata = NULL; \ 2549 malloc_optdata = false; \ 2550 } \ 2551 } \ 2552 } while(0) 2553 2554 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \ 2555 (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3) 2556 2557 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \ 2558 pktopt->field->sa_len) 2559 2560 static int 2561 ip6_getpcbopt(struct inpcb *inp, int optname, struct sockopt *sopt) 2562 { 2563 void *optdata = NULL; 2564 bool malloc_optdata = false; 2565 int optdatalen = 0; 2566 int error = 0; 2567 struct in6_pktinfo null_pktinfo; 2568 int deftclass = 0, on; 2569 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2570 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2571 struct ip6_pktopts *pktopt; 2572 2573 INP_RLOCK(inp); 2574 pktopt = inp->in6p_outputopts; 2575 2576 switch (optname) { 2577 case IPV6_PKTINFO: 2578 optdata = (void *)&null_pktinfo; 2579 if (pktopt && pktopt->ip6po_pktinfo) { 2580 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2581 sizeof(null_pktinfo)); 2582 in6_clearscope(&null_pktinfo.ipi6_addr); 2583 } else { 2584 /* XXX: we don't have to do this every time... */ 2585 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2586 } 2587 optdatalen = sizeof(struct in6_pktinfo); 2588 break; 2589 case IPV6_TCLASS: 2590 if (pktopt && pktopt->ip6po_tclass >= 0) 2591 deftclass = pktopt->ip6po_tclass; 2592 optdata = (void *)&deftclass; 2593 optdatalen = sizeof(int); 2594 break; 2595 case IPV6_HOPOPTS: 2596 GET_PKTOPT_EXT_HDR(ip6po_hbh); 2597 break; 2598 case IPV6_RTHDR: 2599 GET_PKTOPT_EXT_HDR(ip6po_rthdr); 2600 break; 2601 case IPV6_RTHDRDSTOPTS: 2602 GET_PKTOPT_EXT_HDR(ip6po_dest1); 2603 break; 2604 case IPV6_DSTOPTS: 2605 GET_PKTOPT_EXT_HDR(ip6po_dest2); 2606 break; 2607 case IPV6_NEXTHOP: 2608 GET_PKTOPT_SOCKADDR(ip6po_nexthop); 2609 break; 2610 case IPV6_USE_MIN_MTU: 2611 if (pktopt) 2612 defminmtu = pktopt->ip6po_minmtu; 2613 optdata = (void *)&defminmtu; 2614 optdatalen = sizeof(int); 2615 break; 2616 case IPV6_DONTFRAG: 2617 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2618 on = 1; 2619 else 2620 on = 0; 2621 optdata = (void *)&on; 2622 optdatalen = sizeof(on); 2623 break; 2624 case IPV6_PREFER_TEMPADDR: 2625 if (pktopt) 2626 defpreftemp = pktopt->ip6po_prefer_tempaddr; 2627 optdata = (void *)&defpreftemp; 2628 optdatalen = sizeof(int); 2629 break; 2630 default: /* should not happen */ 2631 #ifdef DIAGNOSTIC 2632 panic("ip6_getpcbopt: unexpected option\n"); 2633 #endif 2634 INP_RUNLOCK(inp); 2635 return (ENOPROTOOPT); 2636 } 2637 INP_RUNLOCK(inp); 2638 2639 error = sooptcopyout(sopt, optdata, optdatalen); 2640 if (malloc_optdata) 2641 free(optdata, M_TEMP); 2642 2643 return (error); 2644 } 2645 2646 void 2647 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2648 { 2649 if (pktopt == NULL) 2650 return; 2651 2652 if (optname == -1 || optname == IPV6_PKTINFO) { 2653 if (pktopt->ip6po_pktinfo) 2654 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2655 pktopt->ip6po_pktinfo = NULL; 2656 } 2657 if (optname == -1 || optname == IPV6_HOPLIMIT) { 2658 pktopt->ip6po_hlim = -1; 2659 pktopt->ip6po_valid &= ~IP6PO_VALID_HLIM; 2660 } 2661 if (optname == -1 || optname == IPV6_TCLASS) { 2662 pktopt->ip6po_tclass = -1; 2663 pktopt->ip6po_valid &= ~IP6PO_VALID_TC; 2664 } 2665 if (optname == -1 || optname == IPV6_NEXTHOP) { 2666 if (pktopt->ip6po_nextroute.ro_nh) { 2667 NH_FREE(pktopt->ip6po_nextroute.ro_nh); 2668 pktopt->ip6po_nextroute.ro_nh = NULL; 2669 } 2670 if (pktopt->ip6po_nexthop) 2671 free(pktopt->ip6po_nexthop, M_IP6OPT); 2672 pktopt->ip6po_nexthop = NULL; 2673 pktopt->ip6po_valid &= ~IP6PO_VALID_NHINFO; 2674 } 2675 if (optname == -1 || optname == IPV6_HOPOPTS) { 2676 if (pktopt->ip6po_hbh) 2677 free(pktopt->ip6po_hbh, M_IP6OPT); 2678 pktopt->ip6po_hbh = NULL; 2679 pktopt->ip6po_valid &= ~IP6PO_VALID_HBH; 2680 } 2681 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2682 if (pktopt->ip6po_dest1) 2683 free(pktopt->ip6po_dest1, M_IP6OPT); 2684 pktopt->ip6po_dest1 = NULL; 2685 pktopt->ip6po_valid &= ~IP6PO_VALID_DEST1; 2686 } 2687 if (optname == -1 || optname == IPV6_RTHDR) { 2688 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2689 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2690 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2691 if (pktopt->ip6po_route.ro_nh) { 2692 NH_FREE(pktopt->ip6po_route.ro_nh); 2693 pktopt->ip6po_route.ro_nh = NULL; 2694 } 2695 pktopt->ip6po_valid &= ~IP6PO_VALID_RHINFO; 2696 } 2697 if (optname == -1 || optname == IPV6_DSTOPTS) { 2698 if (pktopt->ip6po_dest2) 2699 free(pktopt->ip6po_dest2, M_IP6OPT); 2700 pktopt->ip6po_dest2 = NULL; 2701 pktopt->ip6po_valid &= ~IP6PO_VALID_DEST2; 2702 } 2703 } 2704 2705 #define PKTOPT_EXTHDRCPY(type) \ 2706 do {\ 2707 if (src->type) {\ 2708 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2709 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2710 if (dst->type == NULL)\ 2711 goto bad;\ 2712 bcopy(src->type, dst->type, hlen);\ 2713 }\ 2714 } while (/*CONSTCOND*/ 0) 2715 2716 static int 2717 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2718 { 2719 if (dst == NULL || src == NULL) { 2720 printf("ip6_clearpktopts: invalid argument\n"); 2721 return (EINVAL); 2722 } 2723 2724 dst->ip6po_hlim = src->ip6po_hlim; 2725 dst->ip6po_tclass = src->ip6po_tclass; 2726 dst->ip6po_flags = src->ip6po_flags; 2727 dst->ip6po_minmtu = src->ip6po_minmtu; 2728 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2729 if (src->ip6po_pktinfo) { 2730 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2731 M_IP6OPT, canwait); 2732 if (dst->ip6po_pktinfo == NULL) 2733 goto bad; 2734 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2735 } 2736 if (src->ip6po_nexthop) { 2737 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2738 M_IP6OPT, canwait); 2739 if (dst->ip6po_nexthop == NULL) 2740 goto bad; 2741 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2742 src->ip6po_nexthop->sa_len); 2743 } 2744 PKTOPT_EXTHDRCPY(ip6po_hbh); 2745 PKTOPT_EXTHDRCPY(ip6po_dest1); 2746 PKTOPT_EXTHDRCPY(ip6po_dest2); 2747 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2748 dst->ip6po_valid = src->ip6po_valid; 2749 return (0); 2750 2751 bad: 2752 ip6_clearpktopts(dst, -1); 2753 return (ENOBUFS); 2754 } 2755 #undef PKTOPT_EXTHDRCPY 2756 2757 struct ip6_pktopts * 2758 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2759 { 2760 int error; 2761 struct ip6_pktopts *dst; 2762 2763 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2764 if (dst == NULL) 2765 return (NULL); 2766 ip6_initpktopts(dst); 2767 2768 if ((error = copypktopts(dst, src, canwait)) != 0) { 2769 free(dst, M_IP6OPT); 2770 return (NULL); 2771 } 2772 2773 return (dst); 2774 } 2775 2776 void 2777 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2778 { 2779 if (pktopt == NULL) 2780 return; 2781 2782 ip6_clearpktopts(pktopt, -1); 2783 2784 free(pktopt, M_IP6OPT); 2785 } 2786 2787 /* 2788 * Set IPv6 outgoing packet options based on advanced API. 2789 */ 2790 int 2791 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2792 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2793 { 2794 struct cmsghdr *cm = NULL; 2795 2796 if (control == NULL || opt == NULL) 2797 return (EINVAL); 2798 2799 /* 2800 * ip6_setpktopt can call ifnet_byindex(), so it's imperative that we 2801 * are in the network epoch here. 2802 */ 2803 NET_EPOCH_ASSERT(); 2804 2805 ip6_initpktopts(opt); 2806 if (stickyopt) { 2807 int error; 2808 2809 /* 2810 * If stickyopt is provided, make a local copy of the options 2811 * for this particular packet, then override them by ancillary 2812 * objects. 2813 * XXX: copypktopts() does not copy the cached route to a next 2814 * hop (if any). This is not very good in terms of efficiency, 2815 * but we can allow this since this option should be rarely 2816 * used. 2817 */ 2818 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2819 return (error); 2820 } 2821 2822 /* 2823 * XXX: Currently, we assume all the optional information is stored 2824 * in a single mbuf. 2825 */ 2826 if (control->m_next) 2827 return (EINVAL); 2828 2829 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2830 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2831 int error; 2832 2833 if (control->m_len < CMSG_LEN(0)) 2834 return (EINVAL); 2835 2836 cm = mtod(control, struct cmsghdr *); 2837 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2838 return (EINVAL); 2839 if (cm->cmsg_level != IPPROTO_IPV6) 2840 continue; 2841 2842 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2843 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2844 if (error) 2845 return (error); 2846 } 2847 2848 return (0); 2849 } 2850 2851 /* 2852 * Set a particular packet option, as a sticky option or an ancillary data 2853 * item. "len" can be 0 only when it's a sticky option. 2854 * We have 4 cases of combination of "sticky" and "cmsg": 2855 * "sticky=0, cmsg=0": impossible 2856 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2857 * "sticky=1, cmsg=0": RFC3542 socket option 2858 * "sticky=1, cmsg=1": RFC2292 socket option 2859 */ 2860 static int 2861 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2862 struct ucred *cred, int sticky, int cmsg, int uproto) 2863 { 2864 int minmtupolicy, preftemp; 2865 int error; 2866 2867 NET_EPOCH_ASSERT(); 2868 2869 if (!sticky && !cmsg) { 2870 #ifdef DIAGNOSTIC 2871 printf("ip6_setpktopt: impossible case\n"); 2872 #endif 2873 return (EINVAL); 2874 } 2875 2876 /* 2877 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2878 * not be specified in the context of RFC3542. Conversely, 2879 * RFC3542 types should not be specified in the context of RFC2292. 2880 */ 2881 if (!cmsg) { 2882 switch (optname) { 2883 case IPV6_2292PKTINFO: 2884 case IPV6_2292HOPLIMIT: 2885 case IPV6_2292NEXTHOP: 2886 case IPV6_2292HOPOPTS: 2887 case IPV6_2292DSTOPTS: 2888 case IPV6_2292RTHDR: 2889 case IPV6_2292PKTOPTIONS: 2890 return (ENOPROTOOPT); 2891 } 2892 } 2893 if (sticky && cmsg) { 2894 switch (optname) { 2895 case IPV6_PKTINFO: 2896 case IPV6_HOPLIMIT: 2897 case IPV6_NEXTHOP: 2898 case IPV6_HOPOPTS: 2899 case IPV6_DSTOPTS: 2900 case IPV6_RTHDRDSTOPTS: 2901 case IPV6_RTHDR: 2902 case IPV6_USE_MIN_MTU: 2903 case IPV6_DONTFRAG: 2904 case IPV6_TCLASS: 2905 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2906 return (ENOPROTOOPT); 2907 } 2908 } 2909 2910 switch (optname) { 2911 case IPV6_2292PKTINFO: 2912 case IPV6_PKTINFO: 2913 { 2914 struct ifnet *ifp = NULL; 2915 struct in6_pktinfo *pktinfo; 2916 2917 if (len != sizeof(struct in6_pktinfo)) 2918 return (EINVAL); 2919 2920 pktinfo = (struct in6_pktinfo *)buf; 2921 2922 /* 2923 * An application can clear any sticky IPV6_PKTINFO option by 2924 * doing a "regular" setsockopt with ipi6_addr being 2925 * in6addr_any and ipi6_ifindex being zero. 2926 * [RFC 3542, Section 6] 2927 */ 2928 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2929 pktinfo->ipi6_ifindex == 0 && 2930 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2931 ip6_clearpktopts(opt, optname); 2932 break; 2933 } 2934 2935 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2936 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2937 return (EINVAL); 2938 } 2939 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2940 return (EINVAL); 2941 /* validate the interface index if specified. */ 2942 if (pktinfo->ipi6_ifindex) { 2943 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2944 if (ifp == NULL) 2945 return (ENXIO); 2946 } 2947 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2948 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2949 return (ENETDOWN); 2950 2951 if (ifp != NULL && 2952 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2953 struct in6_ifaddr *ia; 2954 2955 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2956 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2957 if (ia == NULL) 2958 return (EADDRNOTAVAIL); 2959 ifa_free(&ia->ia_ifa); 2960 } 2961 /* 2962 * We store the address anyway, and let in6_selectsrc() 2963 * validate the specified address. This is because ipi6_addr 2964 * may not have enough information about its scope zone, and 2965 * we may need additional information (such as outgoing 2966 * interface or the scope zone of a destination address) to 2967 * disambiguate the scope. 2968 * XXX: the delay of the validation may confuse the 2969 * application when it is used as a sticky option. 2970 */ 2971 if (opt->ip6po_pktinfo == NULL) { 2972 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2973 M_IP6OPT, M_NOWAIT); 2974 if (opt->ip6po_pktinfo == NULL) 2975 return (ENOBUFS); 2976 } 2977 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2978 opt->ip6po_valid |= IP6PO_VALID_PKTINFO; 2979 break; 2980 } 2981 2982 case IPV6_2292HOPLIMIT: 2983 case IPV6_HOPLIMIT: 2984 { 2985 int *hlimp; 2986 2987 /* 2988 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2989 * to simplify the ordering among hoplimit options. 2990 */ 2991 if (optname == IPV6_HOPLIMIT && sticky) 2992 return (ENOPROTOOPT); 2993 2994 if (len != sizeof(int)) 2995 return (EINVAL); 2996 hlimp = (int *)buf; 2997 if (*hlimp < -1 || *hlimp > 255) 2998 return (EINVAL); 2999 3000 opt->ip6po_hlim = *hlimp; 3001 opt->ip6po_valid |= IP6PO_VALID_HLIM; 3002 break; 3003 } 3004 3005 case IPV6_TCLASS: 3006 { 3007 int tclass; 3008 3009 if (len != sizeof(int)) 3010 return (EINVAL); 3011 tclass = *(int *)buf; 3012 if (tclass < -1 || tclass > 255) 3013 return (EINVAL); 3014 3015 opt->ip6po_tclass = tclass; 3016 opt->ip6po_valid |= IP6PO_VALID_TC; 3017 break; 3018 } 3019 3020 case IPV6_2292NEXTHOP: 3021 case IPV6_NEXTHOP: 3022 if (cred != NULL) { 3023 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3024 if (error) 3025 return (error); 3026 } 3027 3028 if (len == 0) { /* just remove the option */ 3029 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3030 break; 3031 } 3032 3033 /* check if cmsg_len is large enough for sa_len */ 3034 if (len < sizeof(struct sockaddr) || len < *buf) 3035 return (EINVAL); 3036 3037 switch (((struct sockaddr *)buf)->sa_family) { 3038 case AF_INET6: 3039 { 3040 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3041 int error; 3042 3043 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3044 return (EINVAL); 3045 3046 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3047 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3048 return (EINVAL); 3049 } 3050 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 3051 != 0) { 3052 return (error); 3053 } 3054 break; 3055 } 3056 case AF_LINK: /* should eventually be supported */ 3057 default: 3058 return (EAFNOSUPPORT); 3059 } 3060 3061 /* turn off the previous option, then set the new option. */ 3062 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3063 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3064 if (opt->ip6po_nexthop == NULL) 3065 return (ENOBUFS); 3066 bcopy(buf, opt->ip6po_nexthop, *buf); 3067 opt->ip6po_valid |= IP6PO_VALID_NHINFO; 3068 break; 3069 3070 case IPV6_2292HOPOPTS: 3071 case IPV6_HOPOPTS: 3072 { 3073 struct ip6_hbh *hbh; 3074 int hbhlen; 3075 3076 /* 3077 * XXX: We don't allow a non-privileged user to set ANY HbH 3078 * options, since per-option restriction has too much 3079 * overhead. 3080 */ 3081 if (cred != NULL) { 3082 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3083 if (error) 3084 return (error); 3085 } 3086 3087 if (len == 0) { 3088 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3089 break; /* just remove the option */ 3090 } 3091 3092 /* message length validation */ 3093 if (len < sizeof(struct ip6_hbh)) 3094 return (EINVAL); 3095 hbh = (struct ip6_hbh *)buf; 3096 hbhlen = (hbh->ip6h_len + 1) << 3; 3097 if (len != hbhlen) 3098 return (EINVAL); 3099 3100 /* turn off the previous option, then set the new option. */ 3101 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3102 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3103 if (opt->ip6po_hbh == NULL) 3104 return (ENOBUFS); 3105 bcopy(hbh, opt->ip6po_hbh, hbhlen); 3106 opt->ip6po_valid |= IP6PO_VALID_HBH; 3107 3108 break; 3109 } 3110 3111 case IPV6_2292DSTOPTS: 3112 case IPV6_DSTOPTS: 3113 case IPV6_RTHDRDSTOPTS: 3114 { 3115 struct ip6_dest *dest, **newdest = NULL; 3116 int destlen; 3117 3118 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 3119 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3120 if (error) 3121 return (error); 3122 } 3123 3124 if (len == 0) { 3125 ip6_clearpktopts(opt, optname); 3126 break; /* just remove the option */ 3127 } 3128 3129 /* message length validation */ 3130 if (len < sizeof(struct ip6_dest)) 3131 return (EINVAL); 3132 dest = (struct ip6_dest *)buf; 3133 destlen = (dest->ip6d_len + 1) << 3; 3134 if (len != destlen) 3135 return (EINVAL); 3136 3137 /* 3138 * Determine the position that the destination options header 3139 * should be inserted; before or after the routing header. 3140 */ 3141 switch (optname) { 3142 case IPV6_2292DSTOPTS: 3143 /* 3144 * The old advacned API is ambiguous on this point. 3145 * Our approach is to determine the position based 3146 * according to the existence of a routing header. 3147 * Note, however, that this depends on the order of the 3148 * extension headers in the ancillary data; the 1st 3149 * part of the destination options header must appear 3150 * before the routing header in the ancillary data, 3151 * too. 3152 * RFC3542 solved the ambiguity by introducing 3153 * separate ancillary data or option types. 3154 */ 3155 if (opt->ip6po_rthdr == NULL) 3156 newdest = &opt->ip6po_dest1; 3157 else 3158 newdest = &opt->ip6po_dest2; 3159 break; 3160 case IPV6_RTHDRDSTOPTS: 3161 newdest = &opt->ip6po_dest1; 3162 break; 3163 case IPV6_DSTOPTS: 3164 newdest = &opt->ip6po_dest2; 3165 break; 3166 } 3167 3168 /* turn off the previous option, then set the new option. */ 3169 ip6_clearpktopts(opt, optname); 3170 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3171 if (*newdest == NULL) 3172 return (ENOBUFS); 3173 bcopy(dest, *newdest, destlen); 3174 if (newdest == &opt->ip6po_dest1) 3175 opt->ip6po_valid |= IP6PO_VALID_DEST1; 3176 else 3177 opt->ip6po_valid |= IP6PO_VALID_DEST2; 3178 3179 break; 3180 } 3181 3182 case IPV6_2292RTHDR: 3183 case IPV6_RTHDR: 3184 { 3185 struct ip6_rthdr *rth; 3186 int rthlen; 3187 3188 if (len == 0) { 3189 ip6_clearpktopts(opt, IPV6_RTHDR); 3190 break; /* just remove the option */ 3191 } 3192 3193 /* message length validation */ 3194 if (len < sizeof(struct ip6_rthdr)) 3195 return (EINVAL); 3196 rth = (struct ip6_rthdr *)buf; 3197 rthlen = (rth->ip6r_len + 1) << 3; 3198 if (len != rthlen) 3199 return (EINVAL); 3200 3201 switch (rth->ip6r_type) { 3202 case IPV6_RTHDR_TYPE_0: 3203 if (rth->ip6r_len == 0) /* must contain one addr */ 3204 return (EINVAL); 3205 if (rth->ip6r_len % 2) /* length must be even */ 3206 return (EINVAL); 3207 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3208 return (EINVAL); 3209 break; 3210 default: 3211 return (EINVAL); /* not supported */ 3212 } 3213 3214 /* turn off the previous option */ 3215 ip6_clearpktopts(opt, IPV6_RTHDR); 3216 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3217 if (opt->ip6po_rthdr == NULL) 3218 return (ENOBUFS); 3219 bcopy(rth, opt->ip6po_rthdr, rthlen); 3220 opt->ip6po_valid |= IP6PO_VALID_RHINFO; 3221 3222 break; 3223 } 3224 3225 case IPV6_USE_MIN_MTU: 3226 if (len != sizeof(int)) 3227 return (EINVAL); 3228 minmtupolicy = *(int *)buf; 3229 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3230 minmtupolicy != IP6PO_MINMTU_DISABLE && 3231 minmtupolicy != IP6PO_MINMTU_ALL) { 3232 return (EINVAL); 3233 } 3234 opt->ip6po_minmtu = minmtupolicy; 3235 break; 3236 3237 case IPV6_DONTFRAG: 3238 if (len != sizeof(int)) 3239 return (EINVAL); 3240 3241 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3242 /* 3243 * we ignore this option for TCP sockets. 3244 * (RFC3542 leaves this case unspecified.) 3245 */ 3246 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3247 } else 3248 opt->ip6po_flags |= IP6PO_DONTFRAG; 3249 break; 3250 3251 case IPV6_PREFER_TEMPADDR: 3252 if (len != sizeof(int)) 3253 return (EINVAL); 3254 preftemp = *(int *)buf; 3255 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3256 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3257 preftemp != IP6PO_TEMPADDR_PREFER) { 3258 return (EINVAL); 3259 } 3260 opt->ip6po_prefer_tempaddr = preftemp; 3261 break; 3262 3263 default: 3264 return (ENOPROTOOPT); 3265 } /* end of switch */ 3266 3267 return (0); 3268 } 3269 3270 /* 3271 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3272 * packet to the input queue of a specified interface. Note that this 3273 * calls the output routine of the loopback "driver", but with an interface 3274 * pointer that might NOT be &loif -- easier than replicating that code here. 3275 */ 3276 void 3277 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3278 { 3279 struct mbuf *copym; 3280 struct ip6_hdr *ip6; 3281 3282 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3283 if (copym == NULL) 3284 return; 3285 3286 /* 3287 * Make sure to deep-copy IPv6 header portion in case the data 3288 * is in an mbuf cluster, so that we can safely override the IPv6 3289 * header portion later. 3290 */ 3291 if (!M_WRITABLE(copym) || 3292 copym->m_len < sizeof(struct ip6_hdr)) { 3293 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3294 if (copym == NULL) 3295 return; 3296 } 3297 ip6 = mtod(copym, struct ip6_hdr *); 3298 /* 3299 * clear embedded scope identifiers if necessary. 3300 * in6_clearscope will touch the addresses only when necessary. 3301 */ 3302 in6_clearscope(&ip6->ip6_src); 3303 in6_clearscope(&ip6->ip6_dst); 3304 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3305 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3306 CSUM_PSEUDO_HDR; 3307 copym->m_pkthdr.csum_data = 0xffff; 3308 } 3309 if_simloop(ifp, copym, AF_INET6, 0); 3310 } 3311 3312 /* 3313 * Chop IPv6 header off from the payload. 3314 */ 3315 static int 3316 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3317 { 3318 struct mbuf *mh; 3319 struct ip6_hdr *ip6; 3320 3321 ip6 = mtod(m, struct ip6_hdr *); 3322 if (m->m_len > sizeof(*ip6)) { 3323 mh = m_gethdr(M_NOWAIT, MT_DATA); 3324 if (mh == NULL) { 3325 m_freem(m); 3326 return ENOBUFS; 3327 } 3328 m_move_pkthdr(mh, m); 3329 M_ALIGN(mh, sizeof(*ip6)); 3330 m->m_len -= sizeof(*ip6); 3331 m->m_data += sizeof(*ip6); 3332 mh->m_next = m; 3333 m = mh; 3334 m->m_len = sizeof(*ip6); 3335 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3336 } 3337 exthdrs->ip6e_ip6 = m; 3338 return 0; 3339 } 3340 3341 /* 3342 * Compute IPv6 extension header length. 3343 */ 3344 int 3345 ip6_optlen(struct inpcb *inp) 3346 { 3347 int len; 3348 3349 if (!inp->in6p_outputopts) 3350 return 0; 3351 3352 len = 0; 3353 #define elen(x) \ 3354 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3355 3356 len += elen(inp->in6p_outputopts->ip6po_hbh); 3357 if (inp->in6p_outputopts->ip6po_rthdr) 3358 /* dest1 is valid with rthdr only */ 3359 len += elen(inp->in6p_outputopts->ip6po_dest1); 3360 len += elen(inp->in6p_outputopts->ip6po_rthdr); 3361 len += elen(inp->in6p_outputopts->ip6po_dest2); 3362 return len; 3363 #undef elen 3364 } 3365