1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 #include "opt_ipsec.h" 69 70 #include <sys/param.h> 71 #include <sys/kernel.h> 72 #include <sys/malloc.h> 73 #include <sys/mbuf.h> 74 #include <sys/errno.h> 75 #include <sys/priv.h> 76 #include <sys/proc.h> 77 #include <sys/protosw.h> 78 #include <sys/socket.h> 79 #include <sys/socketvar.h> 80 #include <sys/ucred.h> 81 #include <sys/vimage.h> 82 83 #include <net/if.h> 84 #include <net/netisr.h> 85 #include <net/route.h> 86 #include <net/pfil.h> 87 #include <net/vnet.h> 88 89 #include <netinet/in.h> 90 #include <netinet/in_var.h> 91 #include <netinet6/in6_var.h> 92 #include <netinet/ip6.h> 93 #include <netinet/icmp6.h> 94 #include <netinet6/ip6_var.h> 95 #include <netinet/in_pcb.h> 96 #include <netinet/tcp_var.h> 97 #include <netinet6/nd6.h> 98 #include <netinet/vinet.h> 99 100 #ifdef IPSEC 101 #include <netipsec/ipsec.h> 102 #include <netipsec/ipsec6.h> 103 #include <netipsec/key.h> 104 #include <netinet6/ip6_ipsec.h> 105 #endif /* IPSEC */ 106 107 #include <netinet6/ip6protosw.h> 108 #include <netinet6/scope6_var.h> 109 #include <netinet6/vinet6.h> 110 111 static MALLOC_DEFINE(M_IP6MOPTS, "ip6_moptions", "internet multicast options"); 112 113 struct ip6_exthdrs { 114 struct mbuf *ip6e_ip6; 115 struct mbuf *ip6e_hbh; 116 struct mbuf *ip6e_dest1; 117 struct mbuf *ip6e_rthdr; 118 struct mbuf *ip6e_dest2; 119 }; 120 121 static int ip6_pcbopt __P((int, u_char *, int, struct ip6_pktopts **, 122 struct ucred *, int)); 123 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 124 struct socket *, struct sockopt *)); 125 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 126 static int ip6_setpktopt __P((int, u_char *, int, struct ip6_pktopts *, 127 struct ucred *, int, int, int)); 128 129 static int ip6_setmoptions(int, struct ip6_moptions **, struct mbuf *); 130 static int ip6_getmoptions(int, struct ip6_moptions *, struct mbuf **); 131 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 132 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 133 struct ip6_frag **)); 134 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 135 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 136 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *, 137 struct ifnet *, struct in6_addr *, u_long *, int *)); 138 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 139 140 141 /* 142 * Make an extension header from option data. hp is the source, and 143 * mp is the destination. 144 */ 145 #define MAKE_EXTHDR(hp, mp) \ 146 do { \ 147 if (hp) { \ 148 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 149 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 150 ((eh)->ip6e_len + 1) << 3); \ 151 if (error) \ 152 goto freehdrs; \ 153 } \ 154 } while (/*CONSTCOND*/ 0) 155 156 /* 157 * Form a chain of extension headers. 158 * m is the extension header mbuf 159 * mp is the previous mbuf in the chain 160 * p is the next header 161 * i is the type of option. 162 */ 163 #define MAKE_CHAIN(m, mp, p, i)\ 164 do {\ 165 if (m) {\ 166 if (!hdrsplit) \ 167 panic("assumption failed: hdr not split"); \ 168 *mtod((m), u_char *) = *(p);\ 169 *(p) = (i);\ 170 p = mtod((m), u_char *);\ 171 (m)->m_next = (mp)->m_next;\ 172 (mp)->m_next = (m);\ 173 (mp) = (m);\ 174 }\ 175 } while (/*CONSTCOND*/ 0) 176 177 /* 178 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 179 * header (with pri, len, nxt, hlim, src, dst). 180 * This function may modify ver and hlim only. 181 * The mbuf chain containing the packet will be freed. 182 * The mbuf opt, if present, will not be freed. 183 * 184 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 185 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 186 * which is rt_rmx.rmx_mtu. 187 * 188 * ifpp - XXX: just for statistics 189 */ 190 int 191 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 192 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 193 struct ifnet **ifpp, struct inpcb *inp) 194 { 195 INIT_VNET_NET(curvnet); 196 INIT_VNET_INET6(curvnet); 197 struct ip6_hdr *ip6, *mhip6; 198 struct ifnet *ifp, *origifp; 199 struct mbuf *m = m0; 200 struct mbuf *mprev = NULL; 201 int hlen, tlen, len, off; 202 struct route_in6 ip6route; 203 struct rtentry *rt = NULL; 204 struct sockaddr_in6 *dst, src_sa, dst_sa; 205 struct in6_addr odst; 206 int error = 0; 207 struct in6_ifaddr *ia = NULL; 208 u_long mtu; 209 int alwaysfrag, dontfrag; 210 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 211 struct ip6_exthdrs exthdrs; 212 struct in6_addr finaldst, src0, dst0; 213 u_int32_t zone; 214 struct route_in6 *ro_pmtu = NULL; 215 int hdrsplit = 0; 216 int needipsec = 0; 217 #ifdef IPSEC 218 struct ipsec_output_state state; 219 struct ip6_rthdr *rh = NULL; 220 int needipsectun = 0; 221 int segleft_org = 0; 222 struct secpolicy *sp = NULL; 223 #endif /* IPSEC */ 224 225 ip6 = mtod(m, struct ip6_hdr *); 226 if (ip6 == NULL) { 227 printf ("ip6 is NULL"); 228 goto bad; 229 } 230 231 finaldst = ip6->ip6_dst; 232 233 bzero(&exthdrs, sizeof(exthdrs)); 234 235 if (opt) { 236 /* Hop-by-Hop options header */ 237 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 238 /* Destination options header(1st part) */ 239 if (opt->ip6po_rthdr) { 240 /* 241 * Destination options header(1st part) 242 * This only makes sense with a routing header. 243 * See Section 9.2 of RFC 3542. 244 * Disabling this part just for MIP6 convenience is 245 * a bad idea. We need to think carefully about a 246 * way to make the advanced API coexist with MIP6 247 * options, which might automatically be inserted in 248 * the kernel. 249 */ 250 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 251 } 252 /* Routing header */ 253 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 254 /* Destination options header(2nd part) */ 255 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 256 } 257 258 /* 259 * IPSec checking which handles several cases. 260 * FAST IPSEC: We re-injected the packet. 261 */ 262 #ifdef IPSEC 263 switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp, &sp)) 264 { 265 case 1: /* Bad packet */ 266 goto freehdrs; 267 case -1: /* Do IPSec */ 268 needipsec = 1; 269 case 0: /* No IPSec */ 270 default: 271 break; 272 } 273 #endif /* IPSEC */ 274 275 /* 276 * Calculate the total length of the extension header chain. 277 * Keep the length of the unfragmentable part for fragmentation. 278 */ 279 optlen = 0; 280 if (exthdrs.ip6e_hbh) 281 optlen += exthdrs.ip6e_hbh->m_len; 282 if (exthdrs.ip6e_dest1) 283 optlen += exthdrs.ip6e_dest1->m_len; 284 if (exthdrs.ip6e_rthdr) 285 optlen += exthdrs.ip6e_rthdr->m_len; 286 unfragpartlen = optlen + sizeof(struct ip6_hdr); 287 288 /* NOTE: we don't add AH/ESP length here. do that later. */ 289 if (exthdrs.ip6e_dest2) 290 optlen += exthdrs.ip6e_dest2->m_len; 291 292 /* 293 * If we need IPsec, or there is at least one extension header, 294 * separate IP6 header from the payload. 295 */ 296 if ((needipsec || optlen) && !hdrsplit) { 297 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 298 m = NULL; 299 goto freehdrs; 300 } 301 m = exthdrs.ip6e_ip6; 302 hdrsplit++; 303 } 304 305 /* adjust pointer */ 306 ip6 = mtod(m, struct ip6_hdr *); 307 308 /* adjust mbuf packet header length */ 309 m->m_pkthdr.len += optlen; 310 plen = m->m_pkthdr.len - sizeof(*ip6); 311 312 /* If this is a jumbo payload, insert a jumbo payload option. */ 313 if (plen > IPV6_MAXPACKET) { 314 if (!hdrsplit) { 315 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 316 m = NULL; 317 goto freehdrs; 318 } 319 m = exthdrs.ip6e_ip6; 320 hdrsplit++; 321 } 322 /* adjust pointer */ 323 ip6 = mtod(m, struct ip6_hdr *); 324 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 325 goto freehdrs; 326 ip6->ip6_plen = 0; 327 } else 328 ip6->ip6_plen = htons(plen); 329 330 /* 331 * Concatenate headers and fill in next header fields. 332 * Here we have, on "m" 333 * IPv6 payload 334 * and we insert headers accordingly. Finally, we should be getting: 335 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 336 * 337 * during the header composing process, "m" points to IPv6 header. 338 * "mprev" points to an extension header prior to esp. 339 */ 340 u_char *nexthdrp = &ip6->ip6_nxt; 341 mprev = m; 342 343 /* 344 * we treat dest2 specially. this makes IPsec processing 345 * much easier. the goal here is to make mprev point the 346 * mbuf prior to dest2. 347 * 348 * result: IPv6 dest2 payload 349 * m and mprev will point to IPv6 header. 350 */ 351 if (exthdrs.ip6e_dest2) { 352 if (!hdrsplit) 353 panic("assumption failed: hdr not split"); 354 exthdrs.ip6e_dest2->m_next = m->m_next; 355 m->m_next = exthdrs.ip6e_dest2; 356 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 357 ip6->ip6_nxt = IPPROTO_DSTOPTS; 358 } 359 360 /* 361 * result: IPv6 hbh dest1 rthdr dest2 payload 362 * m will point to IPv6 header. mprev will point to the 363 * extension header prior to dest2 (rthdr in the above case). 364 */ 365 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 366 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 367 IPPROTO_DSTOPTS); 368 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 369 IPPROTO_ROUTING); 370 371 #ifdef IPSEC 372 if (!needipsec) 373 goto skip_ipsec2; 374 375 /* 376 * pointers after IPsec headers are not valid any more. 377 * other pointers need a great care too. 378 * (IPsec routines should not mangle mbufs prior to AH/ESP) 379 */ 380 exthdrs.ip6e_dest2 = NULL; 381 382 if (exthdrs.ip6e_rthdr) { 383 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 384 segleft_org = rh->ip6r_segleft; 385 rh->ip6r_segleft = 0; 386 } 387 388 bzero(&state, sizeof(state)); 389 state.m = m; 390 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 391 &needipsectun); 392 m = state.m; 393 if (error == EJUSTRETURN) { 394 /* 395 * We had a SP with a level of 'use' and no SA. We 396 * will just continue to process the packet without 397 * IPsec processing. 398 */ 399 ; 400 } else if (error) { 401 /* mbuf is already reclaimed in ipsec6_output_trans. */ 402 m = NULL; 403 switch (error) { 404 case EHOSTUNREACH: 405 case ENETUNREACH: 406 case EMSGSIZE: 407 case ENOBUFS: 408 case ENOMEM: 409 break; 410 default: 411 printf("[%s:%d] (ipsec): error code %d\n", 412 __func__, __LINE__, error); 413 /* FALLTHROUGH */ 414 case ENOENT: 415 /* don't show these error codes to the user */ 416 error = 0; 417 break; 418 } 419 goto bad; 420 } else if (!needipsectun) { 421 /* 422 * In the FAST IPSec case we have already 423 * re-injected the packet and it has been freed 424 * by the ipsec_done() function. So, just clean 425 * up after ourselves. 426 */ 427 m = NULL; 428 goto done; 429 } 430 if (exthdrs.ip6e_rthdr) { 431 /* ah6_output doesn't modify mbuf chain */ 432 rh->ip6r_segleft = segleft_org; 433 } 434 skip_ipsec2:; 435 #endif /* IPSEC */ 436 437 /* 438 * If there is a routing header, replace the destination address field 439 * with the first hop of the routing header. 440 */ 441 if (exthdrs.ip6e_rthdr) { 442 struct ip6_rthdr *rh = 443 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 444 struct ip6_rthdr *)); 445 struct ip6_rthdr0 *rh0; 446 struct in6_addr *addr; 447 struct sockaddr_in6 sa; 448 449 switch (rh->ip6r_type) { 450 case IPV6_RTHDR_TYPE_0: 451 rh0 = (struct ip6_rthdr0 *)rh; 452 addr = (struct in6_addr *)(rh0 + 1); 453 454 /* 455 * construct a sockaddr_in6 form of 456 * the first hop. 457 * 458 * XXX: we may not have enough 459 * information about its scope zone; 460 * there is no standard API to pass 461 * the information from the 462 * application. 463 */ 464 bzero(&sa, sizeof(sa)); 465 sa.sin6_family = AF_INET6; 466 sa.sin6_len = sizeof(sa); 467 sa.sin6_addr = addr[0]; 468 if ((error = sa6_embedscope(&sa, 469 V_ip6_use_defzone)) != 0) { 470 goto bad; 471 } 472 ip6->ip6_dst = sa.sin6_addr; 473 bcopy(&addr[1], &addr[0], sizeof(struct in6_addr) 474 * (rh0->ip6r0_segleft - 1)); 475 addr[rh0->ip6r0_segleft - 1] = finaldst; 476 /* XXX */ 477 in6_clearscope(addr + rh0->ip6r0_segleft - 1); 478 break; 479 default: /* is it possible? */ 480 error = EINVAL; 481 goto bad; 482 } 483 } 484 485 /* Source address validation */ 486 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 487 (flags & IPV6_UNSPECSRC) == 0) { 488 error = EOPNOTSUPP; 489 V_ip6stat.ip6s_badscope++; 490 goto bad; 491 } 492 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 493 error = EOPNOTSUPP; 494 V_ip6stat.ip6s_badscope++; 495 goto bad; 496 } 497 498 V_ip6stat.ip6s_localout++; 499 500 /* 501 * Route packet. 502 */ 503 if (ro == 0) { 504 ro = &ip6route; 505 bzero((caddr_t)ro, sizeof(*ro)); 506 } 507 ro_pmtu = ro; 508 if (opt && opt->ip6po_rthdr) 509 ro = &opt->ip6po_route; 510 dst = (struct sockaddr_in6 *)&ro->ro_dst; 511 512 again: 513 /* 514 * if specified, try to fill in the traffic class field. 515 * do not override if a non-zero value is already set. 516 * we check the diffserv field and the ecn field separately. 517 */ 518 if (opt && opt->ip6po_tclass >= 0) { 519 int mask = 0; 520 521 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 522 mask |= 0xfc; 523 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 524 mask |= 0x03; 525 if (mask != 0) 526 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 527 } 528 529 /* fill in or override the hop limit field, if necessary. */ 530 if (opt && opt->ip6po_hlim != -1) 531 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 532 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 533 if (im6o != NULL) 534 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 535 else 536 ip6->ip6_hlim = V_ip6_defmcasthlim; 537 } 538 539 #ifdef IPSEC 540 /* 541 * We may re-inject packets into the stack here. 542 */ 543 if (needipsec && needipsectun) { 544 struct ipsec_output_state state; 545 546 /* 547 * All the extension headers will become inaccessible 548 * (since they can be encrypted). 549 * Don't panic, we need no more updates to extension headers 550 * on inner IPv6 packet (since they are now encapsulated). 551 * 552 * IPv6 [ESP|AH] IPv6 [extension headers] payload 553 */ 554 bzero(&exthdrs, sizeof(exthdrs)); 555 exthdrs.ip6e_ip6 = m; 556 557 bzero(&state, sizeof(state)); 558 state.m = m; 559 state.ro = (struct route *)ro; 560 state.dst = (struct sockaddr *)dst; 561 562 error = ipsec6_output_tunnel(&state, sp, flags); 563 564 m = state.m; 565 ro = (struct route_in6 *)state.ro; 566 dst = (struct sockaddr_in6 *)state.dst; 567 if (error == EJUSTRETURN) { 568 /* 569 * We had a SP with a level of 'use' and no SA. We 570 * will just continue to process the packet without 571 * IPsec processing. 572 */ 573 ; 574 } else if (error) { 575 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 576 m0 = m = NULL; 577 m = NULL; 578 switch (error) { 579 case EHOSTUNREACH: 580 case ENETUNREACH: 581 case EMSGSIZE: 582 case ENOBUFS: 583 case ENOMEM: 584 break; 585 default: 586 printf("[%s:%d] (ipsec): error code %d\n", 587 __func__, __LINE__, error); 588 /* FALLTHROUGH */ 589 case ENOENT: 590 /* don't show these error codes to the user */ 591 error = 0; 592 break; 593 } 594 goto bad; 595 } else { 596 /* 597 * In the FAST IPSec case we have already 598 * re-injected the packet and it has been freed 599 * by the ipsec_done() function. So, just clean 600 * up after ourselves. 601 */ 602 m = NULL; 603 goto done; 604 } 605 606 exthdrs.ip6e_ip6 = m; 607 } 608 #endif /* IPSEC */ 609 610 /* adjust pointer */ 611 ip6 = mtod(m, struct ip6_hdr *); 612 613 bzero(&dst_sa, sizeof(dst_sa)); 614 dst_sa.sin6_family = AF_INET6; 615 dst_sa.sin6_len = sizeof(dst_sa); 616 dst_sa.sin6_addr = ip6->ip6_dst; 617 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro, 618 &ifp, &rt)) != 0) { 619 switch (error) { 620 case EHOSTUNREACH: 621 V_ip6stat.ip6s_noroute++; 622 break; 623 case EADDRNOTAVAIL: 624 default: 625 break; /* XXX statistics? */ 626 } 627 if (ifp != NULL) 628 in6_ifstat_inc(ifp, ifs6_out_discard); 629 goto bad; 630 } 631 if (rt == NULL) { 632 /* 633 * If in6_selectroute() does not return a route entry, 634 * dst may not have been updated. 635 */ 636 *dst = dst_sa; /* XXX */ 637 } 638 639 /* 640 * then rt (for unicast) and ifp must be non-NULL valid values. 641 */ 642 if ((flags & IPV6_FORWARDING) == 0) { 643 /* XXX: the FORWARDING flag can be set for mrouting. */ 644 in6_ifstat_inc(ifp, ifs6_out_request); 645 } 646 if (rt != NULL) { 647 ia = (struct in6_ifaddr *)(rt->rt_ifa); 648 rt->rt_use++; 649 } 650 651 /* 652 * The outgoing interface must be in the zone of source and 653 * destination addresses. We should use ia_ifp to support the 654 * case of sending packets to an address of our own. 655 */ 656 if (ia != NULL && ia->ia_ifp) 657 origifp = ia->ia_ifp; 658 else 659 origifp = ifp; 660 661 src0 = ip6->ip6_src; 662 if (in6_setscope(&src0, origifp, &zone)) 663 goto badscope; 664 bzero(&src_sa, sizeof(src_sa)); 665 src_sa.sin6_family = AF_INET6; 666 src_sa.sin6_len = sizeof(src_sa); 667 src_sa.sin6_addr = ip6->ip6_src; 668 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 669 goto badscope; 670 671 dst0 = ip6->ip6_dst; 672 if (in6_setscope(&dst0, origifp, &zone)) 673 goto badscope; 674 /* re-initialize to be sure */ 675 bzero(&dst_sa, sizeof(dst_sa)); 676 dst_sa.sin6_family = AF_INET6; 677 dst_sa.sin6_len = sizeof(dst_sa); 678 dst_sa.sin6_addr = ip6->ip6_dst; 679 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 680 goto badscope; 681 } 682 683 /* scope check is done. */ 684 goto routefound; 685 686 badscope: 687 V_ip6stat.ip6s_badscope++; 688 in6_ifstat_inc(origifp, ifs6_out_discard); 689 if (error == 0) 690 error = EHOSTUNREACH; /* XXX */ 691 goto bad; 692 693 routefound: 694 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 695 if (opt && opt->ip6po_nextroute.ro_rt) { 696 /* 697 * The nexthop is explicitly specified by the 698 * application. We assume the next hop is an IPv6 699 * address. 700 */ 701 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 702 } 703 else if ((rt->rt_flags & RTF_GATEWAY)) 704 dst = (struct sockaddr_in6 *)rt->rt_gateway; 705 } 706 707 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 708 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 709 } else { 710 struct in6_multi *in6m; 711 712 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 713 714 in6_ifstat_inc(ifp, ifs6_out_mcast); 715 716 /* 717 * Confirm that the outgoing interface supports multicast. 718 */ 719 if (!(ifp->if_flags & IFF_MULTICAST)) { 720 V_ip6stat.ip6s_noroute++; 721 in6_ifstat_inc(ifp, ifs6_out_discard); 722 error = ENETUNREACH; 723 goto bad; 724 } 725 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 726 if (in6m != NULL && 727 (im6o == NULL || im6o->im6o_multicast_loop)) { 728 /* 729 * If we belong to the destination multicast group 730 * on the outgoing interface, and the caller did not 731 * forbid loopback, loop back a copy. 732 */ 733 ip6_mloopback(ifp, m, dst); 734 } else { 735 /* 736 * If we are acting as a multicast router, perform 737 * multicast forwarding as if the packet had just 738 * arrived on the interface to which we are about 739 * to send. The multicast forwarding function 740 * recursively calls this function, using the 741 * IPV6_FORWARDING flag to prevent infinite recursion. 742 * 743 * Multicasts that are looped back by ip6_mloopback(), 744 * above, will be forwarded by the ip6_input() routine, 745 * if necessary. 746 */ 747 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 748 /* 749 * XXX: ip6_mforward expects that rcvif is NULL 750 * when it is called from the originating path. 751 * However, it is not always the case, since 752 * some versions of MGETHDR() does not 753 * initialize the field. 754 */ 755 m->m_pkthdr.rcvif = NULL; 756 if (ip6_mforward(ip6, ifp, m) != 0) { 757 m_freem(m); 758 goto done; 759 } 760 } 761 } 762 /* 763 * Multicasts with a hoplimit of zero may be looped back, 764 * above, but must not be transmitted on a network. 765 * Also, multicasts addressed to the loopback interface 766 * are not sent -- the above call to ip6_mloopback() will 767 * loop back a copy if this host actually belongs to the 768 * destination group on the loopback interface. 769 */ 770 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 771 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 772 m_freem(m); 773 goto done; 774 } 775 } 776 777 /* 778 * Fill the outgoing inteface to tell the upper layer 779 * to increment per-interface statistics. 780 */ 781 if (ifpp) 782 *ifpp = ifp; 783 784 /* Determine path MTU. */ 785 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 786 &alwaysfrag)) != 0) 787 goto bad; 788 789 /* 790 * The caller of this function may specify to use the minimum MTU 791 * in some cases. 792 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 793 * setting. The logic is a bit complicated; by default, unicast 794 * packets will follow path MTU while multicast packets will be sent at 795 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 796 * including unicast ones will be sent at the minimum MTU. Multicast 797 * packets will always be sent at the minimum MTU unless 798 * IP6PO_MINMTU_DISABLE is explicitly specified. 799 * See RFC 3542 for more details. 800 */ 801 if (mtu > IPV6_MMTU) { 802 if ((flags & IPV6_MINMTU)) 803 mtu = IPV6_MMTU; 804 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 805 mtu = IPV6_MMTU; 806 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 807 (opt == NULL || 808 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 809 mtu = IPV6_MMTU; 810 } 811 } 812 813 /* 814 * clear embedded scope identifiers if necessary. 815 * in6_clearscope will touch the addresses only when necessary. 816 */ 817 in6_clearscope(&ip6->ip6_src); 818 in6_clearscope(&ip6->ip6_dst); 819 820 /* 821 * If the outgoing packet contains a hop-by-hop options header, 822 * it must be examined and processed even by the source node. 823 * (RFC 2460, section 4.) 824 */ 825 if (exthdrs.ip6e_hbh) { 826 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 827 u_int32_t dummy; /* XXX unused */ 828 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 829 830 #ifdef DIAGNOSTIC 831 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 832 panic("ip6e_hbh is not continuous"); 833 #endif 834 /* 835 * XXX: if we have to send an ICMPv6 error to the sender, 836 * we need the M_LOOP flag since icmp6_error() expects 837 * the IPv6 and the hop-by-hop options header are 838 * continuous unless the flag is set. 839 */ 840 m->m_flags |= M_LOOP; 841 m->m_pkthdr.rcvif = ifp; 842 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 843 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 844 &dummy, &plen) < 0) { 845 /* m was already freed at this point */ 846 error = EINVAL;/* better error? */ 847 goto done; 848 } 849 m->m_flags &= ~M_LOOP; /* XXX */ 850 m->m_pkthdr.rcvif = NULL; 851 } 852 853 /* Jump over all PFIL processing if hooks are not active. */ 854 if (!PFIL_HOOKED(&inet6_pfil_hook)) 855 goto passout; 856 857 odst = ip6->ip6_dst; 858 /* Run through list of hooks for output packets. */ 859 error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT, inp); 860 if (error != 0 || m == NULL) 861 goto done; 862 ip6 = mtod(m, struct ip6_hdr *); 863 864 /* See if destination IP address was changed by packet filter. */ 865 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 866 m->m_flags |= M_SKIP_FIREWALL; 867 /* If destination is now ourself drop to ip6_input(). */ 868 if (in6_localaddr(&ip6->ip6_dst)) { 869 if (m->m_pkthdr.rcvif == NULL) 870 m->m_pkthdr.rcvif = V_loif; 871 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 872 m->m_pkthdr.csum_flags |= 873 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 874 m->m_pkthdr.csum_data = 0xffff; 875 } 876 m->m_pkthdr.csum_flags |= 877 CSUM_IP_CHECKED | CSUM_IP_VALID; 878 error = netisr_queue(NETISR_IPV6, m); 879 goto done; 880 } else 881 goto again; /* Redo the routing table lookup. */ 882 } 883 884 /* XXX: IPFIREWALL_FORWARD */ 885 886 passout: 887 /* 888 * Send the packet to the outgoing interface. 889 * If necessary, do IPv6 fragmentation before sending. 890 * 891 * the logic here is rather complex: 892 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 893 * 1-a: send as is if tlen <= path mtu 894 * 1-b: fragment if tlen > path mtu 895 * 896 * 2: if user asks us not to fragment (dontfrag == 1) 897 * 2-a: send as is if tlen <= interface mtu 898 * 2-b: error if tlen > interface mtu 899 * 900 * 3: if we always need to attach fragment header (alwaysfrag == 1) 901 * always fragment 902 * 903 * 4: if dontfrag == 1 && alwaysfrag == 1 904 * error, as we cannot handle this conflicting request 905 */ 906 tlen = m->m_pkthdr.len; 907 908 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 909 dontfrag = 1; 910 else 911 dontfrag = 0; 912 if (dontfrag && alwaysfrag) { /* case 4 */ 913 /* conflicting request - can't transmit */ 914 error = EMSGSIZE; 915 goto bad; 916 } 917 if (dontfrag && tlen > IN6_LINKMTU(ifp)) { /* case 2-b */ 918 /* 919 * Even if the DONTFRAG option is specified, we cannot send the 920 * packet when the data length is larger than the MTU of the 921 * outgoing interface. 922 * Notify the error by sending IPV6_PATHMTU ancillary data as 923 * well as returning an error code (the latter is not described 924 * in the API spec.) 925 */ 926 u_int32_t mtu32; 927 struct ip6ctlparam ip6cp; 928 929 mtu32 = (u_int32_t)mtu; 930 bzero(&ip6cp, sizeof(ip6cp)); 931 ip6cp.ip6c_cmdarg = (void *)&mtu32; 932 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 933 (void *)&ip6cp); 934 935 error = EMSGSIZE; 936 goto bad; 937 } 938 939 /* 940 * transmit packet without fragmentation 941 */ 942 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 943 struct in6_ifaddr *ia6; 944 945 ip6 = mtod(m, struct ip6_hdr *); 946 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 947 if (ia6) { 948 /* Record statistics for this interface address. */ 949 ia6->ia_ifa.if_opackets++; 950 ia6->ia_ifa.if_obytes += m->m_pkthdr.len; 951 } 952 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 953 goto done; 954 } 955 956 /* 957 * try to fragment the packet. case 1-b and 3 958 */ 959 if (mtu < IPV6_MMTU) { 960 /* path MTU cannot be less than IPV6_MMTU */ 961 error = EMSGSIZE; 962 in6_ifstat_inc(ifp, ifs6_out_fragfail); 963 goto bad; 964 } else if (ip6->ip6_plen == 0) { 965 /* jumbo payload cannot be fragmented */ 966 error = EMSGSIZE; 967 in6_ifstat_inc(ifp, ifs6_out_fragfail); 968 goto bad; 969 } else { 970 struct mbuf **mnext, *m_frgpart; 971 struct ip6_frag *ip6f; 972 u_int32_t id = htonl(ip6_randomid()); 973 u_char nextproto; 974 975 int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len; 976 977 /* 978 * Too large for the destination or interface; 979 * fragment if possible. 980 * Must be able to put at least 8 bytes per fragment. 981 */ 982 hlen = unfragpartlen; 983 if (mtu > IPV6_MAXPACKET) 984 mtu = IPV6_MAXPACKET; 985 986 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 987 if (len < 8) { 988 error = EMSGSIZE; 989 in6_ifstat_inc(ifp, ifs6_out_fragfail); 990 goto bad; 991 } 992 993 /* 994 * Verify that we have any chance at all of being able to queue 995 * the packet or packet fragments 996 */ 997 if (qslots <= 0 || ((u_int)qslots * (mtu - hlen) 998 < tlen /* - hlen */)) { 999 error = ENOBUFS; 1000 V_ip6stat.ip6s_odropped++; 1001 goto bad; 1002 } 1003 1004 mnext = &m->m_nextpkt; 1005 1006 /* 1007 * Change the next header field of the last header in the 1008 * unfragmentable part. 1009 */ 1010 if (exthdrs.ip6e_rthdr) { 1011 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1012 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1013 } else if (exthdrs.ip6e_dest1) { 1014 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1015 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1016 } else if (exthdrs.ip6e_hbh) { 1017 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1018 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1019 } else { 1020 nextproto = ip6->ip6_nxt; 1021 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1022 } 1023 1024 /* 1025 * Loop through length of segment after first fragment, 1026 * make new header and copy data of each part and link onto 1027 * chain. 1028 */ 1029 m0 = m; 1030 for (off = hlen; off < tlen; off += len) { 1031 MGETHDR(m, M_DONTWAIT, MT_HEADER); 1032 if (!m) { 1033 error = ENOBUFS; 1034 V_ip6stat.ip6s_odropped++; 1035 goto sendorfree; 1036 } 1037 m->m_pkthdr.rcvif = NULL; 1038 m->m_flags = m0->m_flags & M_COPYFLAGS; 1039 *mnext = m; 1040 mnext = &m->m_nextpkt; 1041 m->m_data += max_linkhdr; 1042 mhip6 = mtod(m, struct ip6_hdr *); 1043 *mhip6 = *ip6; 1044 m->m_len = sizeof(*mhip6); 1045 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 1046 if (error) { 1047 V_ip6stat.ip6s_odropped++; 1048 goto sendorfree; 1049 } 1050 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 1051 if (off + len >= tlen) 1052 len = tlen - off; 1053 else 1054 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1055 mhip6->ip6_plen = htons((u_short)(len + hlen + 1056 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 1057 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 1058 error = ENOBUFS; 1059 V_ip6stat.ip6s_odropped++; 1060 goto sendorfree; 1061 } 1062 m_cat(m, m_frgpart); 1063 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1064 m->m_pkthdr.rcvif = NULL; 1065 ip6f->ip6f_reserved = 0; 1066 ip6f->ip6f_ident = id; 1067 ip6f->ip6f_nxt = nextproto; 1068 V_ip6stat.ip6s_ofragments++; 1069 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1070 } 1071 1072 in6_ifstat_inc(ifp, ifs6_out_fragok); 1073 } 1074 1075 /* 1076 * Remove leading garbages. 1077 */ 1078 sendorfree: 1079 m = m0->m_nextpkt; 1080 m0->m_nextpkt = 0; 1081 m_freem(m0); 1082 for (m0 = m; m; m = m0) { 1083 m0 = m->m_nextpkt; 1084 m->m_nextpkt = 0; 1085 if (error == 0) { 1086 /* Record statistics for this interface address. */ 1087 if (ia) { 1088 ia->ia_ifa.if_opackets++; 1089 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 1090 } 1091 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1092 } else 1093 m_freem(m); 1094 } 1095 1096 if (error == 0) 1097 V_ip6stat.ip6s_fragmented++; 1098 1099 done: 1100 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1101 RTFREE(ro->ro_rt); 1102 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1103 RTFREE(ro_pmtu->ro_rt); 1104 } 1105 #ifdef IPSEC 1106 if (sp != NULL) 1107 KEY_FREESP(&sp); 1108 #endif 1109 1110 return (error); 1111 1112 freehdrs: 1113 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1114 m_freem(exthdrs.ip6e_dest1); 1115 m_freem(exthdrs.ip6e_rthdr); 1116 m_freem(exthdrs.ip6e_dest2); 1117 /* FALLTHROUGH */ 1118 bad: 1119 if (m) 1120 m_freem(m); 1121 goto done; 1122 } 1123 1124 static int 1125 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1126 { 1127 struct mbuf *m; 1128 1129 if (hlen > MCLBYTES) 1130 return (ENOBUFS); /* XXX */ 1131 1132 MGET(m, M_DONTWAIT, MT_DATA); 1133 if (!m) 1134 return (ENOBUFS); 1135 1136 if (hlen > MLEN) { 1137 MCLGET(m, M_DONTWAIT); 1138 if ((m->m_flags & M_EXT) == 0) { 1139 m_free(m); 1140 return (ENOBUFS); 1141 } 1142 } 1143 m->m_len = hlen; 1144 if (hdr) 1145 bcopy(hdr, mtod(m, caddr_t), hlen); 1146 1147 *mp = m; 1148 return (0); 1149 } 1150 1151 /* 1152 * Insert jumbo payload option. 1153 */ 1154 static int 1155 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1156 { 1157 struct mbuf *mopt; 1158 u_char *optbuf; 1159 u_int32_t v; 1160 1161 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1162 1163 /* 1164 * If there is no hop-by-hop options header, allocate new one. 1165 * If there is one but it doesn't have enough space to store the 1166 * jumbo payload option, allocate a cluster to store the whole options. 1167 * Otherwise, use it to store the options. 1168 */ 1169 if (exthdrs->ip6e_hbh == 0) { 1170 MGET(mopt, M_DONTWAIT, MT_DATA); 1171 if (mopt == 0) 1172 return (ENOBUFS); 1173 mopt->m_len = JUMBOOPTLEN; 1174 optbuf = mtod(mopt, u_char *); 1175 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1176 exthdrs->ip6e_hbh = mopt; 1177 } else { 1178 struct ip6_hbh *hbh; 1179 1180 mopt = exthdrs->ip6e_hbh; 1181 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1182 /* 1183 * XXX assumption: 1184 * - exthdrs->ip6e_hbh is not referenced from places 1185 * other than exthdrs. 1186 * - exthdrs->ip6e_hbh is not an mbuf chain. 1187 */ 1188 int oldoptlen = mopt->m_len; 1189 struct mbuf *n; 1190 1191 /* 1192 * XXX: give up if the whole (new) hbh header does 1193 * not fit even in an mbuf cluster. 1194 */ 1195 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1196 return (ENOBUFS); 1197 1198 /* 1199 * As a consequence, we must always prepare a cluster 1200 * at this point. 1201 */ 1202 MGET(n, M_DONTWAIT, MT_DATA); 1203 if (n) { 1204 MCLGET(n, M_DONTWAIT); 1205 if ((n->m_flags & M_EXT) == 0) { 1206 m_freem(n); 1207 n = NULL; 1208 } 1209 } 1210 if (!n) 1211 return (ENOBUFS); 1212 n->m_len = oldoptlen + JUMBOOPTLEN; 1213 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1214 oldoptlen); 1215 optbuf = mtod(n, caddr_t) + oldoptlen; 1216 m_freem(mopt); 1217 mopt = exthdrs->ip6e_hbh = n; 1218 } else { 1219 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1220 mopt->m_len += JUMBOOPTLEN; 1221 } 1222 optbuf[0] = IP6OPT_PADN; 1223 optbuf[1] = 1; 1224 1225 /* 1226 * Adjust the header length according to the pad and 1227 * the jumbo payload option. 1228 */ 1229 hbh = mtod(mopt, struct ip6_hbh *); 1230 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1231 } 1232 1233 /* fill in the option. */ 1234 optbuf[2] = IP6OPT_JUMBO; 1235 optbuf[3] = 4; 1236 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1237 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1238 1239 /* finally, adjust the packet header length */ 1240 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1241 1242 return (0); 1243 #undef JUMBOOPTLEN 1244 } 1245 1246 /* 1247 * Insert fragment header and copy unfragmentable header portions. 1248 */ 1249 static int 1250 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1251 struct ip6_frag **frghdrp) 1252 { 1253 struct mbuf *n, *mlast; 1254 1255 if (hlen > sizeof(struct ip6_hdr)) { 1256 n = m_copym(m0, sizeof(struct ip6_hdr), 1257 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1258 if (n == 0) 1259 return (ENOBUFS); 1260 m->m_next = n; 1261 } else 1262 n = m; 1263 1264 /* Search for the last mbuf of unfragmentable part. */ 1265 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1266 ; 1267 1268 if ((mlast->m_flags & M_EXT) == 0 && 1269 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1270 /* use the trailing space of the last mbuf for the fragment hdr */ 1271 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1272 mlast->m_len); 1273 mlast->m_len += sizeof(struct ip6_frag); 1274 m->m_pkthdr.len += sizeof(struct ip6_frag); 1275 } else { 1276 /* allocate a new mbuf for the fragment header */ 1277 struct mbuf *mfrg; 1278 1279 MGET(mfrg, M_DONTWAIT, MT_DATA); 1280 if (mfrg == 0) 1281 return (ENOBUFS); 1282 mfrg->m_len = sizeof(struct ip6_frag); 1283 *frghdrp = mtod(mfrg, struct ip6_frag *); 1284 mlast->m_next = mfrg; 1285 } 1286 1287 return (0); 1288 } 1289 1290 static int 1291 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro, 1292 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup, 1293 int *alwaysfragp) 1294 { 1295 u_int32_t mtu = 0; 1296 int alwaysfrag = 0; 1297 int error = 0; 1298 1299 if (ro_pmtu != ro) { 1300 /* The first hop and the final destination may differ. */ 1301 struct sockaddr_in6 *sa6_dst = 1302 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1303 if (ro_pmtu->ro_rt && 1304 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 || 1305 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) { 1306 RTFREE(ro_pmtu->ro_rt); 1307 ro_pmtu->ro_rt = (struct rtentry *)NULL; 1308 } 1309 if (ro_pmtu->ro_rt == NULL) { 1310 bzero(sa6_dst, sizeof(*sa6_dst)); 1311 sa6_dst->sin6_family = AF_INET6; 1312 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1313 sa6_dst->sin6_addr = *dst; 1314 1315 rtalloc((struct route *)ro_pmtu); 1316 } 1317 } 1318 if (ro_pmtu->ro_rt) { 1319 u_int32_t ifmtu; 1320 struct in_conninfo inc; 1321 1322 bzero(&inc, sizeof(inc)); 1323 inc.inc_flags |= INC_ISIPV6; 1324 inc.inc6_faddr = *dst; 1325 1326 if (ifp == NULL) 1327 ifp = ro_pmtu->ro_rt->rt_ifp; 1328 ifmtu = IN6_LINKMTU(ifp); 1329 mtu = tcp_hc_getmtu(&inc); 1330 if (mtu) 1331 mtu = min(mtu, ro_pmtu->ro_rt->rt_rmx.rmx_mtu); 1332 else 1333 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 1334 if (mtu == 0) 1335 mtu = ifmtu; 1336 else if (mtu < IPV6_MMTU) { 1337 /* 1338 * RFC2460 section 5, last paragraph: 1339 * if we record ICMPv6 too big message with 1340 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1341 * or smaller, with framgent header attached. 1342 * (fragment header is needed regardless from the 1343 * packet size, for translators to identify packets) 1344 */ 1345 alwaysfrag = 1; 1346 mtu = IPV6_MMTU; 1347 } else if (mtu > ifmtu) { 1348 /* 1349 * The MTU on the route is larger than the MTU on 1350 * the interface! This shouldn't happen, unless the 1351 * MTU of the interface has been changed after the 1352 * interface was brought up. Change the MTU in the 1353 * route to match the interface MTU (as long as the 1354 * field isn't locked). 1355 */ 1356 mtu = ifmtu; 1357 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; 1358 } 1359 } else if (ifp) { 1360 mtu = IN6_LINKMTU(ifp); 1361 } else 1362 error = EHOSTUNREACH; /* XXX */ 1363 1364 *mtup = mtu; 1365 if (alwaysfragp) 1366 *alwaysfragp = alwaysfrag; 1367 return (error); 1368 } 1369 1370 /* 1371 * IP6 socket option processing. 1372 */ 1373 int 1374 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1375 { 1376 int optdatalen, uproto; 1377 void *optdata; 1378 struct inpcb *in6p = sotoinpcb(so); 1379 int error, optval; 1380 int level, op, optname; 1381 int optlen; 1382 struct thread *td; 1383 1384 level = sopt->sopt_level; 1385 op = sopt->sopt_dir; 1386 optname = sopt->sopt_name; 1387 optlen = sopt->sopt_valsize; 1388 td = sopt->sopt_td; 1389 error = 0; 1390 optval = 0; 1391 uproto = (int)so->so_proto->pr_protocol; 1392 1393 if (level == IPPROTO_IPV6) { 1394 switch (op) { 1395 1396 case SOPT_SET: 1397 switch (optname) { 1398 case IPV6_2292PKTOPTIONS: 1399 #ifdef IPV6_PKTOPTIONS 1400 case IPV6_PKTOPTIONS: 1401 #endif 1402 { 1403 struct mbuf *m; 1404 1405 error = soopt_getm(sopt, &m); /* XXX */ 1406 if (error != 0) 1407 break; 1408 error = soopt_mcopyin(sopt, m); /* XXX */ 1409 if (error != 0) 1410 break; 1411 error = ip6_pcbopts(&in6p->in6p_outputopts, 1412 m, so, sopt); 1413 m_freem(m); /* XXX */ 1414 break; 1415 } 1416 1417 /* 1418 * Use of some Hop-by-Hop options or some 1419 * Destination options, might require special 1420 * privilege. That is, normal applications 1421 * (without special privilege) might be forbidden 1422 * from setting certain options in outgoing packets, 1423 * and might never see certain options in received 1424 * packets. [RFC 2292 Section 6] 1425 * KAME specific note: 1426 * KAME prevents non-privileged users from sending or 1427 * receiving ANY hbh/dst options in order to avoid 1428 * overhead of parsing options in the kernel. 1429 */ 1430 case IPV6_RECVHOPOPTS: 1431 case IPV6_RECVDSTOPTS: 1432 case IPV6_RECVRTHDRDSTOPTS: 1433 if (td != NULL) { 1434 error = priv_check(td, 1435 PRIV_NETINET_SETHDROPTS); 1436 if (error) 1437 break; 1438 } 1439 /* FALLTHROUGH */ 1440 case IPV6_UNICAST_HOPS: 1441 case IPV6_HOPLIMIT: 1442 case IPV6_FAITH: 1443 1444 case IPV6_RECVPKTINFO: 1445 case IPV6_RECVHOPLIMIT: 1446 case IPV6_RECVRTHDR: 1447 case IPV6_RECVPATHMTU: 1448 case IPV6_RECVTCLASS: 1449 case IPV6_V6ONLY: 1450 case IPV6_AUTOFLOWLABEL: 1451 if (optlen != sizeof(int)) { 1452 error = EINVAL; 1453 break; 1454 } 1455 error = sooptcopyin(sopt, &optval, 1456 sizeof optval, sizeof optval); 1457 if (error) 1458 break; 1459 switch (optname) { 1460 1461 case IPV6_UNICAST_HOPS: 1462 if (optval < -1 || optval >= 256) 1463 error = EINVAL; 1464 else { 1465 /* -1 = kernel default */ 1466 in6p->in6p_hops = optval; 1467 if ((in6p->inp_vflag & 1468 INP_IPV4) != 0) 1469 in6p->inp_ip_ttl = optval; 1470 } 1471 break; 1472 #define OPTSET(bit) \ 1473 do { \ 1474 if (optval) \ 1475 in6p->inp_flags |= (bit); \ 1476 else \ 1477 in6p->inp_flags &= ~(bit); \ 1478 } while (/*CONSTCOND*/ 0) 1479 #define OPTSET2292(bit) \ 1480 do { \ 1481 in6p->inp_flags |= IN6P_RFC2292; \ 1482 if (optval) \ 1483 in6p->inp_flags |= (bit); \ 1484 else \ 1485 in6p->inp_flags &= ~(bit); \ 1486 } while (/*CONSTCOND*/ 0) 1487 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1488 1489 case IPV6_RECVPKTINFO: 1490 /* cannot mix with RFC2292 */ 1491 if (OPTBIT(IN6P_RFC2292)) { 1492 error = EINVAL; 1493 break; 1494 } 1495 OPTSET(IN6P_PKTINFO); 1496 break; 1497 1498 case IPV6_HOPLIMIT: 1499 { 1500 struct ip6_pktopts **optp; 1501 1502 /* cannot mix with RFC2292 */ 1503 if (OPTBIT(IN6P_RFC2292)) { 1504 error = EINVAL; 1505 break; 1506 } 1507 optp = &in6p->in6p_outputopts; 1508 error = ip6_pcbopt(IPV6_HOPLIMIT, 1509 (u_char *)&optval, sizeof(optval), 1510 optp, (td != NULL) ? td->td_ucred : 1511 NULL, uproto); 1512 break; 1513 } 1514 1515 case IPV6_RECVHOPLIMIT: 1516 /* cannot mix with RFC2292 */ 1517 if (OPTBIT(IN6P_RFC2292)) { 1518 error = EINVAL; 1519 break; 1520 } 1521 OPTSET(IN6P_HOPLIMIT); 1522 break; 1523 1524 case IPV6_RECVHOPOPTS: 1525 /* cannot mix with RFC2292 */ 1526 if (OPTBIT(IN6P_RFC2292)) { 1527 error = EINVAL; 1528 break; 1529 } 1530 OPTSET(IN6P_HOPOPTS); 1531 break; 1532 1533 case IPV6_RECVDSTOPTS: 1534 /* cannot mix with RFC2292 */ 1535 if (OPTBIT(IN6P_RFC2292)) { 1536 error = EINVAL; 1537 break; 1538 } 1539 OPTSET(IN6P_DSTOPTS); 1540 break; 1541 1542 case IPV6_RECVRTHDRDSTOPTS: 1543 /* cannot mix with RFC2292 */ 1544 if (OPTBIT(IN6P_RFC2292)) { 1545 error = EINVAL; 1546 break; 1547 } 1548 OPTSET(IN6P_RTHDRDSTOPTS); 1549 break; 1550 1551 case IPV6_RECVRTHDR: 1552 /* cannot mix with RFC2292 */ 1553 if (OPTBIT(IN6P_RFC2292)) { 1554 error = EINVAL; 1555 break; 1556 } 1557 OPTSET(IN6P_RTHDR); 1558 break; 1559 1560 case IPV6_FAITH: 1561 OPTSET(INP_FAITH); 1562 break; 1563 1564 case IPV6_RECVPATHMTU: 1565 /* 1566 * We ignore this option for TCP 1567 * sockets. 1568 * (RFC3542 leaves this case 1569 * unspecified.) 1570 */ 1571 if (uproto != IPPROTO_TCP) 1572 OPTSET(IN6P_MTU); 1573 break; 1574 1575 case IPV6_V6ONLY: 1576 /* 1577 * make setsockopt(IPV6_V6ONLY) 1578 * available only prior to bind(2). 1579 * see ipng mailing list, Jun 22 2001. 1580 */ 1581 if (in6p->inp_lport || 1582 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1583 error = EINVAL; 1584 break; 1585 } 1586 OPTSET(IN6P_IPV6_V6ONLY); 1587 if (optval) 1588 in6p->inp_vflag &= ~INP_IPV4; 1589 else 1590 in6p->inp_vflag |= INP_IPV4; 1591 break; 1592 case IPV6_RECVTCLASS: 1593 /* cannot mix with RFC2292 XXX */ 1594 if (OPTBIT(IN6P_RFC2292)) { 1595 error = EINVAL; 1596 break; 1597 } 1598 OPTSET(IN6P_TCLASS); 1599 break; 1600 case IPV6_AUTOFLOWLABEL: 1601 OPTSET(IN6P_AUTOFLOWLABEL); 1602 break; 1603 1604 } 1605 break; 1606 1607 case IPV6_TCLASS: 1608 case IPV6_DONTFRAG: 1609 case IPV6_USE_MIN_MTU: 1610 case IPV6_PREFER_TEMPADDR: 1611 if (optlen != sizeof(optval)) { 1612 error = EINVAL; 1613 break; 1614 } 1615 error = sooptcopyin(sopt, &optval, 1616 sizeof optval, sizeof optval); 1617 if (error) 1618 break; 1619 { 1620 struct ip6_pktopts **optp; 1621 optp = &in6p->in6p_outputopts; 1622 error = ip6_pcbopt(optname, 1623 (u_char *)&optval, sizeof(optval), 1624 optp, (td != NULL) ? td->td_ucred : 1625 NULL, uproto); 1626 break; 1627 } 1628 1629 case IPV6_2292PKTINFO: 1630 case IPV6_2292HOPLIMIT: 1631 case IPV6_2292HOPOPTS: 1632 case IPV6_2292DSTOPTS: 1633 case IPV6_2292RTHDR: 1634 /* RFC 2292 */ 1635 if (optlen != sizeof(int)) { 1636 error = EINVAL; 1637 break; 1638 } 1639 error = sooptcopyin(sopt, &optval, 1640 sizeof optval, sizeof optval); 1641 if (error) 1642 break; 1643 switch (optname) { 1644 case IPV6_2292PKTINFO: 1645 OPTSET2292(IN6P_PKTINFO); 1646 break; 1647 case IPV6_2292HOPLIMIT: 1648 OPTSET2292(IN6P_HOPLIMIT); 1649 break; 1650 case IPV6_2292HOPOPTS: 1651 /* 1652 * Check super-user privilege. 1653 * See comments for IPV6_RECVHOPOPTS. 1654 */ 1655 if (td != NULL) { 1656 error = priv_check(td, 1657 PRIV_NETINET_SETHDROPTS); 1658 if (error) 1659 return (error); 1660 } 1661 OPTSET2292(IN6P_HOPOPTS); 1662 break; 1663 case IPV6_2292DSTOPTS: 1664 if (td != NULL) { 1665 error = priv_check(td, 1666 PRIV_NETINET_SETHDROPTS); 1667 if (error) 1668 return (error); 1669 } 1670 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1671 break; 1672 case IPV6_2292RTHDR: 1673 OPTSET2292(IN6P_RTHDR); 1674 break; 1675 } 1676 break; 1677 case IPV6_PKTINFO: 1678 case IPV6_HOPOPTS: 1679 case IPV6_RTHDR: 1680 case IPV6_DSTOPTS: 1681 case IPV6_RTHDRDSTOPTS: 1682 case IPV6_NEXTHOP: 1683 { 1684 /* new advanced API (RFC3542) */ 1685 u_char *optbuf; 1686 u_char optbuf_storage[MCLBYTES]; 1687 int optlen; 1688 struct ip6_pktopts **optp; 1689 1690 /* cannot mix with RFC2292 */ 1691 if (OPTBIT(IN6P_RFC2292)) { 1692 error = EINVAL; 1693 break; 1694 } 1695 1696 /* 1697 * We only ensure valsize is not too large 1698 * here. Further validation will be done 1699 * later. 1700 */ 1701 error = sooptcopyin(sopt, optbuf_storage, 1702 sizeof(optbuf_storage), 0); 1703 if (error) 1704 break; 1705 optlen = sopt->sopt_valsize; 1706 optbuf = optbuf_storage; 1707 optp = &in6p->in6p_outputopts; 1708 error = ip6_pcbopt(optname, optbuf, optlen, 1709 optp, (td != NULL) ? td->td_ucred : NULL, 1710 uproto); 1711 break; 1712 } 1713 #undef OPTSET 1714 1715 case IPV6_MULTICAST_IF: 1716 case IPV6_MULTICAST_HOPS: 1717 case IPV6_MULTICAST_LOOP: 1718 case IPV6_JOIN_GROUP: 1719 case IPV6_LEAVE_GROUP: 1720 { 1721 if (sopt->sopt_valsize > MLEN) { 1722 error = EMSGSIZE; 1723 break; 1724 } 1725 /* XXX */ 1726 } 1727 /* FALLTHROUGH */ 1728 { 1729 struct mbuf *m; 1730 1731 if (sopt->sopt_valsize > MCLBYTES) { 1732 error = EMSGSIZE; 1733 break; 1734 } 1735 /* XXX */ 1736 MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA); 1737 if (m == 0) { 1738 error = ENOBUFS; 1739 break; 1740 } 1741 if (sopt->sopt_valsize > MLEN) { 1742 MCLGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT); 1743 if ((m->m_flags & M_EXT) == 0) { 1744 m_free(m); 1745 error = ENOBUFS; 1746 break; 1747 } 1748 } 1749 m->m_len = sopt->sopt_valsize; 1750 error = sooptcopyin(sopt, mtod(m, char *), 1751 m->m_len, m->m_len); 1752 if (error) { 1753 (void)m_free(m); 1754 break; 1755 } 1756 error = ip6_setmoptions(sopt->sopt_name, 1757 &in6p->in6p_moptions, 1758 m); 1759 (void)m_free(m); 1760 } 1761 break; 1762 1763 case IPV6_PORTRANGE: 1764 error = sooptcopyin(sopt, &optval, 1765 sizeof optval, sizeof optval); 1766 if (error) 1767 break; 1768 1769 switch (optval) { 1770 case IPV6_PORTRANGE_DEFAULT: 1771 in6p->inp_flags &= ~(INP_LOWPORT); 1772 in6p->inp_flags &= ~(INP_HIGHPORT); 1773 break; 1774 1775 case IPV6_PORTRANGE_HIGH: 1776 in6p->inp_flags &= ~(INP_LOWPORT); 1777 in6p->inp_flags |= INP_HIGHPORT; 1778 break; 1779 1780 case IPV6_PORTRANGE_LOW: 1781 in6p->inp_flags &= ~(INP_HIGHPORT); 1782 in6p->inp_flags |= INP_LOWPORT; 1783 break; 1784 1785 default: 1786 error = EINVAL; 1787 break; 1788 } 1789 break; 1790 1791 #ifdef IPSEC 1792 case IPV6_IPSEC_POLICY: 1793 { 1794 caddr_t req; 1795 struct mbuf *m; 1796 1797 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1798 break; 1799 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1800 break; 1801 req = mtod(m, caddr_t); 1802 error = ipsec_set_policy(in6p, optname, req, 1803 m->m_len, (sopt->sopt_td != NULL) ? 1804 sopt->sopt_td->td_ucred : NULL); 1805 m_freem(m); 1806 break; 1807 } 1808 #endif /* IPSEC */ 1809 1810 default: 1811 error = ENOPROTOOPT; 1812 break; 1813 } 1814 break; 1815 1816 case SOPT_GET: 1817 switch (optname) { 1818 1819 case IPV6_2292PKTOPTIONS: 1820 #ifdef IPV6_PKTOPTIONS 1821 case IPV6_PKTOPTIONS: 1822 #endif 1823 /* 1824 * RFC3542 (effectively) deprecated the 1825 * semantics of the 2292-style pktoptions. 1826 * Since it was not reliable in nature (i.e., 1827 * applications had to expect the lack of some 1828 * information after all), it would make sense 1829 * to simplify this part by always returning 1830 * empty data. 1831 */ 1832 sopt->sopt_valsize = 0; 1833 break; 1834 1835 case IPV6_RECVHOPOPTS: 1836 case IPV6_RECVDSTOPTS: 1837 case IPV6_RECVRTHDRDSTOPTS: 1838 case IPV6_UNICAST_HOPS: 1839 case IPV6_RECVPKTINFO: 1840 case IPV6_RECVHOPLIMIT: 1841 case IPV6_RECVRTHDR: 1842 case IPV6_RECVPATHMTU: 1843 1844 case IPV6_FAITH: 1845 case IPV6_V6ONLY: 1846 case IPV6_PORTRANGE: 1847 case IPV6_RECVTCLASS: 1848 case IPV6_AUTOFLOWLABEL: 1849 switch (optname) { 1850 1851 case IPV6_RECVHOPOPTS: 1852 optval = OPTBIT(IN6P_HOPOPTS); 1853 break; 1854 1855 case IPV6_RECVDSTOPTS: 1856 optval = OPTBIT(IN6P_DSTOPTS); 1857 break; 1858 1859 case IPV6_RECVRTHDRDSTOPTS: 1860 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1861 break; 1862 1863 case IPV6_UNICAST_HOPS: 1864 optval = in6p->in6p_hops; 1865 break; 1866 1867 case IPV6_RECVPKTINFO: 1868 optval = OPTBIT(IN6P_PKTINFO); 1869 break; 1870 1871 case IPV6_RECVHOPLIMIT: 1872 optval = OPTBIT(IN6P_HOPLIMIT); 1873 break; 1874 1875 case IPV6_RECVRTHDR: 1876 optval = OPTBIT(IN6P_RTHDR); 1877 break; 1878 1879 case IPV6_RECVPATHMTU: 1880 optval = OPTBIT(IN6P_MTU); 1881 break; 1882 1883 case IPV6_FAITH: 1884 optval = OPTBIT(INP_FAITH); 1885 break; 1886 1887 case IPV6_V6ONLY: 1888 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1889 break; 1890 1891 case IPV6_PORTRANGE: 1892 { 1893 int flags; 1894 flags = in6p->inp_flags; 1895 if (flags & INP_HIGHPORT) 1896 optval = IPV6_PORTRANGE_HIGH; 1897 else if (flags & INP_LOWPORT) 1898 optval = IPV6_PORTRANGE_LOW; 1899 else 1900 optval = 0; 1901 break; 1902 } 1903 case IPV6_RECVTCLASS: 1904 optval = OPTBIT(IN6P_TCLASS); 1905 break; 1906 1907 case IPV6_AUTOFLOWLABEL: 1908 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 1909 break; 1910 } 1911 if (error) 1912 break; 1913 error = sooptcopyout(sopt, &optval, 1914 sizeof optval); 1915 break; 1916 1917 case IPV6_PATHMTU: 1918 { 1919 u_long pmtu = 0; 1920 struct ip6_mtuinfo mtuinfo; 1921 struct route_in6 sro; 1922 1923 bzero(&sro, sizeof(sro)); 1924 1925 if (!(so->so_state & SS_ISCONNECTED)) 1926 return (ENOTCONN); 1927 /* 1928 * XXX: we dot not consider the case of source 1929 * routing, or optional information to specify 1930 * the outgoing interface. 1931 */ 1932 error = ip6_getpmtu(&sro, NULL, NULL, 1933 &in6p->in6p_faddr, &pmtu, NULL); 1934 if (sro.ro_rt) 1935 RTFREE(sro.ro_rt); 1936 if (error) 1937 break; 1938 if (pmtu > IPV6_MAXPACKET) 1939 pmtu = IPV6_MAXPACKET; 1940 1941 bzero(&mtuinfo, sizeof(mtuinfo)); 1942 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1943 optdata = (void *)&mtuinfo; 1944 optdatalen = sizeof(mtuinfo); 1945 error = sooptcopyout(sopt, optdata, 1946 optdatalen); 1947 break; 1948 } 1949 1950 case IPV6_2292PKTINFO: 1951 case IPV6_2292HOPLIMIT: 1952 case IPV6_2292HOPOPTS: 1953 case IPV6_2292RTHDR: 1954 case IPV6_2292DSTOPTS: 1955 switch (optname) { 1956 case IPV6_2292PKTINFO: 1957 optval = OPTBIT(IN6P_PKTINFO); 1958 break; 1959 case IPV6_2292HOPLIMIT: 1960 optval = OPTBIT(IN6P_HOPLIMIT); 1961 break; 1962 case IPV6_2292HOPOPTS: 1963 optval = OPTBIT(IN6P_HOPOPTS); 1964 break; 1965 case IPV6_2292RTHDR: 1966 optval = OPTBIT(IN6P_RTHDR); 1967 break; 1968 case IPV6_2292DSTOPTS: 1969 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1970 break; 1971 } 1972 error = sooptcopyout(sopt, &optval, 1973 sizeof optval); 1974 break; 1975 case IPV6_PKTINFO: 1976 case IPV6_HOPOPTS: 1977 case IPV6_RTHDR: 1978 case IPV6_DSTOPTS: 1979 case IPV6_RTHDRDSTOPTS: 1980 case IPV6_NEXTHOP: 1981 case IPV6_TCLASS: 1982 case IPV6_DONTFRAG: 1983 case IPV6_USE_MIN_MTU: 1984 case IPV6_PREFER_TEMPADDR: 1985 error = ip6_getpcbopt(in6p->in6p_outputopts, 1986 optname, sopt); 1987 break; 1988 1989 case IPV6_MULTICAST_IF: 1990 case IPV6_MULTICAST_HOPS: 1991 case IPV6_MULTICAST_LOOP: 1992 case IPV6_JOIN_GROUP: 1993 case IPV6_LEAVE_GROUP: 1994 { 1995 struct mbuf *m; 1996 error = ip6_getmoptions(sopt->sopt_name, 1997 in6p->in6p_moptions, &m); 1998 if (error == 0) 1999 error = sooptcopyout(sopt, 2000 mtod(m, char *), m->m_len); 2001 m_freem(m); 2002 } 2003 break; 2004 2005 #ifdef IPSEC 2006 case IPV6_IPSEC_POLICY: 2007 { 2008 caddr_t req = NULL; 2009 size_t len = 0; 2010 struct mbuf *m = NULL; 2011 struct mbuf **mp = &m; 2012 size_t ovalsize = sopt->sopt_valsize; 2013 caddr_t oval = (caddr_t)sopt->sopt_val; 2014 2015 error = soopt_getm(sopt, &m); /* XXX */ 2016 if (error != 0) 2017 break; 2018 error = soopt_mcopyin(sopt, m); /* XXX */ 2019 if (error != 0) 2020 break; 2021 sopt->sopt_valsize = ovalsize; 2022 sopt->sopt_val = oval; 2023 if (m) { 2024 req = mtod(m, caddr_t); 2025 len = m->m_len; 2026 } 2027 error = ipsec_get_policy(in6p, req, len, mp); 2028 if (error == 0) 2029 error = soopt_mcopyout(sopt, m); /* XXX */ 2030 if (error == 0 && m) 2031 m_freem(m); 2032 break; 2033 } 2034 #endif /* IPSEC */ 2035 2036 default: 2037 error = ENOPROTOOPT; 2038 break; 2039 } 2040 break; 2041 } 2042 } else { /* level != IPPROTO_IPV6 */ 2043 error = EINVAL; 2044 } 2045 return (error); 2046 } 2047 2048 int 2049 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2050 { 2051 int error = 0, optval, optlen; 2052 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2053 struct inpcb *in6p = sotoinpcb(so); 2054 int level, op, optname; 2055 2056 level = sopt->sopt_level; 2057 op = sopt->sopt_dir; 2058 optname = sopt->sopt_name; 2059 optlen = sopt->sopt_valsize; 2060 2061 if (level != IPPROTO_IPV6) { 2062 return (EINVAL); 2063 } 2064 2065 switch (optname) { 2066 case IPV6_CHECKSUM: 2067 /* 2068 * For ICMPv6 sockets, no modification allowed for checksum 2069 * offset, permit "no change" values to help existing apps. 2070 * 2071 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2072 * for an ICMPv6 socket will fail." 2073 * The current behavior does not meet RFC3542. 2074 */ 2075 switch (op) { 2076 case SOPT_SET: 2077 if (optlen != sizeof(int)) { 2078 error = EINVAL; 2079 break; 2080 } 2081 error = sooptcopyin(sopt, &optval, sizeof(optval), 2082 sizeof(optval)); 2083 if (error) 2084 break; 2085 if ((optval % 2) != 0) { 2086 /* the API assumes even offset values */ 2087 error = EINVAL; 2088 } else if (so->so_proto->pr_protocol == 2089 IPPROTO_ICMPV6) { 2090 if (optval != icmp6off) 2091 error = EINVAL; 2092 } else 2093 in6p->in6p_cksum = optval; 2094 break; 2095 2096 case SOPT_GET: 2097 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2098 optval = icmp6off; 2099 else 2100 optval = in6p->in6p_cksum; 2101 2102 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2103 break; 2104 2105 default: 2106 error = EINVAL; 2107 break; 2108 } 2109 break; 2110 2111 default: 2112 error = ENOPROTOOPT; 2113 break; 2114 } 2115 2116 return (error); 2117 } 2118 2119 /* 2120 * Set up IP6 options in pcb for insertion in output packets or 2121 * specifying behavior of outgoing packets. 2122 */ 2123 static int 2124 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2125 struct socket *so, struct sockopt *sopt) 2126 { 2127 struct ip6_pktopts *opt = *pktopt; 2128 int error = 0; 2129 struct thread *td = sopt->sopt_td; 2130 2131 /* turn off any old options. */ 2132 if (opt) { 2133 #ifdef DIAGNOSTIC 2134 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2135 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2136 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2137 printf("ip6_pcbopts: all specified options are cleared.\n"); 2138 #endif 2139 ip6_clearpktopts(opt, -1); 2140 } else 2141 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2142 *pktopt = NULL; 2143 2144 if (!m || m->m_len == 0) { 2145 /* 2146 * Only turning off any previous options, regardless of 2147 * whether the opt is just created or given. 2148 */ 2149 free(opt, M_IP6OPT); 2150 return (0); 2151 } 2152 2153 /* set options specified by user. */ 2154 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2155 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2156 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2157 free(opt, M_IP6OPT); 2158 return (error); 2159 } 2160 *pktopt = opt; 2161 return (0); 2162 } 2163 2164 /* 2165 * initialize ip6_pktopts. beware that there are non-zero default values in 2166 * the struct. 2167 */ 2168 void 2169 ip6_initpktopts(struct ip6_pktopts *opt) 2170 { 2171 2172 bzero(opt, sizeof(*opt)); 2173 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2174 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2175 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2176 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2177 } 2178 2179 static int 2180 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2181 struct ucred *cred, int uproto) 2182 { 2183 struct ip6_pktopts *opt; 2184 2185 if (*pktopt == NULL) { 2186 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2187 M_WAITOK); 2188 ip6_initpktopts(*pktopt); 2189 } 2190 opt = *pktopt; 2191 2192 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2193 } 2194 2195 static int 2196 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2197 { 2198 void *optdata = NULL; 2199 int optdatalen = 0; 2200 struct ip6_ext *ip6e; 2201 int error = 0; 2202 struct in6_pktinfo null_pktinfo; 2203 int deftclass = 0, on; 2204 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2205 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2206 2207 switch (optname) { 2208 case IPV6_PKTINFO: 2209 if (pktopt && pktopt->ip6po_pktinfo) 2210 optdata = (void *)pktopt->ip6po_pktinfo; 2211 else { 2212 /* XXX: we don't have to do this every time... */ 2213 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2214 optdata = (void *)&null_pktinfo; 2215 } 2216 optdatalen = sizeof(struct in6_pktinfo); 2217 break; 2218 case IPV6_TCLASS: 2219 if (pktopt && pktopt->ip6po_tclass >= 0) 2220 optdata = (void *)&pktopt->ip6po_tclass; 2221 else 2222 optdata = (void *)&deftclass; 2223 optdatalen = sizeof(int); 2224 break; 2225 case IPV6_HOPOPTS: 2226 if (pktopt && pktopt->ip6po_hbh) { 2227 optdata = (void *)pktopt->ip6po_hbh; 2228 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2229 optdatalen = (ip6e->ip6e_len + 1) << 3; 2230 } 2231 break; 2232 case IPV6_RTHDR: 2233 if (pktopt && pktopt->ip6po_rthdr) { 2234 optdata = (void *)pktopt->ip6po_rthdr; 2235 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2236 optdatalen = (ip6e->ip6e_len + 1) << 3; 2237 } 2238 break; 2239 case IPV6_RTHDRDSTOPTS: 2240 if (pktopt && pktopt->ip6po_dest1) { 2241 optdata = (void *)pktopt->ip6po_dest1; 2242 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2243 optdatalen = (ip6e->ip6e_len + 1) << 3; 2244 } 2245 break; 2246 case IPV6_DSTOPTS: 2247 if (pktopt && pktopt->ip6po_dest2) { 2248 optdata = (void *)pktopt->ip6po_dest2; 2249 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2250 optdatalen = (ip6e->ip6e_len + 1) << 3; 2251 } 2252 break; 2253 case IPV6_NEXTHOP: 2254 if (pktopt && pktopt->ip6po_nexthop) { 2255 optdata = (void *)pktopt->ip6po_nexthop; 2256 optdatalen = pktopt->ip6po_nexthop->sa_len; 2257 } 2258 break; 2259 case IPV6_USE_MIN_MTU: 2260 if (pktopt) 2261 optdata = (void *)&pktopt->ip6po_minmtu; 2262 else 2263 optdata = (void *)&defminmtu; 2264 optdatalen = sizeof(int); 2265 break; 2266 case IPV6_DONTFRAG: 2267 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2268 on = 1; 2269 else 2270 on = 0; 2271 optdata = (void *)&on; 2272 optdatalen = sizeof(on); 2273 break; 2274 case IPV6_PREFER_TEMPADDR: 2275 if (pktopt) 2276 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2277 else 2278 optdata = (void *)&defpreftemp; 2279 optdatalen = sizeof(int); 2280 break; 2281 default: /* should not happen */ 2282 #ifdef DIAGNOSTIC 2283 panic("ip6_getpcbopt: unexpected option\n"); 2284 #endif 2285 return (ENOPROTOOPT); 2286 } 2287 2288 error = sooptcopyout(sopt, optdata, optdatalen); 2289 2290 return (error); 2291 } 2292 2293 void 2294 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2295 { 2296 if (pktopt == NULL) 2297 return; 2298 2299 if (optname == -1 || optname == IPV6_PKTINFO) { 2300 if (pktopt->ip6po_pktinfo) 2301 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2302 pktopt->ip6po_pktinfo = NULL; 2303 } 2304 if (optname == -1 || optname == IPV6_HOPLIMIT) 2305 pktopt->ip6po_hlim = -1; 2306 if (optname == -1 || optname == IPV6_TCLASS) 2307 pktopt->ip6po_tclass = -1; 2308 if (optname == -1 || optname == IPV6_NEXTHOP) { 2309 if (pktopt->ip6po_nextroute.ro_rt) { 2310 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2311 pktopt->ip6po_nextroute.ro_rt = NULL; 2312 } 2313 if (pktopt->ip6po_nexthop) 2314 free(pktopt->ip6po_nexthop, M_IP6OPT); 2315 pktopt->ip6po_nexthop = NULL; 2316 } 2317 if (optname == -1 || optname == IPV6_HOPOPTS) { 2318 if (pktopt->ip6po_hbh) 2319 free(pktopt->ip6po_hbh, M_IP6OPT); 2320 pktopt->ip6po_hbh = NULL; 2321 } 2322 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2323 if (pktopt->ip6po_dest1) 2324 free(pktopt->ip6po_dest1, M_IP6OPT); 2325 pktopt->ip6po_dest1 = NULL; 2326 } 2327 if (optname == -1 || optname == IPV6_RTHDR) { 2328 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2329 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2330 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2331 if (pktopt->ip6po_route.ro_rt) { 2332 RTFREE(pktopt->ip6po_route.ro_rt); 2333 pktopt->ip6po_route.ro_rt = NULL; 2334 } 2335 } 2336 if (optname == -1 || optname == IPV6_DSTOPTS) { 2337 if (pktopt->ip6po_dest2) 2338 free(pktopt->ip6po_dest2, M_IP6OPT); 2339 pktopt->ip6po_dest2 = NULL; 2340 } 2341 } 2342 2343 #define PKTOPT_EXTHDRCPY(type) \ 2344 do {\ 2345 if (src->type) {\ 2346 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2347 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2348 if (dst->type == NULL && canwait == M_NOWAIT)\ 2349 goto bad;\ 2350 bcopy(src->type, dst->type, hlen);\ 2351 }\ 2352 } while (/*CONSTCOND*/ 0) 2353 2354 static int 2355 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2356 { 2357 if (dst == NULL || src == NULL) { 2358 printf("ip6_clearpktopts: invalid argument\n"); 2359 return (EINVAL); 2360 } 2361 2362 dst->ip6po_hlim = src->ip6po_hlim; 2363 dst->ip6po_tclass = src->ip6po_tclass; 2364 dst->ip6po_flags = src->ip6po_flags; 2365 if (src->ip6po_pktinfo) { 2366 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2367 M_IP6OPT, canwait); 2368 if (dst->ip6po_pktinfo == NULL) 2369 goto bad; 2370 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2371 } 2372 if (src->ip6po_nexthop) { 2373 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2374 M_IP6OPT, canwait); 2375 if (dst->ip6po_nexthop == NULL) 2376 goto bad; 2377 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2378 src->ip6po_nexthop->sa_len); 2379 } 2380 PKTOPT_EXTHDRCPY(ip6po_hbh); 2381 PKTOPT_EXTHDRCPY(ip6po_dest1); 2382 PKTOPT_EXTHDRCPY(ip6po_dest2); 2383 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2384 return (0); 2385 2386 bad: 2387 ip6_clearpktopts(dst, -1); 2388 return (ENOBUFS); 2389 } 2390 #undef PKTOPT_EXTHDRCPY 2391 2392 struct ip6_pktopts * 2393 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2394 { 2395 int error; 2396 struct ip6_pktopts *dst; 2397 2398 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2399 if (dst == NULL) 2400 return (NULL); 2401 ip6_initpktopts(dst); 2402 2403 if ((error = copypktopts(dst, src, canwait)) != 0) { 2404 free(dst, M_IP6OPT); 2405 return (NULL); 2406 } 2407 2408 return (dst); 2409 } 2410 2411 void 2412 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2413 { 2414 if (pktopt == NULL) 2415 return; 2416 2417 ip6_clearpktopts(pktopt, -1); 2418 2419 free(pktopt, M_IP6OPT); 2420 } 2421 2422 /* 2423 * Set the IP6 multicast options in response to user setsockopt(). 2424 */ 2425 static int 2426 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m) 2427 { 2428 INIT_VNET_NET(curvnet); 2429 INIT_VNET_INET6(curvnet); 2430 int error = 0; 2431 u_int loop, ifindex; 2432 struct ipv6_mreq *mreq; 2433 struct ifnet *ifp; 2434 struct ip6_moptions *im6o = *im6op; 2435 struct route_in6 ro; 2436 struct in6_multi_mship *imm; 2437 2438 if (im6o == NULL) { 2439 /* 2440 * No multicast option buffer attached to the pcb; 2441 * allocate one and initialize to default values. 2442 */ 2443 im6o = (struct ip6_moptions *) 2444 malloc(sizeof(*im6o), M_IP6MOPTS, M_WAITOK); 2445 2446 if (im6o == NULL) 2447 return (ENOBUFS); 2448 *im6op = im6o; 2449 im6o->im6o_multicast_ifp = NULL; 2450 im6o->im6o_multicast_hlim = V_ip6_defmcasthlim; 2451 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 2452 LIST_INIT(&im6o->im6o_memberships); 2453 } 2454 2455 switch (optname) { 2456 2457 case IPV6_MULTICAST_IF: 2458 /* 2459 * Select the interface for outgoing multicast packets. 2460 */ 2461 if (m == NULL || m->m_len != sizeof(u_int)) { 2462 error = EINVAL; 2463 break; 2464 } 2465 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex)); 2466 if (ifindex < 0 || V_if_index < ifindex) { 2467 error = ENXIO; /* XXX EINVAL? */ 2468 break; 2469 } 2470 ifp = ifnet_byindex(ifindex); 2471 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2472 error = EADDRNOTAVAIL; 2473 break; 2474 } 2475 im6o->im6o_multicast_ifp = ifp; 2476 break; 2477 2478 case IPV6_MULTICAST_HOPS: 2479 { 2480 /* 2481 * Set the IP6 hoplimit for outgoing multicast packets. 2482 */ 2483 int optval; 2484 if (m == NULL || m->m_len != sizeof(int)) { 2485 error = EINVAL; 2486 break; 2487 } 2488 bcopy(mtod(m, u_int *), &optval, sizeof(optval)); 2489 if (optval < -1 || optval >= 256) 2490 error = EINVAL; 2491 else if (optval == -1) 2492 im6o->im6o_multicast_hlim = V_ip6_defmcasthlim; 2493 else 2494 im6o->im6o_multicast_hlim = optval; 2495 break; 2496 } 2497 2498 case IPV6_MULTICAST_LOOP: 2499 /* 2500 * Set the loopback flag for outgoing multicast packets. 2501 * Must be zero or one. 2502 */ 2503 if (m == NULL || m->m_len != sizeof(u_int)) { 2504 error = EINVAL; 2505 break; 2506 } 2507 bcopy(mtod(m, u_int *), &loop, sizeof(loop)); 2508 if (loop > 1) { 2509 error = EINVAL; 2510 break; 2511 } 2512 im6o->im6o_multicast_loop = loop; 2513 break; 2514 2515 case IPV6_JOIN_GROUP: 2516 /* 2517 * Add a multicast group membership. 2518 * Group must be a valid IP6 multicast address. 2519 */ 2520 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2521 error = EINVAL; 2522 break; 2523 } 2524 mreq = mtod(m, struct ipv6_mreq *); 2525 2526 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2527 /* 2528 * We use the unspecified address to specify to accept 2529 * all multicast addresses. Only super user is allowed 2530 * to do this. 2531 */ 2532 /* XXX-BZ might need a better PRIV_NETINET_x for this */ 2533 error = priv_check(curthread, PRIV_NETINET_MROUTE); 2534 if (error) 2535 break; 2536 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2537 error = EINVAL; 2538 break; 2539 } 2540 2541 /* 2542 * If no interface was explicitly specified, choose an 2543 * appropriate one according to the given multicast address. 2544 */ 2545 if (mreq->ipv6mr_interface == 0) { 2546 struct sockaddr_in6 *dst; 2547 2548 /* 2549 * Look up the routing table for the 2550 * address, and choose the outgoing interface. 2551 * XXX: is it a good approach? 2552 */ 2553 ro.ro_rt = NULL; 2554 dst = (struct sockaddr_in6 *)&ro.ro_dst; 2555 bzero(dst, sizeof(*dst)); 2556 dst->sin6_family = AF_INET6; 2557 dst->sin6_len = sizeof(*dst); 2558 dst->sin6_addr = mreq->ipv6mr_multiaddr; 2559 rtalloc((struct route *)&ro); 2560 if (ro.ro_rt == NULL) { 2561 error = EADDRNOTAVAIL; 2562 break; 2563 } 2564 ifp = ro.ro_rt->rt_ifp; 2565 RTFREE(ro.ro_rt); 2566 } else { 2567 /* 2568 * If the interface is specified, validate it. 2569 */ 2570 if (mreq->ipv6mr_interface < 0 || 2571 V_if_index < mreq->ipv6mr_interface) { 2572 error = ENXIO; /* XXX EINVAL? */ 2573 break; 2574 } 2575 ifp = ifnet_byindex(mreq->ipv6mr_interface); 2576 if (!ifp) { 2577 error = ENXIO; /* XXX EINVAL? */ 2578 break; 2579 } 2580 } 2581 2582 /* 2583 * See if we found an interface, and confirm that it 2584 * supports multicast 2585 */ 2586 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2587 error = EADDRNOTAVAIL; 2588 break; 2589 } 2590 2591 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) { 2592 error = EADDRNOTAVAIL; /* XXX: should not happen */ 2593 break; 2594 } 2595 2596 /* 2597 * See if the membership already exists. 2598 */ 2599 for (imm = im6o->im6o_memberships.lh_first; 2600 imm != NULL; imm = imm->i6mm_chain.le_next) 2601 if (imm->i6mm_maddr->in6m_ifp == ifp && 2602 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2603 &mreq->ipv6mr_multiaddr)) 2604 break; 2605 if (imm != NULL) { 2606 error = EADDRINUSE; 2607 break; 2608 } 2609 /* 2610 * Everything looks good; add a new record to the multicast 2611 * address list for the given interface. 2612 */ 2613 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error, 0); 2614 if (imm == NULL) 2615 break; 2616 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2617 break; 2618 2619 case IPV6_LEAVE_GROUP: 2620 /* 2621 * Drop a multicast group membership. 2622 * Group must be a valid IP6 multicast address. 2623 */ 2624 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2625 error = EINVAL; 2626 break; 2627 } 2628 mreq = mtod(m, struct ipv6_mreq *); 2629 2630 /* 2631 * If an interface address was specified, get a pointer 2632 * to its ifnet structure. 2633 */ 2634 if (mreq->ipv6mr_interface < 0 || 2635 V_if_index < mreq->ipv6mr_interface) { 2636 error = ENXIO; /* XXX EINVAL? */ 2637 break; 2638 } 2639 if (mreq->ipv6mr_interface == 0) 2640 ifp = NULL; 2641 else 2642 ifp = ifnet_byindex(mreq->ipv6mr_interface); 2643 2644 /* Fill in the scope zone ID */ 2645 if (ifp) { 2646 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) { 2647 /* XXX: should not happen */ 2648 error = EADDRNOTAVAIL; 2649 break; 2650 } 2651 } else if (mreq->ipv6mr_interface != 0) { 2652 /* 2653 * This case happens when the (positive) index is in 2654 * the valid range, but the corresponding interface has 2655 * been detached dynamically (XXX). 2656 */ 2657 error = EADDRNOTAVAIL; 2658 break; 2659 } else { /* ipv6mr_interface == 0 */ 2660 struct sockaddr_in6 sa6_mc; 2661 2662 /* 2663 * The API spec says as follows: 2664 * If the interface index is specified as 0, the 2665 * system may choose a multicast group membership to 2666 * drop by matching the multicast address only. 2667 * On the other hand, we cannot disambiguate the scope 2668 * zone unless an interface is provided. Thus, we 2669 * check if there's ambiguity with the default scope 2670 * zone as the last resort. 2671 */ 2672 bzero(&sa6_mc, sizeof(sa6_mc)); 2673 sa6_mc.sin6_family = AF_INET6; 2674 sa6_mc.sin6_len = sizeof(sa6_mc); 2675 sa6_mc.sin6_addr = mreq->ipv6mr_multiaddr; 2676 error = sa6_embedscope(&sa6_mc, V_ip6_use_defzone); 2677 if (error != 0) 2678 break; 2679 mreq->ipv6mr_multiaddr = sa6_mc.sin6_addr; 2680 } 2681 2682 /* 2683 * Find the membership in the membership list. 2684 */ 2685 for (imm = im6o->im6o_memberships.lh_first; 2686 imm != NULL; imm = imm->i6mm_chain.le_next) { 2687 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) && 2688 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2689 &mreq->ipv6mr_multiaddr)) 2690 break; 2691 } 2692 if (imm == NULL) { 2693 /* Unable to resolve interface */ 2694 error = EADDRNOTAVAIL; 2695 break; 2696 } 2697 /* 2698 * Give up the multicast address record to which the 2699 * membership points. 2700 */ 2701 LIST_REMOVE(imm, i6mm_chain); 2702 in6_delmulti(imm->i6mm_maddr); 2703 free(imm, M_IP6MADDR); 2704 break; 2705 2706 default: 2707 error = EOPNOTSUPP; 2708 break; 2709 } 2710 2711 /* 2712 * If all options have default values, no need to keep the mbuf. 2713 */ 2714 if (im6o->im6o_multicast_ifp == NULL && 2715 im6o->im6o_multicast_hlim == V_ip6_defmcasthlim && 2716 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2717 im6o->im6o_memberships.lh_first == NULL) { 2718 free(*im6op, M_IP6MOPTS); 2719 *im6op = NULL; 2720 } 2721 2722 return (error); 2723 } 2724 2725 /* 2726 * Return the IP6 multicast options in response to user getsockopt(). 2727 */ 2728 static int 2729 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf **mp) 2730 { 2731 INIT_VNET_INET6(curvnet); 2732 u_int *hlim, *loop, *ifindex; 2733 2734 *mp = m_get(M_WAIT, MT_HEADER); /* XXX */ 2735 2736 switch (optname) { 2737 2738 case IPV6_MULTICAST_IF: 2739 ifindex = mtod(*mp, u_int *); 2740 (*mp)->m_len = sizeof(u_int); 2741 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 2742 *ifindex = 0; 2743 else 2744 *ifindex = im6o->im6o_multicast_ifp->if_index; 2745 return (0); 2746 2747 case IPV6_MULTICAST_HOPS: 2748 hlim = mtod(*mp, u_int *); 2749 (*mp)->m_len = sizeof(u_int); 2750 if (im6o == NULL) 2751 *hlim = V_ip6_defmcasthlim; 2752 else 2753 *hlim = im6o->im6o_multicast_hlim; 2754 return (0); 2755 2756 case IPV6_MULTICAST_LOOP: 2757 loop = mtod(*mp, u_int *); 2758 (*mp)->m_len = sizeof(u_int); 2759 if (im6o == NULL) 2760 *loop = V_ip6_defmcasthlim; 2761 else 2762 *loop = im6o->im6o_multicast_loop; 2763 return (0); 2764 2765 default: 2766 return (EOPNOTSUPP); 2767 } 2768 } 2769 2770 /* 2771 * Discard the IP6 multicast options. 2772 */ 2773 void 2774 ip6_freemoptions(struct ip6_moptions *im6o) 2775 { 2776 struct in6_multi_mship *imm; 2777 2778 if (im6o == NULL) 2779 return; 2780 2781 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 2782 LIST_REMOVE(imm, i6mm_chain); 2783 if (imm->i6mm_maddr) 2784 in6_delmulti(imm->i6mm_maddr); 2785 free(imm, M_IP6MADDR); 2786 } 2787 free(im6o, M_IP6MOPTS); 2788 } 2789 2790 /* 2791 * Set IPv6 outgoing packet options based on advanced API. 2792 */ 2793 int 2794 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2795 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2796 { 2797 struct cmsghdr *cm = 0; 2798 2799 if (control == NULL || opt == NULL) 2800 return (EINVAL); 2801 2802 ip6_initpktopts(opt); 2803 if (stickyopt) { 2804 int error; 2805 2806 /* 2807 * If stickyopt is provided, make a local copy of the options 2808 * for this particular packet, then override them by ancillary 2809 * objects. 2810 * XXX: copypktopts() does not copy the cached route to a next 2811 * hop (if any). This is not very good in terms of efficiency, 2812 * but we can allow this since this option should be rarely 2813 * used. 2814 */ 2815 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2816 return (error); 2817 } 2818 2819 /* 2820 * XXX: Currently, we assume all the optional information is stored 2821 * in a single mbuf. 2822 */ 2823 if (control->m_next) 2824 return (EINVAL); 2825 2826 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2827 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2828 int error; 2829 2830 if (control->m_len < CMSG_LEN(0)) 2831 return (EINVAL); 2832 2833 cm = mtod(control, struct cmsghdr *); 2834 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2835 return (EINVAL); 2836 if (cm->cmsg_level != IPPROTO_IPV6) 2837 continue; 2838 2839 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2840 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2841 if (error) 2842 return (error); 2843 } 2844 2845 return (0); 2846 } 2847 2848 /* 2849 * Set a particular packet option, as a sticky option or an ancillary data 2850 * item. "len" can be 0 only when it's a sticky option. 2851 * We have 4 cases of combination of "sticky" and "cmsg": 2852 * "sticky=0, cmsg=0": impossible 2853 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2854 * "sticky=1, cmsg=0": RFC3542 socket option 2855 * "sticky=1, cmsg=1": RFC2292 socket option 2856 */ 2857 static int 2858 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2859 struct ucred *cred, int sticky, int cmsg, int uproto) 2860 { 2861 INIT_VNET_NET(curvnet); 2862 INIT_VNET_INET6(curvnet); 2863 int minmtupolicy, preftemp; 2864 int error; 2865 2866 if (!sticky && !cmsg) { 2867 #ifdef DIAGNOSTIC 2868 printf("ip6_setpktopt: impossible case\n"); 2869 #endif 2870 return (EINVAL); 2871 } 2872 2873 /* 2874 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2875 * not be specified in the context of RFC3542. Conversely, 2876 * RFC3542 types should not be specified in the context of RFC2292. 2877 */ 2878 if (!cmsg) { 2879 switch (optname) { 2880 case IPV6_2292PKTINFO: 2881 case IPV6_2292HOPLIMIT: 2882 case IPV6_2292NEXTHOP: 2883 case IPV6_2292HOPOPTS: 2884 case IPV6_2292DSTOPTS: 2885 case IPV6_2292RTHDR: 2886 case IPV6_2292PKTOPTIONS: 2887 return (ENOPROTOOPT); 2888 } 2889 } 2890 if (sticky && cmsg) { 2891 switch (optname) { 2892 case IPV6_PKTINFO: 2893 case IPV6_HOPLIMIT: 2894 case IPV6_NEXTHOP: 2895 case IPV6_HOPOPTS: 2896 case IPV6_DSTOPTS: 2897 case IPV6_RTHDRDSTOPTS: 2898 case IPV6_RTHDR: 2899 case IPV6_USE_MIN_MTU: 2900 case IPV6_DONTFRAG: 2901 case IPV6_TCLASS: 2902 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2903 return (ENOPROTOOPT); 2904 } 2905 } 2906 2907 switch (optname) { 2908 case IPV6_2292PKTINFO: 2909 case IPV6_PKTINFO: 2910 { 2911 struct ifnet *ifp = NULL; 2912 struct in6_pktinfo *pktinfo; 2913 2914 if (len != sizeof(struct in6_pktinfo)) 2915 return (EINVAL); 2916 2917 pktinfo = (struct in6_pktinfo *)buf; 2918 2919 /* 2920 * An application can clear any sticky IPV6_PKTINFO option by 2921 * doing a "regular" setsockopt with ipi6_addr being 2922 * in6addr_any and ipi6_ifindex being zero. 2923 * [RFC 3542, Section 6] 2924 */ 2925 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2926 pktinfo->ipi6_ifindex == 0 && 2927 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2928 ip6_clearpktopts(opt, optname); 2929 break; 2930 } 2931 2932 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2933 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2934 return (EINVAL); 2935 } 2936 2937 /* validate the interface index if specified. */ 2938 if (pktinfo->ipi6_ifindex > V_if_index || 2939 pktinfo->ipi6_ifindex < 0) { 2940 return (ENXIO); 2941 } 2942 if (pktinfo->ipi6_ifindex) { 2943 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2944 if (ifp == NULL) 2945 return (ENXIO); 2946 } 2947 2948 /* 2949 * We store the address anyway, and let in6_selectsrc() 2950 * validate the specified address. This is because ipi6_addr 2951 * may not have enough information about its scope zone, and 2952 * we may need additional information (such as outgoing 2953 * interface or the scope zone of a destination address) to 2954 * disambiguate the scope. 2955 * XXX: the delay of the validation may confuse the 2956 * application when it is used as a sticky option. 2957 */ 2958 if (opt->ip6po_pktinfo == NULL) { 2959 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2960 M_IP6OPT, M_NOWAIT); 2961 if (opt->ip6po_pktinfo == NULL) 2962 return (ENOBUFS); 2963 } 2964 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2965 break; 2966 } 2967 2968 case IPV6_2292HOPLIMIT: 2969 case IPV6_HOPLIMIT: 2970 { 2971 int *hlimp; 2972 2973 /* 2974 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2975 * to simplify the ordering among hoplimit options. 2976 */ 2977 if (optname == IPV6_HOPLIMIT && sticky) 2978 return (ENOPROTOOPT); 2979 2980 if (len != sizeof(int)) 2981 return (EINVAL); 2982 hlimp = (int *)buf; 2983 if (*hlimp < -1 || *hlimp > 255) 2984 return (EINVAL); 2985 2986 opt->ip6po_hlim = *hlimp; 2987 break; 2988 } 2989 2990 case IPV6_TCLASS: 2991 { 2992 int tclass; 2993 2994 if (len != sizeof(int)) 2995 return (EINVAL); 2996 tclass = *(int *)buf; 2997 if (tclass < -1 || tclass > 255) 2998 return (EINVAL); 2999 3000 opt->ip6po_tclass = tclass; 3001 break; 3002 } 3003 3004 case IPV6_2292NEXTHOP: 3005 case IPV6_NEXTHOP: 3006 if (cred != NULL) { 3007 error = priv_check_cred(cred, 3008 PRIV_NETINET_SETHDROPTS, 0); 3009 if (error) 3010 return (error); 3011 } 3012 3013 if (len == 0) { /* just remove the option */ 3014 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3015 break; 3016 } 3017 3018 /* check if cmsg_len is large enough for sa_len */ 3019 if (len < sizeof(struct sockaddr) || len < *buf) 3020 return (EINVAL); 3021 3022 switch (((struct sockaddr *)buf)->sa_family) { 3023 case AF_INET6: 3024 { 3025 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3026 int error; 3027 3028 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3029 return (EINVAL); 3030 3031 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3032 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3033 return (EINVAL); 3034 } 3035 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 3036 != 0) { 3037 return (error); 3038 } 3039 break; 3040 } 3041 case AF_LINK: /* should eventually be supported */ 3042 default: 3043 return (EAFNOSUPPORT); 3044 } 3045 3046 /* turn off the previous option, then set the new option. */ 3047 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3048 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3049 if (opt->ip6po_nexthop == NULL) 3050 return (ENOBUFS); 3051 bcopy(buf, opt->ip6po_nexthop, *buf); 3052 break; 3053 3054 case IPV6_2292HOPOPTS: 3055 case IPV6_HOPOPTS: 3056 { 3057 struct ip6_hbh *hbh; 3058 int hbhlen; 3059 3060 /* 3061 * XXX: We don't allow a non-privileged user to set ANY HbH 3062 * options, since per-option restriction has too much 3063 * overhead. 3064 */ 3065 if (cred != NULL) { 3066 error = priv_check_cred(cred, 3067 PRIV_NETINET_SETHDROPTS, 0); 3068 if (error) 3069 return (error); 3070 } 3071 3072 if (len == 0) { 3073 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3074 break; /* just remove the option */ 3075 } 3076 3077 /* message length validation */ 3078 if (len < sizeof(struct ip6_hbh)) 3079 return (EINVAL); 3080 hbh = (struct ip6_hbh *)buf; 3081 hbhlen = (hbh->ip6h_len + 1) << 3; 3082 if (len != hbhlen) 3083 return (EINVAL); 3084 3085 /* turn off the previous option, then set the new option. */ 3086 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3087 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3088 if (opt->ip6po_hbh == NULL) 3089 return (ENOBUFS); 3090 bcopy(hbh, opt->ip6po_hbh, hbhlen); 3091 3092 break; 3093 } 3094 3095 case IPV6_2292DSTOPTS: 3096 case IPV6_DSTOPTS: 3097 case IPV6_RTHDRDSTOPTS: 3098 { 3099 struct ip6_dest *dest, **newdest = NULL; 3100 int destlen; 3101 3102 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 3103 error = priv_check_cred(cred, 3104 PRIV_NETINET_SETHDROPTS, 0); 3105 if (error) 3106 return (error); 3107 } 3108 3109 if (len == 0) { 3110 ip6_clearpktopts(opt, optname); 3111 break; /* just remove the option */ 3112 } 3113 3114 /* message length validation */ 3115 if (len < sizeof(struct ip6_dest)) 3116 return (EINVAL); 3117 dest = (struct ip6_dest *)buf; 3118 destlen = (dest->ip6d_len + 1) << 3; 3119 if (len != destlen) 3120 return (EINVAL); 3121 3122 /* 3123 * Determine the position that the destination options header 3124 * should be inserted; before or after the routing header. 3125 */ 3126 switch (optname) { 3127 case IPV6_2292DSTOPTS: 3128 /* 3129 * The old advacned API is ambiguous on this point. 3130 * Our approach is to determine the position based 3131 * according to the existence of a routing header. 3132 * Note, however, that this depends on the order of the 3133 * extension headers in the ancillary data; the 1st 3134 * part of the destination options header must appear 3135 * before the routing header in the ancillary data, 3136 * too. 3137 * RFC3542 solved the ambiguity by introducing 3138 * separate ancillary data or option types. 3139 */ 3140 if (opt->ip6po_rthdr == NULL) 3141 newdest = &opt->ip6po_dest1; 3142 else 3143 newdest = &opt->ip6po_dest2; 3144 break; 3145 case IPV6_RTHDRDSTOPTS: 3146 newdest = &opt->ip6po_dest1; 3147 break; 3148 case IPV6_DSTOPTS: 3149 newdest = &opt->ip6po_dest2; 3150 break; 3151 } 3152 3153 /* turn off the previous option, then set the new option. */ 3154 ip6_clearpktopts(opt, optname); 3155 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3156 if (*newdest == NULL) 3157 return (ENOBUFS); 3158 bcopy(dest, *newdest, destlen); 3159 3160 break; 3161 } 3162 3163 case IPV6_2292RTHDR: 3164 case IPV6_RTHDR: 3165 { 3166 struct ip6_rthdr *rth; 3167 int rthlen; 3168 3169 if (len == 0) { 3170 ip6_clearpktopts(opt, IPV6_RTHDR); 3171 break; /* just remove the option */ 3172 } 3173 3174 /* message length validation */ 3175 if (len < sizeof(struct ip6_rthdr)) 3176 return (EINVAL); 3177 rth = (struct ip6_rthdr *)buf; 3178 rthlen = (rth->ip6r_len + 1) << 3; 3179 if (len != rthlen) 3180 return (EINVAL); 3181 3182 switch (rth->ip6r_type) { 3183 case IPV6_RTHDR_TYPE_0: 3184 if (rth->ip6r_len == 0) /* must contain one addr */ 3185 return (EINVAL); 3186 if (rth->ip6r_len % 2) /* length must be even */ 3187 return (EINVAL); 3188 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3189 return (EINVAL); 3190 break; 3191 default: 3192 return (EINVAL); /* not supported */ 3193 } 3194 3195 /* turn off the previous option */ 3196 ip6_clearpktopts(opt, IPV6_RTHDR); 3197 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3198 if (opt->ip6po_rthdr == NULL) 3199 return (ENOBUFS); 3200 bcopy(rth, opt->ip6po_rthdr, rthlen); 3201 3202 break; 3203 } 3204 3205 case IPV6_USE_MIN_MTU: 3206 if (len != sizeof(int)) 3207 return (EINVAL); 3208 minmtupolicy = *(int *)buf; 3209 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3210 minmtupolicy != IP6PO_MINMTU_DISABLE && 3211 minmtupolicy != IP6PO_MINMTU_ALL) { 3212 return (EINVAL); 3213 } 3214 opt->ip6po_minmtu = minmtupolicy; 3215 break; 3216 3217 case IPV6_DONTFRAG: 3218 if (len != sizeof(int)) 3219 return (EINVAL); 3220 3221 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3222 /* 3223 * we ignore this option for TCP sockets. 3224 * (RFC3542 leaves this case unspecified.) 3225 */ 3226 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3227 } else 3228 opt->ip6po_flags |= IP6PO_DONTFRAG; 3229 break; 3230 3231 case IPV6_PREFER_TEMPADDR: 3232 if (len != sizeof(int)) 3233 return (EINVAL); 3234 preftemp = *(int *)buf; 3235 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3236 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3237 preftemp != IP6PO_TEMPADDR_PREFER) { 3238 return (EINVAL); 3239 } 3240 opt->ip6po_prefer_tempaddr = preftemp; 3241 break; 3242 3243 default: 3244 return (ENOPROTOOPT); 3245 } /* end of switch */ 3246 3247 return (0); 3248 } 3249 3250 /* 3251 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3252 * packet to the input queue of a specified interface. Note that this 3253 * calls the output routine of the loopback "driver", but with an interface 3254 * pointer that might NOT be &loif -- easier than replicating that code here. 3255 */ 3256 void 3257 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 3258 { 3259 struct mbuf *copym; 3260 struct ip6_hdr *ip6; 3261 3262 copym = m_copy(m, 0, M_COPYALL); 3263 if (copym == NULL) 3264 return; 3265 3266 /* 3267 * Make sure to deep-copy IPv6 header portion in case the data 3268 * is in an mbuf cluster, so that we can safely override the IPv6 3269 * header portion later. 3270 */ 3271 if ((copym->m_flags & M_EXT) != 0 || 3272 copym->m_len < sizeof(struct ip6_hdr)) { 3273 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3274 if (copym == NULL) 3275 return; 3276 } 3277 3278 #ifdef DIAGNOSTIC 3279 if (copym->m_len < sizeof(*ip6)) { 3280 m_freem(copym); 3281 return; 3282 } 3283 #endif 3284 3285 ip6 = mtod(copym, struct ip6_hdr *); 3286 /* 3287 * clear embedded scope identifiers if necessary. 3288 * in6_clearscope will touch the addresses only when necessary. 3289 */ 3290 in6_clearscope(&ip6->ip6_src); 3291 in6_clearscope(&ip6->ip6_dst); 3292 3293 (void)if_simloop(ifp, copym, dst->sin6_family, 0); 3294 } 3295 3296 /* 3297 * Chop IPv6 header off from the payload. 3298 */ 3299 static int 3300 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3301 { 3302 struct mbuf *mh; 3303 struct ip6_hdr *ip6; 3304 3305 ip6 = mtod(m, struct ip6_hdr *); 3306 if (m->m_len > sizeof(*ip6)) { 3307 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3308 if (mh == 0) { 3309 m_freem(m); 3310 return ENOBUFS; 3311 } 3312 M_MOVE_PKTHDR(mh, m); 3313 MH_ALIGN(mh, sizeof(*ip6)); 3314 m->m_len -= sizeof(*ip6); 3315 m->m_data += sizeof(*ip6); 3316 mh->m_next = m; 3317 m = mh; 3318 m->m_len = sizeof(*ip6); 3319 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3320 } 3321 exthdrs->ip6e_ip6 = m; 3322 return 0; 3323 } 3324 3325 /* 3326 * Compute IPv6 extension header length. 3327 */ 3328 int 3329 ip6_optlen(struct inpcb *in6p) 3330 { 3331 int len; 3332 3333 if (!in6p->in6p_outputopts) 3334 return 0; 3335 3336 len = 0; 3337 #define elen(x) \ 3338 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3339 3340 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3341 if (in6p->in6p_outputopts->ip6po_rthdr) 3342 /* dest1 is valid with rthdr only */ 3343 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3344 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3345 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3346 return len; 3347 #undef elen 3348 } 3349