1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 32 */ 33 34 /*- 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ipsec.h" 71 #include "opt_kern_tls.h" 72 #include "opt_ratelimit.h" 73 #include "opt_route.h" 74 #include "opt_rss.h" 75 #include "opt_sctp.h" 76 77 #include <sys/param.h> 78 #include <sys/kernel.h> 79 #include <sys/ktls.h> 80 #include <sys/malloc.h> 81 #include <sys/mbuf.h> 82 #include <sys/errno.h> 83 #include <sys/priv.h> 84 #include <sys/proc.h> 85 #include <sys/protosw.h> 86 #include <sys/socket.h> 87 #include <sys/socketvar.h> 88 #include <sys/syslog.h> 89 #include <sys/ucred.h> 90 91 #include <machine/in_cksum.h> 92 93 #include <net/if.h> 94 #include <net/if_var.h> 95 #include <net/if_llatbl.h> 96 #include <net/netisr.h> 97 #include <net/route.h> 98 #include <net/route/nhop.h> 99 #include <net/pfil.h> 100 #include <net/rss_config.h> 101 #include <net/vnet.h> 102 103 #include <netinet/in.h> 104 #include <netinet/in_var.h> 105 #include <netinet/ip_var.h> 106 #include <netinet6/in6_fib.h> 107 #include <netinet6/in6_var.h> 108 #include <netinet/ip6.h> 109 #include <netinet/icmp6.h> 110 #include <netinet6/ip6_var.h> 111 #include <netinet/in_pcb.h> 112 #include <netinet/tcp_var.h> 113 #include <netinet6/nd6.h> 114 #include <netinet6/in6_rss.h> 115 116 #include <netipsec/ipsec_support.h> 117 #ifdef SCTP 118 #include <netinet/sctp.h> 119 #include <netinet/sctp_crc32.h> 120 #endif 121 122 #include <netinet6/ip6protosw.h> 123 #include <netinet6/scope6_var.h> 124 125 extern int in6_mcast_loop; 126 127 struct ip6_exthdrs { 128 struct mbuf *ip6e_ip6; 129 struct mbuf *ip6e_hbh; 130 struct mbuf *ip6e_dest1; 131 struct mbuf *ip6e_rthdr; 132 struct mbuf *ip6e_dest2; 133 }; 134 135 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 136 137 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 138 struct ucred *, int); 139 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 140 struct socket *, struct sockopt *); 141 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *); 142 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 143 struct ucred *, int, int, int); 144 145 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 146 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 147 struct ip6_frag **); 148 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 149 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 150 static int ip6_getpmtu(struct route_in6 *, int, 151 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 152 u_int); 153 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 154 u_long *, int *, u_int); 155 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 156 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 157 158 159 /* 160 * Make an extension header from option data. hp is the source, 161 * mp is the destination, and _ol is the optlen. 162 */ 163 #define MAKE_EXTHDR(hp, mp, _ol) \ 164 do { \ 165 if (hp) { \ 166 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 167 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 168 ((eh)->ip6e_len + 1) << 3); \ 169 if (error) \ 170 goto freehdrs; \ 171 (_ol) += (*(mp))->m_len; \ 172 } \ 173 } while (/*CONSTCOND*/ 0) 174 175 /* 176 * Form a chain of extension headers. 177 * m is the extension header mbuf 178 * mp is the previous mbuf in the chain 179 * p is the next header 180 * i is the type of option. 181 */ 182 #define MAKE_CHAIN(m, mp, p, i)\ 183 do {\ 184 if (m) {\ 185 if (!hdrsplit) \ 186 panic("%s:%d: assumption failed: "\ 187 "hdr not split: hdrsplit %d exthdrs %p",\ 188 __func__, __LINE__, hdrsplit, &exthdrs);\ 189 *mtod((m), u_char *) = *(p);\ 190 *(p) = (i);\ 191 p = mtod((m), u_char *);\ 192 (m)->m_next = (mp)->m_next;\ 193 (mp)->m_next = (m);\ 194 (mp) = (m);\ 195 }\ 196 } while (/*CONSTCOND*/ 0) 197 198 void 199 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 200 { 201 u_short csum; 202 203 csum = in_cksum_skip(m, offset + plen, offset); 204 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 205 csum = 0xffff; 206 offset += m->m_pkthdr.csum_data; /* checksum offset */ 207 208 if (offset + sizeof(csum) > m->m_len) 209 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 210 else 211 *(u_short *)mtodo(m, offset) = csum; 212 } 213 214 static int 215 ip6_output_delayed_csum(struct mbuf *m, struct ifnet *ifp, int csum_flags, 216 int plen, int optlen, bool frag) 217 { 218 219 KASSERT((plen >= optlen), ("%s:%d: plen %d < optlen %d, m %p, ifp %p " 220 "csum_flags %#x frag %d\n", 221 __func__, __LINE__, plen, optlen, m, ifp, csum_flags, frag)); 222 223 if ((csum_flags & CSUM_DELAY_DATA_IPV6) || 224 #ifdef SCTP 225 (csum_flags & CSUM_SCTP_IPV6) || 226 #endif 227 (!frag && (ifp->if_capenable & IFCAP_NOMAP) == 0)) { 228 m = mb_unmapped_to_ext(m); 229 if (m == NULL) { 230 if (frag) 231 in6_ifstat_inc(ifp, ifs6_out_fragfail); 232 else 233 IP6STAT_INC(ip6s_odropped); 234 return (ENOBUFS); 235 } 236 if (csum_flags & CSUM_DELAY_DATA_IPV6) { 237 in6_delayed_cksum(m, plen - optlen, 238 sizeof(struct ip6_hdr) + optlen); 239 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 240 } 241 #ifdef SCTP 242 if (csum_flags & CSUM_SCTP_IPV6) { 243 sctp_delayed_cksum(m, sizeof(struct ip6_hdr) + optlen); 244 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 245 } 246 #endif 247 } 248 249 return (0); 250 } 251 252 int 253 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 254 int fraglen , uint32_t id) 255 { 256 struct mbuf *m, **mnext, *m_frgpart; 257 struct ip6_hdr *ip6, *mhip6; 258 struct ip6_frag *ip6f; 259 int off; 260 int error; 261 int tlen = m0->m_pkthdr.len; 262 263 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); 264 265 m = m0; 266 ip6 = mtod(m, struct ip6_hdr *); 267 mnext = &m->m_nextpkt; 268 269 for (off = hlen; off < tlen; off += fraglen) { 270 m = m_gethdr(M_NOWAIT, MT_DATA); 271 if (!m) { 272 IP6STAT_INC(ip6s_odropped); 273 return (ENOBUFS); 274 } 275 276 /* 277 * Make sure the complete packet header gets copied 278 * from the originating mbuf to the newly created 279 * mbuf. This also ensures that existing firewall 280 * classification(s), VLAN tags and so on get copied 281 * to the resulting fragmented packet(s): 282 */ 283 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 284 m_free(m); 285 IP6STAT_INC(ip6s_odropped); 286 return (ENOBUFS); 287 } 288 289 *mnext = m; 290 mnext = &m->m_nextpkt; 291 m->m_data += max_linkhdr; 292 mhip6 = mtod(m, struct ip6_hdr *); 293 *mhip6 = *ip6; 294 m->m_len = sizeof(*mhip6); 295 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 296 if (error) { 297 IP6STAT_INC(ip6s_odropped); 298 return (error); 299 } 300 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 301 if (off + fraglen >= tlen) 302 fraglen = tlen - off; 303 else 304 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 305 mhip6->ip6_plen = htons((u_short)(fraglen + hlen + 306 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 307 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { 308 IP6STAT_INC(ip6s_odropped); 309 return (ENOBUFS); 310 } 311 m_cat(m, m_frgpart); 312 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); 313 ip6f->ip6f_reserved = 0; 314 ip6f->ip6f_ident = id; 315 ip6f->ip6f_nxt = nextproto; 316 IP6STAT_INC(ip6s_ofragments); 317 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 318 } 319 320 return (0); 321 } 322 323 static int 324 ip6_output_send(struct inpcb *inp, struct ifnet *ifp, struct ifnet *origifp, 325 struct mbuf *m, struct sockaddr_in6 *dst, struct route_in6 *ro, 326 bool stamp_tag) 327 { 328 #ifdef KERN_TLS 329 struct ktls_session *tls = NULL; 330 #endif 331 struct m_snd_tag *mst; 332 int error; 333 334 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 335 mst = NULL; 336 337 #ifdef KERN_TLS 338 /* 339 * If this is an unencrypted TLS record, save a reference to 340 * the record. This local reference is used to call 341 * ktls_output_eagain after the mbuf has been freed (thus 342 * dropping the mbuf's reference) in if_output. 343 */ 344 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 345 tls = ktls_hold(m->m_next->m_epg_tls); 346 mst = tls->snd_tag; 347 348 /* 349 * If a TLS session doesn't have a valid tag, it must 350 * have had an earlier ifp mismatch, so drop this 351 * packet. 352 */ 353 if (mst == NULL) { 354 error = EAGAIN; 355 goto done; 356 } 357 /* 358 * Always stamp tags that include NIC ktls. 359 */ 360 stamp_tag = true; 361 } 362 #endif 363 #ifdef RATELIMIT 364 if (inp != NULL && mst == NULL) { 365 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 366 (inp->inp_snd_tag != NULL && 367 inp->inp_snd_tag->ifp != ifp)) 368 in_pcboutput_txrtlmt(inp, ifp, m); 369 370 if (inp->inp_snd_tag != NULL) 371 mst = inp->inp_snd_tag; 372 } 373 #endif 374 if (stamp_tag && mst != NULL) { 375 KASSERT(m->m_pkthdr.rcvif == NULL, 376 ("trying to add a send tag to a forwarded packet")); 377 if (mst->ifp != ifp) { 378 error = EAGAIN; 379 goto done; 380 } 381 382 /* stamp send tag on mbuf */ 383 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 384 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 385 } 386 387 error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro); 388 389 done: 390 /* Check for route change invalidating send tags. */ 391 #ifdef KERN_TLS 392 if (tls != NULL) { 393 if (error == EAGAIN) 394 error = ktls_output_eagain(inp, tls); 395 ktls_free(tls); 396 } 397 #endif 398 #ifdef RATELIMIT 399 if (error == EAGAIN) 400 in_pcboutput_eagain(inp); 401 #endif 402 return (error); 403 } 404 405 /* 406 * IP6 output. 407 * The packet in mbuf chain m contains a skeletal IP6 header (with pri, len, 408 * nxt, hlim, src, dst). 409 * This function may modify ver and hlim only. 410 * The mbuf chain containing the packet will be freed. 411 * The mbuf opt, if present, will not be freed. 412 * If route_in6 ro is present and has ro_nh initialized, route lookup would be 413 * skipped and ro->ro_nh would be used. If ro is present but ro->ro_nh is NULL, 414 * then result of route lookup is stored in ro->ro_nh. 415 * 416 * Type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and nd_ifinfo.linkmtu 417 * is uint32_t. So we use u_long to hold largest one, which is rt_mtu. 418 * 419 * ifpp - XXX: just for statistics 420 */ 421 /* 422 * XXX TODO: no flowid is assigned for outbound flows? 423 */ 424 int 425 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 426 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 427 struct ifnet **ifpp, struct inpcb *inp) 428 { 429 struct ip6_hdr *ip6; 430 struct ifnet *ifp, *origifp; 431 struct mbuf *m = m0; 432 struct mbuf *mprev; 433 struct route_in6 *ro_pmtu; 434 struct nhop_object *nh; 435 struct sockaddr_in6 *dst, sin6, src_sa, dst_sa; 436 struct in6_addr odst; 437 u_char *nexthdrp; 438 int tlen, len; 439 int error = 0; 440 struct in6_ifaddr *ia = NULL; 441 u_long mtu; 442 int alwaysfrag, dontfrag; 443 u_int32_t optlen, plen = 0, unfragpartlen; 444 struct ip6_exthdrs exthdrs; 445 struct in6_addr src0, dst0; 446 u_int32_t zone; 447 bool hdrsplit; 448 int sw_csum, tso; 449 int needfiblookup; 450 uint32_t fibnum; 451 struct m_tag *fwd_tag = NULL; 452 uint32_t id; 453 454 NET_EPOCH_ASSERT(); 455 456 if (inp != NULL) { 457 INP_LOCK_ASSERT(inp); 458 M_SETFIB(m, inp->inp_inc.inc_fibnum); 459 if ((flags & IP_NODEFAULTFLOWID) == 0) { 460 /* Unconditionally set flowid. */ 461 m->m_pkthdr.flowid = inp->inp_flowid; 462 M_HASHTYPE_SET(m, inp->inp_flowtype); 463 } 464 #ifdef NUMA 465 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 466 #endif 467 } 468 469 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 470 /* 471 * IPSec checking which handles several cases. 472 * FAST IPSEC: We re-injected the packet. 473 * XXX: need scope argument. 474 */ 475 if (IPSEC_ENABLED(ipv6)) { 476 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { 477 if (error == EINPROGRESS) 478 error = 0; 479 goto done; 480 } 481 } 482 #endif /* IPSEC */ 483 484 /* Source address validation. */ 485 ip6 = mtod(m, struct ip6_hdr *); 486 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 487 (flags & IPV6_UNSPECSRC) == 0) { 488 error = EOPNOTSUPP; 489 IP6STAT_INC(ip6s_badscope); 490 goto bad; 491 } 492 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 493 error = EOPNOTSUPP; 494 IP6STAT_INC(ip6s_badscope); 495 goto bad; 496 } 497 498 /* 499 * If we are given packet options to add extension headers prepare them. 500 * Calculate the total length of the extension header chain. 501 * Keep the length of the unfragmentable part for fragmentation. 502 */ 503 bzero(&exthdrs, sizeof(exthdrs)); 504 optlen = 0; 505 unfragpartlen = sizeof(struct ip6_hdr); 506 if (opt) { 507 /* Hop-by-Hop options header. */ 508 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh, optlen); 509 510 /* Destination options header (1st part). */ 511 if (opt->ip6po_rthdr) { 512 #ifndef RTHDR_SUPPORT_IMPLEMENTED 513 /* 514 * If there is a routing header, discard the packet 515 * right away here. RH0/1 are obsolete and we do not 516 * currently support RH2/3/4. 517 * People trying to use RH253/254 may want to disable 518 * this check. 519 * The moment we do support any routing header (again) 520 * this block should check the routing type more 521 * selectively. 522 */ 523 error = EINVAL; 524 goto bad; 525 #endif 526 527 /* 528 * Destination options header (1st part). 529 * This only makes sense with a routing header. 530 * See Section 9.2 of RFC 3542. 531 * Disabling this part just for MIP6 convenience is 532 * a bad idea. We need to think carefully about a 533 * way to make the advanced API coexist with MIP6 534 * options, which might automatically be inserted in 535 * the kernel. 536 */ 537 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1, 538 optlen); 539 } 540 /* Routing header. */ 541 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr, optlen); 542 543 unfragpartlen += optlen; 544 545 /* 546 * NOTE: we don't add AH/ESP length here (done in 547 * ip6_ipsec_output()). 548 */ 549 550 /* Destination options header (2nd part). */ 551 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2, optlen); 552 } 553 554 /* 555 * If there is at least one extension header, 556 * separate IP6 header from the payload. 557 */ 558 hdrsplit = false; 559 if (optlen) { 560 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 561 m = NULL; 562 goto freehdrs; 563 } 564 m = exthdrs.ip6e_ip6; 565 ip6 = mtod(m, struct ip6_hdr *); 566 hdrsplit = true; 567 } 568 569 /* Adjust mbuf packet header length. */ 570 m->m_pkthdr.len += optlen; 571 plen = m->m_pkthdr.len - sizeof(*ip6); 572 573 /* If this is a jumbo payload, insert a jumbo payload option. */ 574 if (plen > IPV6_MAXPACKET) { 575 if (!hdrsplit) { 576 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 577 m = NULL; 578 goto freehdrs; 579 } 580 m = exthdrs.ip6e_ip6; 581 ip6 = mtod(m, struct ip6_hdr *); 582 hdrsplit = true; 583 } 584 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 585 goto freehdrs; 586 ip6->ip6_plen = 0; 587 } else 588 ip6->ip6_plen = htons(plen); 589 nexthdrp = &ip6->ip6_nxt; 590 591 if (optlen) { 592 /* 593 * Concatenate headers and fill in next header fields. 594 * Here we have, on "m" 595 * IPv6 payload 596 * and we insert headers accordingly. 597 * Finally, we should be getting: 598 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]. 599 * 600 * During the header composing process "m" points to IPv6 601 * header. "mprev" points to an extension header prior to esp. 602 */ 603 mprev = m; 604 605 /* 606 * We treat dest2 specially. This makes IPsec processing 607 * much easier. The goal here is to make mprev point the 608 * mbuf prior to dest2. 609 * 610 * Result: IPv6 dest2 payload. 611 * m and mprev will point to IPv6 header. 612 */ 613 if (exthdrs.ip6e_dest2) { 614 if (!hdrsplit) 615 panic("%s:%d: assumption failed: " 616 "hdr not split: hdrsplit %d exthdrs %p", 617 __func__, __LINE__, hdrsplit, &exthdrs); 618 exthdrs.ip6e_dest2->m_next = m->m_next; 619 m->m_next = exthdrs.ip6e_dest2; 620 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 621 ip6->ip6_nxt = IPPROTO_DSTOPTS; 622 } 623 624 /* 625 * Result: IPv6 hbh dest1 rthdr dest2 payload. 626 * m will point to IPv6 header. mprev will point to the 627 * extension header prior to dest2 (rthdr in the above case). 628 */ 629 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 630 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 631 IPPROTO_DSTOPTS); 632 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 633 IPPROTO_ROUTING); 634 } 635 636 IP6STAT_INC(ip6s_localout); 637 638 /* Route packet. */ 639 ro_pmtu = ro; 640 if (opt && opt->ip6po_rthdr) 641 ro = &opt->ip6po_route; 642 if (ro != NULL) 643 dst = (struct sockaddr_in6 *)&ro->ro_dst; 644 else 645 dst = &sin6; 646 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 647 648 again: 649 /* 650 * If specified, try to fill in the traffic class field. 651 * Do not override if a non-zero value is already set. 652 * We check the diffserv field and the ECN field separately. 653 */ 654 if (opt && opt->ip6po_tclass >= 0) { 655 int mask = 0; 656 657 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 658 mask |= 0xfc; 659 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 660 mask |= 0x03; 661 if (mask != 0) 662 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 663 } 664 665 /* Fill in or override the hop limit field, if necessary. */ 666 if (opt && opt->ip6po_hlim != -1) 667 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 668 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 669 if (im6o != NULL) 670 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 671 else 672 ip6->ip6_hlim = V_ip6_defmcasthlim; 673 } 674 675 if (ro == NULL || ro->ro_nh == NULL) { 676 bzero(dst, sizeof(*dst)); 677 dst->sin6_family = AF_INET6; 678 dst->sin6_len = sizeof(*dst); 679 dst->sin6_addr = ip6->ip6_dst; 680 } 681 /* 682 * Validate route against routing table changes. 683 * Make sure that the address family is set in route. 684 */ 685 nh = NULL; 686 ifp = NULL; 687 mtu = 0; 688 if (ro != NULL) { 689 if (ro->ro_nh != NULL && inp != NULL) { 690 ro->ro_dst.sin6_family = AF_INET6; /* XXX KASSERT? */ 691 NH_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, 692 fibnum); 693 } 694 if (ro->ro_nh != NULL && fwd_tag == NULL && 695 (!NH_IS_VALID(ro->ro_nh) || 696 ro->ro_dst.sin6_family != AF_INET6 || 697 !IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst))) 698 RO_INVALIDATE_CACHE(ro); 699 700 if (ro->ro_nh != NULL && fwd_tag == NULL && 701 ro->ro_dst.sin6_family == AF_INET6 && 702 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 703 nh = ro->ro_nh; 704 ifp = nh->nh_ifp; 705 } else { 706 if (ro->ro_lle) 707 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 708 ro->ro_lle = NULL; 709 if (fwd_tag == NULL) { 710 bzero(&dst_sa, sizeof(dst_sa)); 711 dst_sa.sin6_family = AF_INET6; 712 dst_sa.sin6_len = sizeof(dst_sa); 713 dst_sa.sin6_addr = ip6->ip6_dst; 714 } 715 error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, 716 &nh, fibnum, m->m_pkthdr.flowid); 717 if (error != 0) { 718 IP6STAT_INC(ip6s_noroute); 719 if (ifp != NULL) 720 in6_ifstat_inc(ifp, ifs6_out_discard); 721 goto bad; 722 } 723 if (ifp != NULL) 724 mtu = ifp->if_mtu; 725 } 726 if (nh == NULL) { 727 /* 728 * If in6_selectroute() does not return a nexthop 729 * dst may not have been updated. 730 */ 731 *dst = dst_sa; /* XXX */ 732 } else { 733 if (nh->nh_flags & NHF_HOST) 734 mtu = nh->nh_mtu; 735 ia = (struct in6_ifaddr *)(nh->nh_ifa); 736 counter_u64_add(nh->nh_pksent, 1); 737 } 738 } else { 739 struct nhop_object *nh; 740 struct in6_addr kdst; 741 uint32_t scopeid; 742 743 if (fwd_tag == NULL) { 744 bzero(&dst_sa, sizeof(dst_sa)); 745 dst_sa.sin6_family = AF_INET6; 746 dst_sa.sin6_len = sizeof(dst_sa); 747 dst_sa.sin6_addr = ip6->ip6_dst; 748 } 749 750 if (IN6_IS_ADDR_MULTICAST(&dst_sa.sin6_addr) && 751 im6o != NULL && 752 (ifp = im6o->im6o_multicast_ifp) != NULL) { 753 /* We do not need a route lookup. */ 754 *dst = dst_sa; /* XXX */ 755 goto nonh6lookup; 756 } 757 758 in6_splitscope(&dst_sa.sin6_addr, &kdst, &scopeid); 759 760 if (IN6_IS_ADDR_MC_LINKLOCAL(&dst_sa.sin6_addr) || 761 IN6_IS_ADDR_MC_NODELOCAL(&dst_sa.sin6_addr)) { 762 if (scopeid > 0) { 763 ifp = in6_getlinkifnet(scopeid); 764 *dst = dst_sa; /* XXX */ 765 goto nonh6lookup; 766 } 767 } 768 769 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 770 if (nh == NULL) { 771 IP6STAT_INC(ip6s_noroute); 772 /* No ifp in6_ifstat_inc(ifp, ifs6_out_discard); */ 773 error = EHOSTUNREACH;; 774 goto bad; 775 } 776 777 ifp = nh->nh_ifp; 778 mtu = nh->nh_mtu; 779 ia = ifatoia6(nh->nh_ifa); 780 if (nh->nh_flags & NHF_GATEWAY) 781 dst->sin6_addr = nh->gw6_sa.sin6_addr; 782 nonh6lookup: 783 ; 784 } 785 786 /* Then nh (for unicast) and ifp must be non-NULL valid values. */ 787 if ((flags & IPV6_FORWARDING) == 0) { 788 /* XXX: the FORWARDING flag can be set for mrouting. */ 789 in6_ifstat_inc(ifp, ifs6_out_request); 790 } 791 792 /* Setup data structures for scope ID checks. */ 793 src0 = ip6->ip6_src; 794 bzero(&src_sa, sizeof(src_sa)); 795 src_sa.sin6_family = AF_INET6; 796 src_sa.sin6_len = sizeof(src_sa); 797 src_sa.sin6_addr = ip6->ip6_src; 798 799 dst0 = ip6->ip6_dst; 800 /* Re-initialize to be sure. */ 801 bzero(&dst_sa, sizeof(dst_sa)); 802 dst_sa.sin6_family = AF_INET6; 803 dst_sa.sin6_len = sizeof(dst_sa); 804 dst_sa.sin6_addr = ip6->ip6_dst; 805 806 /* Check for valid scope ID. */ 807 if (in6_setscope(&src0, ifp, &zone) == 0 && 808 sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id && 809 in6_setscope(&dst0, ifp, &zone) == 0 && 810 sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) { 811 /* 812 * The outgoing interface is in the zone of the source 813 * and destination addresses. 814 * 815 * Because the loopback interface cannot receive 816 * packets with a different scope ID than its own, 817 * there is a trick to pretend the outgoing packet 818 * was received by the real network interface, by 819 * setting "origifp" different from "ifp". This is 820 * only allowed when "ifp" is a loopback network 821 * interface. Refer to code in nd6_output_ifp() for 822 * more details. 823 */ 824 origifp = ifp; 825 826 /* 827 * We should use ia_ifp to support the case of sending 828 * packets to an address of our own. 829 */ 830 if (ia != NULL && ia->ia_ifp) 831 ifp = ia->ia_ifp; 832 833 } else if ((ifp->if_flags & IFF_LOOPBACK) == 0 || 834 sa6_recoverscope(&src_sa) != 0 || 835 sa6_recoverscope(&dst_sa) != 0 || 836 dst_sa.sin6_scope_id == 0 || 837 (src_sa.sin6_scope_id != 0 && 838 src_sa.sin6_scope_id != dst_sa.sin6_scope_id) || 839 (origifp = ifnet_byindex(dst_sa.sin6_scope_id)) == NULL) { 840 /* 841 * If the destination network interface is not a 842 * loopback interface, or the destination network 843 * address has no scope ID, or the source address has 844 * a scope ID set which is different from the 845 * destination address one, or there is no network 846 * interface representing this scope ID, the address 847 * pair is considered invalid. 848 */ 849 IP6STAT_INC(ip6s_badscope); 850 in6_ifstat_inc(ifp, ifs6_out_discard); 851 if (error == 0) 852 error = EHOSTUNREACH; /* XXX */ 853 goto bad; 854 } 855 /* All scope ID checks are successful. */ 856 857 if (nh && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 858 if (opt && opt->ip6po_nextroute.ro_nh) { 859 /* 860 * The nexthop is explicitly specified by the 861 * application. We assume the next hop is an IPv6 862 * address. 863 */ 864 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 865 } 866 else if ((nh->nh_flags & NHF_GATEWAY)) 867 dst = &nh->gw6_sa; 868 } 869 870 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 871 m->m_flags &= ~(M_BCAST | M_MCAST); /* Just in case. */ 872 } else { 873 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 874 in6_ifstat_inc(ifp, ifs6_out_mcast); 875 876 /* Confirm that the outgoing interface supports multicast. */ 877 if (!(ifp->if_flags & IFF_MULTICAST)) { 878 IP6STAT_INC(ip6s_noroute); 879 in6_ifstat_inc(ifp, ifs6_out_discard); 880 error = ENETUNREACH; 881 goto bad; 882 } 883 if ((im6o == NULL && in6_mcast_loop) || 884 (im6o && im6o->im6o_multicast_loop)) { 885 /* 886 * Loop back multicast datagram if not expressly 887 * forbidden to do so, even if we have not joined 888 * the address; protocols will filter it later, 889 * thus deferring a hash lookup and lock acquisition 890 * at the expense of an m_copym(). 891 */ 892 ip6_mloopback(ifp, m); 893 } else { 894 /* 895 * If we are acting as a multicast router, perform 896 * multicast forwarding as if the packet had just 897 * arrived on the interface to which we are about 898 * to send. The multicast forwarding function 899 * recursively calls this function, using the 900 * IPV6_FORWARDING flag to prevent infinite recursion. 901 * 902 * Multicasts that are looped back by ip6_mloopback(), 903 * above, will be forwarded by the ip6_input() routine, 904 * if necessary. 905 */ 906 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 907 /* 908 * XXX: ip6_mforward expects that rcvif is NULL 909 * when it is called from the originating path. 910 * However, it may not always be the case. 911 */ 912 m->m_pkthdr.rcvif = NULL; 913 if (ip6_mforward(ip6, ifp, m) != 0) { 914 m_freem(m); 915 goto done; 916 } 917 } 918 } 919 /* 920 * Multicasts with a hoplimit of zero may be looped back, 921 * above, but must not be transmitted on a network. 922 * Also, multicasts addressed to the loopback interface 923 * are not sent -- the above call to ip6_mloopback() will 924 * loop back a copy if this host actually belongs to the 925 * destination group on the loopback interface. 926 */ 927 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 928 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 929 m_freem(m); 930 goto done; 931 } 932 } 933 934 /* 935 * Fill the outgoing inteface to tell the upper layer 936 * to increment per-interface statistics. 937 */ 938 if (ifpp) 939 *ifpp = ifp; 940 941 /* Determine path MTU. */ 942 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 943 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 944 goto bad; 945 KASSERT(mtu > 0, ("%s:%d: mtu %ld, ro_pmtu %p ro %p ifp %p " 946 "alwaysfrag %d fibnum %u\n", __func__, __LINE__, mtu, ro_pmtu, ro, 947 ifp, alwaysfrag, fibnum)); 948 949 /* 950 * The caller of this function may specify to use the minimum MTU 951 * in some cases. 952 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 953 * setting. The logic is a bit complicated; by default, unicast 954 * packets will follow path MTU while multicast packets will be sent at 955 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 956 * including unicast ones will be sent at the minimum MTU. Multicast 957 * packets will always be sent at the minimum MTU unless 958 * IP6PO_MINMTU_DISABLE is explicitly specified. 959 * See RFC 3542 for more details. 960 */ 961 if (mtu > IPV6_MMTU) { 962 if ((flags & IPV6_MINMTU)) 963 mtu = IPV6_MMTU; 964 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 965 mtu = IPV6_MMTU; 966 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 967 (opt == NULL || 968 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 969 mtu = IPV6_MMTU; 970 } 971 } 972 973 /* 974 * Clear embedded scope identifiers if necessary. 975 * in6_clearscope() will touch the addresses only when necessary. 976 */ 977 in6_clearscope(&ip6->ip6_src); 978 in6_clearscope(&ip6->ip6_dst); 979 980 /* 981 * If the outgoing packet contains a hop-by-hop options header, 982 * it must be examined and processed even by the source node. 983 * (RFC 2460, section 4.) 984 */ 985 if (exthdrs.ip6e_hbh) { 986 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 987 u_int32_t dummy; /* XXX unused */ 988 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 989 990 #ifdef DIAGNOSTIC 991 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 992 panic("ip6e_hbh is not contiguous"); 993 #endif 994 /* 995 * XXX: if we have to send an ICMPv6 error to the sender, 996 * we need the M_LOOP flag since icmp6_error() expects 997 * the IPv6 and the hop-by-hop options header are 998 * contiguous unless the flag is set. 999 */ 1000 m->m_flags |= M_LOOP; 1001 m->m_pkthdr.rcvif = ifp; 1002 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 1003 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 1004 &dummy, &plen) < 0) { 1005 /* m was already freed at this point. */ 1006 error = EINVAL;/* better error? */ 1007 goto done; 1008 } 1009 m->m_flags &= ~M_LOOP; /* XXX */ 1010 m->m_pkthdr.rcvif = NULL; 1011 } 1012 1013 /* Jump over all PFIL processing if hooks are not active. */ 1014 if (!PFIL_HOOKED_OUT(V_inet6_pfil_head)) 1015 goto passout; 1016 1017 odst = ip6->ip6_dst; 1018 /* Run through list of hooks for output packets. */ 1019 switch (pfil_run_hooks(V_inet6_pfil_head, &m, ifp, PFIL_OUT, inp)) { 1020 case PFIL_PASS: 1021 ip6 = mtod(m, struct ip6_hdr *); 1022 break; 1023 case PFIL_DROPPED: 1024 error = EACCES; 1025 /* FALLTHROUGH */ 1026 case PFIL_CONSUMED: 1027 goto done; 1028 } 1029 1030 needfiblookup = 0; 1031 /* See if destination IP address was changed by packet filter. */ 1032 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 1033 m->m_flags |= M_SKIP_FIREWALL; 1034 /* If destination is now ourself drop to ip6_input(). */ 1035 if (in6_localip(&ip6->ip6_dst)) { 1036 m->m_flags |= M_FASTFWD_OURS; 1037 if (m->m_pkthdr.rcvif == NULL) 1038 m->m_pkthdr.rcvif = V_loif; 1039 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1040 m->m_pkthdr.csum_flags |= 1041 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1042 m->m_pkthdr.csum_data = 0xffff; 1043 } 1044 #ifdef SCTP 1045 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1046 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1047 #endif 1048 error = netisr_queue(NETISR_IPV6, m); 1049 goto done; 1050 } else { 1051 if (ro != NULL) 1052 RO_INVALIDATE_CACHE(ro); 1053 needfiblookup = 1; /* Redo the routing table lookup. */ 1054 } 1055 } 1056 /* See if fib was changed by packet filter. */ 1057 if (fibnum != M_GETFIB(m)) { 1058 m->m_flags |= M_SKIP_FIREWALL; 1059 fibnum = M_GETFIB(m); 1060 if (ro != NULL) 1061 RO_INVALIDATE_CACHE(ro); 1062 needfiblookup = 1; 1063 } 1064 if (needfiblookup) 1065 goto again; 1066 1067 /* See if local, if yes, send it to netisr. */ 1068 if (m->m_flags & M_FASTFWD_OURS) { 1069 if (m->m_pkthdr.rcvif == NULL) 1070 m->m_pkthdr.rcvif = V_loif; 1071 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1072 m->m_pkthdr.csum_flags |= 1073 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1074 m->m_pkthdr.csum_data = 0xffff; 1075 } 1076 #ifdef SCTP 1077 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1078 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1079 #endif 1080 error = netisr_queue(NETISR_IPV6, m); 1081 goto done; 1082 } 1083 /* Or forward to some other address? */ 1084 if ((m->m_flags & M_IP6_NEXTHOP) && 1085 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 1086 if (ro != NULL) 1087 dst = (struct sockaddr_in6 *)&ro->ro_dst; 1088 else 1089 dst = &sin6; 1090 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 1091 m->m_flags |= M_SKIP_FIREWALL; 1092 m->m_flags &= ~M_IP6_NEXTHOP; 1093 m_tag_delete(m, fwd_tag); 1094 goto again; 1095 } 1096 1097 passout: 1098 /* 1099 * Send the packet to the outgoing interface. 1100 * If necessary, do IPv6 fragmentation before sending. 1101 * 1102 * The logic here is rather complex: 1103 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 1104 * 1-a: send as is if tlen <= path mtu 1105 * 1-b: fragment if tlen > path mtu 1106 * 1107 * 2: if user asks us not to fragment (dontfrag == 1) 1108 * 2-a: send as is if tlen <= interface mtu 1109 * 2-b: error if tlen > interface mtu 1110 * 1111 * 3: if we always need to attach fragment header (alwaysfrag == 1) 1112 * always fragment 1113 * 1114 * 4: if dontfrag == 1 && alwaysfrag == 1 1115 * error, as we cannot handle this conflicting request. 1116 */ 1117 sw_csum = m->m_pkthdr.csum_flags; 1118 if (!hdrsplit) { 1119 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 1120 sw_csum &= ~ifp->if_hwassist; 1121 } else 1122 tso = 0; 1123 /* 1124 * If we added extension headers, we will not do TSO and calculate the 1125 * checksums ourselves for now. 1126 * XXX-BZ Need a framework to know when the NIC can handle it, even 1127 * with ext. hdrs. 1128 */ 1129 error = ip6_output_delayed_csum(m, ifp, sw_csum, plen, optlen, false); 1130 if (error != 0) 1131 goto bad; 1132 /* XXX-BZ m->m_pkthdr.csum_flags &= ~ifp->if_hwassist; */ 1133 tlen = m->m_pkthdr.len; 1134 1135 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 1136 dontfrag = 1; 1137 else 1138 dontfrag = 0; 1139 if (dontfrag && alwaysfrag) { /* Case 4. */ 1140 /* Conflicting request - can't transmit. */ 1141 error = EMSGSIZE; 1142 goto bad; 1143 } 1144 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* Case 2-b. */ 1145 /* 1146 * Even if the DONTFRAG option is specified, we cannot send the 1147 * packet when the data length is larger than the MTU of the 1148 * outgoing interface. 1149 * Notify the error by sending IPV6_PATHMTU ancillary data if 1150 * application wanted to know the MTU value. Also return an 1151 * error code (this is not described in the API spec). 1152 */ 1153 if (inp != NULL) 1154 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 1155 error = EMSGSIZE; 1156 goto bad; 1157 } 1158 1159 /* Transmit packet without fragmentation. */ 1160 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* Cases 1-a and 2-a. */ 1161 struct in6_ifaddr *ia6; 1162 1163 ip6 = mtod(m, struct ip6_hdr *); 1164 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1165 if (ia6) { 1166 /* Record statistics for this interface address. */ 1167 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 1168 counter_u64_add(ia6->ia_ifa.ifa_obytes, 1169 m->m_pkthdr.len); 1170 ifa_free(&ia6->ia_ifa); 1171 } 1172 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1173 (flags & IP_NO_SND_TAG_RL) ? false : true); 1174 goto done; 1175 } 1176 1177 /* Try to fragment the packet. Cases 1-b and 3. */ 1178 if (mtu < IPV6_MMTU) { 1179 /* Path MTU cannot be less than IPV6_MMTU. */ 1180 error = EMSGSIZE; 1181 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1182 goto bad; 1183 } else if (ip6->ip6_plen == 0) { 1184 /* Jumbo payload cannot be fragmented. */ 1185 error = EMSGSIZE; 1186 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1187 goto bad; 1188 } else { 1189 u_char nextproto; 1190 1191 /* 1192 * Too large for the destination or interface; 1193 * fragment if possible. 1194 * Must be able to put at least 8 bytes per fragment. 1195 */ 1196 if (mtu > IPV6_MAXPACKET) 1197 mtu = IPV6_MAXPACKET; 1198 1199 len = (mtu - unfragpartlen - sizeof(struct ip6_frag)) & ~7; 1200 if (len < 8) { 1201 error = EMSGSIZE; 1202 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1203 goto bad; 1204 } 1205 1206 /* 1207 * If the interface will not calculate checksums on 1208 * fragmented packets, then do it here. 1209 * XXX-BZ handle the hw offloading case. Need flags. 1210 */ 1211 error = ip6_output_delayed_csum(m, ifp, m->m_pkthdr.csum_flags, 1212 plen, optlen, true); 1213 if (error != 0) 1214 goto bad; 1215 1216 /* 1217 * Change the next header field of the last header in the 1218 * unfragmentable part. 1219 */ 1220 if (exthdrs.ip6e_rthdr) { 1221 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1222 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1223 } else if (exthdrs.ip6e_dest1) { 1224 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1225 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1226 } else if (exthdrs.ip6e_hbh) { 1227 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1228 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1229 } else { 1230 ip6 = mtod(m, struct ip6_hdr *); 1231 nextproto = ip6->ip6_nxt; 1232 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1233 } 1234 1235 /* 1236 * Loop through length of segment after first fragment, 1237 * make new header and copy data of each part and link onto 1238 * chain. 1239 */ 1240 m0 = m; 1241 id = htonl(ip6_randomid()); 1242 error = ip6_fragment(ifp, m, unfragpartlen, nextproto,len, id); 1243 if (error != 0) 1244 goto sendorfree; 1245 1246 in6_ifstat_inc(ifp, ifs6_out_fragok); 1247 } 1248 1249 /* Remove leading garbage. */ 1250 sendorfree: 1251 m = m0->m_nextpkt; 1252 m0->m_nextpkt = 0; 1253 m_freem(m0); 1254 for (; m; m = m0) { 1255 m0 = m->m_nextpkt; 1256 m->m_nextpkt = 0; 1257 if (error == 0) { 1258 /* Record statistics for this interface address. */ 1259 if (ia) { 1260 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1261 counter_u64_add(ia->ia_ifa.ifa_obytes, 1262 m->m_pkthdr.len); 1263 } 1264 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1265 true); 1266 } else 1267 m_freem(m); 1268 } 1269 1270 if (error == 0) 1271 IP6STAT_INC(ip6s_fragmented); 1272 1273 done: 1274 return (error); 1275 1276 freehdrs: 1277 m_freem(exthdrs.ip6e_hbh); /* m_freem() checks if mbuf is NULL. */ 1278 m_freem(exthdrs.ip6e_dest1); 1279 m_freem(exthdrs.ip6e_rthdr); 1280 m_freem(exthdrs.ip6e_dest2); 1281 /* FALLTHROUGH */ 1282 bad: 1283 if (m) 1284 m_freem(m); 1285 goto done; 1286 } 1287 1288 static int 1289 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1290 { 1291 struct mbuf *m; 1292 1293 if (hlen > MCLBYTES) 1294 return (ENOBUFS); /* XXX */ 1295 1296 if (hlen > MLEN) 1297 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1298 else 1299 m = m_get(M_NOWAIT, MT_DATA); 1300 if (m == NULL) 1301 return (ENOBUFS); 1302 m->m_len = hlen; 1303 if (hdr) 1304 bcopy(hdr, mtod(m, caddr_t), hlen); 1305 1306 *mp = m; 1307 return (0); 1308 } 1309 1310 /* 1311 * Insert jumbo payload option. 1312 */ 1313 static int 1314 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1315 { 1316 struct mbuf *mopt; 1317 u_char *optbuf; 1318 u_int32_t v; 1319 1320 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1321 1322 /* 1323 * If there is no hop-by-hop options header, allocate new one. 1324 * If there is one but it doesn't have enough space to store the 1325 * jumbo payload option, allocate a cluster to store the whole options. 1326 * Otherwise, use it to store the options. 1327 */ 1328 if (exthdrs->ip6e_hbh == NULL) { 1329 mopt = m_get(M_NOWAIT, MT_DATA); 1330 if (mopt == NULL) 1331 return (ENOBUFS); 1332 mopt->m_len = JUMBOOPTLEN; 1333 optbuf = mtod(mopt, u_char *); 1334 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1335 exthdrs->ip6e_hbh = mopt; 1336 } else { 1337 struct ip6_hbh *hbh; 1338 1339 mopt = exthdrs->ip6e_hbh; 1340 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1341 /* 1342 * XXX assumption: 1343 * - exthdrs->ip6e_hbh is not referenced from places 1344 * other than exthdrs. 1345 * - exthdrs->ip6e_hbh is not an mbuf chain. 1346 */ 1347 int oldoptlen = mopt->m_len; 1348 struct mbuf *n; 1349 1350 /* 1351 * XXX: give up if the whole (new) hbh header does 1352 * not fit even in an mbuf cluster. 1353 */ 1354 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1355 return (ENOBUFS); 1356 1357 /* 1358 * As a consequence, we must always prepare a cluster 1359 * at this point. 1360 */ 1361 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1362 if (n == NULL) 1363 return (ENOBUFS); 1364 n->m_len = oldoptlen + JUMBOOPTLEN; 1365 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1366 oldoptlen); 1367 optbuf = mtod(n, caddr_t) + oldoptlen; 1368 m_freem(mopt); 1369 mopt = exthdrs->ip6e_hbh = n; 1370 } else { 1371 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1372 mopt->m_len += JUMBOOPTLEN; 1373 } 1374 optbuf[0] = IP6OPT_PADN; 1375 optbuf[1] = 1; 1376 1377 /* 1378 * Adjust the header length according to the pad and 1379 * the jumbo payload option. 1380 */ 1381 hbh = mtod(mopt, struct ip6_hbh *); 1382 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1383 } 1384 1385 /* fill in the option. */ 1386 optbuf[2] = IP6OPT_JUMBO; 1387 optbuf[3] = 4; 1388 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1389 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1390 1391 /* finally, adjust the packet header length */ 1392 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1393 1394 return (0); 1395 #undef JUMBOOPTLEN 1396 } 1397 1398 /* 1399 * Insert fragment header and copy unfragmentable header portions. 1400 */ 1401 static int 1402 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1403 struct ip6_frag **frghdrp) 1404 { 1405 struct mbuf *n, *mlast; 1406 1407 if (hlen > sizeof(struct ip6_hdr)) { 1408 n = m_copym(m0, sizeof(struct ip6_hdr), 1409 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1410 if (n == NULL) 1411 return (ENOBUFS); 1412 m->m_next = n; 1413 } else 1414 n = m; 1415 1416 /* Search for the last mbuf of unfragmentable part. */ 1417 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1418 ; 1419 1420 if (M_WRITABLE(mlast) && 1421 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1422 /* use the trailing space of the last mbuf for the fragment hdr */ 1423 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1424 mlast->m_len); 1425 mlast->m_len += sizeof(struct ip6_frag); 1426 m->m_pkthdr.len += sizeof(struct ip6_frag); 1427 } else { 1428 /* allocate a new mbuf for the fragment header */ 1429 struct mbuf *mfrg; 1430 1431 mfrg = m_get(M_NOWAIT, MT_DATA); 1432 if (mfrg == NULL) 1433 return (ENOBUFS); 1434 mfrg->m_len = sizeof(struct ip6_frag); 1435 *frghdrp = mtod(mfrg, struct ip6_frag *); 1436 mlast->m_next = mfrg; 1437 } 1438 1439 return (0); 1440 } 1441 1442 /* 1443 * Calculates IPv6 path mtu for destination @dst. 1444 * Resulting MTU is stored in @mtup. 1445 * 1446 * Returns 0 on success. 1447 */ 1448 static int 1449 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1450 { 1451 struct epoch_tracker et; 1452 struct nhop_object *nh; 1453 struct in6_addr kdst; 1454 uint32_t scopeid; 1455 int error; 1456 1457 in6_splitscope(dst, &kdst, &scopeid); 1458 1459 NET_EPOCH_ENTER(et); 1460 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1461 if (nh != NULL) 1462 error = ip6_calcmtu(nh->nh_ifp, dst, nh->nh_mtu, mtup, NULL, 0); 1463 else 1464 error = EHOSTUNREACH; 1465 NET_EPOCH_EXIT(et); 1466 1467 return (error); 1468 } 1469 1470 /* 1471 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1472 * and cached data in @ro_pmtu. 1473 * MTU from (successful) route lookup is saved (along with dst) 1474 * inside @ro_pmtu to avoid subsequent route lookups after packet 1475 * filter processing. 1476 * 1477 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1478 * Returns 0 on success. 1479 */ 1480 static int 1481 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1482 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1483 int *alwaysfragp, u_int fibnum, u_int proto) 1484 { 1485 struct nhop_object *nh; 1486 struct in6_addr kdst; 1487 uint32_t scopeid; 1488 struct sockaddr_in6 *sa6_dst, sin6; 1489 u_long mtu; 1490 1491 NET_EPOCH_ASSERT(); 1492 1493 mtu = 0; 1494 if (ro_pmtu == NULL || do_lookup) { 1495 1496 /* 1497 * Here ro_pmtu has final destination address, while 1498 * ro might represent immediate destination. 1499 * Use ro_pmtu destination since mtu might differ. 1500 */ 1501 if (ro_pmtu != NULL) { 1502 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1503 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1504 ro_pmtu->ro_mtu = 0; 1505 } else 1506 sa6_dst = &sin6; 1507 1508 if (ro_pmtu == NULL || ro_pmtu->ro_mtu == 0) { 1509 bzero(sa6_dst, sizeof(*sa6_dst)); 1510 sa6_dst->sin6_family = AF_INET6; 1511 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1512 sa6_dst->sin6_addr = *dst; 1513 1514 in6_splitscope(dst, &kdst, &scopeid); 1515 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1516 if (nh != NULL) { 1517 mtu = nh->nh_mtu; 1518 if (ro_pmtu != NULL) 1519 ro_pmtu->ro_mtu = mtu; 1520 } 1521 } else 1522 mtu = ro_pmtu->ro_mtu; 1523 } 1524 1525 if (ro_pmtu != NULL && ro_pmtu->ro_nh != NULL) 1526 mtu = ro_pmtu->ro_nh->nh_mtu; 1527 1528 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1529 } 1530 1531 /* 1532 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1533 * hostcache data for @dst. 1534 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1535 * 1536 * Returns 0 on success. 1537 */ 1538 static int 1539 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1540 u_long *mtup, int *alwaysfragp, u_int proto) 1541 { 1542 u_long mtu = 0; 1543 int alwaysfrag = 0; 1544 int error = 0; 1545 1546 if (rt_mtu > 0) { 1547 u_int32_t ifmtu; 1548 struct in_conninfo inc; 1549 1550 bzero(&inc, sizeof(inc)); 1551 inc.inc_flags |= INC_ISIPV6; 1552 inc.inc6_faddr = *dst; 1553 1554 ifmtu = IN6_LINKMTU(ifp); 1555 1556 /* TCP is known to react to pmtu changes so skip hc */ 1557 if (proto != IPPROTO_TCP) 1558 mtu = tcp_hc_getmtu(&inc); 1559 1560 if (mtu) 1561 mtu = min(mtu, rt_mtu); 1562 else 1563 mtu = rt_mtu; 1564 if (mtu == 0) 1565 mtu = ifmtu; 1566 else if (mtu < IPV6_MMTU) { 1567 /* 1568 * RFC2460 section 5, last paragraph: 1569 * if we record ICMPv6 too big message with 1570 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1571 * or smaller, with framgent header attached. 1572 * (fragment header is needed regardless from the 1573 * packet size, for translators to identify packets) 1574 */ 1575 alwaysfrag = 1; 1576 mtu = IPV6_MMTU; 1577 } 1578 } else if (ifp) { 1579 mtu = IN6_LINKMTU(ifp); 1580 } else 1581 error = EHOSTUNREACH; /* XXX */ 1582 1583 *mtup = mtu; 1584 if (alwaysfragp) 1585 *alwaysfragp = alwaysfrag; 1586 return (error); 1587 } 1588 1589 /* 1590 * IP6 socket option processing. 1591 */ 1592 int 1593 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1594 { 1595 int optdatalen, uproto; 1596 void *optdata; 1597 struct inpcb *inp = sotoinpcb(so); 1598 int error, optval; 1599 int level, op, optname; 1600 int optlen; 1601 struct thread *td; 1602 #ifdef RSS 1603 uint32_t rss_bucket; 1604 int retval; 1605 #endif 1606 1607 /* 1608 * Don't use more than a quarter of mbuf clusters. N.B.: 1609 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1610 * on LP64 architectures, so cast to u_long to avoid undefined 1611 * behavior. ILP32 architectures cannot have nmbclusters 1612 * large enough to overflow for other reasons. 1613 */ 1614 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1615 1616 level = sopt->sopt_level; 1617 op = sopt->sopt_dir; 1618 optname = sopt->sopt_name; 1619 optlen = sopt->sopt_valsize; 1620 td = sopt->sopt_td; 1621 error = 0; 1622 optval = 0; 1623 uproto = (int)so->so_proto->pr_protocol; 1624 1625 if (level != IPPROTO_IPV6) { 1626 error = EINVAL; 1627 1628 if (sopt->sopt_level == SOL_SOCKET && 1629 sopt->sopt_dir == SOPT_SET) { 1630 switch (sopt->sopt_name) { 1631 case SO_REUSEADDR: 1632 INP_WLOCK(inp); 1633 if ((so->so_options & SO_REUSEADDR) != 0) 1634 inp->inp_flags2 |= INP_REUSEADDR; 1635 else 1636 inp->inp_flags2 &= ~INP_REUSEADDR; 1637 INP_WUNLOCK(inp); 1638 error = 0; 1639 break; 1640 case SO_REUSEPORT: 1641 INP_WLOCK(inp); 1642 if ((so->so_options & SO_REUSEPORT) != 0) 1643 inp->inp_flags2 |= INP_REUSEPORT; 1644 else 1645 inp->inp_flags2 &= ~INP_REUSEPORT; 1646 INP_WUNLOCK(inp); 1647 error = 0; 1648 break; 1649 case SO_REUSEPORT_LB: 1650 INP_WLOCK(inp); 1651 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1652 inp->inp_flags2 |= INP_REUSEPORT_LB; 1653 else 1654 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1655 INP_WUNLOCK(inp); 1656 error = 0; 1657 break; 1658 case SO_SETFIB: 1659 INP_WLOCK(inp); 1660 inp->inp_inc.inc_fibnum = so->so_fibnum; 1661 INP_WUNLOCK(inp); 1662 error = 0; 1663 break; 1664 case SO_MAX_PACING_RATE: 1665 #ifdef RATELIMIT 1666 INP_WLOCK(inp); 1667 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1668 INP_WUNLOCK(inp); 1669 error = 0; 1670 #else 1671 error = EOPNOTSUPP; 1672 #endif 1673 break; 1674 default: 1675 break; 1676 } 1677 } 1678 } else { /* level == IPPROTO_IPV6 */ 1679 switch (op) { 1680 1681 case SOPT_SET: 1682 switch (optname) { 1683 case IPV6_2292PKTOPTIONS: 1684 #ifdef IPV6_PKTOPTIONS 1685 case IPV6_PKTOPTIONS: 1686 #endif 1687 { 1688 struct mbuf *m; 1689 1690 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1691 printf("ip6_ctloutput: mbuf limit hit\n"); 1692 error = ENOBUFS; 1693 break; 1694 } 1695 1696 error = soopt_getm(sopt, &m); /* XXX */ 1697 if (error != 0) 1698 break; 1699 error = soopt_mcopyin(sopt, m); /* XXX */ 1700 if (error != 0) 1701 break; 1702 INP_WLOCK(inp); 1703 error = ip6_pcbopts(&inp->in6p_outputopts, m, 1704 so, sopt); 1705 INP_WUNLOCK(inp); 1706 m_freem(m); /* XXX */ 1707 break; 1708 } 1709 1710 /* 1711 * Use of some Hop-by-Hop options or some 1712 * Destination options, might require special 1713 * privilege. That is, normal applications 1714 * (without special privilege) might be forbidden 1715 * from setting certain options in outgoing packets, 1716 * and might never see certain options in received 1717 * packets. [RFC 2292 Section 6] 1718 * KAME specific note: 1719 * KAME prevents non-privileged users from sending or 1720 * receiving ANY hbh/dst options in order to avoid 1721 * overhead of parsing options in the kernel. 1722 */ 1723 case IPV6_RECVHOPOPTS: 1724 case IPV6_RECVDSTOPTS: 1725 case IPV6_RECVRTHDRDSTOPTS: 1726 if (td != NULL) { 1727 error = priv_check(td, 1728 PRIV_NETINET_SETHDROPTS); 1729 if (error) 1730 break; 1731 } 1732 /* FALLTHROUGH */ 1733 case IPV6_UNICAST_HOPS: 1734 case IPV6_HOPLIMIT: 1735 1736 case IPV6_RECVPKTINFO: 1737 case IPV6_RECVHOPLIMIT: 1738 case IPV6_RECVRTHDR: 1739 case IPV6_RECVPATHMTU: 1740 case IPV6_RECVTCLASS: 1741 case IPV6_RECVFLOWID: 1742 #ifdef RSS 1743 case IPV6_RECVRSSBUCKETID: 1744 #endif 1745 case IPV6_V6ONLY: 1746 case IPV6_AUTOFLOWLABEL: 1747 case IPV6_ORIGDSTADDR: 1748 case IPV6_BINDANY: 1749 case IPV6_BINDMULTI: 1750 #ifdef RSS 1751 case IPV6_RSS_LISTEN_BUCKET: 1752 #endif 1753 if (optname == IPV6_BINDANY && td != NULL) { 1754 error = priv_check(td, 1755 PRIV_NETINET_BINDANY); 1756 if (error) 1757 break; 1758 } 1759 1760 if (optlen != sizeof(int)) { 1761 error = EINVAL; 1762 break; 1763 } 1764 error = sooptcopyin(sopt, &optval, 1765 sizeof optval, sizeof optval); 1766 if (error) 1767 break; 1768 switch (optname) { 1769 1770 case IPV6_UNICAST_HOPS: 1771 if (optval < -1 || optval >= 256) 1772 error = EINVAL; 1773 else { 1774 /* -1 = kernel default */ 1775 inp->in6p_hops = optval; 1776 if ((inp->inp_vflag & 1777 INP_IPV4) != 0) 1778 inp->inp_ip_ttl = optval; 1779 } 1780 break; 1781 #define OPTSET(bit) \ 1782 do { \ 1783 INP_WLOCK(inp); \ 1784 if (optval) \ 1785 inp->inp_flags |= (bit); \ 1786 else \ 1787 inp->inp_flags &= ~(bit); \ 1788 INP_WUNLOCK(inp); \ 1789 } while (/*CONSTCOND*/ 0) 1790 #define OPTSET2292(bit) \ 1791 do { \ 1792 INP_WLOCK(inp); \ 1793 inp->inp_flags |= IN6P_RFC2292; \ 1794 if (optval) \ 1795 inp->inp_flags |= (bit); \ 1796 else \ 1797 inp->inp_flags &= ~(bit); \ 1798 INP_WUNLOCK(inp); \ 1799 } while (/*CONSTCOND*/ 0) 1800 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1801 1802 #define OPTSET2_N(bit, val) do { \ 1803 if (val) \ 1804 inp->inp_flags2 |= bit; \ 1805 else \ 1806 inp->inp_flags2 &= ~bit; \ 1807 } while (0) 1808 #define OPTSET2(bit, val) do { \ 1809 INP_WLOCK(inp); \ 1810 OPTSET2_N(bit, val); \ 1811 INP_WUNLOCK(inp); \ 1812 } while (0) 1813 #define OPTBIT2(bit) (inp->inp_flags2 & (bit) ? 1 : 0) 1814 #define OPTSET2292_EXCLUSIVE(bit) \ 1815 do { \ 1816 INP_WLOCK(inp); \ 1817 if (OPTBIT(IN6P_RFC2292)) { \ 1818 error = EINVAL; \ 1819 } else { \ 1820 if (optval) \ 1821 inp->inp_flags |= (bit); \ 1822 else \ 1823 inp->inp_flags &= ~(bit); \ 1824 } \ 1825 INP_WUNLOCK(inp); \ 1826 } while (/*CONSTCOND*/ 0) 1827 1828 case IPV6_RECVPKTINFO: 1829 OPTSET2292_EXCLUSIVE(IN6P_PKTINFO); 1830 break; 1831 1832 case IPV6_HOPLIMIT: 1833 { 1834 struct ip6_pktopts **optp; 1835 1836 /* cannot mix with RFC2292 */ 1837 if (OPTBIT(IN6P_RFC2292)) { 1838 error = EINVAL; 1839 break; 1840 } 1841 INP_WLOCK(inp); 1842 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1843 INP_WUNLOCK(inp); 1844 return (ECONNRESET); 1845 } 1846 optp = &inp->in6p_outputopts; 1847 error = ip6_pcbopt(IPV6_HOPLIMIT, 1848 (u_char *)&optval, sizeof(optval), 1849 optp, (td != NULL) ? td->td_ucred : 1850 NULL, uproto); 1851 INP_WUNLOCK(inp); 1852 break; 1853 } 1854 1855 case IPV6_RECVHOPLIMIT: 1856 OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT); 1857 break; 1858 1859 case IPV6_RECVHOPOPTS: 1860 OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS); 1861 break; 1862 1863 case IPV6_RECVDSTOPTS: 1864 OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS); 1865 break; 1866 1867 case IPV6_RECVRTHDRDSTOPTS: 1868 OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS); 1869 break; 1870 1871 case IPV6_RECVRTHDR: 1872 OPTSET2292_EXCLUSIVE(IN6P_RTHDR); 1873 break; 1874 1875 case IPV6_RECVPATHMTU: 1876 /* 1877 * We ignore this option for TCP 1878 * sockets. 1879 * (RFC3542 leaves this case 1880 * unspecified.) 1881 */ 1882 if (uproto != IPPROTO_TCP) 1883 OPTSET(IN6P_MTU); 1884 break; 1885 1886 case IPV6_RECVFLOWID: 1887 OPTSET2(INP_RECVFLOWID, optval); 1888 break; 1889 1890 #ifdef RSS 1891 case IPV6_RECVRSSBUCKETID: 1892 OPTSET2(INP_RECVRSSBUCKETID, optval); 1893 break; 1894 #endif 1895 1896 case IPV6_V6ONLY: 1897 INP_WLOCK(inp); 1898 if (inp->inp_lport || 1899 !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { 1900 /* 1901 * The socket is already bound. 1902 */ 1903 INP_WUNLOCK(inp); 1904 error = EINVAL; 1905 break; 1906 } 1907 if (optval) { 1908 inp->inp_flags |= IN6P_IPV6_V6ONLY; 1909 inp->inp_vflag &= ~INP_IPV4; 1910 } else { 1911 inp->inp_flags &= ~IN6P_IPV6_V6ONLY; 1912 inp->inp_vflag |= INP_IPV4; 1913 } 1914 INP_WUNLOCK(inp); 1915 break; 1916 case IPV6_RECVTCLASS: 1917 /* cannot mix with RFC2292 XXX */ 1918 OPTSET2292_EXCLUSIVE(IN6P_TCLASS); 1919 break; 1920 case IPV6_AUTOFLOWLABEL: 1921 OPTSET(IN6P_AUTOFLOWLABEL); 1922 break; 1923 1924 case IPV6_ORIGDSTADDR: 1925 OPTSET2(INP_ORIGDSTADDR, optval); 1926 break; 1927 case IPV6_BINDANY: 1928 OPTSET(INP_BINDANY); 1929 break; 1930 1931 case IPV6_BINDMULTI: 1932 OPTSET2(INP_BINDMULTI, optval); 1933 break; 1934 #ifdef RSS 1935 case IPV6_RSS_LISTEN_BUCKET: 1936 if ((optval >= 0) && 1937 (optval < rss_getnumbuckets())) { 1938 INP_WLOCK(inp); 1939 inp->inp_rss_listen_bucket = optval; 1940 OPTSET2_N(INP_RSS_BUCKET_SET, 1); 1941 INP_WUNLOCK(inp); 1942 } else { 1943 error = EINVAL; 1944 } 1945 break; 1946 #endif 1947 } 1948 break; 1949 1950 case IPV6_TCLASS: 1951 case IPV6_DONTFRAG: 1952 case IPV6_USE_MIN_MTU: 1953 case IPV6_PREFER_TEMPADDR: 1954 if (optlen != sizeof(optval)) { 1955 error = EINVAL; 1956 break; 1957 } 1958 error = sooptcopyin(sopt, &optval, 1959 sizeof optval, sizeof optval); 1960 if (error) 1961 break; 1962 { 1963 struct ip6_pktopts **optp; 1964 INP_WLOCK(inp); 1965 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1966 INP_WUNLOCK(inp); 1967 return (ECONNRESET); 1968 } 1969 optp = &inp->in6p_outputopts; 1970 error = ip6_pcbopt(optname, 1971 (u_char *)&optval, sizeof(optval), 1972 optp, (td != NULL) ? td->td_ucred : 1973 NULL, uproto); 1974 INP_WUNLOCK(inp); 1975 break; 1976 } 1977 1978 case IPV6_2292PKTINFO: 1979 case IPV6_2292HOPLIMIT: 1980 case IPV6_2292HOPOPTS: 1981 case IPV6_2292DSTOPTS: 1982 case IPV6_2292RTHDR: 1983 /* RFC 2292 */ 1984 if (optlen != sizeof(int)) { 1985 error = EINVAL; 1986 break; 1987 } 1988 error = sooptcopyin(sopt, &optval, 1989 sizeof optval, sizeof optval); 1990 if (error) 1991 break; 1992 switch (optname) { 1993 case IPV6_2292PKTINFO: 1994 OPTSET2292(IN6P_PKTINFO); 1995 break; 1996 case IPV6_2292HOPLIMIT: 1997 OPTSET2292(IN6P_HOPLIMIT); 1998 break; 1999 case IPV6_2292HOPOPTS: 2000 /* 2001 * Check super-user privilege. 2002 * See comments for IPV6_RECVHOPOPTS. 2003 */ 2004 if (td != NULL) { 2005 error = priv_check(td, 2006 PRIV_NETINET_SETHDROPTS); 2007 if (error) 2008 return (error); 2009 } 2010 OPTSET2292(IN6P_HOPOPTS); 2011 break; 2012 case IPV6_2292DSTOPTS: 2013 if (td != NULL) { 2014 error = priv_check(td, 2015 PRIV_NETINET_SETHDROPTS); 2016 if (error) 2017 return (error); 2018 } 2019 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 2020 break; 2021 case IPV6_2292RTHDR: 2022 OPTSET2292(IN6P_RTHDR); 2023 break; 2024 } 2025 break; 2026 case IPV6_PKTINFO: 2027 case IPV6_HOPOPTS: 2028 case IPV6_RTHDR: 2029 case IPV6_DSTOPTS: 2030 case IPV6_RTHDRDSTOPTS: 2031 case IPV6_NEXTHOP: 2032 { 2033 /* new advanced API (RFC3542) */ 2034 u_char *optbuf; 2035 u_char optbuf_storage[MCLBYTES]; 2036 int optlen; 2037 struct ip6_pktopts **optp; 2038 2039 /* cannot mix with RFC2292 */ 2040 if (OPTBIT(IN6P_RFC2292)) { 2041 error = EINVAL; 2042 break; 2043 } 2044 2045 /* 2046 * We only ensure valsize is not too large 2047 * here. Further validation will be done 2048 * later. 2049 */ 2050 error = sooptcopyin(sopt, optbuf_storage, 2051 sizeof(optbuf_storage), 0); 2052 if (error) 2053 break; 2054 optlen = sopt->sopt_valsize; 2055 optbuf = optbuf_storage; 2056 INP_WLOCK(inp); 2057 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 2058 INP_WUNLOCK(inp); 2059 return (ECONNRESET); 2060 } 2061 optp = &inp->in6p_outputopts; 2062 error = ip6_pcbopt(optname, optbuf, optlen, 2063 optp, (td != NULL) ? td->td_ucred : NULL, 2064 uproto); 2065 INP_WUNLOCK(inp); 2066 break; 2067 } 2068 #undef OPTSET 2069 2070 case IPV6_MULTICAST_IF: 2071 case IPV6_MULTICAST_HOPS: 2072 case IPV6_MULTICAST_LOOP: 2073 case IPV6_JOIN_GROUP: 2074 case IPV6_LEAVE_GROUP: 2075 case IPV6_MSFILTER: 2076 case MCAST_BLOCK_SOURCE: 2077 case MCAST_UNBLOCK_SOURCE: 2078 case MCAST_JOIN_GROUP: 2079 case MCAST_LEAVE_GROUP: 2080 case MCAST_JOIN_SOURCE_GROUP: 2081 case MCAST_LEAVE_SOURCE_GROUP: 2082 error = ip6_setmoptions(inp, sopt); 2083 break; 2084 2085 case IPV6_PORTRANGE: 2086 error = sooptcopyin(sopt, &optval, 2087 sizeof optval, sizeof optval); 2088 if (error) 2089 break; 2090 2091 INP_WLOCK(inp); 2092 switch (optval) { 2093 case IPV6_PORTRANGE_DEFAULT: 2094 inp->inp_flags &= ~(INP_LOWPORT); 2095 inp->inp_flags &= ~(INP_HIGHPORT); 2096 break; 2097 2098 case IPV6_PORTRANGE_HIGH: 2099 inp->inp_flags &= ~(INP_LOWPORT); 2100 inp->inp_flags |= INP_HIGHPORT; 2101 break; 2102 2103 case IPV6_PORTRANGE_LOW: 2104 inp->inp_flags &= ~(INP_HIGHPORT); 2105 inp->inp_flags |= INP_LOWPORT; 2106 break; 2107 2108 default: 2109 error = EINVAL; 2110 break; 2111 } 2112 INP_WUNLOCK(inp); 2113 break; 2114 2115 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2116 case IPV6_IPSEC_POLICY: 2117 if (IPSEC_ENABLED(ipv6)) { 2118 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2119 break; 2120 } 2121 /* FALLTHROUGH */ 2122 #endif /* IPSEC */ 2123 2124 default: 2125 error = ENOPROTOOPT; 2126 break; 2127 } 2128 break; 2129 2130 case SOPT_GET: 2131 switch (optname) { 2132 2133 case IPV6_2292PKTOPTIONS: 2134 #ifdef IPV6_PKTOPTIONS 2135 case IPV6_PKTOPTIONS: 2136 #endif 2137 /* 2138 * RFC3542 (effectively) deprecated the 2139 * semantics of the 2292-style pktoptions. 2140 * Since it was not reliable in nature (i.e., 2141 * applications had to expect the lack of some 2142 * information after all), it would make sense 2143 * to simplify this part by always returning 2144 * empty data. 2145 */ 2146 sopt->sopt_valsize = 0; 2147 break; 2148 2149 case IPV6_RECVHOPOPTS: 2150 case IPV6_RECVDSTOPTS: 2151 case IPV6_RECVRTHDRDSTOPTS: 2152 case IPV6_UNICAST_HOPS: 2153 case IPV6_RECVPKTINFO: 2154 case IPV6_RECVHOPLIMIT: 2155 case IPV6_RECVRTHDR: 2156 case IPV6_RECVPATHMTU: 2157 2158 case IPV6_V6ONLY: 2159 case IPV6_PORTRANGE: 2160 case IPV6_RECVTCLASS: 2161 case IPV6_AUTOFLOWLABEL: 2162 case IPV6_BINDANY: 2163 case IPV6_FLOWID: 2164 case IPV6_FLOWTYPE: 2165 case IPV6_RECVFLOWID: 2166 #ifdef RSS 2167 case IPV6_RSSBUCKETID: 2168 case IPV6_RECVRSSBUCKETID: 2169 #endif 2170 case IPV6_BINDMULTI: 2171 switch (optname) { 2172 2173 case IPV6_RECVHOPOPTS: 2174 optval = OPTBIT(IN6P_HOPOPTS); 2175 break; 2176 2177 case IPV6_RECVDSTOPTS: 2178 optval = OPTBIT(IN6P_DSTOPTS); 2179 break; 2180 2181 case IPV6_RECVRTHDRDSTOPTS: 2182 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 2183 break; 2184 2185 case IPV6_UNICAST_HOPS: 2186 optval = inp->in6p_hops; 2187 break; 2188 2189 case IPV6_RECVPKTINFO: 2190 optval = OPTBIT(IN6P_PKTINFO); 2191 break; 2192 2193 case IPV6_RECVHOPLIMIT: 2194 optval = OPTBIT(IN6P_HOPLIMIT); 2195 break; 2196 2197 case IPV6_RECVRTHDR: 2198 optval = OPTBIT(IN6P_RTHDR); 2199 break; 2200 2201 case IPV6_RECVPATHMTU: 2202 optval = OPTBIT(IN6P_MTU); 2203 break; 2204 2205 case IPV6_V6ONLY: 2206 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2207 break; 2208 2209 case IPV6_PORTRANGE: 2210 { 2211 int flags; 2212 flags = inp->inp_flags; 2213 if (flags & INP_HIGHPORT) 2214 optval = IPV6_PORTRANGE_HIGH; 2215 else if (flags & INP_LOWPORT) 2216 optval = IPV6_PORTRANGE_LOW; 2217 else 2218 optval = 0; 2219 break; 2220 } 2221 case IPV6_RECVTCLASS: 2222 optval = OPTBIT(IN6P_TCLASS); 2223 break; 2224 2225 case IPV6_AUTOFLOWLABEL: 2226 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2227 break; 2228 2229 case IPV6_ORIGDSTADDR: 2230 optval = OPTBIT2(INP_ORIGDSTADDR); 2231 break; 2232 2233 case IPV6_BINDANY: 2234 optval = OPTBIT(INP_BINDANY); 2235 break; 2236 2237 case IPV6_FLOWID: 2238 optval = inp->inp_flowid; 2239 break; 2240 2241 case IPV6_FLOWTYPE: 2242 optval = inp->inp_flowtype; 2243 break; 2244 2245 case IPV6_RECVFLOWID: 2246 optval = OPTBIT2(INP_RECVFLOWID); 2247 break; 2248 #ifdef RSS 2249 case IPV6_RSSBUCKETID: 2250 retval = 2251 rss_hash2bucket(inp->inp_flowid, 2252 inp->inp_flowtype, 2253 &rss_bucket); 2254 if (retval == 0) 2255 optval = rss_bucket; 2256 else 2257 error = EINVAL; 2258 break; 2259 2260 case IPV6_RECVRSSBUCKETID: 2261 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2262 break; 2263 #endif 2264 2265 case IPV6_BINDMULTI: 2266 optval = OPTBIT2(INP_BINDMULTI); 2267 break; 2268 2269 } 2270 if (error) 2271 break; 2272 error = sooptcopyout(sopt, &optval, 2273 sizeof optval); 2274 break; 2275 2276 case IPV6_PATHMTU: 2277 { 2278 u_long pmtu = 0; 2279 struct ip6_mtuinfo mtuinfo; 2280 struct in6_addr addr; 2281 2282 if (!(so->so_state & SS_ISCONNECTED)) 2283 return (ENOTCONN); 2284 /* 2285 * XXX: we dot not consider the case of source 2286 * routing, or optional information to specify 2287 * the outgoing interface. 2288 * Copy faddr out of inp to avoid holding lock 2289 * on inp during route lookup. 2290 */ 2291 INP_RLOCK(inp); 2292 bcopy(&inp->in6p_faddr, &addr, sizeof(addr)); 2293 INP_RUNLOCK(inp); 2294 error = ip6_getpmtu_ctl(so->so_fibnum, 2295 &addr, &pmtu); 2296 if (error) 2297 break; 2298 if (pmtu > IPV6_MAXPACKET) 2299 pmtu = IPV6_MAXPACKET; 2300 2301 bzero(&mtuinfo, sizeof(mtuinfo)); 2302 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2303 optdata = (void *)&mtuinfo; 2304 optdatalen = sizeof(mtuinfo); 2305 error = sooptcopyout(sopt, optdata, 2306 optdatalen); 2307 break; 2308 } 2309 2310 case IPV6_2292PKTINFO: 2311 case IPV6_2292HOPLIMIT: 2312 case IPV6_2292HOPOPTS: 2313 case IPV6_2292RTHDR: 2314 case IPV6_2292DSTOPTS: 2315 switch (optname) { 2316 case IPV6_2292PKTINFO: 2317 optval = OPTBIT(IN6P_PKTINFO); 2318 break; 2319 case IPV6_2292HOPLIMIT: 2320 optval = OPTBIT(IN6P_HOPLIMIT); 2321 break; 2322 case IPV6_2292HOPOPTS: 2323 optval = OPTBIT(IN6P_HOPOPTS); 2324 break; 2325 case IPV6_2292RTHDR: 2326 optval = OPTBIT(IN6P_RTHDR); 2327 break; 2328 case IPV6_2292DSTOPTS: 2329 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2330 break; 2331 } 2332 error = sooptcopyout(sopt, &optval, 2333 sizeof optval); 2334 break; 2335 case IPV6_PKTINFO: 2336 case IPV6_HOPOPTS: 2337 case IPV6_RTHDR: 2338 case IPV6_DSTOPTS: 2339 case IPV6_RTHDRDSTOPTS: 2340 case IPV6_NEXTHOP: 2341 case IPV6_TCLASS: 2342 case IPV6_DONTFRAG: 2343 case IPV6_USE_MIN_MTU: 2344 case IPV6_PREFER_TEMPADDR: 2345 error = ip6_getpcbopt(inp, optname, sopt); 2346 break; 2347 2348 case IPV6_MULTICAST_IF: 2349 case IPV6_MULTICAST_HOPS: 2350 case IPV6_MULTICAST_LOOP: 2351 case IPV6_MSFILTER: 2352 error = ip6_getmoptions(inp, sopt); 2353 break; 2354 2355 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2356 case IPV6_IPSEC_POLICY: 2357 if (IPSEC_ENABLED(ipv6)) { 2358 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2359 break; 2360 } 2361 /* FALLTHROUGH */ 2362 #endif /* IPSEC */ 2363 default: 2364 error = ENOPROTOOPT; 2365 break; 2366 } 2367 break; 2368 } 2369 } 2370 return (error); 2371 } 2372 2373 int 2374 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2375 { 2376 int error = 0, optval, optlen; 2377 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2378 struct inpcb *inp = sotoinpcb(so); 2379 int level, op, optname; 2380 2381 level = sopt->sopt_level; 2382 op = sopt->sopt_dir; 2383 optname = sopt->sopt_name; 2384 optlen = sopt->sopt_valsize; 2385 2386 if (level != IPPROTO_IPV6) { 2387 return (EINVAL); 2388 } 2389 2390 switch (optname) { 2391 case IPV6_CHECKSUM: 2392 /* 2393 * For ICMPv6 sockets, no modification allowed for checksum 2394 * offset, permit "no change" values to help existing apps. 2395 * 2396 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2397 * for an ICMPv6 socket will fail." 2398 * The current behavior does not meet RFC3542. 2399 */ 2400 switch (op) { 2401 case SOPT_SET: 2402 if (optlen != sizeof(int)) { 2403 error = EINVAL; 2404 break; 2405 } 2406 error = sooptcopyin(sopt, &optval, sizeof(optval), 2407 sizeof(optval)); 2408 if (error) 2409 break; 2410 if (optval < -1 || (optval % 2) != 0) { 2411 /* 2412 * The API assumes non-negative even offset 2413 * values or -1 as a special value. 2414 */ 2415 error = EINVAL; 2416 } else if (so->so_proto->pr_protocol == 2417 IPPROTO_ICMPV6) { 2418 if (optval != icmp6off) 2419 error = EINVAL; 2420 } else 2421 inp->in6p_cksum = optval; 2422 break; 2423 2424 case SOPT_GET: 2425 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2426 optval = icmp6off; 2427 else 2428 optval = inp->in6p_cksum; 2429 2430 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2431 break; 2432 2433 default: 2434 error = EINVAL; 2435 break; 2436 } 2437 break; 2438 2439 default: 2440 error = ENOPROTOOPT; 2441 break; 2442 } 2443 2444 return (error); 2445 } 2446 2447 /* 2448 * Set up IP6 options in pcb for insertion in output packets or 2449 * specifying behavior of outgoing packets. 2450 */ 2451 static int 2452 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2453 struct socket *so, struct sockopt *sopt) 2454 { 2455 struct ip6_pktopts *opt = *pktopt; 2456 int error = 0; 2457 struct thread *td = sopt->sopt_td; 2458 2459 /* turn off any old options. */ 2460 if (opt) { 2461 #ifdef DIAGNOSTIC 2462 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2463 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2464 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2465 printf("ip6_pcbopts: all specified options are cleared.\n"); 2466 #endif 2467 ip6_clearpktopts(opt, -1); 2468 } else { 2469 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 2470 if (opt == NULL) 2471 return (ENOMEM); 2472 } 2473 *pktopt = NULL; 2474 2475 if (!m || m->m_len == 0) { 2476 /* 2477 * Only turning off any previous options, regardless of 2478 * whether the opt is just created or given. 2479 */ 2480 free(opt, M_IP6OPT); 2481 return (0); 2482 } 2483 2484 /* set options specified by user. */ 2485 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2486 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2487 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2488 free(opt, M_IP6OPT); 2489 return (error); 2490 } 2491 *pktopt = opt; 2492 return (0); 2493 } 2494 2495 /* 2496 * initialize ip6_pktopts. beware that there are non-zero default values in 2497 * the struct. 2498 */ 2499 void 2500 ip6_initpktopts(struct ip6_pktopts *opt) 2501 { 2502 2503 bzero(opt, sizeof(*opt)); 2504 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2505 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2506 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2507 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2508 } 2509 2510 static int 2511 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2512 struct ucred *cred, int uproto) 2513 { 2514 struct ip6_pktopts *opt; 2515 2516 if (*pktopt == NULL) { 2517 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2518 M_NOWAIT); 2519 if (*pktopt == NULL) 2520 return (ENOBUFS); 2521 ip6_initpktopts(*pktopt); 2522 } 2523 opt = *pktopt; 2524 2525 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2526 } 2527 2528 #define GET_PKTOPT_VAR(field, lenexpr) do { \ 2529 if (pktopt && pktopt->field) { \ 2530 INP_RUNLOCK(inp); \ 2531 optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \ 2532 malloc_optdata = true; \ 2533 INP_RLOCK(inp); \ 2534 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { \ 2535 INP_RUNLOCK(inp); \ 2536 free(optdata, M_TEMP); \ 2537 return (ECONNRESET); \ 2538 } \ 2539 pktopt = inp->in6p_outputopts; \ 2540 if (pktopt && pktopt->field) { \ 2541 optdatalen = min(lenexpr, sopt->sopt_valsize); \ 2542 bcopy(&pktopt->field, optdata, optdatalen); \ 2543 } else { \ 2544 free(optdata, M_TEMP); \ 2545 optdata = NULL; \ 2546 malloc_optdata = false; \ 2547 } \ 2548 } \ 2549 } while(0) 2550 2551 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \ 2552 (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3) 2553 2554 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \ 2555 pktopt->field->sa_len) 2556 2557 static int 2558 ip6_getpcbopt(struct inpcb *inp, int optname, struct sockopt *sopt) 2559 { 2560 void *optdata = NULL; 2561 bool malloc_optdata = false; 2562 int optdatalen = 0; 2563 int error = 0; 2564 struct in6_pktinfo null_pktinfo; 2565 int deftclass = 0, on; 2566 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2567 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2568 struct ip6_pktopts *pktopt; 2569 2570 INP_RLOCK(inp); 2571 pktopt = inp->in6p_outputopts; 2572 2573 switch (optname) { 2574 case IPV6_PKTINFO: 2575 optdata = (void *)&null_pktinfo; 2576 if (pktopt && pktopt->ip6po_pktinfo) { 2577 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2578 sizeof(null_pktinfo)); 2579 in6_clearscope(&null_pktinfo.ipi6_addr); 2580 } else { 2581 /* XXX: we don't have to do this every time... */ 2582 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2583 } 2584 optdatalen = sizeof(struct in6_pktinfo); 2585 break; 2586 case IPV6_TCLASS: 2587 if (pktopt && pktopt->ip6po_tclass >= 0) 2588 deftclass = pktopt->ip6po_tclass; 2589 optdata = (void *)&deftclass; 2590 optdatalen = sizeof(int); 2591 break; 2592 case IPV6_HOPOPTS: 2593 GET_PKTOPT_EXT_HDR(ip6po_hbh); 2594 break; 2595 case IPV6_RTHDR: 2596 GET_PKTOPT_EXT_HDR(ip6po_rthdr); 2597 break; 2598 case IPV6_RTHDRDSTOPTS: 2599 GET_PKTOPT_EXT_HDR(ip6po_dest1); 2600 break; 2601 case IPV6_DSTOPTS: 2602 GET_PKTOPT_EXT_HDR(ip6po_dest2); 2603 break; 2604 case IPV6_NEXTHOP: 2605 GET_PKTOPT_SOCKADDR(ip6po_nexthop); 2606 break; 2607 case IPV6_USE_MIN_MTU: 2608 if (pktopt) 2609 defminmtu = pktopt->ip6po_minmtu; 2610 optdata = (void *)&defminmtu; 2611 optdatalen = sizeof(int); 2612 break; 2613 case IPV6_DONTFRAG: 2614 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2615 on = 1; 2616 else 2617 on = 0; 2618 optdata = (void *)&on; 2619 optdatalen = sizeof(on); 2620 break; 2621 case IPV6_PREFER_TEMPADDR: 2622 if (pktopt) 2623 defpreftemp = pktopt->ip6po_prefer_tempaddr; 2624 optdata = (void *)&defpreftemp; 2625 optdatalen = sizeof(int); 2626 break; 2627 default: /* should not happen */ 2628 #ifdef DIAGNOSTIC 2629 panic("ip6_getpcbopt: unexpected option\n"); 2630 #endif 2631 INP_RUNLOCK(inp); 2632 return (ENOPROTOOPT); 2633 } 2634 INP_RUNLOCK(inp); 2635 2636 error = sooptcopyout(sopt, optdata, optdatalen); 2637 if (malloc_optdata) 2638 free(optdata, M_TEMP); 2639 2640 return (error); 2641 } 2642 2643 void 2644 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2645 { 2646 if (pktopt == NULL) 2647 return; 2648 2649 if (optname == -1 || optname == IPV6_PKTINFO) { 2650 if (pktopt->ip6po_pktinfo) 2651 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2652 pktopt->ip6po_pktinfo = NULL; 2653 } 2654 if (optname == -1 || optname == IPV6_HOPLIMIT) 2655 pktopt->ip6po_hlim = -1; 2656 if (optname == -1 || optname == IPV6_TCLASS) 2657 pktopt->ip6po_tclass = -1; 2658 if (optname == -1 || optname == IPV6_NEXTHOP) { 2659 if (pktopt->ip6po_nextroute.ro_nh) { 2660 NH_FREE(pktopt->ip6po_nextroute.ro_nh); 2661 pktopt->ip6po_nextroute.ro_nh = NULL; 2662 } 2663 if (pktopt->ip6po_nexthop) 2664 free(pktopt->ip6po_nexthop, M_IP6OPT); 2665 pktopt->ip6po_nexthop = NULL; 2666 } 2667 if (optname == -1 || optname == IPV6_HOPOPTS) { 2668 if (pktopt->ip6po_hbh) 2669 free(pktopt->ip6po_hbh, M_IP6OPT); 2670 pktopt->ip6po_hbh = NULL; 2671 } 2672 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2673 if (pktopt->ip6po_dest1) 2674 free(pktopt->ip6po_dest1, M_IP6OPT); 2675 pktopt->ip6po_dest1 = NULL; 2676 } 2677 if (optname == -1 || optname == IPV6_RTHDR) { 2678 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2679 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2680 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2681 if (pktopt->ip6po_route.ro_nh) { 2682 NH_FREE(pktopt->ip6po_route.ro_nh); 2683 pktopt->ip6po_route.ro_nh = NULL; 2684 } 2685 } 2686 if (optname == -1 || optname == IPV6_DSTOPTS) { 2687 if (pktopt->ip6po_dest2) 2688 free(pktopt->ip6po_dest2, M_IP6OPT); 2689 pktopt->ip6po_dest2 = NULL; 2690 } 2691 } 2692 2693 #define PKTOPT_EXTHDRCPY(type) \ 2694 do {\ 2695 if (src->type) {\ 2696 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2697 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2698 if (dst->type == NULL)\ 2699 goto bad;\ 2700 bcopy(src->type, dst->type, hlen);\ 2701 }\ 2702 } while (/*CONSTCOND*/ 0) 2703 2704 static int 2705 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2706 { 2707 if (dst == NULL || src == NULL) { 2708 printf("ip6_clearpktopts: invalid argument\n"); 2709 return (EINVAL); 2710 } 2711 2712 dst->ip6po_hlim = src->ip6po_hlim; 2713 dst->ip6po_tclass = src->ip6po_tclass; 2714 dst->ip6po_flags = src->ip6po_flags; 2715 dst->ip6po_minmtu = src->ip6po_minmtu; 2716 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2717 if (src->ip6po_pktinfo) { 2718 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2719 M_IP6OPT, canwait); 2720 if (dst->ip6po_pktinfo == NULL) 2721 goto bad; 2722 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2723 } 2724 if (src->ip6po_nexthop) { 2725 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2726 M_IP6OPT, canwait); 2727 if (dst->ip6po_nexthop == NULL) 2728 goto bad; 2729 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2730 src->ip6po_nexthop->sa_len); 2731 } 2732 PKTOPT_EXTHDRCPY(ip6po_hbh); 2733 PKTOPT_EXTHDRCPY(ip6po_dest1); 2734 PKTOPT_EXTHDRCPY(ip6po_dest2); 2735 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2736 return (0); 2737 2738 bad: 2739 ip6_clearpktopts(dst, -1); 2740 return (ENOBUFS); 2741 } 2742 #undef PKTOPT_EXTHDRCPY 2743 2744 struct ip6_pktopts * 2745 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2746 { 2747 int error; 2748 struct ip6_pktopts *dst; 2749 2750 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2751 if (dst == NULL) 2752 return (NULL); 2753 ip6_initpktopts(dst); 2754 2755 if ((error = copypktopts(dst, src, canwait)) != 0) { 2756 free(dst, M_IP6OPT); 2757 return (NULL); 2758 } 2759 2760 return (dst); 2761 } 2762 2763 void 2764 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2765 { 2766 if (pktopt == NULL) 2767 return; 2768 2769 ip6_clearpktopts(pktopt, -1); 2770 2771 free(pktopt, M_IP6OPT); 2772 } 2773 2774 /* 2775 * Set IPv6 outgoing packet options based on advanced API. 2776 */ 2777 int 2778 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2779 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2780 { 2781 struct cmsghdr *cm = NULL; 2782 2783 if (control == NULL || opt == NULL) 2784 return (EINVAL); 2785 2786 ip6_initpktopts(opt); 2787 if (stickyopt) { 2788 int error; 2789 2790 /* 2791 * If stickyopt is provided, make a local copy of the options 2792 * for this particular packet, then override them by ancillary 2793 * objects. 2794 * XXX: copypktopts() does not copy the cached route to a next 2795 * hop (if any). This is not very good in terms of efficiency, 2796 * but we can allow this since this option should be rarely 2797 * used. 2798 */ 2799 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2800 return (error); 2801 } 2802 2803 /* 2804 * XXX: Currently, we assume all the optional information is stored 2805 * in a single mbuf. 2806 */ 2807 if (control->m_next) 2808 return (EINVAL); 2809 2810 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2811 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2812 int error; 2813 2814 if (control->m_len < CMSG_LEN(0)) 2815 return (EINVAL); 2816 2817 cm = mtod(control, struct cmsghdr *); 2818 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2819 return (EINVAL); 2820 if (cm->cmsg_level != IPPROTO_IPV6) 2821 continue; 2822 2823 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2824 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2825 if (error) 2826 return (error); 2827 } 2828 2829 return (0); 2830 } 2831 2832 /* 2833 * Set a particular packet option, as a sticky option or an ancillary data 2834 * item. "len" can be 0 only when it's a sticky option. 2835 * We have 4 cases of combination of "sticky" and "cmsg": 2836 * "sticky=0, cmsg=0": impossible 2837 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2838 * "sticky=1, cmsg=0": RFC3542 socket option 2839 * "sticky=1, cmsg=1": RFC2292 socket option 2840 */ 2841 static int 2842 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2843 struct ucred *cred, int sticky, int cmsg, int uproto) 2844 { 2845 int minmtupolicy, preftemp; 2846 int error; 2847 2848 if (!sticky && !cmsg) { 2849 #ifdef DIAGNOSTIC 2850 printf("ip6_setpktopt: impossible case\n"); 2851 #endif 2852 return (EINVAL); 2853 } 2854 2855 /* 2856 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2857 * not be specified in the context of RFC3542. Conversely, 2858 * RFC3542 types should not be specified in the context of RFC2292. 2859 */ 2860 if (!cmsg) { 2861 switch (optname) { 2862 case IPV6_2292PKTINFO: 2863 case IPV6_2292HOPLIMIT: 2864 case IPV6_2292NEXTHOP: 2865 case IPV6_2292HOPOPTS: 2866 case IPV6_2292DSTOPTS: 2867 case IPV6_2292RTHDR: 2868 case IPV6_2292PKTOPTIONS: 2869 return (ENOPROTOOPT); 2870 } 2871 } 2872 if (sticky && cmsg) { 2873 switch (optname) { 2874 case IPV6_PKTINFO: 2875 case IPV6_HOPLIMIT: 2876 case IPV6_NEXTHOP: 2877 case IPV6_HOPOPTS: 2878 case IPV6_DSTOPTS: 2879 case IPV6_RTHDRDSTOPTS: 2880 case IPV6_RTHDR: 2881 case IPV6_USE_MIN_MTU: 2882 case IPV6_DONTFRAG: 2883 case IPV6_TCLASS: 2884 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2885 return (ENOPROTOOPT); 2886 } 2887 } 2888 2889 switch (optname) { 2890 case IPV6_2292PKTINFO: 2891 case IPV6_PKTINFO: 2892 { 2893 struct ifnet *ifp = NULL; 2894 struct in6_pktinfo *pktinfo; 2895 2896 if (len != sizeof(struct in6_pktinfo)) 2897 return (EINVAL); 2898 2899 pktinfo = (struct in6_pktinfo *)buf; 2900 2901 /* 2902 * An application can clear any sticky IPV6_PKTINFO option by 2903 * doing a "regular" setsockopt with ipi6_addr being 2904 * in6addr_any and ipi6_ifindex being zero. 2905 * [RFC 3542, Section 6] 2906 */ 2907 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2908 pktinfo->ipi6_ifindex == 0 && 2909 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2910 ip6_clearpktopts(opt, optname); 2911 break; 2912 } 2913 2914 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2915 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2916 return (EINVAL); 2917 } 2918 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2919 return (EINVAL); 2920 /* validate the interface index if specified. */ 2921 if (pktinfo->ipi6_ifindex > V_if_index) 2922 return (ENXIO); 2923 if (pktinfo->ipi6_ifindex) { 2924 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2925 if (ifp == NULL) 2926 return (ENXIO); 2927 } 2928 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2929 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2930 return (ENETDOWN); 2931 2932 if (ifp != NULL && 2933 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2934 struct in6_ifaddr *ia; 2935 2936 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2937 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2938 if (ia == NULL) 2939 return (EADDRNOTAVAIL); 2940 ifa_free(&ia->ia_ifa); 2941 } 2942 /* 2943 * We store the address anyway, and let in6_selectsrc() 2944 * validate the specified address. This is because ipi6_addr 2945 * may not have enough information about its scope zone, and 2946 * we may need additional information (such as outgoing 2947 * interface or the scope zone of a destination address) to 2948 * disambiguate the scope. 2949 * XXX: the delay of the validation may confuse the 2950 * application when it is used as a sticky option. 2951 */ 2952 if (opt->ip6po_pktinfo == NULL) { 2953 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2954 M_IP6OPT, M_NOWAIT); 2955 if (opt->ip6po_pktinfo == NULL) 2956 return (ENOBUFS); 2957 } 2958 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2959 break; 2960 } 2961 2962 case IPV6_2292HOPLIMIT: 2963 case IPV6_HOPLIMIT: 2964 { 2965 int *hlimp; 2966 2967 /* 2968 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2969 * to simplify the ordering among hoplimit options. 2970 */ 2971 if (optname == IPV6_HOPLIMIT && sticky) 2972 return (ENOPROTOOPT); 2973 2974 if (len != sizeof(int)) 2975 return (EINVAL); 2976 hlimp = (int *)buf; 2977 if (*hlimp < -1 || *hlimp > 255) 2978 return (EINVAL); 2979 2980 opt->ip6po_hlim = *hlimp; 2981 break; 2982 } 2983 2984 case IPV6_TCLASS: 2985 { 2986 int tclass; 2987 2988 if (len != sizeof(int)) 2989 return (EINVAL); 2990 tclass = *(int *)buf; 2991 if (tclass < -1 || tclass > 255) 2992 return (EINVAL); 2993 2994 opt->ip6po_tclass = tclass; 2995 break; 2996 } 2997 2998 case IPV6_2292NEXTHOP: 2999 case IPV6_NEXTHOP: 3000 if (cred != NULL) { 3001 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3002 if (error) 3003 return (error); 3004 } 3005 3006 if (len == 0) { /* just remove the option */ 3007 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3008 break; 3009 } 3010 3011 /* check if cmsg_len is large enough for sa_len */ 3012 if (len < sizeof(struct sockaddr) || len < *buf) 3013 return (EINVAL); 3014 3015 switch (((struct sockaddr *)buf)->sa_family) { 3016 case AF_INET6: 3017 { 3018 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3019 int error; 3020 3021 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3022 return (EINVAL); 3023 3024 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3025 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3026 return (EINVAL); 3027 } 3028 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 3029 != 0) { 3030 return (error); 3031 } 3032 break; 3033 } 3034 case AF_LINK: /* should eventually be supported */ 3035 default: 3036 return (EAFNOSUPPORT); 3037 } 3038 3039 /* turn off the previous option, then set the new option. */ 3040 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3041 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3042 if (opt->ip6po_nexthop == NULL) 3043 return (ENOBUFS); 3044 bcopy(buf, opt->ip6po_nexthop, *buf); 3045 break; 3046 3047 case IPV6_2292HOPOPTS: 3048 case IPV6_HOPOPTS: 3049 { 3050 struct ip6_hbh *hbh; 3051 int hbhlen; 3052 3053 /* 3054 * XXX: We don't allow a non-privileged user to set ANY HbH 3055 * options, since per-option restriction has too much 3056 * overhead. 3057 */ 3058 if (cred != NULL) { 3059 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3060 if (error) 3061 return (error); 3062 } 3063 3064 if (len == 0) { 3065 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3066 break; /* just remove the option */ 3067 } 3068 3069 /* message length validation */ 3070 if (len < sizeof(struct ip6_hbh)) 3071 return (EINVAL); 3072 hbh = (struct ip6_hbh *)buf; 3073 hbhlen = (hbh->ip6h_len + 1) << 3; 3074 if (len != hbhlen) 3075 return (EINVAL); 3076 3077 /* turn off the previous option, then set the new option. */ 3078 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3079 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3080 if (opt->ip6po_hbh == NULL) 3081 return (ENOBUFS); 3082 bcopy(hbh, opt->ip6po_hbh, hbhlen); 3083 3084 break; 3085 } 3086 3087 case IPV6_2292DSTOPTS: 3088 case IPV6_DSTOPTS: 3089 case IPV6_RTHDRDSTOPTS: 3090 { 3091 struct ip6_dest *dest, **newdest = NULL; 3092 int destlen; 3093 3094 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 3095 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3096 if (error) 3097 return (error); 3098 } 3099 3100 if (len == 0) { 3101 ip6_clearpktopts(opt, optname); 3102 break; /* just remove the option */ 3103 } 3104 3105 /* message length validation */ 3106 if (len < sizeof(struct ip6_dest)) 3107 return (EINVAL); 3108 dest = (struct ip6_dest *)buf; 3109 destlen = (dest->ip6d_len + 1) << 3; 3110 if (len != destlen) 3111 return (EINVAL); 3112 3113 /* 3114 * Determine the position that the destination options header 3115 * should be inserted; before or after the routing header. 3116 */ 3117 switch (optname) { 3118 case IPV6_2292DSTOPTS: 3119 /* 3120 * The old advacned API is ambiguous on this point. 3121 * Our approach is to determine the position based 3122 * according to the existence of a routing header. 3123 * Note, however, that this depends on the order of the 3124 * extension headers in the ancillary data; the 1st 3125 * part of the destination options header must appear 3126 * before the routing header in the ancillary data, 3127 * too. 3128 * RFC3542 solved the ambiguity by introducing 3129 * separate ancillary data or option types. 3130 */ 3131 if (opt->ip6po_rthdr == NULL) 3132 newdest = &opt->ip6po_dest1; 3133 else 3134 newdest = &opt->ip6po_dest2; 3135 break; 3136 case IPV6_RTHDRDSTOPTS: 3137 newdest = &opt->ip6po_dest1; 3138 break; 3139 case IPV6_DSTOPTS: 3140 newdest = &opt->ip6po_dest2; 3141 break; 3142 } 3143 3144 /* turn off the previous option, then set the new option. */ 3145 ip6_clearpktopts(opt, optname); 3146 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3147 if (*newdest == NULL) 3148 return (ENOBUFS); 3149 bcopy(dest, *newdest, destlen); 3150 3151 break; 3152 } 3153 3154 case IPV6_2292RTHDR: 3155 case IPV6_RTHDR: 3156 { 3157 struct ip6_rthdr *rth; 3158 int rthlen; 3159 3160 if (len == 0) { 3161 ip6_clearpktopts(opt, IPV6_RTHDR); 3162 break; /* just remove the option */ 3163 } 3164 3165 /* message length validation */ 3166 if (len < sizeof(struct ip6_rthdr)) 3167 return (EINVAL); 3168 rth = (struct ip6_rthdr *)buf; 3169 rthlen = (rth->ip6r_len + 1) << 3; 3170 if (len != rthlen) 3171 return (EINVAL); 3172 3173 switch (rth->ip6r_type) { 3174 case IPV6_RTHDR_TYPE_0: 3175 if (rth->ip6r_len == 0) /* must contain one addr */ 3176 return (EINVAL); 3177 if (rth->ip6r_len % 2) /* length must be even */ 3178 return (EINVAL); 3179 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3180 return (EINVAL); 3181 break; 3182 default: 3183 return (EINVAL); /* not supported */ 3184 } 3185 3186 /* turn off the previous option */ 3187 ip6_clearpktopts(opt, IPV6_RTHDR); 3188 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3189 if (opt->ip6po_rthdr == NULL) 3190 return (ENOBUFS); 3191 bcopy(rth, opt->ip6po_rthdr, rthlen); 3192 3193 break; 3194 } 3195 3196 case IPV6_USE_MIN_MTU: 3197 if (len != sizeof(int)) 3198 return (EINVAL); 3199 minmtupolicy = *(int *)buf; 3200 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3201 minmtupolicy != IP6PO_MINMTU_DISABLE && 3202 minmtupolicy != IP6PO_MINMTU_ALL) { 3203 return (EINVAL); 3204 } 3205 opt->ip6po_minmtu = minmtupolicy; 3206 break; 3207 3208 case IPV6_DONTFRAG: 3209 if (len != sizeof(int)) 3210 return (EINVAL); 3211 3212 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3213 /* 3214 * we ignore this option for TCP sockets. 3215 * (RFC3542 leaves this case unspecified.) 3216 */ 3217 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3218 } else 3219 opt->ip6po_flags |= IP6PO_DONTFRAG; 3220 break; 3221 3222 case IPV6_PREFER_TEMPADDR: 3223 if (len != sizeof(int)) 3224 return (EINVAL); 3225 preftemp = *(int *)buf; 3226 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3227 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3228 preftemp != IP6PO_TEMPADDR_PREFER) { 3229 return (EINVAL); 3230 } 3231 opt->ip6po_prefer_tempaddr = preftemp; 3232 break; 3233 3234 default: 3235 return (ENOPROTOOPT); 3236 } /* end of switch */ 3237 3238 return (0); 3239 } 3240 3241 /* 3242 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3243 * packet to the input queue of a specified interface. Note that this 3244 * calls the output routine of the loopback "driver", but with an interface 3245 * pointer that might NOT be &loif -- easier than replicating that code here. 3246 */ 3247 void 3248 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3249 { 3250 struct mbuf *copym; 3251 struct ip6_hdr *ip6; 3252 3253 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3254 if (copym == NULL) 3255 return; 3256 3257 /* 3258 * Make sure to deep-copy IPv6 header portion in case the data 3259 * is in an mbuf cluster, so that we can safely override the IPv6 3260 * header portion later. 3261 */ 3262 if (!M_WRITABLE(copym) || 3263 copym->m_len < sizeof(struct ip6_hdr)) { 3264 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3265 if (copym == NULL) 3266 return; 3267 } 3268 ip6 = mtod(copym, struct ip6_hdr *); 3269 /* 3270 * clear embedded scope identifiers if necessary. 3271 * in6_clearscope will touch the addresses only when necessary. 3272 */ 3273 in6_clearscope(&ip6->ip6_src); 3274 in6_clearscope(&ip6->ip6_dst); 3275 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3276 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3277 CSUM_PSEUDO_HDR; 3278 copym->m_pkthdr.csum_data = 0xffff; 3279 } 3280 if_simloop(ifp, copym, AF_INET6, 0); 3281 } 3282 3283 /* 3284 * Chop IPv6 header off from the payload. 3285 */ 3286 static int 3287 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3288 { 3289 struct mbuf *mh; 3290 struct ip6_hdr *ip6; 3291 3292 ip6 = mtod(m, struct ip6_hdr *); 3293 if (m->m_len > sizeof(*ip6)) { 3294 mh = m_gethdr(M_NOWAIT, MT_DATA); 3295 if (mh == NULL) { 3296 m_freem(m); 3297 return ENOBUFS; 3298 } 3299 m_move_pkthdr(mh, m); 3300 M_ALIGN(mh, sizeof(*ip6)); 3301 m->m_len -= sizeof(*ip6); 3302 m->m_data += sizeof(*ip6); 3303 mh->m_next = m; 3304 m = mh; 3305 m->m_len = sizeof(*ip6); 3306 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3307 } 3308 exthdrs->ip6e_ip6 = m; 3309 return 0; 3310 } 3311 3312 /* 3313 * Compute IPv6 extension header length. 3314 */ 3315 int 3316 ip6_optlen(struct inpcb *inp) 3317 { 3318 int len; 3319 3320 if (!inp->in6p_outputopts) 3321 return 0; 3322 3323 len = 0; 3324 #define elen(x) \ 3325 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3326 3327 len += elen(inp->in6p_outputopts->ip6po_hbh); 3328 if (inp->in6p_outputopts->ip6po_rthdr) 3329 /* dest1 is valid with rthdr only */ 3330 len += elen(inp->in6p_outputopts->ip6po_dest1); 3331 len += elen(inp->in6p_outputopts->ip6po_rthdr); 3332 len += elen(inp->in6p_outputopts->ip6po_dest2); 3333 return len; 3334 #undef elen 3335 } 3336