1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 #include "opt_ipfw.h" 69 #include "opt_ipsec.h" 70 #include "opt_sctp.h" 71 #include "opt_route.h" 72 #include "opt_rss.h" 73 74 #include <sys/param.h> 75 #include <sys/kernel.h> 76 #include <sys/malloc.h> 77 #include <sys/mbuf.h> 78 #include <sys/errno.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/protosw.h> 82 #include <sys/socket.h> 83 #include <sys/socketvar.h> 84 #include <sys/syslog.h> 85 #include <sys/ucred.h> 86 87 #include <machine/in_cksum.h> 88 89 #include <net/if.h> 90 #include <net/if_var.h> 91 #include <net/netisr.h> 92 #include <net/route.h> 93 #include <net/pfil.h> 94 #include <net/rss_config.h> 95 #include <net/vnet.h> 96 97 #include <netinet/in.h> 98 #include <netinet/in_var.h> 99 #include <netinet/ip_var.h> 100 #include <netinet6/in6_var.h> 101 #include <netinet/ip6.h> 102 #include <netinet/icmp6.h> 103 #include <netinet6/ip6_var.h> 104 #include <netinet/in_pcb.h> 105 #include <netinet/tcp_var.h> 106 #include <netinet6/nd6.h> 107 #include <netinet6/in6_rss.h> 108 109 #ifdef IPSEC 110 #include <netipsec/ipsec.h> 111 #include <netipsec/ipsec6.h> 112 #include <netipsec/key.h> 113 #include <netinet6/ip6_ipsec.h> 114 #endif /* IPSEC */ 115 #ifdef SCTP 116 #include <netinet/sctp.h> 117 #include <netinet/sctp_crc32.h> 118 #endif 119 120 #include <netinet6/ip6protosw.h> 121 #include <netinet6/scope6_var.h> 122 123 #ifdef FLOWTABLE 124 #include <net/flowtable.h> 125 #endif 126 127 extern int in6_mcast_loop; 128 129 struct ip6_exthdrs { 130 struct mbuf *ip6e_ip6; 131 struct mbuf *ip6e_hbh; 132 struct mbuf *ip6e_dest1; 133 struct mbuf *ip6e_rthdr; 134 struct mbuf *ip6e_dest2; 135 }; 136 137 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 138 struct ucred *, int); 139 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 140 struct socket *, struct sockopt *); 141 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 142 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 143 struct ucred *, int, int, int); 144 145 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 146 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 147 struct ip6_frag **); 148 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 149 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 150 static int ip6_getpmtu(struct route_in6 *, struct route_in6 *, 151 struct ifnet *, struct in6_addr *, u_long *, int *, u_int); 152 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 153 154 155 /* 156 * Make an extension header from option data. hp is the source, and 157 * mp is the destination. 158 */ 159 #define MAKE_EXTHDR(hp, mp) \ 160 do { \ 161 if (hp) { \ 162 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 163 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 164 ((eh)->ip6e_len + 1) << 3); \ 165 if (error) \ 166 goto freehdrs; \ 167 } \ 168 } while (/*CONSTCOND*/ 0) 169 170 /* 171 * Form a chain of extension headers. 172 * m is the extension header mbuf 173 * mp is the previous mbuf in the chain 174 * p is the next header 175 * i is the type of option. 176 */ 177 #define MAKE_CHAIN(m, mp, p, i)\ 178 do {\ 179 if (m) {\ 180 if (!hdrsplit) \ 181 panic("assumption failed: hdr not split"); \ 182 *mtod((m), u_char *) = *(p);\ 183 *(p) = (i);\ 184 p = mtod((m), u_char *);\ 185 (m)->m_next = (mp)->m_next;\ 186 (mp)->m_next = (m);\ 187 (mp) = (m);\ 188 }\ 189 } while (/*CONSTCOND*/ 0) 190 191 void 192 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 193 { 194 u_short csum; 195 196 csum = in_cksum_skip(m, offset + plen, offset); 197 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 198 csum = 0xffff; 199 offset += m->m_pkthdr.csum_data; /* checksum offset */ 200 201 if (offset + sizeof(u_short) > m->m_len) { 202 printf("%s: delayed m_pullup, m->len: %d plen %u off %u " 203 "csum_flags=%b\n", __func__, m->m_len, plen, offset, 204 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 205 /* 206 * XXX this should not happen, but if it does, the correct 207 * behavior may be to insert the checksum in the appropriate 208 * next mbuf in the chain. 209 */ 210 return; 211 } 212 *(u_short *)(m->m_data + offset) = csum; 213 } 214 215 int 216 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 217 int mtu, uint32_t id) 218 { 219 struct mbuf *m, **mnext, *m_frgpart; 220 struct ip6_hdr *ip6, *mhip6; 221 struct ip6_frag *ip6f; 222 int off; 223 int error; 224 int tlen = m0->m_pkthdr.len; 225 226 m = m0; 227 ip6 = mtod(m, struct ip6_hdr *); 228 mnext = &m->m_nextpkt; 229 230 for (off = hlen; off < tlen; off += mtu) { 231 m = m_gethdr(M_NOWAIT, MT_DATA); 232 if (!m) { 233 IP6STAT_INC(ip6s_odropped); 234 return (ENOBUFS); 235 } 236 m->m_flags = m0->m_flags & M_COPYFLAGS; 237 *mnext = m; 238 mnext = &m->m_nextpkt; 239 m->m_data += max_linkhdr; 240 mhip6 = mtod(m, struct ip6_hdr *); 241 *mhip6 = *ip6; 242 m->m_len = sizeof(*mhip6); 243 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 244 if (error) { 245 IP6STAT_INC(ip6s_odropped); 246 return (error); 247 } 248 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 249 if (off + mtu >= tlen) 250 mtu = tlen - off; 251 else 252 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 253 mhip6->ip6_plen = htons((u_short)(mtu + hlen + 254 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 255 if ((m_frgpart = m_copy(m0, off, mtu)) == 0) { 256 IP6STAT_INC(ip6s_odropped); 257 return (ENOBUFS); 258 } 259 m_cat(m, m_frgpart); 260 m->m_pkthdr.len = mtu + hlen + sizeof(*ip6f); 261 m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum; 262 m->m_pkthdr.rcvif = NULL; 263 ip6f->ip6f_reserved = 0; 264 ip6f->ip6f_ident = id; 265 ip6f->ip6f_nxt = nextproto; 266 IP6STAT_INC(ip6s_ofragments); 267 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 268 } 269 270 return (0); 271 } 272 273 /* 274 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 275 * header (with pri, len, nxt, hlim, src, dst). 276 * This function may modify ver and hlim only. 277 * The mbuf chain containing the packet will be freed. 278 * The mbuf opt, if present, will not be freed. 279 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 280 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 281 * then result of route lookup is stored in ro->ro_rt. 282 * 283 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and 284 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 285 * which is rt_mtu. 286 * 287 * ifpp - XXX: just for statistics 288 */ 289 /* 290 * XXX TODO: no flowid is assigned for outbound flows? 291 */ 292 int 293 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 294 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 295 struct ifnet **ifpp, struct inpcb *inp) 296 { 297 struct ip6_hdr *ip6; 298 struct ifnet *ifp, *origifp; 299 struct mbuf *m = m0; 300 struct mbuf *mprev = NULL; 301 int hlen, tlen, len; 302 struct route_in6 ip6route; 303 struct rtentry *rt = NULL; 304 struct sockaddr_in6 *dst, src_sa, dst_sa; 305 struct in6_addr odst; 306 int error = 0; 307 struct in6_ifaddr *ia = NULL; 308 u_long mtu; 309 int alwaysfrag, dontfrag; 310 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 311 struct ip6_exthdrs exthdrs; 312 struct in6_addr finaldst, src0, dst0; 313 u_int32_t zone; 314 struct route_in6 *ro_pmtu = NULL; 315 int hdrsplit = 0; 316 int sw_csum, tso; 317 int needfiblookup; 318 uint32_t fibnum; 319 struct m_tag *fwd_tag = NULL; 320 uint32_t id; 321 322 ip6 = mtod(m, struct ip6_hdr *); 323 if (ip6 == NULL) { 324 printf ("ip6 is NULL"); 325 goto bad; 326 } 327 328 if (inp != NULL) { 329 M_SETFIB(m, inp->inp_inc.inc_fibnum); 330 if ((flags & IP_NODEFAULTFLOWID) == 0) { 331 /* unconditionally set flowid */ 332 m->m_pkthdr.flowid = inp->inp_flowid; 333 M_HASHTYPE_SET(m, inp->inp_flowtype); 334 } 335 } 336 337 finaldst = ip6->ip6_dst; 338 bzero(&exthdrs, sizeof(exthdrs)); 339 if (opt) { 340 /* Hop-by-Hop options header */ 341 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 342 /* Destination options header(1st part) */ 343 if (opt->ip6po_rthdr) { 344 /* 345 * Destination options header(1st part) 346 * This only makes sense with a routing header. 347 * See Section 9.2 of RFC 3542. 348 * Disabling this part just for MIP6 convenience is 349 * a bad idea. We need to think carefully about a 350 * way to make the advanced API coexist with MIP6 351 * options, which might automatically be inserted in 352 * the kernel. 353 */ 354 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 355 } 356 /* Routing header */ 357 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 358 /* Destination options header(2nd part) */ 359 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 360 } 361 362 #ifdef IPSEC 363 /* 364 * IPSec checking which handles several cases. 365 * FAST IPSEC: We re-injected the packet. 366 * XXX: need scope argument. 367 */ 368 switch(ip6_ipsec_output(&m, inp, &error)) 369 { 370 case 1: /* Bad packet */ 371 goto freehdrs; 372 case -1: /* IPSec done */ 373 goto done; 374 case 0: /* No IPSec */ 375 default: 376 break; 377 } 378 #endif /* IPSEC */ 379 380 /* 381 * Calculate the total length of the extension header chain. 382 * Keep the length of the unfragmentable part for fragmentation. 383 */ 384 optlen = 0; 385 if (exthdrs.ip6e_hbh) 386 optlen += exthdrs.ip6e_hbh->m_len; 387 if (exthdrs.ip6e_dest1) 388 optlen += exthdrs.ip6e_dest1->m_len; 389 if (exthdrs.ip6e_rthdr) 390 optlen += exthdrs.ip6e_rthdr->m_len; 391 unfragpartlen = optlen + sizeof(struct ip6_hdr); 392 393 /* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */ 394 if (exthdrs.ip6e_dest2) 395 optlen += exthdrs.ip6e_dest2->m_len; 396 397 /* 398 * If there is at least one extension header, 399 * separate IP6 header from the payload. 400 */ 401 if (optlen && !hdrsplit) { 402 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 403 m = NULL; 404 goto freehdrs; 405 } 406 m = exthdrs.ip6e_ip6; 407 hdrsplit++; 408 } 409 410 /* adjust pointer */ 411 ip6 = mtod(m, struct ip6_hdr *); 412 413 /* adjust mbuf packet header length */ 414 m->m_pkthdr.len += optlen; 415 plen = m->m_pkthdr.len - sizeof(*ip6); 416 417 /* If this is a jumbo payload, insert a jumbo payload option. */ 418 if (plen > IPV6_MAXPACKET) { 419 if (!hdrsplit) { 420 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 421 m = NULL; 422 goto freehdrs; 423 } 424 m = exthdrs.ip6e_ip6; 425 hdrsplit++; 426 } 427 /* adjust pointer */ 428 ip6 = mtod(m, struct ip6_hdr *); 429 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 430 goto freehdrs; 431 ip6->ip6_plen = 0; 432 } else 433 ip6->ip6_plen = htons(plen); 434 435 /* 436 * Concatenate headers and fill in next header fields. 437 * Here we have, on "m" 438 * IPv6 payload 439 * and we insert headers accordingly. Finally, we should be getting: 440 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 441 * 442 * during the header composing process, "m" points to IPv6 header. 443 * "mprev" points to an extension header prior to esp. 444 */ 445 u_char *nexthdrp = &ip6->ip6_nxt; 446 mprev = m; 447 448 /* 449 * we treat dest2 specially. this makes IPsec processing 450 * much easier. the goal here is to make mprev point the 451 * mbuf prior to dest2. 452 * 453 * result: IPv6 dest2 payload 454 * m and mprev will point to IPv6 header. 455 */ 456 if (exthdrs.ip6e_dest2) { 457 if (!hdrsplit) 458 panic("assumption failed: hdr not split"); 459 exthdrs.ip6e_dest2->m_next = m->m_next; 460 m->m_next = exthdrs.ip6e_dest2; 461 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 462 ip6->ip6_nxt = IPPROTO_DSTOPTS; 463 } 464 465 /* 466 * result: IPv6 hbh dest1 rthdr dest2 payload 467 * m will point to IPv6 header. mprev will point to the 468 * extension header prior to dest2 (rthdr in the above case). 469 */ 470 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 471 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 472 IPPROTO_DSTOPTS); 473 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 474 IPPROTO_ROUTING); 475 476 /* 477 * If there is a routing header, discard the packet. 478 */ 479 if (exthdrs.ip6e_rthdr) { 480 error = EINVAL; 481 goto bad; 482 } 483 484 /* Source address validation */ 485 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 486 (flags & IPV6_UNSPECSRC) == 0) { 487 error = EOPNOTSUPP; 488 IP6STAT_INC(ip6s_badscope); 489 goto bad; 490 } 491 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 492 error = EOPNOTSUPP; 493 IP6STAT_INC(ip6s_badscope); 494 goto bad; 495 } 496 497 IP6STAT_INC(ip6s_localout); 498 499 /* 500 * Route packet. 501 */ 502 if (ro == 0) { 503 ro = &ip6route; 504 bzero((caddr_t)ro, sizeof(*ro)); 505 } 506 ro_pmtu = ro; 507 if (opt && opt->ip6po_rthdr) 508 ro = &opt->ip6po_route; 509 dst = (struct sockaddr_in6 *)&ro->ro_dst; 510 #ifdef FLOWTABLE 511 if (ro->ro_rt == NULL) 512 (void )flowtable_lookup(AF_INET6, m, (struct route *)ro); 513 #endif 514 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 515 again: 516 /* 517 * if specified, try to fill in the traffic class field. 518 * do not override if a non-zero value is already set. 519 * we check the diffserv field and the ecn field separately. 520 */ 521 if (opt && opt->ip6po_tclass >= 0) { 522 int mask = 0; 523 524 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 525 mask |= 0xfc; 526 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 527 mask |= 0x03; 528 if (mask != 0) 529 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 530 } 531 532 /* fill in or override the hop limit field, if necessary. */ 533 if (opt && opt->ip6po_hlim != -1) 534 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 535 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 536 if (im6o != NULL) 537 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 538 else 539 ip6->ip6_hlim = V_ip6_defmcasthlim; 540 } 541 542 /* adjust pointer */ 543 ip6 = mtod(m, struct ip6_hdr *); 544 545 if (ro->ro_rt && fwd_tag == NULL) { 546 rt = ro->ro_rt; 547 ifp = ro->ro_rt->rt_ifp; 548 } else { 549 if (fwd_tag == NULL) { 550 bzero(&dst_sa, sizeof(dst_sa)); 551 dst_sa.sin6_family = AF_INET6; 552 dst_sa.sin6_len = sizeof(dst_sa); 553 dst_sa.sin6_addr = ip6->ip6_dst; 554 } 555 error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp, 556 &rt, fibnum); 557 if (error != 0) { 558 if (ifp != NULL) 559 in6_ifstat_inc(ifp, ifs6_out_discard); 560 goto bad; 561 } 562 } 563 if (rt == NULL) { 564 /* 565 * If in6_selectroute() does not return a route entry, 566 * dst may not have been updated. 567 */ 568 *dst = dst_sa; /* XXX */ 569 } 570 571 /* 572 * then rt (for unicast) and ifp must be non-NULL valid values. 573 */ 574 if ((flags & IPV6_FORWARDING) == 0) { 575 /* XXX: the FORWARDING flag can be set for mrouting. */ 576 in6_ifstat_inc(ifp, ifs6_out_request); 577 } 578 if (rt != NULL) { 579 ia = (struct in6_ifaddr *)(rt->rt_ifa); 580 counter_u64_add(rt->rt_pksent, 1); 581 } 582 583 584 /* 585 * The outgoing interface must be in the zone of source and 586 * destination addresses. 587 */ 588 origifp = ifp; 589 590 src0 = ip6->ip6_src; 591 if (in6_setscope(&src0, origifp, &zone)) 592 goto badscope; 593 bzero(&src_sa, sizeof(src_sa)); 594 src_sa.sin6_family = AF_INET6; 595 src_sa.sin6_len = sizeof(src_sa); 596 src_sa.sin6_addr = ip6->ip6_src; 597 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 598 goto badscope; 599 600 dst0 = ip6->ip6_dst; 601 if (in6_setscope(&dst0, origifp, &zone)) 602 goto badscope; 603 /* re-initialize to be sure */ 604 bzero(&dst_sa, sizeof(dst_sa)); 605 dst_sa.sin6_family = AF_INET6; 606 dst_sa.sin6_len = sizeof(dst_sa); 607 dst_sa.sin6_addr = ip6->ip6_dst; 608 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 609 goto badscope; 610 } 611 612 /* We should use ia_ifp to support the case of 613 * sending packets to an address of our own. 614 */ 615 if (ia != NULL && ia->ia_ifp) 616 ifp = ia->ia_ifp; 617 618 /* scope check is done. */ 619 goto routefound; 620 621 badscope: 622 IP6STAT_INC(ip6s_badscope); 623 in6_ifstat_inc(origifp, ifs6_out_discard); 624 if (error == 0) 625 error = EHOSTUNREACH; /* XXX */ 626 goto bad; 627 628 routefound: 629 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 630 if (opt && opt->ip6po_nextroute.ro_rt) { 631 /* 632 * The nexthop is explicitly specified by the 633 * application. We assume the next hop is an IPv6 634 * address. 635 */ 636 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 637 } 638 else if ((rt->rt_flags & RTF_GATEWAY)) 639 dst = (struct sockaddr_in6 *)rt->rt_gateway; 640 } 641 642 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 643 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 644 } else { 645 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 646 in6_ifstat_inc(ifp, ifs6_out_mcast); 647 /* 648 * Confirm that the outgoing interface supports multicast. 649 */ 650 if (!(ifp->if_flags & IFF_MULTICAST)) { 651 IP6STAT_INC(ip6s_noroute); 652 in6_ifstat_inc(ifp, ifs6_out_discard); 653 error = ENETUNREACH; 654 goto bad; 655 } 656 if ((im6o == NULL && in6_mcast_loop) || 657 (im6o && im6o->im6o_multicast_loop)) { 658 /* 659 * Loop back multicast datagram if not expressly 660 * forbidden to do so, even if we have not joined 661 * the address; protocols will filter it later, 662 * thus deferring a hash lookup and lock acquisition 663 * at the expense of an m_copym(). 664 */ 665 ip6_mloopback(ifp, m, dst); 666 } else { 667 /* 668 * If we are acting as a multicast router, perform 669 * multicast forwarding as if the packet had just 670 * arrived on the interface to which we are about 671 * to send. The multicast forwarding function 672 * recursively calls this function, using the 673 * IPV6_FORWARDING flag to prevent infinite recursion. 674 * 675 * Multicasts that are looped back by ip6_mloopback(), 676 * above, will be forwarded by the ip6_input() routine, 677 * if necessary. 678 */ 679 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 680 /* 681 * XXX: ip6_mforward expects that rcvif is NULL 682 * when it is called from the originating path. 683 * However, it may not always be the case. 684 */ 685 m->m_pkthdr.rcvif = NULL; 686 if (ip6_mforward(ip6, ifp, m) != 0) { 687 m_freem(m); 688 goto done; 689 } 690 } 691 } 692 /* 693 * Multicasts with a hoplimit of zero may be looped back, 694 * above, but must not be transmitted on a network. 695 * Also, multicasts addressed to the loopback interface 696 * are not sent -- the above call to ip6_mloopback() will 697 * loop back a copy if this host actually belongs to the 698 * destination group on the loopback interface. 699 */ 700 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 701 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 702 m_freem(m); 703 goto done; 704 } 705 } 706 707 /* 708 * Fill the outgoing inteface to tell the upper layer 709 * to increment per-interface statistics. 710 */ 711 if (ifpp) 712 *ifpp = ifp; 713 714 /* Determine path MTU. */ 715 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 716 &alwaysfrag, fibnum)) != 0) 717 goto bad; 718 719 /* 720 * The caller of this function may specify to use the minimum MTU 721 * in some cases. 722 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 723 * setting. The logic is a bit complicated; by default, unicast 724 * packets will follow path MTU while multicast packets will be sent at 725 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 726 * including unicast ones will be sent at the minimum MTU. Multicast 727 * packets will always be sent at the minimum MTU unless 728 * IP6PO_MINMTU_DISABLE is explicitly specified. 729 * See RFC 3542 for more details. 730 */ 731 if (mtu > IPV6_MMTU) { 732 if ((flags & IPV6_MINMTU)) 733 mtu = IPV6_MMTU; 734 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 735 mtu = IPV6_MMTU; 736 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 737 (opt == NULL || 738 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 739 mtu = IPV6_MMTU; 740 } 741 } 742 743 /* 744 * clear embedded scope identifiers if necessary. 745 * in6_clearscope will touch the addresses only when necessary. 746 */ 747 in6_clearscope(&ip6->ip6_src); 748 in6_clearscope(&ip6->ip6_dst); 749 750 /* 751 * If the outgoing packet contains a hop-by-hop options header, 752 * it must be examined and processed even by the source node. 753 * (RFC 2460, section 4.) 754 */ 755 if (exthdrs.ip6e_hbh) { 756 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 757 u_int32_t dummy; /* XXX unused */ 758 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 759 760 #ifdef DIAGNOSTIC 761 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 762 panic("ip6e_hbh is not contiguous"); 763 #endif 764 /* 765 * XXX: if we have to send an ICMPv6 error to the sender, 766 * we need the M_LOOP flag since icmp6_error() expects 767 * the IPv6 and the hop-by-hop options header are 768 * contiguous unless the flag is set. 769 */ 770 m->m_flags |= M_LOOP; 771 m->m_pkthdr.rcvif = ifp; 772 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 773 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 774 &dummy, &plen) < 0) { 775 /* m was already freed at this point */ 776 error = EINVAL;/* better error? */ 777 goto done; 778 } 779 m->m_flags &= ~M_LOOP; /* XXX */ 780 m->m_pkthdr.rcvif = NULL; 781 } 782 783 /* Jump over all PFIL processing if hooks are not active. */ 784 if (!PFIL_HOOKED(&V_inet6_pfil_hook)) 785 goto passout; 786 787 odst = ip6->ip6_dst; 788 /* Run through list of hooks for output packets. */ 789 error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp); 790 if (error != 0 || m == NULL) 791 goto done; 792 ip6 = mtod(m, struct ip6_hdr *); 793 794 needfiblookup = 0; 795 /* See if destination IP address was changed by packet filter. */ 796 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 797 m->m_flags |= M_SKIP_FIREWALL; 798 /* If destination is now ourself drop to ip6_input(). */ 799 if (in6_localip(&ip6->ip6_dst)) { 800 m->m_flags |= M_FASTFWD_OURS; 801 if (m->m_pkthdr.rcvif == NULL) 802 m->m_pkthdr.rcvif = V_loif; 803 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 804 m->m_pkthdr.csum_flags |= 805 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 806 m->m_pkthdr.csum_data = 0xffff; 807 } 808 #ifdef SCTP 809 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 810 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 811 #endif 812 error = netisr_queue(NETISR_IPV6, m); 813 goto done; 814 } else 815 needfiblookup = 1; /* Redo the routing table lookup. */ 816 } 817 /* See if fib was changed by packet filter. */ 818 if (fibnum != M_GETFIB(m)) { 819 m->m_flags |= M_SKIP_FIREWALL; 820 fibnum = M_GETFIB(m); 821 RO_RTFREE(ro); 822 needfiblookup = 1; 823 } 824 if (needfiblookup) 825 goto again; 826 827 /* See if local, if yes, send it to netisr. */ 828 if (m->m_flags & M_FASTFWD_OURS) { 829 if (m->m_pkthdr.rcvif == NULL) 830 m->m_pkthdr.rcvif = V_loif; 831 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 832 m->m_pkthdr.csum_flags |= 833 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 834 m->m_pkthdr.csum_data = 0xffff; 835 } 836 #ifdef SCTP 837 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 838 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 839 #endif 840 error = netisr_queue(NETISR_IPV6, m); 841 goto done; 842 } 843 /* Or forward to some other address? */ 844 if ((m->m_flags & M_IP6_NEXTHOP) && 845 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 846 dst = (struct sockaddr_in6 *)&ro->ro_dst; 847 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 848 m->m_flags |= M_SKIP_FIREWALL; 849 m->m_flags &= ~M_IP6_NEXTHOP; 850 m_tag_delete(m, fwd_tag); 851 goto again; 852 } 853 854 passout: 855 /* 856 * Send the packet to the outgoing interface. 857 * If necessary, do IPv6 fragmentation before sending. 858 * 859 * the logic here is rather complex: 860 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 861 * 1-a: send as is if tlen <= path mtu 862 * 1-b: fragment if tlen > path mtu 863 * 864 * 2: if user asks us not to fragment (dontfrag == 1) 865 * 2-a: send as is if tlen <= interface mtu 866 * 2-b: error if tlen > interface mtu 867 * 868 * 3: if we always need to attach fragment header (alwaysfrag == 1) 869 * always fragment 870 * 871 * 4: if dontfrag == 1 && alwaysfrag == 1 872 * error, as we cannot handle this conflicting request 873 */ 874 sw_csum = m->m_pkthdr.csum_flags; 875 if (!hdrsplit) { 876 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 877 sw_csum &= ~ifp->if_hwassist; 878 } else 879 tso = 0; 880 /* 881 * If we added extension headers, we will not do TSO and calculate the 882 * checksums ourselves for now. 883 * XXX-BZ Need a framework to know when the NIC can handle it, even 884 * with ext. hdrs. 885 */ 886 if (sw_csum & CSUM_DELAY_DATA_IPV6) { 887 sw_csum &= ~CSUM_DELAY_DATA_IPV6; 888 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 889 } 890 #ifdef SCTP 891 if (sw_csum & CSUM_SCTP_IPV6) { 892 sw_csum &= ~CSUM_SCTP_IPV6; 893 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 894 } 895 #endif 896 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 897 tlen = m->m_pkthdr.len; 898 899 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 900 dontfrag = 1; 901 else 902 dontfrag = 0; 903 if (dontfrag && alwaysfrag) { /* case 4 */ 904 /* conflicting request - can't transmit */ 905 error = EMSGSIZE; 906 goto bad; 907 } 908 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ 909 /* 910 * Even if the DONTFRAG option is specified, we cannot send the 911 * packet when the data length is larger than the MTU of the 912 * outgoing interface. 913 * Notify the error by sending IPV6_PATHMTU ancillary data if 914 * application wanted to know the MTU value. Also return an 915 * error code (this is not described in the API spec). 916 */ 917 if (inp != NULL) 918 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 919 error = EMSGSIZE; 920 goto bad; 921 } 922 923 /* 924 * transmit packet without fragmentation 925 */ 926 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 927 struct in6_ifaddr *ia6; 928 929 ip6 = mtod(m, struct ip6_hdr *); 930 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 931 if (ia6) { 932 /* Record statistics for this interface address. */ 933 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 934 counter_u64_add(ia6->ia_ifa.ifa_obytes, 935 m->m_pkthdr.len); 936 ifa_free(&ia6->ia_ifa); 937 } 938 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 939 goto done; 940 } 941 942 /* 943 * try to fragment the packet. case 1-b and 3 944 */ 945 if (mtu < IPV6_MMTU) { 946 /* path MTU cannot be less than IPV6_MMTU */ 947 error = EMSGSIZE; 948 in6_ifstat_inc(ifp, ifs6_out_fragfail); 949 goto bad; 950 } else if (ip6->ip6_plen == 0) { 951 /* jumbo payload cannot be fragmented */ 952 error = EMSGSIZE; 953 in6_ifstat_inc(ifp, ifs6_out_fragfail); 954 goto bad; 955 } else { 956 u_char nextproto; 957 958 /* 959 * Too large for the destination or interface; 960 * fragment if possible. 961 * Must be able to put at least 8 bytes per fragment. 962 */ 963 hlen = unfragpartlen; 964 if (mtu > IPV6_MAXPACKET) 965 mtu = IPV6_MAXPACKET; 966 967 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 968 if (len < 8) { 969 error = EMSGSIZE; 970 in6_ifstat_inc(ifp, ifs6_out_fragfail); 971 goto bad; 972 } 973 974 /* 975 * If the interface will not calculate checksums on 976 * fragmented packets, then do it here. 977 * XXX-BZ handle the hw offloading case. Need flags. 978 */ 979 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 980 in6_delayed_cksum(m, plen, hlen); 981 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 982 } 983 #ifdef SCTP 984 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 985 sctp_delayed_cksum(m, hlen); 986 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 987 } 988 #endif 989 /* 990 * Change the next header field of the last header in the 991 * unfragmentable part. 992 */ 993 if (exthdrs.ip6e_rthdr) { 994 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 995 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 996 } else if (exthdrs.ip6e_dest1) { 997 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 998 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 999 } else if (exthdrs.ip6e_hbh) { 1000 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1001 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1002 } else { 1003 nextproto = ip6->ip6_nxt; 1004 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1005 } 1006 1007 /* 1008 * Loop through length of segment after first fragment, 1009 * make new header and copy data of each part and link onto 1010 * chain. 1011 */ 1012 m0 = m; 1013 id = htonl(ip6_randomid()); 1014 if ((error = ip6_fragment(ifp, m, hlen, nextproto, len, id))) 1015 goto sendorfree; 1016 1017 in6_ifstat_inc(ifp, ifs6_out_fragok); 1018 } 1019 1020 /* 1021 * Remove leading garbages. 1022 */ 1023 sendorfree: 1024 m = m0->m_nextpkt; 1025 m0->m_nextpkt = 0; 1026 m_freem(m0); 1027 for (m0 = m; m; m = m0) { 1028 m0 = m->m_nextpkt; 1029 m->m_nextpkt = 0; 1030 if (error == 0) { 1031 /* Record statistics for this interface address. */ 1032 if (ia) { 1033 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1034 counter_u64_add(ia->ia_ifa.ifa_obytes, 1035 m->m_pkthdr.len); 1036 } 1037 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1038 } else 1039 m_freem(m); 1040 } 1041 1042 if (error == 0) 1043 IP6STAT_INC(ip6s_fragmented); 1044 1045 done: 1046 if (ro == &ip6route) 1047 RO_RTFREE(ro); 1048 if (ro_pmtu == &ip6route) 1049 RO_RTFREE(ro_pmtu); 1050 return (error); 1051 1052 freehdrs: 1053 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1054 m_freem(exthdrs.ip6e_dest1); 1055 m_freem(exthdrs.ip6e_rthdr); 1056 m_freem(exthdrs.ip6e_dest2); 1057 /* FALLTHROUGH */ 1058 bad: 1059 if (m) 1060 m_freem(m); 1061 goto done; 1062 } 1063 1064 static int 1065 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1066 { 1067 struct mbuf *m; 1068 1069 if (hlen > MCLBYTES) 1070 return (ENOBUFS); /* XXX */ 1071 1072 if (hlen > MLEN) 1073 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1074 else 1075 m = m_get(M_NOWAIT, MT_DATA); 1076 if (m == NULL) 1077 return (ENOBUFS); 1078 m->m_len = hlen; 1079 if (hdr) 1080 bcopy(hdr, mtod(m, caddr_t), hlen); 1081 1082 *mp = m; 1083 return (0); 1084 } 1085 1086 /* 1087 * Insert jumbo payload option. 1088 */ 1089 static int 1090 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1091 { 1092 struct mbuf *mopt; 1093 u_char *optbuf; 1094 u_int32_t v; 1095 1096 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1097 1098 /* 1099 * If there is no hop-by-hop options header, allocate new one. 1100 * If there is one but it doesn't have enough space to store the 1101 * jumbo payload option, allocate a cluster to store the whole options. 1102 * Otherwise, use it to store the options. 1103 */ 1104 if (exthdrs->ip6e_hbh == 0) { 1105 mopt = m_get(M_NOWAIT, MT_DATA); 1106 if (mopt == NULL) 1107 return (ENOBUFS); 1108 mopt->m_len = JUMBOOPTLEN; 1109 optbuf = mtod(mopt, u_char *); 1110 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1111 exthdrs->ip6e_hbh = mopt; 1112 } else { 1113 struct ip6_hbh *hbh; 1114 1115 mopt = exthdrs->ip6e_hbh; 1116 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1117 /* 1118 * XXX assumption: 1119 * - exthdrs->ip6e_hbh is not referenced from places 1120 * other than exthdrs. 1121 * - exthdrs->ip6e_hbh is not an mbuf chain. 1122 */ 1123 int oldoptlen = mopt->m_len; 1124 struct mbuf *n; 1125 1126 /* 1127 * XXX: give up if the whole (new) hbh header does 1128 * not fit even in an mbuf cluster. 1129 */ 1130 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1131 return (ENOBUFS); 1132 1133 /* 1134 * As a consequence, we must always prepare a cluster 1135 * at this point. 1136 */ 1137 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1138 if (n == NULL) 1139 return (ENOBUFS); 1140 n->m_len = oldoptlen + JUMBOOPTLEN; 1141 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1142 oldoptlen); 1143 optbuf = mtod(n, caddr_t) + oldoptlen; 1144 m_freem(mopt); 1145 mopt = exthdrs->ip6e_hbh = n; 1146 } else { 1147 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1148 mopt->m_len += JUMBOOPTLEN; 1149 } 1150 optbuf[0] = IP6OPT_PADN; 1151 optbuf[1] = 1; 1152 1153 /* 1154 * Adjust the header length according to the pad and 1155 * the jumbo payload option. 1156 */ 1157 hbh = mtod(mopt, struct ip6_hbh *); 1158 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1159 } 1160 1161 /* fill in the option. */ 1162 optbuf[2] = IP6OPT_JUMBO; 1163 optbuf[3] = 4; 1164 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1165 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1166 1167 /* finally, adjust the packet header length */ 1168 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1169 1170 return (0); 1171 #undef JUMBOOPTLEN 1172 } 1173 1174 /* 1175 * Insert fragment header and copy unfragmentable header portions. 1176 */ 1177 static int 1178 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1179 struct ip6_frag **frghdrp) 1180 { 1181 struct mbuf *n, *mlast; 1182 1183 if (hlen > sizeof(struct ip6_hdr)) { 1184 n = m_copym(m0, sizeof(struct ip6_hdr), 1185 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1186 if (n == 0) 1187 return (ENOBUFS); 1188 m->m_next = n; 1189 } else 1190 n = m; 1191 1192 /* Search for the last mbuf of unfragmentable part. */ 1193 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1194 ; 1195 1196 if (M_WRITABLE(mlast) && 1197 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1198 /* use the trailing space of the last mbuf for the fragment hdr */ 1199 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1200 mlast->m_len); 1201 mlast->m_len += sizeof(struct ip6_frag); 1202 m->m_pkthdr.len += sizeof(struct ip6_frag); 1203 } else { 1204 /* allocate a new mbuf for the fragment header */ 1205 struct mbuf *mfrg; 1206 1207 mfrg = m_get(M_NOWAIT, MT_DATA); 1208 if (mfrg == NULL) 1209 return (ENOBUFS); 1210 mfrg->m_len = sizeof(struct ip6_frag); 1211 *frghdrp = mtod(mfrg, struct ip6_frag *); 1212 mlast->m_next = mfrg; 1213 } 1214 1215 return (0); 1216 } 1217 1218 static int 1219 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro, 1220 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup, 1221 int *alwaysfragp, u_int fibnum) 1222 { 1223 u_int32_t mtu = 0; 1224 int alwaysfrag = 0; 1225 int error = 0; 1226 1227 if (ro_pmtu != ro) { 1228 /* The first hop and the final destination may differ. */ 1229 struct sockaddr_in6 *sa6_dst = 1230 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1231 if (ro_pmtu->ro_rt && 1232 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 || 1233 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) { 1234 RTFREE(ro_pmtu->ro_rt); 1235 ro_pmtu->ro_rt = (struct rtentry *)NULL; 1236 } 1237 if (ro_pmtu->ro_rt == NULL) { 1238 bzero(sa6_dst, sizeof(*sa6_dst)); 1239 sa6_dst->sin6_family = AF_INET6; 1240 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1241 sa6_dst->sin6_addr = *dst; 1242 1243 in6_rtalloc(ro_pmtu, fibnum); 1244 } 1245 } 1246 if (ro_pmtu->ro_rt) { 1247 u_int32_t ifmtu; 1248 struct in_conninfo inc; 1249 1250 bzero(&inc, sizeof(inc)); 1251 inc.inc_flags |= INC_ISIPV6; 1252 inc.inc6_faddr = *dst; 1253 1254 if (ifp == NULL) 1255 ifp = ro_pmtu->ro_rt->rt_ifp; 1256 ifmtu = IN6_LINKMTU(ifp); 1257 mtu = tcp_hc_getmtu(&inc); 1258 if (mtu) 1259 mtu = min(mtu, ro_pmtu->ro_rt->rt_mtu); 1260 else 1261 mtu = ro_pmtu->ro_rt->rt_mtu; 1262 if (mtu == 0) 1263 mtu = ifmtu; 1264 else if (mtu < IPV6_MMTU) { 1265 /* 1266 * RFC2460 section 5, last paragraph: 1267 * if we record ICMPv6 too big message with 1268 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1269 * or smaller, with framgent header attached. 1270 * (fragment header is needed regardless from the 1271 * packet size, for translators to identify packets) 1272 */ 1273 alwaysfrag = 1; 1274 mtu = IPV6_MMTU; 1275 } 1276 } else if (ifp) { 1277 mtu = IN6_LINKMTU(ifp); 1278 } else 1279 error = EHOSTUNREACH; /* XXX */ 1280 1281 *mtup = mtu; 1282 if (alwaysfragp) 1283 *alwaysfragp = alwaysfrag; 1284 return (error); 1285 } 1286 1287 /* 1288 * IP6 socket option processing. 1289 */ 1290 int 1291 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1292 { 1293 int optdatalen, uproto; 1294 void *optdata; 1295 struct inpcb *in6p = sotoinpcb(so); 1296 int error, optval; 1297 int level, op, optname; 1298 int optlen; 1299 struct thread *td; 1300 #ifdef RSS 1301 uint32_t rss_bucket; 1302 int retval; 1303 #endif 1304 1305 level = sopt->sopt_level; 1306 op = sopt->sopt_dir; 1307 optname = sopt->sopt_name; 1308 optlen = sopt->sopt_valsize; 1309 td = sopt->sopt_td; 1310 error = 0; 1311 optval = 0; 1312 uproto = (int)so->so_proto->pr_protocol; 1313 1314 if (level != IPPROTO_IPV6) { 1315 error = EINVAL; 1316 1317 if (sopt->sopt_level == SOL_SOCKET && 1318 sopt->sopt_dir == SOPT_SET) { 1319 switch (sopt->sopt_name) { 1320 case SO_REUSEADDR: 1321 INP_WLOCK(in6p); 1322 if ((so->so_options & SO_REUSEADDR) != 0) 1323 in6p->inp_flags2 |= INP_REUSEADDR; 1324 else 1325 in6p->inp_flags2 &= ~INP_REUSEADDR; 1326 INP_WUNLOCK(in6p); 1327 error = 0; 1328 break; 1329 case SO_REUSEPORT: 1330 INP_WLOCK(in6p); 1331 if ((so->so_options & SO_REUSEPORT) != 0) 1332 in6p->inp_flags2 |= INP_REUSEPORT; 1333 else 1334 in6p->inp_flags2 &= ~INP_REUSEPORT; 1335 INP_WUNLOCK(in6p); 1336 error = 0; 1337 break; 1338 case SO_SETFIB: 1339 INP_WLOCK(in6p); 1340 in6p->inp_inc.inc_fibnum = so->so_fibnum; 1341 INP_WUNLOCK(in6p); 1342 error = 0; 1343 break; 1344 default: 1345 break; 1346 } 1347 } 1348 } else { /* level == IPPROTO_IPV6 */ 1349 switch (op) { 1350 1351 case SOPT_SET: 1352 switch (optname) { 1353 case IPV6_2292PKTOPTIONS: 1354 #ifdef IPV6_PKTOPTIONS 1355 case IPV6_PKTOPTIONS: 1356 #endif 1357 { 1358 struct mbuf *m; 1359 1360 error = soopt_getm(sopt, &m); /* XXX */ 1361 if (error != 0) 1362 break; 1363 error = soopt_mcopyin(sopt, m); /* XXX */ 1364 if (error != 0) 1365 break; 1366 error = ip6_pcbopts(&in6p->in6p_outputopts, 1367 m, so, sopt); 1368 m_freem(m); /* XXX */ 1369 break; 1370 } 1371 1372 /* 1373 * Use of some Hop-by-Hop options or some 1374 * Destination options, might require special 1375 * privilege. That is, normal applications 1376 * (without special privilege) might be forbidden 1377 * from setting certain options in outgoing packets, 1378 * and might never see certain options in received 1379 * packets. [RFC 2292 Section 6] 1380 * KAME specific note: 1381 * KAME prevents non-privileged users from sending or 1382 * receiving ANY hbh/dst options in order to avoid 1383 * overhead of parsing options in the kernel. 1384 */ 1385 case IPV6_RECVHOPOPTS: 1386 case IPV6_RECVDSTOPTS: 1387 case IPV6_RECVRTHDRDSTOPTS: 1388 if (td != NULL) { 1389 error = priv_check(td, 1390 PRIV_NETINET_SETHDROPTS); 1391 if (error) 1392 break; 1393 } 1394 /* FALLTHROUGH */ 1395 case IPV6_UNICAST_HOPS: 1396 case IPV6_HOPLIMIT: 1397 1398 case IPV6_RECVPKTINFO: 1399 case IPV6_RECVHOPLIMIT: 1400 case IPV6_RECVRTHDR: 1401 case IPV6_RECVPATHMTU: 1402 case IPV6_RECVTCLASS: 1403 case IPV6_V6ONLY: 1404 case IPV6_AUTOFLOWLABEL: 1405 case IPV6_BINDANY: 1406 case IPV6_BINDMULTI: 1407 #ifdef RSS 1408 case IPV6_RSS_LISTEN_BUCKET: 1409 #endif 1410 if (optname == IPV6_BINDANY && td != NULL) { 1411 error = priv_check(td, 1412 PRIV_NETINET_BINDANY); 1413 if (error) 1414 break; 1415 } 1416 1417 if (optlen != sizeof(int)) { 1418 error = EINVAL; 1419 break; 1420 } 1421 error = sooptcopyin(sopt, &optval, 1422 sizeof optval, sizeof optval); 1423 if (error) 1424 break; 1425 switch (optname) { 1426 1427 case IPV6_UNICAST_HOPS: 1428 if (optval < -1 || optval >= 256) 1429 error = EINVAL; 1430 else { 1431 /* -1 = kernel default */ 1432 in6p->in6p_hops = optval; 1433 if ((in6p->inp_vflag & 1434 INP_IPV4) != 0) 1435 in6p->inp_ip_ttl = optval; 1436 } 1437 break; 1438 #define OPTSET(bit) \ 1439 do { \ 1440 INP_WLOCK(in6p); \ 1441 if (optval) \ 1442 in6p->inp_flags |= (bit); \ 1443 else \ 1444 in6p->inp_flags &= ~(bit); \ 1445 INP_WUNLOCK(in6p); \ 1446 } while (/*CONSTCOND*/ 0) 1447 #define OPTSET2292(bit) \ 1448 do { \ 1449 INP_WLOCK(in6p); \ 1450 in6p->inp_flags |= IN6P_RFC2292; \ 1451 if (optval) \ 1452 in6p->inp_flags |= (bit); \ 1453 else \ 1454 in6p->inp_flags &= ~(bit); \ 1455 INP_WUNLOCK(in6p); \ 1456 } while (/*CONSTCOND*/ 0) 1457 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1458 1459 #define OPTSET2(bit, val) do { \ 1460 INP_WLOCK(in6p); \ 1461 if (val) \ 1462 in6p->inp_flags2 |= bit; \ 1463 else \ 1464 in6p->inp_flags2 &= ~bit; \ 1465 INP_WUNLOCK(in6p); \ 1466 } while (0) 1467 #define OPTBIT2(bit) (in6p->inp_flags2 & (bit) ? 1 : 0) 1468 1469 case IPV6_RECVPKTINFO: 1470 /* cannot mix with RFC2292 */ 1471 if (OPTBIT(IN6P_RFC2292)) { 1472 error = EINVAL; 1473 break; 1474 } 1475 OPTSET(IN6P_PKTINFO); 1476 break; 1477 1478 case IPV6_HOPLIMIT: 1479 { 1480 struct ip6_pktopts **optp; 1481 1482 /* cannot mix with RFC2292 */ 1483 if (OPTBIT(IN6P_RFC2292)) { 1484 error = EINVAL; 1485 break; 1486 } 1487 optp = &in6p->in6p_outputopts; 1488 error = ip6_pcbopt(IPV6_HOPLIMIT, 1489 (u_char *)&optval, sizeof(optval), 1490 optp, (td != NULL) ? td->td_ucred : 1491 NULL, uproto); 1492 break; 1493 } 1494 1495 case IPV6_RECVHOPLIMIT: 1496 /* cannot mix with RFC2292 */ 1497 if (OPTBIT(IN6P_RFC2292)) { 1498 error = EINVAL; 1499 break; 1500 } 1501 OPTSET(IN6P_HOPLIMIT); 1502 break; 1503 1504 case IPV6_RECVHOPOPTS: 1505 /* cannot mix with RFC2292 */ 1506 if (OPTBIT(IN6P_RFC2292)) { 1507 error = EINVAL; 1508 break; 1509 } 1510 OPTSET(IN6P_HOPOPTS); 1511 break; 1512 1513 case IPV6_RECVDSTOPTS: 1514 /* cannot mix with RFC2292 */ 1515 if (OPTBIT(IN6P_RFC2292)) { 1516 error = EINVAL; 1517 break; 1518 } 1519 OPTSET(IN6P_DSTOPTS); 1520 break; 1521 1522 case IPV6_RECVRTHDRDSTOPTS: 1523 /* cannot mix with RFC2292 */ 1524 if (OPTBIT(IN6P_RFC2292)) { 1525 error = EINVAL; 1526 break; 1527 } 1528 OPTSET(IN6P_RTHDRDSTOPTS); 1529 break; 1530 1531 case IPV6_RECVRTHDR: 1532 /* cannot mix with RFC2292 */ 1533 if (OPTBIT(IN6P_RFC2292)) { 1534 error = EINVAL; 1535 break; 1536 } 1537 OPTSET(IN6P_RTHDR); 1538 break; 1539 1540 case IPV6_RECVPATHMTU: 1541 /* 1542 * We ignore this option for TCP 1543 * sockets. 1544 * (RFC3542 leaves this case 1545 * unspecified.) 1546 */ 1547 if (uproto != IPPROTO_TCP) 1548 OPTSET(IN6P_MTU); 1549 break; 1550 1551 case IPV6_V6ONLY: 1552 /* 1553 * make setsockopt(IPV6_V6ONLY) 1554 * available only prior to bind(2). 1555 * see ipng mailing list, Jun 22 2001. 1556 */ 1557 if (in6p->inp_lport || 1558 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1559 error = EINVAL; 1560 break; 1561 } 1562 OPTSET(IN6P_IPV6_V6ONLY); 1563 if (optval) 1564 in6p->inp_vflag &= ~INP_IPV4; 1565 else 1566 in6p->inp_vflag |= INP_IPV4; 1567 break; 1568 case IPV6_RECVTCLASS: 1569 /* cannot mix with RFC2292 XXX */ 1570 if (OPTBIT(IN6P_RFC2292)) { 1571 error = EINVAL; 1572 break; 1573 } 1574 OPTSET(IN6P_TCLASS); 1575 break; 1576 case IPV6_AUTOFLOWLABEL: 1577 OPTSET(IN6P_AUTOFLOWLABEL); 1578 break; 1579 1580 case IPV6_BINDANY: 1581 OPTSET(INP_BINDANY); 1582 break; 1583 1584 case IPV6_BINDMULTI: 1585 OPTSET2(INP_BINDMULTI, optval); 1586 break; 1587 #ifdef RSS 1588 case IPV6_RSS_LISTEN_BUCKET: 1589 if ((optval >= 0) && 1590 (optval < rss_getnumbuckets())) { 1591 in6p->inp_rss_listen_bucket = optval; 1592 OPTSET2(INP_RSS_BUCKET_SET, 1); 1593 } else { 1594 error = EINVAL; 1595 } 1596 break; 1597 #endif 1598 } 1599 break; 1600 1601 case IPV6_TCLASS: 1602 case IPV6_DONTFRAG: 1603 case IPV6_USE_MIN_MTU: 1604 case IPV6_PREFER_TEMPADDR: 1605 if (optlen != sizeof(optval)) { 1606 error = EINVAL; 1607 break; 1608 } 1609 error = sooptcopyin(sopt, &optval, 1610 sizeof optval, sizeof optval); 1611 if (error) 1612 break; 1613 { 1614 struct ip6_pktopts **optp; 1615 optp = &in6p->in6p_outputopts; 1616 error = ip6_pcbopt(optname, 1617 (u_char *)&optval, sizeof(optval), 1618 optp, (td != NULL) ? td->td_ucred : 1619 NULL, uproto); 1620 break; 1621 } 1622 1623 case IPV6_2292PKTINFO: 1624 case IPV6_2292HOPLIMIT: 1625 case IPV6_2292HOPOPTS: 1626 case IPV6_2292DSTOPTS: 1627 case IPV6_2292RTHDR: 1628 /* RFC 2292 */ 1629 if (optlen != sizeof(int)) { 1630 error = EINVAL; 1631 break; 1632 } 1633 error = sooptcopyin(sopt, &optval, 1634 sizeof optval, sizeof optval); 1635 if (error) 1636 break; 1637 switch (optname) { 1638 case IPV6_2292PKTINFO: 1639 OPTSET2292(IN6P_PKTINFO); 1640 break; 1641 case IPV6_2292HOPLIMIT: 1642 OPTSET2292(IN6P_HOPLIMIT); 1643 break; 1644 case IPV6_2292HOPOPTS: 1645 /* 1646 * Check super-user privilege. 1647 * See comments for IPV6_RECVHOPOPTS. 1648 */ 1649 if (td != NULL) { 1650 error = priv_check(td, 1651 PRIV_NETINET_SETHDROPTS); 1652 if (error) 1653 return (error); 1654 } 1655 OPTSET2292(IN6P_HOPOPTS); 1656 break; 1657 case IPV6_2292DSTOPTS: 1658 if (td != NULL) { 1659 error = priv_check(td, 1660 PRIV_NETINET_SETHDROPTS); 1661 if (error) 1662 return (error); 1663 } 1664 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1665 break; 1666 case IPV6_2292RTHDR: 1667 OPTSET2292(IN6P_RTHDR); 1668 break; 1669 } 1670 break; 1671 case IPV6_PKTINFO: 1672 case IPV6_HOPOPTS: 1673 case IPV6_RTHDR: 1674 case IPV6_DSTOPTS: 1675 case IPV6_RTHDRDSTOPTS: 1676 case IPV6_NEXTHOP: 1677 { 1678 /* new advanced API (RFC3542) */ 1679 u_char *optbuf; 1680 u_char optbuf_storage[MCLBYTES]; 1681 int optlen; 1682 struct ip6_pktopts **optp; 1683 1684 /* cannot mix with RFC2292 */ 1685 if (OPTBIT(IN6P_RFC2292)) { 1686 error = EINVAL; 1687 break; 1688 } 1689 1690 /* 1691 * We only ensure valsize is not too large 1692 * here. Further validation will be done 1693 * later. 1694 */ 1695 error = sooptcopyin(sopt, optbuf_storage, 1696 sizeof(optbuf_storage), 0); 1697 if (error) 1698 break; 1699 optlen = sopt->sopt_valsize; 1700 optbuf = optbuf_storage; 1701 optp = &in6p->in6p_outputopts; 1702 error = ip6_pcbopt(optname, optbuf, optlen, 1703 optp, (td != NULL) ? td->td_ucred : NULL, 1704 uproto); 1705 break; 1706 } 1707 #undef OPTSET 1708 1709 case IPV6_MULTICAST_IF: 1710 case IPV6_MULTICAST_HOPS: 1711 case IPV6_MULTICAST_LOOP: 1712 case IPV6_JOIN_GROUP: 1713 case IPV6_LEAVE_GROUP: 1714 case IPV6_MSFILTER: 1715 case MCAST_BLOCK_SOURCE: 1716 case MCAST_UNBLOCK_SOURCE: 1717 case MCAST_JOIN_GROUP: 1718 case MCAST_LEAVE_GROUP: 1719 case MCAST_JOIN_SOURCE_GROUP: 1720 case MCAST_LEAVE_SOURCE_GROUP: 1721 error = ip6_setmoptions(in6p, sopt); 1722 break; 1723 1724 case IPV6_PORTRANGE: 1725 error = sooptcopyin(sopt, &optval, 1726 sizeof optval, sizeof optval); 1727 if (error) 1728 break; 1729 1730 INP_WLOCK(in6p); 1731 switch (optval) { 1732 case IPV6_PORTRANGE_DEFAULT: 1733 in6p->inp_flags &= ~(INP_LOWPORT); 1734 in6p->inp_flags &= ~(INP_HIGHPORT); 1735 break; 1736 1737 case IPV6_PORTRANGE_HIGH: 1738 in6p->inp_flags &= ~(INP_LOWPORT); 1739 in6p->inp_flags |= INP_HIGHPORT; 1740 break; 1741 1742 case IPV6_PORTRANGE_LOW: 1743 in6p->inp_flags &= ~(INP_HIGHPORT); 1744 in6p->inp_flags |= INP_LOWPORT; 1745 break; 1746 1747 default: 1748 error = EINVAL; 1749 break; 1750 } 1751 INP_WUNLOCK(in6p); 1752 break; 1753 1754 #ifdef IPSEC 1755 case IPV6_IPSEC_POLICY: 1756 { 1757 caddr_t req; 1758 struct mbuf *m; 1759 1760 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1761 break; 1762 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1763 break; 1764 req = mtod(m, caddr_t); 1765 error = ipsec_set_policy(in6p, optname, req, 1766 m->m_len, (sopt->sopt_td != NULL) ? 1767 sopt->sopt_td->td_ucred : NULL); 1768 m_freem(m); 1769 break; 1770 } 1771 #endif /* IPSEC */ 1772 1773 default: 1774 error = ENOPROTOOPT; 1775 break; 1776 } 1777 break; 1778 1779 case SOPT_GET: 1780 switch (optname) { 1781 1782 case IPV6_2292PKTOPTIONS: 1783 #ifdef IPV6_PKTOPTIONS 1784 case IPV6_PKTOPTIONS: 1785 #endif 1786 /* 1787 * RFC3542 (effectively) deprecated the 1788 * semantics of the 2292-style pktoptions. 1789 * Since it was not reliable in nature (i.e., 1790 * applications had to expect the lack of some 1791 * information after all), it would make sense 1792 * to simplify this part by always returning 1793 * empty data. 1794 */ 1795 sopt->sopt_valsize = 0; 1796 break; 1797 1798 case IPV6_RECVHOPOPTS: 1799 case IPV6_RECVDSTOPTS: 1800 case IPV6_RECVRTHDRDSTOPTS: 1801 case IPV6_UNICAST_HOPS: 1802 case IPV6_RECVPKTINFO: 1803 case IPV6_RECVHOPLIMIT: 1804 case IPV6_RECVRTHDR: 1805 case IPV6_RECVPATHMTU: 1806 1807 case IPV6_V6ONLY: 1808 case IPV6_PORTRANGE: 1809 case IPV6_RECVTCLASS: 1810 case IPV6_AUTOFLOWLABEL: 1811 case IPV6_BINDANY: 1812 case IPV6_FLOWID: 1813 case IPV6_FLOWTYPE: 1814 #ifdef RSS 1815 case IPV6_RSSBUCKETID: 1816 #endif 1817 switch (optname) { 1818 1819 case IPV6_RECVHOPOPTS: 1820 optval = OPTBIT(IN6P_HOPOPTS); 1821 break; 1822 1823 case IPV6_RECVDSTOPTS: 1824 optval = OPTBIT(IN6P_DSTOPTS); 1825 break; 1826 1827 case IPV6_RECVRTHDRDSTOPTS: 1828 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1829 break; 1830 1831 case IPV6_UNICAST_HOPS: 1832 optval = in6p->in6p_hops; 1833 break; 1834 1835 case IPV6_RECVPKTINFO: 1836 optval = OPTBIT(IN6P_PKTINFO); 1837 break; 1838 1839 case IPV6_RECVHOPLIMIT: 1840 optval = OPTBIT(IN6P_HOPLIMIT); 1841 break; 1842 1843 case IPV6_RECVRTHDR: 1844 optval = OPTBIT(IN6P_RTHDR); 1845 break; 1846 1847 case IPV6_RECVPATHMTU: 1848 optval = OPTBIT(IN6P_MTU); 1849 break; 1850 1851 case IPV6_V6ONLY: 1852 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1853 break; 1854 1855 case IPV6_PORTRANGE: 1856 { 1857 int flags; 1858 flags = in6p->inp_flags; 1859 if (flags & INP_HIGHPORT) 1860 optval = IPV6_PORTRANGE_HIGH; 1861 else if (flags & INP_LOWPORT) 1862 optval = IPV6_PORTRANGE_LOW; 1863 else 1864 optval = 0; 1865 break; 1866 } 1867 case IPV6_RECVTCLASS: 1868 optval = OPTBIT(IN6P_TCLASS); 1869 break; 1870 1871 case IPV6_AUTOFLOWLABEL: 1872 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 1873 break; 1874 1875 case IPV6_BINDANY: 1876 optval = OPTBIT(INP_BINDANY); 1877 break; 1878 1879 case IPV6_FLOWID: 1880 optval = in6p->inp_flowid; 1881 break; 1882 1883 case IPV6_FLOWTYPE: 1884 optval = in6p->inp_flowtype; 1885 break; 1886 #ifdef RSS 1887 case IPV6_RSSBUCKETID: 1888 retval = 1889 rss_hash2bucket(in6p->inp_flowid, 1890 in6p->inp_flowtype, 1891 &rss_bucket); 1892 if (retval == 0) 1893 optval = rss_bucket; 1894 else 1895 error = EINVAL; 1896 break; 1897 #endif 1898 1899 case IPV6_BINDMULTI: 1900 optval = OPTBIT2(INP_BINDMULTI); 1901 break; 1902 1903 } 1904 if (error) 1905 break; 1906 error = sooptcopyout(sopt, &optval, 1907 sizeof optval); 1908 break; 1909 1910 case IPV6_PATHMTU: 1911 { 1912 u_long pmtu = 0; 1913 struct ip6_mtuinfo mtuinfo; 1914 struct route_in6 sro; 1915 1916 bzero(&sro, sizeof(sro)); 1917 1918 if (!(so->so_state & SS_ISCONNECTED)) 1919 return (ENOTCONN); 1920 /* 1921 * XXX: we dot not consider the case of source 1922 * routing, or optional information to specify 1923 * the outgoing interface. 1924 */ 1925 error = ip6_getpmtu(&sro, NULL, NULL, 1926 &in6p->in6p_faddr, &pmtu, NULL, 1927 so->so_fibnum); 1928 if (sro.ro_rt) 1929 RTFREE(sro.ro_rt); 1930 if (error) 1931 break; 1932 if (pmtu > IPV6_MAXPACKET) 1933 pmtu = IPV6_MAXPACKET; 1934 1935 bzero(&mtuinfo, sizeof(mtuinfo)); 1936 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1937 optdata = (void *)&mtuinfo; 1938 optdatalen = sizeof(mtuinfo); 1939 error = sooptcopyout(sopt, optdata, 1940 optdatalen); 1941 break; 1942 } 1943 1944 case IPV6_2292PKTINFO: 1945 case IPV6_2292HOPLIMIT: 1946 case IPV6_2292HOPOPTS: 1947 case IPV6_2292RTHDR: 1948 case IPV6_2292DSTOPTS: 1949 switch (optname) { 1950 case IPV6_2292PKTINFO: 1951 optval = OPTBIT(IN6P_PKTINFO); 1952 break; 1953 case IPV6_2292HOPLIMIT: 1954 optval = OPTBIT(IN6P_HOPLIMIT); 1955 break; 1956 case IPV6_2292HOPOPTS: 1957 optval = OPTBIT(IN6P_HOPOPTS); 1958 break; 1959 case IPV6_2292RTHDR: 1960 optval = OPTBIT(IN6P_RTHDR); 1961 break; 1962 case IPV6_2292DSTOPTS: 1963 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1964 break; 1965 } 1966 error = sooptcopyout(sopt, &optval, 1967 sizeof optval); 1968 break; 1969 case IPV6_PKTINFO: 1970 case IPV6_HOPOPTS: 1971 case IPV6_RTHDR: 1972 case IPV6_DSTOPTS: 1973 case IPV6_RTHDRDSTOPTS: 1974 case IPV6_NEXTHOP: 1975 case IPV6_TCLASS: 1976 case IPV6_DONTFRAG: 1977 case IPV6_USE_MIN_MTU: 1978 case IPV6_PREFER_TEMPADDR: 1979 error = ip6_getpcbopt(in6p->in6p_outputopts, 1980 optname, sopt); 1981 break; 1982 1983 case IPV6_MULTICAST_IF: 1984 case IPV6_MULTICAST_HOPS: 1985 case IPV6_MULTICAST_LOOP: 1986 case IPV6_MSFILTER: 1987 error = ip6_getmoptions(in6p, sopt); 1988 break; 1989 1990 #ifdef IPSEC 1991 case IPV6_IPSEC_POLICY: 1992 { 1993 caddr_t req = NULL; 1994 size_t len = 0; 1995 struct mbuf *m = NULL; 1996 struct mbuf **mp = &m; 1997 size_t ovalsize = sopt->sopt_valsize; 1998 caddr_t oval = (caddr_t)sopt->sopt_val; 1999 2000 error = soopt_getm(sopt, &m); /* XXX */ 2001 if (error != 0) 2002 break; 2003 error = soopt_mcopyin(sopt, m); /* XXX */ 2004 if (error != 0) 2005 break; 2006 sopt->sopt_valsize = ovalsize; 2007 sopt->sopt_val = oval; 2008 if (m) { 2009 req = mtod(m, caddr_t); 2010 len = m->m_len; 2011 } 2012 error = ipsec_get_policy(in6p, req, len, mp); 2013 if (error == 0) 2014 error = soopt_mcopyout(sopt, m); /* XXX */ 2015 if (error == 0 && m) 2016 m_freem(m); 2017 break; 2018 } 2019 #endif /* IPSEC */ 2020 2021 default: 2022 error = ENOPROTOOPT; 2023 break; 2024 } 2025 break; 2026 } 2027 } 2028 return (error); 2029 } 2030 2031 int 2032 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2033 { 2034 int error = 0, optval, optlen; 2035 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2036 struct inpcb *in6p = sotoinpcb(so); 2037 int level, op, optname; 2038 2039 level = sopt->sopt_level; 2040 op = sopt->sopt_dir; 2041 optname = sopt->sopt_name; 2042 optlen = sopt->sopt_valsize; 2043 2044 if (level != IPPROTO_IPV6) { 2045 return (EINVAL); 2046 } 2047 2048 switch (optname) { 2049 case IPV6_CHECKSUM: 2050 /* 2051 * For ICMPv6 sockets, no modification allowed for checksum 2052 * offset, permit "no change" values to help existing apps. 2053 * 2054 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2055 * for an ICMPv6 socket will fail." 2056 * The current behavior does not meet RFC3542. 2057 */ 2058 switch (op) { 2059 case SOPT_SET: 2060 if (optlen != sizeof(int)) { 2061 error = EINVAL; 2062 break; 2063 } 2064 error = sooptcopyin(sopt, &optval, sizeof(optval), 2065 sizeof(optval)); 2066 if (error) 2067 break; 2068 if ((optval % 2) != 0) { 2069 /* the API assumes even offset values */ 2070 error = EINVAL; 2071 } else if (so->so_proto->pr_protocol == 2072 IPPROTO_ICMPV6) { 2073 if (optval != icmp6off) 2074 error = EINVAL; 2075 } else 2076 in6p->in6p_cksum = optval; 2077 break; 2078 2079 case SOPT_GET: 2080 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2081 optval = icmp6off; 2082 else 2083 optval = in6p->in6p_cksum; 2084 2085 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2086 break; 2087 2088 default: 2089 error = EINVAL; 2090 break; 2091 } 2092 break; 2093 2094 default: 2095 error = ENOPROTOOPT; 2096 break; 2097 } 2098 2099 return (error); 2100 } 2101 2102 /* 2103 * Set up IP6 options in pcb for insertion in output packets or 2104 * specifying behavior of outgoing packets. 2105 */ 2106 static int 2107 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2108 struct socket *so, struct sockopt *sopt) 2109 { 2110 struct ip6_pktopts *opt = *pktopt; 2111 int error = 0; 2112 struct thread *td = sopt->sopt_td; 2113 2114 /* turn off any old options. */ 2115 if (opt) { 2116 #ifdef DIAGNOSTIC 2117 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2118 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2119 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2120 printf("ip6_pcbopts: all specified options are cleared.\n"); 2121 #endif 2122 ip6_clearpktopts(opt, -1); 2123 } else 2124 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2125 *pktopt = NULL; 2126 2127 if (!m || m->m_len == 0) { 2128 /* 2129 * Only turning off any previous options, regardless of 2130 * whether the opt is just created or given. 2131 */ 2132 free(opt, M_IP6OPT); 2133 return (0); 2134 } 2135 2136 /* set options specified by user. */ 2137 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2138 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2139 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2140 free(opt, M_IP6OPT); 2141 return (error); 2142 } 2143 *pktopt = opt; 2144 return (0); 2145 } 2146 2147 /* 2148 * initialize ip6_pktopts. beware that there are non-zero default values in 2149 * the struct. 2150 */ 2151 void 2152 ip6_initpktopts(struct ip6_pktopts *opt) 2153 { 2154 2155 bzero(opt, sizeof(*opt)); 2156 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2157 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2158 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2159 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2160 } 2161 2162 static int 2163 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2164 struct ucred *cred, int uproto) 2165 { 2166 struct ip6_pktopts *opt; 2167 2168 if (*pktopt == NULL) { 2169 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2170 M_WAITOK); 2171 ip6_initpktopts(*pktopt); 2172 } 2173 opt = *pktopt; 2174 2175 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2176 } 2177 2178 static int 2179 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2180 { 2181 void *optdata = NULL; 2182 int optdatalen = 0; 2183 struct ip6_ext *ip6e; 2184 int error = 0; 2185 struct in6_pktinfo null_pktinfo; 2186 int deftclass = 0, on; 2187 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2188 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2189 2190 switch (optname) { 2191 case IPV6_PKTINFO: 2192 if (pktopt && pktopt->ip6po_pktinfo) 2193 optdata = (void *)pktopt->ip6po_pktinfo; 2194 else { 2195 /* XXX: we don't have to do this every time... */ 2196 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2197 optdata = (void *)&null_pktinfo; 2198 } 2199 optdatalen = sizeof(struct in6_pktinfo); 2200 break; 2201 case IPV6_TCLASS: 2202 if (pktopt && pktopt->ip6po_tclass >= 0) 2203 optdata = (void *)&pktopt->ip6po_tclass; 2204 else 2205 optdata = (void *)&deftclass; 2206 optdatalen = sizeof(int); 2207 break; 2208 case IPV6_HOPOPTS: 2209 if (pktopt && pktopt->ip6po_hbh) { 2210 optdata = (void *)pktopt->ip6po_hbh; 2211 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2212 optdatalen = (ip6e->ip6e_len + 1) << 3; 2213 } 2214 break; 2215 case IPV6_RTHDR: 2216 if (pktopt && pktopt->ip6po_rthdr) { 2217 optdata = (void *)pktopt->ip6po_rthdr; 2218 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2219 optdatalen = (ip6e->ip6e_len + 1) << 3; 2220 } 2221 break; 2222 case IPV6_RTHDRDSTOPTS: 2223 if (pktopt && pktopt->ip6po_dest1) { 2224 optdata = (void *)pktopt->ip6po_dest1; 2225 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2226 optdatalen = (ip6e->ip6e_len + 1) << 3; 2227 } 2228 break; 2229 case IPV6_DSTOPTS: 2230 if (pktopt && pktopt->ip6po_dest2) { 2231 optdata = (void *)pktopt->ip6po_dest2; 2232 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2233 optdatalen = (ip6e->ip6e_len + 1) << 3; 2234 } 2235 break; 2236 case IPV6_NEXTHOP: 2237 if (pktopt && pktopt->ip6po_nexthop) { 2238 optdata = (void *)pktopt->ip6po_nexthop; 2239 optdatalen = pktopt->ip6po_nexthop->sa_len; 2240 } 2241 break; 2242 case IPV6_USE_MIN_MTU: 2243 if (pktopt) 2244 optdata = (void *)&pktopt->ip6po_minmtu; 2245 else 2246 optdata = (void *)&defminmtu; 2247 optdatalen = sizeof(int); 2248 break; 2249 case IPV6_DONTFRAG: 2250 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2251 on = 1; 2252 else 2253 on = 0; 2254 optdata = (void *)&on; 2255 optdatalen = sizeof(on); 2256 break; 2257 case IPV6_PREFER_TEMPADDR: 2258 if (pktopt) 2259 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2260 else 2261 optdata = (void *)&defpreftemp; 2262 optdatalen = sizeof(int); 2263 break; 2264 default: /* should not happen */ 2265 #ifdef DIAGNOSTIC 2266 panic("ip6_getpcbopt: unexpected option\n"); 2267 #endif 2268 return (ENOPROTOOPT); 2269 } 2270 2271 error = sooptcopyout(sopt, optdata, optdatalen); 2272 2273 return (error); 2274 } 2275 2276 void 2277 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2278 { 2279 if (pktopt == NULL) 2280 return; 2281 2282 if (optname == -1 || optname == IPV6_PKTINFO) { 2283 if (pktopt->ip6po_pktinfo) 2284 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2285 pktopt->ip6po_pktinfo = NULL; 2286 } 2287 if (optname == -1 || optname == IPV6_HOPLIMIT) 2288 pktopt->ip6po_hlim = -1; 2289 if (optname == -1 || optname == IPV6_TCLASS) 2290 pktopt->ip6po_tclass = -1; 2291 if (optname == -1 || optname == IPV6_NEXTHOP) { 2292 if (pktopt->ip6po_nextroute.ro_rt) { 2293 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2294 pktopt->ip6po_nextroute.ro_rt = NULL; 2295 } 2296 if (pktopt->ip6po_nexthop) 2297 free(pktopt->ip6po_nexthop, M_IP6OPT); 2298 pktopt->ip6po_nexthop = NULL; 2299 } 2300 if (optname == -1 || optname == IPV6_HOPOPTS) { 2301 if (pktopt->ip6po_hbh) 2302 free(pktopt->ip6po_hbh, M_IP6OPT); 2303 pktopt->ip6po_hbh = NULL; 2304 } 2305 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2306 if (pktopt->ip6po_dest1) 2307 free(pktopt->ip6po_dest1, M_IP6OPT); 2308 pktopt->ip6po_dest1 = NULL; 2309 } 2310 if (optname == -1 || optname == IPV6_RTHDR) { 2311 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2312 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2313 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2314 if (pktopt->ip6po_route.ro_rt) { 2315 RTFREE(pktopt->ip6po_route.ro_rt); 2316 pktopt->ip6po_route.ro_rt = NULL; 2317 } 2318 } 2319 if (optname == -1 || optname == IPV6_DSTOPTS) { 2320 if (pktopt->ip6po_dest2) 2321 free(pktopt->ip6po_dest2, M_IP6OPT); 2322 pktopt->ip6po_dest2 = NULL; 2323 } 2324 } 2325 2326 #define PKTOPT_EXTHDRCPY(type) \ 2327 do {\ 2328 if (src->type) {\ 2329 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2330 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2331 if (dst->type == NULL && canwait == M_NOWAIT)\ 2332 goto bad;\ 2333 bcopy(src->type, dst->type, hlen);\ 2334 }\ 2335 } while (/*CONSTCOND*/ 0) 2336 2337 static int 2338 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2339 { 2340 if (dst == NULL || src == NULL) { 2341 printf("ip6_clearpktopts: invalid argument\n"); 2342 return (EINVAL); 2343 } 2344 2345 dst->ip6po_hlim = src->ip6po_hlim; 2346 dst->ip6po_tclass = src->ip6po_tclass; 2347 dst->ip6po_flags = src->ip6po_flags; 2348 dst->ip6po_minmtu = src->ip6po_minmtu; 2349 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2350 if (src->ip6po_pktinfo) { 2351 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2352 M_IP6OPT, canwait); 2353 if (dst->ip6po_pktinfo == NULL) 2354 goto bad; 2355 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2356 } 2357 if (src->ip6po_nexthop) { 2358 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2359 M_IP6OPT, canwait); 2360 if (dst->ip6po_nexthop == NULL) 2361 goto bad; 2362 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2363 src->ip6po_nexthop->sa_len); 2364 } 2365 PKTOPT_EXTHDRCPY(ip6po_hbh); 2366 PKTOPT_EXTHDRCPY(ip6po_dest1); 2367 PKTOPT_EXTHDRCPY(ip6po_dest2); 2368 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2369 return (0); 2370 2371 bad: 2372 ip6_clearpktopts(dst, -1); 2373 return (ENOBUFS); 2374 } 2375 #undef PKTOPT_EXTHDRCPY 2376 2377 struct ip6_pktopts * 2378 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2379 { 2380 int error; 2381 struct ip6_pktopts *dst; 2382 2383 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2384 if (dst == NULL) 2385 return (NULL); 2386 ip6_initpktopts(dst); 2387 2388 if ((error = copypktopts(dst, src, canwait)) != 0) { 2389 free(dst, M_IP6OPT); 2390 return (NULL); 2391 } 2392 2393 return (dst); 2394 } 2395 2396 void 2397 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2398 { 2399 if (pktopt == NULL) 2400 return; 2401 2402 ip6_clearpktopts(pktopt, -1); 2403 2404 free(pktopt, M_IP6OPT); 2405 } 2406 2407 /* 2408 * Set IPv6 outgoing packet options based on advanced API. 2409 */ 2410 int 2411 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2412 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2413 { 2414 struct cmsghdr *cm = 0; 2415 2416 if (control == NULL || opt == NULL) 2417 return (EINVAL); 2418 2419 ip6_initpktopts(opt); 2420 if (stickyopt) { 2421 int error; 2422 2423 /* 2424 * If stickyopt is provided, make a local copy of the options 2425 * for this particular packet, then override them by ancillary 2426 * objects. 2427 * XXX: copypktopts() does not copy the cached route to a next 2428 * hop (if any). This is not very good in terms of efficiency, 2429 * but we can allow this since this option should be rarely 2430 * used. 2431 */ 2432 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2433 return (error); 2434 } 2435 2436 /* 2437 * XXX: Currently, we assume all the optional information is stored 2438 * in a single mbuf. 2439 */ 2440 if (control->m_next) 2441 return (EINVAL); 2442 2443 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2444 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2445 int error; 2446 2447 if (control->m_len < CMSG_LEN(0)) 2448 return (EINVAL); 2449 2450 cm = mtod(control, struct cmsghdr *); 2451 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2452 return (EINVAL); 2453 if (cm->cmsg_level != IPPROTO_IPV6) 2454 continue; 2455 2456 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2457 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2458 if (error) 2459 return (error); 2460 } 2461 2462 return (0); 2463 } 2464 2465 /* 2466 * Set a particular packet option, as a sticky option or an ancillary data 2467 * item. "len" can be 0 only when it's a sticky option. 2468 * We have 4 cases of combination of "sticky" and "cmsg": 2469 * "sticky=0, cmsg=0": impossible 2470 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2471 * "sticky=1, cmsg=0": RFC3542 socket option 2472 * "sticky=1, cmsg=1": RFC2292 socket option 2473 */ 2474 static int 2475 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2476 struct ucred *cred, int sticky, int cmsg, int uproto) 2477 { 2478 int minmtupolicy, preftemp; 2479 int error; 2480 2481 if (!sticky && !cmsg) { 2482 #ifdef DIAGNOSTIC 2483 printf("ip6_setpktopt: impossible case\n"); 2484 #endif 2485 return (EINVAL); 2486 } 2487 2488 /* 2489 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2490 * not be specified in the context of RFC3542. Conversely, 2491 * RFC3542 types should not be specified in the context of RFC2292. 2492 */ 2493 if (!cmsg) { 2494 switch (optname) { 2495 case IPV6_2292PKTINFO: 2496 case IPV6_2292HOPLIMIT: 2497 case IPV6_2292NEXTHOP: 2498 case IPV6_2292HOPOPTS: 2499 case IPV6_2292DSTOPTS: 2500 case IPV6_2292RTHDR: 2501 case IPV6_2292PKTOPTIONS: 2502 return (ENOPROTOOPT); 2503 } 2504 } 2505 if (sticky && cmsg) { 2506 switch (optname) { 2507 case IPV6_PKTINFO: 2508 case IPV6_HOPLIMIT: 2509 case IPV6_NEXTHOP: 2510 case IPV6_HOPOPTS: 2511 case IPV6_DSTOPTS: 2512 case IPV6_RTHDRDSTOPTS: 2513 case IPV6_RTHDR: 2514 case IPV6_USE_MIN_MTU: 2515 case IPV6_DONTFRAG: 2516 case IPV6_TCLASS: 2517 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2518 return (ENOPROTOOPT); 2519 } 2520 } 2521 2522 switch (optname) { 2523 case IPV6_2292PKTINFO: 2524 case IPV6_PKTINFO: 2525 { 2526 struct ifnet *ifp = NULL; 2527 struct in6_pktinfo *pktinfo; 2528 2529 if (len != sizeof(struct in6_pktinfo)) 2530 return (EINVAL); 2531 2532 pktinfo = (struct in6_pktinfo *)buf; 2533 2534 /* 2535 * An application can clear any sticky IPV6_PKTINFO option by 2536 * doing a "regular" setsockopt with ipi6_addr being 2537 * in6addr_any and ipi6_ifindex being zero. 2538 * [RFC 3542, Section 6] 2539 */ 2540 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2541 pktinfo->ipi6_ifindex == 0 && 2542 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2543 ip6_clearpktopts(opt, optname); 2544 break; 2545 } 2546 2547 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2548 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2549 return (EINVAL); 2550 } 2551 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2552 return (EINVAL); 2553 /* validate the interface index if specified. */ 2554 if (pktinfo->ipi6_ifindex > V_if_index) 2555 return (ENXIO); 2556 if (pktinfo->ipi6_ifindex) { 2557 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2558 if (ifp == NULL) 2559 return (ENXIO); 2560 } 2561 if (ifp != NULL && ( 2562 ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) 2563 return (ENETDOWN); 2564 2565 if (ifp != NULL && 2566 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2567 struct in6_ifaddr *ia; 2568 2569 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2570 if (ia == NULL) 2571 return (EADDRNOTAVAIL); 2572 ifa_free(&ia->ia_ifa); 2573 } 2574 /* 2575 * We store the address anyway, and let in6_selectsrc() 2576 * validate the specified address. This is because ipi6_addr 2577 * may not have enough information about its scope zone, and 2578 * we may need additional information (such as outgoing 2579 * interface or the scope zone of a destination address) to 2580 * disambiguate the scope. 2581 * XXX: the delay of the validation may confuse the 2582 * application when it is used as a sticky option. 2583 */ 2584 if (opt->ip6po_pktinfo == NULL) { 2585 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2586 M_IP6OPT, M_NOWAIT); 2587 if (opt->ip6po_pktinfo == NULL) 2588 return (ENOBUFS); 2589 } 2590 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2591 break; 2592 } 2593 2594 case IPV6_2292HOPLIMIT: 2595 case IPV6_HOPLIMIT: 2596 { 2597 int *hlimp; 2598 2599 /* 2600 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2601 * to simplify the ordering among hoplimit options. 2602 */ 2603 if (optname == IPV6_HOPLIMIT && sticky) 2604 return (ENOPROTOOPT); 2605 2606 if (len != sizeof(int)) 2607 return (EINVAL); 2608 hlimp = (int *)buf; 2609 if (*hlimp < -1 || *hlimp > 255) 2610 return (EINVAL); 2611 2612 opt->ip6po_hlim = *hlimp; 2613 break; 2614 } 2615 2616 case IPV6_TCLASS: 2617 { 2618 int tclass; 2619 2620 if (len != sizeof(int)) 2621 return (EINVAL); 2622 tclass = *(int *)buf; 2623 if (tclass < -1 || tclass > 255) 2624 return (EINVAL); 2625 2626 opt->ip6po_tclass = tclass; 2627 break; 2628 } 2629 2630 case IPV6_2292NEXTHOP: 2631 case IPV6_NEXTHOP: 2632 if (cred != NULL) { 2633 error = priv_check_cred(cred, 2634 PRIV_NETINET_SETHDROPTS, 0); 2635 if (error) 2636 return (error); 2637 } 2638 2639 if (len == 0) { /* just remove the option */ 2640 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2641 break; 2642 } 2643 2644 /* check if cmsg_len is large enough for sa_len */ 2645 if (len < sizeof(struct sockaddr) || len < *buf) 2646 return (EINVAL); 2647 2648 switch (((struct sockaddr *)buf)->sa_family) { 2649 case AF_INET6: 2650 { 2651 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2652 int error; 2653 2654 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2655 return (EINVAL); 2656 2657 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2658 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2659 return (EINVAL); 2660 } 2661 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2662 != 0) { 2663 return (error); 2664 } 2665 break; 2666 } 2667 case AF_LINK: /* should eventually be supported */ 2668 default: 2669 return (EAFNOSUPPORT); 2670 } 2671 2672 /* turn off the previous option, then set the new option. */ 2673 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2674 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2675 if (opt->ip6po_nexthop == NULL) 2676 return (ENOBUFS); 2677 bcopy(buf, opt->ip6po_nexthop, *buf); 2678 break; 2679 2680 case IPV6_2292HOPOPTS: 2681 case IPV6_HOPOPTS: 2682 { 2683 struct ip6_hbh *hbh; 2684 int hbhlen; 2685 2686 /* 2687 * XXX: We don't allow a non-privileged user to set ANY HbH 2688 * options, since per-option restriction has too much 2689 * overhead. 2690 */ 2691 if (cred != NULL) { 2692 error = priv_check_cred(cred, 2693 PRIV_NETINET_SETHDROPTS, 0); 2694 if (error) 2695 return (error); 2696 } 2697 2698 if (len == 0) { 2699 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2700 break; /* just remove the option */ 2701 } 2702 2703 /* message length validation */ 2704 if (len < sizeof(struct ip6_hbh)) 2705 return (EINVAL); 2706 hbh = (struct ip6_hbh *)buf; 2707 hbhlen = (hbh->ip6h_len + 1) << 3; 2708 if (len != hbhlen) 2709 return (EINVAL); 2710 2711 /* turn off the previous option, then set the new option. */ 2712 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2713 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2714 if (opt->ip6po_hbh == NULL) 2715 return (ENOBUFS); 2716 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2717 2718 break; 2719 } 2720 2721 case IPV6_2292DSTOPTS: 2722 case IPV6_DSTOPTS: 2723 case IPV6_RTHDRDSTOPTS: 2724 { 2725 struct ip6_dest *dest, **newdest = NULL; 2726 int destlen; 2727 2728 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2729 error = priv_check_cred(cred, 2730 PRIV_NETINET_SETHDROPTS, 0); 2731 if (error) 2732 return (error); 2733 } 2734 2735 if (len == 0) { 2736 ip6_clearpktopts(opt, optname); 2737 break; /* just remove the option */ 2738 } 2739 2740 /* message length validation */ 2741 if (len < sizeof(struct ip6_dest)) 2742 return (EINVAL); 2743 dest = (struct ip6_dest *)buf; 2744 destlen = (dest->ip6d_len + 1) << 3; 2745 if (len != destlen) 2746 return (EINVAL); 2747 2748 /* 2749 * Determine the position that the destination options header 2750 * should be inserted; before or after the routing header. 2751 */ 2752 switch (optname) { 2753 case IPV6_2292DSTOPTS: 2754 /* 2755 * The old advacned API is ambiguous on this point. 2756 * Our approach is to determine the position based 2757 * according to the existence of a routing header. 2758 * Note, however, that this depends on the order of the 2759 * extension headers in the ancillary data; the 1st 2760 * part of the destination options header must appear 2761 * before the routing header in the ancillary data, 2762 * too. 2763 * RFC3542 solved the ambiguity by introducing 2764 * separate ancillary data or option types. 2765 */ 2766 if (opt->ip6po_rthdr == NULL) 2767 newdest = &opt->ip6po_dest1; 2768 else 2769 newdest = &opt->ip6po_dest2; 2770 break; 2771 case IPV6_RTHDRDSTOPTS: 2772 newdest = &opt->ip6po_dest1; 2773 break; 2774 case IPV6_DSTOPTS: 2775 newdest = &opt->ip6po_dest2; 2776 break; 2777 } 2778 2779 /* turn off the previous option, then set the new option. */ 2780 ip6_clearpktopts(opt, optname); 2781 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2782 if (*newdest == NULL) 2783 return (ENOBUFS); 2784 bcopy(dest, *newdest, destlen); 2785 2786 break; 2787 } 2788 2789 case IPV6_2292RTHDR: 2790 case IPV6_RTHDR: 2791 { 2792 struct ip6_rthdr *rth; 2793 int rthlen; 2794 2795 if (len == 0) { 2796 ip6_clearpktopts(opt, IPV6_RTHDR); 2797 break; /* just remove the option */ 2798 } 2799 2800 /* message length validation */ 2801 if (len < sizeof(struct ip6_rthdr)) 2802 return (EINVAL); 2803 rth = (struct ip6_rthdr *)buf; 2804 rthlen = (rth->ip6r_len + 1) << 3; 2805 if (len != rthlen) 2806 return (EINVAL); 2807 2808 switch (rth->ip6r_type) { 2809 case IPV6_RTHDR_TYPE_0: 2810 if (rth->ip6r_len == 0) /* must contain one addr */ 2811 return (EINVAL); 2812 if (rth->ip6r_len % 2) /* length must be even */ 2813 return (EINVAL); 2814 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2815 return (EINVAL); 2816 break; 2817 default: 2818 return (EINVAL); /* not supported */ 2819 } 2820 2821 /* turn off the previous option */ 2822 ip6_clearpktopts(opt, IPV6_RTHDR); 2823 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2824 if (opt->ip6po_rthdr == NULL) 2825 return (ENOBUFS); 2826 bcopy(rth, opt->ip6po_rthdr, rthlen); 2827 2828 break; 2829 } 2830 2831 case IPV6_USE_MIN_MTU: 2832 if (len != sizeof(int)) 2833 return (EINVAL); 2834 minmtupolicy = *(int *)buf; 2835 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2836 minmtupolicy != IP6PO_MINMTU_DISABLE && 2837 minmtupolicy != IP6PO_MINMTU_ALL) { 2838 return (EINVAL); 2839 } 2840 opt->ip6po_minmtu = minmtupolicy; 2841 break; 2842 2843 case IPV6_DONTFRAG: 2844 if (len != sizeof(int)) 2845 return (EINVAL); 2846 2847 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2848 /* 2849 * we ignore this option for TCP sockets. 2850 * (RFC3542 leaves this case unspecified.) 2851 */ 2852 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2853 } else 2854 opt->ip6po_flags |= IP6PO_DONTFRAG; 2855 break; 2856 2857 case IPV6_PREFER_TEMPADDR: 2858 if (len != sizeof(int)) 2859 return (EINVAL); 2860 preftemp = *(int *)buf; 2861 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 2862 preftemp != IP6PO_TEMPADDR_NOTPREFER && 2863 preftemp != IP6PO_TEMPADDR_PREFER) { 2864 return (EINVAL); 2865 } 2866 opt->ip6po_prefer_tempaddr = preftemp; 2867 break; 2868 2869 default: 2870 return (ENOPROTOOPT); 2871 } /* end of switch */ 2872 2873 return (0); 2874 } 2875 2876 /* 2877 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2878 * packet to the input queue of a specified interface. Note that this 2879 * calls the output routine of the loopback "driver", but with an interface 2880 * pointer that might NOT be &loif -- easier than replicating that code here. 2881 */ 2882 void 2883 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 2884 { 2885 struct mbuf *copym; 2886 struct ip6_hdr *ip6; 2887 2888 copym = m_copy(m, 0, M_COPYALL); 2889 if (copym == NULL) 2890 return; 2891 2892 /* 2893 * Make sure to deep-copy IPv6 header portion in case the data 2894 * is in an mbuf cluster, so that we can safely override the IPv6 2895 * header portion later. 2896 */ 2897 if (!M_WRITABLE(copym) || 2898 copym->m_len < sizeof(struct ip6_hdr)) { 2899 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2900 if (copym == NULL) 2901 return; 2902 } 2903 ip6 = mtod(copym, struct ip6_hdr *); 2904 /* 2905 * clear embedded scope identifiers if necessary. 2906 * in6_clearscope will touch the addresses only when necessary. 2907 */ 2908 in6_clearscope(&ip6->ip6_src); 2909 in6_clearscope(&ip6->ip6_dst); 2910 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 2911 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 2912 CSUM_PSEUDO_HDR; 2913 copym->m_pkthdr.csum_data = 0xffff; 2914 } 2915 (void)if_simloop(ifp, copym, dst->sin6_family, 0); 2916 } 2917 2918 /* 2919 * Chop IPv6 header off from the payload. 2920 */ 2921 static int 2922 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 2923 { 2924 struct mbuf *mh; 2925 struct ip6_hdr *ip6; 2926 2927 ip6 = mtod(m, struct ip6_hdr *); 2928 if (m->m_len > sizeof(*ip6)) { 2929 mh = m_gethdr(M_NOWAIT, MT_DATA); 2930 if (mh == NULL) { 2931 m_freem(m); 2932 return ENOBUFS; 2933 } 2934 m_move_pkthdr(mh, m); 2935 M_ALIGN(mh, sizeof(*ip6)); 2936 m->m_len -= sizeof(*ip6); 2937 m->m_data += sizeof(*ip6); 2938 mh->m_next = m; 2939 m = mh; 2940 m->m_len = sizeof(*ip6); 2941 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2942 } 2943 exthdrs->ip6e_ip6 = m; 2944 return 0; 2945 } 2946 2947 /* 2948 * Compute IPv6 extension header length. 2949 */ 2950 int 2951 ip6_optlen(struct inpcb *in6p) 2952 { 2953 int len; 2954 2955 if (!in6p->in6p_outputopts) 2956 return 0; 2957 2958 len = 0; 2959 #define elen(x) \ 2960 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 2961 2962 len += elen(in6p->in6p_outputopts->ip6po_hbh); 2963 if (in6p->in6p_outputopts->ip6po_rthdr) 2964 /* dest1 is valid with rthdr only */ 2965 len += elen(in6p->in6p_outputopts->ip6po_dest1); 2966 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 2967 len += elen(in6p->in6p_outputopts->ip6po_dest2); 2968 return len; 2969 #undef elen 2970 } 2971