1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 32 */ 33 34 /*- 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ipsec.h" 71 #include "opt_kern_tls.h" 72 #include "opt_ratelimit.h" 73 #include "opt_route.h" 74 #include "opt_rss.h" 75 #include "opt_sctp.h" 76 77 #include <sys/param.h> 78 #include <sys/kernel.h> 79 #include <sys/ktls.h> 80 #include <sys/malloc.h> 81 #include <sys/mbuf.h> 82 #include <sys/errno.h> 83 #include <sys/priv.h> 84 #include <sys/proc.h> 85 #include <sys/protosw.h> 86 #include <sys/socket.h> 87 #include <sys/socketvar.h> 88 #include <sys/syslog.h> 89 #include <sys/ucred.h> 90 91 #include <machine/in_cksum.h> 92 93 #include <net/if.h> 94 #include <net/if_var.h> 95 #include <net/if_vlan_var.h> 96 #include <net/if_llatbl.h> 97 #include <net/ethernet.h> 98 #include <net/netisr.h> 99 #include <net/route.h> 100 #include <net/route/nhop.h> 101 #include <net/pfil.h> 102 #include <net/rss_config.h> 103 #include <net/vnet.h> 104 105 #include <netinet/in.h> 106 #include <netinet/in_var.h> 107 #include <netinet/ip_var.h> 108 #include <netinet6/in6_fib.h> 109 #include <netinet6/in6_var.h> 110 #include <netinet/ip6.h> 111 #include <netinet/icmp6.h> 112 #include <netinet6/ip6_var.h> 113 #include <netinet/in_pcb.h> 114 #include <netinet/tcp_var.h> 115 #include <netinet6/nd6.h> 116 #include <netinet6/in6_rss.h> 117 118 #include <netipsec/ipsec_support.h> 119 #if defined(SCTP) || defined(SCTP_SUPPORT) 120 #include <netinet/sctp.h> 121 #include <netinet/sctp_crc32.h> 122 #endif 123 124 #include <netinet6/ip6protosw.h> 125 #include <netinet6/scope6_var.h> 126 127 extern int in6_mcast_loop; 128 129 struct ip6_exthdrs { 130 struct mbuf *ip6e_ip6; 131 struct mbuf *ip6e_hbh; 132 struct mbuf *ip6e_dest1; 133 struct mbuf *ip6e_rthdr; 134 struct mbuf *ip6e_dest2; 135 }; 136 137 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 138 139 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 140 struct ucred *, int); 141 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 142 struct socket *, struct sockopt *); 143 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *); 144 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 145 struct ucred *, int, int, int); 146 147 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 148 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 149 struct ip6_frag **); 150 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 151 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 152 static int ip6_getpmtu(struct route_in6 *, int, 153 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 154 u_int); 155 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 156 u_long *, int *, u_int); 157 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 158 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 159 160 /* 161 * Make an extension header from option data. hp is the source, 162 * mp is the destination, and _ol is the optlen. 163 */ 164 #define MAKE_EXTHDR(hp, mp, _ol) \ 165 do { \ 166 if (hp) { \ 167 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 168 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 169 ((eh)->ip6e_len + 1) << 3); \ 170 if (error) \ 171 goto freehdrs; \ 172 (_ol) += (*(mp))->m_len; \ 173 } \ 174 } while (/*CONSTCOND*/ 0) 175 176 /* 177 * Form a chain of extension headers. 178 * m is the extension header mbuf 179 * mp is the previous mbuf in the chain 180 * p is the next header 181 * i is the type of option. 182 */ 183 #define MAKE_CHAIN(m, mp, p, i)\ 184 do {\ 185 if (m) {\ 186 if (!hdrsplit) \ 187 panic("%s:%d: assumption failed: "\ 188 "hdr not split: hdrsplit %d exthdrs %p",\ 189 __func__, __LINE__, hdrsplit, &exthdrs);\ 190 *mtod((m), u_char *) = *(p);\ 191 *(p) = (i);\ 192 p = mtod((m), u_char *);\ 193 (m)->m_next = (mp)->m_next;\ 194 (mp)->m_next = (m);\ 195 (mp) = (m);\ 196 }\ 197 } while (/*CONSTCOND*/ 0) 198 199 void 200 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 201 { 202 u_short csum; 203 204 csum = in_cksum_skip(m, offset + plen, offset); 205 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 206 csum = 0xffff; 207 offset += m->m_pkthdr.csum_data; /* checksum offset */ 208 209 if (offset + sizeof(csum) > m->m_len) 210 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 211 else 212 *(u_short *)mtodo(m, offset) = csum; 213 } 214 215 static int 216 ip6_output_delayed_csum(struct mbuf *m, struct ifnet *ifp, int csum_flags, 217 int plen, int optlen, bool frag) 218 { 219 220 KASSERT((plen >= optlen), ("%s:%d: plen %d < optlen %d, m %p, ifp %p " 221 "csum_flags %#x frag %d\n", 222 __func__, __LINE__, plen, optlen, m, ifp, csum_flags, frag)); 223 224 if ((csum_flags & CSUM_DELAY_DATA_IPV6) || 225 #if defined(SCTP) || defined(SCTP_SUPPORT) 226 (csum_flags & CSUM_SCTP_IPV6) || 227 #endif 228 (!frag && (ifp->if_capenable & IFCAP_NOMAP) == 0)) { 229 m = mb_unmapped_to_ext(m); 230 if (m == NULL) { 231 if (frag) 232 in6_ifstat_inc(ifp, ifs6_out_fragfail); 233 else 234 IP6STAT_INC(ip6s_odropped); 235 return (ENOBUFS); 236 } 237 if (csum_flags & CSUM_DELAY_DATA_IPV6) { 238 in6_delayed_cksum(m, plen - optlen, 239 sizeof(struct ip6_hdr) + optlen); 240 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 241 } 242 #if defined(SCTP) || defined(SCTP_SUPPORT) 243 if (csum_flags & CSUM_SCTP_IPV6) { 244 sctp_delayed_cksum(m, sizeof(struct ip6_hdr) + optlen); 245 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 246 } 247 #endif 248 } 249 250 return (0); 251 } 252 253 int 254 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 255 int fraglen , uint32_t id) 256 { 257 struct mbuf *m, **mnext, *m_frgpart; 258 struct ip6_hdr *ip6, *mhip6; 259 struct ip6_frag *ip6f; 260 int off; 261 int error; 262 int tlen = m0->m_pkthdr.len; 263 264 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); 265 266 m = m0; 267 ip6 = mtod(m, struct ip6_hdr *); 268 mnext = &m->m_nextpkt; 269 270 for (off = hlen; off < tlen; off += fraglen) { 271 m = m_gethdr(M_NOWAIT, MT_DATA); 272 if (!m) { 273 IP6STAT_INC(ip6s_odropped); 274 return (ENOBUFS); 275 } 276 277 /* 278 * Make sure the complete packet header gets copied 279 * from the originating mbuf to the newly created 280 * mbuf. This also ensures that existing firewall 281 * classification(s), VLAN tags and so on get copied 282 * to the resulting fragmented packet(s): 283 */ 284 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 285 m_free(m); 286 IP6STAT_INC(ip6s_odropped); 287 return (ENOBUFS); 288 } 289 290 *mnext = m; 291 mnext = &m->m_nextpkt; 292 m->m_data += max_linkhdr; 293 mhip6 = mtod(m, struct ip6_hdr *); 294 *mhip6 = *ip6; 295 m->m_len = sizeof(*mhip6); 296 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 297 if (error) { 298 IP6STAT_INC(ip6s_odropped); 299 return (error); 300 } 301 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 302 if (off + fraglen >= tlen) 303 fraglen = tlen - off; 304 else 305 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 306 mhip6->ip6_plen = htons((u_short)(fraglen + hlen + 307 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 308 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { 309 IP6STAT_INC(ip6s_odropped); 310 return (ENOBUFS); 311 } 312 m_cat(m, m_frgpart); 313 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); 314 ip6f->ip6f_reserved = 0; 315 ip6f->ip6f_ident = id; 316 ip6f->ip6f_nxt = nextproto; 317 IP6STAT_INC(ip6s_ofragments); 318 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 319 } 320 321 return (0); 322 } 323 324 static int 325 ip6_output_send(struct inpcb *inp, struct ifnet *ifp, struct ifnet *origifp, 326 struct mbuf *m, struct sockaddr_in6 *dst, struct route_in6 *ro, 327 bool stamp_tag) 328 { 329 #ifdef KERN_TLS 330 struct ktls_session *tls = NULL; 331 #endif 332 struct m_snd_tag *mst; 333 int error; 334 335 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 336 mst = NULL; 337 338 #ifdef KERN_TLS 339 /* 340 * If this is an unencrypted TLS record, save a reference to 341 * the record. This local reference is used to call 342 * ktls_output_eagain after the mbuf has been freed (thus 343 * dropping the mbuf's reference) in if_output. 344 */ 345 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 346 tls = ktls_hold(m->m_next->m_epg_tls); 347 mst = tls->snd_tag; 348 349 /* 350 * If a TLS session doesn't have a valid tag, it must 351 * have had an earlier ifp mismatch, so drop this 352 * packet. 353 */ 354 if (mst == NULL) { 355 error = EAGAIN; 356 goto done; 357 } 358 /* 359 * Always stamp tags that include NIC ktls. 360 */ 361 stamp_tag = true; 362 } 363 #endif 364 #ifdef RATELIMIT 365 if (inp != NULL && mst == NULL) { 366 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 367 (inp->inp_snd_tag != NULL && 368 inp->inp_snd_tag->ifp != ifp)) 369 in_pcboutput_txrtlmt(inp, ifp, m); 370 371 if (inp->inp_snd_tag != NULL) 372 mst = inp->inp_snd_tag; 373 } 374 #endif 375 if (stamp_tag && mst != NULL) { 376 KASSERT(m->m_pkthdr.rcvif == NULL, 377 ("trying to add a send tag to a forwarded packet")); 378 if (mst->ifp != ifp) { 379 error = EAGAIN; 380 goto done; 381 } 382 383 /* stamp send tag on mbuf */ 384 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 385 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 386 } 387 388 error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro); 389 390 done: 391 /* Check for route change invalidating send tags. */ 392 #ifdef KERN_TLS 393 if (tls != NULL) { 394 if (error == EAGAIN) 395 error = ktls_output_eagain(inp, tls); 396 ktls_free(tls); 397 } 398 #endif 399 #ifdef RATELIMIT 400 if (error == EAGAIN) 401 in_pcboutput_eagain(inp); 402 #endif 403 return (error); 404 } 405 406 /* 407 * IP6 output. 408 * The packet in mbuf chain m contains a skeletal IP6 header (with pri, len, 409 * nxt, hlim, src, dst). 410 * This function may modify ver and hlim only. 411 * The mbuf chain containing the packet will be freed. 412 * The mbuf opt, if present, will not be freed. 413 * If route_in6 ro is present and has ro_nh initialized, route lookup would be 414 * skipped and ro->ro_nh would be used. If ro is present but ro->ro_nh is NULL, 415 * then result of route lookup is stored in ro->ro_nh. 416 * 417 * Type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and nd_ifinfo.linkmtu 418 * is uint32_t. So we use u_long to hold largest one, which is rt_mtu. 419 * 420 * ifpp - XXX: just for statistics 421 */ 422 /* 423 * XXX TODO: no flowid is assigned for outbound flows? 424 */ 425 int 426 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 427 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 428 struct ifnet **ifpp, struct inpcb *inp) 429 { 430 struct ip6_hdr *ip6; 431 struct ifnet *ifp, *origifp; 432 struct mbuf *m = m0; 433 struct mbuf *mprev; 434 struct route_in6 *ro_pmtu; 435 struct nhop_object *nh; 436 struct sockaddr_in6 *dst, sin6, src_sa, dst_sa; 437 struct in6_addr odst; 438 u_char *nexthdrp; 439 int tlen, len; 440 int error = 0; 441 int vlan_pcp = -1; 442 struct in6_ifaddr *ia = NULL; 443 u_long mtu; 444 int alwaysfrag, dontfrag; 445 u_int32_t optlen, plen = 0, unfragpartlen; 446 struct ip6_exthdrs exthdrs; 447 struct in6_addr src0, dst0; 448 u_int32_t zone; 449 bool hdrsplit; 450 int sw_csum, tso; 451 int needfiblookup; 452 uint32_t fibnum; 453 struct m_tag *fwd_tag = NULL; 454 uint32_t id; 455 456 NET_EPOCH_ASSERT(); 457 458 if (inp != NULL) { 459 INP_LOCK_ASSERT(inp); 460 M_SETFIB(m, inp->inp_inc.inc_fibnum); 461 if ((flags & IP_NODEFAULTFLOWID) == 0) { 462 /* Unconditionally set flowid. */ 463 m->m_pkthdr.flowid = inp->inp_flowid; 464 M_HASHTYPE_SET(m, inp->inp_flowtype); 465 } 466 if ((inp->inp_flags2 & INP_2PCP_SET) != 0) 467 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >> 468 INP_2PCP_SHIFT; 469 #ifdef NUMA 470 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 471 #endif 472 } 473 474 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 475 /* 476 * IPSec checking which handles several cases. 477 * FAST IPSEC: We re-injected the packet. 478 * XXX: need scope argument. 479 */ 480 if (IPSEC_ENABLED(ipv6)) { 481 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { 482 if (error == EINPROGRESS) 483 error = 0; 484 goto done; 485 } 486 } 487 #endif /* IPSEC */ 488 489 /* Source address validation. */ 490 ip6 = mtod(m, struct ip6_hdr *); 491 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 492 (flags & IPV6_UNSPECSRC) == 0) { 493 error = EOPNOTSUPP; 494 IP6STAT_INC(ip6s_badscope); 495 goto bad; 496 } 497 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 498 error = EOPNOTSUPP; 499 IP6STAT_INC(ip6s_badscope); 500 goto bad; 501 } 502 503 /* 504 * If we are given packet options to add extension headers prepare them. 505 * Calculate the total length of the extension header chain. 506 * Keep the length of the unfragmentable part for fragmentation. 507 */ 508 bzero(&exthdrs, sizeof(exthdrs)); 509 optlen = 0; 510 unfragpartlen = sizeof(struct ip6_hdr); 511 if (opt) { 512 /* Hop-by-Hop options header. */ 513 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh, optlen); 514 515 /* Destination options header (1st part). */ 516 if (opt->ip6po_rthdr) { 517 #ifndef RTHDR_SUPPORT_IMPLEMENTED 518 /* 519 * If there is a routing header, discard the packet 520 * right away here. RH0/1 are obsolete and we do not 521 * currently support RH2/3/4. 522 * People trying to use RH253/254 may want to disable 523 * this check. 524 * The moment we do support any routing header (again) 525 * this block should check the routing type more 526 * selectively. 527 */ 528 error = EINVAL; 529 goto bad; 530 #endif 531 532 /* 533 * Destination options header (1st part). 534 * This only makes sense with a routing header. 535 * See Section 9.2 of RFC 3542. 536 * Disabling this part just for MIP6 convenience is 537 * a bad idea. We need to think carefully about a 538 * way to make the advanced API coexist with MIP6 539 * options, which might automatically be inserted in 540 * the kernel. 541 */ 542 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1, 543 optlen); 544 } 545 /* Routing header. */ 546 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr, optlen); 547 548 unfragpartlen += optlen; 549 550 /* 551 * NOTE: we don't add AH/ESP length here (done in 552 * ip6_ipsec_output()). 553 */ 554 555 /* Destination options header (2nd part). */ 556 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2, optlen); 557 } 558 559 /* 560 * If there is at least one extension header, 561 * separate IP6 header from the payload. 562 */ 563 hdrsplit = false; 564 if (optlen) { 565 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 566 m = NULL; 567 goto freehdrs; 568 } 569 m = exthdrs.ip6e_ip6; 570 ip6 = mtod(m, struct ip6_hdr *); 571 hdrsplit = true; 572 } 573 574 /* Adjust mbuf packet header length. */ 575 m->m_pkthdr.len += optlen; 576 plen = m->m_pkthdr.len - sizeof(*ip6); 577 578 /* If this is a jumbo payload, insert a jumbo payload option. */ 579 if (plen > IPV6_MAXPACKET) { 580 if (!hdrsplit) { 581 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 582 m = NULL; 583 goto freehdrs; 584 } 585 m = exthdrs.ip6e_ip6; 586 ip6 = mtod(m, struct ip6_hdr *); 587 hdrsplit = true; 588 } 589 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 590 goto freehdrs; 591 ip6->ip6_plen = 0; 592 } else 593 ip6->ip6_plen = htons(plen); 594 nexthdrp = &ip6->ip6_nxt; 595 596 if (optlen) { 597 /* 598 * Concatenate headers and fill in next header fields. 599 * Here we have, on "m" 600 * IPv6 payload 601 * and we insert headers accordingly. 602 * Finally, we should be getting: 603 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]. 604 * 605 * During the header composing process "m" points to IPv6 606 * header. "mprev" points to an extension header prior to esp. 607 */ 608 mprev = m; 609 610 /* 611 * We treat dest2 specially. This makes IPsec processing 612 * much easier. The goal here is to make mprev point the 613 * mbuf prior to dest2. 614 * 615 * Result: IPv6 dest2 payload. 616 * m and mprev will point to IPv6 header. 617 */ 618 if (exthdrs.ip6e_dest2) { 619 if (!hdrsplit) 620 panic("%s:%d: assumption failed: " 621 "hdr not split: hdrsplit %d exthdrs %p", 622 __func__, __LINE__, hdrsplit, &exthdrs); 623 exthdrs.ip6e_dest2->m_next = m->m_next; 624 m->m_next = exthdrs.ip6e_dest2; 625 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 626 ip6->ip6_nxt = IPPROTO_DSTOPTS; 627 } 628 629 /* 630 * Result: IPv6 hbh dest1 rthdr dest2 payload. 631 * m will point to IPv6 header. mprev will point to the 632 * extension header prior to dest2 (rthdr in the above case). 633 */ 634 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 635 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 636 IPPROTO_DSTOPTS); 637 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 638 IPPROTO_ROUTING); 639 } 640 641 IP6STAT_INC(ip6s_localout); 642 643 /* Route packet. */ 644 ro_pmtu = ro; 645 if (opt && opt->ip6po_rthdr) 646 ro = &opt->ip6po_route; 647 if (ro != NULL) 648 dst = (struct sockaddr_in6 *)&ro->ro_dst; 649 else 650 dst = &sin6; 651 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 652 653 again: 654 /* 655 * If specified, try to fill in the traffic class field. 656 * Do not override if a non-zero value is already set. 657 * We check the diffserv field and the ECN field separately. 658 */ 659 if (opt && opt->ip6po_tclass >= 0) { 660 int mask = 0; 661 662 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 663 mask |= 0xfc; 664 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 665 mask |= 0x03; 666 if (mask != 0) 667 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 668 } 669 670 /* Fill in or override the hop limit field, if necessary. */ 671 if (opt && opt->ip6po_hlim != -1) 672 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 673 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 674 if (im6o != NULL) 675 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 676 else 677 ip6->ip6_hlim = V_ip6_defmcasthlim; 678 } 679 680 if (ro == NULL || ro->ro_nh == NULL) { 681 bzero(dst, sizeof(*dst)); 682 dst->sin6_family = AF_INET6; 683 dst->sin6_len = sizeof(*dst); 684 dst->sin6_addr = ip6->ip6_dst; 685 } 686 /* 687 * Validate route against routing table changes. 688 * Make sure that the address family is set in route. 689 */ 690 nh = NULL; 691 ifp = NULL; 692 mtu = 0; 693 if (ro != NULL) { 694 if (ro->ro_nh != NULL && inp != NULL) { 695 ro->ro_dst.sin6_family = AF_INET6; /* XXX KASSERT? */ 696 NH_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, 697 fibnum); 698 } 699 if (ro->ro_nh != NULL && fwd_tag == NULL && 700 (!NH_IS_VALID(ro->ro_nh) || 701 ro->ro_dst.sin6_family != AF_INET6 || 702 !IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst))) 703 RO_INVALIDATE_CACHE(ro); 704 705 if (ro->ro_nh != NULL && fwd_tag == NULL && 706 ro->ro_dst.sin6_family == AF_INET6 && 707 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 708 nh = ro->ro_nh; 709 ifp = nh->nh_ifp; 710 } else { 711 if (ro->ro_lle) 712 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 713 ro->ro_lle = NULL; 714 if (fwd_tag == NULL) { 715 bzero(&dst_sa, sizeof(dst_sa)); 716 dst_sa.sin6_family = AF_INET6; 717 dst_sa.sin6_len = sizeof(dst_sa); 718 dst_sa.sin6_addr = ip6->ip6_dst; 719 } 720 error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, 721 &nh, fibnum, m->m_pkthdr.flowid); 722 if (error != 0) { 723 IP6STAT_INC(ip6s_noroute); 724 if (ifp != NULL) 725 in6_ifstat_inc(ifp, ifs6_out_discard); 726 goto bad; 727 } 728 if (ifp != NULL) 729 mtu = ifp->if_mtu; 730 } 731 if (nh == NULL) { 732 /* 733 * If in6_selectroute() does not return a nexthop 734 * dst may not have been updated. 735 */ 736 *dst = dst_sa; /* XXX */ 737 } else { 738 if (nh->nh_flags & NHF_HOST) 739 mtu = nh->nh_mtu; 740 ia = (struct in6_ifaddr *)(nh->nh_ifa); 741 counter_u64_add(nh->nh_pksent, 1); 742 } 743 } else { 744 struct nhop_object *nh; 745 struct in6_addr kdst; 746 uint32_t scopeid; 747 748 if (fwd_tag == NULL) { 749 bzero(&dst_sa, sizeof(dst_sa)); 750 dst_sa.sin6_family = AF_INET6; 751 dst_sa.sin6_len = sizeof(dst_sa); 752 dst_sa.sin6_addr = ip6->ip6_dst; 753 } 754 755 if (IN6_IS_ADDR_MULTICAST(&dst_sa.sin6_addr) && 756 im6o != NULL && 757 (ifp = im6o->im6o_multicast_ifp) != NULL) { 758 /* We do not need a route lookup. */ 759 *dst = dst_sa; /* XXX */ 760 goto nonh6lookup; 761 } 762 763 in6_splitscope(&dst_sa.sin6_addr, &kdst, &scopeid); 764 765 if (IN6_IS_ADDR_MC_LINKLOCAL(&dst_sa.sin6_addr) || 766 IN6_IS_ADDR_MC_NODELOCAL(&dst_sa.sin6_addr)) { 767 if (scopeid > 0) { 768 ifp = in6_getlinkifnet(scopeid); 769 if (ifp == NULL) { 770 error = EHOSTUNREACH; 771 goto bad; 772 } 773 *dst = dst_sa; /* XXX */ 774 goto nonh6lookup; 775 } 776 } 777 778 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 779 if (nh == NULL) { 780 IP6STAT_INC(ip6s_noroute); 781 /* No ifp in6_ifstat_inc(ifp, ifs6_out_discard); */ 782 error = EHOSTUNREACH;; 783 goto bad; 784 } 785 786 ifp = nh->nh_ifp; 787 mtu = nh->nh_mtu; 788 ia = ifatoia6(nh->nh_ifa); 789 if (nh->nh_flags & NHF_GATEWAY) 790 dst->sin6_addr = nh->gw6_sa.sin6_addr; 791 nonh6lookup: 792 ; 793 } 794 795 /* Then nh (for unicast) and ifp must be non-NULL valid values. */ 796 if ((flags & IPV6_FORWARDING) == 0) { 797 /* XXX: the FORWARDING flag can be set for mrouting. */ 798 in6_ifstat_inc(ifp, ifs6_out_request); 799 } 800 801 /* Setup data structures for scope ID checks. */ 802 src0 = ip6->ip6_src; 803 bzero(&src_sa, sizeof(src_sa)); 804 src_sa.sin6_family = AF_INET6; 805 src_sa.sin6_len = sizeof(src_sa); 806 src_sa.sin6_addr = ip6->ip6_src; 807 808 dst0 = ip6->ip6_dst; 809 /* Re-initialize to be sure. */ 810 bzero(&dst_sa, sizeof(dst_sa)); 811 dst_sa.sin6_family = AF_INET6; 812 dst_sa.sin6_len = sizeof(dst_sa); 813 dst_sa.sin6_addr = ip6->ip6_dst; 814 815 /* Check for valid scope ID. */ 816 if (in6_setscope(&src0, ifp, &zone) == 0 && 817 sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id && 818 in6_setscope(&dst0, ifp, &zone) == 0 && 819 sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) { 820 /* 821 * The outgoing interface is in the zone of the source 822 * and destination addresses. 823 * 824 * Because the loopback interface cannot receive 825 * packets with a different scope ID than its own, 826 * there is a trick to pretend the outgoing packet 827 * was received by the real network interface, by 828 * setting "origifp" different from "ifp". This is 829 * only allowed when "ifp" is a loopback network 830 * interface. Refer to code in nd6_output_ifp() for 831 * more details. 832 */ 833 origifp = ifp; 834 835 /* 836 * We should use ia_ifp to support the case of sending 837 * packets to an address of our own. 838 */ 839 if (ia != NULL && ia->ia_ifp) 840 ifp = ia->ia_ifp; 841 842 } else if ((ifp->if_flags & IFF_LOOPBACK) == 0 || 843 sa6_recoverscope(&src_sa) != 0 || 844 sa6_recoverscope(&dst_sa) != 0 || 845 dst_sa.sin6_scope_id == 0 || 846 (src_sa.sin6_scope_id != 0 && 847 src_sa.sin6_scope_id != dst_sa.sin6_scope_id) || 848 (origifp = ifnet_byindex(dst_sa.sin6_scope_id)) == NULL) { 849 /* 850 * If the destination network interface is not a 851 * loopback interface, or the destination network 852 * address has no scope ID, or the source address has 853 * a scope ID set which is different from the 854 * destination address one, or there is no network 855 * interface representing this scope ID, the address 856 * pair is considered invalid. 857 */ 858 IP6STAT_INC(ip6s_badscope); 859 in6_ifstat_inc(ifp, ifs6_out_discard); 860 if (error == 0) 861 error = EHOSTUNREACH; /* XXX */ 862 goto bad; 863 } 864 /* All scope ID checks are successful. */ 865 866 if (nh && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 867 if (opt && opt->ip6po_nextroute.ro_nh) { 868 /* 869 * The nexthop is explicitly specified by the 870 * application. We assume the next hop is an IPv6 871 * address. 872 */ 873 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 874 } 875 else if ((nh->nh_flags & NHF_GATEWAY)) 876 dst = &nh->gw6_sa; 877 } 878 879 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 880 m->m_flags &= ~(M_BCAST | M_MCAST); /* Just in case. */ 881 } else { 882 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 883 in6_ifstat_inc(ifp, ifs6_out_mcast); 884 885 /* Confirm that the outgoing interface supports multicast. */ 886 if (!(ifp->if_flags & IFF_MULTICAST)) { 887 IP6STAT_INC(ip6s_noroute); 888 in6_ifstat_inc(ifp, ifs6_out_discard); 889 error = ENETUNREACH; 890 goto bad; 891 } 892 if ((im6o == NULL && in6_mcast_loop) || 893 (im6o && im6o->im6o_multicast_loop)) { 894 /* 895 * Loop back multicast datagram if not expressly 896 * forbidden to do so, even if we have not joined 897 * the address; protocols will filter it later, 898 * thus deferring a hash lookup and lock acquisition 899 * at the expense of an m_copym(). 900 */ 901 ip6_mloopback(ifp, m); 902 } else { 903 /* 904 * If we are acting as a multicast router, perform 905 * multicast forwarding as if the packet had just 906 * arrived on the interface to which we are about 907 * to send. The multicast forwarding function 908 * recursively calls this function, using the 909 * IPV6_FORWARDING flag to prevent infinite recursion. 910 * 911 * Multicasts that are looped back by ip6_mloopback(), 912 * above, will be forwarded by the ip6_input() routine, 913 * if necessary. 914 */ 915 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 916 /* 917 * XXX: ip6_mforward expects that rcvif is NULL 918 * when it is called from the originating path. 919 * However, it may not always be the case. 920 */ 921 m->m_pkthdr.rcvif = NULL; 922 if (ip6_mforward(ip6, ifp, m) != 0) { 923 m_freem(m); 924 goto done; 925 } 926 } 927 } 928 /* 929 * Multicasts with a hoplimit of zero may be looped back, 930 * above, but must not be transmitted on a network. 931 * Also, multicasts addressed to the loopback interface 932 * are not sent -- the above call to ip6_mloopback() will 933 * loop back a copy if this host actually belongs to the 934 * destination group on the loopback interface. 935 */ 936 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 937 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 938 m_freem(m); 939 goto done; 940 } 941 } 942 943 /* 944 * Fill the outgoing inteface to tell the upper layer 945 * to increment per-interface statistics. 946 */ 947 if (ifpp) 948 *ifpp = ifp; 949 950 /* Determine path MTU. */ 951 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 952 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 953 goto bad; 954 KASSERT(mtu > 0, ("%s:%d: mtu %ld, ro_pmtu %p ro %p ifp %p " 955 "alwaysfrag %d fibnum %u\n", __func__, __LINE__, mtu, ro_pmtu, ro, 956 ifp, alwaysfrag, fibnum)); 957 958 /* 959 * The caller of this function may specify to use the minimum MTU 960 * in some cases. 961 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 962 * setting. The logic is a bit complicated; by default, unicast 963 * packets will follow path MTU while multicast packets will be sent at 964 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 965 * including unicast ones will be sent at the minimum MTU. Multicast 966 * packets will always be sent at the minimum MTU unless 967 * IP6PO_MINMTU_DISABLE is explicitly specified. 968 * See RFC 3542 for more details. 969 */ 970 if (mtu > IPV6_MMTU) { 971 if ((flags & IPV6_MINMTU)) 972 mtu = IPV6_MMTU; 973 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 974 mtu = IPV6_MMTU; 975 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 976 (opt == NULL || 977 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 978 mtu = IPV6_MMTU; 979 } 980 } 981 982 /* 983 * Clear embedded scope identifiers if necessary. 984 * in6_clearscope() will touch the addresses only when necessary. 985 */ 986 in6_clearscope(&ip6->ip6_src); 987 in6_clearscope(&ip6->ip6_dst); 988 989 /* 990 * If the outgoing packet contains a hop-by-hop options header, 991 * it must be examined and processed even by the source node. 992 * (RFC 2460, section 4.) 993 */ 994 if (exthdrs.ip6e_hbh) { 995 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 996 u_int32_t dummy; /* XXX unused */ 997 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 998 999 #ifdef DIAGNOSTIC 1000 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 1001 panic("ip6e_hbh is not contiguous"); 1002 #endif 1003 /* 1004 * XXX: if we have to send an ICMPv6 error to the sender, 1005 * we need the M_LOOP flag since icmp6_error() expects 1006 * the IPv6 and the hop-by-hop options header are 1007 * contiguous unless the flag is set. 1008 */ 1009 m->m_flags |= M_LOOP; 1010 m->m_pkthdr.rcvif = ifp; 1011 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 1012 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 1013 &dummy, &plen) < 0) { 1014 /* m was already freed at this point. */ 1015 error = EINVAL;/* better error? */ 1016 goto done; 1017 } 1018 m->m_flags &= ~M_LOOP; /* XXX */ 1019 m->m_pkthdr.rcvif = NULL; 1020 } 1021 1022 /* Jump over all PFIL processing if hooks are not active. */ 1023 if (!PFIL_HOOKED_OUT(V_inet6_pfil_head)) 1024 goto passout; 1025 1026 odst = ip6->ip6_dst; 1027 /* Run through list of hooks for output packets. */ 1028 switch (pfil_run_hooks(V_inet6_pfil_head, &m, ifp, PFIL_OUT, inp)) { 1029 case PFIL_PASS: 1030 ip6 = mtod(m, struct ip6_hdr *); 1031 break; 1032 case PFIL_DROPPED: 1033 error = EACCES; 1034 /* FALLTHROUGH */ 1035 case PFIL_CONSUMED: 1036 goto done; 1037 } 1038 1039 needfiblookup = 0; 1040 /* See if destination IP address was changed by packet filter. */ 1041 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 1042 m->m_flags |= M_SKIP_FIREWALL; 1043 /* If destination is now ourself drop to ip6_input(). */ 1044 if (in6_localip(&ip6->ip6_dst)) { 1045 m->m_flags |= M_FASTFWD_OURS; 1046 if (m->m_pkthdr.rcvif == NULL) 1047 m->m_pkthdr.rcvif = V_loif; 1048 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1049 m->m_pkthdr.csum_flags |= 1050 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1051 m->m_pkthdr.csum_data = 0xffff; 1052 } 1053 #if defined(SCTP) || defined(SCTP_SUPPORT) 1054 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1055 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1056 #endif 1057 error = netisr_queue(NETISR_IPV6, m); 1058 goto done; 1059 } else { 1060 if (ro != NULL) 1061 RO_INVALIDATE_CACHE(ro); 1062 needfiblookup = 1; /* Redo the routing table lookup. */ 1063 } 1064 } 1065 /* See if fib was changed by packet filter. */ 1066 if (fibnum != M_GETFIB(m)) { 1067 m->m_flags |= M_SKIP_FIREWALL; 1068 fibnum = M_GETFIB(m); 1069 if (ro != NULL) 1070 RO_INVALIDATE_CACHE(ro); 1071 needfiblookup = 1; 1072 } 1073 if (needfiblookup) 1074 goto again; 1075 1076 /* See if local, if yes, send it to netisr. */ 1077 if (m->m_flags & M_FASTFWD_OURS) { 1078 if (m->m_pkthdr.rcvif == NULL) 1079 m->m_pkthdr.rcvif = V_loif; 1080 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1081 m->m_pkthdr.csum_flags |= 1082 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1083 m->m_pkthdr.csum_data = 0xffff; 1084 } 1085 #if defined(SCTP) || defined(SCTP_SUPPORT) 1086 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1087 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1088 #endif 1089 error = netisr_queue(NETISR_IPV6, m); 1090 goto done; 1091 } 1092 /* Or forward to some other address? */ 1093 if ((m->m_flags & M_IP6_NEXTHOP) && 1094 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 1095 if (ro != NULL) 1096 dst = (struct sockaddr_in6 *)&ro->ro_dst; 1097 else 1098 dst = &sin6; 1099 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 1100 m->m_flags |= M_SKIP_FIREWALL; 1101 m->m_flags &= ~M_IP6_NEXTHOP; 1102 m_tag_delete(m, fwd_tag); 1103 goto again; 1104 } 1105 1106 passout: 1107 if (vlan_pcp > -1) 1108 EVL_APPLY_PRI(m, vlan_pcp); 1109 /* 1110 * Send the packet to the outgoing interface. 1111 * If necessary, do IPv6 fragmentation before sending. 1112 * 1113 * The logic here is rather complex: 1114 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 1115 * 1-a: send as is if tlen <= path mtu 1116 * 1-b: fragment if tlen > path mtu 1117 * 1118 * 2: if user asks us not to fragment (dontfrag == 1) 1119 * 2-a: send as is if tlen <= interface mtu 1120 * 2-b: error if tlen > interface mtu 1121 * 1122 * 3: if we always need to attach fragment header (alwaysfrag == 1) 1123 * always fragment 1124 * 1125 * 4: if dontfrag == 1 && alwaysfrag == 1 1126 * error, as we cannot handle this conflicting request. 1127 */ 1128 sw_csum = m->m_pkthdr.csum_flags; 1129 if (!hdrsplit) { 1130 tso = ((sw_csum & ifp->if_hwassist & 1131 (CSUM_TSO | CSUM_INNER_TSO)) != 0) ? 1 : 0; 1132 sw_csum &= ~ifp->if_hwassist; 1133 } else 1134 tso = 0; 1135 /* 1136 * If we added extension headers, we will not do TSO and calculate the 1137 * checksums ourselves for now. 1138 * XXX-BZ Need a framework to know when the NIC can handle it, even 1139 * with ext. hdrs. 1140 */ 1141 error = ip6_output_delayed_csum(m, ifp, sw_csum, plen, optlen, false); 1142 if (error != 0) 1143 goto bad; 1144 /* XXX-BZ m->m_pkthdr.csum_flags &= ~ifp->if_hwassist; */ 1145 tlen = m->m_pkthdr.len; 1146 1147 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 1148 dontfrag = 1; 1149 else 1150 dontfrag = 0; 1151 if (dontfrag && alwaysfrag) { /* Case 4. */ 1152 /* Conflicting request - can't transmit. */ 1153 error = EMSGSIZE; 1154 goto bad; 1155 } 1156 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* Case 2-b. */ 1157 /* 1158 * Even if the DONTFRAG option is specified, we cannot send the 1159 * packet when the data length is larger than the MTU of the 1160 * outgoing interface. 1161 * Notify the error by sending IPV6_PATHMTU ancillary data if 1162 * application wanted to know the MTU value. Also return an 1163 * error code (this is not described in the API spec). 1164 */ 1165 if (inp != NULL) 1166 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 1167 error = EMSGSIZE; 1168 goto bad; 1169 } 1170 1171 /* Transmit packet without fragmentation. */ 1172 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* Cases 1-a and 2-a. */ 1173 struct in6_ifaddr *ia6; 1174 1175 ip6 = mtod(m, struct ip6_hdr *); 1176 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1177 if (ia6) { 1178 /* Record statistics for this interface address. */ 1179 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 1180 counter_u64_add(ia6->ia_ifa.ifa_obytes, 1181 m->m_pkthdr.len); 1182 ifa_free(&ia6->ia_ifa); 1183 } 1184 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1185 (flags & IP_NO_SND_TAG_RL) ? false : true); 1186 goto done; 1187 } 1188 1189 /* Try to fragment the packet. Cases 1-b and 3. */ 1190 if (mtu < IPV6_MMTU) { 1191 /* Path MTU cannot be less than IPV6_MMTU. */ 1192 error = EMSGSIZE; 1193 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1194 goto bad; 1195 } else if (ip6->ip6_plen == 0) { 1196 /* Jumbo payload cannot be fragmented. */ 1197 error = EMSGSIZE; 1198 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1199 goto bad; 1200 } else { 1201 u_char nextproto; 1202 1203 /* 1204 * Too large for the destination or interface; 1205 * fragment if possible. 1206 * Must be able to put at least 8 bytes per fragment. 1207 */ 1208 if (mtu > IPV6_MAXPACKET) 1209 mtu = IPV6_MAXPACKET; 1210 1211 len = (mtu - unfragpartlen - sizeof(struct ip6_frag)) & ~7; 1212 if (len < 8) { 1213 error = EMSGSIZE; 1214 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1215 goto bad; 1216 } 1217 1218 /* 1219 * If the interface will not calculate checksums on 1220 * fragmented packets, then do it here. 1221 * XXX-BZ handle the hw offloading case. Need flags. 1222 */ 1223 error = ip6_output_delayed_csum(m, ifp, m->m_pkthdr.csum_flags, 1224 plen, optlen, true); 1225 if (error != 0) 1226 goto bad; 1227 1228 /* 1229 * Change the next header field of the last header in the 1230 * unfragmentable part. 1231 */ 1232 if (exthdrs.ip6e_rthdr) { 1233 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1234 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1235 } else if (exthdrs.ip6e_dest1) { 1236 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1237 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1238 } else if (exthdrs.ip6e_hbh) { 1239 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1240 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1241 } else { 1242 ip6 = mtod(m, struct ip6_hdr *); 1243 nextproto = ip6->ip6_nxt; 1244 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1245 } 1246 1247 /* 1248 * Loop through length of segment after first fragment, 1249 * make new header and copy data of each part and link onto 1250 * chain. 1251 */ 1252 m0 = m; 1253 id = htonl(ip6_randomid()); 1254 error = ip6_fragment(ifp, m, unfragpartlen, nextproto,len, id); 1255 if (error != 0) 1256 goto sendorfree; 1257 1258 in6_ifstat_inc(ifp, ifs6_out_fragok); 1259 } 1260 1261 /* Remove leading garbage. */ 1262 sendorfree: 1263 m = m0->m_nextpkt; 1264 m0->m_nextpkt = 0; 1265 m_freem(m0); 1266 for (; m; m = m0) { 1267 m0 = m->m_nextpkt; 1268 m->m_nextpkt = 0; 1269 if (error == 0) { 1270 /* Record statistics for this interface address. */ 1271 if (ia) { 1272 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1273 counter_u64_add(ia->ia_ifa.ifa_obytes, 1274 m->m_pkthdr.len); 1275 } 1276 if (vlan_pcp > -1) 1277 EVL_APPLY_PRI(m, vlan_pcp); 1278 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1279 true); 1280 } else 1281 m_freem(m); 1282 } 1283 1284 if (error == 0) 1285 IP6STAT_INC(ip6s_fragmented); 1286 1287 done: 1288 return (error); 1289 1290 freehdrs: 1291 m_freem(exthdrs.ip6e_hbh); /* m_freem() checks if mbuf is NULL. */ 1292 m_freem(exthdrs.ip6e_dest1); 1293 m_freem(exthdrs.ip6e_rthdr); 1294 m_freem(exthdrs.ip6e_dest2); 1295 /* FALLTHROUGH */ 1296 bad: 1297 if (m) 1298 m_freem(m); 1299 goto done; 1300 } 1301 1302 static int 1303 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1304 { 1305 struct mbuf *m; 1306 1307 if (hlen > MCLBYTES) 1308 return (ENOBUFS); /* XXX */ 1309 1310 if (hlen > MLEN) 1311 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1312 else 1313 m = m_get(M_NOWAIT, MT_DATA); 1314 if (m == NULL) 1315 return (ENOBUFS); 1316 m->m_len = hlen; 1317 if (hdr) 1318 bcopy(hdr, mtod(m, caddr_t), hlen); 1319 1320 *mp = m; 1321 return (0); 1322 } 1323 1324 /* 1325 * Insert jumbo payload option. 1326 */ 1327 static int 1328 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1329 { 1330 struct mbuf *mopt; 1331 u_char *optbuf; 1332 u_int32_t v; 1333 1334 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1335 1336 /* 1337 * If there is no hop-by-hop options header, allocate new one. 1338 * If there is one but it doesn't have enough space to store the 1339 * jumbo payload option, allocate a cluster to store the whole options. 1340 * Otherwise, use it to store the options. 1341 */ 1342 if (exthdrs->ip6e_hbh == NULL) { 1343 mopt = m_get(M_NOWAIT, MT_DATA); 1344 if (mopt == NULL) 1345 return (ENOBUFS); 1346 mopt->m_len = JUMBOOPTLEN; 1347 optbuf = mtod(mopt, u_char *); 1348 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1349 exthdrs->ip6e_hbh = mopt; 1350 } else { 1351 struct ip6_hbh *hbh; 1352 1353 mopt = exthdrs->ip6e_hbh; 1354 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1355 /* 1356 * XXX assumption: 1357 * - exthdrs->ip6e_hbh is not referenced from places 1358 * other than exthdrs. 1359 * - exthdrs->ip6e_hbh is not an mbuf chain. 1360 */ 1361 int oldoptlen = mopt->m_len; 1362 struct mbuf *n; 1363 1364 /* 1365 * XXX: give up if the whole (new) hbh header does 1366 * not fit even in an mbuf cluster. 1367 */ 1368 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1369 return (ENOBUFS); 1370 1371 /* 1372 * As a consequence, we must always prepare a cluster 1373 * at this point. 1374 */ 1375 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1376 if (n == NULL) 1377 return (ENOBUFS); 1378 n->m_len = oldoptlen + JUMBOOPTLEN; 1379 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1380 oldoptlen); 1381 optbuf = mtod(n, caddr_t) + oldoptlen; 1382 m_freem(mopt); 1383 mopt = exthdrs->ip6e_hbh = n; 1384 } else { 1385 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1386 mopt->m_len += JUMBOOPTLEN; 1387 } 1388 optbuf[0] = IP6OPT_PADN; 1389 optbuf[1] = 1; 1390 1391 /* 1392 * Adjust the header length according to the pad and 1393 * the jumbo payload option. 1394 */ 1395 hbh = mtod(mopt, struct ip6_hbh *); 1396 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1397 } 1398 1399 /* fill in the option. */ 1400 optbuf[2] = IP6OPT_JUMBO; 1401 optbuf[3] = 4; 1402 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1403 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1404 1405 /* finally, adjust the packet header length */ 1406 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1407 1408 return (0); 1409 #undef JUMBOOPTLEN 1410 } 1411 1412 /* 1413 * Insert fragment header and copy unfragmentable header portions. 1414 */ 1415 static int 1416 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1417 struct ip6_frag **frghdrp) 1418 { 1419 struct mbuf *n, *mlast; 1420 1421 if (hlen > sizeof(struct ip6_hdr)) { 1422 n = m_copym(m0, sizeof(struct ip6_hdr), 1423 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1424 if (n == NULL) 1425 return (ENOBUFS); 1426 m->m_next = n; 1427 } else 1428 n = m; 1429 1430 /* Search for the last mbuf of unfragmentable part. */ 1431 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1432 ; 1433 1434 if (M_WRITABLE(mlast) && 1435 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1436 /* use the trailing space of the last mbuf for the fragment hdr */ 1437 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1438 mlast->m_len); 1439 mlast->m_len += sizeof(struct ip6_frag); 1440 m->m_pkthdr.len += sizeof(struct ip6_frag); 1441 } else { 1442 /* allocate a new mbuf for the fragment header */ 1443 struct mbuf *mfrg; 1444 1445 mfrg = m_get(M_NOWAIT, MT_DATA); 1446 if (mfrg == NULL) 1447 return (ENOBUFS); 1448 mfrg->m_len = sizeof(struct ip6_frag); 1449 *frghdrp = mtod(mfrg, struct ip6_frag *); 1450 mlast->m_next = mfrg; 1451 } 1452 1453 return (0); 1454 } 1455 1456 /* 1457 * Calculates IPv6 path mtu for destination @dst. 1458 * Resulting MTU is stored in @mtup. 1459 * 1460 * Returns 0 on success. 1461 */ 1462 static int 1463 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1464 { 1465 struct epoch_tracker et; 1466 struct nhop_object *nh; 1467 struct in6_addr kdst; 1468 uint32_t scopeid; 1469 int error; 1470 1471 in6_splitscope(dst, &kdst, &scopeid); 1472 1473 NET_EPOCH_ENTER(et); 1474 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1475 if (nh != NULL) 1476 error = ip6_calcmtu(nh->nh_ifp, dst, nh->nh_mtu, mtup, NULL, 0); 1477 else 1478 error = EHOSTUNREACH; 1479 NET_EPOCH_EXIT(et); 1480 1481 return (error); 1482 } 1483 1484 /* 1485 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1486 * and cached data in @ro_pmtu. 1487 * MTU from (successful) route lookup is saved (along with dst) 1488 * inside @ro_pmtu to avoid subsequent route lookups after packet 1489 * filter processing. 1490 * 1491 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1492 * Returns 0 on success. 1493 */ 1494 static int 1495 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1496 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1497 int *alwaysfragp, u_int fibnum, u_int proto) 1498 { 1499 struct nhop_object *nh; 1500 struct in6_addr kdst; 1501 uint32_t scopeid; 1502 struct sockaddr_in6 *sa6_dst, sin6; 1503 u_long mtu; 1504 1505 NET_EPOCH_ASSERT(); 1506 1507 mtu = 0; 1508 if (ro_pmtu == NULL || do_lookup) { 1509 /* 1510 * Here ro_pmtu has final destination address, while 1511 * ro might represent immediate destination. 1512 * Use ro_pmtu destination since mtu might differ. 1513 */ 1514 if (ro_pmtu != NULL) { 1515 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1516 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1517 ro_pmtu->ro_mtu = 0; 1518 } else 1519 sa6_dst = &sin6; 1520 1521 if (ro_pmtu == NULL || ro_pmtu->ro_mtu == 0) { 1522 bzero(sa6_dst, sizeof(*sa6_dst)); 1523 sa6_dst->sin6_family = AF_INET6; 1524 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1525 sa6_dst->sin6_addr = *dst; 1526 1527 in6_splitscope(dst, &kdst, &scopeid); 1528 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1529 if (nh != NULL) { 1530 mtu = nh->nh_mtu; 1531 if (ro_pmtu != NULL) 1532 ro_pmtu->ro_mtu = mtu; 1533 } 1534 } else 1535 mtu = ro_pmtu->ro_mtu; 1536 } 1537 1538 if (ro_pmtu != NULL && ro_pmtu->ro_nh != NULL) 1539 mtu = ro_pmtu->ro_nh->nh_mtu; 1540 1541 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1542 } 1543 1544 /* 1545 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1546 * hostcache data for @dst. 1547 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1548 * 1549 * Returns 0 on success. 1550 */ 1551 static int 1552 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1553 u_long *mtup, int *alwaysfragp, u_int proto) 1554 { 1555 u_long mtu = 0; 1556 int alwaysfrag = 0; 1557 int error = 0; 1558 1559 if (rt_mtu > 0) { 1560 u_int32_t ifmtu; 1561 struct in_conninfo inc; 1562 1563 bzero(&inc, sizeof(inc)); 1564 inc.inc_flags |= INC_ISIPV6; 1565 inc.inc6_faddr = *dst; 1566 1567 ifmtu = IN6_LINKMTU(ifp); 1568 1569 /* TCP is known to react to pmtu changes so skip hc */ 1570 if (proto != IPPROTO_TCP) 1571 mtu = tcp_hc_getmtu(&inc); 1572 1573 if (mtu) 1574 mtu = min(mtu, rt_mtu); 1575 else 1576 mtu = rt_mtu; 1577 if (mtu == 0) 1578 mtu = ifmtu; 1579 else if (mtu < IPV6_MMTU) { 1580 /* 1581 * RFC2460 section 5, last paragraph: 1582 * if we record ICMPv6 too big message with 1583 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1584 * or smaller, with framgent header attached. 1585 * (fragment header is needed regardless from the 1586 * packet size, for translators to identify packets) 1587 */ 1588 alwaysfrag = 1; 1589 mtu = IPV6_MMTU; 1590 } 1591 } else if (ifp) { 1592 mtu = IN6_LINKMTU(ifp); 1593 } else 1594 error = EHOSTUNREACH; /* XXX */ 1595 1596 *mtup = mtu; 1597 if (alwaysfragp) 1598 *alwaysfragp = alwaysfrag; 1599 return (error); 1600 } 1601 1602 /* 1603 * IP6 socket option processing. 1604 */ 1605 int 1606 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1607 { 1608 int optdatalen, uproto; 1609 void *optdata; 1610 struct inpcb *inp = sotoinpcb(so); 1611 int error, optval; 1612 int level, op, optname; 1613 int optlen; 1614 struct thread *td; 1615 #ifdef RSS 1616 uint32_t rss_bucket; 1617 int retval; 1618 #endif 1619 1620 /* 1621 * Don't use more than a quarter of mbuf clusters. N.B.: 1622 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1623 * on LP64 architectures, so cast to u_long to avoid undefined 1624 * behavior. ILP32 architectures cannot have nmbclusters 1625 * large enough to overflow for other reasons. 1626 */ 1627 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1628 1629 level = sopt->sopt_level; 1630 op = sopt->sopt_dir; 1631 optname = sopt->sopt_name; 1632 optlen = sopt->sopt_valsize; 1633 td = sopt->sopt_td; 1634 error = 0; 1635 optval = 0; 1636 uproto = (int)so->so_proto->pr_protocol; 1637 1638 if (level != IPPROTO_IPV6) { 1639 error = EINVAL; 1640 1641 if (sopt->sopt_level == SOL_SOCKET && 1642 sopt->sopt_dir == SOPT_SET) { 1643 switch (sopt->sopt_name) { 1644 case SO_REUSEADDR: 1645 INP_WLOCK(inp); 1646 if ((so->so_options & SO_REUSEADDR) != 0) 1647 inp->inp_flags2 |= INP_REUSEADDR; 1648 else 1649 inp->inp_flags2 &= ~INP_REUSEADDR; 1650 INP_WUNLOCK(inp); 1651 error = 0; 1652 break; 1653 case SO_REUSEPORT: 1654 INP_WLOCK(inp); 1655 if ((so->so_options & SO_REUSEPORT) != 0) 1656 inp->inp_flags2 |= INP_REUSEPORT; 1657 else 1658 inp->inp_flags2 &= ~INP_REUSEPORT; 1659 INP_WUNLOCK(inp); 1660 error = 0; 1661 break; 1662 case SO_REUSEPORT_LB: 1663 INP_WLOCK(inp); 1664 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1665 inp->inp_flags2 |= INP_REUSEPORT_LB; 1666 else 1667 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1668 INP_WUNLOCK(inp); 1669 error = 0; 1670 break; 1671 case SO_SETFIB: 1672 INP_WLOCK(inp); 1673 inp->inp_inc.inc_fibnum = so->so_fibnum; 1674 INP_WUNLOCK(inp); 1675 error = 0; 1676 break; 1677 case SO_MAX_PACING_RATE: 1678 #ifdef RATELIMIT 1679 INP_WLOCK(inp); 1680 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1681 INP_WUNLOCK(inp); 1682 error = 0; 1683 #else 1684 error = EOPNOTSUPP; 1685 #endif 1686 break; 1687 default: 1688 break; 1689 } 1690 } 1691 } else { /* level == IPPROTO_IPV6 */ 1692 switch (op) { 1693 case SOPT_SET: 1694 switch (optname) { 1695 case IPV6_2292PKTOPTIONS: 1696 #ifdef IPV6_PKTOPTIONS 1697 case IPV6_PKTOPTIONS: 1698 #endif 1699 { 1700 struct mbuf *m; 1701 1702 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1703 printf("ip6_ctloutput: mbuf limit hit\n"); 1704 error = ENOBUFS; 1705 break; 1706 } 1707 1708 error = soopt_getm(sopt, &m); /* XXX */ 1709 if (error != 0) 1710 break; 1711 error = soopt_mcopyin(sopt, m); /* XXX */ 1712 if (error != 0) 1713 break; 1714 INP_WLOCK(inp); 1715 error = ip6_pcbopts(&inp->in6p_outputopts, m, 1716 so, sopt); 1717 INP_WUNLOCK(inp); 1718 m_freem(m); /* XXX */ 1719 break; 1720 } 1721 1722 /* 1723 * Use of some Hop-by-Hop options or some 1724 * Destination options, might require special 1725 * privilege. That is, normal applications 1726 * (without special privilege) might be forbidden 1727 * from setting certain options in outgoing packets, 1728 * and might never see certain options in received 1729 * packets. [RFC 2292 Section 6] 1730 * KAME specific note: 1731 * KAME prevents non-privileged users from sending or 1732 * receiving ANY hbh/dst options in order to avoid 1733 * overhead of parsing options in the kernel. 1734 */ 1735 case IPV6_RECVHOPOPTS: 1736 case IPV6_RECVDSTOPTS: 1737 case IPV6_RECVRTHDRDSTOPTS: 1738 if (td != NULL) { 1739 error = priv_check(td, 1740 PRIV_NETINET_SETHDROPTS); 1741 if (error) 1742 break; 1743 } 1744 /* FALLTHROUGH */ 1745 case IPV6_UNICAST_HOPS: 1746 case IPV6_HOPLIMIT: 1747 1748 case IPV6_RECVPKTINFO: 1749 case IPV6_RECVHOPLIMIT: 1750 case IPV6_RECVRTHDR: 1751 case IPV6_RECVPATHMTU: 1752 case IPV6_RECVTCLASS: 1753 case IPV6_RECVFLOWID: 1754 #ifdef RSS 1755 case IPV6_RECVRSSBUCKETID: 1756 #endif 1757 case IPV6_V6ONLY: 1758 case IPV6_AUTOFLOWLABEL: 1759 case IPV6_ORIGDSTADDR: 1760 case IPV6_BINDANY: 1761 case IPV6_BINDMULTI: 1762 #ifdef RSS 1763 case IPV6_RSS_LISTEN_BUCKET: 1764 #endif 1765 case IPV6_VLAN_PCP: 1766 if (optname == IPV6_BINDANY && td != NULL) { 1767 error = priv_check(td, 1768 PRIV_NETINET_BINDANY); 1769 if (error) 1770 break; 1771 } 1772 1773 if (optlen != sizeof(int)) { 1774 error = EINVAL; 1775 break; 1776 } 1777 error = sooptcopyin(sopt, &optval, 1778 sizeof optval, sizeof optval); 1779 if (error) 1780 break; 1781 switch (optname) { 1782 case IPV6_UNICAST_HOPS: 1783 if (optval < -1 || optval >= 256) 1784 error = EINVAL; 1785 else { 1786 /* -1 = kernel default */ 1787 inp->in6p_hops = optval; 1788 if ((inp->inp_vflag & 1789 INP_IPV4) != 0) 1790 inp->inp_ip_ttl = optval; 1791 } 1792 break; 1793 #define OPTSET(bit) \ 1794 do { \ 1795 INP_WLOCK(inp); \ 1796 if (optval) \ 1797 inp->inp_flags |= (bit); \ 1798 else \ 1799 inp->inp_flags &= ~(bit); \ 1800 INP_WUNLOCK(inp); \ 1801 } while (/*CONSTCOND*/ 0) 1802 #define OPTSET2292(bit) \ 1803 do { \ 1804 INP_WLOCK(inp); \ 1805 inp->inp_flags |= IN6P_RFC2292; \ 1806 if (optval) \ 1807 inp->inp_flags |= (bit); \ 1808 else \ 1809 inp->inp_flags &= ~(bit); \ 1810 INP_WUNLOCK(inp); \ 1811 } while (/*CONSTCOND*/ 0) 1812 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1813 1814 #define OPTSET2_N(bit, val) do { \ 1815 if (val) \ 1816 inp->inp_flags2 |= bit; \ 1817 else \ 1818 inp->inp_flags2 &= ~bit; \ 1819 } while (0) 1820 #define OPTSET2(bit, val) do { \ 1821 INP_WLOCK(inp); \ 1822 OPTSET2_N(bit, val); \ 1823 INP_WUNLOCK(inp); \ 1824 } while (0) 1825 #define OPTBIT2(bit) (inp->inp_flags2 & (bit) ? 1 : 0) 1826 #define OPTSET2292_EXCLUSIVE(bit) \ 1827 do { \ 1828 INP_WLOCK(inp); \ 1829 if (OPTBIT(IN6P_RFC2292)) { \ 1830 error = EINVAL; \ 1831 } else { \ 1832 if (optval) \ 1833 inp->inp_flags |= (bit); \ 1834 else \ 1835 inp->inp_flags &= ~(bit); \ 1836 } \ 1837 INP_WUNLOCK(inp); \ 1838 } while (/*CONSTCOND*/ 0) 1839 1840 case IPV6_RECVPKTINFO: 1841 OPTSET2292_EXCLUSIVE(IN6P_PKTINFO); 1842 break; 1843 1844 case IPV6_HOPLIMIT: 1845 { 1846 struct ip6_pktopts **optp; 1847 1848 /* cannot mix with RFC2292 */ 1849 if (OPTBIT(IN6P_RFC2292)) { 1850 error = EINVAL; 1851 break; 1852 } 1853 INP_WLOCK(inp); 1854 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1855 INP_WUNLOCK(inp); 1856 return (ECONNRESET); 1857 } 1858 optp = &inp->in6p_outputopts; 1859 error = ip6_pcbopt(IPV6_HOPLIMIT, 1860 (u_char *)&optval, sizeof(optval), 1861 optp, (td != NULL) ? td->td_ucred : 1862 NULL, uproto); 1863 INP_WUNLOCK(inp); 1864 break; 1865 } 1866 1867 case IPV6_RECVHOPLIMIT: 1868 OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT); 1869 break; 1870 1871 case IPV6_RECVHOPOPTS: 1872 OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS); 1873 break; 1874 1875 case IPV6_RECVDSTOPTS: 1876 OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS); 1877 break; 1878 1879 case IPV6_RECVRTHDRDSTOPTS: 1880 OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS); 1881 break; 1882 1883 case IPV6_RECVRTHDR: 1884 OPTSET2292_EXCLUSIVE(IN6P_RTHDR); 1885 break; 1886 1887 case IPV6_RECVPATHMTU: 1888 /* 1889 * We ignore this option for TCP 1890 * sockets. 1891 * (RFC3542 leaves this case 1892 * unspecified.) 1893 */ 1894 if (uproto != IPPROTO_TCP) 1895 OPTSET(IN6P_MTU); 1896 break; 1897 1898 case IPV6_RECVFLOWID: 1899 OPTSET2(INP_RECVFLOWID, optval); 1900 break; 1901 1902 #ifdef RSS 1903 case IPV6_RECVRSSBUCKETID: 1904 OPTSET2(INP_RECVRSSBUCKETID, optval); 1905 break; 1906 #endif 1907 1908 case IPV6_V6ONLY: 1909 INP_WLOCK(inp); 1910 if (inp->inp_lport || 1911 !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { 1912 /* 1913 * The socket is already bound. 1914 */ 1915 INP_WUNLOCK(inp); 1916 error = EINVAL; 1917 break; 1918 } 1919 if (optval) { 1920 inp->inp_flags |= IN6P_IPV6_V6ONLY; 1921 inp->inp_vflag &= ~INP_IPV4; 1922 } else { 1923 inp->inp_flags &= ~IN6P_IPV6_V6ONLY; 1924 inp->inp_vflag |= INP_IPV4; 1925 } 1926 INP_WUNLOCK(inp); 1927 break; 1928 case IPV6_RECVTCLASS: 1929 /* cannot mix with RFC2292 XXX */ 1930 OPTSET2292_EXCLUSIVE(IN6P_TCLASS); 1931 break; 1932 case IPV6_AUTOFLOWLABEL: 1933 OPTSET(IN6P_AUTOFLOWLABEL); 1934 break; 1935 1936 case IPV6_ORIGDSTADDR: 1937 OPTSET2(INP_ORIGDSTADDR, optval); 1938 break; 1939 case IPV6_BINDANY: 1940 OPTSET(INP_BINDANY); 1941 break; 1942 1943 case IPV6_BINDMULTI: 1944 OPTSET2(INP_BINDMULTI, optval); 1945 break; 1946 #ifdef RSS 1947 case IPV6_RSS_LISTEN_BUCKET: 1948 if ((optval >= 0) && 1949 (optval < rss_getnumbuckets())) { 1950 INP_WLOCK(inp); 1951 inp->inp_rss_listen_bucket = optval; 1952 OPTSET2_N(INP_RSS_BUCKET_SET, 1); 1953 INP_WUNLOCK(inp); 1954 } else { 1955 error = EINVAL; 1956 } 1957 break; 1958 #endif 1959 case IPV6_VLAN_PCP: 1960 if ((optval >= -1) && (optval <= 1961 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) { 1962 if (optval == -1) { 1963 INP_WLOCK(inp); 1964 inp->inp_flags2 &= 1965 ~(INP_2PCP_SET | 1966 INP_2PCP_MASK); 1967 INP_WUNLOCK(inp); 1968 } else { 1969 INP_WLOCK(inp); 1970 inp->inp_flags2 |= 1971 INP_2PCP_SET; 1972 inp->inp_flags2 &= 1973 ~INP_2PCP_MASK; 1974 inp->inp_flags2 |= 1975 optval << 1976 INP_2PCP_SHIFT; 1977 INP_WUNLOCK(inp); 1978 } 1979 } else 1980 error = EINVAL; 1981 break; 1982 } 1983 break; 1984 1985 case IPV6_TCLASS: 1986 case IPV6_DONTFRAG: 1987 case IPV6_USE_MIN_MTU: 1988 case IPV6_PREFER_TEMPADDR: 1989 if (optlen != sizeof(optval)) { 1990 error = EINVAL; 1991 break; 1992 } 1993 error = sooptcopyin(sopt, &optval, 1994 sizeof optval, sizeof optval); 1995 if (error) 1996 break; 1997 { 1998 struct ip6_pktopts **optp; 1999 INP_WLOCK(inp); 2000 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 2001 INP_WUNLOCK(inp); 2002 return (ECONNRESET); 2003 } 2004 optp = &inp->in6p_outputopts; 2005 error = ip6_pcbopt(optname, 2006 (u_char *)&optval, sizeof(optval), 2007 optp, (td != NULL) ? td->td_ucred : 2008 NULL, uproto); 2009 INP_WUNLOCK(inp); 2010 break; 2011 } 2012 2013 case IPV6_2292PKTINFO: 2014 case IPV6_2292HOPLIMIT: 2015 case IPV6_2292HOPOPTS: 2016 case IPV6_2292DSTOPTS: 2017 case IPV6_2292RTHDR: 2018 /* RFC 2292 */ 2019 if (optlen != sizeof(int)) { 2020 error = EINVAL; 2021 break; 2022 } 2023 error = sooptcopyin(sopt, &optval, 2024 sizeof optval, sizeof optval); 2025 if (error) 2026 break; 2027 switch (optname) { 2028 case IPV6_2292PKTINFO: 2029 OPTSET2292(IN6P_PKTINFO); 2030 break; 2031 case IPV6_2292HOPLIMIT: 2032 OPTSET2292(IN6P_HOPLIMIT); 2033 break; 2034 case IPV6_2292HOPOPTS: 2035 /* 2036 * Check super-user privilege. 2037 * See comments for IPV6_RECVHOPOPTS. 2038 */ 2039 if (td != NULL) { 2040 error = priv_check(td, 2041 PRIV_NETINET_SETHDROPTS); 2042 if (error) 2043 return (error); 2044 } 2045 OPTSET2292(IN6P_HOPOPTS); 2046 break; 2047 case IPV6_2292DSTOPTS: 2048 if (td != NULL) { 2049 error = priv_check(td, 2050 PRIV_NETINET_SETHDROPTS); 2051 if (error) 2052 return (error); 2053 } 2054 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 2055 break; 2056 case IPV6_2292RTHDR: 2057 OPTSET2292(IN6P_RTHDR); 2058 break; 2059 } 2060 break; 2061 case IPV6_PKTINFO: 2062 case IPV6_HOPOPTS: 2063 case IPV6_RTHDR: 2064 case IPV6_DSTOPTS: 2065 case IPV6_RTHDRDSTOPTS: 2066 case IPV6_NEXTHOP: 2067 { 2068 /* new advanced API (RFC3542) */ 2069 u_char *optbuf; 2070 u_char optbuf_storage[MCLBYTES]; 2071 int optlen; 2072 struct ip6_pktopts **optp; 2073 2074 /* cannot mix with RFC2292 */ 2075 if (OPTBIT(IN6P_RFC2292)) { 2076 error = EINVAL; 2077 break; 2078 } 2079 2080 /* 2081 * We only ensure valsize is not too large 2082 * here. Further validation will be done 2083 * later. 2084 */ 2085 error = sooptcopyin(sopt, optbuf_storage, 2086 sizeof(optbuf_storage), 0); 2087 if (error) 2088 break; 2089 optlen = sopt->sopt_valsize; 2090 optbuf = optbuf_storage; 2091 INP_WLOCK(inp); 2092 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 2093 INP_WUNLOCK(inp); 2094 return (ECONNRESET); 2095 } 2096 optp = &inp->in6p_outputopts; 2097 error = ip6_pcbopt(optname, optbuf, optlen, 2098 optp, (td != NULL) ? td->td_ucred : NULL, 2099 uproto); 2100 INP_WUNLOCK(inp); 2101 break; 2102 } 2103 #undef OPTSET 2104 2105 case IPV6_MULTICAST_IF: 2106 case IPV6_MULTICAST_HOPS: 2107 case IPV6_MULTICAST_LOOP: 2108 case IPV6_JOIN_GROUP: 2109 case IPV6_LEAVE_GROUP: 2110 case IPV6_MSFILTER: 2111 case MCAST_BLOCK_SOURCE: 2112 case MCAST_UNBLOCK_SOURCE: 2113 case MCAST_JOIN_GROUP: 2114 case MCAST_LEAVE_GROUP: 2115 case MCAST_JOIN_SOURCE_GROUP: 2116 case MCAST_LEAVE_SOURCE_GROUP: 2117 error = ip6_setmoptions(inp, sopt); 2118 break; 2119 2120 case IPV6_PORTRANGE: 2121 error = sooptcopyin(sopt, &optval, 2122 sizeof optval, sizeof optval); 2123 if (error) 2124 break; 2125 2126 INP_WLOCK(inp); 2127 switch (optval) { 2128 case IPV6_PORTRANGE_DEFAULT: 2129 inp->inp_flags &= ~(INP_LOWPORT); 2130 inp->inp_flags &= ~(INP_HIGHPORT); 2131 break; 2132 2133 case IPV6_PORTRANGE_HIGH: 2134 inp->inp_flags &= ~(INP_LOWPORT); 2135 inp->inp_flags |= INP_HIGHPORT; 2136 break; 2137 2138 case IPV6_PORTRANGE_LOW: 2139 inp->inp_flags &= ~(INP_HIGHPORT); 2140 inp->inp_flags |= INP_LOWPORT; 2141 break; 2142 2143 default: 2144 error = EINVAL; 2145 break; 2146 } 2147 INP_WUNLOCK(inp); 2148 break; 2149 2150 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2151 case IPV6_IPSEC_POLICY: 2152 if (IPSEC_ENABLED(ipv6)) { 2153 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2154 break; 2155 } 2156 /* FALLTHROUGH */ 2157 #endif /* IPSEC */ 2158 2159 default: 2160 error = ENOPROTOOPT; 2161 break; 2162 } 2163 break; 2164 2165 case SOPT_GET: 2166 switch (optname) { 2167 case IPV6_2292PKTOPTIONS: 2168 #ifdef IPV6_PKTOPTIONS 2169 case IPV6_PKTOPTIONS: 2170 #endif 2171 /* 2172 * RFC3542 (effectively) deprecated the 2173 * semantics of the 2292-style pktoptions. 2174 * Since it was not reliable in nature (i.e., 2175 * applications had to expect the lack of some 2176 * information after all), it would make sense 2177 * to simplify this part by always returning 2178 * empty data. 2179 */ 2180 sopt->sopt_valsize = 0; 2181 break; 2182 2183 case IPV6_RECVHOPOPTS: 2184 case IPV6_RECVDSTOPTS: 2185 case IPV6_RECVRTHDRDSTOPTS: 2186 case IPV6_UNICAST_HOPS: 2187 case IPV6_RECVPKTINFO: 2188 case IPV6_RECVHOPLIMIT: 2189 case IPV6_RECVRTHDR: 2190 case IPV6_RECVPATHMTU: 2191 2192 case IPV6_V6ONLY: 2193 case IPV6_PORTRANGE: 2194 case IPV6_RECVTCLASS: 2195 case IPV6_AUTOFLOWLABEL: 2196 case IPV6_BINDANY: 2197 case IPV6_FLOWID: 2198 case IPV6_FLOWTYPE: 2199 case IPV6_RECVFLOWID: 2200 #ifdef RSS 2201 case IPV6_RSSBUCKETID: 2202 case IPV6_RECVRSSBUCKETID: 2203 #endif 2204 case IPV6_BINDMULTI: 2205 case IPV6_VLAN_PCP: 2206 switch (optname) { 2207 case IPV6_RECVHOPOPTS: 2208 optval = OPTBIT(IN6P_HOPOPTS); 2209 break; 2210 2211 case IPV6_RECVDSTOPTS: 2212 optval = OPTBIT(IN6P_DSTOPTS); 2213 break; 2214 2215 case IPV6_RECVRTHDRDSTOPTS: 2216 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 2217 break; 2218 2219 case IPV6_UNICAST_HOPS: 2220 optval = inp->in6p_hops; 2221 break; 2222 2223 case IPV6_RECVPKTINFO: 2224 optval = OPTBIT(IN6P_PKTINFO); 2225 break; 2226 2227 case IPV6_RECVHOPLIMIT: 2228 optval = OPTBIT(IN6P_HOPLIMIT); 2229 break; 2230 2231 case IPV6_RECVRTHDR: 2232 optval = OPTBIT(IN6P_RTHDR); 2233 break; 2234 2235 case IPV6_RECVPATHMTU: 2236 optval = OPTBIT(IN6P_MTU); 2237 break; 2238 2239 case IPV6_V6ONLY: 2240 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2241 break; 2242 2243 case IPV6_PORTRANGE: 2244 { 2245 int flags; 2246 flags = inp->inp_flags; 2247 if (flags & INP_HIGHPORT) 2248 optval = IPV6_PORTRANGE_HIGH; 2249 else if (flags & INP_LOWPORT) 2250 optval = IPV6_PORTRANGE_LOW; 2251 else 2252 optval = 0; 2253 break; 2254 } 2255 case IPV6_RECVTCLASS: 2256 optval = OPTBIT(IN6P_TCLASS); 2257 break; 2258 2259 case IPV6_AUTOFLOWLABEL: 2260 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2261 break; 2262 2263 case IPV6_ORIGDSTADDR: 2264 optval = OPTBIT2(INP_ORIGDSTADDR); 2265 break; 2266 2267 case IPV6_BINDANY: 2268 optval = OPTBIT(INP_BINDANY); 2269 break; 2270 2271 case IPV6_FLOWID: 2272 optval = inp->inp_flowid; 2273 break; 2274 2275 case IPV6_FLOWTYPE: 2276 optval = inp->inp_flowtype; 2277 break; 2278 2279 case IPV6_RECVFLOWID: 2280 optval = OPTBIT2(INP_RECVFLOWID); 2281 break; 2282 #ifdef RSS 2283 case IPV6_RSSBUCKETID: 2284 retval = 2285 rss_hash2bucket(inp->inp_flowid, 2286 inp->inp_flowtype, 2287 &rss_bucket); 2288 if (retval == 0) 2289 optval = rss_bucket; 2290 else 2291 error = EINVAL; 2292 break; 2293 2294 case IPV6_RECVRSSBUCKETID: 2295 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2296 break; 2297 #endif 2298 2299 case IPV6_BINDMULTI: 2300 optval = OPTBIT2(INP_BINDMULTI); 2301 break; 2302 2303 case IPV6_VLAN_PCP: 2304 if (OPTBIT2(INP_2PCP_SET)) { 2305 optval = (inp->inp_flags2 & 2306 INP_2PCP_MASK) >> 2307 INP_2PCP_SHIFT; 2308 } else { 2309 optval = -1; 2310 } 2311 break; 2312 } 2313 2314 if (error) 2315 break; 2316 error = sooptcopyout(sopt, &optval, 2317 sizeof optval); 2318 break; 2319 2320 case IPV6_PATHMTU: 2321 { 2322 u_long pmtu = 0; 2323 struct ip6_mtuinfo mtuinfo; 2324 struct in6_addr addr; 2325 2326 if (!(so->so_state & SS_ISCONNECTED)) 2327 return (ENOTCONN); 2328 /* 2329 * XXX: we dot not consider the case of source 2330 * routing, or optional information to specify 2331 * the outgoing interface. 2332 * Copy faddr out of inp to avoid holding lock 2333 * on inp during route lookup. 2334 */ 2335 INP_RLOCK(inp); 2336 bcopy(&inp->in6p_faddr, &addr, sizeof(addr)); 2337 INP_RUNLOCK(inp); 2338 error = ip6_getpmtu_ctl(so->so_fibnum, 2339 &addr, &pmtu); 2340 if (error) 2341 break; 2342 if (pmtu > IPV6_MAXPACKET) 2343 pmtu = IPV6_MAXPACKET; 2344 2345 bzero(&mtuinfo, sizeof(mtuinfo)); 2346 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2347 optdata = (void *)&mtuinfo; 2348 optdatalen = sizeof(mtuinfo); 2349 error = sooptcopyout(sopt, optdata, 2350 optdatalen); 2351 break; 2352 } 2353 2354 case IPV6_2292PKTINFO: 2355 case IPV6_2292HOPLIMIT: 2356 case IPV6_2292HOPOPTS: 2357 case IPV6_2292RTHDR: 2358 case IPV6_2292DSTOPTS: 2359 switch (optname) { 2360 case IPV6_2292PKTINFO: 2361 optval = OPTBIT(IN6P_PKTINFO); 2362 break; 2363 case IPV6_2292HOPLIMIT: 2364 optval = OPTBIT(IN6P_HOPLIMIT); 2365 break; 2366 case IPV6_2292HOPOPTS: 2367 optval = OPTBIT(IN6P_HOPOPTS); 2368 break; 2369 case IPV6_2292RTHDR: 2370 optval = OPTBIT(IN6P_RTHDR); 2371 break; 2372 case IPV6_2292DSTOPTS: 2373 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2374 break; 2375 } 2376 error = sooptcopyout(sopt, &optval, 2377 sizeof optval); 2378 break; 2379 case IPV6_PKTINFO: 2380 case IPV6_HOPOPTS: 2381 case IPV6_RTHDR: 2382 case IPV6_DSTOPTS: 2383 case IPV6_RTHDRDSTOPTS: 2384 case IPV6_NEXTHOP: 2385 case IPV6_TCLASS: 2386 case IPV6_DONTFRAG: 2387 case IPV6_USE_MIN_MTU: 2388 case IPV6_PREFER_TEMPADDR: 2389 error = ip6_getpcbopt(inp, optname, sopt); 2390 break; 2391 2392 case IPV6_MULTICAST_IF: 2393 case IPV6_MULTICAST_HOPS: 2394 case IPV6_MULTICAST_LOOP: 2395 case IPV6_MSFILTER: 2396 error = ip6_getmoptions(inp, sopt); 2397 break; 2398 2399 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2400 case IPV6_IPSEC_POLICY: 2401 if (IPSEC_ENABLED(ipv6)) { 2402 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2403 break; 2404 } 2405 /* FALLTHROUGH */ 2406 #endif /* IPSEC */ 2407 default: 2408 error = ENOPROTOOPT; 2409 break; 2410 } 2411 break; 2412 } 2413 } 2414 return (error); 2415 } 2416 2417 int 2418 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2419 { 2420 int error = 0, optval, optlen; 2421 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2422 struct inpcb *inp = sotoinpcb(so); 2423 int level, op, optname; 2424 2425 level = sopt->sopt_level; 2426 op = sopt->sopt_dir; 2427 optname = sopt->sopt_name; 2428 optlen = sopt->sopt_valsize; 2429 2430 if (level != IPPROTO_IPV6) { 2431 return (EINVAL); 2432 } 2433 2434 switch (optname) { 2435 case IPV6_CHECKSUM: 2436 /* 2437 * For ICMPv6 sockets, no modification allowed for checksum 2438 * offset, permit "no change" values to help existing apps. 2439 * 2440 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2441 * for an ICMPv6 socket will fail." 2442 * The current behavior does not meet RFC3542. 2443 */ 2444 switch (op) { 2445 case SOPT_SET: 2446 if (optlen != sizeof(int)) { 2447 error = EINVAL; 2448 break; 2449 } 2450 error = sooptcopyin(sopt, &optval, sizeof(optval), 2451 sizeof(optval)); 2452 if (error) 2453 break; 2454 if (optval < -1 || (optval % 2) != 0) { 2455 /* 2456 * The API assumes non-negative even offset 2457 * values or -1 as a special value. 2458 */ 2459 error = EINVAL; 2460 } else if (so->so_proto->pr_protocol == 2461 IPPROTO_ICMPV6) { 2462 if (optval != icmp6off) 2463 error = EINVAL; 2464 } else 2465 inp->in6p_cksum = optval; 2466 break; 2467 2468 case SOPT_GET: 2469 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2470 optval = icmp6off; 2471 else 2472 optval = inp->in6p_cksum; 2473 2474 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2475 break; 2476 2477 default: 2478 error = EINVAL; 2479 break; 2480 } 2481 break; 2482 2483 default: 2484 error = ENOPROTOOPT; 2485 break; 2486 } 2487 2488 return (error); 2489 } 2490 2491 /* 2492 * Set up IP6 options in pcb for insertion in output packets or 2493 * specifying behavior of outgoing packets. 2494 */ 2495 static int 2496 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2497 struct socket *so, struct sockopt *sopt) 2498 { 2499 struct ip6_pktopts *opt = *pktopt; 2500 int error = 0; 2501 struct thread *td = sopt->sopt_td; 2502 2503 /* turn off any old options. */ 2504 if (opt) { 2505 #ifdef DIAGNOSTIC 2506 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2507 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2508 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2509 printf("ip6_pcbopts: all specified options are cleared.\n"); 2510 #endif 2511 ip6_clearpktopts(opt, -1); 2512 } else { 2513 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 2514 if (opt == NULL) 2515 return (ENOMEM); 2516 } 2517 *pktopt = NULL; 2518 2519 if (!m || m->m_len == 0) { 2520 /* 2521 * Only turning off any previous options, regardless of 2522 * whether the opt is just created or given. 2523 */ 2524 free(opt, M_IP6OPT); 2525 return (0); 2526 } 2527 2528 /* set options specified by user. */ 2529 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2530 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2531 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2532 free(opt, M_IP6OPT); 2533 return (error); 2534 } 2535 *pktopt = opt; 2536 return (0); 2537 } 2538 2539 /* 2540 * initialize ip6_pktopts. beware that there are non-zero default values in 2541 * the struct. 2542 */ 2543 void 2544 ip6_initpktopts(struct ip6_pktopts *opt) 2545 { 2546 2547 bzero(opt, sizeof(*opt)); 2548 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2549 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2550 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2551 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2552 } 2553 2554 static int 2555 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2556 struct ucred *cred, int uproto) 2557 { 2558 struct ip6_pktopts *opt; 2559 2560 if (*pktopt == NULL) { 2561 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2562 M_NOWAIT); 2563 if (*pktopt == NULL) 2564 return (ENOBUFS); 2565 ip6_initpktopts(*pktopt); 2566 } 2567 opt = *pktopt; 2568 2569 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2570 } 2571 2572 #define GET_PKTOPT_VAR(field, lenexpr) do { \ 2573 if (pktopt && pktopt->field) { \ 2574 INP_RUNLOCK(inp); \ 2575 optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \ 2576 malloc_optdata = true; \ 2577 INP_RLOCK(inp); \ 2578 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { \ 2579 INP_RUNLOCK(inp); \ 2580 free(optdata, M_TEMP); \ 2581 return (ECONNRESET); \ 2582 } \ 2583 pktopt = inp->in6p_outputopts; \ 2584 if (pktopt && pktopt->field) { \ 2585 optdatalen = min(lenexpr, sopt->sopt_valsize); \ 2586 bcopy(&pktopt->field, optdata, optdatalen); \ 2587 } else { \ 2588 free(optdata, M_TEMP); \ 2589 optdata = NULL; \ 2590 malloc_optdata = false; \ 2591 } \ 2592 } \ 2593 } while(0) 2594 2595 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \ 2596 (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3) 2597 2598 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \ 2599 pktopt->field->sa_len) 2600 2601 static int 2602 ip6_getpcbopt(struct inpcb *inp, int optname, struct sockopt *sopt) 2603 { 2604 void *optdata = NULL; 2605 bool malloc_optdata = false; 2606 int optdatalen = 0; 2607 int error = 0; 2608 struct in6_pktinfo null_pktinfo; 2609 int deftclass = 0, on; 2610 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2611 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2612 struct ip6_pktopts *pktopt; 2613 2614 INP_RLOCK(inp); 2615 pktopt = inp->in6p_outputopts; 2616 2617 switch (optname) { 2618 case IPV6_PKTINFO: 2619 optdata = (void *)&null_pktinfo; 2620 if (pktopt && pktopt->ip6po_pktinfo) { 2621 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2622 sizeof(null_pktinfo)); 2623 in6_clearscope(&null_pktinfo.ipi6_addr); 2624 } else { 2625 /* XXX: we don't have to do this every time... */ 2626 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2627 } 2628 optdatalen = sizeof(struct in6_pktinfo); 2629 break; 2630 case IPV6_TCLASS: 2631 if (pktopt && pktopt->ip6po_tclass >= 0) 2632 deftclass = pktopt->ip6po_tclass; 2633 optdata = (void *)&deftclass; 2634 optdatalen = sizeof(int); 2635 break; 2636 case IPV6_HOPOPTS: 2637 GET_PKTOPT_EXT_HDR(ip6po_hbh); 2638 break; 2639 case IPV6_RTHDR: 2640 GET_PKTOPT_EXT_HDR(ip6po_rthdr); 2641 break; 2642 case IPV6_RTHDRDSTOPTS: 2643 GET_PKTOPT_EXT_HDR(ip6po_dest1); 2644 break; 2645 case IPV6_DSTOPTS: 2646 GET_PKTOPT_EXT_HDR(ip6po_dest2); 2647 break; 2648 case IPV6_NEXTHOP: 2649 GET_PKTOPT_SOCKADDR(ip6po_nexthop); 2650 break; 2651 case IPV6_USE_MIN_MTU: 2652 if (pktopt) 2653 defminmtu = pktopt->ip6po_minmtu; 2654 optdata = (void *)&defminmtu; 2655 optdatalen = sizeof(int); 2656 break; 2657 case IPV6_DONTFRAG: 2658 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2659 on = 1; 2660 else 2661 on = 0; 2662 optdata = (void *)&on; 2663 optdatalen = sizeof(on); 2664 break; 2665 case IPV6_PREFER_TEMPADDR: 2666 if (pktopt) 2667 defpreftemp = pktopt->ip6po_prefer_tempaddr; 2668 optdata = (void *)&defpreftemp; 2669 optdatalen = sizeof(int); 2670 break; 2671 default: /* should not happen */ 2672 #ifdef DIAGNOSTIC 2673 panic("ip6_getpcbopt: unexpected option\n"); 2674 #endif 2675 INP_RUNLOCK(inp); 2676 return (ENOPROTOOPT); 2677 } 2678 INP_RUNLOCK(inp); 2679 2680 error = sooptcopyout(sopt, optdata, optdatalen); 2681 if (malloc_optdata) 2682 free(optdata, M_TEMP); 2683 2684 return (error); 2685 } 2686 2687 void 2688 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2689 { 2690 if (pktopt == NULL) 2691 return; 2692 2693 if (optname == -1 || optname == IPV6_PKTINFO) { 2694 if (pktopt->ip6po_pktinfo) 2695 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2696 pktopt->ip6po_pktinfo = NULL; 2697 } 2698 if (optname == -1 || optname == IPV6_HOPLIMIT) 2699 pktopt->ip6po_hlim = -1; 2700 if (optname == -1 || optname == IPV6_TCLASS) 2701 pktopt->ip6po_tclass = -1; 2702 if (optname == -1 || optname == IPV6_NEXTHOP) { 2703 if (pktopt->ip6po_nextroute.ro_nh) { 2704 NH_FREE(pktopt->ip6po_nextroute.ro_nh); 2705 pktopt->ip6po_nextroute.ro_nh = NULL; 2706 } 2707 if (pktopt->ip6po_nexthop) 2708 free(pktopt->ip6po_nexthop, M_IP6OPT); 2709 pktopt->ip6po_nexthop = NULL; 2710 } 2711 if (optname == -1 || optname == IPV6_HOPOPTS) { 2712 if (pktopt->ip6po_hbh) 2713 free(pktopt->ip6po_hbh, M_IP6OPT); 2714 pktopt->ip6po_hbh = NULL; 2715 } 2716 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2717 if (pktopt->ip6po_dest1) 2718 free(pktopt->ip6po_dest1, M_IP6OPT); 2719 pktopt->ip6po_dest1 = NULL; 2720 } 2721 if (optname == -1 || optname == IPV6_RTHDR) { 2722 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2723 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2724 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2725 if (pktopt->ip6po_route.ro_nh) { 2726 NH_FREE(pktopt->ip6po_route.ro_nh); 2727 pktopt->ip6po_route.ro_nh = NULL; 2728 } 2729 } 2730 if (optname == -1 || optname == IPV6_DSTOPTS) { 2731 if (pktopt->ip6po_dest2) 2732 free(pktopt->ip6po_dest2, M_IP6OPT); 2733 pktopt->ip6po_dest2 = NULL; 2734 } 2735 } 2736 2737 #define PKTOPT_EXTHDRCPY(type) \ 2738 do {\ 2739 if (src->type) {\ 2740 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2741 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2742 if (dst->type == NULL)\ 2743 goto bad;\ 2744 bcopy(src->type, dst->type, hlen);\ 2745 }\ 2746 } while (/*CONSTCOND*/ 0) 2747 2748 static int 2749 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2750 { 2751 if (dst == NULL || src == NULL) { 2752 printf("ip6_clearpktopts: invalid argument\n"); 2753 return (EINVAL); 2754 } 2755 2756 dst->ip6po_hlim = src->ip6po_hlim; 2757 dst->ip6po_tclass = src->ip6po_tclass; 2758 dst->ip6po_flags = src->ip6po_flags; 2759 dst->ip6po_minmtu = src->ip6po_minmtu; 2760 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2761 if (src->ip6po_pktinfo) { 2762 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2763 M_IP6OPT, canwait); 2764 if (dst->ip6po_pktinfo == NULL) 2765 goto bad; 2766 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2767 } 2768 if (src->ip6po_nexthop) { 2769 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2770 M_IP6OPT, canwait); 2771 if (dst->ip6po_nexthop == NULL) 2772 goto bad; 2773 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2774 src->ip6po_nexthop->sa_len); 2775 } 2776 PKTOPT_EXTHDRCPY(ip6po_hbh); 2777 PKTOPT_EXTHDRCPY(ip6po_dest1); 2778 PKTOPT_EXTHDRCPY(ip6po_dest2); 2779 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2780 return (0); 2781 2782 bad: 2783 ip6_clearpktopts(dst, -1); 2784 return (ENOBUFS); 2785 } 2786 #undef PKTOPT_EXTHDRCPY 2787 2788 struct ip6_pktopts * 2789 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2790 { 2791 int error; 2792 struct ip6_pktopts *dst; 2793 2794 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2795 if (dst == NULL) 2796 return (NULL); 2797 ip6_initpktopts(dst); 2798 2799 if ((error = copypktopts(dst, src, canwait)) != 0) { 2800 free(dst, M_IP6OPT); 2801 return (NULL); 2802 } 2803 2804 return (dst); 2805 } 2806 2807 void 2808 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2809 { 2810 if (pktopt == NULL) 2811 return; 2812 2813 ip6_clearpktopts(pktopt, -1); 2814 2815 free(pktopt, M_IP6OPT); 2816 } 2817 2818 /* 2819 * Set IPv6 outgoing packet options based on advanced API. 2820 */ 2821 int 2822 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2823 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2824 { 2825 struct cmsghdr *cm = NULL; 2826 2827 if (control == NULL || opt == NULL) 2828 return (EINVAL); 2829 2830 ip6_initpktopts(opt); 2831 if (stickyopt) { 2832 int error; 2833 2834 /* 2835 * If stickyopt is provided, make a local copy of the options 2836 * for this particular packet, then override them by ancillary 2837 * objects. 2838 * XXX: copypktopts() does not copy the cached route to a next 2839 * hop (if any). This is not very good in terms of efficiency, 2840 * but we can allow this since this option should be rarely 2841 * used. 2842 */ 2843 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2844 return (error); 2845 } 2846 2847 /* 2848 * XXX: Currently, we assume all the optional information is stored 2849 * in a single mbuf. 2850 */ 2851 if (control->m_next) 2852 return (EINVAL); 2853 2854 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2855 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2856 int error; 2857 2858 if (control->m_len < CMSG_LEN(0)) 2859 return (EINVAL); 2860 2861 cm = mtod(control, struct cmsghdr *); 2862 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2863 return (EINVAL); 2864 if (cm->cmsg_level != IPPROTO_IPV6) 2865 continue; 2866 2867 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2868 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2869 if (error) 2870 return (error); 2871 } 2872 2873 return (0); 2874 } 2875 2876 /* 2877 * Set a particular packet option, as a sticky option or an ancillary data 2878 * item. "len" can be 0 only when it's a sticky option. 2879 * We have 4 cases of combination of "sticky" and "cmsg": 2880 * "sticky=0, cmsg=0": impossible 2881 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2882 * "sticky=1, cmsg=0": RFC3542 socket option 2883 * "sticky=1, cmsg=1": RFC2292 socket option 2884 */ 2885 static int 2886 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2887 struct ucred *cred, int sticky, int cmsg, int uproto) 2888 { 2889 int minmtupolicy, preftemp; 2890 int error; 2891 2892 if (!sticky && !cmsg) { 2893 #ifdef DIAGNOSTIC 2894 printf("ip6_setpktopt: impossible case\n"); 2895 #endif 2896 return (EINVAL); 2897 } 2898 2899 /* 2900 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2901 * not be specified in the context of RFC3542. Conversely, 2902 * RFC3542 types should not be specified in the context of RFC2292. 2903 */ 2904 if (!cmsg) { 2905 switch (optname) { 2906 case IPV6_2292PKTINFO: 2907 case IPV6_2292HOPLIMIT: 2908 case IPV6_2292NEXTHOP: 2909 case IPV6_2292HOPOPTS: 2910 case IPV6_2292DSTOPTS: 2911 case IPV6_2292RTHDR: 2912 case IPV6_2292PKTOPTIONS: 2913 return (ENOPROTOOPT); 2914 } 2915 } 2916 if (sticky && cmsg) { 2917 switch (optname) { 2918 case IPV6_PKTINFO: 2919 case IPV6_HOPLIMIT: 2920 case IPV6_NEXTHOP: 2921 case IPV6_HOPOPTS: 2922 case IPV6_DSTOPTS: 2923 case IPV6_RTHDRDSTOPTS: 2924 case IPV6_RTHDR: 2925 case IPV6_USE_MIN_MTU: 2926 case IPV6_DONTFRAG: 2927 case IPV6_TCLASS: 2928 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2929 return (ENOPROTOOPT); 2930 } 2931 } 2932 2933 switch (optname) { 2934 case IPV6_2292PKTINFO: 2935 case IPV6_PKTINFO: 2936 { 2937 struct ifnet *ifp = NULL; 2938 struct in6_pktinfo *pktinfo; 2939 2940 if (len != sizeof(struct in6_pktinfo)) 2941 return (EINVAL); 2942 2943 pktinfo = (struct in6_pktinfo *)buf; 2944 2945 /* 2946 * An application can clear any sticky IPV6_PKTINFO option by 2947 * doing a "regular" setsockopt with ipi6_addr being 2948 * in6addr_any and ipi6_ifindex being zero. 2949 * [RFC 3542, Section 6] 2950 */ 2951 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2952 pktinfo->ipi6_ifindex == 0 && 2953 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2954 ip6_clearpktopts(opt, optname); 2955 break; 2956 } 2957 2958 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2959 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2960 return (EINVAL); 2961 } 2962 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2963 return (EINVAL); 2964 /* validate the interface index if specified. */ 2965 if (pktinfo->ipi6_ifindex > V_if_index) 2966 return (ENXIO); 2967 if (pktinfo->ipi6_ifindex) { 2968 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2969 if (ifp == NULL) 2970 return (ENXIO); 2971 } 2972 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2973 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2974 return (ENETDOWN); 2975 2976 if (ifp != NULL && 2977 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2978 struct in6_ifaddr *ia; 2979 2980 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2981 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2982 if (ia == NULL) 2983 return (EADDRNOTAVAIL); 2984 ifa_free(&ia->ia_ifa); 2985 } 2986 /* 2987 * We store the address anyway, and let in6_selectsrc() 2988 * validate the specified address. This is because ipi6_addr 2989 * may not have enough information about its scope zone, and 2990 * we may need additional information (such as outgoing 2991 * interface or the scope zone of a destination address) to 2992 * disambiguate the scope. 2993 * XXX: the delay of the validation may confuse the 2994 * application when it is used as a sticky option. 2995 */ 2996 if (opt->ip6po_pktinfo == NULL) { 2997 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2998 M_IP6OPT, M_NOWAIT); 2999 if (opt->ip6po_pktinfo == NULL) 3000 return (ENOBUFS); 3001 } 3002 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 3003 break; 3004 } 3005 3006 case IPV6_2292HOPLIMIT: 3007 case IPV6_HOPLIMIT: 3008 { 3009 int *hlimp; 3010 3011 /* 3012 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 3013 * to simplify the ordering among hoplimit options. 3014 */ 3015 if (optname == IPV6_HOPLIMIT && sticky) 3016 return (ENOPROTOOPT); 3017 3018 if (len != sizeof(int)) 3019 return (EINVAL); 3020 hlimp = (int *)buf; 3021 if (*hlimp < -1 || *hlimp > 255) 3022 return (EINVAL); 3023 3024 opt->ip6po_hlim = *hlimp; 3025 break; 3026 } 3027 3028 case IPV6_TCLASS: 3029 { 3030 int tclass; 3031 3032 if (len != sizeof(int)) 3033 return (EINVAL); 3034 tclass = *(int *)buf; 3035 if (tclass < -1 || tclass > 255) 3036 return (EINVAL); 3037 3038 opt->ip6po_tclass = tclass; 3039 break; 3040 } 3041 3042 case IPV6_2292NEXTHOP: 3043 case IPV6_NEXTHOP: 3044 if (cred != NULL) { 3045 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3046 if (error) 3047 return (error); 3048 } 3049 3050 if (len == 0) { /* just remove the option */ 3051 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3052 break; 3053 } 3054 3055 /* check if cmsg_len is large enough for sa_len */ 3056 if (len < sizeof(struct sockaddr) || len < *buf) 3057 return (EINVAL); 3058 3059 switch (((struct sockaddr *)buf)->sa_family) { 3060 case AF_INET6: 3061 { 3062 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3063 int error; 3064 3065 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3066 return (EINVAL); 3067 3068 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3069 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3070 return (EINVAL); 3071 } 3072 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 3073 != 0) { 3074 return (error); 3075 } 3076 break; 3077 } 3078 case AF_LINK: /* should eventually be supported */ 3079 default: 3080 return (EAFNOSUPPORT); 3081 } 3082 3083 /* turn off the previous option, then set the new option. */ 3084 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3085 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3086 if (opt->ip6po_nexthop == NULL) 3087 return (ENOBUFS); 3088 bcopy(buf, opt->ip6po_nexthop, *buf); 3089 break; 3090 3091 case IPV6_2292HOPOPTS: 3092 case IPV6_HOPOPTS: 3093 { 3094 struct ip6_hbh *hbh; 3095 int hbhlen; 3096 3097 /* 3098 * XXX: We don't allow a non-privileged user to set ANY HbH 3099 * options, since per-option restriction has too much 3100 * overhead. 3101 */ 3102 if (cred != NULL) { 3103 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3104 if (error) 3105 return (error); 3106 } 3107 3108 if (len == 0) { 3109 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3110 break; /* just remove the option */ 3111 } 3112 3113 /* message length validation */ 3114 if (len < sizeof(struct ip6_hbh)) 3115 return (EINVAL); 3116 hbh = (struct ip6_hbh *)buf; 3117 hbhlen = (hbh->ip6h_len + 1) << 3; 3118 if (len != hbhlen) 3119 return (EINVAL); 3120 3121 /* turn off the previous option, then set the new option. */ 3122 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3123 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3124 if (opt->ip6po_hbh == NULL) 3125 return (ENOBUFS); 3126 bcopy(hbh, opt->ip6po_hbh, hbhlen); 3127 3128 break; 3129 } 3130 3131 case IPV6_2292DSTOPTS: 3132 case IPV6_DSTOPTS: 3133 case IPV6_RTHDRDSTOPTS: 3134 { 3135 struct ip6_dest *dest, **newdest = NULL; 3136 int destlen; 3137 3138 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 3139 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3140 if (error) 3141 return (error); 3142 } 3143 3144 if (len == 0) { 3145 ip6_clearpktopts(opt, optname); 3146 break; /* just remove the option */ 3147 } 3148 3149 /* message length validation */ 3150 if (len < sizeof(struct ip6_dest)) 3151 return (EINVAL); 3152 dest = (struct ip6_dest *)buf; 3153 destlen = (dest->ip6d_len + 1) << 3; 3154 if (len != destlen) 3155 return (EINVAL); 3156 3157 /* 3158 * Determine the position that the destination options header 3159 * should be inserted; before or after the routing header. 3160 */ 3161 switch (optname) { 3162 case IPV6_2292DSTOPTS: 3163 /* 3164 * The old advacned API is ambiguous on this point. 3165 * Our approach is to determine the position based 3166 * according to the existence of a routing header. 3167 * Note, however, that this depends on the order of the 3168 * extension headers in the ancillary data; the 1st 3169 * part of the destination options header must appear 3170 * before the routing header in the ancillary data, 3171 * too. 3172 * RFC3542 solved the ambiguity by introducing 3173 * separate ancillary data or option types. 3174 */ 3175 if (opt->ip6po_rthdr == NULL) 3176 newdest = &opt->ip6po_dest1; 3177 else 3178 newdest = &opt->ip6po_dest2; 3179 break; 3180 case IPV6_RTHDRDSTOPTS: 3181 newdest = &opt->ip6po_dest1; 3182 break; 3183 case IPV6_DSTOPTS: 3184 newdest = &opt->ip6po_dest2; 3185 break; 3186 } 3187 3188 /* turn off the previous option, then set the new option. */ 3189 ip6_clearpktopts(opt, optname); 3190 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3191 if (*newdest == NULL) 3192 return (ENOBUFS); 3193 bcopy(dest, *newdest, destlen); 3194 3195 break; 3196 } 3197 3198 case IPV6_2292RTHDR: 3199 case IPV6_RTHDR: 3200 { 3201 struct ip6_rthdr *rth; 3202 int rthlen; 3203 3204 if (len == 0) { 3205 ip6_clearpktopts(opt, IPV6_RTHDR); 3206 break; /* just remove the option */ 3207 } 3208 3209 /* message length validation */ 3210 if (len < sizeof(struct ip6_rthdr)) 3211 return (EINVAL); 3212 rth = (struct ip6_rthdr *)buf; 3213 rthlen = (rth->ip6r_len + 1) << 3; 3214 if (len != rthlen) 3215 return (EINVAL); 3216 3217 switch (rth->ip6r_type) { 3218 case IPV6_RTHDR_TYPE_0: 3219 if (rth->ip6r_len == 0) /* must contain one addr */ 3220 return (EINVAL); 3221 if (rth->ip6r_len % 2) /* length must be even */ 3222 return (EINVAL); 3223 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3224 return (EINVAL); 3225 break; 3226 default: 3227 return (EINVAL); /* not supported */ 3228 } 3229 3230 /* turn off the previous option */ 3231 ip6_clearpktopts(opt, IPV6_RTHDR); 3232 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3233 if (opt->ip6po_rthdr == NULL) 3234 return (ENOBUFS); 3235 bcopy(rth, opt->ip6po_rthdr, rthlen); 3236 3237 break; 3238 } 3239 3240 case IPV6_USE_MIN_MTU: 3241 if (len != sizeof(int)) 3242 return (EINVAL); 3243 minmtupolicy = *(int *)buf; 3244 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3245 minmtupolicy != IP6PO_MINMTU_DISABLE && 3246 minmtupolicy != IP6PO_MINMTU_ALL) { 3247 return (EINVAL); 3248 } 3249 opt->ip6po_minmtu = minmtupolicy; 3250 break; 3251 3252 case IPV6_DONTFRAG: 3253 if (len != sizeof(int)) 3254 return (EINVAL); 3255 3256 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3257 /* 3258 * we ignore this option for TCP sockets. 3259 * (RFC3542 leaves this case unspecified.) 3260 */ 3261 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3262 } else 3263 opt->ip6po_flags |= IP6PO_DONTFRAG; 3264 break; 3265 3266 case IPV6_PREFER_TEMPADDR: 3267 if (len != sizeof(int)) 3268 return (EINVAL); 3269 preftemp = *(int *)buf; 3270 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3271 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3272 preftemp != IP6PO_TEMPADDR_PREFER) { 3273 return (EINVAL); 3274 } 3275 opt->ip6po_prefer_tempaddr = preftemp; 3276 break; 3277 3278 default: 3279 return (ENOPROTOOPT); 3280 } /* end of switch */ 3281 3282 return (0); 3283 } 3284 3285 /* 3286 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3287 * packet to the input queue of a specified interface. Note that this 3288 * calls the output routine of the loopback "driver", but with an interface 3289 * pointer that might NOT be &loif -- easier than replicating that code here. 3290 */ 3291 void 3292 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3293 { 3294 struct mbuf *copym; 3295 struct ip6_hdr *ip6; 3296 3297 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3298 if (copym == NULL) 3299 return; 3300 3301 /* 3302 * Make sure to deep-copy IPv6 header portion in case the data 3303 * is in an mbuf cluster, so that we can safely override the IPv6 3304 * header portion later. 3305 */ 3306 if (!M_WRITABLE(copym) || 3307 copym->m_len < sizeof(struct ip6_hdr)) { 3308 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3309 if (copym == NULL) 3310 return; 3311 } 3312 ip6 = mtod(copym, struct ip6_hdr *); 3313 /* 3314 * clear embedded scope identifiers if necessary. 3315 * in6_clearscope will touch the addresses only when necessary. 3316 */ 3317 in6_clearscope(&ip6->ip6_src); 3318 in6_clearscope(&ip6->ip6_dst); 3319 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3320 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3321 CSUM_PSEUDO_HDR; 3322 copym->m_pkthdr.csum_data = 0xffff; 3323 } 3324 if_simloop(ifp, copym, AF_INET6, 0); 3325 } 3326 3327 /* 3328 * Chop IPv6 header off from the payload. 3329 */ 3330 static int 3331 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3332 { 3333 struct mbuf *mh; 3334 struct ip6_hdr *ip6; 3335 3336 ip6 = mtod(m, struct ip6_hdr *); 3337 if (m->m_len > sizeof(*ip6)) { 3338 mh = m_gethdr(M_NOWAIT, MT_DATA); 3339 if (mh == NULL) { 3340 m_freem(m); 3341 return ENOBUFS; 3342 } 3343 m_move_pkthdr(mh, m); 3344 M_ALIGN(mh, sizeof(*ip6)); 3345 m->m_len -= sizeof(*ip6); 3346 m->m_data += sizeof(*ip6); 3347 mh->m_next = m; 3348 m = mh; 3349 m->m_len = sizeof(*ip6); 3350 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3351 } 3352 exthdrs->ip6e_ip6 = m; 3353 return 0; 3354 } 3355 3356 /* 3357 * Compute IPv6 extension header length. 3358 */ 3359 int 3360 ip6_optlen(struct inpcb *inp) 3361 { 3362 int len; 3363 3364 if (!inp->in6p_outputopts) 3365 return 0; 3366 3367 len = 0; 3368 #define elen(x) \ 3369 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3370 3371 len += elen(inp->in6p_outputopts->ip6po_hbh); 3372 if (inp->in6p_outputopts->ip6po_rthdr) 3373 /* dest1 is valid with rthdr only */ 3374 len += elen(inp->in6p_outputopts->ip6po_dest1); 3375 len += elen(inp->in6p_outputopts->ip6po_rthdr); 3376 len += elen(inp->in6p_outputopts->ip6po_dest2); 3377 return len; 3378 #undef elen 3379 } 3380