1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 #include "opt_ipfw.h" 69 #include "opt_ipsec.h" 70 #include "opt_sctp.h" 71 #include "opt_route.h" 72 #include "opt_rss.h" 73 74 #include <sys/param.h> 75 #include <sys/kernel.h> 76 #include <sys/malloc.h> 77 #include <sys/mbuf.h> 78 #include <sys/errno.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/protosw.h> 82 #include <sys/socket.h> 83 #include <sys/socketvar.h> 84 #include <sys/syslog.h> 85 #include <sys/ucred.h> 86 87 #include <machine/in_cksum.h> 88 89 #include <net/if.h> 90 #include <net/if_var.h> 91 #include <net/netisr.h> 92 #include <net/route.h> 93 #include <net/pfil.h> 94 #include <net/rss_config.h> 95 #include <net/vnet.h> 96 97 #include <netinet/in.h> 98 #include <netinet/in_var.h> 99 #include <netinet/ip_var.h> 100 #include <netinet6/in6_fib.h> 101 #include <netinet6/in6_var.h> 102 #include <netinet/ip6.h> 103 #include <netinet/icmp6.h> 104 #include <netinet6/ip6_var.h> 105 #include <netinet/in_pcb.h> 106 #include <netinet/tcp_var.h> 107 #include <netinet6/nd6.h> 108 #include <netinet6/in6_rss.h> 109 110 #ifdef IPSEC 111 #include <netipsec/ipsec.h> 112 #include <netipsec/ipsec6.h> 113 #include <netipsec/key.h> 114 #include <netinet6/ip6_ipsec.h> 115 #endif /* IPSEC */ 116 #ifdef SCTP 117 #include <netinet/sctp.h> 118 #include <netinet/sctp_crc32.h> 119 #endif 120 121 #include <netinet6/ip6protosw.h> 122 #include <netinet6/scope6_var.h> 123 124 #ifdef FLOWTABLE 125 #include <net/flowtable.h> 126 #endif 127 128 extern int in6_mcast_loop; 129 130 struct ip6_exthdrs { 131 struct mbuf *ip6e_ip6; 132 struct mbuf *ip6e_hbh; 133 struct mbuf *ip6e_dest1; 134 struct mbuf *ip6e_rthdr; 135 struct mbuf *ip6e_dest2; 136 }; 137 138 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 139 struct ucred *, int); 140 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 141 struct socket *, struct sockopt *); 142 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 143 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 144 struct ucred *, int, int, int); 145 146 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 147 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 148 struct ip6_frag **); 149 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 150 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 151 static int ip6_getpmtu(struct route_in6 *, int, 152 struct ifnet *, struct in6_addr *, u_long *, int *, u_int); 153 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 154 u_long *, int *); 155 static int ip6_getpmtu_ctl(u_int, struct in6_addr *, u_long *); 156 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 157 158 159 /* 160 * Make an extension header from option data. hp is the source, and 161 * mp is the destination. 162 */ 163 #define MAKE_EXTHDR(hp, mp) \ 164 do { \ 165 if (hp) { \ 166 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 167 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 168 ((eh)->ip6e_len + 1) << 3); \ 169 if (error) \ 170 goto freehdrs; \ 171 } \ 172 } while (/*CONSTCOND*/ 0) 173 174 /* 175 * Form a chain of extension headers. 176 * m is the extension header mbuf 177 * mp is the previous mbuf in the chain 178 * p is the next header 179 * i is the type of option. 180 */ 181 #define MAKE_CHAIN(m, mp, p, i)\ 182 do {\ 183 if (m) {\ 184 if (!hdrsplit) \ 185 panic("assumption failed: hdr not split"); \ 186 *mtod((m), u_char *) = *(p);\ 187 *(p) = (i);\ 188 p = mtod((m), u_char *);\ 189 (m)->m_next = (mp)->m_next;\ 190 (mp)->m_next = (m);\ 191 (mp) = (m);\ 192 }\ 193 } while (/*CONSTCOND*/ 0) 194 195 void 196 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 197 { 198 u_short csum; 199 200 csum = in_cksum_skip(m, offset + plen, offset); 201 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 202 csum = 0xffff; 203 offset += m->m_pkthdr.csum_data; /* checksum offset */ 204 205 if (offset + sizeof(u_short) > m->m_len) { 206 printf("%s: delayed m_pullup, m->len: %d plen %u off %u " 207 "csum_flags=%b\n", __func__, m->m_len, plen, offset, 208 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 209 /* 210 * XXX this should not happen, but if it does, the correct 211 * behavior may be to insert the checksum in the appropriate 212 * next mbuf in the chain. 213 */ 214 return; 215 } 216 *(u_short *)(m->m_data + offset) = csum; 217 } 218 219 int 220 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 221 int mtu, uint32_t id) 222 { 223 struct mbuf *m, **mnext, *m_frgpart; 224 struct ip6_hdr *ip6, *mhip6; 225 struct ip6_frag *ip6f; 226 int off; 227 int error; 228 int tlen = m0->m_pkthdr.len; 229 230 m = m0; 231 ip6 = mtod(m, struct ip6_hdr *); 232 mnext = &m->m_nextpkt; 233 234 for (off = hlen; off < tlen; off += mtu) { 235 m = m_gethdr(M_NOWAIT, MT_DATA); 236 if (!m) { 237 IP6STAT_INC(ip6s_odropped); 238 return (ENOBUFS); 239 } 240 m->m_flags = m0->m_flags & M_COPYFLAGS; 241 *mnext = m; 242 mnext = &m->m_nextpkt; 243 m->m_data += max_linkhdr; 244 mhip6 = mtod(m, struct ip6_hdr *); 245 *mhip6 = *ip6; 246 m->m_len = sizeof(*mhip6); 247 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 248 if (error) { 249 IP6STAT_INC(ip6s_odropped); 250 return (error); 251 } 252 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 253 if (off + mtu >= tlen) 254 mtu = tlen - off; 255 else 256 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 257 mhip6->ip6_plen = htons((u_short)(mtu + hlen + 258 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 259 if ((m_frgpart = m_copy(m0, off, mtu)) == NULL) { 260 IP6STAT_INC(ip6s_odropped); 261 return (ENOBUFS); 262 } 263 m_cat(m, m_frgpart); 264 m->m_pkthdr.len = mtu + hlen + sizeof(*ip6f); 265 m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum; 266 m->m_pkthdr.rcvif = NULL; 267 ip6f->ip6f_reserved = 0; 268 ip6f->ip6f_ident = id; 269 ip6f->ip6f_nxt = nextproto; 270 IP6STAT_INC(ip6s_ofragments); 271 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 272 } 273 274 return (0); 275 } 276 277 /* 278 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 279 * header (with pri, len, nxt, hlim, src, dst). 280 * This function may modify ver and hlim only. 281 * The mbuf chain containing the packet will be freed. 282 * The mbuf opt, if present, will not be freed. 283 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 284 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 285 * then result of route lookup is stored in ro->ro_rt. 286 * 287 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and 288 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 289 * which is rt_mtu. 290 * 291 * ifpp - XXX: just for statistics 292 */ 293 /* 294 * XXX TODO: no flowid is assigned for outbound flows? 295 */ 296 int 297 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 298 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 299 struct ifnet **ifpp, struct inpcb *inp) 300 { 301 struct ip6_hdr *ip6; 302 struct ifnet *ifp, *origifp; 303 struct mbuf *m = m0; 304 struct mbuf *mprev = NULL; 305 int hlen, tlen, len; 306 struct route_in6 ip6route; 307 struct rtentry *rt = NULL; 308 struct sockaddr_in6 *dst, src_sa, dst_sa; 309 struct in6_addr odst; 310 int error = 0; 311 struct in6_ifaddr *ia = NULL; 312 u_long mtu; 313 int alwaysfrag, dontfrag; 314 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 315 struct ip6_exthdrs exthdrs; 316 struct in6_addr finaldst, src0, dst0; 317 u_int32_t zone; 318 struct route_in6 *ro_pmtu = NULL; 319 int hdrsplit = 0; 320 int sw_csum, tso; 321 int needfiblookup; 322 uint32_t fibnum; 323 struct m_tag *fwd_tag = NULL; 324 uint32_t id; 325 326 ip6 = mtod(m, struct ip6_hdr *); 327 if (ip6 == NULL) { 328 printf ("ip6 is NULL"); 329 goto bad; 330 } 331 332 if (inp != NULL) { 333 M_SETFIB(m, inp->inp_inc.inc_fibnum); 334 if ((flags & IP_NODEFAULTFLOWID) == 0) { 335 /* unconditionally set flowid */ 336 m->m_pkthdr.flowid = inp->inp_flowid; 337 M_HASHTYPE_SET(m, inp->inp_flowtype); 338 } 339 } 340 341 finaldst = ip6->ip6_dst; 342 bzero(&exthdrs, sizeof(exthdrs)); 343 if (opt) { 344 /* Hop-by-Hop options header */ 345 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 346 /* Destination options header(1st part) */ 347 if (opt->ip6po_rthdr) { 348 /* 349 * Destination options header(1st part) 350 * This only makes sense with a routing header. 351 * See Section 9.2 of RFC 3542. 352 * Disabling this part just for MIP6 convenience is 353 * a bad idea. We need to think carefully about a 354 * way to make the advanced API coexist with MIP6 355 * options, which might automatically be inserted in 356 * the kernel. 357 */ 358 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 359 } 360 /* Routing header */ 361 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 362 /* Destination options header(2nd part) */ 363 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 364 } 365 366 #ifdef IPSEC 367 /* 368 * IPSec checking which handles several cases. 369 * FAST IPSEC: We re-injected the packet. 370 * XXX: need scope argument. 371 */ 372 switch(ip6_ipsec_output(&m, inp, &error)) 373 { 374 case 1: /* Bad packet */ 375 goto freehdrs; 376 case -1: /* IPSec done */ 377 goto done; 378 case 0: /* No IPSec */ 379 default: 380 break; 381 } 382 #endif /* IPSEC */ 383 384 /* 385 * Calculate the total length of the extension header chain. 386 * Keep the length of the unfragmentable part for fragmentation. 387 */ 388 optlen = 0; 389 if (exthdrs.ip6e_hbh) 390 optlen += exthdrs.ip6e_hbh->m_len; 391 if (exthdrs.ip6e_dest1) 392 optlen += exthdrs.ip6e_dest1->m_len; 393 if (exthdrs.ip6e_rthdr) 394 optlen += exthdrs.ip6e_rthdr->m_len; 395 unfragpartlen = optlen + sizeof(struct ip6_hdr); 396 397 /* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */ 398 if (exthdrs.ip6e_dest2) 399 optlen += exthdrs.ip6e_dest2->m_len; 400 401 /* 402 * If there is at least one extension header, 403 * separate IP6 header from the payload. 404 */ 405 if (optlen && !hdrsplit) { 406 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 407 m = NULL; 408 goto freehdrs; 409 } 410 m = exthdrs.ip6e_ip6; 411 hdrsplit++; 412 } 413 414 /* adjust pointer */ 415 ip6 = mtod(m, struct ip6_hdr *); 416 417 /* adjust mbuf packet header length */ 418 m->m_pkthdr.len += optlen; 419 plen = m->m_pkthdr.len - sizeof(*ip6); 420 421 /* If this is a jumbo payload, insert a jumbo payload option. */ 422 if (plen > IPV6_MAXPACKET) { 423 if (!hdrsplit) { 424 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 425 m = NULL; 426 goto freehdrs; 427 } 428 m = exthdrs.ip6e_ip6; 429 hdrsplit++; 430 } 431 /* adjust pointer */ 432 ip6 = mtod(m, struct ip6_hdr *); 433 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 434 goto freehdrs; 435 ip6->ip6_plen = 0; 436 } else 437 ip6->ip6_plen = htons(plen); 438 439 /* 440 * Concatenate headers and fill in next header fields. 441 * Here we have, on "m" 442 * IPv6 payload 443 * and we insert headers accordingly. Finally, we should be getting: 444 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 445 * 446 * during the header composing process, "m" points to IPv6 header. 447 * "mprev" points to an extension header prior to esp. 448 */ 449 u_char *nexthdrp = &ip6->ip6_nxt; 450 mprev = m; 451 452 /* 453 * we treat dest2 specially. this makes IPsec processing 454 * much easier. the goal here is to make mprev point the 455 * mbuf prior to dest2. 456 * 457 * result: IPv6 dest2 payload 458 * m and mprev will point to IPv6 header. 459 */ 460 if (exthdrs.ip6e_dest2) { 461 if (!hdrsplit) 462 panic("assumption failed: hdr not split"); 463 exthdrs.ip6e_dest2->m_next = m->m_next; 464 m->m_next = exthdrs.ip6e_dest2; 465 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 466 ip6->ip6_nxt = IPPROTO_DSTOPTS; 467 } 468 469 /* 470 * result: IPv6 hbh dest1 rthdr dest2 payload 471 * m will point to IPv6 header. mprev will point to the 472 * extension header prior to dest2 (rthdr in the above case). 473 */ 474 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 475 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 476 IPPROTO_DSTOPTS); 477 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 478 IPPROTO_ROUTING); 479 480 /* 481 * If there is a routing header, discard the packet. 482 */ 483 if (exthdrs.ip6e_rthdr) { 484 error = EINVAL; 485 goto bad; 486 } 487 488 /* Source address validation */ 489 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 490 (flags & IPV6_UNSPECSRC) == 0) { 491 error = EOPNOTSUPP; 492 IP6STAT_INC(ip6s_badscope); 493 goto bad; 494 } 495 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 496 error = EOPNOTSUPP; 497 IP6STAT_INC(ip6s_badscope); 498 goto bad; 499 } 500 501 IP6STAT_INC(ip6s_localout); 502 503 /* 504 * Route packet. 505 */ 506 if (ro == NULL) { 507 ro = &ip6route; 508 bzero((caddr_t)ro, sizeof(*ro)); 509 } 510 ro_pmtu = ro; 511 if (opt && opt->ip6po_rthdr) 512 ro = &opt->ip6po_route; 513 dst = (struct sockaddr_in6 *)&ro->ro_dst; 514 #ifdef FLOWTABLE 515 if (ro->ro_rt == NULL) 516 (void )flowtable_lookup(AF_INET6, m, (struct route *)ro); 517 #endif 518 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 519 again: 520 /* 521 * if specified, try to fill in the traffic class field. 522 * do not override if a non-zero value is already set. 523 * we check the diffserv field and the ecn field separately. 524 */ 525 if (opt && opt->ip6po_tclass >= 0) { 526 int mask = 0; 527 528 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 529 mask |= 0xfc; 530 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 531 mask |= 0x03; 532 if (mask != 0) 533 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 534 } 535 536 /* fill in or override the hop limit field, if necessary. */ 537 if (opt && opt->ip6po_hlim != -1) 538 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 539 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 540 if (im6o != NULL) 541 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 542 else 543 ip6->ip6_hlim = V_ip6_defmcasthlim; 544 } 545 546 /* adjust pointer */ 547 ip6 = mtod(m, struct ip6_hdr *); 548 549 /* 550 * Validate route against routing table additions; 551 * a better/more specific route might have been added. 552 * Make sure address family is set in route. 553 */ 554 if (inp) { 555 ro->ro_dst.sin6_family = AF_INET6; 556 RT_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, fibnum); 557 } 558 if (ro->ro_rt && fwd_tag == NULL && (ro->ro_rt->rt_flags & RTF_UP) && 559 ro->ro_dst.sin6_family == AF_INET6 && 560 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 561 rt = ro->ro_rt; 562 ifp = ro->ro_rt->rt_ifp; 563 } else { 564 if (fwd_tag == NULL) { 565 bzero(&dst_sa, sizeof(dst_sa)); 566 dst_sa.sin6_family = AF_INET6; 567 dst_sa.sin6_len = sizeof(dst_sa); 568 dst_sa.sin6_addr = ip6->ip6_dst; 569 } 570 error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp, 571 &rt, fibnum); 572 if (error != 0) { 573 if (ifp != NULL) 574 in6_ifstat_inc(ifp, ifs6_out_discard); 575 goto bad; 576 } 577 } 578 if (rt == NULL) { 579 /* 580 * If in6_selectroute() does not return a route entry, 581 * dst may not have been updated. 582 */ 583 *dst = dst_sa; /* XXX */ 584 } 585 586 /* 587 * then rt (for unicast) and ifp must be non-NULL valid values. 588 */ 589 if ((flags & IPV6_FORWARDING) == 0) { 590 /* XXX: the FORWARDING flag can be set for mrouting. */ 591 in6_ifstat_inc(ifp, ifs6_out_request); 592 } 593 if (rt != NULL) { 594 ia = (struct in6_ifaddr *)(rt->rt_ifa); 595 counter_u64_add(rt->rt_pksent, 1); 596 } 597 598 599 /* 600 * The outgoing interface must be in the zone of source and 601 * destination addresses. 602 */ 603 origifp = ifp; 604 605 src0 = ip6->ip6_src; 606 if (in6_setscope(&src0, origifp, &zone)) 607 goto badscope; 608 bzero(&src_sa, sizeof(src_sa)); 609 src_sa.sin6_family = AF_INET6; 610 src_sa.sin6_len = sizeof(src_sa); 611 src_sa.sin6_addr = ip6->ip6_src; 612 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 613 goto badscope; 614 615 dst0 = ip6->ip6_dst; 616 if (in6_setscope(&dst0, origifp, &zone)) 617 goto badscope; 618 /* re-initialize to be sure */ 619 bzero(&dst_sa, sizeof(dst_sa)); 620 dst_sa.sin6_family = AF_INET6; 621 dst_sa.sin6_len = sizeof(dst_sa); 622 dst_sa.sin6_addr = ip6->ip6_dst; 623 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 624 goto badscope; 625 } 626 627 /* We should use ia_ifp to support the case of 628 * sending packets to an address of our own. 629 */ 630 if (ia != NULL && ia->ia_ifp) 631 ifp = ia->ia_ifp; 632 633 /* scope check is done. */ 634 goto routefound; 635 636 badscope: 637 IP6STAT_INC(ip6s_badscope); 638 in6_ifstat_inc(origifp, ifs6_out_discard); 639 if (error == 0) 640 error = EHOSTUNREACH; /* XXX */ 641 goto bad; 642 643 routefound: 644 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 645 if (opt && opt->ip6po_nextroute.ro_rt) { 646 /* 647 * The nexthop is explicitly specified by the 648 * application. We assume the next hop is an IPv6 649 * address. 650 */ 651 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 652 } 653 else if ((rt->rt_flags & RTF_GATEWAY)) 654 dst = (struct sockaddr_in6 *)rt->rt_gateway; 655 } 656 657 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 658 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 659 } else { 660 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 661 in6_ifstat_inc(ifp, ifs6_out_mcast); 662 /* 663 * Confirm that the outgoing interface supports multicast. 664 */ 665 if (!(ifp->if_flags & IFF_MULTICAST)) { 666 IP6STAT_INC(ip6s_noroute); 667 in6_ifstat_inc(ifp, ifs6_out_discard); 668 error = ENETUNREACH; 669 goto bad; 670 } 671 if ((im6o == NULL && in6_mcast_loop) || 672 (im6o && im6o->im6o_multicast_loop)) { 673 /* 674 * Loop back multicast datagram if not expressly 675 * forbidden to do so, even if we have not joined 676 * the address; protocols will filter it later, 677 * thus deferring a hash lookup and lock acquisition 678 * at the expense of an m_copym(). 679 */ 680 ip6_mloopback(ifp, m); 681 } else { 682 /* 683 * If we are acting as a multicast router, perform 684 * multicast forwarding as if the packet had just 685 * arrived on the interface to which we are about 686 * to send. The multicast forwarding function 687 * recursively calls this function, using the 688 * IPV6_FORWARDING flag to prevent infinite recursion. 689 * 690 * Multicasts that are looped back by ip6_mloopback(), 691 * above, will be forwarded by the ip6_input() routine, 692 * if necessary. 693 */ 694 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 695 /* 696 * XXX: ip6_mforward expects that rcvif is NULL 697 * when it is called from the originating path. 698 * However, it may not always be the case. 699 */ 700 m->m_pkthdr.rcvif = NULL; 701 if (ip6_mforward(ip6, ifp, m) != 0) { 702 m_freem(m); 703 goto done; 704 } 705 } 706 } 707 /* 708 * Multicasts with a hoplimit of zero may be looped back, 709 * above, but must not be transmitted on a network. 710 * Also, multicasts addressed to the loopback interface 711 * are not sent -- the above call to ip6_mloopback() will 712 * loop back a copy if this host actually belongs to the 713 * destination group on the loopback interface. 714 */ 715 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 716 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 717 m_freem(m); 718 goto done; 719 } 720 } 721 722 /* 723 * Fill the outgoing inteface to tell the upper layer 724 * to increment per-interface statistics. 725 */ 726 if (ifpp) 727 *ifpp = ifp; 728 729 /* Determine path MTU. */ 730 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &finaldst, &mtu, 731 &alwaysfrag, fibnum)) != 0) 732 goto bad; 733 734 /* 735 * The caller of this function may specify to use the minimum MTU 736 * in some cases. 737 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 738 * setting. The logic is a bit complicated; by default, unicast 739 * packets will follow path MTU while multicast packets will be sent at 740 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 741 * including unicast ones will be sent at the minimum MTU. Multicast 742 * packets will always be sent at the minimum MTU unless 743 * IP6PO_MINMTU_DISABLE is explicitly specified. 744 * See RFC 3542 for more details. 745 */ 746 if (mtu > IPV6_MMTU) { 747 if ((flags & IPV6_MINMTU)) 748 mtu = IPV6_MMTU; 749 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 750 mtu = IPV6_MMTU; 751 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 752 (opt == NULL || 753 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 754 mtu = IPV6_MMTU; 755 } 756 } 757 758 /* 759 * clear embedded scope identifiers if necessary. 760 * in6_clearscope will touch the addresses only when necessary. 761 */ 762 in6_clearscope(&ip6->ip6_src); 763 in6_clearscope(&ip6->ip6_dst); 764 765 /* 766 * If the outgoing packet contains a hop-by-hop options header, 767 * it must be examined and processed even by the source node. 768 * (RFC 2460, section 4.) 769 */ 770 if (exthdrs.ip6e_hbh) { 771 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 772 u_int32_t dummy; /* XXX unused */ 773 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 774 775 #ifdef DIAGNOSTIC 776 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 777 panic("ip6e_hbh is not contiguous"); 778 #endif 779 /* 780 * XXX: if we have to send an ICMPv6 error to the sender, 781 * we need the M_LOOP flag since icmp6_error() expects 782 * the IPv6 and the hop-by-hop options header are 783 * contiguous unless the flag is set. 784 */ 785 m->m_flags |= M_LOOP; 786 m->m_pkthdr.rcvif = ifp; 787 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 788 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 789 &dummy, &plen) < 0) { 790 /* m was already freed at this point */ 791 error = EINVAL;/* better error? */ 792 goto done; 793 } 794 m->m_flags &= ~M_LOOP; /* XXX */ 795 m->m_pkthdr.rcvif = NULL; 796 } 797 798 /* Jump over all PFIL processing if hooks are not active. */ 799 if (!PFIL_HOOKED(&V_inet6_pfil_hook)) 800 goto passout; 801 802 odst = ip6->ip6_dst; 803 /* Run through list of hooks for output packets. */ 804 error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp); 805 if (error != 0 || m == NULL) 806 goto done; 807 ip6 = mtod(m, struct ip6_hdr *); 808 809 needfiblookup = 0; 810 /* See if destination IP address was changed by packet filter. */ 811 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 812 m->m_flags |= M_SKIP_FIREWALL; 813 /* If destination is now ourself drop to ip6_input(). */ 814 if (in6_localip(&ip6->ip6_dst)) { 815 m->m_flags |= M_FASTFWD_OURS; 816 if (m->m_pkthdr.rcvif == NULL) 817 m->m_pkthdr.rcvif = V_loif; 818 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 819 m->m_pkthdr.csum_flags |= 820 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 821 m->m_pkthdr.csum_data = 0xffff; 822 } 823 #ifdef SCTP 824 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 825 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 826 #endif 827 error = netisr_queue(NETISR_IPV6, m); 828 goto done; 829 } else { 830 RO_RTFREE(ro); 831 needfiblookup = 1; /* Redo the routing table lookup. */ 832 } 833 } 834 /* See if fib was changed by packet filter. */ 835 if (fibnum != M_GETFIB(m)) { 836 m->m_flags |= M_SKIP_FIREWALL; 837 fibnum = M_GETFIB(m); 838 RO_RTFREE(ro); 839 needfiblookup = 1; 840 } 841 if (needfiblookup) 842 goto again; 843 844 /* See if local, if yes, send it to netisr. */ 845 if (m->m_flags & M_FASTFWD_OURS) { 846 if (m->m_pkthdr.rcvif == NULL) 847 m->m_pkthdr.rcvif = V_loif; 848 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 849 m->m_pkthdr.csum_flags |= 850 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 851 m->m_pkthdr.csum_data = 0xffff; 852 } 853 #ifdef SCTP 854 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 855 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 856 #endif 857 error = netisr_queue(NETISR_IPV6, m); 858 goto done; 859 } 860 /* Or forward to some other address? */ 861 if ((m->m_flags & M_IP6_NEXTHOP) && 862 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 863 dst = (struct sockaddr_in6 *)&ro->ro_dst; 864 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 865 m->m_flags |= M_SKIP_FIREWALL; 866 m->m_flags &= ~M_IP6_NEXTHOP; 867 m_tag_delete(m, fwd_tag); 868 goto again; 869 } 870 871 passout: 872 /* 873 * Send the packet to the outgoing interface. 874 * If necessary, do IPv6 fragmentation before sending. 875 * 876 * the logic here is rather complex: 877 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 878 * 1-a: send as is if tlen <= path mtu 879 * 1-b: fragment if tlen > path mtu 880 * 881 * 2: if user asks us not to fragment (dontfrag == 1) 882 * 2-a: send as is if tlen <= interface mtu 883 * 2-b: error if tlen > interface mtu 884 * 885 * 3: if we always need to attach fragment header (alwaysfrag == 1) 886 * always fragment 887 * 888 * 4: if dontfrag == 1 && alwaysfrag == 1 889 * error, as we cannot handle this conflicting request 890 */ 891 sw_csum = m->m_pkthdr.csum_flags; 892 if (!hdrsplit) { 893 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 894 sw_csum &= ~ifp->if_hwassist; 895 } else 896 tso = 0; 897 /* 898 * If we added extension headers, we will not do TSO and calculate the 899 * checksums ourselves for now. 900 * XXX-BZ Need a framework to know when the NIC can handle it, even 901 * with ext. hdrs. 902 */ 903 if (sw_csum & CSUM_DELAY_DATA_IPV6) { 904 sw_csum &= ~CSUM_DELAY_DATA_IPV6; 905 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 906 } 907 #ifdef SCTP 908 if (sw_csum & CSUM_SCTP_IPV6) { 909 sw_csum &= ~CSUM_SCTP_IPV6; 910 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 911 } 912 #endif 913 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 914 tlen = m->m_pkthdr.len; 915 916 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 917 dontfrag = 1; 918 else 919 dontfrag = 0; 920 if (dontfrag && alwaysfrag) { /* case 4 */ 921 /* conflicting request - can't transmit */ 922 error = EMSGSIZE; 923 goto bad; 924 } 925 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ 926 /* 927 * Even if the DONTFRAG option is specified, we cannot send the 928 * packet when the data length is larger than the MTU of the 929 * outgoing interface. 930 * Notify the error by sending IPV6_PATHMTU ancillary data if 931 * application wanted to know the MTU value. Also return an 932 * error code (this is not described in the API spec). 933 */ 934 if (inp != NULL) 935 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 936 error = EMSGSIZE; 937 goto bad; 938 } 939 940 /* 941 * transmit packet without fragmentation 942 */ 943 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 944 struct in6_ifaddr *ia6; 945 946 ip6 = mtod(m, struct ip6_hdr *); 947 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 948 if (ia6) { 949 /* Record statistics for this interface address. */ 950 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 951 counter_u64_add(ia6->ia_ifa.ifa_obytes, 952 m->m_pkthdr.len); 953 ifa_free(&ia6->ia_ifa); 954 } 955 error = nd6_output_ifp(ifp, origifp, m, dst, 956 (struct route *)ro); 957 goto done; 958 } 959 960 /* 961 * try to fragment the packet. case 1-b and 3 962 */ 963 if (mtu < IPV6_MMTU) { 964 /* path MTU cannot be less than IPV6_MMTU */ 965 error = EMSGSIZE; 966 in6_ifstat_inc(ifp, ifs6_out_fragfail); 967 goto bad; 968 } else if (ip6->ip6_plen == 0) { 969 /* jumbo payload cannot be fragmented */ 970 error = EMSGSIZE; 971 in6_ifstat_inc(ifp, ifs6_out_fragfail); 972 goto bad; 973 } else { 974 u_char nextproto; 975 976 /* 977 * Too large for the destination or interface; 978 * fragment if possible. 979 * Must be able to put at least 8 bytes per fragment. 980 */ 981 hlen = unfragpartlen; 982 if (mtu > IPV6_MAXPACKET) 983 mtu = IPV6_MAXPACKET; 984 985 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 986 if (len < 8) { 987 error = EMSGSIZE; 988 in6_ifstat_inc(ifp, ifs6_out_fragfail); 989 goto bad; 990 } 991 992 /* 993 * If the interface will not calculate checksums on 994 * fragmented packets, then do it here. 995 * XXX-BZ handle the hw offloading case. Need flags. 996 */ 997 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 998 in6_delayed_cksum(m, plen, hlen); 999 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 1000 } 1001 #ifdef SCTP 1002 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 1003 sctp_delayed_cksum(m, hlen); 1004 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 1005 } 1006 #endif 1007 /* 1008 * Change the next header field of the last header in the 1009 * unfragmentable part. 1010 */ 1011 if (exthdrs.ip6e_rthdr) { 1012 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1013 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1014 } else if (exthdrs.ip6e_dest1) { 1015 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1016 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1017 } else if (exthdrs.ip6e_hbh) { 1018 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1019 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1020 } else { 1021 nextproto = ip6->ip6_nxt; 1022 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1023 } 1024 1025 /* 1026 * Loop through length of segment after first fragment, 1027 * make new header and copy data of each part and link onto 1028 * chain. 1029 */ 1030 m0 = m; 1031 id = htonl(ip6_randomid()); 1032 if ((error = ip6_fragment(ifp, m, hlen, nextproto, len, id))) 1033 goto sendorfree; 1034 1035 in6_ifstat_inc(ifp, ifs6_out_fragok); 1036 } 1037 1038 /* 1039 * Remove leading garbages. 1040 */ 1041 sendorfree: 1042 m = m0->m_nextpkt; 1043 m0->m_nextpkt = 0; 1044 m_freem(m0); 1045 for (m0 = m; m; m = m0) { 1046 m0 = m->m_nextpkt; 1047 m->m_nextpkt = 0; 1048 if (error == 0) { 1049 /* Record statistics for this interface address. */ 1050 if (ia) { 1051 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1052 counter_u64_add(ia->ia_ifa.ifa_obytes, 1053 m->m_pkthdr.len); 1054 } 1055 error = nd6_output_ifp(ifp, origifp, m, dst, 1056 (struct route *)ro); 1057 } else 1058 m_freem(m); 1059 } 1060 1061 if (error == 0) 1062 IP6STAT_INC(ip6s_fragmented); 1063 1064 done: 1065 if (ro == &ip6route) 1066 RO_RTFREE(ro); 1067 return (error); 1068 1069 freehdrs: 1070 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1071 m_freem(exthdrs.ip6e_dest1); 1072 m_freem(exthdrs.ip6e_rthdr); 1073 m_freem(exthdrs.ip6e_dest2); 1074 /* FALLTHROUGH */ 1075 bad: 1076 if (m) 1077 m_freem(m); 1078 goto done; 1079 } 1080 1081 static int 1082 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1083 { 1084 struct mbuf *m; 1085 1086 if (hlen > MCLBYTES) 1087 return (ENOBUFS); /* XXX */ 1088 1089 if (hlen > MLEN) 1090 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1091 else 1092 m = m_get(M_NOWAIT, MT_DATA); 1093 if (m == NULL) 1094 return (ENOBUFS); 1095 m->m_len = hlen; 1096 if (hdr) 1097 bcopy(hdr, mtod(m, caddr_t), hlen); 1098 1099 *mp = m; 1100 return (0); 1101 } 1102 1103 /* 1104 * Insert jumbo payload option. 1105 */ 1106 static int 1107 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1108 { 1109 struct mbuf *mopt; 1110 u_char *optbuf; 1111 u_int32_t v; 1112 1113 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1114 1115 /* 1116 * If there is no hop-by-hop options header, allocate new one. 1117 * If there is one but it doesn't have enough space to store the 1118 * jumbo payload option, allocate a cluster to store the whole options. 1119 * Otherwise, use it to store the options. 1120 */ 1121 if (exthdrs->ip6e_hbh == NULL) { 1122 mopt = m_get(M_NOWAIT, MT_DATA); 1123 if (mopt == NULL) 1124 return (ENOBUFS); 1125 mopt->m_len = JUMBOOPTLEN; 1126 optbuf = mtod(mopt, u_char *); 1127 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1128 exthdrs->ip6e_hbh = mopt; 1129 } else { 1130 struct ip6_hbh *hbh; 1131 1132 mopt = exthdrs->ip6e_hbh; 1133 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1134 /* 1135 * XXX assumption: 1136 * - exthdrs->ip6e_hbh is not referenced from places 1137 * other than exthdrs. 1138 * - exthdrs->ip6e_hbh is not an mbuf chain. 1139 */ 1140 int oldoptlen = mopt->m_len; 1141 struct mbuf *n; 1142 1143 /* 1144 * XXX: give up if the whole (new) hbh header does 1145 * not fit even in an mbuf cluster. 1146 */ 1147 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1148 return (ENOBUFS); 1149 1150 /* 1151 * As a consequence, we must always prepare a cluster 1152 * at this point. 1153 */ 1154 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1155 if (n == NULL) 1156 return (ENOBUFS); 1157 n->m_len = oldoptlen + JUMBOOPTLEN; 1158 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1159 oldoptlen); 1160 optbuf = mtod(n, caddr_t) + oldoptlen; 1161 m_freem(mopt); 1162 mopt = exthdrs->ip6e_hbh = n; 1163 } else { 1164 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1165 mopt->m_len += JUMBOOPTLEN; 1166 } 1167 optbuf[0] = IP6OPT_PADN; 1168 optbuf[1] = 1; 1169 1170 /* 1171 * Adjust the header length according to the pad and 1172 * the jumbo payload option. 1173 */ 1174 hbh = mtod(mopt, struct ip6_hbh *); 1175 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1176 } 1177 1178 /* fill in the option. */ 1179 optbuf[2] = IP6OPT_JUMBO; 1180 optbuf[3] = 4; 1181 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1182 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1183 1184 /* finally, adjust the packet header length */ 1185 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1186 1187 return (0); 1188 #undef JUMBOOPTLEN 1189 } 1190 1191 /* 1192 * Insert fragment header and copy unfragmentable header portions. 1193 */ 1194 static int 1195 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1196 struct ip6_frag **frghdrp) 1197 { 1198 struct mbuf *n, *mlast; 1199 1200 if (hlen > sizeof(struct ip6_hdr)) { 1201 n = m_copym(m0, sizeof(struct ip6_hdr), 1202 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1203 if (n == NULL) 1204 return (ENOBUFS); 1205 m->m_next = n; 1206 } else 1207 n = m; 1208 1209 /* Search for the last mbuf of unfragmentable part. */ 1210 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1211 ; 1212 1213 if (M_WRITABLE(mlast) && 1214 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1215 /* use the trailing space of the last mbuf for the fragment hdr */ 1216 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1217 mlast->m_len); 1218 mlast->m_len += sizeof(struct ip6_frag); 1219 m->m_pkthdr.len += sizeof(struct ip6_frag); 1220 } else { 1221 /* allocate a new mbuf for the fragment header */ 1222 struct mbuf *mfrg; 1223 1224 mfrg = m_get(M_NOWAIT, MT_DATA); 1225 if (mfrg == NULL) 1226 return (ENOBUFS); 1227 mfrg->m_len = sizeof(struct ip6_frag); 1228 *frghdrp = mtod(mfrg, struct ip6_frag *); 1229 mlast->m_next = mfrg; 1230 } 1231 1232 return (0); 1233 } 1234 1235 /* 1236 * Calculates IPv6 path mtu for destination @dst. 1237 * Resulting MTU is stored in @mtup. 1238 * 1239 * Returns 0 on success. 1240 */ 1241 static int 1242 ip6_getpmtu_ctl(u_int fibnum, struct in6_addr *dst, u_long *mtup) 1243 { 1244 struct nhop6_extended nh6; 1245 struct in6_addr kdst; 1246 uint32_t scopeid; 1247 struct ifnet *ifp; 1248 u_long mtu; 1249 int error; 1250 1251 in6_splitscope(dst, &kdst, &scopeid); 1252 if (fib6_lookup_nh_ext(fibnum, &kdst, scopeid, NHR_REF, 0, &nh6) != 0) 1253 return (EHOSTUNREACH); 1254 1255 ifp = nh6.nh_ifp; 1256 mtu = nh6.nh_mtu; 1257 1258 error = ip6_calcmtu(ifp, dst, mtu, mtup, NULL); 1259 fib6_free_nh_ext(fibnum, &nh6); 1260 1261 return (error); 1262 } 1263 1264 /* 1265 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1266 * and cached data in @ro_pmtu. 1267 * MTU from (successful) route lookup is saved (along with dst) 1268 * inside @ro_pmtu to avoid subsequent route lookups after packet 1269 * filter processing. 1270 * 1271 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1272 * Returns 0 on success. 1273 */ 1274 static int 1275 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1276 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup, 1277 int *alwaysfragp, u_int fibnum) 1278 { 1279 struct nhop6_basic nh6; 1280 struct in6_addr kdst; 1281 uint32_t scopeid; 1282 struct sockaddr_in6 *sa6_dst; 1283 u_long mtu; 1284 1285 mtu = 0; 1286 if (do_lookup) { 1287 1288 /* 1289 * Here ro_pmtu has final destination address, while 1290 * ro might represent immediate destination. 1291 * Use ro_pmtu destination since mtu might differ. 1292 */ 1293 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1294 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1295 ro_pmtu->ro_mtu = 0; 1296 1297 if (ro_pmtu->ro_mtu == 0) { 1298 bzero(sa6_dst, sizeof(*sa6_dst)); 1299 sa6_dst->sin6_family = AF_INET6; 1300 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1301 sa6_dst->sin6_addr = *dst; 1302 1303 in6_splitscope(dst, &kdst, &scopeid); 1304 if (fib6_lookup_nh_basic(fibnum, &kdst, scopeid, 0, 0, 1305 &nh6) == 0) 1306 ro_pmtu->ro_mtu = nh6.nh_mtu; 1307 } 1308 1309 mtu = ro_pmtu->ro_mtu; 1310 } 1311 1312 if (ro_pmtu->ro_rt) 1313 mtu = ro_pmtu->ro_rt->rt_mtu; 1314 1315 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp)); 1316 } 1317 1318 /* 1319 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1320 * hostcache data for @dst. 1321 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1322 * 1323 * Returns 0 on success. 1324 */ 1325 static int 1326 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1327 u_long *mtup, int *alwaysfragp) 1328 { 1329 u_long mtu = 0; 1330 int alwaysfrag = 0; 1331 int error = 0; 1332 1333 if (rt_mtu > 0) { 1334 u_int32_t ifmtu; 1335 struct in_conninfo inc; 1336 1337 bzero(&inc, sizeof(inc)); 1338 inc.inc_flags |= INC_ISIPV6; 1339 inc.inc6_faddr = *dst; 1340 1341 ifmtu = IN6_LINKMTU(ifp); 1342 mtu = tcp_hc_getmtu(&inc); 1343 if (mtu) 1344 mtu = min(mtu, rt_mtu); 1345 else 1346 mtu = rt_mtu; 1347 if (mtu == 0) 1348 mtu = ifmtu; 1349 else if (mtu < IPV6_MMTU) { 1350 /* 1351 * RFC2460 section 5, last paragraph: 1352 * if we record ICMPv6 too big message with 1353 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1354 * or smaller, with framgent header attached. 1355 * (fragment header is needed regardless from the 1356 * packet size, for translators to identify packets) 1357 */ 1358 alwaysfrag = 1; 1359 mtu = IPV6_MMTU; 1360 } 1361 } else if (ifp) { 1362 mtu = IN6_LINKMTU(ifp); 1363 } else 1364 error = EHOSTUNREACH; /* XXX */ 1365 1366 *mtup = mtu; 1367 if (alwaysfragp) 1368 *alwaysfragp = alwaysfrag; 1369 return (error); 1370 } 1371 1372 /* 1373 * IP6 socket option processing. 1374 */ 1375 int 1376 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1377 { 1378 int optdatalen, uproto; 1379 void *optdata; 1380 struct inpcb *in6p = sotoinpcb(so); 1381 int error, optval; 1382 int level, op, optname; 1383 int optlen; 1384 struct thread *td; 1385 #ifdef RSS 1386 uint32_t rss_bucket; 1387 int retval; 1388 #endif 1389 1390 level = sopt->sopt_level; 1391 op = sopt->sopt_dir; 1392 optname = sopt->sopt_name; 1393 optlen = sopt->sopt_valsize; 1394 td = sopt->sopt_td; 1395 error = 0; 1396 optval = 0; 1397 uproto = (int)so->so_proto->pr_protocol; 1398 1399 if (level != IPPROTO_IPV6) { 1400 error = EINVAL; 1401 1402 if (sopt->sopt_level == SOL_SOCKET && 1403 sopt->sopt_dir == SOPT_SET) { 1404 switch (sopt->sopt_name) { 1405 case SO_REUSEADDR: 1406 INP_WLOCK(in6p); 1407 if ((so->so_options & SO_REUSEADDR) != 0) 1408 in6p->inp_flags2 |= INP_REUSEADDR; 1409 else 1410 in6p->inp_flags2 &= ~INP_REUSEADDR; 1411 INP_WUNLOCK(in6p); 1412 error = 0; 1413 break; 1414 case SO_REUSEPORT: 1415 INP_WLOCK(in6p); 1416 if ((so->so_options & SO_REUSEPORT) != 0) 1417 in6p->inp_flags2 |= INP_REUSEPORT; 1418 else 1419 in6p->inp_flags2 &= ~INP_REUSEPORT; 1420 INP_WUNLOCK(in6p); 1421 error = 0; 1422 break; 1423 case SO_SETFIB: 1424 INP_WLOCK(in6p); 1425 in6p->inp_inc.inc_fibnum = so->so_fibnum; 1426 INP_WUNLOCK(in6p); 1427 error = 0; 1428 break; 1429 default: 1430 break; 1431 } 1432 } 1433 } else { /* level == IPPROTO_IPV6 */ 1434 switch (op) { 1435 1436 case SOPT_SET: 1437 switch (optname) { 1438 case IPV6_2292PKTOPTIONS: 1439 #ifdef IPV6_PKTOPTIONS 1440 case IPV6_PKTOPTIONS: 1441 #endif 1442 { 1443 struct mbuf *m; 1444 1445 error = soopt_getm(sopt, &m); /* XXX */ 1446 if (error != 0) 1447 break; 1448 error = soopt_mcopyin(sopt, m); /* XXX */ 1449 if (error != 0) 1450 break; 1451 error = ip6_pcbopts(&in6p->in6p_outputopts, 1452 m, so, sopt); 1453 m_freem(m); /* XXX */ 1454 break; 1455 } 1456 1457 /* 1458 * Use of some Hop-by-Hop options or some 1459 * Destination options, might require special 1460 * privilege. That is, normal applications 1461 * (without special privilege) might be forbidden 1462 * from setting certain options in outgoing packets, 1463 * and might never see certain options in received 1464 * packets. [RFC 2292 Section 6] 1465 * KAME specific note: 1466 * KAME prevents non-privileged users from sending or 1467 * receiving ANY hbh/dst options in order to avoid 1468 * overhead of parsing options in the kernel. 1469 */ 1470 case IPV6_RECVHOPOPTS: 1471 case IPV6_RECVDSTOPTS: 1472 case IPV6_RECVRTHDRDSTOPTS: 1473 if (td != NULL) { 1474 error = priv_check(td, 1475 PRIV_NETINET_SETHDROPTS); 1476 if (error) 1477 break; 1478 } 1479 /* FALLTHROUGH */ 1480 case IPV6_UNICAST_HOPS: 1481 case IPV6_HOPLIMIT: 1482 1483 case IPV6_RECVPKTINFO: 1484 case IPV6_RECVHOPLIMIT: 1485 case IPV6_RECVRTHDR: 1486 case IPV6_RECVPATHMTU: 1487 case IPV6_RECVTCLASS: 1488 case IPV6_RECVFLOWID: 1489 #ifdef RSS 1490 case IPV6_RECVRSSBUCKETID: 1491 #endif 1492 case IPV6_V6ONLY: 1493 case IPV6_AUTOFLOWLABEL: 1494 case IPV6_BINDANY: 1495 case IPV6_BINDMULTI: 1496 #ifdef RSS 1497 case IPV6_RSS_LISTEN_BUCKET: 1498 #endif 1499 if (optname == IPV6_BINDANY && td != NULL) { 1500 error = priv_check(td, 1501 PRIV_NETINET_BINDANY); 1502 if (error) 1503 break; 1504 } 1505 1506 if (optlen != sizeof(int)) { 1507 error = EINVAL; 1508 break; 1509 } 1510 error = sooptcopyin(sopt, &optval, 1511 sizeof optval, sizeof optval); 1512 if (error) 1513 break; 1514 switch (optname) { 1515 1516 case IPV6_UNICAST_HOPS: 1517 if (optval < -1 || optval >= 256) 1518 error = EINVAL; 1519 else { 1520 /* -1 = kernel default */ 1521 in6p->in6p_hops = optval; 1522 if ((in6p->inp_vflag & 1523 INP_IPV4) != 0) 1524 in6p->inp_ip_ttl = optval; 1525 } 1526 break; 1527 #define OPTSET(bit) \ 1528 do { \ 1529 INP_WLOCK(in6p); \ 1530 if (optval) \ 1531 in6p->inp_flags |= (bit); \ 1532 else \ 1533 in6p->inp_flags &= ~(bit); \ 1534 INP_WUNLOCK(in6p); \ 1535 } while (/*CONSTCOND*/ 0) 1536 #define OPTSET2292(bit) \ 1537 do { \ 1538 INP_WLOCK(in6p); \ 1539 in6p->inp_flags |= IN6P_RFC2292; \ 1540 if (optval) \ 1541 in6p->inp_flags |= (bit); \ 1542 else \ 1543 in6p->inp_flags &= ~(bit); \ 1544 INP_WUNLOCK(in6p); \ 1545 } while (/*CONSTCOND*/ 0) 1546 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1547 1548 #define OPTSET2(bit, val) do { \ 1549 INP_WLOCK(in6p); \ 1550 if (val) \ 1551 in6p->inp_flags2 |= bit; \ 1552 else \ 1553 in6p->inp_flags2 &= ~bit; \ 1554 INP_WUNLOCK(in6p); \ 1555 } while (0) 1556 #define OPTBIT2(bit) (in6p->inp_flags2 & (bit) ? 1 : 0) 1557 1558 case IPV6_RECVPKTINFO: 1559 /* cannot mix with RFC2292 */ 1560 if (OPTBIT(IN6P_RFC2292)) { 1561 error = EINVAL; 1562 break; 1563 } 1564 OPTSET(IN6P_PKTINFO); 1565 break; 1566 1567 case IPV6_HOPLIMIT: 1568 { 1569 struct ip6_pktopts **optp; 1570 1571 /* cannot mix with RFC2292 */ 1572 if (OPTBIT(IN6P_RFC2292)) { 1573 error = EINVAL; 1574 break; 1575 } 1576 optp = &in6p->in6p_outputopts; 1577 error = ip6_pcbopt(IPV6_HOPLIMIT, 1578 (u_char *)&optval, sizeof(optval), 1579 optp, (td != NULL) ? td->td_ucred : 1580 NULL, uproto); 1581 break; 1582 } 1583 1584 case IPV6_RECVHOPLIMIT: 1585 /* cannot mix with RFC2292 */ 1586 if (OPTBIT(IN6P_RFC2292)) { 1587 error = EINVAL; 1588 break; 1589 } 1590 OPTSET(IN6P_HOPLIMIT); 1591 break; 1592 1593 case IPV6_RECVHOPOPTS: 1594 /* cannot mix with RFC2292 */ 1595 if (OPTBIT(IN6P_RFC2292)) { 1596 error = EINVAL; 1597 break; 1598 } 1599 OPTSET(IN6P_HOPOPTS); 1600 break; 1601 1602 case IPV6_RECVDSTOPTS: 1603 /* cannot mix with RFC2292 */ 1604 if (OPTBIT(IN6P_RFC2292)) { 1605 error = EINVAL; 1606 break; 1607 } 1608 OPTSET(IN6P_DSTOPTS); 1609 break; 1610 1611 case IPV6_RECVRTHDRDSTOPTS: 1612 /* cannot mix with RFC2292 */ 1613 if (OPTBIT(IN6P_RFC2292)) { 1614 error = EINVAL; 1615 break; 1616 } 1617 OPTSET(IN6P_RTHDRDSTOPTS); 1618 break; 1619 1620 case IPV6_RECVRTHDR: 1621 /* cannot mix with RFC2292 */ 1622 if (OPTBIT(IN6P_RFC2292)) { 1623 error = EINVAL; 1624 break; 1625 } 1626 OPTSET(IN6P_RTHDR); 1627 break; 1628 1629 case IPV6_RECVPATHMTU: 1630 /* 1631 * We ignore this option for TCP 1632 * sockets. 1633 * (RFC3542 leaves this case 1634 * unspecified.) 1635 */ 1636 if (uproto != IPPROTO_TCP) 1637 OPTSET(IN6P_MTU); 1638 break; 1639 1640 case IPV6_RECVFLOWID: 1641 OPTSET2(INP_RECVFLOWID, optval); 1642 break; 1643 1644 #ifdef RSS 1645 case IPV6_RECVRSSBUCKETID: 1646 OPTSET2(INP_RECVRSSBUCKETID, optval); 1647 break; 1648 #endif 1649 1650 case IPV6_V6ONLY: 1651 /* 1652 * make setsockopt(IPV6_V6ONLY) 1653 * available only prior to bind(2). 1654 * see ipng mailing list, Jun 22 2001. 1655 */ 1656 if (in6p->inp_lport || 1657 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1658 error = EINVAL; 1659 break; 1660 } 1661 OPTSET(IN6P_IPV6_V6ONLY); 1662 if (optval) 1663 in6p->inp_vflag &= ~INP_IPV4; 1664 else 1665 in6p->inp_vflag |= INP_IPV4; 1666 break; 1667 case IPV6_RECVTCLASS: 1668 /* cannot mix with RFC2292 XXX */ 1669 if (OPTBIT(IN6P_RFC2292)) { 1670 error = EINVAL; 1671 break; 1672 } 1673 OPTSET(IN6P_TCLASS); 1674 break; 1675 case IPV6_AUTOFLOWLABEL: 1676 OPTSET(IN6P_AUTOFLOWLABEL); 1677 break; 1678 1679 case IPV6_BINDANY: 1680 OPTSET(INP_BINDANY); 1681 break; 1682 1683 case IPV6_BINDMULTI: 1684 OPTSET2(INP_BINDMULTI, optval); 1685 break; 1686 #ifdef RSS 1687 case IPV6_RSS_LISTEN_BUCKET: 1688 if ((optval >= 0) && 1689 (optval < rss_getnumbuckets())) { 1690 in6p->inp_rss_listen_bucket = optval; 1691 OPTSET2(INP_RSS_BUCKET_SET, 1); 1692 } else { 1693 error = EINVAL; 1694 } 1695 break; 1696 #endif 1697 } 1698 break; 1699 1700 case IPV6_TCLASS: 1701 case IPV6_DONTFRAG: 1702 case IPV6_USE_MIN_MTU: 1703 case IPV6_PREFER_TEMPADDR: 1704 if (optlen != sizeof(optval)) { 1705 error = EINVAL; 1706 break; 1707 } 1708 error = sooptcopyin(sopt, &optval, 1709 sizeof optval, sizeof optval); 1710 if (error) 1711 break; 1712 { 1713 struct ip6_pktopts **optp; 1714 optp = &in6p->in6p_outputopts; 1715 error = ip6_pcbopt(optname, 1716 (u_char *)&optval, sizeof(optval), 1717 optp, (td != NULL) ? td->td_ucred : 1718 NULL, uproto); 1719 break; 1720 } 1721 1722 case IPV6_2292PKTINFO: 1723 case IPV6_2292HOPLIMIT: 1724 case IPV6_2292HOPOPTS: 1725 case IPV6_2292DSTOPTS: 1726 case IPV6_2292RTHDR: 1727 /* RFC 2292 */ 1728 if (optlen != sizeof(int)) { 1729 error = EINVAL; 1730 break; 1731 } 1732 error = sooptcopyin(sopt, &optval, 1733 sizeof optval, sizeof optval); 1734 if (error) 1735 break; 1736 switch (optname) { 1737 case IPV6_2292PKTINFO: 1738 OPTSET2292(IN6P_PKTINFO); 1739 break; 1740 case IPV6_2292HOPLIMIT: 1741 OPTSET2292(IN6P_HOPLIMIT); 1742 break; 1743 case IPV6_2292HOPOPTS: 1744 /* 1745 * Check super-user privilege. 1746 * See comments for IPV6_RECVHOPOPTS. 1747 */ 1748 if (td != NULL) { 1749 error = priv_check(td, 1750 PRIV_NETINET_SETHDROPTS); 1751 if (error) 1752 return (error); 1753 } 1754 OPTSET2292(IN6P_HOPOPTS); 1755 break; 1756 case IPV6_2292DSTOPTS: 1757 if (td != NULL) { 1758 error = priv_check(td, 1759 PRIV_NETINET_SETHDROPTS); 1760 if (error) 1761 return (error); 1762 } 1763 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1764 break; 1765 case IPV6_2292RTHDR: 1766 OPTSET2292(IN6P_RTHDR); 1767 break; 1768 } 1769 break; 1770 case IPV6_PKTINFO: 1771 case IPV6_HOPOPTS: 1772 case IPV6_RTHDR: 1773 case IPV6_DSTOPTS: 1774 case IPV6_RTHDRDSTOPTS: 1775 case IPV6_NEXTHOP: 1776 { 1777 /* new advanced API (RFC3542) */ 1778 u_char *optbuf; 1779 u_char optbuf_storage[MCLBYTES]; 1780 int optlen; 1781 struct ip6_pktopts **optp; 1782 1783 /* cannot mix with RFC2292 */ 1784 if (OPTBIT(IN6P_RFC2292)) { 1785 error = EINVAL; 1786 break; 1787 } 1788 1789 /* 1790 * We only ensure valsize is not too large 1791 * here. Further validation will be done 1792 * later. 1793 */ 1794 error = sooptcopyin(sopt, optbuf_storage, 1795 sizeof(optbuf_storage), 0); 1796 if (error) 1797 break; 1798 optlen = sopt->sopt_valsize; 1799 optbuf = optbuf_storage; 1800 optp = &in6p->in6p_outputopts; 1801 error = ip6_pcbopt(optname, optbuf, optlen, 1802 optp, (td != NULL) ? td->td_ucred : NULL, 1803 uproto); 1804 break; 1805 } 1806 #undef OPTSET 1807 1808 case IPV6_MULTICAST_IF: 1809 case IPV6_MULTICAST_HOPS: 1810 case IPV6_MULTICAST_LOOP: 1811 case IPV6_JOIN_GROUP: 1812 case IPV6_LEAVE_GROUP: 1813 case IPV6_MSFILTER: 1814 case MCAST_BLOCK_SOURCE: 1815 case MCAST_UNBLOCK_SOURCE: 1816 case MCAST_JOIN_GROUP: 1817 case MCAST_LEAVE_GROUP: 1818 case MCAST_JOIN_SOURCE_GROUP: 1819 case MCAST_LEAVE_SOURCE_GROUP: 1820 error = ip6_setmoptions(in6p, sopt); 1821 break; 1822 1823 case IPV6_PORTRANGE: 1824 error = sooptcopyin(sopt, &optval, 1825 sizeof optval, sizeof optval); 1826 if (error) 1827 break; 1828 1829 INP_WLOCK(in6p); 1830 switch (optval) { 1831 case IPV6_PORTRANGE_DEFAULT: 1832 in6p->inp_flags &= ~(INP_LOWPORT); 1833 in6p->inp_flags &= ~(INP_HIGHPORT); 1834 break; 1835 1836 case IPV6_PORTRANGE_HIGH: 1837 in6p->inp_flags &= ~(INP_LOWPORT); 1838 in6p->inp_flags |= INP_HIGHPORT; 1839 break; 1840 1841 case IPV6_PORTRANGE_LOW: 1842 in6p->inp_flags &= ~(INP_HIGHPORT); 1843 in6p->inp_flags |= INP_LOWPORT; 1844 break; 1845 1846 default: 1847 error = EINVAL; 1848 break; 1849 } 1850 INP_WUNLOCK(in6p); 1851 break; 1852 1853 #ifdef IPSEC 1854 case IPV6_IPSEC_POLICY: 1855 { 1856 caddr_t req; 1857 struct mbuf *m; 1858 1859 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1860 break; 1861 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1862 break; 1863 req = mtod(m, caddr_t); 1864 error = ipsec_set_policy(in6p, optname, req, 1865 m->m_len, (sopt->sopt_td != NULL) ? 1866 sopt->sopt_td->td_ucred : NULL); 1867 m_freem(m); 1868 break; 1869 } 1870 #endif /* IPSEC */ 1871 1872 default: 1873 error = ENOPROTOOPT; 1874 break; 1875 } 1876 break; 1877 1878 case SOPT_GET: 1879 switch (optname) { 1880 1881 case IPV6_2292PKTOPTIONS: 1882 #ifdef IPV6_PKTOPTIONS 1883 case IPV6_PKTOPTIONS: 1884 #endif 1885 /* 1886 * RFC3542 (effectively) deprecated the 1887 * semantics of the 2292-style pktoptions. 1888 * Since it was not reliable in nature (i.e., 1889 * applications had to expect the lack of some 1890 * information after all), it would make sense 1891 * to simplify this part by always returning 1892 * empty data. 1893 */ 1894 sopt->sopt_valsize = 0; 1895 break; 1896 1897 case IPV6_RECVHOPOPTS: 1898 case IPV6_RECVDSTOPTS: 1899 case IPV6_RECVRTHDRDSTOPTS: 1900 case IPV6_UNICAST_HOPS: 1901 case IPV6_RECVPKTINFO: 1902 case IPV6_RECVHOPLIMIT: 1903 case IPV6_RECVRTHDR: 1904 case IPV6_RECVPATHMTU: 1905 1906 case IPV6_V6ONLY: 1907 case IPV6_PORTRANGE: 1908 case IPV6_RECVTCLASS: 1909 case IPV6_AUTOFLOWLABEL: 1910 case IPV6_BINDANY: 1911 case IPV6_FLOWID: 1912 case IPV6_FLOWTYPE: 1913 case IPV6_RECVFLOWID: 1914 #ifdef RSS 1915 case IPV6_RSSBUCKETID: 1916 case IPV6_RECVRSSBUCKETID: 1917 #endif 1918 case IPV6_BINDMULTI: 1919 switch (optname) { 1920 1921 case IPV6_RECVHOPOPTS: 1922 optval = OPTBIT(IN6P_HOPOPTS); 1923 break; 1924 1925 case IPV6_RECVDSTOPTS: 1926 optval = OPTBIT(IN6P_DSTOPTS); 1927 break; 1928 1929 case IPV6_RECVRTHDRDSTOPTS: 1930 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1931 break; 1932 1933 case IPV6_UNICAST_HOPS: 1934 optval = in6p->in6p_hops; 1935 break; 1936 1937 case IPV6_RECVPKTINFO: 1938 optval = OPTBIT(IN6P_PKTINFO); 1939 break; 1940 1941 case IPV6_RECVHOPLIMIT: 1942 optval = OPTBIT(IN6P_HOPLIMIT); 1943 break; 1944 1945 case IPV6_RECVRTHDR: 1946 optval = OPTBIT(IN6P_RTHDR); 1947 break; 1948 1949 case IPV6_RECVPATHMTU: 1950 optval = OPTBIT(IN6P_MTU); 1951 break; 1952 1953 case IPV6_V6ONLY: 1954 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1955 break; 1956 1957 case IPV6_PORTRANGE: 1958 { 1959 int flags; 1960 flags = in6p->inp_flags; 1961 if (flags & INP_HIGHPORT) 1962 optval = IPV6_PORTRANGE_HIGH; 1963 else if (flags & INP_LOWPORT) 1964 optval = IPV6_PORTRANGE_LOW; 1965 else 1966 optval = 0; 1967 break; 1968 } 1969 case IPV6_RECVTCLASS: 1970 optval = OPTBIT(IN6P_TCLASS); 1971 break; 1972 1973 case IPV6_AUTOFLOWLABEL: 1974 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 1975 break; 1976 1977 case IPV6_BINDANY: 1978 optval = OPTBIT(INP_BINDANY); 1979 break; 1980 1981 case IPV6_FLOWID: 1982 optval = in6p->inp_flowid; 1983 break; 1984 1985 case IPV6_FLOWTYPE: 1986 optval = in6p->inp_flowtype; 1987 break; 1988 1989 case IPV6_RECVFLOWID: 1990 optval = OPTBIT2(INP_RECVFLOWID); 1991 break; 1992 #ifdef RSS 1993 case IPV6_RSSBUCKETID: 1994 retval = 1995 rss_hash2bucket(in6p->inp_flowid, 1996 in6p->inp_flowtype, 1997 &rss_bucket); 1998 if (retval == 0) 1999 optval = rss_bucket; 2000 else 2001 error = EINVAL; 2002 break; 2003 2004 case IPV6_RECVRSSBUCKETID: 2005 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2006 break; 2007 #endif 2008 2009 case IPV6_BINDMULTI: 2010 optval = OPTBIT2(INP_BINDMULTI); 2011 break; 2012 2013 } 2014 if (error) 2015 break; 2016 error = sooptcopyout(sopt, &optval, 2017 sizeof optval); 2018 break; 2019 2020 case IPV6_PATHMTU: 2021 { 2022 u_long pmtu = 0; 2023 struct ip6_mtuinfo mtuinfo; 2024 2025 if (!(so->so_state & SS_ISCONNECTED)) 2026 return (ENOTCONN); 2027 /* 2028 * XXX: we dot not consider the case of source 2029 * routing, or optional information to specify 2030 * the outgoing interface. 2031 */ 2032 error = ip6_getpmtu_ctl(so->so_fibnum, 2033 &in6p->in6p_faddr, &pmtu); 2034 if (error) 2035 break; 2036 if (pmtu > IPV6_MAXPACKET) 2037 pmtu = IPV6_MAXPACKET; 2038 2039 bzero(&mtuinfo, sizeof(mtuinfo)); 2040 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2041 optdata = (void *)&mtuinfo; 2042 optdatalen = sizeof(mtuinfo); 2043 error = sooptcopyout(sopt, optdata, 2044 optdatalen); 2045 break; 2046 } 2047 2048 case IPV6_2292PKTINFO: 2049 case IPV6_2292HOPLIMIT: 2050 case IPV6_2292HOPOPTS: 2051 case IPV6_2292RTHDR: 2052 case IPV6_2292DSTOPTS: 2053 switch (optname) { 2054 case IPV6_2292PKTINFO: 2055 optval = OPTBIT(IN6P_PKTINFO); 2056 break; 2057 case IPV6_2292HOPLIMIT: 2058 optval = OPTBIT(IN6P_HOPLIMIT); 2059 break; 2060 case IPV6_2292HOPOPTS: 2061 optval = OPTBIT(IN6P_HOPOPTS); 2062 break; 2063 case IPV6_2292RTHDR: 2064 optval = OPTBIT(IN6P_RTHDR); 2065 break; 2066 case IPV6_2292DSTOPTS: 2067 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2068 break; 2069 } 2070 error = sooptcopyout(sopt, &optval, 2071 sizeof optval); 2072 break; 2073 case IPV6_PKTINFO: 2074 case IPV6_HOPOPTS: 2075 case IPV6_RTHDR: 2076 case IPV6_DSTOPTS: 2077 case IPV6_RTHDRDSTOPTS: 2078 case IPV6_NEXTHOP: 2079 case IPV6_TCLASS: 2080 case IPV6_DONTFRAG: 2081 case IPV6_USE_MIN_MTU: 2082 case IPV6_PREFER_TEMPADDR: 2083 error = ip6_getpcbopt(in6p->in6p_outputopts, 2084 optname, sopt); 2085 break; 2086 2087 case IPV6_MULTICAST_IF: 2088 case IPV6_MULTICAST_HOPS: 2089 case IPV6_MULTICAST_LOOP: 2090 case IPV6_MSFILTER: 2091 error = ip6_getmoptions(in6p, sopt); 2092 break; 2093 2094 #ifdef IPSEC 2095 case IPV6_IPSEC_POLICY: 2096 { 2097 caddr_t req = NULL; 2098 size_t len = 0; 2099 struct mbuf *m = NULL; 2100 struct mbuf **mp = &m; 2101 size_t ovalsize = sopt->sopt_valsize; 2102 caddr_t oval = (caddr_t)sopt->sopt_val; 2103 2104 error = soopt_getm(sopt, &m); /* XXX */ 2105 if (error != 0) 2106 break; 2107 error = soopt_mcopyin(sopt, m); /* XXX */ 2108 if (error != 0) 2109 break; 2110 sopt->sopt_valsize = ovalsize; 2111 sopt->sopt_val = oval; 2112 if (m) { 2113 req = mtod(m, caddr_t); 2114 len = m->m_len; 2115 } 2116 error = ipsec_get_policy(in6p, req, len, mp); 2117 if (error == 0) 2118 error = soopt_mcopyout(sopt, m); /* XXX */ 2119 if (error == 0 && m) 2120 m_freem(m); 2121 break; 2122 } 2123 #endif /* IPSEC */ 2124 2125 default: 2126 error = ENOPROTOOPT; 2127 break; 2128 } 2129 break; 2130 } 2131 } 2132 return (error); 2133 } 2134 2135 int 2136 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2137 { 2138 int error = 0, optval, optlen; 2139 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2140 struct inpcb *in6p = sotoinpcb(so); 2141 int level, op, optname; 2142 2143 level = sopt->sopt_level; 2144 op = sopt->sopt_dir; 2145 optname = sopt->sopt_name; 2146 optlen = sopt->sopt_valsize; 2147 2148 if (level != IPPROTO_IPV6) { 2149 return (EINVAL); 2150 } 2151 2152 switch (optname) { 2153 case IPV6_CHECKSUM: 2154 /* 2155 * For ICMPv6 sockets, no modification allowed for checksum 2156 * offset, permit "no change" values to help existing apps. 2157 * 2158 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2159 * for an ICMPv6 socket will fail." 2160 * The current behavior does not meet RFC3542. 2161 */ 2162 switch (op) { 2163 case SOPT_SET: 2164 if (optlen != sizeof(int)) { 2165 error = EINVAL; 2166 break; 2167 } 2168 error = sooptcopyin(sopt, &optval, sizeof(optval), 2169 sizeof(optval)); 2170 if (error) 2171 break; 2172 if ((optval % 2) != 0) { 2173 /* the API assumes even offset values */ 2174 error = EINVAL; 2175 } else if (so->so_proto->pr_protocol == 2176 IPPROTO_ICMPV6) { 2177 if (optval != icmp6off) 2178 error = EINVAL; 2179 } else 2180 in6p->in6p_cksum = optval; 2181 break; 2182 2183 case SOPT_GET: 2184 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2185 optval = icmp6off; 2186 else 2187 optval = in6p->in6p_cksum; 2188 2189 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2190 break; 2191 2192 default: 2193 error = EINVAL; 2194 break; 2195 } 2196 break; 2197 2198 default: 2199 error = ENOPROTOOPT; 2200 break; 2201 } 2202 2203 return (error); 2204 } 2205 2206 /* 2207 * Set up IP6 options in pcb for insertion in output packets or 2208 * specifying behavior of outgoing packets. 2209 */ 2210 static int 2211 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2212 struct socket *so, struct sockopt *sopt) 2213 { 2214 struct ip6_pktopts *opt = *pktopt; 2215 int error = 0; 2216 struct thread *td = sopt->sopt_td; 2217 2218 /* turn off any old options. */ 2219 if (opt) { 2220 #ifdef DIAGNOSTIC 2221 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2222 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2223 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2224 printf("ip6_pcbopts: all specified options are cleared.\n"); 2225 #endif 2226 ip6_clearpktopts(opt, -1); 2227 } else 2228 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2229 *pktopt = NULL; 2230 2231 if (!m || m->m_len == 0) { 2232 /* 2233 * Only turning off any previous options, regardless of 2234 * whether the opt is just created or given. 2235 */ 2236 free(opt, M_IP6OPT); 2237 return (0); 2238 } 2239 2240 /* set options specified by user. */ 2241 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2242 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2243 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2244 free(opt, M_IP6OPT); 2245 return (error); 2246 } 2247 *pktopt = opt; 2248 return (0); 2249 } 2250 2251 /* 2252 * initialize ip6_pktopts. beware that there are non-zero default values in 2253 * the struct. 2254 */ 2255 void 2256 ip6_initpktopts(struct ip6_pktopts *opt) 2257 { 2258 2259 bzero(opt, sizeof(*opt)); 2260 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2261 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2262 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2263 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2264 } 2265 2266 static int 2267 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2268 struct ucred *cred, int uproto) 2269 { 2270 struct ip6_pktopts *opt; 2271 2272 if (*pktopt == NULL) { 2273 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2274 M_WAITOK); 2275 ip6_initpktopts(*pktopt); 2276 } 2277 opt = *pktopt; 2278 2279 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2280 } 2281 2282 static int 2283 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2284 { 2285 void *optdata = NULL; 2286 int optdatalen = 0; 2287 struct ip6_ext *ip6e; 2288 int error = 0; 2289 struct in6_pktinfo null_pktinfo; 2290 int deftclass = 0, on; 2291 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2292 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2293 2294 switch (optname) { 2295 case IPV6_PKTINFO: 2296 optdata = (void *)&null_pktinfo; 2297 if (pktopt && pktopt->ip6po_pktinfo) { 2298 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2299 sizeof(null_pktinfo)); 2300 in6_clearscope(&null_pktinfo.ipi6_addr); 2301 } else { 2302 /* XXX: we don't have to do this every time... */ 2303 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2304 } 2305 optdatalen = sizeof(struct in6_pktinfo); 2306 break; 2307 case IPV6_TCLASS: 2308 if (pktopt && pktopt->ip6po_tclass >= 0) 2309 optdata = (void *)&pktopt->ip6po_tclass; 2310 else 2311 optdata = (void *)&deftclass; 2312 optdatalen = sizeof(int); 2313 break; 2314 case IPV6_HOPOPTS: 2315 if (pktopt && pktopt->ip6po_hbh) { 2316 optdata = (void *)pktopt->ip6po_hbh; 2317 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2318 optdatalen = (ip6e->ip6e_len + 1) << 3; 2319 } 2320 break; 2321 case IPV6_RTHDR: 2322 if (pktopt && pktopt->ip6po_rthdr) { 2323 optdata = (void *)pktopt->ip6po_rthdr; 2324 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2325 optdatalen = (ip6e->ip6e_len + 1) << 3; 2326 } 2327 break; 2328 case IPV6_RTHDRDSTOPTS: 2329 if (pktopt && pktopt->ip6po_dest1) { 2330 optdata = (void *)pktopt->ip6po_dest1; 2331 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2332 optdatalen = (ip6e->ip6e_len + 1) << 3; 2333 } 2334 break; 2335 case IPV6_DSTOPTS: 2336 if (pktopt && pktopt->ip6po_dest2) { 2337 optdata = (void *)pktopt->ip6po_dest2; 2338 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2339 optdatalen = (ip6e->ip6e_len + 1) << 3; 2340 } 2341 break; 2342 case IPV6_NEXTHOP: 2343 if (pktopt && pktopt->ip6po_nexthop) { 2344 optdata = (void *)pktopt->ip6po_nexthop; 2345 optdatalen = pktopt->ip6po_nexthop->sa_len; 2346 } 2347 break; 2348 case IPV6_USE_MIN_MTU: 2349 if (pktopt) 2350 optdata = (void *)&pktopt->ip6po_minmtu; 2351 else 2352 optdata = (void *)&defminmtu; 2353 optdatalen = sizeof(int); 2354 break; 2355 case IPV6_DONTFRAG: 2356 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2357 on = 1; 2358 else 2359 on = 0; 2360 optdata = (void *)&on; 2361 optdatalen = sizeof(on); 2362 break; 2363 case IPV6_PREFER_TEMPADDR: 2364 if (pktopt) 2365 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2366 else 2367 optdata = (void *)&defpreftemp; 2368 optdatalen = sizeof(int); 2369 break; 2370 default: /* should not happen */ 2371 #ifdef DIAGNOSTIC 2372 panic("ip6_getpcbopt: unexpected option\n"); 2373 #endif 2374 return (ENOPROTOOPT); 2375 } 2376 2377 error = sooptcopyout(sopt, optdata, optdatalen); 2378 2379 return (error); 2380 } 2381 2382 void 2383 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2384 { 2385 if (pktopt == NULL) 2386 return; 2387 2388 if (optname == -1 || optname == IPV6_PKTINFO) { 2389 if (pktopt->ip6po_pktinfo) 2390 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2391 pktopt->ip6po_pktinfo = NULL; 2392 } 2393 if (optname == -1 || optname == IPV6_HOPLIMIT) 2394 pktopt->ip6po_hlim = -1; 2395 if (optname == -1 || optname == IPV6_TCLASS) 2396 pktopt->ip6po_tclass = -1; 2397 if (optname == -1 || optname == IPV6_NEXTHOP) { 2398 if (pktopt->ip6po_nextroute.ro_rt) { 2399 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2400 pktopt->ip6po_nextroute.ro_rt = NULL; 2401 } 2402 if (pktopt->ip6po_nexthop) 2403 free(pktopt->ip6po_nexthop, M_IP6OPT); 2404 pktopt->ip6po_nexthop = NULL; 2405 } 2406 if (optname == -1 || optname == IPV6_HOPOPTS) { 2407 if (pktopt->ip6po_hbh) 2408 free(pktopt->ip6po_hbh, M_IP6OPT); 2409 pktopt->ip6po_hbh = NULL; 2410 } 2411 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2412 if (pktopt->ip6po_dest1) 2413 free(pktopt->ip6po_dest1, M_IP6OPT); 2414 pktopt->ip6po_dest1 = NULL; 2415 } 2416 if (optname == -1 || optname == IPV6_RTHDR) { 2417 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2418 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2419 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2420 if (pktopt->ip6po_route.ro_rt) { 2421 RTFREE(pktopt->ip6po_route.ro_rt); 2422 pktopt->ip6po_route.ro_rt = NULL; 2423 } 2424 } 2425 if (optname == -1 || optname == IPV6_DSTOPTS) { 2426 if (pktopt->ip6po_dest2) 2427 free(pktopt->ip6po_dest2, M_IP6OPT); 2428 pktopt->ip6po_dest2 = NULL; 2429 } 2430 } 2431 2432 #define PKTOPT_EXTHDRCPY(type) \ 2433 do {\ 2434 if (src->type) {\ 2435 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2436 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2437 if (dst->type == NULL && canwait == M_NOWAIT)\ 2438 goto bad;\ 2439 bcopy(src->type, dst->type, hlen);\ 2440 }\ 2441 } while (/*CONSTCOND*/ 0) 2442 2443 static int 2444 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2445 { 2446 if (dst == NULL || src == NULL) { 2447 printf("ip6_clearpktopts: invalid argument\n"); 2448 return (EINVAL); 2449 } 2450 2451 dst->ip6po_hlim = src->ip6po_hlim; 2452 dst->ip6po_tclass = src->ip6po_tclass; 2453 dst->ip6po_flags = src->ip6po_flags; 2454 dst->ip6po_minmtu = src->ip6po_minmtu; 2455 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2456 if (src->ip6po_pktinfo) { 2457 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2458 M_IP6OPT, canwait); 2459 if (dst->ip6po_pktinfo == NULL) 2460 goto bad; 2461 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2462 } 2463 if (src->ip6po_nexthop) { 2464 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2465 M_IP6OPT, canwait); 2466 if (dst->ip6po_nexthop == NULL) 2467 goto bad; 2468 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2469 src->ip6po_nexthop->sa_len); 2470 } 2471 PKTOPT_EXTHDRCPY(ip6po_hbh); 2472 PKTOPT_EXTHDRCPY(ip6po_dest1); 2473 PKTOPT_EXTHDRCPY(ip6po_dest2); 2474 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2475 return (0); 2476 2477 bad: 2478 ip6_clearpktopts(dst, -1); 2479 return (ENOBUFS); 2480 } 2481 #undef PKTOPT_EXTHDRCPY 2482 2483 struct ip6_pktopts * 2484 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2485 { 2486 int error; 2487 struct ip6_pktopts *dst; 2488 2489 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2490 if (dst == NULL) 2491 return (NULL); 2492 ip6_initpktopts(dst); 2493 2494 if ((error = copypktopts(dst, src, canwait)) != 0) { 2495 free(dst, M_IP6OPT); 2496 return (NULL); 2497 } 2498 2499 return (dst); 2500 } 2501 2502 void 2503 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2504 { 2505 if (pktopt == NULL) 2506 return; 2507 2508 ip6_clearpktopts(pktopt, -1); 2509 2510 free(pktopt, M_IP6OPT); 2511 } 2512 2513 /* 2514 * Set IPv6 outgoing packet options based on advanced API. 2515 */ 2516 int 2517 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2518 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2519 { 2520 struct cmsghdr *cm = NULL; 2521 2522 if (control == NULL || opt == NULL) 2523 return (EINVAL); 2524 2525 ip6_initpktopts(opt); 2526 if (stickyopt) { 2527 int error; 2528 2529 /* 2530 * If stickyopt is provided, make a local copy of the options 2531 * for this particular packet, then override them by ancillary 2532 * objects. 2533 * XXX: copypktopts() does not copy the cached route to a next 2534 * hop (if any). This is not very good in terms of efficiency, 2535 * but we can allow this since this option should be rarely 2536 * used. 2537 */ 2538 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2539 return (error); 2540 } 2541 2542 /* 2543 * XXX: Currently, we assume all the optional information is stored 2544 * in a single mbuf. 2545 */ 2546 if (control->m_next) 2547 return (EINVAL); 2548 2549 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2550 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2551 int error; 2552 2553 if (control->m_len < CMSG_LEN(0)) 2554 return (EINVAL); 2555 2556 cm = mtod(control, struct cmsghdr *); 2557 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2558 return (EINVAL); 2559 if (cm->cmsg_level != IPPROTO_IPV6) 2560 continue; 2561 2562 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2563 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2564 if (error) 2565 return (error); 2566 } 2567 2568 return (0); 2569 } 2570 2571 /* 2572 * Set a particular packet option, as a sticky option or an ancillary data 2573 * item. "len" can be 0 only when it's a sticky option. 2574 * We have 4 cases of combination of "sticky" and "cmsg": 2575 * "sticky=0, cmsg=0": impossible 2576 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2577 * "sticky=1, cmsg=0": RFC3542 socket option 2578 * "sticky=1, cmsg=1": RFC2292 socket option 2579 */ 2580 static int 2581 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2582 struct ucred *cred, int sticky, int cmsg, int uproto) 2583 { 2584 int minmtupolicy, preftemp; 2585 int error; 2586 2587 if (!sticky && !cmsg) { 2588 #ifdef DIAGNOSTIC 2589 printf("ip6_setpktopt: impossible case\n"); 2590 #endif 2591 return (EINVAL); 2592 } 2593 2594 /* 2595 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2596 * not be specified in the context of RFC3542. Conversely, 2597 * RFC3542 types should not be specified in the context of RFC2292. 2598 */ 2599 if (!cmsg) { 2600 switch (optname) { 2601 case IPV6_2292PKTINFO: 2602 case IPV6_2292HOPLIMIT: 2603 case IPV6_2292NEXTHOP: 2604 case IPV6_2292HOPOPTS: 2605 case IPV6_2292DSTOPTS: 2606 case IPV6_2292RTHDR: 2607 case IPV6_2292PKTOPTIONS: 2608 return (ENOPROTOOPT); 2609 } 2610 } 2611 if (sticky && cmsg) { 2612 switch (optname) { 2613 case IPV6_PKTINFO: 2614 case IPV6_HOPLIMIT: 2615 case IPV6_NEXTHOP: 2616 case IPV6_HOPOPTS: 2617 case IPV6_DSTOPTS: 2618 case IPV6_RTHDRDSTOPTS: 2619 case IPV6_RTHDR: 2620 case IPV6_USE_MIN_MTU: 2621 case IPV6_DONTFRAG: 2622 case IPV6_TCLASS: 2623 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2624 return (ENOPROTOOPT); 2625 } 2626 } 2627 2628 switch (optname) { 2629 case IPV6_2292PKTINFO: 2630 case IPV6_PKTINFO: 2631 { 2632 struct ifnet *ifp = NULL; 2633 struct in6_pktinfo *pktinfo; 2634 2635 if (len != sizeof(struct in6_pktinfo)) 2636 return (EINVAL); 2637 2638 pktinfo = (struct in6_pktinfo *)buf; 2639 2640 /* 2641 * An application can clear any sticky IPV6_PKTINFO option by 2642 * doing a "regular" setsockopt with ipi6_addr being 2643 * in6addr_any and ipi6_ifindex being zero. 2644 * [RFC 3542, Section 6] 2645 */ 2646 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2647 pktinfo->ipi6_ifindex == 0 && 2648 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2649 ip6_clearpktopts(opt, optname); 2650 break; 2651 } 2652 2653 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2654 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2655 return (EINVAL); 2656 } 2657 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2658 return (EINVAL); 2659 /* validate the interface index if specified. */ 2660 if (pktinfo->ipi6_ifindex > V_if_index) 2661 return (ENXIO); 2662 if (pktinfo->ipi6_ifindex) { 2663 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2664 if (ifp == NULL) 2665 return (ENXIO); 2666 } 2667 if (ifp != NULL && ( 2668 ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) 2669 return (ENETDOWN); 2670 2671 if (ifp != NULL && 2672 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2673 struct in6_ifaddr *ia; 2674 2675 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2676 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2677 if (ia == NULL) 2678 return (EADDRNOTAVAIL); 2679 ifa_free(&ia->ia_ifa); 2680 } 2681 /* 2682 * We store the address anyway, and let in6_selectsrc() 2683 * validate the specified address. This is because ipi6_addr 2684 * may not have enough information about its scope zone, and 2685 * we may need additional information (such as outgoing 2686 * interface or the scope zone of a destination address) to 2687 * disambiguate the scope. 2688 * XXX: the delay of the validation may confuse the 2689 * application when it is used as a sticky option. 2690 */ 2691 if (opt->ip6po_pktinfo == NULL) { 2692 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2693 M_IP6OPT, M_NOWAIT); 2694 if (opt->ip6po_pktinfo == NULL) 2695 return (ENOBUFS); 2696 } 2697 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2698 break; 2699 } 2700 2701 case IPV6_2292HOPLIMIT: 2702 case IPV6_HOPLIMIT: 2703 { 2704 int *hlimp; 2705 2706 /* 2707 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2708 * to simplify the ordering among hoplimit options. 2709 */ 2710 if (optname == IPV6_HOPLIMIT && sticky) 2711 return (ENOPROTOOPT); 2712 2713 if (len != sizeof(int)) 2714 return (EINVAL); 2715 hlimp = (int *)buf; 2716 if (*hlimp < -1 || *hlimp > 255) 2717 return (EINVAL); 2718 2719 opt->ip6po_hlim = *hlimp; 2720 break; 2721 } 2722 2723 case IPV6_TCLASS: 2724 { 2725 int tclass; 2726 2727 if (len != sizeof(int)) 2728 return (EINVAL); 2729 tclass = *(int *)buf; 2730 if (tclass < -1 || tclass > 255) 2731 return (EINVAL); 2732 2733 opt->ip6po_tclass = tclass; 2734 break; 2735 } 2736 2737 case IPV6_2292NEXTHOP: 2738 case IPV6_NEXTHOP: 2739 if (cred != NULL) { 2740 error = priv_check_cred(cred, 2741 PRIV_NETINET_SETHDROPTS, 0); 2742 if (error) 2743 return (error); 2744 } 2745 2746 if (len == 0) { /* just remove the option */ 2747 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2748 break; 2749 } 2750 2751 /* check if cmsg_len is large enough for sa_len */ 2752 if (len < sizeof(struct sockaddr) || len < *buf) 2753 return (EINVAL); 2754 2755 switch (((struct sockaddr *)buf)->sa_family) { 2756 case AF_INET6: 2757 { 2758 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2759 int error; 2760 2761 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2762 return (EINVAL); 2763 2764 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2765 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2766 return (EINVAL); 2767 } 2768 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2769 != 0) { 2770 return (error); 2771 } 2772 break; 2773 } 2774 case AF_LINK: /* should eventually be supported */ 2775 default: 2776 return (EAFNOSUPPORT); 2777 } 2778 2779 /* turn off the previous option, then set the new option. */ 2780 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2781 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2782 if (opt->ip6po_nexthop == NULL) 2783 return (ENOBUFS); 2784 bcopy(buf, opt->ip6po_nexthop, *buf); 2785 break; 2786 2787 case IPV6_2292HOPOPTS: 2788 case IPV6_HOPOPTS: 2789 { 2790 struct ip6_hbh *hbh; 2791 int hbhlen; 2792 2793 /* 2794 * XXX: We don't allow a non-privileged user to set ANY HbH 2795 * options, since per-option restriction has too much 2796 * overhead. 2797 */ 2798 if (cred != NULL) { 2799 error = priv_check_cred(cred, 2800 PRIV_NETINET_SETHDROPTS, 0); 2801 if (error) 2802 return (error); 2803 } 2804 2805 if (len == 0) { 2806 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2807 break; /* just remove the option */ 2808 } 2809 2810 /* message length validation */ 2811 if (len < sizeof(struct ip6_hbh)) 2812 return (EINVAL); 2813 hbh = (struct ip6_hbh *)buf; 2814 hbhlen = (hbh->ip6h_len + 1) << 3; 2815 if (len != hbhlen) 2816 return (EINVAL); 2817 2818 /* turn off the previous option, then set the new option. */ 2819 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2820 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2821 if (opt->ip6po_hbh == NULL) 2822 return (ENOBUFS); 2823 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2824 2825 break; 2826 } 2827 2828 case IPV6_2292DSTOPTS: 2829 case IPV6_DSTOPTS: 2830 case IPV6_RTHDRDSTOPTS: 2831 { 2832 struct ip6_dest *dest, **newdest = NULL; 2833 int destlen; 2834 2835 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2836 error = priv_check_cred(cred, 2837 PRIV_NETINET_SETHDROPTS, 0); 2838 if (error) 2839 return (error); 2840 } 2841 2842 if (len == 0) { 2843 ip6_clearpktopts(opt, optname); 2844 break; /* just remove the option */ 2845 } 2846 2847 /* message length validation */ 2848 if (len < sizeof(struct ip6_dest)) 2849 return (EINVAL); 2850 dest = (struct ip6_dest *)buf; 2851 destlen = (dest->ip6d_len + 1) << 3; 2852 if (len != destlen) 2853 return (EINVAL); 2854 2855 /* 2856 * Determine the position that the destination options header 2857 * should be inserted; before or after the routing header. 2858 */ 2859 switch (optname) { 2860 case IPV6_2292DSTOPTS: 2861 /* 2862 * The old advacned API is ambiguous on this point. 2863 * Our approach is to determine the position based 2864 * according to the existence of a routing header. 2865 * Note, however, that this depends on the order of the 2866 * extension headers in the ancillary data; the 1st 2867 * part of the destination options header must appear 2868 * before the routing header in the ancillary data, 2869 * too. 2870 * RFC3542 solved the ambiguity by introducing 2871 * separate ancillary data or option types. 2872 */ 2873 if (opt->ip6po_rthdr == NULL) 2874 newdest = &opt->ip6po_dest1; 2875 else 2876 newdest = &opt->ip6po_dest2; 2877 break; 2878 case IPV6_RTHDRDSTOPTS: 2879 newdest = &opt->ip6po_dest1; 2880 break; 2881 case IPV6_DSTOPTS: 2882 newdest = &opt->ip6po_dest2; 2883 break; 2884 } 2885 2886 /* turn off the previous option, then set the new option. */ 2887 ip6_clearpktopts(opt, optname); 2888 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2889 if (*newdest == NULL) 2890 return (ENOBUFS); 2891 bcopy(dest, *newdest, destlen); 2892 2893 break; 2894 } 2895 2896 case IPV6_2292RTHDR: 2897 case IPV6_RTHDR: 2898 { 2899 struct ip6_rthdr *rth; 2900 int rthlen; 2901 2902 if (len == 0) { 2903 ip6_clearpktopts(opt, IPV6_RTHDR); 2904 break; /* just remove the option */ 2905 } 2906 2907 /* message length validation */ 2908 if (len < sizeof(struct ip6_rthdr)) 2909 return (EINVAL); 2910 rth = (struct ip6_rthdr *)buf; 2911 rthlen = (rth->ip6r_len + 1) << 3; 2912 if (len != rthlen) 2913 return (EINVAL); 2914 2915 switch (rth->ip6r_type) { 2916 case IPV6_RTHDR_TYPE_0: 2917 if (rth->ip6r_len == 0) /* must contain one addr */ 2918 return (EINVAL); 2919 if (rth->ip6r_len % 2) /* length must be even */ 2920 return (EINVAL); 2921 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2922 return (EINVAL); 2923 break; 2924 default: 2925 return (EINVAL); /* not supported */ 2926 } 2927 2928 /* turn off the previous option */ 2929 ip6_clearpktopts(opt, IPV6_RTHDR); 2930 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2931 if (opt->ip6po_rthdr == NULL) 2932 return (ENOBUFS); 2933 bcopy(rth, opt->ip6po_rthdr, rthlen); 2934 2935 break; 2936 } 2937 2938 case IPV6_USE_MIN_MTU: 2939 if (len != sizeof(int)) 2940 return (EINVAL); 2941 minmtupolicy = *(int *)buf; 2942 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2943 minmtupolicy != IP6PO_MINMTU_DISABLE && 2944 minmtupolicy != IP6PO_MINMTU_ALL) { 2945 return (EINVAL); 2946 } 2947 opt->ip6po_minmtu = minmtupolicy; 2948 break; 2949 2950 case IPV6_DONTFRAG: 2951 if (len != sizeof(int)) 2952 return (EINVAL); 2953 2954 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2955 /* 2956 * we ignore this option for TCP sockets. 2957 * (RFC3542 leaves this case unspecified.) 2958 */ 2959 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2960 } else 2961 opt->ip6po_flags |= IP6PO_DONTFRAG; 2962 break; 2963 2964 case IPV6_PREFER_TEMPADDR: 2965 if (len != sizeof(int)) 2966 return (EINVAL); 2967 preftemp = *(int *)buf; 2968 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 2969 preftemp != IP6PO_TEMPADDR_NOTPREFER && 2970 preftemp != IP6PO_TEMPADDR_PREFER) { 2971 return (EINVAL); 2972 } 2973 opt->ip6po_prefer_tempaddr = preftemp; 2974 break; 2975 2976 default: 2977 return (ENOPROTOOPT); 2978 } /* end of switch */ 2979 2980 return (0); 2981 } 2982 2983 /* 2984 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2985 * packet to the input queue of a specified interface. Note that this 2986 * calls the output routine of the loopback "driver", but with an interface 2987 * pointer that might NOT be &loif -- easier than replicating that code here. 2988 */ 2989 void 2990 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 2991 { 2992 struct mbuf *copym; 2993 struct ip6_hdr *ip6; 2994 2995 copym = m_copy(m, 0, M_COPYALL); 2996 if (copym == NULL) 2997 return; 2998 2999 /* 3000 * Make sure to deep-copy IPv6 header portion in case the data 3001 * is in an mbuf cluster, so that we can safely override the IPv6 3002 * header portion later. 3003 */ 3004 if (!M_WRITABLE(copym) || 3005 copym->m_len < sizeof(struct ip6_hdr)) { 3006 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3007 if (copym == NULL) 3008 return; 3009 } 3010 ip6 = mtod(copym, struct ip6_hdr *); 3011 /* 3012 * clear embedded scope identifiers if necessary. 3013 * in6_clearscope will touch the addresses only when necessary. 3014 */ 3015 in6_clearscope(&ip6->ip6_src); 3016 in6_clearscope(&ip6->ip6_dst); 3017 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3018 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3019 CSUM_PSEUDO_HDR; 3020 copym->m_pkthdr.csum_data = 0xffff; 3021 } 3022 if_simloop(ifp, copym, AF_INET6, 0); 3023 } 3024 3025 /* 3026 * Chop IPv6 header off from the payload. 3027 */ 3028 static int 3029 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3030 { 3031 struct mbuf *mh; 3032 struct ip6_hdr *ip6; 3033 3034 ip6 = mtod(m, struct ip6_hdr *); 3035 if (m->m_len > sizeof(*ip6)) { 3036 mh = m_gethdr(M_NOWAIT, MT_DATA); 3037 if (mh == NULL) { 3038 m_freem(m); 3039 return ENOBUFS; 3040 } 3041 m_move_pkthdr(mh, m); 3042 M_ALIGN(mh, sizeof(*ip6)); 3043 m->m_len -= sizeof(*ip6); 3044 m->m_data += sizeof(*ip6); 3045 mh->m_next = m; 3046 m = mh; 3047 m->m_len = sizeof(*ip6); 3048 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3049 } 3050 exthdrs->ip6e_ip6 = m; 3051 return 0; 3052 } 3053 3054 /* 3055 * Compute IPv6 extension header length. 3056 */ 3057 int 3058 ip6_optlen(struct inpcb *in6p) 3059 { 3060 int len; 3061 3062 if (!in6p->in6p_outputopts) 3063 return 0; 3064 3065 len = 0; 3066 #define elen(x) \ 3067 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3068 3069 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3070 if (in6p->in6p_outputopts->ip6po_rthdr) 3071 /* dest1 is valid with rthdr only */ 3072 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3073 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3074 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3075 return len; 3076 #undef elen 3077 } 3078