1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 32 */ 33 34 /*- 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ipsec.h" 71 #include "opt_kern_tls.h" 72 #include "opt_ratelimit.h" 73 #include "opt_route.h" 74 #include "opt_rss.h" 75 #include "opt_sctp.h" 76 77 #include <sys/param.h> 78 #include <sys/kernel.h> 79 #include <sys/ktls.h> 80 #include <sys/malloc.h> 81 #include <sys/mbuf.h> 82 #include <sys/errno.h> 83 #include <sys/priv.h> 84 #include <sys/proc.h> 85 #include <sys/protosw.h> 86 #include <sys/socket.h> 87 #include <sys/socketvar.h> 88 #include <sys/syslog.h> 89 #include <sys/ucred.h> 90 91 #include <machine/in_cksum.h> 92 93 #include <net/if.h> 94 #include <net/if_var.h> 95 #include <net/if_llatbl.h> 96 #include <net/netisr.h> 97 #include <net/route.h> 98 #include <net/pfil.h> 99 #include <net/rss_config.h> 100 #include <net/vnet.h> 101 102 #include <netinet/in.h> 103 #include <netinet/in_var.h> 104 #include <netinet/ip_var.h> 105 #include <netinet6/in6_fib.h> 106 #include <netinet6/in6_var.h> 107 #include <netinet/ip6.h> 108 #include <netinet/icmp6.h> 109 #include <netinet6/ip6_var.h> 110 #include <netinet/in_pcb.h> 111 #include <netinet/tcp_var.h> 112 #include <netinet6/nd6.h> 113 #include <netinet6/in6_rss.h> 114 115 #include <netipsec/ipsec_support.h> 116 #ifdef SCTP 117 #include <netinet/sctp.h> 118 #include <netinet/sctp_crc32.h> 119 #endif 120 121 #include <netinet6/ip6protosw.h> 122 #include <netinet6/scope6_var.h> 123 124 extern int in6_mcast_loop; 125 126 struct ip6_exthdrs { 127 struct mbuf *ip6e_ip6; 128 struct mbuf *ip6e_hbh; 129 struct mbuf *ip6e_dest1; 130 struct mbuf *ip6e_rthdr; 131 struct mbuf *ip6e_dest2; 132 }; 133 134 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 135 136 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 137 struct ucred *, int); 138 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 139 struct socket *, struct sockopt *); 140 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *); 141 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 142 struct ucred *, int, int, int); 143 144 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 145 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 146 struct ip6_frag **); 147 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 148 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 149 static int ip6_getpmtu(struct route_in6 *, int, 150 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 151 u_int); 152 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 153 u_long *, int *, u_int); 154 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 155 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 156 157 158 /* 159 * Make an extension header from option data. hp is the source, and 160 * mp is the destination. 161 */ 162 #define MAKE_EXTHDR(hp, mp) \ 163 do { \ 164 if (hp) { \ 165 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 166 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 167 ((eh)->ip6e_len + 1) << 3); \ 168 if (error) \ 169 goto freehdrs; \ 170 } \ 171 } while (/*CONSTCOND*/ 0) 172 173 /* 174 * Form a chain of extension headers. 175 * m is the extension header mbuf 176 * mp is the previous mbuf in the chain 177 * p is the next header 178 * i is the type of option. 179 */ 180 #define MAKE_CHAIN(m, mp, p, i)\ 181 do {\ 182 if (m) {\ 183 if (!hdrsplit) \ 184 panic("assumption failed: hdr not split"); \ 185 *mtod((m), u_char *) = *(p);\ 186 *(p) = (i);\ 187 p = mtod((m), u_char *);\ 188 (m)->m_next = (mp)->m_next;\ 189 (mp)->m_next = (m);\ 190 (mp) = (m);\ 191 }\ 192 } while (/*CONSTCOND*/ 0) 193 194 void 195 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 196 { 197 u_short csum; 198 199 csum = in_cksum_skip(m, offset + plen, offset); 200 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 201 csum = 0xffff; 202 offset += m->m_pkthdr.csum_data; /* checksum offset */ 203 204 if (offset + sizeof(csum) > m->m_len) 205 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 206 else 207 *(u_short *)mtodo(m, offset) = csum; 208 } 209 210 int 211 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 212 int fraglen , uint32_t id) 213 { 214 struct mbuf *m, **mnext, *m_frgpart; 215 struct ip6_hdr *ip6, *mhip6; 216 struct ip6_frag *ip6f; 217 int off; 218 int error; 219 int tlen = m0->m_pkthdr.len; 220 221 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); 222 223 m = m0; 224 ip6 = mtod(m, struct ip6_hdr *); 225 mnext = &m->m_nextpkt; 226 227 for (off = hlen; off < tlen; off += fraglen) { 228 m = m_gethdr(M_NOWAIT, MT_DATA); 229 if (!m) { 230 IP6STAT_INC(ip6s_odropped); 231 return (ENOBUFS); 232 } 233 234 /* 235 * Make sure the complete packet header gets copied 236 * from the originating mbuf to the newly created 237 * mbuf. This also ensures that existing firewall 238 * classification(s), VLAN tags and so on get copied 239 * to the resulting fragmented packet(s): 240 */ 241 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 242 m_free(m); 243 IP6STAT_INC(ip6s_odropped); 244 return (ENOBUFS); 245 } 246 247 *mnext = m; 248 mnext = &m->m_nextpkt; 249 m->m_data += max_linkhdr; 250 mhip6 = mtod(m, struct ip6_hdr *); 251 *mhip6 = *ip6; 252 m->m_len = sizeof(*mhip6); 253 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 254 if (error) { 255 IP6STAT_INC(ip6s_odropped); 256 return (error); 257 } 258 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 259 if (off + fraglen >= tlen) 260 fraglen = tlen - off; 261 else 262 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 263 mhip6->ip6_plen = htons((u_short)(fraglen + hlen + 264 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 265 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { 266 IP6STAT_INC(ip6s_odropped); 267 return (ENOBUFS); 268 } 269 m_cat(m, m_frgpart); 270 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); 271 ip6f->ip6f_reserved = 0; 272 ip6f->ip6f_ident = id; 273 ip6f->ip6f_nxt = nextproto; 274 IP6STAT_INC(ip6s_ofragments); 275 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 276 } 277 278 return (0); 279 } 280 281 static int 282 ip6_output_send(struct inpcb *inp, struct ifnet *ifp, struct ifnet *origifp, 283 struct mbuf *m, struct sockaddr_in6 *dst, struct route_in6 *ro) 284 { 285 #ifdef KERN_TLS 286 struct ktls_session *tls = NULL; 287 #endif 288 struct m_snd_tag *mst; 289 int error; 290 291 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 292 mst = NULL; 293 294 #ifdef KERN_TLS 295 /* 296 * If this is an unencrypted TLS record, save a reference to 297 * the record. This local reference is used to call 298 * ktls_output_eagain after the mbuf has been freed (thus 299 * dropping the mbuf's reference) in if_output. 300 */ 301 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 302 tls = ktls_hold(m->m_next->m_ext.ext_pgs->tls); 303 mst = tls->snd_tag; 304 305 /* 306 * If a TLS session doesn't have a valid tag, it must 307 * have had an earlier ifp mismatch, so drop this 308 * packet. 309 */ 310 if (mst == NULL) { 311 error = EAGAIN; 312 goto done; 313 } 314 } 315 #endif 316 #ifdef RATELIMIT 317 if (inp != NULL && mst == NULL) { 318 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 319 (inp->inp_snd_tag != NULL && 320 inp->inp_snd_tag->ifp != ifp)) 321 in_pcboutput_txrtlmt(inp, ifp, m); 322 323 if (inp->inp_snd_tag != NULL) 324 mst = inp->inp_snd_tag; 325 } 326 #endif 327 if (mst != NULL) { 328 KASSERT(m->m_pkthdr.rcvif == NULL, 329 ("trying to add a send tag to a forwarded packet")); 330 if (mst->ifp != ifp) { 331 error = EAGAIN; 332 goto done; 333 } 334 335 /* stamp send tag on mbuf */ 336 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 337 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 338 } 339 340 error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro); 341 342 done: 343 /* Check for route change invalidating send tags. */ 344 #ifdef KERN_TLS 345 if (tls != NULL) { 346 if (error == EAGAIN) 347 error = ktls_output_eagain(inp, tls); 348 ktls_free(tls); 349 } 350 #endif 351 #ifdef RATELIMIT 352 if (error == EAGAIN) 353 in_pcboutput_eagain(inp); 354 #endif 355 return (error); 356 } 357 358 /* 359 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 360 * header (with pri, len, nxt, hlim, src, dst). 361 * This function may modify ver and hlim only. 362 * The mbuf chain containing the packet will be freed. 363 * The mbuf opt, if present, will not be freed. 364 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 365 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 366 * then result of route lookup is stored in ro->ro_rt. 367 * 368 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and 369 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 370 * which is rt_mtu. 371 * 372 * ifpp - XXX: just for statistics 373 */ 374 /* 375 * XXX TODO: no flowid is assigned for outbound flows? 376 */ 377 int 378 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 379 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 380 struct ifnet **ifpp, struct inpcb *inp) 381 { 382 struct ip6_hdr *ip6; 383 struct ifnet *ifp, *origifp; 384 struct mbuf *m = m0; 385 struct mbuf *mprev = NULL; 386 int hlen, tlen, len; 387 struct epoch_tracker et; 388 struct route_in6 ip6route; 389 struct rtentry *rt = NULL; 390 struct sockaddr_in6 *dst, src_sa, dst_sa; 391 struct in6_addr odst; 392 int error = 0; 393 struct in6_ifaddr *ia = NULL; 394 u_long mtu; 395 int alwaysfrag, dontfrag; 396 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 397 struct ip6_exthdrs exthdrs; 398 struct in6_addr src0, dst0; 399 u_int32_t zone; 400 struct route_in6 *ro_pmtu = NULL; 401 int hdrsplit = 0; 402 int sw_csum, tso; 403 int needfiblookup; 404 uint32_t fibnum; 405 struct m_tag *fwd_tag = NULL; 406 uint32_t id; 407 408 NET_EPOCH_ENTER(et); 409 410 if (inp != NULL) { 411 INP_LOCK_ASSERT(inp); 412 M_SETFIB(m, inp->inp_inc.inc_fibnum); 413 if ((flags & IP_NODEFAULTFLOWID) == 0) { 414 /* unconditionally set flowid */ 415 m->m_pkthdr.flowid = inp->inp_flowid; 416 M_HASHTYPE_SET(m, inp->inp_flowtype); 417 } 418 #ifdef NUMA 419 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 420 #endif 421 } 422 423 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 424 /* 425 * IPSec checking which handles several cases. 426 * FAST IPSEC: We re-injected the packet. 427 * XXX: need scope argument. 428 */ 429 if (IPSEC_ENABLED(ipv6)) { 430 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { 431 if (error == EINPROGRESS) 432 error = 0; 433 goto done; 434 } 435 } 436 #endif /* IPSEC */ 437 438 bzero(&exthdrs, sizeof(exthdrs)); 439 if (opt) { 440 /* Hop-by-Hop options header */ 441 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 442 /* Destination options header(1st part) */ 443 if (opt->ip6po_rthdr) { 444 /* 445 * Destination options header(1st part) 446 * This only makes sense with a routing header. 447 * See Section 9.2 of RFC 3542. 448 * Disabling this part just for MIP6 convenience is 449 * a bad idea. We need to think carefully about a 450 * way to make the advanced API coexist with MIP6 451 * options, which might automatically be inserted in 452 * the kernel. 453 */ 454 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 455 } 456 /* Routing header */ 457 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 458 /* Destination options header(2nd part) */ 459 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 460 } 461 462 /* 463 * Calculate the total length of the extension header chain. 464 * Keep the length of the unfragmentable part for fragmentation. 465 */ 466 optlen = 0; 467 if (exthdrs.ip6e_hbh) 468 optlen += exthdrs.ip6e_hbh->m_len; 469 if (exthdrs.ip6e_dest1) 470 optlen += exthdrs.ip6e_dest1->m_len; 471 if (exthdrs.ip6e_rthdr) 472 optlen += exthdrs.ip6e_rthdr->m_len; 473 unfragpartlen = optlen + sizeof(struct ip6_hdr); 474 475 /* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */ 476 if (exthdrs.ip6e_dest2) 477 optlen += exthdrs.ip6e_dest2->m_len; 478 479 /* 480 * If there is at least one extension header, 481 * separate IP6 header from the payload. 482 */ 483 if (optlen && !hdrsplit) { 484 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 485 m = NULL; 486 goto freehdrs; 487 } 488 m = exthdrs.ip6e_ip6; 489 hdrsplit++; 490 } 491 492 ip6 = mtod(m, struct ip6_hdr *); 493 494 /* adjust mbuf packet header length */ 495 m->m_pkthdr.len += optlen; 496 plen = m->m_pkthdr.len - sizeof(*ip6); 497 498 /* If this is a jumbo payload, insert a jumbo payload option. */ 499 if (plen > IPV6_MAXPACKET) { 500 if (!hdrsplit) { 501 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 502 m = NULL; 503 goto freehdrs; 504 } 505 m = exthdrs.ip6e_ip6; 506 hdrsplit++; 507 } 508 /* adjust pointer */ 509 ip6 = mtod(m, struct ip6_hdr *); 510 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 511 goto freehdrs; 512 ip6->ip6_plen = 0; 513 } else 514 ip6->ip6_plen = htons(plen); 515 516 /* 517 * Concatenate headers and fill in next header fields. 518 * Here we have, on "m" 519 * IPv6 payload 520 * and we insert headers accordingly. Finally, we should be getting: 521 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 522 * 523 * during the header composing process, "m" points to IPv6 header. 524 * "mprev" points to an extension header prior to esp. 525 */ 526 u_char *nexthdrp = &ip6->ip6_nxt; 527 mprev = m; 528 529 /* 530 * we treat dest2 specially. this makes IPsec processing 531 * much easier. the goal here is to make mprev point the 532 * mbuf prior to dest2. 533 * 534 * result: IPv6 dest2 payload 535 * m and mprev will point to IPv6 header. 536 */ 537 if (exthdrs.ip6e_dest2) { 538 if (!hdrsplit) 539 panic("assumption failed: hdr not split"); 540 exthdrs.ip6e_dest2->m_next = m->m_next; 541 m->m_next = exthdrs.ip6e_dest2; 542 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 543 ip6->ip6_nxt = IPPROTO_DSTOPTS; 544 } 545 546 /* 547 * result: IPv6 hbh dest1 rthdr dest2 payload 548 * m will point to IPv6 header. mprev will point to the 549 * extension header prior to dest2 (rthdr in the above case). 550 */ 551 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 552 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 553 IPPROTO_DSTOPTS); 554 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 555 IPPROTO_ROUTING); 556 557 /* 558 * If there is a routing header, discard the packet. 559 */ 560 if (exthdrs.ip6e_rthdr) { 561 error = EINVAL; 562 goto bad; 563 } 564 565 /* Source address validation */ 566 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 567 (flags & IPV6_UNSPECSRC) == 0) { 568 error = EOPNOTSUPP; 569 IP6STAT_INC(ip6s_badscope); 570 goto bad; 571 } 572 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 573 error = EOPNOTSUPP; 574 IP6STAT_INC(ip6s_badscope); 575 goto bad; 576 } 577 578 IP6STAT_INC(ip6s_localout); 579 580 /* 581 * Route packet. 582 */ 583 if (ro == NULL) { 584 ro = &ip6route; 585 bzero((caddr_t)ro, sizeof(*ro)); 586 } 587 ro_pmtu = ro; 588 if (opt && opt->ip6po_rthdr) 589 ro = &opt->ip6po_route; 590 dst = (struct sockaddr_in6 *)&ro->ro_dst; 591 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 592 again: 593 /* 594 * if specified, try to fill in the traffic class field. 595 * do not override if a non-zero value is already set. 596 * we check the diffserv field and the ecn field separately. 597 */ 598 if (opt && opt->ip6po_tclass >= 0) { 599 int mask = 0; 600 601 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 602 mask |= 0xfc; 603 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 604 mask |= 0x03; 605 if (mask != 0) 606 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 607 } 608 609 /* fill in or override the hop limit field, if necessary. */ 610 if (opt && opt->ip6po_hlim != -1) 611 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 612 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 613 if (im6o != NULL) 614 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 615 else 616 ip6->ip6_hlim = V_ip6_defmcasthlim; 617 } 618 /* 619 * Validate route against routing table additions; 620 * a better/more specific route might have been added. 621 * Make sure address family is set in route. 622 */ 623 if (inp) { 624 ro->ro_dst.sin6_family = AF_INET6; 625 RT_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, fibnum); 626 } 627 if (ro->ro_rt && fwd_tag == NULL && (ro->ro_rt->rt_flags & RTF_UP) && 628 ro->ro_dst.sin6_family == AF_INET6 && 629 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 630 rt = ro->ro_rt; 631 ifp = ro->ro_rt->rt_ifp; 632 } else { 633 if (ro->ro_lle) 634 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 635 ro->ro_lle = NULL; 636 if (fwd_tag == NULL) { 637 bzero(&dst_sa, sizeof(dst_sa)); 638 dst_sa.sin6_family = AF_INET6; 639 dst_sa.sin6_len = sizeof(dst_sa); 640 dst_sa.sin6_addr = ip6->ip6_dst; 641 } 642 error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp, 643 &rt, fibnum); 644 if (error != 0) { 645 if (ifp != NULL) 646 in6_ifstat_inc(ifp, ifs6_out_discard); 647 goto bad; 648 } 649 } 650 if (rt == NULL) { 651 /* 652 * If in6_selectroute() does not return a route entry, 653 * dst may not have been updated. 654 */ 655 *dst = dst_sa; /* XXX */ 656 } 657 658 /* 659 * then rt (for unicast) and ifp must be non-NULL valid values. 660 */ 661 if ((flags & IPV6_FORWARDING) == 0) { 662 /* XXX: the FORWARDING flag can be set for mrouting. */ 663 in6_ifstat_inc(ifp, ifs6_out_request); 664 } 665 if (rt != NULL) { 666 ia = (struct in6_ifaddr *)(rt->rt_ifa); 667 counter_u64_add(rt->rt_pksent, 1); 668 } 669 670 /* Setup data structures for scope ID checks. */ 671 src0 = ip6->ip6_src; 672 bzero(&src_sa, sizeof(src_sa)); 673 src_sa.sin6_family = AF_INET6; 674 src_sa.sin6_len = sizeof(src_sa); 675 src_sa.sin6_addr = ip6->ip6_src; 676 677 dst0 = ip6->ip6_dst; 678 /* re-initialize to be sure */ 679 bzero(&dst_sa, sizeof(dst_sa)); 680 dst_sa.sin6_family = AF_INET6; 681 dst_sa.sin6_len = sizeof(dst_sa); 682 dst_sa.sin6_addr = ip6->ip6_dst; 683 684 /* Check for valid scope ID. */ 685 if (in6_setscope(&src0, ifp, &zone) == 0 && 686 sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id && 687 in6_setscope(&dst0, ifp, &zone) == 0 && 688 sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) { 689 /* 690 * The outgoing interface is in the zone of the source 691 * and destination addresses. 692 * 693 * Because the loopback interface cannot receive 694 * packets with a different scope ID than its own, 695 * there is a trick is to pretend the outgoing packet 696 * was received by the real network interface, by 697 * setting "origifp" different from "ifp". This is 698 * only allowed when "ifp" is a loopback network 699 * interface. Refer to code in nd6_output_ifp() for 700 * more details. 701 */ 702 origifp = ifp; 703 704 /* 705 * We should use ia_ifp to support the case of sending 706 * packets to an address of our own. 707 */ 708 if (ia != NULL && ia->ia_ifp) 709 ifp = ia->ia_ifp; 710 711 } else if ((ifp->if_flags & IFF_LOOPBACK) == 0 || 712 sa6_recoverscope(&src_sa) != 0 || 713 sa6_recoverscope(&dst_sa) != 0 || 714 dst_sa.sin6_scope_id == 0 || 715 (src_sa.sin6_scope_id != 0 && 716 src_sa.sin6_scope_id != dst_sa.sin6_scope_id) || 717 (origifp = ifnet_byindex(dst_sa.sin6_scope_id)) == NULL) { 718 /* 719 * If the destination network interface is not a 720 * loopback interface, or the destination network 721 * address has no scope ID, or the source address has 722 * a scope ID set which is different from the 723 * destination address one, or there is no network 724 * interface representing this scope ID, the address 725 * pair is considered invalid. 726 */ 727 IP6STAT_INC(ip6s_badscope); 728 in6_ifstat_inc(ifp, ifs6_out_discard); 729 if (error == 0) 730 error = EHOSTUNREACH; /* XXX */ 731 goto bad; 732 } 733 734 /* All scope ID checks are successful. */ 735 736 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 737 if (opt && opt->ip6po_nextroute.ro_rt) { 738 /* 739 * The nexthop is explicitly specified by the 740 * application. We assume the next hop is an IPv6 741 * address. 742 */ 743 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 744 } 745 else if ((rt->rt_flags & RTF_GATEWAY)) 746 dst = (struct sockaddr_in6 *)rt->rt_gateway; 747 } 748 749 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 750 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 751 } else { 752 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 753 in6_ifstat_inc(ifp, ifs6_out_mcast); 754 /* 755 * Confirm that the outgoing interface supports multicast. 756 */ 757 if (!(ifp->if_flags & IFF_MULTICAST)) { 758 IP6STAT_INC(ip6s_noroute); 759 in6_ifstat_inc(ifp, ifs6_out_discard); 760 error = ENETUNREACH; 761 goto bad; 762 } 763 if ((im6o == NULL && in6_mcast_loop) || 764 (im6o && im6o->im6o_multicast_loop)) { 765 /* 766 * Loop back multicast datagram if not expressly 767 * forbidden to do so, even if we have not joined 768 * the address; protocols will filter it later, 769 * thus deferring a hash lookup and lock acquisition 770 * at the expense of an m_copym(). 771 */ 772 ip6_mloopback(ifp, m); 773 } else { 774 /* 775 * If we are acting as a multicast router, perform 776 * multicast forwarding as if the packet had just 777 * arrived on the interface to which we are about 778 * to send. The multicast forwarding function 779 * recursively calls this function, using the 780 * IPV6_FORWARDING flag to prevent infinite recursion. 781 * 782 * Multicasts that are looped back by ip6_mloopback(), 783 * above, will be forwarded by the ip6_input() routine, 784 * if necessary. 785 */ 786 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 787 /* 788 * XXX: ip6_mforward expects that rcvif is NULL 789 * when it is called from the originating path. 790 * However, it may not always be the case. 791 */ 792 m->m_pkthdr.rcvif = NULL; 793 if (ip6_mforward(ip6, ifp, m) != 0) { 794 m_freem(m); 795 goto done; 796 } 797 } 798 } 799 /* 800 * Multicasts with a hoplimit of zero may be looped back, 801 * above, but must not be transmitted on a network. 802 * Also, multicasts addressed to the loopback interface 803 * are not sent -- the above call to ip6_mloopback() will 804 * loop back a copy if this host actually belongs to the 805 * destination group on the loopback interface. 806 */ 807 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 808 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 809 m_freem(m); 810 goto done; 811 } 812 } 813 814 /* 815 * Fill the outgoing inteface to tell the upper layer 816 * to increment per-interface statistics. 817 */ 818 if (ifpp) 819 *ifpp = ifp; 820 821 /* Determine path MTU. */ 822 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 823 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 824 goto bad; 825 826 /* 827 * The caller of this function may specify to use the minimum MTU 828 * in some cases. 829 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 830 * setting. The logic is a bit complicated; by default, unicast 831 * packets will follow path MTU while multicast packets will be sent at 832 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 833 * including unicast ones will be sent at the minimum MTU. Multicast 834 * packets will always be sent at the minimum MTU unless 835 * IP6PO_MINMTU_DISABLE is explicitly specified. 836 * See RFC 3542 for more details. 837 */ 838 if (mtu > IPV6_MMTU) { 839 if ((flags & IPV6_MINMTU)) 840 mtu = IPV6_MMTU; 841 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 842 mtu = IPV6_MMTU; 843 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 844 (opt == NULL || 845 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 846 mtu = IPV6_MMTU; 847 } 848 } 849 850 /* 851 * clear embedded scope identifiers if necessary. 852 * in6_clearscope will touch the addresses only when necessary. 853 */ 854 in6_clearscope(&ip6->ip6_src); 855 in6_clearscope(&ip6->ip6_dst); 856 857 /* 858 * If the outgoing packet contains a hop-by-hop options header, 859 * it must be examined and processed even by the source node. 860 * (RFC 2460, section 4.) 861 */ 862 if (exthdrs.ip6e_hbh) { 863 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 864 u_int32_t dummy; /* XXX unused */ 865 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 866 867 #ifdef DIAGNOSTIC 868 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 869 panic("ip6e_hbh is not contiguous"); 870 #endif 871 /* 872 * XXX: if we have to send an ICMPv6 error to the sender, 873 * we need the M_LOOP flag since icmp6_error() expects 874 * the IPv6 and the hop-by-hop options header are 875 * contiguous unless the flag is set. 876 */ 877 m->m_flags |= M_LOOP; 878 m->m_pkthdr.rcvif = ifp; 879 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 880 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 881 &dummy, &plen) < 0) { 882 /* m was already freed at this point */ 883 error = EINVAL;/* better error? */ 884 goto done; 885 } 886 m->m_flags &= ~M_LOOP; /* XXX */ 887 m->m_pkthdr.rcvif = NULL; 888 } 889 890 /* Jump over all PFIL processing if hooks are not active. */ 891 if (!PFIL_HOOKED_OUT(V_inet6_pfil_head)) 892 goto passout; 893 894 odst = ip6->ip6_dst; 895 /* Run through list of hooks for output packets. */ 896 switch (pfil_run_hooks(V_inet6_pfil_head, &m, ifp, PFIL_OUT, inp)) { 897 case PFIL_PASS: 898 ip6 = mtod(m, struct ip6_hdr *); 899 break; 900 case PFIL_DROPPED: 901 error = EACCES; 902 /* FALLTHROUGH */ 903 case PFIL_CONSUMED: 904 goto done; 905 } 906 907 needfiblookup = 0; 908 /* See if destination IP address was changed by packet filter. */ 909 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 910 m->m_flags |= M_SKIP_FIREWALL; 911 /* If destination is now ourself drop to ip6_input(). */ 912 if (in6_localip(&ip6->ip6_dst)) { 913 m->m_flags |= M_FASTFWD_OURS; 914 if (m->m_pkthdr.rcvif == NULL) 915 m->m_pkthdr.rcvif = V_loif; 916 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 917 m->m_pkthdr.csum_flags |= 918 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 919 m->m_pkthdr.csum_data = 0xffff; 920 } 921 #ifdef SCTP 922 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 923 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 924 #endif 925 error = netisr_queue(NETISR_IPV6, m); 926 goto done; 927 } else { 928 RO_INVALIDATE_CACHE(ro); 929 needfiblookup = 1; /* Redo the routing table lookup. */ 930 } 931 } 932 /* See if fib was changed by packet filter. */ 933 if (fibnum != M_GETFIB(m)) { 934 m->m_flags |= M_SKIP_FIREWALL; 935 fibnum = M_GETFIB(m); 936 RO_INVALIDATE_CACHE(ro); 937 needfiblookup = 1; 938 } 939 if (needfiblookup) 940 goto again; 941 942 /* See if local, if yes, send it to netisr. */ 943 if (m->m_flags & M_FASTFWD_OURS) { 944 if (m->m_pkthdr.rcvif == NULL) 945 m->m_pkthdr.rcvif = V_loif; 946 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 947 m->m_pkthdr.csum_flags |= 948 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 949 m->m_pkthdr.csum_data = 0xffff; 950 } 951 #ifdef SCTP 952 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 953 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 954 #endif 955 error = netisr_queue(NETISR_IPV6, m); 956 goto done; 957 } 958 /* Or forward to some other address? */ 959 if ((m->m_flags & M_IP6_NEXTHOP) && 960 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 961 dst = (struct sockaddr_in6 *)&ro->ro_dst; 962 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 963 m->m_flags |= M_SKIP_FIREWALL; 964 m->m_flags &= ~M_IP6_NEXTHOP; 965 m_tag_delete(m, fwd_tag); 966 goto again; 967 } 968 969 passout: 970 /* 971 * Send the packet to the outgoing interface. 972 * If necessary, do IPv6 fragmentation before sending. 973 * 974 * the logic here is rather complex: 975 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 976 * 1-a: send as is if tlen <= path mtu 977 * 1-b: fragment if tlen > path mtu 978 * 979 * 2: if user asks us not to fragment (dontfrag == 1) 980 * 2-a: send as is if tlen <= interface mtu 981 * 2-b: error if tlen > interface mtu 982 * 983 * 3: if we always need to attach fragment header (alwaysfrag == 1) 984 * always fragment 985 * 986 * 4: if dontfrag == 1 && alwaysfrag == 1 987 * error, as we cannot handle this conflicting request 988 */ 989 sw_csum = m->m_pkthdr.csum_flags; 990 if (!hdrsplit) { 991 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 992 sw_csum &= ~ifp->if_hwassist; 993 } else 994 tso = 0; 995 /* 996 * If we added extension headers, we will not do TSO and calculate the 997 * checksums ourselves for now. 998 * XXX-BZ Need a framework to know when the NIC can handle it, even 999 * with ext. hdrs. 1000 */ 1001 if (sw_csum & CSUM_DELAY_DATA_IPV6) { 1002 sw_csum &= ~CSUM_DELAY_DATA_IPV6; 1003 m = mb_unmapped_to_ext(m); 1004 if (m == NULL) { 1005 error = ENOBUFS; 1006 IP6STAT_INC(ip6s_odropped); 1007 goto bad; 1008 } 1009 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 1010 } else if ((ifp->if_capenable & IFCAP_NOMAP) == 0) { 1011 m = mb_unmapped_to_ext(m); 1012 if (m == NULL) { 1013 error = ENOBUFS; 1014 IP6STAT_INC(ip6s_odropped); 1015 goto bad; 1016 } 1017 } 1018 #ifdef SCTP 1019 if (sw_csum & CSUM_SCTP_IPV6) { 1020 sw_csum &= ~CSUM_SCTP_IPV6; 1021 m = mb_unmapped_to_ext(m); 1022 if (m == NULL) { 1023 error = ENOBUFS; 1024 IP6STAT_INC(ip6s_odropped); 1025 goto bad; 1026 } 1027 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 1028 } 1029 #endif 1030 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 1031 tlen = m->m_pkthdr.len; 1032 1033 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 1034 dontfrag = 1; 1035 else 1036 dontfrag = 0; 1037 if (dontfrag && alwaysfrag) { /* case 4 */ 1038 /* conflicting request - can't transmit */ 1039 error = EMSGSIZE; 1040 goto bad; 1041 } 1042 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ 1043 /* 1044 * Even if the DONTFRAG option is specified, we cannot send the 1045 * packet when the data length is larger than the MTU of the 1046 * outgoing interface. 1047 * Notify the error by sending IPV6_PATHMTU ancillary data if 1048 * application wanted to know the MTU value. Also return an 1049 * error code (this is not described in the API spec). 1050 */ 1051 if (inp != NULL) 1052 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 1053 error = EMSGSIZE; 1054 goto bad; 1055 } 1056 1057 /* 1058 * transmit packet without fragmentation 1059 */ 1060 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 1061 struct in6_ifaddr *ia6; 1062 1063 ip6 = mtod(m, struct ip6_hdr *); 1064 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1065 if (ia6) { 1066 /* Record statistics for this interface address. */ 1067 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 1068 counter_u64_add(ia6->ia_ifa.ifa_obytes, 1069 m->m_pkthdr.len); 1070 ifa_free(&ia6->ia_ifa); 1071 } 1072 error = ip6_output_send(inp, ifp, origifp, m, dst, ro); 1073 goto done; 1074 } 1075 1076 /* 1077 * try to fragment the packet. case 1-b and 3 1078 */ 1079 if (mtu < IPV6_MMTU) { 1080 /* path MTU cannot be less than IPV6_MMTU */ 1081 error = EMSGSIZE; 1082 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1083 goto bad; 1084 } else if (ip6->ip6_plen == 0) { 1085 /* jumbo payload cannot be fragmented */ 1086 error = EMSGSIZE; 1087 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1088 goto bad; 1089 } else { 1090 u_char nextproto; 1091 1092 /* 1093 * Too large for the destination or interface; 1094 * fragment if possible. 1095 * Must be able to put at least 8 bytes per fragment. 1096 */ 1097 hlen = unfragpartlen; 1098 if (mtu > IPV6_MAXPACKET) 1099 mtu = IPV6_MAXPACKET; 1100 1101 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 1102 if (len < 8) { 1103 error = EMSGSIZE; 1104 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1105 goto bad; 1106 } 1107 1108 /* 1109 * If the interface will not calculate checksums on 1110 * fragmented packets, then do it here. 1111 * XXX-BZ handle the hw offloading case. Need flags. 1112 */ 1113 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1114 m = mb_unmapped_to_ext(m); 1115 if (m == NULL) { 1116 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1117 error = ENOBUFS; 1118 goto bad; 1119 } 1120 in6_delayed_cksum(m, plen, hlen); 1121 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 1122 } 1123 #ifdef SCTP 1124 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 1125 m = mb_unmapped_to_ext(m); 1126 if (m == NULL) { 1127 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1128 error = ENOBUFS; 1129 goto bad; 1130 } 1131 sctp_delayed_cksum(m, hlen); 1132 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 1133 } 1134 #endif 1135 /* 1136 * Change the next header field of the last header in the 1137 * unfragmentable part. 1138 */ 1139 if (exthdrs.ip6e_rthdr) { 1140 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1141 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1142 } else if (exthdrs.ip6e_dest1) { 1143 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1144 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1145 } else if (exthdrs.ip6e_hbh) { 1146 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1147 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1148 } else { 1149 nextproto = ip6->ip6_nxt; 1150 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1151 } 1152 1153 /* 1154 * Loop through length of segment after first fragment, 1155 * make new header and copy data of each part and link onto 1156 * chain. 1157 */ 1158 m0 = m; 1159 id = htonl(ip6_randomid()); 1160 if ((error = ip6_fragment(ifp, m, hlen, nextproto, len, id))) 1161 goto sendorfree; 1162 1163 in6_ifstat_inc(ifp, ifs6_out_fragok); 1164 } 1165 1166 /* 1167 * Remove leading garbages. 1168 */ 1169 sendorfree: 1170 m = m0->m_nextpkt; 1171 m0->m_nextpkt = 0; 1172 m_freem(m0); 1173 for (; m; m = m0) { 1174 m0 = m->m_nextpkt; 1175 m->m_nextpkt = 0; 1176 if (error == 0) { 1177 /* Record statistics for this interface address. */ 1178 if (ia) { 1179 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1180 counter_u64_add(ia->ia_ifa.ifa_obytes, 1181 m->m_pkthdr.len); 1182 } 1183 error = ip6_output_send(inp, ifp, origifp, m, dst, ro); 1184 } else 1185 m_freem(m); 1186 } 1187 1188 if (error == 0) 1189 IP6STAT_INC(ip6s_fragmented); 1190 1191 done: 1192 NET_EPOCH_EXIT(et); 1193 if (ro == &ip6route) 1194 RO_RTFREE(ro); 1195 return (error); 1196 1197 freehdrs: 1198 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1199 m_freem(exthdrs.ip6e_dest1); 1200 m_freem(exthdrs.ip6e_rthdr); 1201 m_freem(exthdrs.ip6e_dest2); 1202 /* FALLTHROUGH */ 1203 bad: 1204 if (m) 1205 m_freem(m); 1206 goto done; 1207 } 1208 1209 static int 1210 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1211 { 1212 struct mbuf *m; 1213 1214 if (hlen > MCLBYTES) 1215 return (ENOBUFS); /* XXX */ 1216 1217 if (hlen > MLEN) 1218 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1219 else 1220 m = m_get(M_NOWAIT, MT_DATA); 1221 if (m == NULL) 1222 return (ENOBUFS); 1223 m->m_len = hlen; 1224 if (hdr) 1225 bcopy(hdr, mtod(m, caddr_t), hlen); 1226 1227 *mp = m; 1228 return (0); 1229 } 1230 1231 /* 1232 * Insert jumbo payload option. 1233 */ 1234 static int 1235 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1236 { 1237 struct mbuf *mopt; 1238 u_char *optbuf; 1239 u_int32_t v; 1240 1241 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1242 1243 /* 1244 * If there is no hop-by-hop options header, allocate new one. 1245 * If there is one but it doesn't have enough space to store the 1246 * jumbo payload option, allocate a cluster to store the whole options. 1247 * Otherwise, use it to store the options. 1248 */ 1249 if (exthdrs->ip6e_hbh == NULL) { 1250 mopt = m_get(M_NOWAIT, MT_DATA); 1251 if (mopt == NULL) 1252 return (ENOBUFS); 1253 mopt->m_len = JUMBOOPTLEN; 1254 optbuf = mtod(mopt, u_char *); 1255 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1256 exthdrs->ip6e_hbh = mopt; 1257 } else { 1258 struct ip6_hbh *hbh; 1259 1260 mopt = exthdrs->ip6e_hbh; 1261 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1262 /* 1263 * XXX assumption: 1264 * - exthdrs->ip6e_hbh is not referenced from places 1265 * other than exthdrs. 1266 * - exthdrs->ip6e_hbh is not an mbuf chain. 1267 */ 1268 int oldoptlen = mopt->m_len; 1269 struct mbuf *n; 1270 1271 /* 1272 * XXX: give up if the whole (new) hbh header does 1273 * not fit even in an mbuf cluster. 1274 */ 1275 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1276 return (ENOBUFS); 1277 1278 /* 1279 * As a consequence, we must always prepare a cluster 1280 * at this point. 1281 */ 1282 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1283 if (n == NULL) 1284 return (ENOBUFS); 1285 n->m_len = oldoptlen + JUMBOOPTLEN; 1286 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1287 oldoptlen); 1288 optbuf = mtod(n, caddr_t) + oldoptlen; 1289 m_freem(mopt); 1290 mopt = exthdrs->ip6e_hbh = n; 1291 } else { 1292 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1293 mopt->m_len += JUMBOOPTLEN; 1294 } 1295 optbuf[0] = IP6OPT_PADN; 1296 optbuf[1] = 1; 1297 1298 /* 1299 * Adjust the header length according to the pad and 1300 * the jumbo payload option. 1301 */ 1302 hbh = mtod(mopt, struct ip6_hbh *); 1303 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1304 } 1305 1306 /* fill in the option. */ 1307 optbuf[2] = IP6OPT_JUMBO; 1308 optbuf[3] = 4; 1309 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1310 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1311 1312 /* finally, adjust the packet header length */ 1313 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1314 1315 return (0); 1316 #undef JUMBOOPTLEN 1317 } 1318 1319 /* 1320 * Insert fragment header and copy unfragmentable header portions. 1321 */ 1322 static int 1323 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1324 struct ip6_frag **frghdrp) 1325 { 1326 struct mbuf *n, *mlast; 1327 1328 if (hlen > sizeof(struct ip6_hdr)) { 1329 n = m_copym(m0, sizeof(struct ip6_hdr), 1330 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1331 if (n == NULL) 1332 return (ENOBUFS); 1333 m->m_next = n; 1334 } else 1335 n = m; 1336 1337 /* Search for the last mbuf of unfragmentable part. */ 1338 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1339 ; 1340 1341 if (M_WRITABLE(mlast) && 1342 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1343 /* use the trailing space of the last mbuf for the fragment hdr */ 1344 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1345 mlast->m_len); 1346 mlast->m_len += sizeof(struct ip6_frag); 1347 m->m_pkthdr.len += sizeof(struct ip6_frag); 1348 } else { 1349 /* allocate a new mbuf for the fragment header */ 1350 struct mbuf *mfrg; 1351 1352 mfrg = m_get(M_NOWAIT, MT_DATA); 1353 if (mfrg == NULL) 1354 return (ENOBUFS); 1355 mfrg->m_len = sizeof(struct ip6_frag); 1356 *frghdrp = mtod(mfrg, struct ip6_frag *); 1357 mlast->m_next = mfrg; 1358 } 1359 1360 return (0); 1361 } 1362 1363 /* 1364 * Calculates IPv6 path mtu for destination @dst. 1365 * Resulting MTU is stored in @mtup. 1366 * 1367 * Returns 0 on success. 1368 */ 1369 static int 1370 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1371 { 1372 struct nhop6_extended nh6; 1373 struct in6_addr kdst; 1374 uint32_t scopeid; 1375 struct ifnet *ifp; 1376 u_long mtu; 1377 int error; 1378 1379 in6_splitscope(dst, &kdst, &scopeid); 1380 if (fib6_lookup_nh_ext(fibnum, &kdst, scopeid, NHR_REF, 0, &nh6) != 0) 1381 return (EHOSTUNREACH); 1382 1383 ifp = nh6.nh_ifp; 1384 mtu = nh6.nh_mtu; 1385 1386 error = ip6_calcmtu(ifp, dst, mtu, mtup, NULL, 0); 1387 fib6_free_nh_ext(fibnum, &nh6); 1388 1389 return (error); 1390 } 1391 1392 /* 1393 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1394 * and cached data in @ro_pmtu. 1395 * MTU from (successful) route lookup is saved (along with dst) 1396 * inside @ro_pmtu to avoid subsequent route lookups after packet 1397 * filter processing. 1398 * 1399 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1400 * Returns 0 on success. 1401 */ 1402 static int 1403 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1404 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1405 int *alwaysfragp, u_int fibnum, u_int proto) 1406 { 1407 struct nhop6_basic nh6; 1408 struct in6_addr kdst; 1409 uint32_t scopeid; 1410 struct sockaddr_in6 *sa6_dst; 1411 u_long mtu; 1412 1413 mtu = 0; 1414 if (do_lookup) { 1415 1416 /* 1417 * Here ro_pmtu has final destination address, while 1418 * ro might represent immediate destination. 1419 * Use ro_pmtu destination since mtu might differ. 1420 */ 1421 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1422 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1423 ro_pmtu->ro_mtu = 0; 1424 1425 if (ro_pmtu->ro_mtu == 0) { 1426 bzero(sa6_dst, sizeof(*sa6_dst)); 1427 sa6_dst->sin6_family = AF_INET6; 1428 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1429 sa6_dst->sin6_addr = *dst; 1430 1431 in6_splitscope(dst, &kdst, &scopeid); 1432 if (fib6_lookup_nh_basic(fibnum, &kdst, scopeid, 0, 0, 1433 &nh6) == 0) 1434 ro_pmtu->ro_mtu = nh6.nh_mtu; 1435 } 1436 1437 mtu = ro_pmtu->ro_mtu; 1438 } 1439 1440 if (ro_pmtu->ro_rt) 1441 mtu = ro_pmtu->ro_rt->rt_mtu; 1442 1443 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1444 } 1445 1446 /* 1447 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1448 * hostcache data for @dst. 1449 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1450 * 1451 * Returns 0 on success. 1452 */ 1453 static int 1454 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1455 u_long *mtup, int *alwaysfragp, u_int proto) 1456 { 1457 u_long mtu = 0; 1458 int alwaysfrag = 0; 1459 int error = 0; 1460 1461 if (rt_mtu > 0) { 1462 u_int32_t ifmtu; 1463 struct in_conninfo inc; 1464 1465 bzero(&inc, sizeof(inc)); 1466 inc.inc_flags |= INC_ISIPV6; 1467 inc.inc6_faddr = *dst; 1468 1469 ifmtu = IN6_LINKMTU(ifp); 1470 1471 /* TCP is known to react to pmtu changes so skip hc */ 1472 if (proto != IPPROTO_TCP) 1473 mtu = tcp_hc_getmtu(&inc); 1474 1475 if (mtu) 1476 mtu = min(mtu, rt_mtu); 1477 else 1478 mtu = rt_mtu; 1479 if (mtu == 0) 1480 mtu = ifmtu; 1481 else if (mtu < IPV6_MMTU) { 1482 /* 1483 * RFC2460 section 5, last paragraph: 1484 * if we record ICMPv6 too big message with 1485 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1486 * or smaller, with framgent header attached. 1487 * (fragment header is needed regardless from the 1488 * packet size, for translators to identify packets) 1489 */ 1490 alwaysfrag = 1; 1491 mtu = IPV6_MMTU; 1492 } 1493 } else if (ifp) { 1494 mtu = IN6_LINKMTU(ifp); 1495 } else 1496 error = EHOSTUNREACH; /* XXX */ 1497 1498 *mtup = mtu; 1499 if (alwaysfragp) 1500 *alwaysfragp = alwaysfrag; 1501 return (error); 1502 } 1503 1504 /* 1505 * IP6 socket option processing. 1506 */ 1507 int 1508 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1509 { 1510 int optdatalen, uproto; 1511 void *optdata; 1512 struct inpcb *inp = sotoinpcb(so); 1513 int error, optval; 1514 int level, op, optname; 1515 int optlen; 1516 struct thread *td; 1517 #ifdef RSS 1518 uint32_t rss_bucket; 1519 int retval; 1520 #endif 1521 1522 /* 1523 * Don't use more than a quarter of mbuf clusters. N.B.: 1524 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1525 * on LP64 architectures, so cast to u_long to avoid undefined 1526 * behavior. ILP32 architectures cannot have nmbclusters 1527 * large enough to overflow for other reasons. 1528 */ 1529 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1530 1531 level = sopt->sopt_level; 1532 op = sopt->sopt_dir; 1533 optname = sopt->sopt_name; 1534 optlen = sopt->sopt_valsize; 1535 td = sopt->sopt_td; 1536 error = 0; 1537 optval = 0; 1538 uproto = (int)so->so_proto->pr_protocol; 1539 1540 if (level != IPPROTO_IPV6) { 1541 error = EINVAL; 1542 1543 if (sopt->sopt_level == SOL_SOCKET && 1544 sopt->sopt_dir == SOPT_SET) { 1545 switch (sopt->sopt_name) { 1546 case SO_REUSEADDR: 1547 INP_WLOCK(inp); 1548 if ((so->so_options & SO_REUSEADDR) != 0) 1549 inp->inp_flags2 |= INP_REUSEADDR; 1550 else 1551 inp->inp_flags2 &= ~INP_REUSEADDR; 1552 INP_WUNLOCK(inp); 1553 error = 0; 1554 break; 1555 case SO_REUSEPORT: 1556 INP_WLOCK(inp); 1557 if ((so->so_options & SO_REUSEPORT) != 0) 1558 inp->inp_flags2 |= INP_REUSEPORT; 1559 else 1560 inp->inp_flags2 &= ~INP_REUSEPORT; 1561 INP_WUNLOCK(inp); 1562 error = 0; 1563 break; 1564 case SO_REUSEPORT_LB: 1565 INP_WLOCK(inp); 1566 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1567 inp->inp_flags2 |= INP_REUSEPORT_LB; 1568 else 1569 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1570 INP_WUNLOCK(inp); 1571 error = 0; 1572 break; 1573 case SO_SETFIB: 1574 INP_WLOCK(inp); 1575 inp->inp_inc.inc_fibnum = so->so_fibnum; 1576 INP_WUNLOCK(inp); 1577 error = 0; 1578 break; 1579 case SO_MAX_PACING_RATE: 1580 #ifdef RATELIMIT 1581 INP_WLOCK(inp); 1582 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1583 INP_WUNLOCK(inp); 1584 error = 0; 1585 #else 1586 error = EOPNOTSUPP; 1587 #endif 1588 break; 1589 default: 1590 break; 1591 } 1592 } 1593 } else { /* level == IPPROTO_IPV6 */ 1594 switch (op) { 1595 1596 case SOPT_SET: 1597 switch (optname) { 1598 case IPV6_2292PKTOPTIONS: 1599 #ifdef IPV6_PKTOPTIONS 1600 case IPV6_PKTOPTIONS: 1601 #endif 1602 { 1603 struct mbuf *m; 1604 1605 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1606 printf("ip6_ctloutput: mbuf limit hit\n"); 1607 error = ENOBUFS; 1608 break; 1609 } 1610 1611 error = soopt_getm(sopt, &m); /* XXX */ 1612 if (error != 0) 1613 break; 1614 error = soopt_mcopyin(sopt, m); /* XXX */ 1615 if (error != 0) 1616 break; 1617 error = ip6_pcbopts(&inp->in6p_outputopts, 1618 m, so, sopt); 1619 m_freem(m); /* XXX */ 1620 break; 1621 } 1622 1623 /* 1624 * Use of some Hop-by-Hop options or some 1625 * Destination options, might require special 1626 * privilege. That is, normal applications 1627 * (without special privilege) might be forbidden 1628 * from setting certain options in outgoing packets, 1629 * and might never see certain options in received 1630 * packets. [RFC 2292 Section 6] 1631 * KAME specific note: 1632 * KAME prevents non-privileged users from sending or 1633 * receiving ANY hbh/dst options in order to avoid 1634 * overhead of parsing options in the kernel. 1635 */ 1636 case IPV6_RECVHOPOPTS: 1637 case IPV6_RECVDSTOPTS: 1638 case IPV6_RECVRTHDRDSTOPTS: 1639 if (td != NULL) { 1640 error = priv_check(td, 1641 PRIV_NETINET_SETHDROPTS); 1642 if (error) 1643 break; 1644 } 1645 /* FALLTHROUGH */ 1646 case IPV6_UNICAST_HOPS: 1647 case IPV6_HOPLIMIT: 1648 1649 case IPV6_RECVPKTINFO: 1650 case IPV6_RECVHOPLIMIT: 1651 case IPV6_RECVRTHDR: 1652 case IPV6_RECVPATHMTU: 1653 case IPV6_RECVTCLASS: 1654 case IPV6_RECVFLOWID: 1655 #ifdef RSS 1656 case IPV6_RECVRSSBUCKETID: 1657 #endif 1658 case IPV6_V6ONLY: 1659 case IPV6_AUTOFLOWLABEL: 1660 case IPV6_ORIGDSTADDR: 1661 case IPV6_BINDANY: 1662 case IPV6_BINDMULTI: 1663 #ifdef RSS 1664 case IPV6_RSS_LISTEN_BUCKET: 1665 #endif 1666 if (optname == IPV6_BINDANY && td != NULL) { 1667 error = priv_check(td, 1668 PRIV_NETINET_BINDANY); 1669 if (error) 1670 break; 1671 } 1672 1673 if (optlen != sizeof(int)) { 1674 error = EINVAL; 1675 break; 1676 } 1677 error = sooptcopyin(sopt, &optval, 1678 sizeof optval, sizeof optval); 1679 if (error) 1680 break; 1681 switch (optname) { 1682 1683 case IPV6_UNICAST_HOPS: 1684 if (optval < -1 || optval >= 256) 1685 error = EINVAL; 1686 else { 1687 /* -1 = kernel default */ 1688 inp->in6p_hops = optval; 1689 if ((inp->inp_vflag & 1690 INP_IPV4) != 0) 1691 inp->inp_ip_ttl = optval; 1692 } 1693 break; 1694 #define OPTSET(bit) \ 1695 do { \ 1696 INP_WLOCK(inp); \ 1697 if (optval) \ 1698 inp->inp_flags |= (bit); \ 1699 else \ 1700 inp->inp_flags &= ~(bit); \ 1701 INP_WUNLOCK(inp); \ 1702 } while (/*CONSTCOND*/ 0) 1703 #define OPTSET2292(bit) \ 1704 do { \ 1705 INP_WLOCK(inp); \ 1706 inp->inp_flags |= IN6P_RFC2292; \ 1707 if (optval) \ 1708 inp->inp_flags |= (bit); \ 1709 else \ 1710 inp->inp_flags &= ~(bit); \ 1711 INP_WUNLOCK(inp); \ 1712 } while (/*CONSTCOND*/ 0) 1713 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1714 1715 #define OPTSET2_N(bit, val) do { \ 1716 if (val) \ 1717 inp->inp_flags2 |= bit; \ 1718 else \ 1719 inp->inp_flags2 &= ~bit; \ 1720 } while (0) 1721 #define OPTSET2(bit, val) do { \ 1722 INP_WLOCK(inp); \ 1723 OPTSET2_N(bit, val); \ 1724 INP_WUNLOCK(inp); \ 1725 } while (0) 1726 #define OPTBIT2(bit) (inp->inp_flags2 & (bit) ? 1 : 0) 1727 #define OPTSET2292_EXCLUSIVE(bit) \ 1728 do { \ 1729 INP_WLOCK(inp); \ 1730 if (OPTBIT(IN6P_RFC2292)) { \ 1731 error = EINVAL; \ 1732 } else { \ 1733 if (optval) \ 1734 inp->inp_flags |= (bit); \ 1735 else \ 1736 inp->inp_flags &= ~(bit); \ 1737 } \ 1738 INP_WUNLOCK(inp); \ 1739 } while (/*CONSTCOND*/ 0) 1740 1741 case IPV6_RECVPKTINFO: 1742 OPTSET2292_EXCLUSIVE(IN6P_PKTINFO); 1743 break; 1744 1745 case IPV6_HOPLIMIT: 1746 { 1747 struct ip6_pktopts **optp; 1748 1749 /* cannot mix with RFC2292 */ 1750 if (OPTBIT(IN6P_RFC2292)) { 1751 error = EINVAL; 1752 break; 1753 } 1754 INP_WLOCK(inp); 1755 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1756 INP_WUNLOCK(inp); 1757 return (ECONNRESET); 1758 } 1759 optp = &inp->in6p_outputopts; 1760 error = ip6_pcbopt(IPV6_HOPLIMIT, 1761 (u_char *)&optval, sizeof(optval), 1762 optp, (td != NULL) ? td->td_ucred : 1763 NULL, uproto); 1764 INP_WUNLOCK(inp); 1765 break; 1766 } 1767 1768 case IPV6_RECVHOPLIMIT: 1769 OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT); 1770 break; 1771 1772 case IPV6_RECVHOPOPTS: 1773 OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS); 1774 break; 1775 1776 case IPV6_RECVDSTOPTS: 1777 OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS); 1778 break; 1779 1780 case IPV6_RECVRTHDRDSTOPTS: 1781 OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS); 1782 break; 1783 1784 case IPV6_RECVRTHDR: 1785 OPTSET2292_EXCLUSIVE(IN6P_RTHDR); 1786 break; 1787 1788 case IPV6_RECVPATHMTU: 1789 /* 1790 * We ignore this option for TCP 1791 * sockets. 1792 * (RFC3542 leaves this case 1793 * unspecified.) 1794 */ 1795 if (uproto != IPPROTO_TCP) 1796 OPTSET(IN6P_MTU); 1797 break; 1798 1799 case IPV6_RECVFLOWID: 1800 OPTSET2(INP_RECVFLOWID, optval); 1801 break; 1802 1803 #ifdef RSS 1804 case IPV6_RECVRSSBUCKETID: 1805 OPTSET2(INP_RECVRSSBUCKETID, optval); 1806 break; 1807 #endif 1808 1809 case IPV6_V6ONLY: 1810 INP_WLOCK(inp); 1811 if (inp->inp_lport || 1812 !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { 1813 /* 1814 * The socket is already bound. 1815 */ 1816 INP_WUNLOCK(inp); 1817 error = EINVAL; 1818 break; 1819 } 1820 if (optval) { 1821 inp->inp_flags |= IN6P_IPV6_V6ONLY; 1822 inp->inp_vflag &= ~INP_IPV4; 1823 } else { 1824 inp->inp_flags &= ~IN6P_IPV6_V6ONLY; 1825 inp->inp_vflag |= INP_IPV4; 1826 } 1827 INP_WUNLOCK(inp); 1828 break; 1829 case IPV6_RECVTCLASS: 1830 /* cannot mix with RFC2292 XXX */ 1831 OPTSET2292_EXCLUSIVE(IN6P_TCLASS); 1832 break; 1833 case IPV6_AUTOFLOWLABEL: 1834 OPTSET(IN6P_AUTOFLOWLABEL); 1835 break; 1836 1837 case IPV6_ORIGDSTADDR: 1838 OPTSET2(INP_ORIGDSTADDR, optval); 1839 break; 1840 case IPV6_BINDANY: 1841 OPTSET(INP_BINDANY); 1842 break; 1843 1844 case IPV6_BINDMULTI: 1845 OPTSET2(INP_BINDMULTI, optval); 1846 break; 1847 #ifdef RSS 1848 case IPV6_RSS_LISTEN_BUCKET: 1849 if ((optval >= 0) && 1850 (optval < rss_getnumbuckets())) { 1851 INP_WLOCK(inp); 1852 inp->inp_rss_listen_bucket = optval; 1853 OPTSET2_N(INP_RSS_BUCKET_SET, 1); 1854 INP_WUNLOCK(inp); 1855 } else { 1856 error = EINVAL; 1857 } 1858 break; 1859 #endif 1860 } 1861 break; 1862 1863 case IPV6_TCLASS: 1864 case IPV6_DONTFRAG: 1865 case IPV6_USE_MIN_MTU: 1866 case IPV6_PREFER_TEMPADDR: 1867 if (optlen != sizeof(optval)) { 1868 error = EINVAL; 1869 break; 1870 } 1871 error = sooptcopyin(sopt, &optval, 1872 sizeof optval, sizeof optval); 1873 if (error) 1874 break; 1875 { 1876 struct ip6_pktopts **optp; 1877 INP_WLOCK(inp); 1878 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1879 INP_WUNLOCK(inp); 1880 return (ECONNRESET); 1881 } 1882 optp = &inp->in6p_outputopts; 1883 error = ip6_pcbopt(optname, 1884 (u_char *)&optval, sizeof(optval), 1885 optp, (td != NULL) ? td->td_ucred : 1886 NULL, uproto); 1887 INP_WUNLOCK(inp); 1888 break; 1889 } 1890 1891 case IPV6_2292PKTINFO: 1892 case IPV6_2292HOPLIMIT: 1893 case IPV6_2292HOPOPTS: 1894 case IPV6_2292DSTOPTS: 1895 case IPV6_2292RTHDR: 1896 /* RFC 2292 */ 1897 if (optlen != sizeof(int)) { 1898 error = EINVAL; 1899 break; 1900 } 1901 error = sooptcopyin(sopt, &optval, 1902 sizeof optval, sizeof optval); 1903 if (error) 1904 break; 1905 switch (optname) { 1906 case IPV6_2292PKTINFO: 1907 OPTSET2292(IN6P_PKTINFO); 1908 break; 1909 case IPV6_2292HOPLIMIT: 1910 OPTSET2292(IN6P_HOPLIMIT); 1911 break; 1912 case IPV6_2292HOPOPTS: 1913 /* 1914 * Check super-user privilege. 1915 * See comments for IPV6_RECVHOPOPTS. 1916 */ 1917 if (td != NULL) { 1918 error = priv_check(td, 1919 PRIV_NETINET_SETHDROPTS); 1920 if (error) 1921 return (error); 1922 } 1923 OPTSET2292(IN6P_HOPOPTS); 1924 break; 1925 case IPV6_2292DSTOPTS: 1926 if (td != NULL) { 1927 error = priv_check(td, 1928 PRIV_NETINET_SETHDROPTS); 1929 if (error) 1930 return (error); 1931 } 1932 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1933 break; 1934 case IPV6_2292RTHDR: 1935 OPTSET2292(IN6P_RTHDR); 1936 break; 1937 } 1938 break; 1939 case IPV6_PKTINFO: 1940 case IPV6_HOPOPTS: 1941 case IPV6_RTHDR: 1942 case IPV6_DSTOPTS: 1943 case IPV6_RTHDRDSTOPTS: 1944 case IPV6_NEXTHOP: 1945 { 1946 /* new advanced API (RFC3542) */ 1947 u_char *optbuf; 1948 u_char optbuf_storage[MCLBYTES]; 1949 int optlen; 1950 struct ip6_pktopts **optp; 1951 1952 /* cannot mix with RFC2292 */ 1953 if (OPTBIT(IN6P_RFC2292)) { 1954 error = EINVAL; 1955 break; 1956 } 1957 1958 /* 1959 * We only ensure valsize is not too large 1960 * here. Further validation will be done 1961 * later. 1962 */ 1963 error = sooptcopyin(sopt, optbuf_storage, 1964 sizeof(optbuf_storage), 0); 1965 if (error) 1966 break; 1967 optlen = sopt->sopt_valsize; 1968 optbuf = optbuf_storage; 1969 INP_WLOCK(inp); 1970 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1971 INP_WUNLOCK(inp); 1972 return (ECONNRESET); 1973 } 1974 optp = &inp->in6p_outputopts; 1975 error = ip6_pcbopt(optname, optbuf, optlen, 1976 optp, (td != NULL) ? td->td_ucred : NULL, 1977 uproto); 1978 INP_WUNLOCK(inp); 1979 break; 1980 } 1981 #undef OPTSET 1982 1983 case IPV6_MULTICAST_IF: 1984 case IPV6_MULTICAST_HOPS: 1985 case IPV6_MULTICAST_LOOP: 1986 case IPV6_JOIN_GROUP: 1987 case IPV6_LEAVE_GROUP: 1988 case IPV6_MSFILTER: 1989 case MCAST_BLOCK_SOURCE: 1990 case MCAST_UNBLOCK_SOURCE: 1991 case MCAST_JOIN_GROUP: 1992 case MCAST_LEAVE_GROUP: 1993 case MCAST_JOIN_SOURCE_GROUP: 1994 case MCAST_LEAVE_SOURCE_GROUP: 1995 error = ip6_setmoptions(inp, sopt); 1996 break; 1997 1998 case IPV6_PORTRANGE: 1999 error = sooptcopyin(sopt, &optval, 2000 sizeof optval, sizeof optval); 2001 if (error) 2002 break; 2003 2004 INP_WLOCK(inp); 2005 switch (optval) { 2006 case IPV6_PORTRANGE_DEFAULT: 2007 inp->inp_flags &= ~(INP_LOWPORT); 2008 inp->inp_flags &= ~(INP_HIGHPORT); 2009 break; 2010 2011 case IPV6_PORTRANGE_HIGH: 2012 inp->inp_flags &= ~(INP_LOWPORT); 2013 inp->inp_flags |= INP_HIGHPORT; 2014 break; 2015 2016 case IPV6_PORTRANGE_LOW: 2017 inp->inp_flags &= ~(INP_HIGHPORT); 2018 inp->inp_flags |= INP_LOWPORT; 2019 break; 2020 2021 default: 2022 error = EINVAL; 2023 break; 2024 } 2025 INP_WUNLOCK(inp); 2026 break; 2027 2028 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2029 case IPV6_IPSEC_POLICY: 2030 if (IPSEC_ENABLED(ipv6)) { 2031 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2032 break; 2033 } 2034 /* FALLTHROUGH */ 2035 #endif /* IPSEC */ 2036 2037 default: 2038 error = ENOPROTOOPT; 2039 break; 2040 } 2041 break; 2042 2043 case SOPT_GET: 2044 switch (optname) { 2045 2046 case IPV6_2292PKTOPTIONS: 2047 #ifdef IPV6_PKTOPTIONS 2048 case IPV6_PKTOPTIONS: 2049 #endif 2050 /* 2051 * RFC3542 (effectively) deprecated the 2052 * semantics of the 2292-style pktoptions. 2053 * Since it was not reliable in nature (i.e., 2054 * applications had to expect the lack of some 2055 * information after all), it would make sense 2056 * to simplify this part by always returning 2057 * empty data. 2058 */ 2059 sopt->sopt_valsize = 0; 2060 break; 2061 2062 case IPV6_RECVHOPOPTS: 2063 case IPV6_RECVDSTOPTS: 2064 case IPV6_RECVRTHDRDSTOPTS: 2065 case IPV6_UNICAST_HOPS: 2066 case IPV6_RECVPKTINFO: 2067 case IPV6_RECVHOPLIMIT: 2068 case IPV6_RECVRTHDR: 2069 case IPV6_RECVPATHMTU: 2070 2071 case IPV6_V6ONLY: 2072 case IPV6_PORTRANGE: 2073 case IPV6_RECVTCLASS: 2074 case IPV6_AUTOFLOWLABEL: 2075 case IPV6_BINDANY: 2076 case IPV6_FLOWID: 2077 case IPV6_FLOWTYPE: 2078 case IPV6_RECVFLOWID: 2079 #ifdef RSS 2080 case IPV6_RSSBUCKETID: 2081 case IPV6_RECVRSSBUCKETID: 2082 #endif 2083 case IPV6_BINDMULTI: 2084 switch (optname) { 2085 2086 case IPV6_RECVHOPOPTS: 2087 optval = OPTBIT(IN6P_HOPOPTS); 2088 break; 2089 2090 case IPV6_RECVDSTOPTS: 2091 optval = OPTBIT(IN6P_DSTOPTS); 2092 break; 2093 2094 case IPV6_RECVRTHDRDSTOPTS: 2095 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 2096 break; 2097 2098 case IPV6_UNICAST_HOPS: 2099 optval = inp->in6p_hops; 2100 break; 2101 2102 case IPV6_RECVPKTINFO: 2103 optval = OPTBIT(IN6P_PKTINFO); 2104 break; 2105 2106 case IPV6_RECVHOPLIMIT: 2107 optval = OPTBIT(IN6P_HOPLIMIT); 2108 break; 2109 2110 case IPV6_RECVRTHDR: 2111 optval = OPTBIT(IN6P_RTHDR); 2112 break; 2113 2114 case IPV6_RECVPATHMTU: 2115 optval = OPTBIT(IN6P_MTU); 2116 break; 2117 2118 case IPV6_V6ONLY: 2119 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2120 break; 2121 2122 case IPV6_PORTRANGE: 2123 { 2124 int flags; 2125 flags = inp->inp_flags; 2126 if (flags & INP_HIGHPORT) 2127 optval = IPV6_PORTRANGE_HIGH; 2128 else if (flags & INP_LOWPORT) 2129 optval = IPV6_PORTRANGE_LOW; 2130 else 2131 optval = 0; 2132 break; 2133 } 2134 case IPV6_RECVTCLASS: 2135 optval = OPTBIT(IN6P_TCLASS); 2136 break; 2137 2138 case IPV6_AUTOFLOWLABEL: 2139 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2140 break; 2141 2142 case IPV6_ORIGDSTADDR: 2143 optval = OPTBIT2(INP_ORIGDSTADDR); 2144 break; 2145 2146 case IPV6_BINDANY: 2147 optval = OPTBIT(INP_BINDANY); 2148 break; 2149 2150 case IPV6_FLOWID: 2151 optval = inp->inp_flowid; 2152 break; 2153 2154 case IPV6_FLOWTYPE: 2155 optval = inp->inp_flowtype; 2156 break; 2157 2158 case IPV6_RECVFLOWID: 2159 optval = OPTBIT2(INP_RECVFLOWID); 2160 break; 2161 #ifdef RSS 2162 case IPV6_RSSBUCKETID: 2163 retval = 2164 rss_hash2bucket(inp->inp_flowid, 2165 inp->inp_flowtype, 2166 &rss_bucket); 2167 if (retval == 0) 2168 optval = rss_bucket; 2169 else 2170 error = EINVAL; 2171 break; 2172 2173 case IPV6_RECVRSSBUCKETID: 2174 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2175 break; 2176 #endif 2177 2178 case IPV6_BINDMULTI: 2179 optval = OPTBIT2(INP_BINDMULTI); 2180 break; 2181 2182 } 2183 if (error) 2184 break; 2185 error = sooptcopyout(sopt, &optval, 2186 sizeof optval); 2187 break; 2188 2189 case IPV6_PATHMTU: 2190 { 2191 u_long pmtu = 0; 2192 struct ip6_mtuinfo mtuinfo; 2193 struct in6_addr addr; 2194 2195 if (!(so->so_state & SS_ISCONNECTED)) 2196 return (ENOTCONN); 2197 /* 2198 * XXX: we dot not consider the case of source 2199 * routing, or optional information to specify 2200 * the outgoing interface. 2201 * Copy faddr out of inp to avoid holding lock 2202 * on inp during route lookup. 2203 */ 2204 INP_RLOCK(inp); 2205 bcopy(&inp->in6p_faddr, &addr, sizeof(addr)); 2206 INP_RUNLOCK(inp); 2207 error = ip6_getpmtu_ctl(so->so_fibnum, 2208 &addr, &pmtu); 2209 if (error) 2210 break; 2211 if (pmtu > IPV6_MAXPACKET) 2212 pmtu = IPV6_MAXPACKET; 2213 2214 bzero(&mtuinfo, sizeof(mtuinfo)); 2215 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2216 optdata = (void *)&mtuinfo; 2217 optdatalen = sizeof(mtuinfo); 2218 error = sooptcopyout(sopt, optdata, 2219 optdatalen); 2220 break; 2221 } 2222 2223 case IPV6_2292PKTINFO: 2224 case IPV6_2292HOPLIMIT: 2225 case IPV6_2292HOPOPTS: 2226 case IPV6_2292RTHDR: 2227 case IPV6_2292DSTOPTS: 2228 switch (optname) { 2229 case IPV6_2292PKTINFO: 2230 optval = OPTBIT(IN6P_PKTINFO); 2231 break; 2232 case IPV6_2292HOPLIMIT: 2233 optval = OPTBIT(IN6P_HOPLIMIT); 2234 break; 2235 case IPV6_2292HOPOPTS: 2236 optval = OPTBIT(IN6P_HOPOPTS); 2237 break; 2238 case IPV6_2292RTHDR: 2239 optval = OPTBIT(IN6P_RTHDR); 2240 break; 2241 case IPV6_2292DSTOPTS: 2242 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2243 break; 2244 } 2245 error = sooptcopyout(sopt, &optval, 2246 sizeof optval); 2247 break; 2248 case IPV6_PKTINFO: 2249 case IPV6_HOPOPTS: 2250 case IPV6_RTHDR: 2251 case IPV6_DSTOPTS: 2252 case IPV6_RTHDRDSTOPTS: 2253 case IPV6_NEXTHOP: 2254 case IPV6_TCLASS: 2255 case IPV6_DONTFRAG: 2256 case IPV6_USE_MIN_MTU: 2257 case IPV6_PREFER_TEMPADDR: 2258 error = ip6_getpcbopt(inp, optname, sopt); 2259 break; 2260 2261 case IPV6_MULTICAST_IF: 2262 case IPV6_MULTICAST_HOPS: 2263 case IPV6_MULTICAST_LOOP: 2264 case IPV6_MSFILTER: 2265 error = ip6_getmoptions(inp, sopt); 2266 break; 2267 2268 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2269 case IPV6_IPSEC_POLICY: 2270 if (IPSEC_ENABLED(ipv6)) { 2271 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2272 break; 2273 } 2274 /* FALLTHROUGH */ 2275 #endif /* IPSEC */ 2276 default: 2277 error = ENOPROTOOPT; 2278 break; 2279 } 2280 break; 2281 } 2282 } 2283 return (error); 2284 } 2285 2286 int 2287 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2288 { 2289 int error = 0, optval, optlen; 2290 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2291 struct inpcb *inp = sotoinpcb(so); 2292 int level, op, optname; 2293 2294 level = sopt->sopt_level; 2295 op = sopt->sopt_dir; 2296 optname = sopt->sopt_name; 2297 optlen = sopt->sopt_valsize; 2298 2299 if (level != IPPROTO_IPV6) { 2300 return (EINVAL); 2301 } 2302 2303 switch (optname) { 2304 case IPV6_CHECKSUM: 2305 /* 2306 * For ICMPv6 sockets, no modification allowed for checksum 2307 * offset, permit "no change" values to help existing apps. 2308 * 2309 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2310 * for an ICMPv6 socket will fail." 2311 * The current behavior does not meet RFC3542. 2312 */ 2313 switch (op) { 2314 case SOPT_SET: 2315 if (optlen != sizeof(int)) { 2316 error = EINVAL; 2317 break; 2318 } 2319 error = sooptcopyin(sopt, &optval, sizeof(optval), 2320 sizeof(optval)); 2321 if (error) 2322 break; 2323 if (optval < -1 || (optval % 2) != 0) { 2324 /* 2325 * The API assumes non-negative even offset 2326 * values or -1 as a special value. 2327 */ 2328 error = EINVAL; 2329 } else if (so->so_proto->pr_protocol == 2330 IPPROTO_ICMPV6) { 2331 if (optval != icmp6off) 2332 error = EINVAL; 2333 } else 2334 inp->in6p_cksum = optval; 2335 break; 2336 2337 case SOPT_GET: 2338 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2339 optval = icmp6off; 2340 else 2341 optval = inp->in6p_cksum; 2342 2343 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2344 break; 2345 2346 default: 2347 error = EINVAL; 2348 break; 2349 } 2350 break; 2351 2352 default: 2353 error = ENOPROTOOPT; 2354 break; 2355 } 2356 2357 return (error); 2358 } 2359 2360 /* 2361 * Set up IP6 options in pcb for insertion in output packets or 2362 * specifying behavior of outgoing packets. 2363 */ 2364 static int 2365 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2366 struct socket *so, struct sockopt *sopt) 2367 { 2368 struct ip6_pktopts *opt = *pktopt; 2369 int error = 0; 2370 struct thread *td = sopt->sopt_td; 2371 2372 /* turn off any old options. */ 2373 if (opt) { 2374 #ifdef DIAGNOSTIC 2375 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2376 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2377 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2378 printf("ip6_pcbopts: all specified options are cleared.\n"); 2379 #endif 2380 ip6_clearpktopts(opt, -1); 2381 } else 2382 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2383 *pktopt = NULL; 2384 2385 if (!m || m->m_len == 0) { 2386 /* 2387 * Only turning off any previous options, regardless of 2388 * whether the opt is just created or given. 2389 */ 2390 free(opt, M_IP6OPT); 2391 return (0); 2392 } 2393 2394 /* set options specified by user. */ 2395 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2396 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2397 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2398 free(opt, M_IP6OPT); 2399 return (error); 2400 } 2401 *pktopt = opt; 2402 return (0); 2403 } 2404 2405 /* 2406 * initialize ip6_pktopts. beware that there are non-zero default values in 2407 * the struct. 2408 */ 2409 void 2410 ip6_initpktopts(struct ip6_pktopts *opt) 2411 { 2412 2413 bzero(opt, sizeof(*opt)); 2414 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2415 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2416 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2417 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2418 } 2419 2420 static int 2421 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2422 struct ucred *cred, int uproto) 2423 { 2424 struct ip6_pktopts *opt; 2425 2426 if (*pktopt == NULL) { 2427 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2428 M_NOWAIT); 2429 if (*pktopt == NULL) 2430 return (ENOBUFS); 2431 ip6_initpktopts(*pktopt); 2432 } 2433 opt = *pktopt; 2434 2435 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2436 } 2437 2438 #define GET_PKTOPT_VAR(field, lenexpr) do { \ 2439 if (pktopt && pktopt->field) { \ 2440 INP_RUNLOCK(inp); \ 2441 optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \ 2442 malloc_optdata = true; \ 2443 INP_RLOCK(inp); \ 2444 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { \ 2445 INP_RUNLOCK(inp); \ 2446 free(optdata, M_TEMP); \ 2447 return (ECONNRESET); \ 2448 } \ 2449 pktopt = inp->in6p_outputopts; \ 2450 if (pktopt && pktopt->field) { \ 2451 optdatalen = min(lenexpr, sopt->sopt_valsize); \ 2452 bcopy(&pktopt->field, optdata, optdatalen); \ 2453 } else { \ 2454 free(optdata, M_TEMP); \ 2455 optdata = NULL; \ 2456 malloc_optdata = false; \ 2457 } \ 2458 } \ 2459 } while(0) 2460 2461 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \ 2462 (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3) 2463 2464 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \ 2465 pktopt->field->sa_len) 2466 2467 static int 2468 ip6_getpcbopt(struct inpcb *inp, int optname, struct sockopt *sopt) 2469 { 2470 void *optdata = NULL; 2471 bool malloc_optdata = false; 2472 int optdatalen = 0; 2473 int error = 0; 2474 struct in6_pktinfo null_pktinfo; 2475 int deftclass = 0, on; 2476 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2477 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2478 struct ip6_pktopts *pktopt; 2479 2480 INP_RLOCK(inp); 2481 pktopt = inp->in6p_outputopts; 2482 2483 switch (optname) { 2484 case IPV6_PKTINFO: 2485 optdata = (void *)&null_pktinfo; 2486 if (pktopt && pktopt->ip6po_pktinfo) { 2487 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2488 sizeof(null_pktinfo)); 2489 in6_clearscope(&null_pktinfo.ipi6_addr); 2490 } else { 2491 /* XXX: we don't have to do this every time... */ 2492 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2493 } 2494 optdatalen = sizeof(struct in6_pktinfo); 2495 break; 2496 case IPV6_TCLASS: 2497 if (pktopt && pktopt->ip6po_tclass >= 0) 2498 deftclass = pktopt->ip6po_tclass; 2499 optdata = (void *)&deftclass; 2500 optdatalen = sizeof(int); 2501 break; 2502 case IPV6_HOPOPTS: 2503 GET_PKTOPT_EXT_HDR(ip6po_hbh); 2504 break; 2505 case IPV6_RTHDR: 2506 GET_PKTOPT_EXT_HDR(ip6po_rthdr); 2507 break; 2508 case IPV6_RTHDRDSTOPTS: 2509 GET_PKTOPT_EXT_HDR(ip6po_dest1); 2510 break; 2511 case IPV6_DSTOPTS: 2512 GET_PKTOPT_EXT_HDR(ip6po_dest2); 2513 break; 2514 case IPV6_NEXTHOP: 2515 GET_PKTOPT_SOCKADDR(ip6po_nexthop); 2516 break; 2517 case IPV6_USE_MIN_MTU: 2518 if (pktopt) 2519 defminmtu = pktopt->ip6po_minmtu; 2520 optdata = (void *)&defminmtu; 2521 optdatalen = sizeof(int); 2522 break; 2523 case IPV6_DONTFRAG: 2524 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2525 on = 1; 2526 else 2527 on = 0; 2528 optdata = (void *)&on; 2529 optdatalen = sizeof(on); 2530 break; 2531 case IPV6_PREFER_TEMPADDR: 2532 if (pktopt) 2533 defpreftemp = pktopt->ip6po_prefer_tempaddr; 2534 optdata = (void *)&defpreftemp; 2535 optdatalen = sizeof(int); 2536 break; 2537 default: /* should not happen */ 2538 #ifdef DIAGNOSTIC 2539 panic("ip6_getpcbopt: unexpected option\n"); 2540 #endif 2541 INP_RUNLOCK(inp); 2542 return (ENOPROTOOPT); 2543 } 2544 INP_RUNLOCK(inp); 2545 2546 error = sooptcopyout(sopt, optdata, optdatalen); 2547 if (malloc_optdata) 2548 free(optdata, M_TEMP); 2549 2550 return (error); 2551 } 2552 2553 void 2554 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2555 { 2556 if (pktopt == NULL) 2557 return; 2558 2559 if (optname == -1 || optname == IPV6_PKTINFO) { 2560 if (pktopt->ip6po_pktinfo) 2561 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2562 pktopt->ip6po_pktinfo = NULL; 2563 } 2564 if (optname == -1 || optname == IPV6_HOPLIMIT) 2565 pktopt->ip6po_hlim = -1; 2566 if (optname == -1 || optname == IPV6_TCLASS) 2567 pktopt->ip6po_tclass = -1; 2568 if (optname == -1 || optname == IPV6_NEXTHOP) { 2569 if (pktopt->ip6po_nextroute.ro_rt) { 2570 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2571 pktopt->ip6po_nextroute.ro_rt = NULL; 2572 } 2573 if (pktopt->ip6po_nexthop) 2574 free(pktopt->ip6po_nexthop, M_IP6OPT); 2575 pktopt->ip6po_nexthop = NULL; 2576 } 2577 if (optname == -1 || optname == IPV6_HOPOPTS) { 2578 if (pktopt->ip6po_hbh) 2579 free(pktopt->ip6po_hbh, M_IP6OPT); 2580 pktopt->ip6po_hbh = NULL; 2581 } 2582 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2583 if (pktopt->ip6po_dest1) 2584 free(pktopt->ip6po_dest1, M_IP6OPT); 2585 pktopt->ip6po_dest1 = NULL; 2586 } 2587 if (optname == -1 || optname == IPV6_RTHDR) { 2588 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2589 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2590 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2591 if (pktopt->ip6po_route.ro_rt) { 2592 RTFREE(pktopt->ip6po_route.ro_rt); 2593 pktopt->ip6po_route.ro_rt = NULL; 2594 } 2595 } 2596 if (optname == -1 || optname == IPV6_DSTOPTS) { 2597 if (pktopt->ip6po_dest2) 2598 free(pktopt->ip6po_dest2, M_IP6OPT); 2599 pktopt->ip6po_dest2 = NULL; 2600 } 2601 } 2602 2603 #define PKTOPT_EXTHDRCPY(type) \ 2604 do {\ 2605 if (src->type) {\ 2606 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2607 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2608 if (dst->type == NULL)\ 2609 goto bad;\ 2610 bcopy(src->type, dst->type, hlen);\ 2611 }\ 2612 } while (/*CONSTCOND*/ 0) 2613 2614 static int 2615 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2616 { 2617 if (dst == NULL || src == NULL) { 2618 printf("ip6_clearpktopts: invalid argument\n"); 2619 return (EINVAL); 2620 } 2621 2622 dst->ip6po_hlim = src->ip6po_hlim; 2623 dst->ip6po_tclass = src->ip6po_tclass; 2624 dst->ip6po_flags = src->ip6po_flags; 2625 dst->ip6po_minmtu = src->ip6po_minmtu; 2626 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2627 if (src->ip6po_pktinfo) { 2628 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2629 M_IP6OPT, canwait); 2630 if (dst->ip6po_pktinfo == NULL) 2631 goto bad; 2632 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2633 } 2634 if (src->ip6po_nexthop) { 2635 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2636 M_IP6OPT, canwait); 2637 if (dst->ip6po_nexthop == NULL) 2638 goto bad; 2639 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2640 src->ip6po_nexthop->sa_len); 2641 } 2642 PKTOPT_EXTHDRCPY(ip6po_hbh); 2643 PKTOPT_EXTHDRCPY(ip6po_dest1); 2644 PKTOPT_EXTHDRCPY(ip6po_dest2); 2645 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2646 return (0); 2647 2648 bad: 2649 ip6_clearpktopts(dst, -1); 2650 return (ENOBUFS); 2651 } 2652 #undef PKTOPT_EXTHDRCPY 2653 2654 struct ip6_pktopts * 2655 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2656 { 2657 int error; 2658 struct ip6_pktopts *dst; 2659 2660 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2661 if (dst == NULL) 2662 return (NULL); 2663 ip6_initpktopts(dst); 2664 2665 if ((error = copypktopts(dst, src, canwait)) != 0) { 2666 free(dst, M_IP6OPT); 2667 return (NULL); 2668 } 2669 2670 return (dst); 2671 } 2672 2673 void 2674 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2675 { 2676 if (pktopt == NULL) 2677 return; 2678 2679 ip6_clearpktopts(pktopt, -1); 2680 2681 free(pktopt, M_IP6OPT); 2682 } 2683 2684 /* 2685 * Set IPv6 outgoing packet options based on advanced API. 2686 */ 2687 int 2688 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2689 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2690 { 2691 struct cmsghdr *cm = NULL; 2692 2693 if (control == NULL || opt == NULL) 2694 return (EINVAL); 2695 2696 ip6_initpktopts(opt); 2697 if (stickyopt) { 2698 int error; 2699 2700 /* 2701 * If stickyopt is provided, make a local copy of the options 2702 * for this particular packet, then override them by ancillary 2703 * objects. 2704 * XXX: copypktopts() does not copy the cached route to a next 2705 * hop (if any). This is not very good in terms of efficiency, 2706 * but we can allow this since this option should be rarely 2707 * used. 2708 */ 2709 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2710 return (error); 2711 } 2712 2713 /* 2714 * XXX: Currently, we assume all the optional information is stored 2715 * in a single mbuf. 2716 */ 2717 if (control->m_next) 2718 return (EINVAL); 2719 2720 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2721 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2722 int error; 2723 2724 if (control->m_len < CMSG_LEN(0)) 2725 return (EINVAL); 2726 2727 cm = mtod(control, struct cmsghdr *); 2728 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2729 return (EINVAL); 2730 if (cm->cmsg_level != IPPROTO_IPV6) 2731 continue; 2732 2733 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2734 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2735 if (error) 2736 return (error); 2737 } 2738 2739 return (0); 2740 } 2741 2742 /* 2743 * Set a particular packet option, as a sticky option or an ancillary data 2744 * item. "len" can be 0 only when it's a sticky option. 2745 * We have 4 cases of combination of "sticky" and "cmsg": 2746 * "sticky=0, cmsg=0": impossible 2747 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2748 * "sticky=1, cmsg=0": RFC3542 socket option 2749 * "sticky=1, cmsg=1": RFC2292 socket option 2750 */ 2751 static int 2752 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2753 struct ucred *cred, int sticky, int cmsg, int uproto) 2754 { 2755 int minmtupolicy, preftemp; 2756 int error; 2757 2758 if (!sticky && !cmsg) { 2759 #ifdef DIAGNOSTIC 2760 printf("ip6_setpktopt: impossible case\n"); 2761 #endif 2762 return (EINVAL); 2763 } 2764 2765 /* 2766 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2767 * not be specified in the context of RFC3542. Conversely, 2768 * RFC3542 types should not be specified in the context of RFC2292. 2769 */ 2770 if (!cmsg) { 2771 switch (optname) { 2772 case IPV6_2292PKTINFO: 2773 case IPV6_2292HOPLIMIT: 2774 case IPV6_2292NEXTHOP: 2775 case IPV6_2292HOPOPTS: 2776 case IPV6_2292DSTOPTS: 2777 case IPV6_2292RTHDR: 2778 case IPV6_2292PKTOPTIONS: 2779 return (ENOPROTOOPT); 2780 } 2781 } 2782 if (sticky && cmsg) { 2783 switch (optname) { 2784 case IPV6_PKTINFO: 2785 case IPV6_HOPLIMIT: 2786 case IPV6_NEXTHOP: 2787 case IPV6_HOPOPTS: 2788 case IPV6_DSTOPTS: 2789 case IPV6_RTHDRDSTOPTS: 2790 case IPV6_RTHDR: 2791 case IPV6_USE_MIN_MTU: 2792 case IPV6_DONTFRAG: 2793 case IPV6_TCLASS: 2794 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2795 return (ENOPROTOOPT); 2796 } 2797 } 2798 2799 switch (optname) { 2800 case IPV6_2292PKTINFO: 2801 case IPV6_PKTINFO: 2802 { 2803 struct ifnet *ifp = NULL; 2804 struct in6_pktinfo *pktinfo; 2805 2806 if (len != sizeof(struct in6_pktinfo)) 2807 return (EINVAL); 2808 2809 pktinfo = (struct in6_pktinfo *)buf; 2810 2811 /* 2812 * An application can clear any sticky IPV6_PKTINFO option by 2813 * doing a "regular" setsockopt with ipi6_addr being 2814 * in6addr_any and ipi6_ifindex being zero. 2815 * [RFC 3542, Section 6] 2816 */ 2817 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2818 pktinfo->ipi6_ifindex == 0 && 2819 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2820 ip6_clearpktopts(opt, optname); 2821 break; 2822 } 2823 2824 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2825 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2826 return (EINVAL); 2827 } 2828 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2829 return (EINVAL); 2830 /* validate the interface index if specified. */ 2831 if (pktinfo->ipi6_ifindex > V_if_index) 2832 return (ENXIO); 2833 if (pktinfo->ipi6_ifindex) { 2834 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2835 if (ifp == NULL) 2836 return (ENXIO); 2837 } 2838 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2839 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2840 return (ENETDOWN); 2841 2842 if (ifp != NULL && 2843 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2844 struct in6_ifaddr *ia; 2845 2846 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2847 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2848 if (ia == NULL) 2849 return (EADDRNOTAVAIL); 2850 ifa_free(&ia->ia_ifa); 2851 } 2852 /* 2853 * We store the address anyway, and let in6_selectsrc() 2854 * validate the specified address. This is because ipi6_addr 2855 * may not have enough information about its scope zone, and 2856 * we may need additional information (such as outgoing 2857 * interface or the scope zone of a destination address) to 2858 * disambiguate the scope. 2859 * XXX: the delay of the validation may confuse the 2860 * application when it is used as a sticky option. 2861 */ 2862 if (opt->ip6po_pktinfo == NULL) { 2863 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2864 M_IP6OPT, M_NOWAIT); 2865 if (opt->ip6po_pktinfo == NULL) 2866 return (ENOBUFS); 2867 } 2868 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2869 break; 2870 } 2871 2872 case IPV6_2292HOPLIMIT: 2873 case IPV6_HOPLIMIT: 2874 { 2875 int *hlimp; 2876 2877 /* 2878 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2879 * to simplify the ordering among hoplimit options. 2880 */ 2881 if (optname == IPV6_HOPLIMIT && sticky) 2882 return (ENOPROTOOPT); 2883 2884 if (len != sizeof(int)) 2885 return (EINVAL); 2886 hlimp = (int *)buf; 2887 if (*hlimp < -1 || *hlimp > 255) 2888 return (EINVAL); 2889 2890 opt->ip6po_hlim = *hlimp; 2891 break; 2892 } 2893 2894 case IPV6_TCLASS: 2895 { 2896 int tclass; 2897 2898 if (len != sizeof(int)) 2899 return (EINVAL); 2900 tclass = *(int *)buf; 2901 if (tclass < -1 || tclass > 255) 2902 return (EINVAL); 2903 2904 opt->ip6po_tclass = tclass; 2905 break; 2906 } 2907 2908 case IPV6_2292NEXTHOP: 2909 case IPV6_NEXTHOP: 2910 if (cred != NULL) { 2911 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 2912 if (error) 2913 return (error); 2914 } 2915 2916 if (len == 0) { /* just remove the option */ 2917 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2918 break; 2919 } 2920 2921 /* check if cmsg_len is large enough for sa_len */ 2922 if (len < sizeof(struct sockaddr) || len < *buf) 2923 return (EINVAL); 2924 2925 switch (((struct sockaddr *)buf)->sa_family) { 2926 case AF_INET6: 2927 { 2928 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2929 int error; 2930 2931 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2932 return (EINVAL); 2933 2934 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2935 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2936 return (EINVAL); 2937 } 2938 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2939 != 0) { 2940 return (error); 2941 } 2942 break; 2943 } 2944 case AF_LINK: /* should eventually be supported */ 2945 default: 2946 return (EAFNOSUPPORT); 2947 } 2948 2949 /* turn off the previous option, then set the new option. */ 2950 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2951 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2952 if (opt->ip6po_nexthop == NULL) 2953 return (ENOBUFS); 2954 bcopy(buf, opt->ip6po_nexthop, *buf); 2955 break; 2956 2957 case IPV6_2292HOPOPTS: 2958 case IPV6_HOPOPTS: 2959 { 2960 struct ip6_hbh *hbh; 2961 int hbhlen; 2962 2963 /* 2964 * XXX: We don't allow a non-privileged user to set ANY HbH 2965 * options, since per-option restriction has too much 2966 * overhead. 2967 */ 2968 if (cred != NULL) { 2969 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 2970 if (error) 2971 return (error); 2972 } 2973 2974 if (len == 0) { 2975 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2976 break; /* just remove the option */ 2977 } 2978 2979 /* message length validation */ 2980 if (len < sizeof(struct ip6_hbh)) 2981 return (EINVAL); 2982 hbh = (struct ip6_hbh *)buf; 2983 hbhlen = (hbh->ip6h_len + 1) << 3; 2984 if (len != hbhlen) 2985 return (EINVAL); 2986 2987 /* turn off the previous option, then set the new option. */ 2988 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2989 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2990 if (opt->ip6po_hbh == NULL) 2991 return (ENOBUFS); 2992 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2993 2994 break; 2995 } 2996 2997 case IPV6_2292DSTOPTS: 2998 case IPV6_DSTOPTS: 2999 case IPV6_RTHDRDSTOPTS: 3000 { 3001 struct ip6_dest *dest, **newdest = NULL; 3002 int destlen; 3003 3004 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 3005 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3006 if (error) 3007 return (error); 3008 } 3009 3010 if (len == 0) { 3011 ip6_clearpktopts(opt, optname); 3012 break; /* just remove the option */ 3013 } 3014 3015 /* message length validation */ 3016 if (len < sizeof(struct ip6_dest)) 3017 return (EINVAL); 3018 dest = (struct ip6_dest *)buf; 3019 destlen = (dest->ip6d_len + 1) << 3; 3020 if (len != destlen) 3021 return (EINVAL); 3022 3023 /* 3024 * Determine the position that the destination options header 3025 * should be inserted; before or after the routing header. 3026 */ 3027 switch (optname) { 3028 case IPV6_2292DSTOPTS: 3029 /* 3030 * The old advacned API is ambiguous on this point. 3031 * Our approach is to determine the position based 3032 * according to the existence of a routing header. 3033 * Note, however, that this depends on the order of the 3034 * extension headers in the ancillary data; the 1st 3035 * part of the destination options header must appear 3036 * before the routing header in the ancillary data, 3037 * too. 3038 * RFC3542 solved the ambiguity by introducing 3039 * separate ancillary data or option types. 3040 */ 3041 if (opt->ip6po_rthdr == NULL) 3042 newdest = &opt->ip6po_dest1; 3043 else 3044 newdest = &opt->ip6po_dest2; 3045 break; 3046 case IPV6_RTHDRDSTOPTS: 3047 newdest = &opt->ip6po_dest1; 3048 break; 3049 case IPV6_DSTOPTS: 3050 newdest = &opt->ip6po_dest2; 3051 break; 3052 } 3053 3054 /* turn off the previous option, then set the new option. */ 3055 ip6_clearpktopts(opt, optname); 3056 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3057 if (*newdest == NULL) 3058 return (ENOBUFS); 3059 bcopy(dest, *newdest, destlen); 3060 3061 break; 3062 } 3063 3064 case IPV6_2292RTHDR: 3065 case IPV6_RTHDR: 3066 { 3067 struct ip6_rthdr *rth; 3068 int rthlen; 3069 3070 if (len == 0) { 3071 ip6_clearpktopts(opt, IPV6_RTHDR); 3072 break; /* just remove the option */ 3073 } 3074 3075 /* message length validation */ 3076 if (len < sizeof(struct ip6_rthdr)) 3077 return (EINVAL); 3078 rth = (struct ip6_rthdr *)buf; 3079 rthlen = (rth->ip6r_len + 1) << 3; 3080 if (len != rthlen) 3081 return (EINVAL); 3082 3083 switch (rth->ip6r_type) { 3084 case IPV6_RTHDR_TYPE_0: 3085 if (rth->ip6r_len == 0) /* must contain one addr */ 3086 return (EINVAL); 3087 if (rth->ip6r_len % 2) /* length must be even */ 3088 return (EINVAL); 3089 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3090 return (EINVAL); 3091 break; 3092 default: 3093 return (EINVAL); /* not supported */ 3094 } 3095 3096 /* turn off the previous option */ 3097 ip6_clearpktopts(opt, IPV6_RTHDR); 3098 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3099 if (opt->ip6po_rthdr == NULL) 3100 return (ENOBUFS); 3101 bcopy(rth, opt->ip6po_rthdr, rthlen); 3102 3103 break; 3104 } 3105 3106 case IPV6_USE_MIN_MTU: 3107 if (len != sizeof(int)) 3108 return (EINVAL); 3109 minmtupolicy = *(int *)buf; 3110 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3111 minmtupolicy != IP6PO_MINMTU_DISABLE && 3112 minmtupolicy != IP6PO_MINMTU_ALL) { 3113 return (EINVAL); 3114 } 3115 opt->ip6po_minmtu = minmtupolicy; 3116 break; 3117 3118 case IPV6_DONTFRAG: 3119 if (len != sizeof(int)) 3120 return (EINVAL); 3121 3122 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3123 /* 3124 * we ignore this option for TCP sockets. 3125 * (RFC3542 leaves this case unspecified.) 3126 */ 3127 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3128 } else 3129 opt->ip6po_flags |= IP6PO_DONTFRAG; 3130 break; 3131 3132 case IPV6_PREFER_TEMPADDR: 3133 if (len != sizeof(int)) 3134 return (EINVAL); 3135 preftemp = *(int *)buf; 3136 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3137 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3138 preftemp != IP6PO_TEMPADDR_PREFER) { 3139 return (EINVAL); 3140 } 3141 opt->ip6po_prefer_tempaddr = preftemp; 3142 break; 3143 3144 default: 3145 return (ENOPROTOOPT); 3146 } /* end of switch */ 3147 3148 return (0); 3149 } 3150 3151 /* 3152 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3153 * packet to the input queue of a specified interface. Note that this 3154 * calls the output routine of the loopback "driver", but with an interface 3155 * pointer that might NOT be &loif -- easier than replicating that code here. 3156 */ 3157 void 3158 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3159 { 3160 struct mbuf *copym; 3161 struct ip6_hdr *ip6; 3162 3163 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3164 if (copym == NULL) 3165 return; 3166 3167 /* 3168 * Make sure to deep-copy IPv6 header portion in case the data 3169 * is in an mbuf cluster, so that we can safely override the IPv6 3170 * header portion later. 3171 */ 3172 if (!M_WRITABLE(copym) || 3173 copym->m_len < sizeof(struct ip6_hdr)) { 3174 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3175 if (copym == NULL) 3176 return; 3177 } 3178 ip6 = mtod(copym, struct ip6_hdr *); 3179 /* 3180 * clear embedded scope identifiers if necessary. 3181 * in6_clearscope will touch the addresses only when necessary. 3182 */ 3183 in6_clearscope(&ip6->ip6_src); 3184 in6_clearscope(&ip6->ip6_dst); 3185 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3186 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3187 CSUM_PSEUDO_HDR; 3188 copym->m_pkthdr.csum_data = 0xffff; 3189 } 3190 if_simloop(ifp, copym, AF_INET6, 0); 3191 } 3192 3193 /* 3194 * Chop IPv6 header off from the payload. 3195 */ 3196 static int 3197 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3198 { 3199 struct mbuf *mh; 3200 struct ip6_hdr *ip6; 3201 3202 ip6 = mtod(m, struct ip6_hdr *); 3203 if (m->m_len > sizeof(*ip6)) { 3204 mh = m_gethdr(M_NOWAIT, MT_DATA); 3205 if (mh == NULL) { 3206 m_freem(m); 3207 return ENOBUFS; 3208 } 3209 m_move_pkthdr(mh, m); 3210 M_ALIGN(mh, sizeof(*ip6)); 3211 m->m_len -= sizeof(*ip6); 3212 m->m_data += sizeof(*ip6); 3213 mh->m_next = m; 3214 m = mh; 3215 m->m_len = sizeof(*ip6); 3216 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3217 } 3218 exthdrs->ip6e_ip6 = m; 3219 return 0; 3220 } 3221 3222 /* 3223 * Compute IPv6 extension header length. 3224 */ 3225 int 3226 ip6_optlen(struct inpcb *inp) 3227 { 3228 int len; 3229 3230 if (!inp->in6p_outputopts) 3231 return 0; 3232 3233 len = 0; 3234 #define elen(x) \ 3235 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3236 3237 len += elen(inp->in6p_outputopts->ip6po_hbh); 3238 if (inp->in6p_outputopts->ip6po_rthdr) 3239 /* dest1 is valid with rthdr only */ 3240 len += elen(inp->in6p_outputopts->ip6po_dest1); 3241 len += elen(inp->in6p_outputopts->ip6po_rthdr); 3242 len += elen(inp->in6p_outputopts->ip6po_dest2); 3243 return len; 3244 #undef elen 3245 } 3246