1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 #include "opt_ipsec.h" 69 70 #include <sys/param.h> 71 #include <sys/kernel.h> 72 #include <sys/malloc.h> 73 #include <sys/mbuf.h> 74 #include <sys/errno.h> 75 #include <sys/priv.h> 76 #include <sys/proc.h> 77 #include <sys/protosw.h> 78 #include <sys/socket.h> 79 #include <sys/socketvar.h> 80 #include <sys/ucred.h> 81 82 #include <net/if.h> 83 #include <net/netisr.h> 84 #include <net/route.h> 85 #include <net/pfil.h> 86 87 #include <netinet/in.h> 88 #include <netinet/in_var.h> 89 #include <netinet6/in6_var.h> 90 #include <netinet/ip6.h> 91 #include <netinet/icmp6.h> 92 #include <netinet6/ip6_var.h> 93 #include <netinet/in_pcb.h> 94 #include <netinet/tcp_var.h> 95 #include <netinet6/nd6.h> 96 97 #ifdef IPSEC 98 #include <netipsec/ipsec.h> 99 #include <netipsec/ipsec6.h> 100 #include <netipsec/key.h> 101 #include <netinet6/ip6_ipsec.h> 102 #endif /* IPSEC */ 103 104 #include <netinet6/ip6protosw.h> 105 #include <netinet6/scope6_var.h> 106 107 static MALLOC_DEFINE(M_IP6MOPTS, "ip6_moptions", "internet multicast options"); 108 109 struct ip6_exthdrs { 110 struct mbuf *ip6e_ip6; 111 struct mbuf *ip6e_hbh; 112 struct mbuf *ip6e_dest1; 113 struct mbuf *ip6e_rthdr; 114 struct mbuf *ip6e_dest2; 115 }; 116 117 static int ip6_pcbopt __P((int, u_char *, int, struct ip6_pktopts **, 118 struct ucred *, int)); 119 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 120 struct socket *, struct sockopt *)); 121 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 122 static int ip6_setpktopt __P((int, u_char *, int, struct ip6_pktopts *, 123 struct ucred *, int, int, int)); 124 125 static int ip6_setmoptions(int, struct ip6_moptions **, struct mbuf *); 126 static int ip6_getmoptions(int, struct ip6_moptions *, struct mbuf **); 127 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 128 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 129 struct ip6_frag **)); 130 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 131 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 132 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *, 133 struct ifnet *, struct in6_addr *, u_long *, int *)); 134 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 135 136 137 /* 138 * Make an extension header from option data. hp is the source, and 139 * mp is the destination. 140 */ 141 #define MAKE_EXTHDR(hp, mp) \ 142 do { \ 143 if (hp) { \ 144 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 145 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 146 ((eh)->ip6e_len + 1) << 3); \ 147 if (error) \ 148 goto freehdrs; \ 149 } \ 150 } while (/*CONSTCOND*/ 0) 151 152 /* 153 * Form a chain of extension headers. 154 * m is the extension header mbuf 155 * mp is the previous mbuf in the chain 156 * p is the next header 157 * i is the type of option. 158 */ 159 #define MAKE_CHAIN(m, mp, p, i)\ 160 do {\ 161 if (m) {\ 162 if (!hdrsplit) \ 163 panic("assumption failed: hdr not split"); \ 164 *mtod((m), u_char *) = *(p);\ 165 *(p) = (i);\ 166 p = mtod((m), u_char *);\ 167 (m)->m_next = (mp)->m_next;\ 168 (mp)->m_next = (m);\ 169 (mp) = (m);\ 170 }\ 171 } while (/*CONSTCOND*/ 0) 172 173 /* 174 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 175 * header (with pri, len, nxt, hlim, src, dst). 176 * This function may modify ver and hlim only. 177 * The mbuf chain containing the packet will be freed. 178 * The mbuf opt, if present, will not be freed. 179 * 180 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 181 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 182 * which is rt_rmx.rmx_mtu. 183 * 184 * ifpp - XXX: just for statistics 185 */ 186 int 187 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 188 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 189 struct ifnet **ifpp, struct inpcb *inp) 190 { 191 struct ip6_hdr *ip6, *mhip6; 192 struct ifnet *ifp, *origifp; 193 struct mbuf *m = m0; 194 struct mbuf *mprev = NULL; 195 int hlen, tlen, len, off; 196 struct route_in6 ip6route; 197 struct rtentry *rt = NULL; 198 struct sockaddr_in6 *dst, src_sa, dst_sa; 199 struct in6_addr odst; 200 int error = 0; 201 struct in6_ifaddr *ia = NULL; 202 u_long mtu; 203 int alwaysfrag, dontfrag; 204 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 205 struct ip6_exthdrs exthdrs; 206 struct in6_addr finaldst, src0, dst0; 207 u_int32_t zone; 208 struct route_in6 *ro_pmtu = NULL; 209 int hdrsplit = 0; 210 int needipsec = 0; 211 #ifdef IPSEC 212 struct ipsec_output_state state; 213 struct ip6_rthdr *rh = NULL; 214 int needipsectun = 0; 215 int segleft_org = 0; 216 struct secpolicy *sp = NULL; 217 #endif /* IPSEC */ 218 219 ip6 = mtod(m, struct ip6_hdr *); 220 if (ip6 == NULL) { 221 printf ("ip6 is NULL"); 222 goto bad; 223 } 224 225 finaldst = ip6->ip6_dst; 226 227 bzero(&exthdrs, sizeof(exthdrs)); 228 229 if (opt) { 230 /* Hop-by-Hop options header */ 231 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 232 /* Destination options header(1st part) */ 233 if (opt->ip6po_rthdr) { 234 /* 235 * Destination options header(1st part) 236 * This only makes sense with a routing header. 237 * See Section 9.2 of RFC 3542. 238 * Disabling this part just for MIP6 convenience is 239 * a bad idea. We need to think carefully about a 240 * way to make the advanced API coexist with MIP6 241 * options, which might automatically be inserted in 242 * the kernel. 243 */ 244 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 245 } 246 /* Routing header */ 247 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 248 /* Destination options header(2nd part) */ 249 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 250 } 251 252 /* 253 * IPSec checking which handles several cases. 254 * FAST IPSEC: We re-injected the packet. 255 */ 256 #ifdef IPSEC 257 switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp, &sp)) 258 { 259 case 1: /* Bad packet */ 260 goto freehdrs; 261 case -1: /* Do IPSec */ 262 needipsec = 1; 263 case 0: /* No IPSec */ 264 default: 265 break; 266 } 267 #endif /* IPSEC */ 268 269 /* 270 * Calculate the total length of the extension header chain. 271 * Keep the length of the unfragmentable part for fragmentation. 272 */ 273 optlen = 0; 274 if (exthdrs.ip6e_hbh) 275 optlen += exthdrs.ip6e_hbh->m_len; 276 if (exthdrs.ip6e_dest1) 277 optlen += exthdrs.ip6e_dest1->m_len; 278 if (exthdrs.ip6e_rthdr) 279 optlen += exthdrs.ip6e_rthdr->m_len; 280 unfragpartlen = optlen + sizeof(struct ip6_hdr); 281 282 /* NOTE: we don't add AH/ESP length here. do that later. */ 283 if (exthdrs.ip6e_dest2) 284 optlen += exthdrs.ip6e_dest2->m_len; 285 286 /* 287 * If we need IPsec, or there is at least one extension header, 288 * separate IP6 header from the payload. 289 */ 290 if ((needipsec || optlen) && !hdrsplit) { 291 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 292 m = NULL; 293 goto freehdrs; 294 } 295 m = exthdrs.ip6e_ip6; 296 hdrsplit++; 297 } 298 299 /* adjust pointer */ 300 ip6 = mtod(m, struct ip6_hdr *); 301 302 /* adjust mbuf packet header length */ 303 m->m_pkthdr.len += optlen; 304 plen = m->m_pkthdr.len - sizeof(*ip6); 305 306 /* If this is a jumbo payload, insert a jumbo payload option. */ 307 if (plen > IPV6_MAXPACKET) { 308 if (!hdrsplit) { 309 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 310 m = NULL; 311 goto freehdrs; 312 } 313 m = exthdrs.ip6e_ip6; 314 hdrsplit++; 315 } 316 /* adjust pointer */ 317 ip6 = mtod(m, struct ip6_hdr *); 318 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 319 goto freehdrs; 320 ip6->ip6_plen = 0; 321 } else 322 ip6->ip6_plen = htons(plen); 323 324 /* 325 * Concatenate headers and fill in next header fields. 326 * Here we have, on "m" 327 * IPv6 payload 328 * and we insert headers accordingly. Finally, we should be getting: 329 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 330 * 331 * during the header composing process, "m" points to IPv6 header. 332 * "mprev" points to an extension header prior to esp. 333 */ 334 u_char *nexthdrp = &ip6->ip6_nxt; 335 mprev = m; 336 337 /* 338 * we treat dest2 specially. this makes IPsec processing 339 * much easier. the goal here is to make mprev point the 340 * mbuf prior to dest2. 341 * 342 * result: IPv6 dest2 payload 343 * m and mprev will point to IPv6 header. 344 */ 345 if (exthdrs.ip6e_dest2) { 346 if (!hdrsplit) 347 panic("assumption failed: hdr not split"); 348 exthdrs.ip6e_dest2->m_next = m->m_next; 349 m->m_next = exthdrs.ip6e_dest2; 350 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 351 ip6->ip6_nxt = IPPROTO_DSTOPTS; 352 } 353 354 /* 355 * result: IPv6 hbh dest1 rthdr dest2 payload 356 * m will point to IPv6 header. mprev will point to the 357 * extension header prior to dest2 (rthdr in the above case). 358 */ 359 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 360 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 361 IPPROTO_DSTOPTS); 362 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 363 IPPROTO_ROUTING); 364 365 #ifdef IPSEC 366 if (!needipsec) 367 goto skip_ipsec2; 368 369 /* 370 * pointers after IPsec headers are not valid any more. 371 * other pointers need a great care too. 372 * (IPsec routines should not mangle mbufs prior to AH/ESP) 373 */ 374 exthdrs.ip6e_dest2 = NULL; 375 376 if (exthdrs.ip6e_rthdr) { 377 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 378 segleft_org = rh->ip6r_segleft; 379 rh->ip6r_segleft = 0; 380 } 381 382 bzero(&state, sizeof(state)); 383 state.m = m; 384 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 385 &needipsectun); 386 m = state.m; 387 if (error) { 388 /* mbuf is already reclaimed in ipsec6_output_trans. */ 389 m = NULL; 390 switch (error) { 391 case EHOSTUNREACH: 392 case ENETUNREACH: 393 case EMSGSIZE: 394 case ENOBUFS: 395 case ENOMEM: 396 break; 397 default: 398 printf("ip6_output (ipsec): error code %d\n", error); 399 /* FALLTHROUGH */ 400 case ENOENT: 401 /* don't show these error codes to the user */ 402 error = 0; 403 break; 404 } 405 goto bad; 406 } else if (!needipsectun) { 407 /* 408 * In the FAST IPSec case we have already 409 * re-injected the packet and it has been freed 410 * by the ipsec_done() function. So, just clean 411 * up after ourselves. 412 */ 413 m = NULL; 414 goto done; 415 } 416 if (exthdrs.ip6e_rthdr) { 417 /* ah6_output doesn't modify mbuf chain */ 418 rh->ip6r_segleft = segleft_org; 419 } 420 skip_ipsec2:; 421 #endif /* IPSEC */ 422 423 /* 424 * If there is a routing header, replace the destination address field 425 * with the first hop of the routing header. 426 */ 427 if (exthdrs.ip6e_rthdr) { 428 struct ip6_rthdr *rh = 429 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 430 struct ip6_rthdr *)); 431 struct ip6_rthdr0 *rh0; 432 struct in6_addr *addr; 433 struct sockaddr_in6 sa; 434 435 switch (rh->ip6r_type) { 436 case IPV6_RTHDR_TYPE_0: 437 rh0 = (struct ip6_rthdr0 *)rh; 438 addr = (struct in6_addr *)(rh0 + 1); 439 440 /* 441 * construct a sockaddr_in6 form of 442 * the first hop. 443 * 444 * XXX: we may not have enough 445 * information about its scope zone; 446 * there is no standard API to pass 447 * the information from the 448 * application. 449 */ 450 bzero(&sa, sizeof(sa)); 451 sa.sin6_family = AF_INET6; 452 sa.sin6_len = sizeof(sa); 453 sa.sin6_addr = addr[0]; 454 if ((error = sa6_embedscope(&sa, 455 ip6_use_defzone)) != 0) { 456 goto bad; 457 } 458 ip6->ip6_dst = sa.sin6_addr; 459 bcopy(&addr[1], &addr[0], sizeof(struct in6_addr) 460 * (rh0->ip6r0_segleft - 1)); 461 addr[rh0->ip6r0_segleft - 1] = finaldst; 462 /* XXX */ 463 in6_clearscope(addr + rh0->ip6r0_segleft - 1); 464 break; 465 default: /* is it possible? */ 466 error = EINVAL; 467 goto bad; 468 } 469 } 470 471 /* Source address validation */ 472 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 473 (flags & IPV6_UNSPECSRC) == 0) { 474 error = EOPNOTSUPP; 475 ip6stat.ip6s_badscope++; 476 goto bad; 477 } 478 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 479 error = EOPNOTSUPP; 480 ip6stat.ip6s_badscope++; 481 goto bad; 482 } 483 484 ip6stat.ip6s_localout++; 485 486 /* 487 * Route packet. 488 */ 489 if (ro == 0) { 490 ro = &ip6route; 491 bzero((caddr_t)ro, sizeof(*ro)); 492 } 493 ro_pmtu = ro; 494 if (opt && opt->ip6po_rthdr) 495 ro = &opt->ip6po_route; 496 dst = (struct sockaddr_in6 *)&ro->ro_dst; 497 498 again: 499 /* 500 * if specified, try to fill in the traffic class field. 501 * do not override if a non-zero value is already set. 502 * we check the diffserv field and the ecn field separately. 503 */ 504 if (opt && opt->ip6po_tclass >= 0) { 505 int mask = 0; 506 507 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 508 mask |= 0xfc; 509 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 510 mask |= 0x03; 511 if (mask != 0) 512 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 513 } 514 515 /* fill in or override the hop limit field, if necessary. */ 516 if (opt && opt->ip6po_hlim != -1) 517 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 518 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 519 if (im6o != NULL) 520 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 521 else 522 ip6->ip6_hlim = ip6_defmcasthlim; 523 } 524 525 #ifdef IPSEC 526 /* 527 * We may re-inject packets into the stack here. 528 */ 529 if (needipsec && needipsectun) { 530 struct ipsec_output_state state; 531 532 /* 533 * All the extension headers will become inaccessible 534 * (since they can be encrypted). 535 * Don't panic, we need no more updates to extension headers 536 * on inner IPv6 packet (since they are now encapsulated). 537 * 538 * IPv6 [ESP|AH] IPv6 [extension headers] payload 539 */ 540 bzero(&exthdrs, sizeof(exthdrs)); 541 exthdrs.ip6e_ip6 = m; 542 543 bzero(&state, sizeof(state)); 544 state.m = m; 545 state.ro = (struct route *)ro; 546 state.dst = (struct sockaddr *)dst; 547 548 error = ipsec6_output_tunnel(&state, sp, flags); 549 550 m = state.m; 551 ro = (struct route_in6 *)state.ro; 552 dst = (struct sockaddr_in6 *)state.dst; 553 if (error) { 554 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 555 m0 = m = NULL; 556 m = NULL; 557 switch (error) { 558 case EHOSTUNREACH: 559 case ENETUNREACH: 560 case EMSGSIZE: 561 case ENOBUFS: 562 case ENOMEM: 563 break; 564 default: 565 printf("ip6_output (ipsec): error code %d\n", error); 566 /* FALLTHROUGH */ 567 case ENOENT: 568 /* don't show these error codes to the user */ 569 error = 0; 570 break; 571 } 572 goto bad; 573 } else { 574 /* 575 * In the FAST IPSec case we have already 576 * re-injected the packet and it has been freed 577 * by the ipsec_done() function. So, just clean 578 * up after ourselves. 579 */ 580 m = NULL; 581 goto done; 582 } 583 584 exthdrs.ip6e_ip6 = m; 585 } 586 #endif /* IPSEC */ 587 588 /* adjust pointer */ 589 ip6 = mtod(m, struct ip6_hdr *); 590 591 bzero(&dst_sa, sizeof(dst_sa)); 592 dst_sa.sin6_family = AF_INET6; 593 dst_sa.sin6_len = sizeof(dst_sa); 594 dst_sa.sin6_addr = ip6->ip6_dst; 595 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro, 596 &ifp, &rt, 0)) != 0) { 597 switch (error) { 598 case EHOSTUNREACH: 599 ip6stat.ip6s_noroute++; 600 break; 601 case EADDRNOTAVAIL: 602 default: 603 break; /* XXX statistics? */ 604 } 605 if (ifp != NULL) 606 in6_ifstat_inc(ifp, ifs6_out_discard); 607 goto bad; 608 } 609 if (rt == NULL) { 610 /* 611 * If in6_selectroute() does not return a route entry, 612 * dst may not have been updated. 613 */ 614 *dst = dst_sa; /* XXX */ 615 } 616 617 /* 618 * then rt (for unicast) and ifp must be non-NULL valid values. 619 */ 620 if ((flags & IPV6_FORWARDING) == 0) { 621 /* XXX: the FORWARDING flag can be set for mrouting. */ 622 in6_ifstat_inc(ifp, ifs6_out_request); 623 } 624 if (rt != NULL) { 625 ia = (struct in6_ifaddr *)(rt->rt_ifa); 626 rt->rt_use++; 627 } 628 629 /* 630 * The outgoing interface must be in the zone of source and 631 * destination addresses. We should use ia_ifp to support the 632 * case of sending packets to an address of our own. 633 */ 634 if (ia != NULL && ia->ia_ifp) 635 origifp = ia->ia_ifp; 636 else 637 origifp = ifp; 638 639 src0 = ip6->ip6_src; 640 if (in6_setscope(&src0, origifp, &zone)) 641 goto badscope; 642 bzero(&src_sa, sizeof(src_sa)); 643 src_sa.sin6_family = AF_INET6; 644 src_sa.sin6_len = sizeof(src_sa); 645 src_sa.sin6_addr = ip6->ip6_src; 646 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 647 goto badscope; 648 649 dst0 = ip6->ip6_dst; 650 if (in6_setscope(&dst0, origifp, &zone)) 651 goto badscope; 652 /* re-initialize to be sure */ 653 bzero(&dst_sa, sizeof(dst_sa)); 654 dst_sa.sin6_family = AF_INET6; 655 dst_sa.sin6_len = sizeof(dst_sa); 656 dst_sa.sin6_addr = ip6->ip6_dst; 657 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 658 goto badscope; 659 } 660 661 /* scope check is done. */ 662 goto routefound; 663 664 badscope: 665 ip6stat.ip6s_badscope++; 666 in6_ifstat_inc(origifp, ifs6_out_discard); 667 if (error == 0) 668 error = EHOSTUNREACH; /* XXX */ 669 goto bad; 670 671 routefound: 672 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 673 if (opt && opt->ip6po_nextroute.ro_rt) { 674 /* 675 * The nexthop is explicitly specified by the 676 * application. We assume the next hop is an IPv6 677 * address. 678 */ 679 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 680 } 681 else if ((rt->rt_flags & RTF_GATEWAY)) 682 dst = (struct sockaddr_in6 *)rt->rt_gateway; 683 } 684 685 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 686 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 687 } else { 688 struct in6_multi *in6m; 689 690 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 691 692 in6_ifstat_inc(ifp, ifs6_out_mcast); 693 694 /* 695 * Confirm that the outgoing interface supports multicast. 696 */ 697 if (!(ifp->if_flags & IFF_MULTICAST)) { 698 ip6stat.ip6s_noroute++; 699 in6_ifstat_inc(ifp, ifs6_out_discard); 700 error = ENETUNREACH; 701 goto bad; 702 } 703 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 704 if (in6m != NULL && 705 (im6o == NULL || im6o->im6o_multicast_loop)) { 706 /* 707 * If we belong to the destination multicast group 708 * on the outgoing interface, and the caller did not 709 * forbid loopback, loop back a copy. 710 */ 711 ip6_mloopback(ifp, m, dst); 712 } else { 713 /* 714 * If we are acting as a multicast router, perform 715 * multicast forwarding as if the packet had just 716 * arrived on the interface to which we are about 717 * to send. The multicast forwarding function 718 * recursively calls this function, using the 719 * IPV6_FORWARDING flag to prevent infinite recursion. 720 * 721 * Multicasts that are looped back by ip6_mloopback(), 722 * above, will be forwarded by the ip6_input() routine, 723 * if necessary. 724 */ 725 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 726 /* 727 * XXX: ip6_mforward expects that rcvif is NULL 728 * when it is called from the originating path. 729 * However, it is not always the case, since 730 * some versions of MGETHDR() does not 731 * initialize the field. 732 */ 733 m->m_pkthdr.rcvif = NULL; 734 if (ip6_mforward(ip6, ifp, m) != 0) { 735 m_freem(m); 736 goto done; 737 } 738 } 739 } 740 /* 741 * Multicasts with a hoplimit of zero may be looped back, 742 * above, but must not be transmitted on a network. 743 * Also, multicasts addressed to the loopback interface 744 * are not sent -- the above call to ip6_mloopback() will 745 * loop back a copy if this host actually belongs to the 746 * destination group on the loopback interface. 747 */ 748 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 749 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 750 m_freem(m); 751 goto done; 752 } 753 } 754 755 /* 756 * Fill the outgoing inteface to tell the upper layer 757 * to increment per-interface statistics. 758 */ 759 if (ifpp) 760 *ifpp = ifp; 761 762 /* Determine path MTU. */ 763 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 764 &alwaysfrag)) != 0) 765 goto bad; 766 767 /* 768 * The caller of this function may specify to use the minimum MTU 769 * in some cases. 770 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 771 * setting. The logic is a bit complicated; by default, unicast 772 * packets will follow path MTU while multicast packets will be sent at 773 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 774 * including unicast ones will be sent at the minimum MTU. Multicast 775 * packets will always be sent at the minimum MTU unless 776 * IP6PO_MINMTU_DISABLE is explicitly specified. 777 * See RFC 3542 for more details. 778 */ 779 if (mtu > IPV6_MMTU) { 780 if ((flags & IPV6_MINMTU)) 781 mtu = IPV6_MMTU; 782 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 783 mtu = IPV6_MMTU; 784 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 785 (opt == NULL || 786 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 787 mtu = IPV6_MMTU; 788 } 789 } 790 791 /* 792 * clear embedded scope identifiers if necessary. 793 * in6_clearscope will touch the addresses only when necessary. 794 */ 795 in6_clearscope(&ip6->ip6_src); 796 in6_clearscope(&ip6->ip6_dst); 797 798 /* 799 * If the outgoing packet contains a hop-by-hop options header, 800 * it must be examined and processed even by the source node. 801 * (RFC 2460, section 4.) 802 */ 803 if (exthdrs.ip6e_hbh) { 804 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 805 u_int32_t dummy; /* XXX unused */ 806 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 807 808 #ifdef DIAGNOSTIC 809 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 810 panic("ip6e_hbh is not continuous"); 811 #endif 812 /* 813 * XXX: if we have to send an ICMPv6 error to the sender, 814 * we need the M_LOOP flag since icmp6_error() expects 815 * the IPv6 and the hop-by-hop options header are 816 * continuous unless the flag is set. 817 */ 818 m->m_flags |= M_LOOP; 819 m->m_pkthdr.rcvif = ifp; 820 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 821 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 822 &dummy, &plen) < 0) { 823 /* m was already freed at this point */ 824 error = EINVAL;/* better error? */ 825 goto done; 826 } 827 m->m_flags &= ~M_LOOP; /* XXX */ 828 m->m_pkthdr.rcvif = NULL; 829 } 830 831 /* Jump over all PFIL processing if hooks are not active. */ 832 if (!PFIL_HOOKED(&inet6_pfil_hook)) 833 goto passout; 834 835 odst = ip6->ip6_dst; 836 /* Run through list of hooks for output packets. */ 837 error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT, inp); 838 if (error != 0 || m == NULL) 839 goto done; 840 ip6 = mtod(m, struct ip6_hdr *); 841 842 /* See if destination IP address was changed by packet filter. */ 843 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 844 m->m_flags |= M_SKIP_FIREWALL; 845 /* If destination is now ourself drop to ip6_input(). */ 846 if (in6_localaddr(&ip6->ip6_dst)) { 847 if (m->m_pkthdr.rcvif == NULL) 848 m->m_pkthdr.rcvif = loif; 849 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 850 m->m_pkthdr.csum_flags |= 851 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 852 m->m_pkthdr.csum_data = 0xffff; 853 } 854 m->m_pkthdr.csum_flags |= 855 CSUM_IP_CHECKED | CSUM_IP_VALID; 856 error = netisr_queue(NETISR_IPV6, m); 857 goto done; 858 } else 859 goto again; /* Redo the routing table lookup. */ 860 } 861 862 /* XXX: IPFIREWALL_FORWARD */ 863 864 passout: 865 /* 866 * Send the packet to the outgoing interface. 867 * If necessary, do IPv6 fragmentation before sending. 868 * 869 * the logic here is rather complex: 870 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 871 * 1-a: send as is if tlen <= path mtu 872 * 1-b: fragment if tlen > path mtu 873 * 874 * 2: if user asks us not to fragment (dontfrag == 1) 875 * 2-a: send as is if tlen <= interface mtu 876 * 2-b: error if tlen > interface mtu 877 * 878 * 3: if we always need to attach fragment header (alwaysfrag == 1) 879 * always fragment 880 * 881 * 4: if dontfrag == 1 && alwaysfrag == 1 882 * error, as we cannot handle this conflicting request 883 */ 884 tlen = m->m_pkthdr.len; 885 886 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 887 dontfrag = 1; 888 else 889 dontfrag = 0; 890 if (dontfrag && alwaysfrag) { /* case 4 */ 891 /* conflicting request - can't transmit */ 892 error = EMSGSIZE; 893 goto bad; 894 } 895 if (dontfrag && tlen > IN6_LINKMTU(ifp)) { /* case 2-b */ 896 /* 897 * Even if the DONTFRAG option is specified, we cannot send the 898 * packet when the data length is larger than the MTU of the 899 * outgoing interface. 900 * Notify the error by sending IPV6_PATHMTU ancillary data as 901 * well as returning an error code (the latter is not described 902 * in the API spec.) 903 */ 904 u_int32_t mtu32; 905 struct ip6ctlparam ip6cp; 906 907 mtu32 = (u_int32_t)mtu; 908 bzero(&ip6cp, sizeof(ip6cp)); 909 ip6cp.ip6c_cmdarg = (void *)&mtu32; 910 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 911 (void *)&ip6cp); 912 913 error = EMSGSIZE; 914 goto bad; 915 } 916 917 /* 918 * transmit packet without fragmentation 919 */ 920 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 921 struct in6_ifaddr *ia6; 922 923 ip6 = mtod(m, struct ip6_hdr *); 924 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 925 if (ia6) { 926 /* Record statistics for this interface address. */ 927 ia6->ia_ifa.if_opackets++; 928 ia6->ia_ifa.if_obytes += m->m_pkthdr.len; 929 } 930 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 931 goto done; 932 } 933 934 /* 935 * try to fragment the packet. case 1-b and 3 936 */ 937 if (mtu < IPV6_MMTU) { 938 /* path MTU cannot be less than IPV6_MMTU */ 939 error = EMSGSIZE; 940 in6_ifstat_inc(ifp, ifs6_out_fragfail); 941 goto bad; 942 } else if (ip6->ip6_plen == 0) { 943 /* jumbo payload cannot be fragmented */ 944 error = EMSGSIZE; 945 in6_ifstat_inc(ifp, ifs6_out_fragfail); 946 goto bad; 947 } else { 948 struct mbuf **mnext, *m_frgpart; 949 struct ip6_frag *ip6f; 950 u_int32_t id = htonl(ip6_randomid()); 951 u_char nextproto; 952 953 int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len; 954 955 /* 956 * Too large for the destination or interface; 957 * fragment if possible. 958 * Must be able to put at least 8 bytes per fragment. 959 */ 960 hlen = unfragpartlen; 961 if (mtu > IPV6_MAXPACKET) 962 mtu = IPV6_MAXPACKET; 963 964 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 965 if (len < 8) { 966 error = EMSGSIZE; 967 in6_ifstat_inc(ifp, ifs6_out_fragfail); 968 goto bad; 969 } 970 971 /* 972 * Verify that we have any chance at all of being able to queue 973 * the packet or packet fragments 974 */ 975 if (qslots <= 0 || ((u_int)qslots * (mtu - hlen) 976 < tlen /* - hlen */)) { 977 error = ENOBUFS; 978 ip6stat.ip6s_odropped++; 979 goto bad; 980 } 981 982 mnext = &m->m_nextpkt; 983 984 /* 985 * Change the next header field of the last header in the 986 * unfragmentable part. 987 */ 988 if (exthdrs.ip6e_rthdr) { 989 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 990 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 991 } else if (exthdrs.ip6e_dest1) { 992 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 993 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 994 } else if (exthdrs.ip6e_hbh) { 995 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 996 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 997 } else { 998 nextproto = ip6->ip6_nxt; 999 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1000 } 1001 1002 /* 1003 * Loop through length of segment after first fragment, 1004 * make new header and copy data of each part and link onto 1005 * chain. 1006 */ 1007 m0 = m; 1008 for (off = hlen; off < tlen; off += len) { 1009 MGETHDR(m, M_DONTWAIT, MT_HEADER); 1010 if (!m) { 1011 error = ENOBUFS; 1012 ip6stat.ip6s_odropped++; 1013 goto sendorfree; 1014 } 1015 m->m_pkthdr.rcvif = NULL; 1016 m->m_flags = m0->m_flags & M_COPYFLAGS; 1017 *mnext = m; 1018 mnext = &m->m_nextpkt; 1019 m->m_data += max_linkhdr; 1020 mhip6 = mtod(m, struct ip6_hdr *); 1021 *mhip6 = *ip6; 1022 m->m_len = sizeof(*mhip6); 1023 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 1024 if (error) { 1025 ip6stat.ip6s_odropped++; 1026 goto sendorfree; 1027 } 1028 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 1029 if (off + len >= tlen) 1030 len = tlen - off; 1031 else 1032 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1033 mhip6->ip6_plen = htons((u_short)(len + hlen + 1034 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 1035 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 1036 error = ENOBUFS; 1037 ip6stat.ip6s_odropped++; 1038 goto sendorfree; 1039 } 1040 m_cat(m, m_frgpart); 1041 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1042 m->m_pkthdr.rcvif = NULL; 1043 ip6f->ip6f_reserved = 0; 1044 ip6f->ip6f_ident = id; 1045 ip6f->ip6f_nxt = nextproto; 1046 ip6stat.ip6s_ofragments++; 1047 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1048 } 1049 1050 in6_ifstat_inc(ifp, ifs6_out_fragok); 1051 } 1052 1053 /* 1054 * Remove leading garbages. 1055 */ 1056 sendorfree: 1057 m = m0->m_nextpkt; 1058 m0->m_nextpkt = 0; 1059 m_freem(m0); 1060 for (m0 = m; m; m = m0) { 1061 m0 = m->m_nextpkt; 1062 m->m_nextpkt = 0; 1063 if (error == 0) { 1064 /* Record statistics for this interface address. */ 1065 if (ia) { 1066 ia->ia_ifa.if_opackets++; 1067 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 1068 } 1069 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1070 } else 1071 m_freem(m); 1072 } 1073 1074 if (error == 0) 1075 ip6stat.ip6s_fragmented++; 1076 1077 done: 1078 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1079 RTFREE(ro->ro_rt); 1080 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1081 RTFREE(ro_pmtu->ro_rt); 1082 } 1083 1084 return (error); 1085 1086 freehdrs: 1087 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1088 m_freem(exthdrs.ip6e_dest1); 1089 m_freem(exthdrs.ip6e_rthdr); 1090 m_freem(exthdrs.ip6e_dest2); 1091 /* FALLTHROUGH */ 1092 bad: 1093 if (m) 1094 m_freem(m); 1095 goto done; 1096 } 1097 1098 static int 1099 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1100 { 1101 struct mbuf *m; 1102 1103 if (hlen > MCLBYTES) 1104 return (ENOBUFS); /* XXX */ 1105 1106 MGET(m, M_DONTWAIT, MT_DATA); 1107 if (!m) 1108 return (ENOBUFS); 1109 1110 if (hlen > MLEN) { 1111 MCLGET(m, M_DONTWAIT); 1112 if ((m->m_flags & M_EXT) == 0) { 1113 m_free(m); 1114 return (ENOBUFS); 1115 } 1116 } 1117 m->m_len = hlen; 1118 if (hdr) 1119 bcopy(hdr, mtod(m, caddr_t), hlen); 1120 1121 *mp = m; 1122 return (0); 1123 } 1124 1125 /* 1126 * Insert jumbo payload option. 1127 */ 1128 static int 1129 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1130 { 1131 struct mbuf *mopt; 1132 u_char *optbuf; 1133 u_int32_t v; 1134 1135 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1136 1137 /* 1138 * If there is no hop-by-hop options header, allocate new one. 1139 * If there is one but it doesn't have enough space to store the 1140 * jumbo payload option, allocate a cluster to store the whole options. 1141 * Otherwise, use it to store the options. 1142 */ 1143 if (exthdrs->ip6e_hbh == 0) { 1144 MGET(mopt, M_DONTWAIT, MT_DATA); 1145 if (mopt == 0) 1146 return (ENOBUFS); 1147 mopt->m_len = JUMBOOPTLEN; 1148 optbuf = mtod(mopt, u_char *); 1149 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1150 exthdrs->ip6e_hbh = mopt; 1151 } else { 1152 struct ip6_hbh *hbh; 1153 1154 mopt = exthdrs->ip6e_hbh; 1155 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1156 /* 1157 * XXX assumption: 1158 * - exthdrs->ip6e_hbh is not referenced from places 1159 * other than exthdrs. 1160 * - exthdrs->ip6e_hbh is not an mbuf chain. 1161 */ 1162 int oldoptlen = mopt->m_len; 1163 struct mbuf *n; 1164 1165 /* 1166 * XXX: give up if the whole (new) hbh header does 1167 * not fit even in an mbuf cluster. 1168 */ 1169 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1170 return (ENOBUFS); 1171 1172 /* 1173 * As a consequence, we must always prepare a cluster 1174 * at this point. 1175 */ 1176 MGET(n, M_DONTWAIT, MT_DATA); 1177 if (n) { 1178 MCLGET(n, M_DONTWAIT); 1179 if ((n->m_flags & M_EXT) == 0) { 1180 m_freem(n); 1181 n = NULL; 1182 } 1183 } 1184 if (!n) 1185 return (ENOBUFS); 1186 n->m_len = oldoptlen + JUMBOOPTLEN; 1187 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1188 oldoptlen); 1189 optbuf = mtod(n, caddr_t) + oldoptlen; 1190 m_freem(mopt); 1191 mopt = exthdrs->ip6e_hbh = n; 1192 } else { 1193 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1194 mopt->m_len += JUMBOOPTLEN; 1195 } 1196 optbuf[0] = IP6OPT_PADN; 1197 optbuf[1] = 1; 1198 1199 /* 1200 * Adjust the header length according to the pad and 1201 * the jumbo payload option. 1202 */ 1203 hbh = mtod(mopt, struct ip6_hbh *); 1204 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1205 } 1206 1207 /* fill in the option. */ 1208 optbuf[2] = IP6OPT_JUMBO; 1209 optbuf[3] = 4; 1210 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1211 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1212 1213 /* finally, adjust the packet header length */ 1214 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1215 1216 return (0); 1217 #undef JUMBOOPTLEN 1218 } 1219 1220 /* 1221 * Insert fragment header and copy unfragmentable header portions. 1222 */ 1223 static int 1224 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1225 struct ip6_frag **frghdrp) 1226 { 1227 struct mbuf *n, *mlast; 1228 1229 if (hlen > sizeof(struct ip6_hdr)) { 1230 n = m_copym(m0, sizeof(struct ip6_hdr), 1231 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1232 if (n == 0) 1233 return (ENOBUFS); 1234 m->m_next = n; 1235 } else 1236 n = m; 1237 1238 /* Search for the last mbuf of unfragmentable part. */ 1239 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1240 ; 1241 1242 if ((mlast->m_flags & M_EXT) == 0 && 1243 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1244 /* use the trailing space of the last mbuf for the fragment hdr */ 1245 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1246 mlast->m_len); 1247 mlast->m_len += sizeof(struct ip6_frag); 1248 m->m_pkthdr.len += sizeof(struct ip6_frag); 1249 } else { 1250 /* allocate a new mbuf for the fragment header */ 1251 struct mbuf *mfrg; 1252 1253 MGET(mfrg, M_DONTWAIT, MT_DATA); 1254 if (mfrg == 0) 1255 return (ENOBUFS); 1256 mfrg->m_len = sizeof(struct ip6_frag); 1257 *frghdrp = mtod(mfrg, struct ip6_frag *); 1258 mlast->m_next = mfrg; 1259 } 1260 1261 return (0); 1262 } 1263 1264 static int 1265 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro, 1266 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup, 1267 int *alwaysfragp) 1268 { 1269 u_int32_t mtu = 0; 1270 int alwaysfrag = 0; 1271 int error = 0; 1272 1273 if (ro_pmtu != ro) { 1274 /* The first hop and the final destination may differ. */ 1275 struct sockaddr_in6 *sa6_dst = 1276 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1277 if (ro_pmtu->ro_rt && 1278 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 || 1279 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) { 1280 RTFREE(ro_pmtu->ro_rt); 1281 ro_pmtu->ro_rt = (struct rtentry *)NULL; 1282 } 1283 if (ro_pmtu->ro_rt == NULL) { 1284 bzero(sa6_dst, sizeof(*sa6_dst)); 1285 sa6_dst->sin6_family = AF_INET6; 1286 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1287 sa6_dst->sin6_addr = *dst; 1288 1289 rtalloc((struct route *)ro_pmtu); 1290 } 1291 } 1292 if (ro_pmtu->ro_rt) { 1293 u_int32_t ifmtu; 1294 struct in_conninfo inc; 1295 1296 bzero(&inc, sizeof(inc)); 1297 inc.inc_flags = 1; /* IPv6 */ 1298 inc.inc6_faddr = *dst; 1299 1300 if (ifp == NULL) 1301 ifp = ro_pmtu->ro_rt->rt_ifp; 1302 ifmtu = IN6_LINKMTU(ifp); 1303 mtu = tcp_hc_getmtu(&inc); 1304 if (mtu) 1305 mtu = min(mtu, ro_pmtu->ro_rt->rt_rmx.rmx_mtu); 1306 else 1307 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 1308 if (mtu == 0) 1309 mtu = ifmtu; 1310 else if (mtu < IPV6_MMTU) { 1311 /* 1312 * RFC2460 section 5, last paragraph: 1313 * if we record ICMPv6 too big message with 1314 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1315 * or smaller, with framgent header attached. 1316 * (fragment header is needed regardless from the 1317 * packet size, for translators to identify packets) 1318 */ 1319 alwaysfrag = 1; 1320 mtu = IPV6_MMTU; 1321 } else if (mtu > ifmtu) { 1322 /* 1323 * The MTU on the route is larger than the MTU on 1324 * the interface! This shouldn't happen, unless the 1325 * MTU of the interface has been changed after the 1326 * interface was brought up. Change the MTU in the 1327 * route to match the interface MTU (as long as the 1328 * field isn't locked). 1329 */ 1330 mtu = ifmtu; 1331 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; 1332 } 1333 } else if (ifp) { 1334 mtu = IN6_LINKMTU(ifp); 1335 } else 1336 error = EHOSTUNREACH; /* XXX */ 1337 1338 *mtup = mtu; 1339 if (alwaysfragp) 1340 *alwaysfragp = alwaysfrag; 1341 return (error); 1342 } 1343 1344 /* 1345 * IP6 socket option processing. 1346 */ 1347 int 1348 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1349 { 1350 int optdatalen, uproto; 1351 void *optdata; 1352 struct inpcb *in6p = sotoinpcb(so); 1353 int error, optval; 1354 int level, op, optname; 1355 int optlen; 1356 struct thread *td; 1357 1358 if (sopt) { 1359 level = sopt->sopt_level; 1360 op = sopt->sopt_dir; 1361 optname = sopt->sopt_name; 1362 optlen = sopt->sopt_valsize; 1363 td = sopt->sopt_td; 1364 } else { 1365 panic("ip6_ctloutput: arg soopt is NULL"); 1366 } 1367 error = optval = 0; 1368 1369 uproto = (int)so->so_proto->pr_protocol; 1370 1371 if (level == IPPROTO_IPV6) { 1372 switch (op) { 1373 1374 case SOPT_SET: 1375 switch (optname) { 1376 case IPV6_2292PKTOPTIONS: 1377 #ifdef IPV6_PKTOPTIONS 1378 case IPV6_PKTOPTIONS: 1379 #endif 1380 { 1381 struct mbuf *m; 1382 1383 error = soopt_getm(sopt, &m); /* XXX */ 1384 if (error != 0) 1385 break; 1386 error = soopt_mcopyin(sopt, m); /* XXX */ 1387 if (error != 0) 1388 break; 1389 error = ip6_pcbopts(&in6p->in6p_outputopts, 1390 m, so, sopt); 1391 m_freem(m); /* XXX */ 1392 break; 1393 } 1394 1395 /* 1396 * Use of some Hop-by-Hop options or some 1397 * Destination options, might require special 1398 * privilege. That is, normal applications 1399 * (without special privilege) might be forbidden 1400 * from setting certain options in outgoing packets, 1401 * and might never see certain options in received 1402 * packets. [RFC 2292 Section 6] 1403 * KAME specific note: 1404 * KAME prevents non-privileged users from sending or 1405 * receiving ANY hbh/dst options in order to avoid 1406 * overhead of parsing options in the kernel. 1407 */ 1408 case IPV6_RECVHOPOPTS: 1409 case IPV6_RECVDSTOPTS: 1410 case IPV6_RECVRTHDRDSTOPTS: 1411 if (td != NULL) { 1412 error = priv_check(td, 1413 PRIV_NETINET_SETHDROPTS); 1414 if (error) 1415 break; 1416 } 1417 /* FALLTHROUGH */ 1418 case IPV6_UNICAST_HOPS: 1419 case IPV6_HOPLIMIT: 1420 case IPV6_FAITH: 1421 1422 case IPV6_RECVPKTINFO: 1423 case IPV6_RECVHOPLIMIT: 1424 case IPV6_RECVRTHDR: 1425 case IPV6_RECVPATHMTU: 1426 case IPV6_RECVTCLASS: 1427 case IPV6_V6ONLY: 1428 case IPV6_AUTOFLOWLABEL: 1429 if (optlen != sizeof(int)) { 1430 error = EINVAL; 1431 break; 1432 } 1433 error = sooptcopyin(sopt, &optval, 1434 sizeof optval, sizeof optval); 1435 if (error) 1436 break; 1437 switch (optname) { 1438 1439 case IPV6_UNICAST_HOPS: 1440 if (optval < -1 || optval >= 256) 1441 error = EINVAL; 1442 else { 1443 /* -1 = kernel default */ 1444 in6p->in6p_hops = optval; 1445 if ((in6p->in6p_vflag & 1446 INP_IPV4) != 0) 1447 in6p->inp_ip_ttl = optval; 1448 } 1449 break; 1450 #define OPTSET(bit) \ 1451 do { \ 1452 if (optval) \ 1453 in6p->in6p_flags |= (bit); \ 1454 else \ 1455 in6p->in6p_flags &= ~(bit); \ 1456 } while (/*CONSTCOND*/ 0) 1457 #define OPTSET2292(bit) \ 1458 do { \ 1459 in6p->in6p_flags |= IN6P_RFC2292; \ 1460 if (optval) \ 1461 in6p->in6p_flags |= (bit); \ 1462 else \ 1463 in6p->in6p_flags &= ~(bit); \ 1464 } while (/*CONSTCOND*/ 0) 1465 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) 1466 1467 case IPV6_RECVPKTINFO: 1468 /* cannot mix with RFC2292 */ 1469 if (OPTBIT(IN6P_RFC2292)) { 1470 error = EINVAL; 1471 break; 1472 } 1473 OPTSET(IN6P_PKTINFO); 1474 break; 1475 1476 case IPV6_HOPLIMIT: 1477 { 1478 struct ip6_pktopts **optp; 1479 1480 /* cannot mix with RFC2292 */ 1481 if (OPTBIT(IN6P_RFC2292)) { 1482 error = EINVAL; 1483 break; 1484 } 1485 optp = &in6p->in6p_outputopts; 1486 error = ip6_pcbopt(IPV6_HOPLIMIT, 1487 (u_char *)&optval, sizeof(optval), 1488 optp, (td != NULL) ? td->td_ucred : 1489 NULL, uproto); 1490 break; 1491 } 1492 1493 case IPV6_RECVHOPLIMIT: 1494 /* cannot mix with RFC2292 */ 1495 if (OPTBIT(IN6P_RFC2292)) { 1496 error = EINVAL; 1497 break; 1498 } 1499 OPTSET(IN6P_HOPLIMIT); 1500 break; 1501 1502 case IPV6_RECVHOPOPTS: 1503 /* cannot mix with RFC2292 */ 1504 if (OPTBIT(IN6P_RFC2292)) { 1505 error = EINVAL; 1506 break; 1507 } 1508 OPTSET(IN6P_HOPOPTS); 1509 break; 1510 1511 case IPV6_RECVDSTOPTS: 1512 /* cannot mix with RFC2292 */ 1513 if (OPTBIT(IN6P_RFC2292)) { 1514 error = EINVAL; 1515 break; 1516 } 1517 OPTSET(IN6P_DSTOPTS); 1518 break; 1519 1520 case IPV6_RECVRTHDRDSTOPTS: 1521 /* cannot mix with RFC2292 */ 1522 if (OPTBIT(IN6P_RFC2292)) { 1523 error = EINVAL; 1524 break; 1525 } 1526 OPTSET(IN6P_RTHDRDSTOPTS); 1527 break; 1528 1529 case IPV6_RECVRTHDR: 1530 /* cannot mix with RFC2292 */ 1531 if (OPTBIT(IN6P_RFC2292)) { 1532 error = EINVAL; 1533 break; 1534 } 1535 OPTSET(IN6P_RTHDR); 1536 break; 1537 1538 case IPV6_FAITH: 1539 OPTSET(IN6P_FAITH); 1540 break; 1541 1542 case IPV6_RECVPATHMTU: 1543 /* 1544 * We ignore this option for TCP 1545 * sockets. 1546 * (RFC3542 leaves this case 1547 * unspecified.) 1548 */ 1549 if (uproto != IPPROTO_TCP) 1550 OPTSET(IN6P_MTU); 1551 break; 1552 1553 case IPV6_V6ONLY: 1554 /* 1555 * make setsockopt(IPV6_V6ONLY) 1556 * available only prior to bind(2). 1557 * see ipng mailing list, Jun 22 2001. 1558 */ 1559 if (in6p->in6p_lport || 1560 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1561 error = EINVAL; 1562 break; 1563 } 1564 OPTSET(IN6P_IPV6_V6ONLY); 1565 if (optval) 1566 in6p->in6p_vflag &= ~INP_IPV4; 1567 else 1568 in6p->in6p_vflag |= INP_IPV4; 1569 break; 1570 case IPV6_RECVTCLASS: 1571 /* cannot mix with RFC2292 XXX */ 1572 if (OPTBIT(IN6P_RFC2292)) { 1573 error = EINVAL; 1574 break; 1575 } 1576 OPTSET(IN6P_TCLASS); 1577 break; 1578 case IPV6_AUTOFLOWLABEL: 1579 OPTSET(IN6P_AUTOFLOWLABEL); 1580 break; 1581 1582 } 1583 break; 1584 1585 case IPV6_TCLASS: 1586 case IPV6_DONTFRAG: 1587 case IPV6_USE_MIN_MTU: 1588 case IPV6_PREFER_TEMPADDR: 1589 if (optlen != sizeof(optval)) { 1590 error = EINVAL; 1591 break; 1592 } 1593 error = sooptcopyin(sopt, &optval, 1594 sizeof optval, sizeof optval); 1595 if (error) 1596 break; 1597 { 1598 struct ip6_pktopts **optp; 1599 optp = &in6p->in6p_outputopts; 1600 error = ip6_pcbopt(optname, 1601 (u_char *)&optval, sizeof(optval), 1602 optp, (td != NULL) ? td->td_ucred : 1603 NULL, uproto); 1604 break; 1605 } 1606 1607 case IPV6_2292PKTINFO: 1608 case IPV6_2292HOPLIMIT: 1609 case IPV6_2292HOPOPTS: 1610 case IPV6_2292DSTOPTS: 1611 case IPV6_2292RTHDR: 1612 /* RFC 2292 */ 1613 if (optlen != sizeof(int)) { 1614 error = EINVAL; 1615 break; 1616 } 1617 error = sooptcopyin(sopt, &optval, 1618 sizeof optval, sizeof optval); 1619 if (error) 1620 break; 1621 switch (optname) { 1622 case IPV6_2292PKTINFO: 1623 OPTSET2292(IN6P_PKTINFO); 1624 break; 1625 case IPV6_2292HOPLIMIT: 1626 OPTSET2292(IN6P_HOPLIMIT); 1627 break; 1628 case IPV6_2292HOPOPTS: 1629 /* 1630 * Check super-user privilege. 1631 * See comments for IPV6_RECVHOPOPTS. 1632 */ 1633 if (td != NULL) { 1634 error = priv_check(td, 1635 PRIV_NETINET_SETHDROPTS); 1636 if (error) 1637 return (error); 1638 } 1639 OPTSET2292(IN6P_HOPOPTS); 1640 break; 1641 case IPV6_2292DSTOPTS: 1642 if (td != NULL) { 1643 error = priv_check(td, 1644 PRIV_NETINET_SETHDROPTS); 1645 if (error) 1646 return (error); 1647 } 1648 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1649 break; 1650 case IPV6_2292RTHDR: 1651 OPTSET2292(IN6P_RTHDR); 1652 break; 1653 } 1654 break; 1655 case IPV6_PKTINFO: 1656 case IPV6_HOPOPTS: 1657 case IPV6_RTHDR: 1658 case IPV6_DSTOPTS: 1659 case IPV6_RTHDRDSTOPTS: 1660 case IPV6_NEXTHOP: 1661 { 1662 /* new advanced API (RFC3542) */ 1663 u_char *optbuf; 1664 u_char optbuf_storage[MCLBYTES]; 1665 int optlen; 1666 struct ip6_pktopts **optp; 1667 1668 /* cannot mix with RFC2292 */ 1669 if (OPTBIT(IN6P_RFC2292)) { 1670 error = EINVAL; 1671 break; 1672 } 1673 1674 /* 1675 * We only ensure valsize is not too large 1676 * here. Further validation will be done 1677 * later. 1678 */ 1679 error = sooptcopyin(sopt, optbuf_storage, 1680 sizeof(optbuf_storage), 0); 1681 if (error) 1682 break; 1683 optlen = sopt->sopt_valsize; 1684 optbuf = optbuf_storage; 1685 optp = &in6p->in6p_outputopts; 1686 error = ip6_pcbopt(optname, optbuf, optlen, 1687 optp, (td != NULL) ? td->td_ucred : NULL, 1688 uproto); 1689 break; 1690 } 1691 #undef OPTSET 1692 1693 case IPV6_MULTICAST_IF: 1694 case IPV6_MULTICAST_HOPS: 1695 case IPV6_MULTICAST_LOOP: 1696 case IPV6_JOIN_GROUP: 1697 case IPV6_LEAVE_GROUP: 1698 { 1699 if (sopt->sopt_valsize > MLEN) { 1700 error = EMSGSIZE; 1701 break; 1702 } 1703 /* XXX */ 1704 } 1705 /* FALLTHROUGH */ 1706 { 1707 struct mbuf *m; 1708 1709 if (sopt->sopt_valsize > MCLBYTES) { 1710 error = EMSGSIZE; 1711 break; 1712 } 1713 /* XXX */ 1714 MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA); 1715 if (m == 0) { 1716 error = ENOBUFS; 1717 break; 1718 } 1719 if (sopt->sopt_valsize > MLEN) { 1720 MCLGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT); 1721 if ((m->m_flags & M_EXT) == 0) { 1722 m_free(m); 1723 error = ENOBUFS; 1724 break; 1725 } 1726 } 1727 m->m_len = sopt->sopt_valsize; 1728 error = sooptcopyin(sopt, mtod(m, char *), 1729 m->m_len, m->m_len); 1730 if (error) { 1731 (void)m_free(m); 1732 break; 1733 } 1734 error = ip6_setmoptions(sopt->sopt_name, 1735 &in6p->in6p_moptions, 1736 m); 1737 (void)m_free(m); 1738 } 1739 break; 1740 1741 case IPV6_PORTRANGE: 1742 error = sooptcopyin(sopt, &optval, 1743 sizeof optval, sizeof optval); 1744 if (error) 1745 break; 1746 1747 switch (optval) { 1748 case IPV6_PORTRANGE_DEFAULT: 1749 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1750 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1751 break; 1752 1753 case IPV6_PORTRANGE_HIGH: 1754 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1755 in6p->in6p_flags |= IN6P_HIGHPORT; 1756 break; 1757 1758 case IPV6_PORTRANGE_LOW: 1759 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1760 in6p->in6p_flags |= IN6P_LOWPORT; 1761 break; 1762 1763 default: 1764 error = EINVAL; 1765 break; 1766 } 1767 break; 1768 1769 #ifdef IPSEC 1770 case IPV6_IPSEC_POLICY: 1771 { 1772 caddr_t req; 1773 struct mbuf *m; 1774 1775 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1776 break; 1777 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1778 break; 1779 req = mtod(m, caddr_t); 1780 error = ipsec6_set_policy(in6p, optname, req, 1781 m->m_len, (sopt->sopt_td != NULL) ? 1782 sopt->sopt_td->td_ucred : NULL); 1783 m_freem(m); 1784 break; 1785 } 1786 #endif /* IPSEC */ 1787 1788 default: 1789 error = ENOPROTOOPT; 1790 break; 1791 } 1792 break; 1793 1794 case SOPT_GET: 1795 switch (optname) { 1796 1797 case IPV6_2292PKTOPTIONS: 1798 #ifdef IPV6_PKTOPTIONS 1799 case IPV6_PKTOPTIONS: 1800 #endif 1801 /* 1802 * RFC3542 (effectively) deprecated the 1803 * semantics of the 2292-style pktoptions. 1804 * Since it was not reliable in nature (i.e., 1805 * applications had to expect the lack of some 1806 * information after all), it would make sense 1807 * to simplify this part by always returning 1808 * empty data. 1809 */ 1810 sopt->sopt_valsize = 0; 1811 break; 1812 1813 case IPV6_RECVHOPOPTS: 1814 case IPV6_RECVDSTOPTS: 1815 case IPV6_RECVRTHDRDSTOPTS: 1816 case IPV6_UNICAST_HOPS: 1817 case IPV6_RECVPKTINFO: 1818 case IPV6_RECVHOPLIMIT: 1819 case IPV6_RECVRTHDR: 1820 case IPV6_RECVPATHMTU: 1821 1822 case IPV6_FAITH: 1823 case IPV6_V6ONLY: 1824 case IPV6_PORTRANGE: 1825 case IPV6_RECVTCLASS: 1826 case IPV6_AUTOFLOWLABEL: 1827 switch (optname) { 1828 1829 case IPV6_RECVHOPOPTS: 1830 optval = OPTBIT(IN6P_HOPOPTS); 1831 break; 1832 1833 case IPV6_RECVDSTOPTS: 1834 optval = OPTBIT(IN6P_DSTOPTS); 1835 break; 1836 1837 case IPV6_RECVRTHDRDSTOPTS: 1838 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1839 break; 1840 1841 case IPV6_UNICAST_HOPS: 1842 optval = in6p->in6p_hops; 1843 break; 1844 1845 case IPV6_RECVPKTINFO: 1846 optval = OPTBIT(IN6P_PKTINFO); 1847 break; 1848 1849 case IPV6_RECVHOPLIMIT: 1850 optval = OPTBIT(IN6P_HOPLIMIT); 1851 break; 1852 1853 case IPV6_RECVRTHDR: 1854 optval = OPTBIT(IN6P_RTHDR); 1855 break; 1856 1857 case IPV6_RECVPATHMTU: 1858 optval = OPTBIT(IN6P_MTU); 1859 break; 1860 1861 case IPV6_FAITH: 1862 optval = OPTBIT(IN6P_FAITH); 1863 break; 1864 1865 case IPV6_V6ONLY: 1866 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1867 break; 1868 1869 case IPV6_PORTRANGE: 1870 { 1871 int flags; 1872 flags = in6p->in6p_flags; 1873 if (flags & IN6P_HIGHPORT) 1874 optval = IPV6_PORTRANGE_HIGH; 1875 else if (flags & IN6P_LOWPORT) 1876 optval = IPV6_PORTRANGE_LOW; 1877 else 1878 optval = 0; 1879 break; 1880 } 1881 case IPV6_RECVTCLASS: 1882 optval = OPTBIT(IN6P_TCLASS); 1883 break; 1884 1885 case IPV6_AUTOFLOWLABEL: 1886 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 1887 break; 1888 } 1889 if (error) 1890 break; 1891 error = sooptcopyout(sopt, &optval, 1892 sizeof optval); 1893 break; 1894 1895 case IPV6_PATHMTU: 1896 { 1897 u_long pmtu = 0; 1898 struct ip6_mtuinfo mtuinfo; 1899 struct route_in6 sro; 1900 1901 bzero(&sro, sizeof(sro)); 1902 1903 if (!(so->so_state & SS_ISCONNECTED)) 1904 return (ENOTCONN); 1905 /* 1906 * XXX: we dot not consider the case of source 1907 * routing, or optional information to specify 1908 * the outgoing interface. 1909 */ 1910 error = ip6_getpmtu(&sro, NULL, NULL, 1911 &in6p->in6p_faddr, &pmtu, NULL); 1912 if (sro.ro_rt) 1913 RTFREE(sro.ro_rt); 1914 if (error) 1915 break; 1916 if (pmtu > IPV6_MAXPACKET) 1917 pmtu = IPV6_MAXPACKET; 1918 1919 bzero(&mtuinfo, sizeof(mtuinfo)); 1920 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1921 optdata = (void *)&mtuinfo; 1922 optdatalen = sizeof(mtuinfo); 1923 error = sooptcopyout(sopt, optdata, 1924 optdatalen); 1925 break; 1926 } 1927 1928 case IPV6_2292PKTINFO: 1929 case IPV6_2292HOPLIMIT: 1930 case IPV6_2292HOPOPTS: 1931 case IPV6_2292RTHDR: 1932 case IPV6_2292DSTOPTS: 1933 switch (optname) { 1934 case IPV6_2292PKTINFO: 1935 optval = OPTBIT(IN6P_PKTINFO); 1936 break; 1937 case IPV6_2292HOPLIMIT: 1938 optval = OPTBIT(IN6P_HOPLIMIT); 1939 break; 1940 case IPV6_2292HOPOPTS: 1941 optval = OPTBIT(IN6P_HOPOPTS); 1942 break; 1943 case IPV6_2292RTHDR: 1944 optval = OPTBIT(IN6P_RTHDR); 1945 break; 1946 case IPV6_2292DSTOPTS: 1947 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1948 break; 1949 } 1950 error = sooptcopyout(sopt, &optval, 1951 sizeof optval); 1952 break; 1953 case IPV6_PKTINFO: 1954 case IPV6_HOPOPTS: 1955 case IPV6_RTHDR: 1956 case IPV6_DSTOPTS: 1957 case IPV6_RTHDRDSTOPTS: 1958 case IPV6_NEXTHOP: 1959 case IPV6_TCLASS: 1960 case IPV6_DONTFRAG: 1961 case IPV6_USE_MIN_MTU: 1962 case IPV6_PREFER_TEMPADDR: 1963 error = ip6_getpcbopt(in6p->in6p_outputopts, 1964 optname, sopt); 1965 break; 1966 1967 case IPV6_MULTICAST_IF: 1968 case IPV6_MULTICAST_HOPS: 1969 case IPV6_MULTICAST_LOOP: 1970 case IPV6_JOIN_GROUP: 1971 case IPV6_LEAVE_GROUP: 1972 { 1973 struct mbuf *m; 1974 error = ip6_getmoptions(sopt->sopt_name, 1975 in6p->in6p_moptions, &m); 1976 if (error == 0) 1977 error = sooptcopyout(sopt, 1978 mtod(m, char *), m->m_len); 1979 m_freem(m); 1980 } 1981 break; 1982 1983 #ifdef IPSEC 1984 case IPV6_IPSEC_POLICY: 1985 { 1986 caddr_t req = NULL; 1987 size_t len = 0; 1988 struct mbuf *m = NULL; 1989 struct mbuf **mp = &m; 1990 size_t ovalsize = sopt->sopt_valsize; 1991 caddr_t oval = (caddr_t)sopt->sopt_val; 1992 1993 error = soopt_getm(sopt, &m); /* XXX */ 1994 if (error != 0) 1995 break; 1996 error = soopt_mcopyin(sopt, m); /* XXX */ 1997 if (error != 0) 1998 break; 1999 sopt->sopt_valsize = ovalsize; 2000 sopt->sopt_val = oval; 2001 if (m) { 2002 req = mtod(m, caddr_t); 2003 len = m->m_len; 2004 } 2005 error = ipsec6_get_policy(in6p, req, len, mp); 2006 if (error == 0) 2007 error = soopt_mcopyout(sopt, m); /* XXX */ 2008 if (error == 0 && m) 2009 m_freem(m); 2010 break; 2011 } 2012 #endif /* IPSEC */ 2013 2014 default: 2015 error = ENOPROTOOPT; 2016 break; 2017 } 2018 break; 2019 } 2020 } else { /* level != IPPROTO_IPV6 */ 2021 error = EINVAL; 2022 } 2023 return (error); 2024 } 2025 2026 int 2027 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2028 { 2029 int error = 0, optval, optlen; 2030 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2031 struct in6pcb *in6p = sotoin6pcb(so); 2032 int level, op, optname; 2033 2034 if (sopt) { 2035 level = sopt->sopt_level; 2036 op = sopt->sopt_dir; 2037 optname = sopt->sopt_name; 2038 optlen = sopt->sopt_valsize; 2039 } else 2040 panic("ip6_raw_ctloutput: arg soopt is NULL"); 2041 2042 if (level != IPPROTO_IPV6) { 2043 return (EINVAL); 2044 } 2045 2046 switch (optname) { 2047 case IPV6_CHECKSUM: 2048 /* 2049 * For ICMPv6 sockets, no modification allowed for checksum 2050 * offset, permit "no change" values to help existing apps. 2051 * 2052 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2053 * for an ICMPv6 socket will fail." 2054 * The current behavior does not meet RFC3542. 2055 */ 2056 switch (op) { 2057 case SOPT_SET: 2058 if (optlen != sizeof(int)) { 2059 error = EINVAL; 2060 break; 2061 } 2062 error = sooptcopyin(sopt, &optval, sizeof(optval), 2063 sizeof(optval)); 2064 if (error) 2065 break; 2066 if ((optval % 2) != 0) { 2067 /* the API assumes even offset values */ 2068 error = EINVAL; 2069 } else if (so->so_proto->pr_protocol == 2070 IPPROTO_ICMPV6) { 2071 if (optval != icmp6off) 2072 error = EINVAL; 2073 } else 2074 in6p->in6p_cksum = optval; 2075 break; 2076 2077 case SOPT_GET: 2078 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2079 optval = icmp6off; 2080 else 2081 optval = in6p->in6p_cksum; 2082 2083 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2084 break; 2085 2086 default: 2087 error = EINVAL; 2088 break; 2089 } 2090 break; 2091 2092 default: 2093 error = ENOPROTOOPT; 2094 break; 2095 } 2096 2097 return (error); 2098 } 2099 2100 /* 2101 * Set up IP6 options in pcb for insertion in output packets or 2102 * specifying behavior of outgoing packets. 2103 */ 2104 static int 2105 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2106 struct socket *so, struct sockopt *sopt) 2107 { 2108 struct ip6_pktopts *opt = *pktopt; 2109 int error = 0; 2110 struct thread *td = sopt->sopt_td; 2111 2112 /* turn off any old options. */ 2113 if (opt) { 2114 #ifdef DIAGNOSTIC 2115 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2116 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2117 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2118 printf("ip6_pcbopts: all specified options are cleared.\n"); 2119 #endif 2120 ip6_clearpktopts(opt, -1); 2121 } else 2122 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2123 *pktopt = NULL; 2124 2125 if (!m || m->m_len == 0) { 2126 /* 2127 * Only turning off any previous options, regardless of 2128 * whether the opt is just created or given. 2129 */ 2130 free(opt, M_IP6OPT); 2131 return (0); 2132 } 2133 2134 /* set options specified by user. */ 2135 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2136 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2137 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2138 free(opt, M_IP6OPT); 2139 return (error); 2140 } 2141 *pktopt = opt; 2142 return (0); 2143 } 2144 2145 /* 2146 * initialize ip6_pktopts. beware that there are non-zero default values in 2147 * the struct. 2148 */ 2149 void 2150 ip6_initpktopts(struct ip6_pktopts *opt) 2151 { 2152 2153 bzero(opt, sizeof(*opt)); 2154 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2155 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2156 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2157 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2158 } 2159 2160 static int 2161 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2162 struct ucred *cred, int uproto) 2163 { 2164 struct ip6_pktopts *opt; 2165 2166 if (*pktopt == NULL) { 2167 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2168 M_WAITOK); 2169 ip6_initpktopts(*pktopt); 2170 } 2171 opt = *pktopt; 2172 2173 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2174 } 2175 2176 static int 2177 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2178 { 2179 void *optdata = NULL; 2180 int optdatalen = 0; 2181 struct ip6_ext *ip6e; 2182 int error = 0; 2183 struct in6_pktinfo null_pktinfo; 2184 int deftclass = 0, on; 2185 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2186 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2187 2188 switch (optname) { 2189 case IPV6_PKTINFO: 2190 if (pktopt && pktopt->ip6po_pktinfo) 2191 optdata = (void *)pktopt->ip6po_pktinfo; 2192 else { 2193 /* XXX: we don't have to do this every time... */ 2194 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2195 optdata = (void *)&null_pktinfo; 2196 } 2197 optdatalen = sizeof(struct in6_pktinfo); 2198 break; 2199 case IPV6_TCLASS: 2200 if (pktopt && pktopt->ip6po_tclass >= 0) 2201 optdata = (void *)&pktopt->ip6po_tclass; 2202 else 2203 optdata = (void *)&deftclass; 2204 optdatalen = sizeof(int); 2205 break; 2206 case IPV6_HOPOPTS: 2207 if (pktopt && pktopt->ip6po_hbh) { 2208 optdata = (void *)pktopt->ip6po_hbh; 2209 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2210 optdatalen = (ip6e->ip6e_len + 1) << 3; 2211 } 2212 break; 2213 case IPV6_RTHDR: 2214 if (pktopt && pktopt->ip6po_rthdr) { 2215 optdata = (void *)pktopt->ip6po_rthdr; 2216 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2217 optdatalen = (ip6e->ip6e_len + 1) << 3; 2218 } 2219 break; 2220 case IPV6_RTHDRDSTOPTS: 2221 if (pktopt && pktopt->ip6po_dest1) { 2222 optdata = (void *)pktopt->ip6po_dest1; 2223 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2224 optdatalen = (ip6e->ip6e_len + 1) << 3; 2225 } 2226 break; 2227 case IPV6_DSTOPTS: 2228 if (pktopt && pktopt->ip6po_dest2) { 2229 optdata = (void *)pktopt->ip6po_dest2; 2230 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2231 optdatalen = (ip6e->ip6e_len + 1) << 3; 2232 } 2233 break; 2234 case IPV6_NEXTHOP: 2235 if (pktopt && pktopt->ip6po_nexthop) { 2236 optdata = (void *)pktopt->ip6po_nexthop; 2237 optdatalen = pktopt->ip6po_nexthop->sa_len; 2238 } 2239 break; 2240 case IPV6_USE_MIN_MTU: 2241 if (pktopt) 2242 optdata = (void *)&pktopt->ip6po_minmtu; 2243 else 2244 optdata = (void *)&defminmtu; 2245 optdatalen = sizeof(int); 2246 break; 2247 case IPV6_DONTFRAG: 2248 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2249 on = 1; 2250 else 2251 on = 0; 2252 optdata = (void *)&on; 2253 optdatalen = sizeof(on); 2254 break; 2255 case IPV6_PREFER_TEMPADDR: 2256 if (pktopt) 2257 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2258 else 2259 optdata = (void *)&defpreftemp; 2260 optdatalen = sizeof(int); 2261 break; 2262 default: /* should not happen */ 2263 #ifdef DIAGNOSTIC 2264 panic("ip6_getpcbopt: unexpected option\n"); 2265 #endif 2266 return (ENOPROTOOPT); 2267 } 2268 2269 error = sooptcopyout(sopt, optdata, optdatalen); 2270 2271 return (error); 2272 } 2273 2274 void 2275 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2276 { 2277 if (pktopt == NULL) 2278 return; 2279 2280 if (optname == -1 || optname == IPV6_PKTINFO) { 2281 if (pktopt->ip6po_pktinfo) 2282 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2283 pktopt->ip6po_pktinfo = NULL; 2284 } 2285 if (optname == -1 || optname == IPV6_HOPLIMIT) 2286 pktopt->ip6po_hlim = -1; 2287 if (optname == -1 || optname == IPV6_TCLASS) 2288 pktopt->ip6po_tclass = -1; 2289 if (optname == -1 || optname == IPV6_NEXTHOP) { 2290 if (pktopt->ip6po_nextroute.ro_rt) { 2291 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2292 pktopt->ip6po_nextroute.ro_rt = NULL; 2293 } 2294 if (pktopt->ip6po_nexthop) 2295 free(pktopt->ip6po_nexthop, M_IP6OPT); 2296 pktopt->ip6po_nexthop = NULL; 2297 } 2298 if (optname == -1 || optname == IPV6_HOPOPTS) { 2299 if (pktopt->ip6po_hbh) 2300 free(pktopt->ip6po_hbh, M_IP6OPT); 2301 pktopt->ip6po_hbh = NULL; 2302 } 2303 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2304 if (pktopt->ip6po_dest1) 2305 free(pktopt->ip6po_dest1, M_IP6OPT); 2306 pktopt->ip6po_dest1 = NULL; 2307 } 2308 if (optname == -1 || optname == IPV6_RTHDR) { 2309 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2310 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2311 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2312 if (pktopt->ip6po_route.ro_rt) { 2313 RTFREE(pktopt->ip6po_route.ro_rt); 2314 pktopt->ip6po_route.ro_rt = NULL; 2315 } 2316 } 2317 if (optname == -1 || optname == IPV6_DSTOPTS) { 2318 if (pktopt->ip6po_dest2) 2319 free(pktopt->ip6po_dest2, M_IP6OPT); 2320 pktopt->ip6po_dest2 = NULL; 2321 } 2322 } 2323 2324 #define PKTOPT_EXTHDRCPY(type) \ 2325 do {\ 2326 if (src->type) {\ 2327 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2328 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2329 if (dst->type == NULL && canwait == M_NOWAIT)\ 2330 goto bad;\ 2331 bcopy(src->type, dst->type, hlen);\ 2332 }\ 2333 } while (/*CONSTCOND*/ 0) 2334 2335 static int 2336 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2337 { 2338 if (dst == NULL || src == NULL) { 2339 printf("ip6_clearpktopts: invalid argument\n"); 2340 return (EINVAL); 2341 } 2342 2343 dst->ip6po_hlim = src->ip6po_hlim; 2344 dst->ip6po_tclass = src->ip6po_tclass; 2345 dst->ip6po_flags = src->ip6po_flags; 2346 if (src->ip6po_pktinfo) { 2347 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2348 M_IP6OPT, canwait); 2349 if (dst->ip6po_pktinfo == NULL) 2350 goto bad; 2351 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2352 } 2353 if (src->ip6po_nexthop) { 2354 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2355 M_IP6OPT, canwait); 2356 if (dst->ip6po_nexthop == NULL) 2357 goto bad; 2358 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2359 src->ip6po_nexthop->sa_len); 2360 } 2361 PKTOPT_EXTHDRCPY(ip6po_hbh); 2362 PKTOPT_EXTHDRCPY(ip6po_dest1); 2363 PKTOPT_EXTHDRCPY(ip6po_dest2); 2364 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2365 return (0); 2366 2367 bad: 2368 ip6_clearpktopts(dst, -1); 2369 return (ENOBUFS); 2370 } 2371 #undef PKTOPT_EXTHDRCPY 2372 2373 struct ip6_pktopts * 2374 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2375 { 2376 int error; 2377 struct ip6_pktopts *dst; 2378 2379 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2380 if (dst == NULL) 2381 return (NULL); 2382 ip6_initpktopts(dst); 2383 2384 if ((error = copypktopts(dst, src, canwait)) != 0) { 2385 free(dst, M_IP6OPT); 2386 return (NULL); 2387 } 2388 2389 return (dst); 2390 } 2391 2392 void 2393 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2394 { 2395 if (pktopt == NULL) 2396 return; 2397 2398 ip6_clearpktopts(pktopt, -1); 2399 2400 free(pktopt, M_IP6OPT); 2401 } 2402 2403 /* 2404 * Set the IP6 multicast options in response to user setsockopt(). 2405 */ 2406 static int 2407 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m) 2408 { 2409 int error = 0; 2410 u_int loop, ifindex; 2411 struct ipv6_mreq *mreq; 2412 struct ifnet *ifp; 2413 struct ip6_moptions *im6o = *im6op; 2414 struct route_in6 ro; 2415 struct in6_multi_mship *imm; 2416 2417 if (im6o == NULL) { 2418 /* 2419 * No multicast option buffer attached to the pcb; 2420 * allocate one and initialize to default values. 2421 */ 2422 im6o = (struct ip6_moptions *) 2423 malloc(sizeof(*im6o), M_IP6MOPTS, M_WAITOK); 2424 2425 if (im6o == NULL) 2426 return (ENOBUFS); 2427 *im6op = im6o; 2428 im6o->im6o_multicast_ifp = NULL; 2429 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2430 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 2431 LIST_INIT(&im6o->im6o_memberships); 2432 } 2433 2434 switch (optname) { 2435 2436 case IPV6_MULTICAST_IF: 2437 /* 2438 * Select the interface for outgoing multicast packets. 2439 */ 2440 if (m == NULL || m->m_len != sizeof(u_int)) { 2441 error = EINVAL; 2442 break; 2443 } 2444 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex)); 2445 if (ifindex < 0 || if_index < ifindex) { 2446 error = ENXIO; /* XXX EINVAL? */ 2447 break; 2448 } 2449 ifp = ifnet_byindex(ifindex); 2450 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2451 error = EADDRNOTAVAIL; 2452 break; 2453 } 2454 im6o->im6o_multicast_ifp = ifp; 2455 break; 2456 2457 case IPV6_MULTICAST_HOPS: 2458 { 2459 /* 2460 * Set the IP6 hoplimit for outgoing multicast packets. 2461 */ 2462 int optval; 2463 if (m == NULL || m->m_len != sizeof(int)) { 2464 error = EINVAL; 2465 break; 2466 } 2467 bcopy(mtod(m, u_int *), &optval, sizeof(optval)); 2468 if (optval < -1 || optval >= 256) 2469 error = EINVAL; 2470 else if (optval == -1) 2471 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2472 else 2473 im6o->im6o_multicast_hlim = optval; 2474 break; 2475 } 2476 2477 case IPV6_MULTICAST_LOOP: 2478 /* 2479 * Set the loopback flag for outgoing multicast packets. 2480 * Must be zero or one. 2481 */ 2482 if (m == NULL || m->m_len != sizeof(u_int)) { 2483 error = EINVAL; 2484 break; 2485 } 2486 bcopy(mtod(m, u_int *), &loop, sizeof(loop)); 2487 if (loop > 1) { 2488 error = EINVAL; 2489 break; 2490 } 2491 im6o->im6o_multicast_loop = loop; 2492 break; 2493 2494 case IPV6_JOIN_GROUP: 2495 /* 2496 * Add a multicast group membership. 2497 * Group must be a valid IP6 multicast address. 2498 */ 2499 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2500 error = EINVAL; 2501 break; 2502 } 2503 mreq = mtod(m, struct ipv6_mreq *); 2504 2505 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2506 /* 2507 * We use the unspecified address to specify to accept 2508 * all multicast addresses. Only super user is allowed 2509 * to do this. 2510 */ 2511 /* XXX-BZ might need a better PRIV_NETINET_x for this */ 2512 error = priv_check(curthread, PRIV_NETINET_MROUTE); 2513 if (error) 2514 break; 2515 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2516 error = EINVAL; 2517 break; 2518 } 2519 2520 /* 2521 * If no interface was explicitly specified, choose an 2522 * appropriate one according to the given multicast address. 2523 */ 2524 if (mreq->ipv6mr_interface == 0) { 2525 struct sockaddr_in6 *dst; 2526 2527 /* 2528 * Look up the routing table for the 2529 * address, and choose the outgoing interface. 2530 * XXX: is it a good approach? 2531 */ 2532 ro.ro_rt = NULL; 2533 dst = (struct sockaddr_in6 *)&ro.ro_dst; 2534 bzero(dst, sizeof(*dst)); 2535 dst->sin6_family = AF_INET6; 2536 dst->sin6_len = sizeof(*dst); 2537 dst->sin6_addr = mreq->ipv6mr_multiaddr; 2538 rtalloc((struct route *)&ro); 2539 if (ro.ro_rt == NULL) { 2540 error = EADDRNOTAVAIL; 2541 break; 2542 } 2543 ifp = ro.ro_rt->rt_ifp; 2544 RTFREE(ro.ro_rt); 2545 } else { 2546 /* 2547 * If the interface is specified, validate it. 2548 */ 2549 if (mreq->ipv6mr_interface < 0 || 2550 if_index < mreq->ipv6mr_interface) { 2551 error = ENXIO; /* XXX EINVAL? */ 2552 break; 2553 } 2554 ifp = ifnet_byindex(mreq->ipv6mr_interface); 2555 if (!ifp) { 2556 error = ENXIO; /* XXX EINVAL? */ 2557 break; 2558 } 2559 } 2560 2561 /* 2562 * See if we found an interface, and confirm that it 2563 * supports multicast 2564 */ 2565 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2566 error = EADDRNOTAVAIL; 2567 break; 2568 } 2569 2570 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) { 2571 error = EADDRNOTAVAIL; /* XXX: should not happen */ 2572 break; 2573 } 2574 2575 /* 2576 * See if the membership already exists. 2577 */ 2578 for (imm = im6o->im6o_memberships.lh_first; 2579 imm != NULL; imm = imm->i6mm_chain.le_next) 2580 if (imm->i6mm_maddr->in6m_ifp == ifp && 2581 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2582 &mreq->ipv6mr_multiaddr)) 2583 break; 2584 if (imm != NULL) { 2585 error = EADDRINUSE; 2586 break; 2587 } 2588 /* 2589 * Everything looks good; add a new record to the multicast 2590 * address list for the given interface. 2591 */ 2592 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error, 0); 2593 if (imm == NULL) 2594 break; 2595 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2596 break; 2597 2598 case IPV6_LEAVE_GROUP: 2599 /* 2600 * Drop a multicast group membership. 2601 * Group must be a valid IP6 multicast address. 2602 */ 2603 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2604 error = EINVAL; 2605 break; 2606 } 2607 mreq = mtod(m, struct ipv6_mreq *); 2608 2609 /* 2610 * If an interface address was specified, get a pointer 2611 * to its ifnet structure. 2612 */ 2613 if (mreq->ipv6mr_interface < 0 || 2614 if_index < mreq->ipv6mr_interface) { 2615 error = ENXIO; /* XXX EINVAL? */ 2616 break; 2617 } 2618 if (mreq->ipv6mr_interface == 0) 2619 ifp = NULL; 2620 else 2621 ifp = ifnet_byindex(mreq->ipv6mr_interface); 2622 2623 /* Fill in the scope zone ID */ 2624 if (ifp) { 2625 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) { 2626 /* XXX: should not happen */ 2627 error = EADDRNOTAVAIL; 2628 break; 2629 } 2630 } else if (mreq->ipv6mr_interface != 0) { 2631 /* 2632 * This case happens when the (positive) index is in 2633 * the valid range, but the corresponding interface has 2634 * been detached dynamically (XXX). 2635 */ 2636 error = EADDRNOTAVAIL; 2637 break; 2638 } else { /* ipv6mr_interface == 0 */ 2639 struct sockaddr_in6 sa6_mc; 2640 2641 /* 2642 * The API spec says as follows: 2643 * If the interface index is specified as 0, the 2644 * system may choose a multicast group membership to 2645 * drop by matching the multicast address only. 2646 * On the other hand, we cannot disambiguate the scope 2647 * zone unless an interface is provided. Thus, we 2648 * check if there's ambiguity with the default scope 2649 * zone as the last resort. 2650 */ 2651 bzero(&sa6_mc, sizeof(sa6_mc)); 2652 sa6_mc.sin6_family = AF_INET6; 2653 sa6_mc.sin6_len = sizeof(sa6_mc); 2654 sa6_mc.sin6_addr = mreq->ipv6mr_multiaddr; 2655 error = sa6_embedscope(&sa6_mc, ip6_use_defzone); 2656 if (error != 0) 2657 break; 2658 mreq->ipv6mr_multiaddr = sa6_mc.sin6_addr; 2659 } 2660 2661 /* 2662 * Find the membership in the membership list. 2663 */ 2664 for (imm = im6o->im6o_memberships.lh_first; 2665 imm != NULL; imm = imm->i6mm_chain.le_next) { 2666 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) && 2667 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2668 &mreq->ipv6mr_multiaddr)) 2669 break; 2670 } 2671 if (imm == NULL) { 2672 /* Unable to resolve interface */ 2673 error = EADDRNOTAVAIL; 2674 break; 2675 } 2676 /* 2677 * Give up the multicast address record to which the 2678 * membership points. 2679 */ 2680 LIST_REMOVE(imm, i6mm_chain); 2681 in6_delmulti(imm->i6mm_maddr); 2682 free(imm, M_IP6MADDR); 2683 break; 2684 2685 default: 2686 error = EOPNOTSUPP; 2687 break; 2688 } 2689 2690 /* 2691 * If all options have default values, no need to keep the mbuf. 2692 */ 2693 if (im6o->im6o_multicast_ifp == NULL && 2694 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2695 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2696 im6o->im6o_memberships.lh_first == NULL) { 2697 free(*im6op, M_IP6MOPTS); 2698 *im6op = NULL; 2699 } 2700 2701 return (error); 2702 } 2703 2704 /* 2705 * Return the IP6 multicast options in response to user getsockopt(). 2706 */ 2707 static int 2708 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf **mp) 2709 { 2710 u_int *hlim, *loop, *ifindex; 2711 2712 *mp = m_get(M_TRYWAIT, MT_HEADER); /* XXX */ 2713 2714 switch (optname) { 2715 2716 case IPV6_MULTICAST_IF: 2717 ifindex = mtod(*mp, u_int *); 2718 (*mp)->m_len = sizeof(u_int); 2719 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 2720 *ifindex = 0; 2721 else 2722 *ifindex = im6o->im6o_multicast_ifp->if_index; 2723 return (0); 2724 2725 case IPV6_MULTICAST_HOPS: 2726 hlim = mtod(*mp, u_int *); 2727 (*mp)->m_len = sizeof(u_int); 2728 if (im6o == NULL) 2729 *hlim = ip6_defmcasthlim; 2730 else 2731 *hlim = im6o->im6o_multicast_hlim; 2732 return (0); 2733 2734 case IPV6_MULTICAST_LOOP: 2735 loop = mtod(*mp, u_int *); 2736 (*mp)->m_len = sizeof(u_int); 2737 if (im6o == NULL) 2738 *loop = ip6_defmcasthlim; 2739 else 2740 *loop = im6o->im6o_multicast_loop; 2741 return (0); 2742 2743 default: 2744 return (EOPNOTSUPP); 2745 } 2746 } 2747 2748 /* 2749 * Discard the IP6 multicast options. 2750 */ 2751 void 2752 ip6_freemoptions(struct ip6_moptions *im6o) 2753 { 2754 struct in6_multi_mship *imm; 2755 2756 if (im6o == NULL) 2757 return; 2758 2759 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 2760 LIST_REMOVE(imm, i6mm_chain); 2761 if (imm->i6mm_maddr) 2762 in6_delmulti(imm->i6mm_maddr); 2763 free(imm, M_IP6MADDR); 2764 } 2765 free(im6o, M_IP6MOPTS); 2766 } 2767 2768 /* 2769 * Set IPv6 outgoing packet options based on advanced API. 2770 */ 2771 int 2772 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2773 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2774 { 2775 struct cmsghdr *cm = 0; 2776 2777 if (control == NULL || opt == NULL) 2778 return (EINVAL); 2779 2780 ip6_initpktopts(opt); 2781 if (stickyopt) { 2782 int error; 2783 2784 /* 2785 * If stickyopt is provided, make a local copy of the options 2786 * for this particular packet, then override them by ancillary 2787 * objects. 2788 * XXX: copypktopts() does not copy the cached route to a next 2789 * hop (if any). This is not very good in terms of efficiency, 2790 * but we can allow this since this option should be rarely 2791 * used. 2792 */ 2793 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2794 return (error); 2795 } 2796 2797 /* 2798 * XXX: Currently, we assume all the optional information is stored 2799 * in a single mbuf. 2800 */ 2801 if (control->m_next) 2802 return (EINVAL); 2803 2804 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2805 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2806 int error; 2807 2808 if (control->m_len < CMSG_LEN(0)) 2809 return (EINVAL); 2810 2811 cm = mtod(control, struct cmsghdr *); 2812 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2813 return (EINVAL); 2814 if (cm->cmsg_level != IPPROTO_IPV6) 2815 continue; 2816 2817 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2818 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2819 if (error) 2820 return (error); 2821 } 2822 2823 return (0); 2824 } 2825 2826 /* 2827 * Set a particular packet option, as a sticky option or an ancillary data 2828 * item. "len" can be 0 only when it's a sticky option. 2829 * We have 4 cases of combination of "sticky" and "cmsg": 2830 * "sticky=0, cmsg=0": impossible 2831 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2832 * "sticky=1, cmsg=0": RFC3542 socket option 2833 * "sticky=1, cmsg=1": RFC2292 socket option 2834 */ 2835 static int 2836 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2837 struct ucred *cred, int sticky, int cmsg, int uproto) 2838 { 2839 int minmtupolicy, preftemp; 2840 int error; 2841 2842 if (!sticky && !cmsg) { 2843 #ifdef DIAGNOSTIC 2844 printf("ip6_setpktopt: impossible case\n"); 2845 #endif 2846 return (EINVAL); 2847 } 2848 2849 /* 2850 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2851 * not be specified in the context of RFC3542. Conversely, 2852 * RFC3542 types should not be specified in the context of RFC2292. 2853 */ 2854 if (!cmsg) { 2855 switch (optname) { 2856 case IPV6_2292PKTINFO: 2857 case IPV6_2292HOPLIMIT: 2858 case IPV6_2292NEXTHOP: 2859 case IPV6_2292HOPOPTS: 2860 case IPV6_2292DSTOPTS: 2861 case IPV6_2292RTHDR: 2862 case IPV6_2292PKTOPTIONS: 2863 return (ENOPROTOOPT); 2864 } 2865 } 2866 if (sticky && cmsg) { 2867 switch (optname) { 2868 case IPV6_PKTINFO: 2869 case IPV6_HOPLIMIT: 2870 case IPV6_NEXTHOP: 2871 case IPV6_HOPOPTS: 2872 case IPV6_DSTOPTS: 2873 case IPV6_RTHDRDSTOPTS: 2874 case IPV6_RTHDR: 2875 case IPV6_USE_MIN_MTU: 2876 case IPV6_DONTFRAG: 2877 case IPV6_TCLASS: 2878 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2879 return (ENOPROTOOPT); 2880 } 2881 } 2882 2883 switch (optname) { 2884 case IPV6_2292PKTINFO: 2885 case IPV6_PKTINFO: 2886 { 2887 struct ifnet *ifp = NULL; 2888 struct in6_pktinfo *pktinfo; 2889 2890 if (len != sizeof(struct in6_pktinfo)) 2891 return (EINVAL); 2892 2893 pktinfo = (struct in6_pktinfo *)buf; 2894 2895 /* 2896 * An application can clear any sticky IPV6_PKTINFO option by 2897 * doing a "regular" setsockopt with ipi6_addr being 2898 * in6addr_any and ipi6_ifindex being zero. 2899 * [RFC 3542, Section 6] 2900 */ 2901 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2902 pktinfo->ipi6_ifindex == 0 && 2903 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2904 ip6_clearpktopts(opt, optname); 2905 break; 2906 } 2907 2908 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2909 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2910 return (EINVAL); 2911 } 2912 2913 /* validate the interface index if specified. */ 2914 if (pktinfo->ipi6_ifindex > if_index || 2915 pktinfo->ipi6_ifindex < 0) { 2916 return (ENXIO); 2917 } 2918 if (pktinfo->ipi6_ifindex) { 2919 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2920 if (ifp == NULL) 2921 return (ENXIO); 2922 } 2923 2924 /* 2925 * We store the address anyway, and let in6_selectsrc() 2926 * validate the specified address. This is because ipi6_addr 2927 * may not have enough information about its scope zone, and 2928 * we may need additional information (such as outgoing 2929 * interface or the scope zone of a destination address) to 2930 * disambiguate the scope. 2931 * XXX: the delay of the validation may confuse the 2932 * application when it is used as a sticky option. 2933 */ 2934 if (opt->ip6po_pktinfo == NULL) { 2935 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2936 M_IP6OPT, M_NOWAIT); 2937 if (opt->ip6po_pktinfo == NULL) 2938 return (ENOBUFS); 2939 } 2940 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2941 break; 2942 } 2943 2944 case IPV6_2292HOPLIMIT: 2945 case IPV6_HOPLIMIT: 2946 { 2947 int *hlimp; 2948 2949 /* 2950 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2951 * to simplify the ordering among hoplimit options. 2952 */ 2953 if (optname == IPV6_HOPLIMIT && sticky) 2954 return (ENOPROTOOPT); 2955 2956 if (len != sizeof(int)) 2957 return (EINVAL); 2958 hlimp = (int *)buf; 2959 if (*hlimp < -1 || *hlimp > 255) 2960 return (EINVAL); 2961 2962 opt->ip6po_hlim = *hlimp; 2963 break; 2964 } 2965 2966 case IPV6_TCLASS: 2967 { 2968 int tclass; 2969 2970 if (len != sizeof(int)) 2971 return (EINVAL); 2972 tclass = *(int *)buf; 2973 if (tclass < -1 || tclass > 255) 2974 return (EINVAL); 2975 2976 opt->ip6po_tclass = tclass; 2977 break; 2978 } 2979 2980 case IPV6_2292NEXTHOP: 2981 case IPV6_NEXTHOP: 2982 if (cred != NULL) { 2983 error = priv_check_cred(cred, 2984 PRIV_NETINET_SETHDROPTS, 0); 2985 if (error) 2986 return (error); 2987 } 2988 2989 if (len == 0) { /* just remove the option */ 2990 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2991 break; 2992 } 2993 2994 /* check if cmsg_len is large enough for sa_len */ 2995 if (len < sizeof(struct sockaddr) || len < *buf) 2996 return (EINVAL); 2997 2998 switch (((struct sockaddr *)buf)->sa_family) { 2999 case AF_INET6: 3000 { 3001 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3002 int error; 3003 3004 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3005 return (EINVAL); 3006 3007 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3008 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3009 return (EINVAL); 3010 } 3011 if ((error = sa6_embedscope(sa6, ip6_use_defzone)) 3012 != 0) { 3013 return (error); 3014 } 3015 break; 3016 } 3017 case AF_LINK: /* should eventually be supported */ 3018 default: 3019 return (EAFNOSUPPORT); 3020 } 3021 3022 /* turn off the previous option, then set the new option. */ 3023 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3024 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3025 if (opt->ip6po_nexthop == NULL) 3026 return (ENOBUFS); 3027 bcopy(buf, opt->ip6po_nexthop, *buf); 3028 break; 3029 3030 case IPV6_2292HOPOPTS: 3031 case IPV6_HOPOPTS: 3032 { 3033 struct ip6_hbh *hbh; 3034 int hbhlen; 3035 3036 /* 3037 * XXX: We don't allow a non-privileged user to set ANY HbH 3038 * options, since per-option restriction has too much 3039 * overhead. 3040 */ 3041 if (cred != NULL) { 3042 error = priv_check_cred(cred, 3043 PRIV_NETINET_SETHDROPTS, 0); 3044 if (error) 3045 return (error); 3046 } 3047 3048 if (len == 0) { 3049 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3050 break; /* just remove the option */ 3051 } 3052 3053 /* message length validation */ 3054 if (len < sizeof(struct ip6_hbh)) 3055 return (EINVAL); 3056 hbh = (struct ip6_hbh *)buf; 3057 hbhlen = (hbh->ip6h_len + 1) << 3; 3058 if (len != hbhlen) 3059 return (EINVAL); 3060 3061 /* turn off the previous option, then set the new option. */ 3062 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3063 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3064 if (opt->ip6po_hbh == NULL) 3065 return (ENOBUFS); 3066 bcopy(hbh, opt->ip6po_hbh, hbhlen); 3067 3068 break; 3069 } 3070 3071 case IPV6_2292DSTOPTS: 3072 case IPV6_DSTOPTS: 3073 case IPV6_RTHDRDSTOPTS: 3074 { 3075 struct ip6_dest *dest, **newdest = NULL; 3076 int destlen; 3077 3078 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 3079 error = priv_check_cred(cred, 3080 PRIV_NETINET_SETHDROPTS, 0); 3081 if (error) 3082 return (error); 3083 } 3084 3085 if (len == 0) { 3086 ip6_clearpktopts(opt, optname); 3087 break; /* just remove the option */ 3088 } 3089 3090 /* message length validation */ 3091 if (len < sizeof(struct ip6_dest)) 3092 return (EINVAL); 3093 dest = (struct ip6_dest *)buf; 3094 destlen = (dest->ip6d_len + 1) << 3; 3095 if (len != destlen) 3096 return (EINVAL); 3097 3098 /* 3099 * Determine the position that the destination options header 3100 * should be inserted; before or after the routing header. 3101 */ 3102 switch (optname) { 3103 case IPV6_2292DSTOPTS: 3104 /* 3105 * The old advacned API is ambiguous on this point. 3106 * Our approach is to determine the position based 3107 * according to the existence of a routing header. 3108 * Note, however, that this depends on the order of the 3109 * extension headers in the ancillary data; the 1st 3110 * part of the destination options header must appear 3111 * before the routing header in the ancillary data, 3112 * too. 3113 * RFC3542 solved the ambiguity by introducing 3114 * separate ancillary data or option types. 3115 */ 3116 if (opt->ip6po_rthdr == NULL) 3117 newdest = &opt->ip6po_dest1; 3118 else 3119 newdest = &opt->ip6po_dest2; 3120 break; 3121 case IPV6_RTHDRDSTOPTS: 3122 newdest = &opt->ip6po_dest1; 3123 break; 3124 case IPV6_DSTOPTS: 3125 newdest = &opt->ip6po_dest2; 3126 break; 3127 } 3128 3129 /* turn off the previous option, then set the new option. */ 3130 ip6_clearpktopts(opt, optname); 3131 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3132 if (*newdest == NULL) 3133 return (ENOBUFS); 3134 bcopy(dest, *newdest, destlen); 3135 3136 break; 3137 } 3138 3139 case IPV6_2292RTHDR: 3140 case IPV6_RTHDR: 3141 { 3142 struct ip6_rthdr *rth; 3143 int rthlen; 3144 3145 if (len == 0) { 3146 ip6_clearpktopts(opt, IPV6_RTHDR); 3147 break; /* just remove the option */ 3148 } 3149 3150 /* message length validation */ 3151 if (len < sizeof(struct ip6_rthdr)) 3152 return (EINVAL); 3153 rth = (struct ip6_rthdr *)buf; 3154 rthlen = (rth->ip6r_len + 1) << 3; 3155 if (len != rthlen) 3156 return (EINVAL); 3157 3158 switch (rth->ip6r_type) { 3159 case IPV6_RTHDR_TYPE_0: 3160 if (rth->ip6r_len == 0) /* must contain one addr */ 3161 return (EINVAL); 3162 if (rth->ip6r_len % 2) /* length must be even */ 3163 return (EINVAL); 3164 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3165 return (EINVAL); 3166 break; 3167 default: 3168 return (EINVAL); /* not supported */ 3169 } 3170 3171 /* turn off the previous option */ 3172 ip6_clearpktopts(opt, IPV6_RTHDR); 3173 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3174 if (opt->ip6po_rthdr == NULL) 3175 return (ENOBUFS); 3176 bcopy(rth, opt->ip6po_rthdr, rthlen); 3177 3178 break; 3179 } 3180 3181 case IPV6_USE_MIN_MTU: 3182 if (len != sizeof(int)) 3183 return (EINVAL); 3184 minmtupolicy = *(int *)buf; 3185 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3186 minmtupolicy != IP6PO_MINMTU_DISABLE && 3187 minmtupolicy != IP6PO_MINMTU_ALL) { 3188 return (EINVAL); 3189 } 3190 opt->ip6po_minmtu = minmtupolicy; 3191 break; 3192 3193 case IPV6_DONTFRAG: 3194 if (len != sizeof(int)) 3195 return (EINVAL); 3196 3197 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3198 /* 3199 * we ignore this option for TCP sockets. 3200 * (RFC3542 leaves this case unspecified.) 3201 */ 3202 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3203 } else 3204 opt->ip6po_flags |= IP6PO_DONTFRAG; 3205 break; 3206 3207 case IPV6_PREFER_TEMPADDR: 3208 if (len != sizeof(int)) 3209 return (EINVAL); 3210 preftemp = *(int *)buf; 3211 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3212 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3213 preftemp != IP6PO_TEMPADDR_PREFER) { 3214 return (EINVAL); 3215 } 3216 opt->ip6po_prefer_tempaddr = preftemp; 3217 break; 3218 3219 default: 3220 return (ENOPROTOOPT); 3221 } /* end of switch */ 3222 3223 return (0); 3224 } 3225 3226 /* 3227 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3228 * packet to the input queue of a specified interface. Note that this 3229 * calls the output routine of the loopback "driver", but with an interface 3230 * pointer that might NOT be &loif -- easier than replicating that code here. 3231 */ 3232 void 3233 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 3234 { 3235 struct mbuf *copym; 3236 struct ip6_hdr *ip6; 3237 3238 copym = m_copy(m, 0, M_COPYALL); 3239 if (copym == NULL) 3240 return; 3241 3242 /* 3243 * Make sure to deep-copy IPv6 header portion in case the data 3244 * is in an mbuf cluster, so that we can safely override the IPv6 3245 * header portion later. 3246 */ 3247 if ((copym->m_flags & M_EXT) != 0 || 3248 copym->m_len < sizeof(struct ip6_hdr)) { 3249 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3250 if (copym == NULL) 3251 return; 3252 } 3253 3254 #ifdef DIAGNOSTIC 3255 if (copym->m_len < sizeof(*ip6)) { 3256 m_freem(copym); 3257 return; 3258 } 3259 #endif 3260 3261 ip6 = mtod(copym, struct ip6_hdr *); 3262 /* 3263 * clear embedded scope identifiers if necessary. 3264 * in6_clearscope will touch the addresses only when necessary. 3265 */ 3266 in6_clearscope(&ip6->ip6_src); 3267 in6_clearscope(&ip6->ip6_dst); 3268 3269 (void)if_simloop(ifp, copym, dst->sin6_family, 0); 3270 } 3271 3272 /* 3273 * Chop IPv6 header off from the payload. 3274 */ 3275 static int 3276 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3277 { 3278 struct mbuf *mh; 3279 struct ip6_hdr *ip6; 3280 3281 ip6 = mtod(m, struct ip6_hdr *); 3282 if (m->m_len > sizeof(*ip6)) { 3283 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3284 if (mh == 0) { 3285 m_freem(m); 3286 return ENOBUFS; 3287 } 3288 M_MOVE_PKTHDR(mh, m); 3289 MH_ALIGN(mh, sizeof(*ip6)); 3290 m->m_len -= sizeof(*ip6); 3291 m->m_data += sizeof(*ip6); 3292 mh->m_next = m; 3293 m = mh; 3294 m->m_len = sizeof(*ip6); 3295 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3296 } 3297 exthdrs->ip6e_ip6 = m; 3298 return 0; 3299 } 3300 3301 /* 3302 * Compute IPv6 extension header length. 3303 */ 3304 int 3305 ip6_optlen(struct in6pcb *in6p) 3306 { 3307 int len; 3308 3309 if (!in6p->in6p_outputopts) 3310 return 0; 3311 3312 len = 0; 3313 #define elen(x) \ 3314 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3315 3316 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3317 if (in6p->in6p_outputopts->ip6po_rthdr) 3318 /* dest1 is valid with rthdr only */ 3319 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3320 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3321 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3322 return len; 3323 #undef elen 3324 } 3325