1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 32 */ 33 34 /*- 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ipsec.h" 71 #include "opt_kern_tls.h" 72 #include "opt_ratelimit.h" 73 #include "opt_route.h" 74 #include "opt_rss.h" 75 #include "opt_sctp.h" 76 77 #include <sys/param.h> 78 #include <sys/kernel.h> 79 #include <sys/ktls.h> 80 #include <sys/malloc.h> 81 #include <sys/mbuf.h> 82 #include <sys/errno.h> 83 #include <sys/priv.h> 84 #include <sys/proc.h> 85 #include <sys/protosw.h> 86 #include <sys/socket.h> 87 #include <sys/socketvar.h> 88 #include <sys/syslog.h> 89 #include <sys/ucred.h> 90 91 #include <machine/in_cksum.h> 92 93 #include <net/if.h> 94 #include <net/if_var.h> 95 #include <net/if_llatbl.h> 96 #include <net/netisr.h> 97 #include <net/route.h> 98 #include <net/pfil.h> 99 #include <net/rss_config.h> 100 #include <net/vnet.h> 101 102 #include <netinet/in.h> 103 #include <netinet/in_var.h> 104 #include <netinet/ip_var.h> 105 #include <netinet6/in6_fib.h> 106 #include <netinet6/in6_var.h> 107 #include <netinet/ip6.h> 108 #include <netinet/icmp6.h> 109 #include <netinet6/ip6_var.h> 110 #include <netinet/in_pcb.h> 111 #include <netinet/tcp_var.h> 112 #include <netinet6/nd6.h> 113 #include <netinet6/in6_rss.h> 114 115 #include <netipsec/ipsec_support.h> 116 #ifdef SCTP 117 #include <netinet/sctp.h> 118 #include <netinet/sctp_crc32.h> 119 #endif 120 121 #include <netinet6/ip6protosw.h> 122 #include <netinet6/scope6_var.h> 123 124 extern int in6_mcast_loop; 125 126 struct ip6_exthdrs { 127 struct mbuf *ip6e_ip6; 128 struct mbuf *ip6e_hbh; 129 struct mbuf *ip6e_dest1; 130 struct mbuf *ip6e_rthdr; 131 struct mbuf *ip6e_dest2; 132 }; 133 134 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 135 136 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 137 struct ucred *, int); 138 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 139 struct socket *, struct sockopt *); 140 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *); 141 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 142 struct ucred *, int, int, int); 143 144 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 145 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 146 struct ip6_frag **); 147 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 148 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 149 static int ip6_getpmtu(struct route_in6 *, int, 150 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 151 u_int); 152 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 153 u_long *, int *, u_int); 154 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 155 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 156 157 158 /* 159 * Make an extension header from option data. hp is the source, 160 * mp is the destination, and _ol is the optlen. 161 */ 162 #define MAKE_EXTHDR(hp, mp, _ol) \ 163 do { \ 164 if (hp) { \ 165 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 166 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 167 ((eh)->ip6e_len + 1) << 3); \ 168 if (error) \ 169 goto freehdrs; \ 170 (_ol) += (*(mp))->m_len; \ 171 } \ 172 } while (/*CONSTCOND*/ 0) 173 174 /* 175 * Form a chain of extension headers. 176 * m is the extension header mbuf 177 * mp is the previous mbuf in the chain 178 * p is the next header 179 * i is the type of option. 180 */ 181 #define MAKE_CHAIN(m, mp, p, i)\ 182 do {\ 183 if (m) {\ 184 if (!hdrsplit) \ 185 panic("%s:%d: assumption failed: "\ 186 "hdr not split: hdrsplit %d exthdrs %p",\ 187 __func__, __LINE__, hdrsplit, &exthdrs);\ 188 *mtod((m), u_char *) = *(p);\ 189 *(p) = (i);\ 190 p = mtod((m), u_char *);\ 191 (m)->m_next = (mp)->m_next;\ 192 (mp)->m_next = (m);\ 193 (mp) = (m);\ 194 }\ 195 } while (/*CONSTCOND*/ 0) 196 197 void 198 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 199 { 200 u_short csum; 201 202 csum = in_cksum_skip(m, offset + plen, offset); 203 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 204 csum = 0xffff; 205 offset += m->m_pkthdr.csum_data; /* checksum offset */ 206 207 if (offset + sizeof(csum) > m->m_len) 208 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 209 else 210 *(u_short *)mtodo(m, offset) = csum; 211 } 212 213 static int 214 ip6_output_delayed_csum(struct mbuf *m, struct ifnet *ifp, int csum_flags, 215 int plen, int optlen, bool frag) 216 { 217 218 KASSERT((plen >= optlen), ("%s:%d: plen %d < optlen %d, m %p, ifp %p " 219 "csum_flags %#x frag %d\n", 220 __func__, __LINE__, plen, optlen, m, ifp, csum_flags, frag)); 221 222 if ((csum_flags & CSUM_DELAY_DATA_IPV6) || 223 #ifdef SCTP 224 (csum_flags & CSUM_SCTP_IPV6) || 225 #endif 226 (!frag && (ifp->if_capenable & IFCAP_NOMAP) == 0)) { 227 m = mb_unmapped_to_ext(m); 228 if (m == NULL) { 229 if (frag) 230 in6_ifstat_inc(ifp, ifs6_out_fragfail); 231 else 232 IP6STAT_INC(ip6s_odropped); 233 return (ENOBUFS); 234 } 235 if (csum_flags & CSUM_DELAY_DATA_IPV6) { 236 in6_delayed_cksum(m, plen - optlen, 237 sizeof(struct ip6_hdr) + optlen); 238 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 239 } 240 #ifdef SCTP 241 if (csum_flags & CSUM_SCTP_IPV6) { 242 sctp_delayed_cksum(m, sizeof(struct ip6_hdr) + optlen); 243 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 244 } 245 #endif 246 } 247 248 return (0); 249 } 250 251 int 252 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 253 int fraglen , uint32_t id) 254 { 255 struct mbuf *m, **mnext, *m_frgpart; 256 struct ip6_hdr *ip6, *mhip6; 257 struct ip6_frag *ip6f; 258 int off; 259 int error; 260 int tlen = m0->m_pkthdr.len; 261 262 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); 263 264 m = m0; 265 ip6 = mtod(m, struct ip6_hdr *); 266 mnext = &m->m_nextpkt; 267 268 for (off = hlen; off < tlen; off += fraglen) { 269 m = m_gethdr(M_NOWAIT, MT_DATA); 270 if (!m) { 271 IP6STAT_INC(ip6s_odropped); 272 return (ENOBUFS); 273 } 274 275 /* 276 * Make sure the complete packet header gets copied 277 * from the originating mbuf to the newly created 278 * mbuf. This also ensures that existing firewall 279 * classification(s), VLAN tags and so on get copied 280 * to the resulting fragmented packet(s): 281 */ 282 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 283 m_free(m); 284 IP6STAT_INC(ip6s_odropped); 285 return (ENOBUFS); 286 } 287 288 *mnext = m; 289 mnext = &m->m_nextpkt; 290 m->m_data += max_linkhdr; 291 mhip6 = mtod(m, struct ip6_hdr *); 292 *mhip6 = *ip6; 293 m->m_len = sizeof(*mhip6); 294 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 295 if (error) { 296 IP6STAT_INC(ip6s_odropped); 297 return (error); 298 } 299 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 300 if (off + fraglen >= tlen) 301 fraglen = tlen - off; 302 else 303 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 304 mhip6->ip6_plen = htons((u_short)(fraglen + hlen + 305 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 306 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { 307 IP6STAT_INC(ip6s_odropped); 308 return (ENOBUFS); 309 } 310 m_cat(m, m_frgpart); 311 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); 312 ip6f->ip6f_reserved = 0; 313 ip6f->ip6f_ident = id; 314 ip6f->ip6f_nxt = nextproto; 315 IP6STAT_INC(ip6s_ofragments); 316 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 317 } 318 319 return (0); 320 } 321 322 static int 323 ip6_output_send(struct inpcb *inp, struct ifnet *ifp, struct ifnet *origifp, 324 struct mbuf *m, struct sockaddr_in6 *dst, struct route_in6 *ro) 325 { 326 #ifdef KERN_TLS 327 struct ktls_session *tls = NULL; 328 #endif 329 struct m_snd_tag *mst; 330 int error; 331 332 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 333 mst = NULL; 334 335 #ifdef KERN_TLS 336 /* 337 * If this is an unencrypted TLS record, save a reference to 338 * the record. This local reference is used to call 339 * ktls_output_eagain after the mbuf has been freed (thus 340 * dropping the mbuf's reference) in if_output. 341 */ 342 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 343 tls = ktls_hold(m->m_next->m_ext.ext_pgs->tls); 344 mst = tls->snd_tag; 345 346 /* 347 * If a TLS session doesn't have a valid tag, it must 348 * have had an earlier ifp mismatch, so drop this 349 * packet. 350 */ 351 if (mst == NULL) { 352 error = EAGAIN; 353 goto done; 354 } 355 } 356 #endif 357 #ifdef RATELIMIT 358 if (inp != NULL && mst == NULL) { 359 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 360 (inp->inp_snd_tag != NULL && 361 inp->inp_snd_tag->ifp != ifp)) 362 in_pcboutput_txrtlmt(inp, ifp, m); 363 364 if (inp->inp_snd_tag != NULL) 365 mst = inp->inp_snd_tag; 366 } 367 #endif 368 if (mst != NULL) { 369 KASSERT(m->m_pkthdr.rcvif == NULL, 370 ("trying to add a send tag to a forwarded packet")); 371 if (mst->ifp != ifp) { 372 error = EAGAIN; 373 goto done; 374 } 375 376 /* stamp send tag on mbuf */ 377 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 378 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 379 } 380 381 error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro); 382 383 done: 384 /* Check for route change invalidating send tags. */ 385 #ifdef KERN_TLS 386 if (tls != NULL) { 387 if (error == EAGAIN) 388 error = ktls_output_eagain(inp, tls); 389 ktls_free(tls); 390 } 391 #endif 392 #ifdef RATELIMIT 393 if (error == EAGAIN) 394 in_pcboutput_eagain(inp); 395 #endif 396 return (error); 397 } 398 399 /* 400 * IP6 output. 401 * The packet in mbuf chain m contains a skeletal IP6 header (with pri, len, 402 * nxt, hlim, src, dst). 403 * This function may modify ver and hlim only. 404 * The mbuf chain containing the packet will be freed. 405 * The mbuf opt, if present, will not be freed. 406 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 407 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 408 * then result of route lookup is stored in ro->ro_rt. 409 * 410 * Type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and nd_ifinfo.linkmtu 411 * is uint32_t. So we use u_long to hold largest one, which is rt_mtu. 412 * 413 * ifpp - XXX: just for statistics 414 */ 415 /* 416 * XXX TODO: no flowid is assigned for outbound flows? 417 */ 418 int 419 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 420 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 421 struct ifnet **ifpp, struct inpcb *inp) 422 { 423 struct ip6_hdr *ip6; 424 struct ifnet *ifp, *origifp; 425 struct mbuf *m = m0; 426 struct mbuf *mprev; 427 struct route_in6 *ro_pmtu; 428 struct rtentry *rt; 429 struct sockaddr_in6 *dst, sin6, src_sa, dst_sa; 430 struct in6_addr odst; 431 u_char *nexthdrp; 432 int tlen, len; 433 int error = 0; 434 struct in6_ifaddr *ia = NULL; 435 u_long mtu; 436 int alwaysfrag, dontfrag; 437 u_int32_t optlen, plen = 0, unfragpartlen; 438 struct ip6_exthdrs exthdrs; 439 struct in6_addr src0, dst0; 440 u_int32_t zone; 441 bool hdrsplit; 442 int sw_csum, tso; 443 int needfiblookup; 444 uint32_t fibnum; 445 struct m_tag *fwd_tag = NULL; 446 uint32_t id; 447 448 NET_EPOCH_ASSERT(); 449 450 if (inp != NULL) { 451 INP_LOCK_ASSERT(inp); 452 M_SETFIB(m, inp->inp_inc.inc_fibnum); 453 if ((flags & IP_NODEFAULTFLOWID) == 0) { 454 /* Unconditionally set flowid. */ 455 m->m_pkthdr.flowid = inp->inp_flowid; 456 M_HASHTYPE_SET(m, inp->inp_flowtype); 457 } 458 #ifdef NUMA 459 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 460 #endif 461 } 462 463 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 464 /* 465 * IPSec checking which handles several cases. 466 * FAST IPSEC: We re-injected the packet. 467 * XXX: need scope argument. 468 */ 469 if (IPSEC_ENABLED(ipv6)) { 470 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { 471 if (error == EINPROGRESS) 472 error = 0; 473 goto done; 474 } 475 } 476 #endif /* IPSEC */ 477 478 /* Source address validation. */ 479 ip6 = mtod(m, struct ip6_hdr *); 480 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 481 (flags & IPV6_UNSPECSRC) == 0) { 482 error = EOPNOTSUPP; 483 IP6STAT_INC(ip6s_badscope); 484 goto bad; 485 } 486 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 487 error = EOPNOTSUPP; 488 IP6STAT_INC(ip6s_badscope); 489 goto bad; 490 } 491 492 /* 493 * If we are given packet options to add extension headers prepare them. 494 * Calculate the total length of the extension header chain. 495 * Keep the length of the unfragmentable part for fragmentation. 496 */ 497 bzero(&exthdrs, sizeof(exthdrs)); 498 optlen = 0; 499 unfragpartlen = sizeof(struct ip6_hdr); 500 if (opt) { 501 /* Hop-by-Hop options header. */ 502 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh, optlen); 503 504 /* Destination options header (1st part). */ 505 if (opt->ip6po_rthdr) { 506 #ifndef RTHDR_SUPPORT_IMPLEMENTED 507 /* 508 * If there is a routing header, discard the packet 509 * right away here. RH0/1 are obsolete and we do not 510 * currently support RH2/3/4. 511 * People trying to use RH253/254 may want to disable 512 * this check. 513 * The moment we do support any routing header (again) 514 * this block should check the routing type more 515 * selectively. 516 */ 517 error = EINVAL; 518 goto bad; 519 #endif 520 521 /* 522 * Destination options header (1st part). 523 * This only makes sense with a routing header. 524 * See Section 9.2 of RFC 3542. 525 * Disabling this part just for MIP6 convenience is 526 * a bad idea. We need to think carefully about a 527 * way to make the advanced API coexist with MIP6 528 * options, which might automatically be inserted in 529 * the kernel. 530 */ 531 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1, 532 optlen); 533 } 534 /* Routing header. */ 535 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr, optlen); 536 537 unfragpartlen += optlen; 538 539 /* 540 * NOTE: we don't add AH/ESP length here (done in 541 * ip6_ipsec_output()). 542 */ 543 544 /* Destination options header (2nd part). */ 545 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2, optlen); 546 } 547 548 /* 549 * If there is at least one extension header, 550 * separate IP6 header from the payload. 551 */ 552 hdrsplit = false; 553 if (optlen) { 554 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 555 m = NULL; 556 goto freehdrs; 557 } 558 m = exthdrs.ip6e_ip6; 559 ip6 = mtod(m, struct ip6_hdr *); 560 hdrsplit = true; 561 } 562 563 /* Adjust mbuf packet header length. */ 564 m->m_pkthdr.len += optlen; 565 plen = m->m_pkthdr.len - sizeof(*ip6); 566 567 /* If this is a jumbo payload, insert a jumbo payload option. */ 568 if (plen > IPV6_MAXPACKET) { 569 if (!hdrsplit) { 570 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 571 m = NULL; 572 goto freehdrs; 573 } 574 m = exthdrs.ip6e_ip6; 575 ip6 = mtod(m, struct ip6_hdr *); 576 hdrsplit = true; 577 } 578 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 579 goto freehdrs; 580 ip6->ip6_plen = 0; 581 } else 582 ip6->ip6_plen = htons(plen); 583 nexthdrp = &ip6->ip6_nxt; 584 585 if (optlen) { 586 /* 587 * Concatenate headers and fill in next header fields. 588 * Here we have, on "m" 589 * IPv6 payload 590 * and we insert headers accordingly. 591 * Finally, we should be getting: 592 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]. 593 * 594 * During the header composing process "m" points to IPv6 595 * header. "mprev" points to an extension header prior to esp. 596 */ 597 mprev = m; 598 599 /* 600 * We treat dest2 specially. This makes IPsec processing 601 * much easier. The goal here is to make mprev point the 602 * mbuf prior to dest2. 603 * 604 * Result: IPv6 dest2 payload. 605 * m and mprev will point to IPv6 header. 606 */ 607 if (exthdrs.ip6e_dest2) { 608 if (!hdrsplit) 609 panic("%s:%d: assumption failed: " 610 "hdr not split: hdrsplit %d exthdrs %p", 611 __func__, __LINE__, hdrsplit, &exthdrs); 612 exthdrs.ip6e_dest2->m_next = m->m_next; 613 m->m_next = exthdrs.ip6e_dest2; 614 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 615 ip6->ip6_nxt = IPPROTO_DSTOPTS; 616 } 617 618 /* 619 * Result: IPv6 hbh dest1 rthdr dest2 payload. 620 * m will point to IPv6 header. mprev will point to the 621 * extension header prior to dest2 (rthdr in the above case). 622 */ 623 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 624 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 625 IPPROTO_DSTOPTS); 626 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 627 IPPROTO_ROUTING); 628 } 629 630 IP6STAT_INC(ip6s_localout); 631 632 /* Route packet. */ 633 ro_pmtu = ro; 634 if (opt && opt->ip6po_rthdr) 635 ro = &opt->ip6po_route; 636 if (ro != NULL) 637 dst = (struct sockaddr_in6 *)&ro->ro_dst; 638 else 639 dst = &sin6; 640 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 641 642 again: 643 /* 644 * If specified, try to fill in the traffic class field. 645 * Do not override if a non-zero value is already set. 646 * We check the diffserv field and the ECN field separately. 647 */ 648 if (opt && opt->ip6po_tclass >= 0) { 649 int mask = 0; 650 651 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 652 mask |= 0xfc; 653 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 654 mask |= 0x03; 655 if (mask != 0) 656 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 657 } 658 659 /* Fill in or override the hop limit field, if necessary. */ 660 if (opt && opt->ip6po_hlim != -1) 661 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 662 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 663 if (im6o != NULL) 664 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 665 else 666 ip6->ip6_hlim = V_ip6_defmcasthlim; 667 } 668 669 if (ro == NULL || ro->ro_rt == NULL) { 670 bzero(dst, sizeof(*dst)); 671 dst->sin6_family = AF_INET6; 672 dst->sin6_len = sizeof(*dst); 673 dst->sin6_addr = ip6->ip6_dst; 674 } 675 /* 676 * Validate route against routing table changes. 677 * Make sure that the address family is set in route. 678 */ 679 rt = NULL; 680 ifp = NULL; 681 mtu = 0; 682 if (ro != NULL) { 683 if (ro->ro_rt != NULL && inp != NULL) { 684 ro->ro_dst.sin6_family = AF_INET6; /* XXX KASSERT? */ 685 RT_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, 686 fibnum); 687 } 688 if (ro->ro_rt != NULL && fwd_tag == NULL && 689 ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 690 ro->ro_rt->rt_ifp == NULL || 691 !RT_LINK_IS_UP(ro->ro_rt->rt_ifp) || 692 ro->ro_dst.sin6_family != AF_INET6 || 693 !IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst))) 694 RO_INVALIDATE_CACHE(ro); 695 696 if (ro->ro_rt != NULL && fwd_tag == NULL && 697 (ro->ro_rt->rt_flags & RTF_UP) && 698 ro->ro_dst.sin6_family == AF_INET6 && 699 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 700 rt = ro->ro_rt; 701 ifp = ro->ro_rt->rt_ifp; 702 } else { 703 if (ro->ro_lle) 704 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 705 ro->ro_lle = NULL; 706 if (fwd_tag == NULL) { 707 bzero(&dst_sa, sizeof(dst_sa)); 708 dst_sa.sin6_family = AF_INET6; 709 dst_sa.sin6_len = sizeof(dst_sa); 710 dst_sa.sin6_addr = ip6->ip6_dst; 711 } 712 error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, 713 &rt, fibnum); 714 if (error != 0) { 715 IP6STAT_INC(ip6s_noroute); 716 if (ifp != NULL) 717 in6_ifstat_inc(ifp, ifs6_out_discard); 718 goto bad; 719 } 720 if (ifp != NULL) 721 mtu = ifp->if_mtu; 722 } 723 if (rt == NULL) { 724 /* 725 * If in6_selectroute() does not return a route entry 726 * dst may not have been updated. 727 */ 728 *dst = dst_sa; /* XXX */ 729 } else { 730 if (rt->rt_flags & RTF_HOST) 731 mtu = rt->rt_mtu; 732 ia = (struct in6_ifaddr *)(rt->rt_ifa); 733 counter_u64_add(rt->rt_pksent, 1); 734 } 735 } else { 736 struct nhop6_extended nh6; 737 struct in6_addr kdst; 738 uint32_t scopeid; 739 740 if (fwd_tag == NULL) { 741 bzero(&dst_sa, sizeof(dst_sa)); 742 dst_sa.sin6_family = AF_INET6; 743 dst_sa.sin6_len = sizeof(dst_sa); 744 dst_sa.sin6_addr = ip6->ip6_dst; 745 } 746 747 if (IN6_IS_ADDR_MULTICAST(&dst_sa.sin6_addr) && 748 im6o != NULL && 749 (ifp = im6o->im6o_multicast_ifp) != NULL) { 750 /* We do not need a route lookup. */ 751 *dst = dst_sa; /* XXX */ 752 goto nonh6lookup; 753 } 754 755 in6_splitscope(&dst_sa.sin6_addr, &kdst, &scopeid); 756 757 if (IN6_IS_ADDR_MC_LINKLOCAL(&dst_sa.sin6_addr) || 758 IN6_IS_ADDR_MC_NODELOCAL(&dst_sa.sin6_addr)) { 759 if (scopeid > 0) { 760 ifp = in6_getlinkifnet(scopeid); 761 *dst = dst_sa; /* XXX */ 762 goto nonh6lookup; 763 } 764 } 765 766 error = fib6_lookup_nh_ext(fibnum, &kdst, scopeid, NHR_REF, 0, 767 &nh6); 768 if (error != 0) { 769 IP6STAT_INC(ip6s_noroute); 770 /* No ifp in6_ifstat_inc(ifp, ifs6_out_discard); */ 771 error = EHOSTUNREACH;; 772 goto bad; 773 } 774 775 ifp = nh6.nh_ifp; 776 mtu = nh6.nh_mtu; 777 dst->sin6_addr = nh6.nh_addr; 778 ia = nh6.nh_ia; 779 fib6_free_nh_ext(fibnum, &nh6); 780 nonh6lookup: 781 ; 782 } 783 784 /* Then rt (for unicast) and ifp must be non-NULL valid values. */ 785 if ((flags & IPV6_FORWARDING) == 0) { 786 /* XXX: the FORWARDING flag can be set for mrouting. */ 787 in6_ifstat_inc(ifp, ifs6_out_request); 788 } 789 790 /* Setup data structures for scope ID checks. */ 791 src0 = ip6->ip6_src; 792 bzero(&src_sa, sizeof(src_sa)); 793 src_sa.sin6_family = AF_INET6; 794 src_sa.sin6_len = sizeof(src_sa); 795 src_sa.sin6_addr = ip6->ip6_src; 796 797 dst0 = ip6->ip6_dst; 798 /* Re-initialize to be sure. */ 799 bzero(&dst_sa, sizeof(dst_sa)); 800 dst_sa.sin6_family = AF_INET6; 801 dst_sa.sin6_len = sizeof(dst_sa); 802 dst_sa.sin6_addr = ip6->ip6_dst; 803 804 /* Check for valid scope ID. */ 805 if (in6_setscope(&src0, ifp, &zone) == 0 && 806 sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id && 807 in6_setscope(&dst0, ifp, &zone) == 0 && 808 sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) { 809 /* 810 * The outgoing interface is in the zone of the source 811 * and destination addresses. 812 * 813 * Because the loopback interface cannot receive 814 * packets with a different scope ID than its own, 815 * there is a trick to pretend the outgoing packet 816 * was received by the real network interface, by 817 * setting "origifp" different from "ifp". This is 818 * only allowed when "ifp" is a loopback network 819 * interface. Refer to code in nd6_output_ifp() for 820 * more details. 821 */ 822 origifp = ifp; 823 824 /* 825 * We should use ia_ifp to support the case of sending 826 * packets to an address of our own. 827 */ 828 if (ia != NULL && ia->ia_ifp) 829 ifp = ia->ia_ifp; 830 831 } else if ((ifp->if_flags & IFF_LOOPBACK) == 0 || 832 sa6_recoverscope(&src_sa) != 0 || 833 sa6_recoverscope(&dst_sa) != 0 || 834 dst_sa.sin6_scope_id == 0 || 835 (src_sa.sin6_scope_id != 0 && 836 src_sa.sin6_scope_id != dst_sa.sin6_scope_id) || 837 (origifp = ifnet_byindex(dst_sa.sin6_scope_id)) == NULL) { 838 /* 839 * If the destination network interface is not a 840 * loopback interface, or the destination network 841 * address has no scope ID, or the source address has 842 * a scope ID set which is different from the 843 * destination address one, or there is no network 844 * interface representing this scope ID, the address 845 * pair is considered invalid. 846 */ 847 IP6STAT_INC(ip6s_badscope); 848 in6_ifstat_inc(ifp, ifs6_out_discard); 849 if (error == 0) 850 error = EHOSTUNREACH; /* XXX */ 851 goto bad; 852 } 853 /* All scope ID checks are successful. */ 854 855 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 856 if (opt && opt->ip6po_nextroute.ro_rt) { 857 /* 858 * The nexthop is explicitly specified by the 859 * application. We assume the next hop is an IPv6 860 * address. 861 */ 862 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 863 } 864 else if ((rt->rt_flags & RTF_GATEWAY)) 865 dst = (struct sockaddr_in6 *)rt->rt_gateway; 866 } 867 868 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 869 m->m_flags &= ~(M_BCAST | M_MCAST); /* Just in case. */ 870 } else { 871 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 872 in6_ifstat_inc(ifp, ifs6_out_mcast); 873 874 /* Confirm that the outgoing interface supports multicast. */ 875 if (!(ifp->if_flags & IFF_MULTICAST)) { 876 IP6STAT_INC(ip6s_noroute); 877 in6_ifstat_inc(ifp, ifs6_out_discard); 878 error = ENETUNREACH; 879 goto bad; 880 } 881 if ((im6o == NULL && in6_mcast_loop) || 882 (im6o && im6o->im6o_multicast_loop)) { 883 /* 884 * Loop back multicast datagram if not expressly 885 * forbidden to do so, even if we have not joined 886 * the address; protocols will filter it later, 887 * thus deferring a hash lookup and lock acquisition 888 * at the expense of an m_copym(). 889 */ 890 ip6_mloopback(ifp, m); 891 } else { 892 /* 893 * If we are acting as a multicast router, perform 894 * multicast forwarding as if the packet had just 895 * arrived on the interface to which we are about 896 * to send. The multicast forwarding function 897 * recursively calls this function, using the 898 * IPV6_FORWARDING flag to prevent infinite recursion. 899 * 900 * Multicasts that are looped back by ip6_mloopback(), 901 * above, will be forwarded by the ip6_input() routine, 902 * if necessary. 903 */ 904 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 905 /* 906 * XXX: ip6_mforward expects that rcvif is NULL 907 * when it is called from the originating path. 908 * However, it may not always be the case. 909 */ 910 m->m_pkthdr.rcvif = NULL; 911 if (ip6_mforward(ip6, ifp, m) != 0) { 912 m_freem(m); 913 goto done; 914 } 915 } 916 } 917 /* 918 * Multicasts with a hoplimit of zero may be looped back, 919 * above, but must not be transmitted on a network. 920 * Also, multicasts addressed to the loopback interface 921 * are not sent -- the above call to ip6_mloopback() will 922 * loop back a copy if this host actually belongs to the 923 * destination group on the loopback interface. 924 */ 925 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 926 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 927 m_freem(m); 928 goto done; 929 } 930 } 931 932 /* 933 * Fill the outgoing inteface to tell the upper layer 934 * to increment per-interface statistics. 935 */ 936 if (ifpp) 937 *ifpp = ifp; 938 939 /* Determine path MTU. */ 940 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 941 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 942 goto bad; 943 KASSERT(mtu > 0, ("%s:%d: mtu %ld, ro_pmtu %p ro %p ifp %p " 944 "alwaysfrag %d fibnum %u\n", __func__, __LINE__, mtu, ro_pmtu, ro, 945 ifp, alwaysfrag, fibnum)); 946 947 /* 948 * The caller of this function may specify to use the minimum MTU 949 * in some cases. 950 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 951 * setting. The logic is a bit complicated; by default, unicast 952 * packets will follow path MTU while multicast packets will be sent at 953 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 954 * including unicast ones will be sent at the minimum MTU. Multicast 955 * packets will always be sent at the minimum MTU unless 956 * IP6PO_MINMTU_DISABLE is explicitly specified. 957 * See RFC 3542 for more details. 958 */ 959 if (mtu > IPV6_MMTU) { 960 if ((flags & IPV6_MINMTU)) 961 mtu = IPV6_MMTU; 962 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 963 mtu = IPV6_MMTU; 964 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 965 (opt == NULL || 966 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 967 mtu = IPV6_MMTU; 968 } 969 } 970 971 /* 972 * Clear embedded scope identifiers if necessary. 973 * in6_clearscope() will touch the addresses only when necessary. 974 */ 975 in6_clearscope(&ip6->ip6_src); 976 in6_clearscope(&ip6->ip6_dst); 977 978 /* 979 * If the outgoing packet contains a hop-by-hop options header, 980 * it must be examined and processed even by the source node. 981 * (RFC 2460, section 4.) 982 */ 983 if (exthdrs.ip6e_hbh) { 984 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 985 u_int32_t dummy; /* XXX unused */ 986 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 987 988 #ifdef DIAGNOSTIC 989 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 990 panic("ip6e_hbh is not contiguous"); 991 #endif 992 /* 993 * XXX: if we have to send an ICMPv6 error to the sender, 994 * we need the M_LOOP flag since icmp6_error() expects 995 * the IPv6 and the hop-by-hop options header are 996 * contiguous unless the flag is set. 997 */ 998 m->m_flags |= M_LOOP; 999 m->m_pkthdr.rcvif = ifp; 1000 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 1001 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 1002 &dummy, &plen) < 0) { 1003 /* m was already freed at this point. */ 1004 error = EINVAL;/* better error? */ 1005 goto done; 1006 } 1007 m->m_flags &= ~M_LOOP; /* XXX */ 1008 m->m_pkthdr.rcvif = NULL; 1009 } 1010 1011 /* Jump over all PFIL processing if hooks are not active. */ 1012 if (!PFIL_HOOKED_OUT(V_inet6_pfil_head)) 1013 goto passout; 1014 1015 odst = ip6->ip6_dst; 1016 /* Run through list of hooks for output packets. */ 1017 switch (pfil_run_hooks(V_inet6_pfil_head, &m, ifp, PFIL_OUT, inp)) { 1018 case PFIL_PASS: 1019 ip6 = mtod(m, struct ip6_hdr *); 1020 break; 1021 case PFIL_DROPPED: 1022 error = EACCES; 1023 /* FALLTHROUGH */ 1024 case PFIL_CONSUMED: 1025 goto done; 1026 } 1027 1028 needfiblookup = 0; 1029 /* See if destination IP address was changed by packet filter. */ 1030 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 1031 m->m_flags |= M_SKIP_FIREWALL; 1032 /* If destination is now ourself drop to ip6_input(). */ 1033 if (in6_localip(&ip6->ip6_dst)) { 1034 m->m_flags |= M_FASTFWD_OURS; 1035 if (m->m_pkthdr.rcvif == NULL) 1036 m->m_pkthdr.rcvif = V_loif; 1037 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1038 m->m_pkthdr.csum_flags |= 1039 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1040 m->m_pkthdr.csum_data = 0xffff; 1041 } 1042 #ifdef SCTP 1043 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1044 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1045 #endif 1046 error = netisr_queue(NETISR_IPV6, m); 1047 goto done; 1048 } else { 1049 if (ro != NULL) 1050 RO_INVALIDATE_CACHE(ro); 1051 needfiblookup = 1; /* Redo the routing table lookup. */ 1052 } 1053 } 1054 /* See if fib was changed by packet filter. */ 1055 if (fibnum != M_GETFIB(m)) { 1056 m->m_flags |= M_SKIP_FIREWALL; 1057 fibnum = M_GETFIB(m); 1058 if (ro != NULL) 1059 RO_INVALIDATE_CACHE(ro); 1060 needfiblookup = 1; 1061 } 1062 if (needfiblookup) 1063 goto again; 1064 1065 /* See if local, if yes, send it to netisr. */ 1066 if (m->m_flags & M_FASTFWD_OURS) { 1067 if (m->m_pkthdr.rcvif == NULL) 1068 m->m_pkthdr.rcvif = V_loif; 1069 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1070 m->m_pkthdr.csum_flags |= 1071 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1072 m->m_pkthdr.csum_data = 0xffff; 1073 } 1074 #ifdef SCTP 1075 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1076 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1077 #endif 1078 error = netisr_queue(NETISR_IPV6, m); 1079 goto done; 1080 } 1081 /* Or forward to some other address? */ 1082 if ((m->m_flags & M_IP6_NEXTHOP) && 1083 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 1084 if (ro != NULL) 1085 dst = (struct sockaddr_in6 *)&ro->ro_dst; 1086 else 1087 dst = &sin6; 1088 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 1089 m->m_flags |= M_SKIP_FIREWALL; 1090 m->m_flags &= ~M_IP6_NEXTHOP; 1091 m_tag_delete(m, fwd_tag); 1092 goto again; 1093 } 1094 1095 passout: 1096 /* 1097 * Send the packet to the outgoing interface. 1098 * If necessary, do IPv6 fragmentation before sending. 1099 * 1100 * The logic here is rather complex: 1101 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 1102 * 1-a: send as is if tlen <= path mtu 1103 * 1-b: fragment if tlen > path mtu 1104 * 1105 * 2: if user asks us not to fragment (dontfrag == 1) 1106 * 2-a: send as is if tlen <= interface mtu 1107 * 2-b: error if tlen > interface mtu 1108 * 1109 * 3: if we always need to attach fragment header (alwaysfrag == 1) 1110 * always fragment 1111 * 1112 * 4: if dontfrag == 1 && alwaysfrag == 1 1113 * error, as we cannot handle this conflicting request. 1114 */ 1115 sw_csum = m->m_pkthdr.csum_flags; 1116 if (!hdrsplit) { 1117 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 1118 sw_csum &= ~ifp->if_hwassist; 1119 } else 1120 tso = 0; 1121 /* 1122 * If we added extension headers, we will not do TSO and calculate the 1123 * checksums ourselves for now. 1124 * XXX-BZ Need a framework to know when the NIC can handle it, even 1125 * with ext. hdrs. 1126 */ 1127 error = ip6_output_delayed_csum(m, ifp, sw_csum, plen, optlen, false); 1128 if (error != 0) 1129 goto bad; 1130 /* XXX-BZ m->m_pkthdr.csum_flags &= ~ifp->if_hwassist; */ 1131 tlen = m->m_pkthdr.len; 1132 1133 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 1134 dontfrag = 1; 1135 else 1136 dontfrag = 0; 1137 if (dontfrag && alwaysfrag) { /* Case 4. */ 1138 /* Conflicting request - can't transmit. */ 1139 error = EMSGSIZE; 1140 goto bad; 1141 } 1142 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* Case 2-b. */ 1143 /* 1144 * Even if the DONTFRAG option is specified, we cannot send the 1145 * packet when the data length is larger than the MTU of the 1146 * outgoing interface. 1147 * Notify the error by sending IPV6_PATHMTU ancillary data if 1148 * application wanted to know the MTU value. Also return an 1149 * error code (this is not described in the API spec). 1150 */ 1151 if (inp != NULL) 1152 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 1153 error = EMSGSIZE; 1154 goto bad; 1155 } 1156 1157 /* Transmit packet without fragmentation. */ 1158 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* Cases 1-a and 2-a. */ 1159 struct in6_ifaddr *ia6; 1160 1161 ip6 = mtod(m, struct ip6_hdr *); 1162 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1163 if (ia6) { 1164 /* Record statistics for this interface address. */ 1165 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 1166 counter_u64_add(ia6->ia_ifa.ifa_obytes, 1167 m->m_pkthdr.len); 1168 ifa_free(&ia6->ia_ifa); 1169 } 1170 error = ip6_output_send(inp, ifp, origifp, m, dst, ro); 1171 goto done; 1172 } 1173 1174 /* Try to fragment the packet. Cases 1-b and 3. */ 1175 if (mtu < IPV6_MMTU) { 1176 /* Path MTU cannot be less than IPV6_MMTU. */ 1177 error = EMSGSIZE; 1178 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1179 goto bad; 1180 } else if (ip6->ip6_plen == 0) { 1181 /* Jumbo payload cannot be fragmented. */ 1182 error = EMSGSIZE; 1183 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1184 goto bad; 1185 } else { 1186 u_char nextproto; 1187 1188 /* 1189 * Too large for the destination or interface; 1190 * fragment if possible. 1191 * Must be able to put at least 8 bytes per fragment. 1192 */ 1193 if (mtu > IPV6_MAXPACKET) 1194 mtu = IPV6_MAXPACKET; 1195 1196 len = (mtu - unfragpartlen - sizeof(struct ip6_frag)) & ~7; 1197 if (len < 8) { 1198 error = EMSGSIZE; 1199 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1200 goto bad; 1201 } 1202 1203 /* 1204 * If the interface will not calculate checksums on 1205 * fragmented packets, then do it here. 1206 * XXX-BZ handle the hw offloading case. Need flags. 1207 */ 1208 error = ip6_output_delayed_csum(m, ifp, m->m_pkthdr.csum_flags, 1209 plen, optlen, true); 1210 if (error != 0) 1211 goto bad; 1212 1213 /* 1214 * Change the next header field of the last header in the 1215 * unfragmentable part. 1216 */ 1217 if (exthdrs.ip6e_rthdr) { 1218 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1219 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1220 } else if (exthdrs.ip6e_dest1) { 1221 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1222 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1223 } else if (exthdrs.ip6e_hbh) { 1224 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1225 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1226 } else { 1227 ip6 = mtod(m, struct ip6_hdr *); 1228 nextproto = ip6->ip6_nxt; 1229 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1230 } 1231 1232 /* 1233 * Loop through length of segment after first fragment, 1234 * make new header and copy data of each part and link onto 1235 * chain. 1236 */ 1237 m0 = m; 1238 id = htonl(ip6_randomid()); 1239 error = ip6_fragment(ifp, m, unfragpartlen, nextproto,len, id); 1240 if (error != 0) 1241 goto sendorfree; 1242 1243 in6_ifstat_inc(ifp, ifs6_out_fragok); 1244 } 1245 1246 /* Remove leading garbage. */ 1247 sendorfree: 1248 m = m0->m_nextpkt; 1249 m0->m_nextpkt = 0; 1250 m_freem(m0); 1251 for (; m; m = m0) { 1252 m0 = m->m_nextpkt; 1253 m->m_nextpkt = 0; 1254 if (error == 0) { 1255 /* Record statistics for this interface address. */ 1256 if (ia) { 1257 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1258 counter_u64_add(ia->ia_ifa.ifa_obytes, 1259 m->m_pkthdr.len); 1260 } 1261 error = ip6_output_send(inp, ifp, origifp, m, dst, ro); 1262 } else 1263 m_freem(m); 1264 } 1265 1266 if (error == 0) 1267 IP6STAT_INC(ip6s_fragmented); 1268 1269 done: 1270 return (error); 1271 1272 freehdrs: 1273 m_freem(exthdrs.ip6e_hbh); /* m_freem() checks if mbuf is NULL. */ 1274 m_freem(exthdrs.ip6e_dest1); 1275 m_freem(exthdrs.ip6e_rthdr); 1276 m_freem(exthdrs.ip6e_dest2); 1277 /* FALLTHROUGH */ 1278 bad: 1279 if (m) 1280 m_freem(m); 1281 goto done; 1282 } 1283 1284 static int 1285 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1286 { 1287 struct mbuf *m; 1288 1289 if (hlen > MCLBYTES) 1290 return (ENOBUFS); /* XXX */ 1291 1292 if (hlen > MLEN) 1293 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1294 else 1295 m = m_get(M_NOWAIT, MT_DATA); 1296 if (m == NULL) 1297 return (ENOBUFS); 1298 m->m_len = hlen; 1299 if (hdr) 1300 bcopy(hdr, mtod(m, caddr_t), hlen); 1301 1302 *mp = m; 1303 return (0); 1304 } 1305 1306 /* 1307 * Insert jumbo payload option. 1308 */ 1309 static int 1310 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1311 { 1312 struct mbuf *mopt; 1313 u_char *optbuf; 1314 u_int32_t v; 1315 1316 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1317 1318 /* 1319 * If there is no hop-by-hop options header, allocate new one. 1320 * If there is one but it doesn't have enough space to store the 1321 * jumbo payload option, allocate a cluster to store the whole options. 1322 * Otherwise, use it to store the options. 1323 */ 1324 if (exthdrs->ip6e_hbh == NULL) { 1325 mopt = m_get(M_NOWAIT, MT_DATA); 1326 if (mopt == NULL) 1327 return (ENOBUFS); 1328 mopt->m_len = JUMBOOPTLEN; 1329 optbuf = mtod(mopt, u_char *); 1330 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1331 exthdrs->ip6e_hbh = mopt; 1332 } else { 1333 struct ip6_hbh *hbh; 1334 1335 mopt = exthdrs->ip6e_hbh; 1336 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1337 /* 1338 * XXX assumption: 1339 * - exthdrs->ip6e_hbh is not referenced from places 1340 * other than exthdrs. 1341 * - exthdrs->ip6e_hbh is not an mbuf chain. 1342 */ 1343 int oldoptlen = mopt->m_len; 1344 struct mbuf *n; 1345 1346 /* 1347 * XXX: give up if the whole (new) hbh header does 1348 * not fit even in an mbuf cluster. 1349 */ 1350 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1351 return (ENOBUFS); 1352 1353 /* 1354 * As a consequence, we must always prepare a cluster 1355 * at this point. 1356 */ 1357 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1358 if (n == NULL) 1359 return (ENOBUFS); 1360 n->m_len = oldoptlen + JUMBOOPTLEN; 1361 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1362 oldoptlen); 1363 optbuf = mtod(n, caddr_t) + oldoptlen; 1364 m_freem(mopt); 1365 mopt = exthdrs->ip6e_hbh = n; 1366 } else { 1367 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1368 mopt->m_len += JUMBOOPTLEN; 1369 } 1370 optbuf[0] = IP6OPT_PADN; 1371 optbuf[1] = 1; 1372 1373 /* 1374 * Adjust the header length according to the pad and 1375 * the jumbo payload option. 1376 */ 1377 hbh = mtod(mopt, struct ip6_hbh *); 1378 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1379 } 1380 1381 /* fill in the option. */ 1382 optbuf[2] = IP6OPT_JUMBO; 1383 optbuf[3] = 4; 1384 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1385 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1386 1387 /* finally, adjust the packet header length */ 1388 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1389 1390 return (0); 1391 #undef JUMBOOPTLEN 1392 } 1393 1394 /* 1395 * Insert fragment header and copy unfragmentable header portions. 1396 */ 1397 static int 1398 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1399 struct ip6_frag **frghdrp) 1400 { 1401 struct mbuf *n, *mlast; 1402 1403 if (hlen > sizeof(struct ip6_hdr)) { 1404 n = m_copym(m0, sizeof(struct ip6_hdr), 1405 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1406 if (n == NULL) 1407 return (ENOBUFS); 1408 m->m_next = n; 1409 } else 1410 n = m; 1411 1412 /* Search for the last mbuf of unfragmentable part. */ 1413 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1414 ; 1415 1416 if (M_WRITABLE(mlast) && 1417 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1418 /* use the trailing space of the last mbuf for the fragment hdr */ 1419 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1420 mlast->m_len); 1421 mlast->m_len += sizeof(struct ip6_frag); 1422 m->m_pkthdr.len += sizeof(struct ip6_frag); 1423 } else { 1424 /* allocate a new mbuf for the fragment header */ 1425 struct mbuf *mfrg; 1426 1427 mfrg = m_get(M_NOWAIT, MT_DATA); 1428 if (mfrg == NULL) 1429 return (ENOBUFS); 1430 mfrg->m_len = sizeof(struct ip6_frag); 1431 *frghdrp = mtod(mfrg, struct ip6_frag *); 1432 mlast->m_next = mfrg; 1433 } 1434 1435 return (0); 1436 } 1437 1438 /* 1439 * Calculates IPv6 path mtu for destination @dst. 1440 * Resulting MTU is stored in @mtup. 1441 * 1442 * Returns 0 on success. 1443 */ 1444 static int 1445 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1446 { 1447 struct nhop6_extended nh6; 1448 struct in6_addr kdst; 1449 uint32_t scopeid; 1450 struct ifnet *ifp; 1451 u_long mtu; 1452 int error; 1453 1454 in6_splitscope(dst, &kdst, &scopeid); 1455 if (fib6_lookup_nh_ext(fibnum, &kdst, scopeid, NHR_REF, 0, &nh6) != 0) 1456 return (EHOSTUNREACH); 1457 1458 ifp = nh6.nh_ifp; 1459 mtu = nh6.nh_mtu; 1460 1461 error = ip6_calcmtu(ifp, dst, mtu, mtup, NULL, 0); 1462 fib6_free_nh_ext(fibnum, &nh6); 1463 1464 return (error); 1465 } 1466 1467 /* 1468 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1469 * and cached data in @ro_pmtu. 1470 * MTU from (successful) route lookup is saved (along with dst) 1471 * inside @ro_pmtu to avoid subsequent route lookups after packet 1472 * filter processing. 1473 * 1474 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1475 * Returns 0 on success. 1476 */ 1477 static int 1478 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1479 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1480 int *alwaysfragp, u_int fibnum, u_int proto) 1481 { 1482 struct nhop6_basic nh6; 1483 struct in6_addr kdst; 1484 uint32_t scopeid; 1485 struct sockaddr_in6 *sa6_dst, sin6; 1486 u_long mtu; 1487 1488 mtu = 0; 1489 if (ro_pmtu == NULL || do_lookup) { 1490 1491 /* 1492 * Here ro_pmtu has final destination address, while 1493 * ro might represent immediate destination. 1494 * Use ro_pmtu destination since mtu might differ. 1495 */ 1496 if (ro_pmtu != NULL) { 1497 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1498 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1499 ro_pmtu->ro_mtu = 0; 1500 } else 1501 sa6_dst = &sin6; 1502 1503 if (ro_pmtu == NULL || ro_pmtu->ro_mtu == 0) { 1504 bzero(sa6_dst, sizeof(*sa6_dst)); 1505 sa6_dst->sin6_family = AF_INET6; 1506 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1507 sa6_dst->sin6_addr = *dst; 1508 1509 in6_splitscope(dst, &kdst, &scopeid); 1510 if (fib6_lookup_nh_basic(fibnum, &kdst, scopeid, 0, 0, 1511 &nh6) == 0) { 1512 mtu = nh6.nh_mtu; 1513 if (ro_pmtu != NULL) 1514 ro_pmtu->ro_mtu = mtu; 1515 } 1516 } else 1517 mtu = ro_pmtu->ro_mtu; 1518 } 1519 1520 if (ro_pmtu != NULL && ro_pmtu->ro_rt != NULL) 1521 mtu = ro_pmtu->ro_rt->rt_mtu; 1522 1523 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1524 } 1525 1526 /* 1527 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1528 * hostcache data for @dst. 1529 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1530 * 1531 * Returns 0 on success. 1532 */ 1533 static int 1534 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1535 u_long *mtup, int *alwaysfragp, u_int proto) 1536 { 1537 u_long mtu = 0; 1538 int alwaysfrag = 0; 1539 int error = 0; 1540 1541 if (rt_mtu > 0) { 1542 u_int32_t ifmtu; 1543 struct in_conninfo inc; 1544 1545 bzero(&inc, sizeof(inc)); 1546 inc.inc_flags |= INC_ISIPV6; 1547 inc.inc6_faddr = *dst; 1548 1549 ifmtu = IN6_LINKMTU(ifp); 1550 1551 /* TCP is known to react to pmtu changes so skip hc */ 1552 if (proto != IPPROTO_TCP) 1553 mtu = tcp_hc_getmtu(&inc); 1554 1555 if (mtu) 1556 mtu = min(mtu, rt_mtu); 1557 else 1558 mtu = rt_mtu; 1559 if (mtu == 0) 1560 mtu = ifmtu; 1561 else if (mtu < IPV6_MMTU) { 1562 /* 1563 * RFC2460 section 5, last paragraph: 1564 * if we record ICMPv6 too big message with 1565 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1566 * or smaller, with framgent header attached. 1567 * (fragment header is needed regardless from the 1568 * packet size, for translators to identify packets) 1569 */ 1570 alwaysfrag = 1; 1571 mtu = IPV6_MMTU; 1572 } 1573 } else if (ifp) { 1574 mtu = IN6_LINKMTU(ifp); 1575 } else 1576 error = EHOSTUNREACH; /* XXX */ 1577 1578 *mtup = mtu; 1579 if (alwaysfragp) 1580 *alwaysfragp = alwaysfrag; 1581 return (error); 1582 } 1583 1584 /* 1585 * IP6 socket option processing. 1586 */ 1587 int 1588 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1589 { 1590 int optdatalen, uproto; 1591 void *optdata; 1592 struct inpcb *inp = sotoinpcb(so); 1593 int error, optval; 1594 int level, op, optname; 1595 int optlen; 1596 struct thread *td; 1597 #ifdef RSS 1598 uint32_t rss_bucket; 1599 int retval; 1600 #endif 1601 1602 /* 1603 * Don't use more than a quarter of mbuf clusters. N.B.: 1604 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1605 * on LP64 architectures, so cast to u_long to avoid undefined 1606 * behavior. ILP32 architectures cannot have nmbclusters 1607 * large enough to overflow for other reasons. 1608 */ 1609 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1610 1611 level = sopt->sopt_level; 1612 op = sopt->sopt_dir; 1613 optname = sopt->sopt_name; 1614 optlen = sopt->sopt_valsize; 1615 td = sopt->sopt_td; 1616 error = 0; 1617 optval = 0; 1618 uproto = (int)so->so_proto->pr_protocol; 1619 1620 if (level != IPPROTO_IPV6) { 1621 error = EINVAL; 1622 1623 if (sopt->sopt_level == SOL_SOCKET && 1624 sopt->sopt_dir == SOPT_SET) { 1625 switch (sopt->sopt_name) { 1626 case SO_REUSEADDR: 1627 INP_WLOCK(inp); 1628 if ((so->so_options & SO_REUSEADDR) != 0) 1629 inp->inp_flags2 |= INP_REUSEADDR; 1630 else 1631 inp->inp_flags2 &= ~INP_REUSEADDR; 1632 INP_WUNLOCK(inp); 1633 error = 0; 1634 break; 1635 case SO_REUSEPORT: 1636 INP_WLOCK(inp); 1637 if ((so->so_options & SO_REUSEPORT) != 0) 1638 inp->inp_flags2 |= INP_REUSEPORT; 1639 else 1640 inp->inp_flags2 &= ~INP_REUSEPORT; 1641 INP_WUNLOCK(inp); 1642 error = 0; 1643 break; 1644 case SO_REUSEPORT_LB: 1645 INP_WLOCK(inp); 1646 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1647 inp->inp_flags2 |= INP_REUSEPORT_LB; 1648 else 1649 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1650 INP_WUNLOCK(inp); 1651 error = 0; 1652 break; 1653 case SO_SETFIB: 1654 INP_WLOCK(inp); 1655 inp->inp_inc.inc_fibnum = so->so_fibnum; 1656 INP_WUNLOCK(inp); 1657 error = 0; 1658 break; 1659 case SO_MAX_PACING_RATE: 1660 #ifdef RATELIMIT 1661 INP_WLOCK(inp); 1662 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1663 INP_WUNLOCK(inp); 1664 error = 0; 1665 #else 1666 error = EOPNOTSUPP; 1667 #endif 1668 break; 1669 default: 1670 break; 1671 } 1672 } 1673 } else { /* level == IPPROTO_IPV6 */ 1674 switch (op) { 1675 1676 case SOPT_SET: 1677 switch (optname) { 1678 case IPV6_2292PKTOPTIONS: 1679 #ifdef IPV6_PKTOPTIONS 1680 case IPV6_PKTOPTIONS: 1681 #endif 1682 { 1683 struct mbuf *m; 1684 1685 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1686 printf("ip6_ctloutput: mbuf limit hit\n"); 1687 error = ENOBUFS; 1688 break; 1689 } 1690 1691 error = soopt_getm(sopt, &m); /* XXX */ 1692 if (error != 0) 1693 break; 1694 error = soopt_mcopyin(sopt, m); /* XXX */ 1695 if (error != 0) 1696 break; 1697 INP_WLOCK(inp); 1698 error = ip6_pcbopts(&inp->in6p_outputopts, m, 1699 so, sopt); 1700 INP_WUNLOCK(inp); 1701 m_freem(m); /* XXX */ 1702 break; 1703 } 1704 1705 /* 1706 * Use of some Hop-by-Hop options or some 1707 * Destination options, might require special 1708 * privilege. That is, normal applications 1709 * (without special privilege) might be forbidden 1710 * from setting certain options in outgoing packets, 1711 * and might never see certain options in received 1712 * packets. [RFC 2292 Section 6] 1713 * KAME specific note: 1714 * KAME prevents non-privileged users from sending or 1715 * receiving ANY hbh/dst options in order to avoid 1716 * overhead of parsing options in the kernel. 1717 */ 1718 case IPV6_RECVHOPOPTS: 1719 case IPV6_RECVDSTOPTS: 1720 case IPV6_RECVRTHDRDSTOPTS: 1721 if (td != NULL) { 1722 error = priv_check(td, 1723 PRIV_NETINET_SETHDROPTS); 1724 if (error) 1725 break; 1726 } 1727 /* FALLTHROUGH */ 1728 case IPV6_UNICAST_HOPS: 1729 case IPV6_HOPLIMIT: 1730 1731 case IPV6_RECVPKTINFO: 1732 case IPV6_RECVHOPLIMIT: 1733 case IPV6_RECVRTHDR: 1734 case IPV6_RECVPATHMTU: 1735 case IPV6_RECVTCLASS: 1736 case IPV6_RECVFLOWID: 1737 #ifdef RSS 1738 case IPV6_RECVRSSBUCKETID: 1739 #endif 1740 case IPV6_V6ONLY: 1741 case IPV6_AUTOFLOWLABEL: 1742 case IPV6_ORIGDSTADDR: 1743 case IPV6_BINDANY: 1744 case IPV6_BINDMULTI: 1745 #ifdef RSS 1746 case IPV6_RSS_LISTEN_BUCKET: 1747 #endif 1748 if (optname == IPV6_BINDANY && td != NULL) { 1749 error = priv_check(td, 1750 PRIV_NETINET_BINDANY); 1751 if (error) 1752 break; 1753 } 1754 1755 if (optlen != sizeof(int)) { 1756 error = EINVAL; 1757 break; 1758 } 1759 error = sooptcopyin(sopt, &optval, 1760 sizeof optval, sizeof optval); 1761 if (error) 1762 break; 1763 switch (optname) { 1764 1765 case IPV6_UNICAST_HOPS: 1766 if (optval < -1 || optval >= 256) 1767 error = EINVAL; 1768 else { 1769 /* -1 = kernel default */ 1770 inp->in6p_hops = optval; 1771 if ((inp->inp_vflag & 1772 INP_IPV4) != 0) 1773 inp->inp_ip_ttl = optval; 1774 } 1775 break; 1776 #define OPTSET(bit) \ 1777 do { \ 1778 INP_WLOCK(inp); \ 1779 if (optval) \ 1780 inp->inp_flags |= (bit); \ 1781 else \ 1782 inp->inp_flags &= ~(bit); \ 1783 INP_WUNLOCK(inp); \ 1784 } while (/*CONSTCOND*/ 0) 1785 #define OPTSET2292(bit) \ 1786 do { \ 1787 INP_WLOCK(inp); \ 1788 inp->inp_flags |= IN6P_RFC2292; \ 1789 if (optval) \ 1790 inp->inp_flags |= (bit); \ 1791 else \ 1792 inp->inp_flags &= ~(bit); \ 1793 INP_WUNLOCK(inp); \ 1794 } while (/*CONSTCOND*/ 0) 1795 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1796 1797 #define OPTSET2_N(bit, val) do { \ 1798 if (val) \ 1799 inp->inp_flags2 |= bit; \ 1800 else \ 1801 inp->inp_flags2 &= ~bit; \ 1802 } while (0) 1803 #define OPTSET2(bit, val) do { \ 1804 INP_WLOCK(inp); \ 1805 OPTSET2_N(bit, val); \ 1806 INP_WUNLOCK(inp); \ 1807 } while (0) 1808 #define OPTBIT2(bit) (inp->inp_flags2 & (bit) ? 1 : 0) 1809 #define OPTSET2292_EXCLUSIVE(bit) \ 1810 do { \ 1811 INP_WLOCK(inp); \ 1812 if (OPTBIT(IN6P_RFC2292)) { \ 1813 error = EINVAL; \ 1814 } else { \ 1815 if (optval) \ 1816 inp->inp_flags |= (bit); \ 1817 else \ 1818 inp->inp_flags &= ~(bit); \ 1819 } \ 1820 INP_WUNLOCK(inp); \ 1821 } while (/*CONSTCOND*/ 0) 1822 1823 case IPV6_RECVPKTINFO: 1824 OPTSET2292_EXCLUSIVE(IN6P_PKTINFO); 1825 break; 1826 1827 case IPV6_HOPLIMIT: 1828 { 1829 struct ip6_pktopts **optp; 1830 1831 /* cannot mix with RFC2292 */ 1832 if (OPTBIT(IN6P_RFC2292)) { 1833 error = EINVAL; 1834 break; 1835 } 1836 INP_WLOCK(inp); 1837 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1838 INP_WUNLOCK(inp); 1839 return (ECONNRESET); 1840 } 1841 optp = &inp->in6p_outputopts; 1842 error = ip6_pcbopt(IPV6_HOPLIMIT, 1843 (u_char *)&optval, sizeof(optval), 1844 optp, (td != NULL) ? td->td_ucred : 1845 NULL, uproto); 1846 INP_WUNLOCK(inp); 1847 break; 1848 } 1849 1850 case IPV6_RECVHOPLIMIT: 1851 OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT); 1852 break; 1853 1854 case IPV6_RECVHOPOPTS: 1855 OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS); 1856 break; 1857 1858 case IPV6_RECVDSTOPTS: 1859 OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS); 1860 break; 1861 1862 case IPV6_RECVRTHDRDSTOPTS: 1863 OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS); 1864 break; 1865 1866 case IPV6_RECVRTHDR: 1867 OPTSET2292_EXCLUSIVE(IN6P_RTHDR); 1868 break; 1869 1870 case IPV6_RECVPATHMTU: 1871 /* 1872 * We ignore this option for TCP 1873 * sockets. 1874 * (RFC3542 leaves this case 1875 * unspecified.) 1876 */ 1877 if (uproto != IPPROTO_TCP) 1878 OPTSET(IN6P_MTU); 1879 break; 1880 1881 case IPV6_RECVFLOWID: 1882 OPTSET2(INP_RECVFLOWID, optval); 1883 break; 1884 1885 #ifdef RSS 1886 case IPV6_RECVRSSBUCKETID: 1887 OPTSET2(INP_RECVRSSBUCKETID, optval); 1888 break; 1889 #endif 1890 1891 case IPV6_V6ONLY: 1892 INP_WLOCK(inp); 1893 if (inp->inp_lport || 1894 !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { 1895 /* 1896 * The socket is already bound. 1897 */ 1898 INP_WUNLOCK(inp); 1899 error = EINVAL; 1900 break; 1901 } 1902 if (optval) { 1903 inp->inp_flags |= IN6P_IPV6_V6ONLY; 1904 inp->inp_vflag &= ~INP_IPV4; 1905 } else { 1906 inp->inp_flags &= ~IN6P_IPV6_V6ONLY; 1907 inp->inp_vflag |= INP_IPV4; 1908 } 1909 INP_WUNLOCK(inp); 1910 break; 1911 case IPV6_RECVTCLASS: 1912 /* cannot mix with RFC2292 XXX */ 1913 OPTSET2292_EXCLUSIVE(IN6P_TCLASS); 1914 break; 1915 case IPV6_AUTOFLOWLABEL: 1916 OPTSET(IN6P_AUTOFLOWLABEL); 1917 break; 1918 1919 case IPV6_ORIGDSTADDR: 1920 OPTSET2(INP_ORIGDSTADDR, optval); 1921 break; 1922 case IPV6_BINDANY: 1923 OPTSET(INP_BINDANY); 1924 break; 1925 1926 case IPV6_BINDMULTI: 1927 OPTSET2(INP_BINDMULTI, optval); 1928 break; 1929 #ifdef RSS 1930 case IPV6_RSS_LISTEN_BUCKET: 1931 if ((optval >= 0) && 1932 (optval < rss_getnumbuckets())) { 1933 INP_WLOCK(inp); 1934 inp->inp_rss_listen_bucket = optval; 1935 OPTSET2_N(INP_RSS_BUCKET_SET, 1); 1936 INP_WUNLOCK(inp); 1937 } else { 1938 error = EINVAL; 1939 } 1940 break; 1941 #endif 1942 } 1943 break; 1944 1945 case IPV6_TCLASS: 1946 case IPV6_DONTFRAG: 1947 case IPV6_USE_MIN_MTU: 1948 case IPV6_PREFER_TEMPADDR: 1949 if (optlen != sizeof(optval)) { 1950 error = EINVAL; 1951 break; 1952 } 1953 error = sooptcopyin(sopt, &optval, 1954 sizeof optval, sizeof optval); 1955 if (error) 1956 break; 1957 { 1958 struct ip6_pktopts **optp; 1959 INP_WLOCK(inp); 1960 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1961 INP_WUNLOCK(inp); 1962 return (ECONNRESET); 1963 } 1964 optp = &inp->in6p_outputopts; 1965 error = ip6_pcbopt(optname, 1966 (u_char *)&optval, sizeof(optval), 1967 optp, (td != NULL) ? td->td_ucred : 1968 NULL, uproto); 1969 INP_WUNLOCK(inp); 1970 break; 1971 } 1972 1973 case IPV6_2292PKTINFO: 1974 case IPV6_2292HOPLIMIT: 1975 case IPV6_2292HOPOPTS: 1976 case IPV6_2292DSTOPTS: 1977 case IPV6_2292RTHDR: 1978 /* RFC 2292 */ 1979 if (optlen != sizeof(int)) { 1980 error = EINVAL; 1981 break; 1982 } 1983 error = sooptcopyin(sopt, &optval, 1984 sizeof optval, sizeof optval); 1985 if (error) 1986 break; 1987 switch (optname) { 1988 case IPV6_2292PKTINFO: 1989 OPTSET2292(IN6P_PKTINFO); 1990 break; 1991 case IPV6_2292HOPLIMIT: 1992 OPTSET2292(IN6P_HOPLIMIT); 1993 break; 1994 case IPV6_2292HOPOPTS: 1995 /* 1996 * Check super-user privilege. 1997 * See comments for IPV6_RECVHOPOPTS. 1998 */ 1999 if (td != NULL) { 2000 error = priv_check(td, 2001 PRIV_NETINET_SETHDROPTS); 2002 if (error) 2003 return (error); 2004 } 2005 OPTSET2292(IN6P_HOPOPTS); 2006 break; 2007 case IPV6_2292DSTOPTS: 2008 if (td != NULL) { 2009 error = priv_check(td, 2010 PRIV_NETINET_SETHDROPTS); 2011 if (error) 2012 return (error); 2013 } 2014 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 2015 break; 2016 case IPV6_2292RTHDR: 2017 OPTSET2292(IN6P_RTHDR); 2018 break; 2019 } 2020 break; 2021 case IPV6_PKTINFO: 2022 case IPV6_HOPOPTS: 2023 case IPV6_RTHDR: 2024 case IPV6_DSTOPTS: 2025 case IPV6_RTHDRDSTOPTS: 2026 case IPV6_NEXTHOP: 2027 { 2028 /* new advanced API (RFC3542) */ 2029 u_char *optbuf; 2030 u_char optbuf_storage[MCLBYTES]; 2031 int optlen; 2032 struct ip6_pktopts **optp; 2033 2034 /* cannot mix with RFC2292 */ 2035 if (OPTBIT(IN6P_RFC2292)) { 2036 error = EINVAL; 2037 break; 2038 } 2039 2040 /* 2041 * We only ensure valsize is not too large 2042 * here. Further validation will be done 2043 * later. 2044 */ 2045 error = sooptcopyin(sopt, optbuf_storage, 2046 sizeof(optbuf_storage), 0); 2047 if (error) 2048 break; 2049 optlen = sopt->sopt_valsize; 2050 optbuf = optbuf_storage; 2051 INP_WLOCK(inp); 2052 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 2053 INP_WUNLOCK(inp); 2054 return (ECONNRESET); 2055 } 2056 optp = &inp->in6p_outputopts; 2057 error = ip6_pcbopt(optname, optbuf, optlen, 2058 optp, (td != NULL) ? td->td_ucred : NULL, 2059 uproto); 2060 INP_WUNLOCK(inp); 2061 break; 2062 } 2063 #undef OPTSET 2064 2065 case IPV6_MULTICAST_IF: 2066 case IPV6_MULTICAST_HOPS: 2067 case IPV6_MULTICAST_LOOP: 2068 case IPV6_JOIN_GROUP: 2069 case IPV6_LEAVE_GROUP: 2070 case IPV6_MSFILTER: 2071 case MCAST_BLOCK_SOURCE: 2072 case MCAST_UNBLOCK_SOURCE: 2073 case MCAST_JOIN_GROUP: 2074 case MCAST_LEAVE_GROUP: 2075 case MCAST_JOIN_SOURCE_GROUP: 2076 case MCAST_LEAVE_SOURCE_GROUP: 2077 error = ip6_setmoptions(inp, sopt); 2078 break; 2079 2080 case IPV6_PORTRANGE: 2081 error = sooptcopyin(sopt, &optval, 2082 sizeof optval, sizeof optval); 2083 if (error) 2084 break; 2085 2086 INP_WLOCK(inp); 2087 switch (optval) { 2088 case IPV6_PORTRANGE_DEFAULT: 2089 inp->inp_flags &= ~(INP_LOWPORT); 2090 inp->inp_flags &= ~(INP_HIGHPORT); 2091 break; 2092 2093 case IPV6_PORTRANGE_HIGH: 2094 inp->inp_flags &= ~(INP_LOWPORT); 2095 inp->inp_flags |= INP_HIGHPORT; 2096 break; 2097 2098 case IPV6_PORTRANGE_LOW: 2099 inp->inp_flags &= ~(INP_HIGHPORT); 2100 inp->inp_flags |= INP_LOWPORT; 2101 break; 2102 2103 default: 2104 error = EINVAL; 2105 break; 2106 } 2107 INP_WUNLOCK(inp); 2108 break; 2109 2110 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2111 case IPV6_IPSEC_POLICY: 2112 if (IPSEC_ENABLED(ipv6)) { 2113 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2114 break; 2115 } 2116 /* FALLTHROUGH */ 2117 #endif /* IPSEC */ 2118 2119 default: 2120 error = ENOPROTOOPT; 2121 break; 2122 } 2123 break; 2124 2125 case SOPT_GET: 2126 switch (optname) { 2127 2128 case IPV6_2292PKTOPTIONS: 2129 #ifdef IPV6_PKTOPTIONS 2130 case IPV6_PKTOPTIONS: 2131 #endif 2132 /* 2133 * RFC3542 (effectively) deprecated the 2134 * semantics of the 2292-style pktoptions. 2135 * Since it was not reliable in nature (i.e., 2136 * applications had to expect the lack of some 2137 * information after all), it would make sense 2138 * to simplify this part by always returning 2139 * empty data. 2140 */ 2141 sopt->sopt_valsize = 0; 2142 break; 2143 2144 case IPV6_RECVHOPOPTS: 2145 case IPV6_RECVDSTOPTS: 2146 case IPV6_RECVRTHDRDSTOPTS: 2147 case IPV6_UNICAST_HOPS: 2148 case IPV6_RECVPKTINFO: 2149 case IPV6_RECVHOPLIMIT: 2150 case IPV6_RECVRTHDR: 2151 case IPV6_RECVPATHMTU: 2152 2153 case IPV6_V6ONLY: 2154 case IPV6_PORTRANGE: 2155 case IPV6_RECVTCLASS: 2156 case IPV6_AUTOFLOWLABEL: 2157 case IPV6_BINDANY: 2158 case IPV6_FLOWID: 2159 case IPV6_FLOWTYPE: 2160 case IPV6_RECVFLOWID: 2161 #ifdef RSS 2162 case IPV6_RSSBUCKETID: 2163 case IPV6_RECVRSSBUCKETID: 2164 #endif 2165 case IPV6_BINDMULTI: 2166 switch (optname) { 2167 2168 case IPV6_RECVHOPOPTS: 2169 optval = OPTBIT(IN6P_HOPOPTS); 2170 break; 2171 2172 case IPV6_RECVDSTOPTS: 2173 optval = OPTBIT(IN6P_DSTOPTS); 2174 break; 2175 2176 case IPV6_RECVRTHDRDSTOPTS: 2177 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 2178 break; 2179 2180 case IPV6_UNICAST_HOPS: 2181 optval = inp->in6p_hops; 2182 break; 2183 2184 case IPV6_RECVPKTINFO: 2185 optval = OPTBIT(IN6P_PKTINFO); 2186 break; 2187 2188 case IPV6_RECVHOPLIMIT: 2189 optval = OPTBIT(IN6P_HOPLIMIT); 2190 break; 2191 2192 case IPV6_RECVRTHDR: 2193 optval = OPTBIT(IN6P_RTHDR); 2194 break; 2195 2196 case IPV6_RECVPATHMTU: 2197 optval = OPTBIT(IN6P_MTU); 2198 break; 2199 2200 case IPV6_V6ONLY: 2201 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2202 break; 2203 2204 case IPV6_PORTRANGE: 2205 { 2206 int flags; 2207 flags = inp->inp_flags; 2208 if (flags & INP_HIGHPORT) 2209 optval = IPV6_PORTRANGE_HIGH; 2210 else if (flags & INP_LOWPORT) 2211 optval = IPV6_PORTRANGE_LOW; 2212 else 2213 optval = 0; 2214 break; 2215 } 2216 case IPV6_RECVTCLASS: 2217 optval = OPTBIT(IN6P_TCLASS); 2218 break; 2219 2220 case IPV6_AUTOFLOWLABEL: 2221 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2222 break; 2223 2224 case IPV6_ORIGDSTADDR: 2225 optval = OPTBIT2(INP_ORIGDSTADDR); 2226 break; 2227 2228 case IPV6_BINDANY: 2229 optval = OPTBIT(INP_BINDANY); 2230 break; 2231 2232 case IPV6_FLOWID: 2233 optval = inp->inp_flowid; 2234 break; 2235 2236 case IPV6_FLOWTYPE: 2237 optval = inp->inp_flowtype; 2238 break; 2239 2240 case IPV6_RECVFLOWID: 2241 optval = OPTBIT2(INP_RECVFLOWID); 2242 break; 2243 #ifdef RSS 2244 case IPV6_RSSBUCKETID: 2245 retval = 2246 rss_hash2bucket(inp->inp_flowid, 2247 inp->inp_flowtype, 2248 &rss_bucket); 2249 if (retval == 0) 2250 optval = rss_bucket; 2251 else 2252 error = EINVAL; 2253 break; 2254 2255 case IPV6_RECVRSSBUCKETID: 2256 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2257 break; 2258 #endif 2259 2260 case IPV6_BINDMULTI: 2261 optval = OPTBIT2(INP_BINDMULTI); 2262 break; 2263 2264 } 2265 if (error) 2266 break; 2267 error = sooptcopyout(sopt, &optval, 2268 sizeof optval); 2269 break; 2270 2271 case IPV6_PATHMTU: 2272 { 2273 u_long pmtu = 0; 2274 struct ip6_mtuinfo mtuinfo; 2275 struct in6_addr addr; 2276 2277 if (!(so->so_state & SS_ISCONNECTED)) 2278 return (ENOTCONN); 2279 /* 2280 * XXX: we dot not consider the case of source 2281 * routing, or optional information to specify 2282 * the outgoing interface. 2283 * Copy faddr out of inp to avoid holding lock 2284 * on inp during route lookup. 2285 */ 2286 INP_RLOCK(inp); 2287 bcopy(&inp->in6p_faddr, &addr, sizeof(addr)); 2288 INP_RUNLOCK(inp); 2289 error = ip6_getpmtu_ctl(so->so_fibnum, 2290 &addr, &pmtu); 2291 if (error) 2292 break; 2293 if (pmtu > IPV6_MAXPACKET) 2294 pmtu = IPV6_MAXPACKET; 2295 2296 bzero(&mtuinfo, sizeof(mtuinfo)); 2297 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2298 optdata = (void *)&mtuinfo; 2299 optdatalen = sizeof(mtuinfo); 2300 error = sooptcopyout(sopt, optdata, 2301 optdatalen); 2302 break; 2303 } 2304 2305 case IPV6_2292PKTINFO: 2306 case IPV6_2292HOPLIMIT: 2307 case IPV6_2292HOPOPTS: 2308 case IPV6_2292RTHDR: 2309 case IPV6_2292DSTOPTS: 2310 switch (optname) { 2311 case IPV6_2292PKTINFO: 2312 optval = OPTBIT(IN6P_PKTINFO); 2313 break; 2314 case IPV6_2292HOPLIMIT: 2315 optval = OPTBIT(IN6P_HOPLIMIT); 2316 break; 2317 case IPV6_2292HOPOPTS: 2318 optval = OPTBIT(IN6P_HOPOPTS); 2319 break; 2320 case IPV6_2292RTHDR: 2321 optval = OPTBIT(IN6P_RTHDR); 2322 break; 2323 case IPV6_2292DSTOPTS: 2324 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2325 break; 2326 } 2327 error = sooptcopyout(sopt, &optval, 2328 sizeof optval); 2329 break; 2330 case IPV6_PKTINFO: 2331 case IPV6_HOPOPTS: 2332 case IPV6_RTHDR: 2333 case IPV6_DSTOPTS: 2334 case IPV6_RTHDRDSTOPTS: 2335 case IPV6_NEXTHOP: 2336 case IPV6_TCLASS: 2337 case IPV6_DONTFRAG: 2338 case IPV6_USE_MIN_MTU: 2339 case IPV6_PREFER_TEMPADDR: 2340 error = ip6_getpcbopt(inp, optname, sopt); 2341 break; 2342 2343 case IPV6_MULTICAST_IF: 2344 case IPV6_MULTICAST_HOPS: 2345 case IPV6_MULTICAST_LOOP: 2346 case IPV6_MSFILTER: 2347 error = ip6_getmoptions(inp, sopt); 2348 break; 2349 2350 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2351 case IPV6_IPSEC_POLICY: 2352 if (IPSEC_ENABLED(ipv6)) { 2353 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2354 break; 2355 } 2356 /* FALLTHROUGH */ 2357 #endif /* IPSEC */ 2358 default: 2359 error = ENOPROTOOPT; 2360 break; 2361 } 2362 break; 2363 } 2364 } 2365 return (error); 2366 } 2367 2368 int 2369 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2370 { 2371 int error = 0, optval, optlen; 2372 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2373 struct inpcb *inp = sotoinpcb(so); 2374 int level, op, optname; 2375 2376 level = sopt->sopt_level; 2377 op = sopt->sopt_dir; 2378 optname = sopt->sopt_name; 2379 optlen = sopt->sopt_valsize; 2380 2381 if (level != IPPROTO_IPV6) { 2382 return (EINVAL); 2383 } 2384 2385 switch (optname) { 2386 case IPV6_CHECKSUM: 2387 /* 2388 * For ICMPv6 sockets, no modification allowed for checksum 2389 * offset, permit "no change" values to help existing apps. 2390 * 2391 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2392 * for an ICMPv6 socket will fail." 2393 * The current behavior does not meet RFC3542. 2394 */ 2395 switch (op) { 2396 case SOPT_SET: 2397 if (optlen != sizeof(int)) { 2398 error = EINVAL; 2399 break; 2400 } 2401 error = sooptcopyin(sopt, &optval, sizeof(optval), 2402 sizeof(optval)); 2403 if (error) 2404 break; 2405 if (optval < -1 || (optval % 2) != 0) { 2406 /* 2407 * The API assumes non-negative even offset 2408 * values or -1 as a special value. 2409 */ 2410 error = EINVAL; 2411 } else if (so->so_proto->pr_protocol == 2412 IPPROTO_ICMPV6) { 2413 if (optval != icmp6off) 2414 error = EINVAL; 2415 } else 2416 inp->in6p_cksum = optval; 2417 break; 2418 2419 case SOPT_GET: 2420 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2421 optval = icmp6off; 2422 else 2423 optval = inp->in6p_cksum; 2424 2425 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2426 break; 2427 2428 default: 2429 error = EINVAL; 2430 break; 2431 } 2432 break; 2433 2434 default: 2435 error = ENOPROTOOPT; 2436 break; 2437 } 2438 2439 return (error); 2440 } 2441 2442 /* 2443 * Set up IP6 options in pcb for insertion in output packets or 2444 * specifying behavior of outgoing packets. 2445 */ 2446 static int 2447 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2448 struct socket *so, struct sockopt *sopt) 2449 { 2450 struct ip6_pktopts *opt = *pktopt; 2451 int error = 0; 2452 struct thread *td = sopt->sopt_td; 2453 2454 /* turn off any old options. */ 2455 if (opt) { 2456 #ifdef DIAGNOSTIC 2457 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2458 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2459 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2460 printf("ip6_pcbopts: all specified options are cleared.\n"); 2461 #endif 2462 ip6_clearpktopts(opt, -1); 2463 } else { 2464 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 2465 if (opt == NULL) 2466 return (ENOMEM); 2467 } 2468 *pktopt = NULL; 2469 2470 if (!m || m->m_len == 0) { 2471 /* 2472 * Only turning off any previous options, regardless of 2473 * whether the opt is just created or given. 2474 */ 2475 free(opt, M_IP6OPT); 2476 return (0); 2477 } 2478 2479 /* set options specified by user. */ 2480 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2481 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2482 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2483 free(opt, M_IP6OPT); 2484 return (error); 2485 } 2486 *pktopt = opt; 2487 return (0); 2488 } 2489 2490 /* 2491 * initialize ip6_pktopts. beware that there are non-zero default values in 2492 * the struct. 2493 */ 2494 void 2495 ip6_initpktopts(struct ip6_pktopts *opt) 2496 { 2497 2498 bzero(opt, sizeof(*opt)); 2499 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2500 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2501 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2502 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2503 } 2504 2505 static int 2506 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2507 struct ucred *cred, int uproto) 2508 { 2509 struct ip6_pktopts *opt; 2510 2511 if (*pktopt == NULL) { 2512 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2513 M_NOWAIT); 2514 if (*pktopt == NULL) 2515 return (ENOBUFS); 2516 ip6_initpktopts(*pktopt); 2517 } 2518 opt = *pktopt; 2519 2520 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2521 } 2522 2523 #define GET_PKTOPT_VAR(field, lenexpr) do { \ 2524 if (pktopt && pktopt->field) { \ 2525 INP_RUNLOCK(inp); \ 2526 optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \ 2527 malloc_optdata = true; \ 2528 INP_RLOCK(inp); \ 2529 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { \ 2530 INP_RUNLOCK(inp); \ 2531 free(optdata, M_TEMP); \ 2532 return (ECONNRESET); \ 2533 } \ 2534 pktopt = inp->in6p_outputopts; \ 2535 if (pktopt && pktopt->field) { \ 2536 optdatalen = min(lenexpr, sopt->sopt_valsize); \ 2537 bcopy(&pktopt->field, optdata, optdatalen); \ 2538 } else { \ 2539 free(optdata, M_TEMP); \ 2540 optdata = NULL; \ 2541 malloc_optdata = false; \ 2542 } \ 2543 } \ 2544 } while(0) 2545 2546 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \ 2547 (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3) 2548 2549 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \ 2550 pktopt->field->sa_len) 2551 2552 static int 2553 ip6_getpcbopt(struct inpcb *inp, int optname, struct sockopt *sopt) 2554 { 2555 void *optdata = NULL; 2556 bool malloc_optdata = false; 2557 int optdatalen = 0; 2558 int error = 0; 2559 struct in6_pktinfo null_pktinfo; 2560 int deftclass = 0, on; 2561 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2562 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2563 struct ip6_pktopts *pktopt; 2564 2565 INP_RLOCK(inp); 2566 pktopt = inp->in6p_outputopts; 2567 2568 switch (optname) { 2569 case IPV6_PKTINFO: 2570 optdata = (void *)&null_pktinfo; 2571 if (pktopt && pktopt->ip6po_pktinfo) { 2572 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2573 sizeof(null_pktinfo)); 2574 in6_clearscope(&null_pktinfo.ipi6_addr); 2575 } else { 2576 /* XXX: we don't have to do this every time... */ 2577 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2578 } 2579 optdatalen = sizeof(struct in6_pktinfo); 2580 break; 2581 case IPV6_TCLASS: 2582 if (pktopt && pktopt->ip6po_tclass >= 0) 2583 deftclass = pktopt->ip6po_tclass; 2584 optdata = (void *)&deftclass; 2585 optdatalen = sizeof(int); 2586 break; 2587 case IPV6_HOPOPTS: 2588 GET_PKTOPT_EXT_HDR(ip6po_hbh); 2589 break; 2590 case IPV6_RTHDR: 2591 GET_PKTOPT_EXT_HDR(ip6po_rthdr); 2592 break; 2593 case IPV6_RTHDRDSTOPTS: 2594 GET_PKTOPT_EXT_HDR(ip6po_dest1); 2595 break; 2596 case IPV6_DSTOPTS: 2597 GET_PKTOPT_EXT_HDR(ip6po_dest2); 2598 break; 2599 case IPV6_NEXTHOP: 2600 GET_PKTOPT_SOCKADDR(ip6po_nexthop); 2601 break; 2602 case IPV6_USE_MIN_MTU: 2603 if (pktopt) 2604 defminmtu = pktopt->ip6po_minmtu; 2605 optdata = (void *)&defminmtu; 2606 optdatalen = sizeof(int); 2607 break; 2608 case IPV6_DONTFRAG: 2609 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2610 on = 1; 2611 else 2612 on = 0; 2613 optdata = (void *)&on; 2614 optdatalen = sizeof(on); 2615 break; 2616 case IPV6_PREFER_TEMPADDR: 2617 if (pktopt) 2618 defpreftemp = pktopt->ip6po_prefer_tempaddr; 2619 optdata = (void *)&defpreftemp; 2620 optdatalen = sizeof(int); 2621 break; 2622 default: /* should not happen */ 2623 #ifdef DIAGNOSTIC 2624 panic("ip6_getpcbopt: unexpected option\n"); 2625 #endif 2626 INP_RUNLOCK(inp); 2627 return (ENOPROTOOPT); 2628 } 2629 INP_RUNLOCK(inp); 2630 2631 error = sooptcopyout(sopt, optdata, optdatalen); 2632 if (malloc_optdata) 2633 free(optdata, M_TEMP); 2634 2635 return (error); 2636 } 2637 2638 void 2639 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2640 { 2641 if (pktopt == NULL) 2642 return; 2643 2644 if (optname == -1 || optname == IPV6_PKTINFO) { 2645 if (pktopt->ip6po_pktinfo) 2646 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2647 pktopt->ip6po_pktinfo = NULL; 2648 } 2649 if (optname == -1 || optname == IPV6_HOPLIMIT) 2650 pktopt->ip6po_hlim = -1; 2651 if (optname == -1 || optname == IPV6_TCLASS) 2652 pktopt->ip6po_tclass = -1; 2653 if (optname == -1 || optname == IPV6_NEXTHOP) { 2654 if (pktopt->ip6po_nextroute.ro_rt) { 2655 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2656 pktopt->ip6po_nextroute.ro_rt = NULL; 2657 } 2658 if (pktopt->ip6po_nexthop) 2659 free(pktopt->ip6po_nexthop, M_IP6OPT); 2660 pktopt->ip6po_nexthop = NULL; 2661 } 2662 if (optname == -1 || optname == IPV6_HOPOPTS) { 2663 if (pktopt->ip6po_hbh) 2664 free(pktopt->ip6po_hbh, M_IP6OPT); 2665 pktopt->ip6po_hbh = NULL; 2666 } 2667 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2668 if (pktopt->ip6po_dest1) 2669 free(pktopt->ip6po_dest1, M_IP6OPT); 2670 pktopt->ip6po_dest1 = NULL; 2671 } 2672 if (optname == -1 || optname == IPV6_RTHDR) { 2673 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2674 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2675 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2676 if (pktopt->ip6po_route.ro_rt) { 2677 RTFREE(pktopt->ip6po_route.ro_rt); 2678 pktopt->ip6po_route.ro_rt = NULL; 2679 } 2680 } 2681 if (optname == -1 || optname == IPV6_DSTOPTS) { 2682 if (pktopt->ip6po_dest2) 2683 free(pktopt->ip6po_dest2, M_IP6OPT); 2684 pktopt->ip6po_dest2 = NULL; 2685 } 2686 } 2687 2688 #define PKTOPT_EXTHDRCPY(type) \ 2689 do {\ 2690 if (src->type) {\ 2691 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2692 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2693 if (dst->type == NULL)\ 2694 goto bad;\ 2695 bcopy(src->type, dst->type, hlen);\ 2696 }\ 2697 } while (/*CONSTCOND*/ 0) 2698 2699 static int 2700 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2701 { 2702 if (dst == NULL || src == NULL) { 2703 printf("ip6_clearpktopts: invalid argument\n"); 2704 return (EINVAL); 2705 } 2706 2707 dst->ip6po_hlim = src->ip6po_hlim; 2708 dst->ip6po_tclass = src->ip6po_tclass; 2709 dst->ip6po_flags = src->ip6po_flags; 2710 dst->ip6po_minmtu = src->ip6po_minmtu; 2711 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2712 if (src->ip6po_pktinfo) { 2713 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2714 M_IP6OPT, canwait); 2715 if (dst->ip6po_pktinfo == NULL) 2716 goto bad; 2717 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2718 } 2719 if (src->ip6po_nexthop) { 2720 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2721 M_IP6OPT, canwait); 2722 if (dst->ip6po_nexthop == NULL) 2723 goto bad; 2724 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2725 src->ip6po_nexthop->sa_len); 2726 } 2727 PKTOPT_EXTHDRCPY(ip6po_hbh); 2728 PKTOPT_EXTHDRCPY(ip6po_dest1); 2729 PKTOPT_EXTHDRCPY(ip6po_dest2); 2730 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2731 return (0); 2732 2733 bad: 2734 ip6_clearpktopts(dst, -1); 2735 return (ENOBUFS); 2736 } 2737 #undef PKTOPT_EXTHDRCPY 2738 2739 struct ip6_pktopts * 2740 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2741 { 2742 int error; 2743 struct ip6_pktopts *dst; 2744 2745 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2746 if (dst == NULL) 2747 return (NULL); 2748 ip6_initpktopts(dst); 2749 2750 if ((error = copypktopts(dst, src, canwait)) != 0) { 2751 free(dst, M_IP6OPT); 2752 return (NULL); 2753 } 2754 2755 return (dst); 2756 } 2757 2758 void 2759 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2760 { 2761 if (pktopt == NULL) 2762 return; 2763 2764 ip6_clearpktopts(pktopt, -1); 2765 2766 free(pktopt, M_IP6OPT); 2767 } 2768 2769 /* 2770 * Set IPv6 outgoing packet options based on advanced API. 2771 */ 2772 int 2773 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2774 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2775 { 2776 struct cmsghdr *cm = NULL; 2777 2778 if (control == NULL || opt == NULL) 2779 return (EINVAL); 2780 2781 ip6_initpktopts(opt); 2782 if (stickyopt) { 2783 int error; 2784 2785 /* 2786 * If stickyopt is provided, make a local copy of the options 2787 * for this particular packet, then override them by ancillary 2788 * objects. 2789 * XXX: copypktopts() does not copy the cached route to a next 2790 * hop (if any). This is not very good in terms of efficiency, 2791 * but we can allow this since this option should be rarely 2792 * used. 2793 */ 2794 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2795 return (error); 2796 } 2797 2798 /* 2799 * XXX: Currently, we assume all the optional information is stored 2800 * in a single mbuf. 2801 */ 2802 if (control->m_next) 2803 return (EINVAL); 2804 2805 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2806 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2807 int error; 2808 2809 if (control->m_len < CMSG_LEN(0)) 2810 return (EINVAL); 2811 2812 cm = mtod(control, struct cmsghdr *); 2813 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2814 return (EINVAL); 2815 if (cm->cmsg_level != IPPROTO_IPV6) 2816 continue; 2817 2818 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2819 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2820 if (error) 2821 return (error); 2822 } 2823 2824 return (0); 2825 } 2826 2827 /* 2828 * Set a particular packet option, as a sticky option or an ancillary data 2829 * item. "len" can be 0 only when it's a sticky option. 2830 * We have 4 cases of combination of "sticky" and "cmsg": 2831 * "sticky=0, cmsg=0": impossible 2832 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2833 * "sticky=1, cmsg=0": RFC3542 socket option 2834 * "sticky=1, cmsg=1": RFC2292 socket option 2835 */ 2836 static int 2837 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2838 struct ucred *cred, int sticky, int cmsg, int uproto) 2839 { 2840 int minmtupolicy, preftemp; 2841 int error; 2842 2843 if (!sticky && !cmsg) { 2844 #ifdef DIAGNOSTIC 2845 printf("ip6_setpktopt: impossible case\n"); 2846 #endif 2847 return (EINVAL); 2848 } 2849 2850 /* 2851 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2852 * not be specified in the context of RFC3542. Conversely, 2853 * RFC3542 types should not be specified in the context of RFC2292. 2854 */ 2855 if (!cmsg) { 2856 switch (optname) { 2857 case IPV6_2292PKTINFO: 2858 case IPV6_2292HOPLIMIT: 2859 case IPV6_2292NEXTHOP: 2860 case IPV6_2292HOPOPTS: 2861 case IPV6_2292DSTOPTS: 2862 case IPV6_2292RTHDR: 2863 case IPV6_2292PKTOPTIONS: 2864 return (ENOPROTOOPT); 2865 } 2866 } 2867 if (sticky && cmsg) { 2868 switch (optname) { 2869 case IPV6_PKTINFO: 2870 case IPV6_HOPLIMIT: 2871 case IPV6_NEXTHOP: 2872 case IPV6_HOPOPTS: 2873 case IPV6_DSTOPTS: 2874 case IPV6_RTHDRDSTOPTS: 2875 case IPV6_RTHDR: 2876 case IPV6_USE_MIN_MTU: 2877 case IPV6_DONTFRAG: 2878 case IPV6_TCLASS: 2879 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2880 return (ENOPROTOOPT); 2881 } 2882 } 2883 2884 switch (optname) { 2885 case IPV6_2292PKTINFO: 2886 case IPV6_PKTINFO: 2887 { 2888 struct ifnet *ifp = NULL; 2889 struct in6_pktinfo *pktinfo; 2890 2891 if (len != sizeof(struct in6_pktinfo)) 2892 return (EINVAL); 2893 2894 pktinfo = (struct in6_pktinfo *)buf; 2895 2896 /* 2897 * An application can clear any sticky IPV6_PKTINFO option by 2898 * doing a "regular" setsockopt with ipi6_addr being 2899 * in6addr_any and ipi6_ifindex being zero. 2900 * [RFC 3542, Section 6] 2901 */ 2902 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2903 pktinfo->ipi6_ifindex == 0 && 2904 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2905 ip6_clearpktopts(opt, optname); 2906 break; 2907 } 2908 2909 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2910 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2911 return (EINVAL); 2912 } 2913 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2914 return (EINVAL); 2915 /* validate the interface index if specified. */ 2916 if (pktinfo->ipi6_ifindex > V_if_index) 2917 return (ENXIO); 2918 if (pktinfo->ipi6_ifindex) { 2919 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2920 if (ifp == NULL) 2921 return (ENXIO); 2922 } 2923 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2924 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2925 return (ENETDOWN); 2926 2927 if (ifp != NULL && 2928 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2929 struct in6_ifaddr *ia; 2930 2931 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2932 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2933 if (ia == NULL) 2934 return (EADDRNOTAVAIL); 2935 ifa_free(&ia->ia_ifa); 2936 } 2937 /* 2938 * We store the address anyway, and let in6_selectsrc() 2939 * validate the specified address. This is because ipi6_addr 2940 * may not have enough information about its scope zone, and 2941 * we may need additional information (such as outgoing 2942 * interface or the scope zone of a destination address) to 2943 * disambiguate the scope. 2944 * XXX: the delay of the validation may confuse the 2945 * application when it is used as a sticky option. 2946 */ 2947 if (opt->ip6po_pktinfo == NULL) { 2948 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2949 M_IP6OPT, M_NOWAIT); 2950 if (opt->ip6po_pktinfo == NULL) 2951 return (ENOBUFS); 2952 } 2953 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2954 break; 2955 } 2956 2957 case IPV6_2292HOPLIMIT: 2958 case IPV6_HOPLIMIT: 2959 { 2960 int *hlimp; 2961 2962 /* 2963 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2964 * to simplify the ordering among hoplimit options. 2965 */ 2966 if (optname == IPV6_HOPLIMIT && sticky) 2967 return (ENOPROTOOPT); 2968 2969 if (len != sizeof(int)) 2970 return (EINVAL); 2971 hlimp = (int *)buf; 2972 if (*hlimp < -1 || *hlimp > 255) 2973 return (EINVAL); 2974 2975 opt->ip6po_hlim = *hlimp; 2976 break; 2977 } 2978 2979 case IPV6_TCLASS: 2980 { 2981 int tclass; 2982 2983 if (len != sizeof(int)) 2984 return (EINVAL); 2985 tclass = *(int *)buf; 2986 if (tclass < -1 || tclass > 255) 2987 return (EINVAL); 2988 2989 opt->ip6po_tclass = tclass; 2990 break; 2991 } 2992 2993 case IPV6_2292NEXTHOP: 2994 case IPV6_NEXTHOP: 2995 if (cred != NULL) { 2996 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 2997 if (error) 2998 return (error); 2999 } 3000 3001 if (len == 0) { /* just remove the option */ 3002 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3003 break; 3004 } 3005 3006 /* check if cmsg_len is large enough for sa_len */ 3007 if (len < sizeof(struct sockaddr) || len < *buf) 3008 return (EINVAL); 3009 3010 switch (((struct sockaddr *)buf)->sa_family) { 3011 case AF_INET6: 3012 { 3013 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3014 int error; 3015 3016 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3017 return (EINVAL); 3018 3019 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3020 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3021 return (EINVAL); 3022 } 3023 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 3024 != 0) { 3025 return (error); 3026 } 3027 break; 3028 } 3029 case AF_LINK: /* should eventually be supported */ 3030 default: 3031 return (EAFNOSUPPORT); 3032 } 3033 3034 /* turn off the previous option, then set the new option. */ 3035 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3036 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3037 if (opt->ip6po_nexthop == NULL) 3038 return (ENOBUFS); 3039 bcopy(buf, opt->ip6po_nexthop, *buf); 3040 break; 3041 3042 case IPV6_2292HOPOPTS: 3043 case IPV6_HOPOPTS: 3044 { 3045 struct ip6_hbh *hbh; 3046 int hbhlen; 3047 3048 /* 3049 * XXX: We don't allow a non-privileged user to set ANY HbH 3050 * options, since per-option restriction has too much 3051 * overhead. 3052 */ 3053 if (cred != NULL) { 3054 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3055 if (error) 3056 return (error); 3057 } 3058 3059 if (len == 0) { 3060 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3061 break; /* just remove the option */ 3062 } 3063 3064 /* message length validation */ 3065 if (len < sizeof(struct ip6_hbh)) 3066 return (EINVAL); 3067 hbh = (struct ip6_hbh *)buf; 3068 hbhlen = (hbh->ip6h_len + 1) << 3; 3069 if (len != hbhlen) 3070 return (EINVAL); 3071 3072 /* turn off the previous option, then set the new option. */ 3073 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3074 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3075 if (opt->ip6po_hbh == NULL) 3076 return (ENOBUFS); 3077 bcopy(hbh, opt->ip6po_hbh, hbhlen); 3078 3079 break; 3080 } 3081 3082 case IPV6_2292DSTOPTS: 3083 case IPV6_DSTOPTS: 3084 case IPV6_RTHDRDSTOPTS: 3085 { 3086 struct ip6_dest *dest, **newdest = NULL; 3087 int destlen; 3088 3089 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 3090 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3091 if (error) 3092 return (error); 3093 } 3094 3095 if (len == 0) { 3096 ip6_clearpktopts(opt, optname); 3097 break; /* just remove the option */ 3098 } 3099 3100 /* message length validation */ 3101 if (len < sizeof(struct ip6_dest)) 3102 return (EINVAL); 3103 dest = (struct ip6_dest *)buf; 3104 destlen = (dest->ip6d_len + 1) << 3; 3105 if (len != destlen) 3106 return (EINVAL); 3107 3108 /* 3109 * Determine the position that the destination options header 3110 * should be inserted; before or after the routing header. 3111 */ 3112 switch (optname) { 3113 case IPV6_2292DSTOPTS: 3114 /* 3115 * The old advacned API is ambiguous on this point. 3116 * Our approach is to determine the position based 3117 * according to the existence of a routing header. 3118 * Note, however, that this depends on the order of the 3119 * extension headers in the ancillary data; the 1st 3120 * part of the destination options header must appear 3121 * before the routing header in the ancillary data, 3122 * too. 3123 * RFC3542 solved the ambiguity by introducing 3124 * separate ancillary data or option types. 3125 */ 3126 if (opt->ip6po_rthdr == NULL) 3127 newdest = &opt->ip6po_dest1; 3128 else 3129 newdest = &opt->ip6po_dest2; 3130 break; 3131 case IPV6_RTHDRDSTOPTS: 3132 newdest = &opt->ip6po_dest1; 3133 break; 3134 case IPV6_DSTOPTS: 3135 newdest = &opt->ip6po_dest2; 3136 break; 3137 } 3138 3139 /* turn off the previous option, then set the new option. */ 3140 ip6_clearpktopts(opt, optname); 3141 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3142 if (*newdest == NULL) 3143 return (ENOBUFS); 3144 bcopy(dest, *newdest, destlen); 3145 3146 break; 3147 } 3148 3149 case IPV6_2292RTHDR: 3150 case IPV6_RTHDR: 3151 { 3152 struct ip6_rthdr *rth; 3153 int rthlen; 3154 3155 if (len == 0) { 3156 ip6_clearpktopts(opt, IPV6_RTHDR); 3157 break; /* just remove the option */ 3158 } 3159 3160 /* message length validation */ 3161 if (len < sizeof(struct ip6_rthdr)) 3162 return (EINVAL); 3163 rth = (struct ip6_rthdr *)buf; 3164 rthlen = (rth->ip6r_len + 1) << 3; 3165 if (len != rthlen) 3166 return (EINVAL); 3167 3168 switch (rth->ip6r_type) { 3169 case IPV6_RTHDR_TYPE_0: 3170 if (rth->ip6r_len == 0) /* must contain one addr */ 3171 return (EINVAL); 3172 if (rth->ip6r_len % 2) /* length must be even */ 3173 return (EINVAL); 3174 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3175 return (EINVAL); 3176 break; 3177 default: 3178 return (EINVAL); /* not supported */ 3179 } 3180 3181 /* turn off the previous option */ 3182 ip6_clearpktopts(opt, IPV6_RTHDR); 3183 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3184 if (opt->ip6po_rthdr == NULL) 3185 return (ENOBUFS); 3186 bcopy(rth, opt->ip6po_rthdr, rthlen); 3187 3188 break; 3189 } 3190 3191 case IPV6_USE_MIN_MTU: 3192 if (len != sizeof(int)) 3193 return (EINVAL); 3194 minmtupolicy = *(int *)buf; 3195 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3196 minmtupolicy != IP6PO_MINMTU_DISABLE && 3197 minmtupolicy != IP6PO_MINMTU_ALL) { 3198 return (EINVAL); 3199 } 3200 opt->ip6po_minmtu = minmtupolicy; 3201 break; 3202 3203 case IPV6_DONTFRAG: 3204 if (len != sizeof(int)) 3205 return (EINVAL); 3206 3207 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3208 /* 3209 * we ignore this option for TCP sockets. 3210 * (RFC3542 leaves this case unspecified.) 3211 */ 3212 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3213 } else 3214 opt->ip6po_flags |= IP6PO_DONTFRAG; 3215 break; 3216 3217 case IPV6_PREFER_TEMPADDR: 3218 if (len != sizeof(int)) 3219 return (EINVAL); 3220 preftemp = *(int *)buf; 3221 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3222 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3223 preftemp != IP6PO_TEMPADDR_PREFER) { 3224 return (EINVAL); 3225 } 3226 opt->ip6po_prefer_tempaddr = preftemp; 3227 break; 3228 3229 default: 3230 return (ENOPROTOOPT); 3231 } /* end of switch */ 3232 3233 return (0); 3234 } 3235 3236 /* 3237 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3238 * packet to the input queue of a specified interface. Note that this 3239 * calls the output routine of the loopback "driver", but with an interface 3240 * pointer that might NOT be &loif -- easier than replicating that code here. 3241 */ 3242 void 3243 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3244 { 3245 struct mbuf *copym; 3246 struct ip6_hdr *ip6; 3247 3248 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3249 if (copym == NULL) 3250 return; 3251 3252 /* 3253 * Make sure to deep-copy IPv6 header portion in case the data 3254 * is in an mbuf cluster, so that we can safely override the IPv6 3255 * header portion later. 3256 */ 3257 if (!M_WRITABLE(copym) || 3258 copym->m_len < sizeof(struct ip6_hdr)) { 3259 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3260 if (copym == NULL) 3261 return; 3262 } 3263 ip6 = mtod(copym, struct ip6_hdr *); 3264 /* 3265 * clear embedded scope identifiers if necessary. 3266 * in6_clearscope will touch the addresses only when necessary. 3267 */ 3268 in6_clearscope(&ip6->ip6_src); 3269 in6_clearscope(&ip6->ip6_dst); 3270 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3271 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3272 CSUM_PSEUDO_HDR; 3273 copym->m_pkthdr.csum_data = 0xffff; 3274 } 3275 if_simloop(ifp, copym, AF_INET6, 0); 3276 } 3277 3278 /* 3279 * Chop IPv6 header off from the payload. 3280 */ 3281 static int 3282 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3283 { 3284 struct mbuf *mh; 3285 struct ip6_hdr *ip6; 3286 3287 ip6 = mtod(m, struct ip6_hdr *); 3288 if (m->m_len > sizeof(*ip6)) { 3289 mh = m_gethdr(M_NOWAIT, MT_DATA); 3290 if (mh == NULL) { 3291 m_freem(m); 3292 return ENOBUFS; 3293 } 3294 m_move_pkthdr(mh, m); 3295 M_ALIGN(mh, sizeof(*ip6)); 3296 m->m_len -= sizeof(*ip6); 3297 m->m_data += sizeof(*ip6); 3298 mh->m_next = m; 3299 m = mh; 3300 m->m_len = sizeof(*ip6); 3301 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3302 } 3303 exthdrs->ip6e_ip6 = m; 3304 return 0; 3305 } 3306 3307 /* 3308 * Compute IPv6 extension header length. 3309 */ 3310 int 3311 ip6_optlen(struct inpcb *inp) 3312 { 3313 int len; 3314 3315 if (!inp->in6p_outputopts) 3316 return 0; 3317 3318 len = 0; 3319 #define elen(x) \ 3320 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3321 3322 len += elen(inp->in6p_outputopts->ip6po_hbh); 3323 if (inp->in6p_outputopts->ip6po_rthdr) 3324 /* dest1 is valid with rthdr only */ 3325 len += elen(inp->in6p_outputopts->ip6po_dest1); 3326 len += elen(inp->in6p_outputopts->ip6po_rthdr); 3327 len += elen(inp->in6p_outputopts->ip6po_dest2); 3328 return len; 3329 #undef elen 3330 } 3331