1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 32 */ 33 34 /*- 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ratelimit.h" 71 #include "opt_ipsec.h" 72 #include "opt_sctp.h" 73 #include "opt_route.h" 74 #include "opt_rss.h" 75 76 #include <sys/param.h> 77 #include <sys/kernel.h> 78 #include <sys/malloc.h> 79 #include <sys/mbuf.h> 80 #include <sys/errno.h> 81 #include <sys/priv.h> 82 #include <sys/proc.h> 83 #include <sys/protosw.h> 84 #include <sys/socket.h> 85 #include <sys/socketvar.h> 86 #include <sys/syslog.h> 87 #include <sys/ucred.h> 88 89 #include <machine/in_cksum.h> 90 91 #include <net/if.h> 92 #include <net/if_var.h> 93 #include <net/if_llatbl.h> 94 #include <net/netisr.h> 95 #include <net/route.h> 96 #include <net/pfil.h> 97 #include <net/rss_config.h> 98 #include <net/vnet.h> 99 100 #include <netinet/in.h> 101 #include <netinet/in_var.h> 102 #include <netinet/ip_var.h> 103 #include <netinet6/in6_fib.h> 104 #include <netinet6/in6_var.h> 105 #include <netinet/ip6.h> 106 #include <netinet/icmp6.h> 107 #include <netinet6/ip6_var.h> 108 #include <netinet/in_pcb.h> 109 #include <netinet/tcp_var.h> 110 #include <netinet6/nd6.h> 111 #include <netinet6/in6_rss.h> 112 113 #include <netipsec/ipsec_support.h> 114 #ifdef SCTP 115 #include <netinet/sctp.h> 116 #include <netinet/sctp_crc32.h> 117 #endif 118 119 #include <netinet6/ip6protosw.h> 120 #include <netinet6/scope6_var.h> 121 122 extern int in6_mcast_loop; 123 124 struct ip6_exthdrs { 125 struct mbuf *ip6e_ip6; 126 struct mbuf *ip6e_hbh; 127 struct mbuf *ip6e_dest1; 128 struct mbuf *ip6e_rthdr; 129 struct mbuf *ip6e_dest2; 130 }; 131 132 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 133 134 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 135 struct ucred *, int); 136 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 137 struct socket *, struct sockopt *); 138 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *); 139 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 140 struct ucred *, int, int, int); 141 142 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 143 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 144 struct ip6_frag **); 145 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 146 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 147 static int ip6_getpmtu(struct route_in6 *, int, 148 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 149 u_int); 150 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 151 u_long *, int *, u_int); 152 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 153 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 154 155 156 /* 157 * Make an extension header from option data. hp is the source, and 158 * mp is the destination. 159 */ 160 #define MAKE_EXTHDR(hp, mp) \ 161 do { \ 162 if (hp) { \ 163 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 164 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 165 ((eh)->ip6e_len + 1) << 3); \ 166 if (error) \ 167 goto freehdrs; \ 168 } \ 169 } while (/*CONSTCOND*/ 0) 170 171 /* 172 * Form a chain of extension headers. 173 * m is the extension header mbuf 174 * mp is the previous mbuf in the chain 175 * p is the next header 176 * i is the type of option. 177 */ 178 #define MAKE_CHAIN(m, mp, p, i)\ 179 do {\ 180 if (m) {\ 181 if (!hdrsplit) \ 182 panic("assumption failed: hdr not split"); \ 183 *mtod((m), u_char *) = *(p);\ 184 *(p) = (i);\ 185 p = mtod((m), u_char *);\ 186 (m)->m_next = (mp)->m_next;\ 187 (mp)->m_next = (m);\ 188 (mp) = (m);\ 189 }\ 190 } while (/*CONSTCOND*/ 0) 191 192 void 193 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 194 { 195 u_short csum; 196 197 csum = in_cksum_skip(m, offset + plen, offset); 198 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 199 csum = 0xffff; 200 offset += m->m_pkthdr.csum_data; /* checksum offset */ 201 202 if (offset + sizeof(csum) > m->m_len) 203 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 204 else 205 *(u_short *)mtodo(m, offset) = csum; 206 } 207 208 int 209 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 210 int fraglen , uint32_t id) 211 { 212 struct mbuf *m, **mnext, *m_frgpart; 213 struct ip6_hdr *ip6, *mhip6; 214 struct ip6_frag *ip6f; 215 int off; 216 int error; 217 int tlen = m0->m_pkthdr.len; 218 219 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); 220 221 m = m0; 222 ip6 = mtod(m, struct ip6_hdr *); 223 mnext = &m->m_nextpkt; 224 225 for (off = hlen; off < tlen; off += fraglen) { 226 m = m_gethdr(M_NOWAIT, MT_DATA); 227 if (!m) { 228 IP6STAT_INC(ip6s_odropped); 229 return (ENOBUFS); 230 } 231 m->m_flags = m0->m_flags & M_COPYFLAGS; 232 *mnext = m; 233 mnext = &m->m_nextpkt; 234 m->m_data += max_linkhdr; 235 mhip6 = mtod(m, struct ip6_hdr *); 236 *mhip6 = *ip6; 237 m->m_len = sizeof(*mhip6); 238 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 239 if (error) { 240 IP6STAT_INC(ip6s_odropped); 241 return (error); 242 } 243 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 244 if (off + fraglen >= tlen) 245 fraglen = tlen - off; 246 else 247 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 248 mhip6->ip6_plen = htons((u_short)(fraglen + hlen + 249 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 250 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { 251 IP6STAT_INC(ip6s_odropped); 252 return (ENOBUFS); 253 } 254 m_cat(m, m_frgpart); 255 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); 256 m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum; 257 m->m_pkthdr.rcvif = NULL; 258 ip6f->ip6f_reserved = 0; 259 ip6f->ip6f_ident = id; 260 ip6f->ip6f_nxt = nextproto; 261 IP6STAT_INC(ip6s_ofragments); 262 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 263 } 264 265 return (0); 266 } 267 268 /* 269 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 270 * header (with pri, len, nxt, hlim, src, dst). 271 * This function may modify ver and hlim only. 272 * The mbuf chain containing the packet will be freed. 273 * The mbuf opt, if present, will not be freed. 274 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 275 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 276 * then result of route lookup is stored in ro->ro_rt. 277 * 278 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and 279 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 280 * which is rt_mtu. 281 * 282 * ifpp - XXX: just for statistics 283 */ 284 /* 285 * XXX TODO: no flowid is assigned for outbound flows? 286 */ 287 int 288 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 289 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 290 struct ifnet **ifpp, struct inpcb *inp) 291 { 292 struct ip6_hdr *ip6; 293 struct ifnet *ifp, *origifp; 294 struct mbuf *m = m0; 295 struct mbuf *mprev = NULL; 296 int hlen, tlen, len; 297 struct route_in6 ip6route; 298 struct rtentry *rt = NULL; 299 struct sockaddr_in6 *dst, src_sa, dst_sa; 300 struct in6_addr odst; 301 int error = 0; 302 struct in6_ifaddr *ia = NULL; 303 u_long mtu; 304 int alwaysfrag, dontfrag; 305 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 306 struct ip6_exthdrs exthdrs; 307 struct in6_addr src0, dst0; 308 u_int32_t zone; 309 struct route_in6 *ro_pmtu = NULL; 310 int hdrsplit = 0; 311 int sw_csum, tso; 312 int needfiblookup; 313 uint32_t fibnum; 314 struct m_tag *fwd_tag = NULL; 315 uint32_t id; 316 317 if (inp != NULL) { 318 INP_LOCK_ASSERT(inp); 319 M_SETFIB(m, inp->inp_inc.inc_fibnum); 320 if ((flags & IP_NODEFAULTFLOWID) == 0) { 321 /* unconditionally set flowid */ 322 m->m_pkthdr.flowid = inp->inp_flowid; 323 M_HASHTYPE_SET(m, inp->inp_flowtype); 324 } 325 } 326 327 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 328 /* 329 * IPSec checking which handles several cases. 330 * FAST IPSEC: We re-injected the packet. 331 * XXX: need scope argument. 332 */ 333 if (IPSEC_ENABLED(ipv6)) { 334 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { 335 if (error == EINPROGRESS) 336 error = 0; 337 goto done; 338 } 339 } 340 #endif /* IPSEC */ 341 342 bzero(&exthdrs, sizeof(exthdrs)); 343 if (opt) { 344 /* Hop-by-Hop options header */ 345 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 346 /* Destination options header(1st part) */ 347 if (opt->ip6po_rthdr) { 348 /* 349 * Destination options header(1st part) 350 * This only makes sense with a routing header. 351 * See Section 9.2 of RFC 3542. 352 * Disabling this part just for MIP6 convenience is 353 * a bad idea. We need to think carefully about a 354 * way to make the advanced API coexist with MIP6 355 * options, which might automatically be inserted in 356 * the kernel. 357 */ 358 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 359 } 360 /* Routing header */ 361 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 362 /* Destination options header(2nd part) */ 363 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 364 } 365 366 /* 367 * Calculate the total length of the extension header chain. 368 * Keep the length of the unfragmentable part for fragmentation. 369 */ 370 optlen = 0; 371 if (exthdrs.ip6e_hbh) 372 optlen += exthdrs.ip6e_hbh->m_len; 373 if (exthdrs.ip6e_dest1) 374 optlen += exthdrs.ip6e_dest1->m_len; 375 if (exthdrs.ip6e_rthdr) 376 optlen += exthdrs.ip6e_rthdr->m_len; 377 unfragpartlen = optlen + sizeof(struct ip6_hdr); 378 379 /* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */ 380 if (exthdrs.ip6e_dest2) 381 optlen += exthdrs.ip6e_dest2->m_len; 382 383 /* 384 * If there is at least one extension header, 385 * separate IP6 header from the payload. 386 */ 387 if (optlen && !hdrsplit) { 388 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 389 m = NULL; 390 goto freehdrs; 391 } 392 m = exthdrs.ip6e_ip6; 393 hdrsplit++; 394 } 395 396 ip6 = mtod(m, struct ip6_hdr *); 397 398 /* adjust mbuf packet header length */ 399 m->m_pkthdr.len += optlen; 400 plen = m->m_pkthdr.len - sizeof(*ip6); 401 402 /* If this is a jumbo payload, insert a jumbo payload option. */ 403 if (plen > IPV6_MAXPACKET) { 404 if (!hdrsplit) { 405 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 406 m = NULL; 407 goto freehdrs; 408 } 409 m = exthdrs.ip6e_ip6; 410 hdrsplit++; 411 } 412 /* adjust pointer */ 413 ip6 = mtod(m, struct ip6_hdr *); 414 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 415 goto freehdrs; 416 ip6->ip6_plen = 0; 417 } else 418 ip6->ip6_plen = htons(plen); 419 420 /* 421 * Concatenate headers and fill in next header fields. 422 * Here we have, on "m" 423 * IPv6 payload 424 * and we insert headers accordingly. Finally, we should be getting: 425 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 426 * 427 * during the header composing process, "m" points to IPv6 header. 428 * "mprev" points to an extension header prior to esp. 429 */ 430 u_char *nexthdrp = &ip6->ip6_nxt; 431 mprev = m; 432 433 /* 434 * we treat dest2 specially. this makes IPsec processing 435 * much easier. the goal here is to make mprev point the 436 * mbuf prior to dest2. 437 * 438 * result: IPv6 dest2 payload 439 * m and mprev will point to IPv6 header. 440 */ 441 if (exthdrs.ip6e_dest2) { 442 if (!hdrsplit) 443 panic("assumption failed: hdr not split"); 444 exthdrs.ip6e_dest2->m_next = m->m_next; 445 m->m_next = exthdrs.ip6e_dest2; 446 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 447 ip6->ip6_nxt = IPPROTO_DSTOPTS; 448 } 449 450 /* 451 * result: IPv6 hbh dest1 rthdr dest2 payload 452 * m will point to IPv6 header. mprev will point to the 453 * extension header prior to dest2 (rthdr in the above case). 454 */ 455 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 456 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 457 IPPROTO_DSTOPTS); 458 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 459 IPPROTO_ROUTING); 460 461 /* 462 * If there is a routing header, discard the packet. 463 */ 464 if (exthdrs.ip6e_rthdr) { 465 error = EINVAL; 466 goto bad; 467 } 468 469 /* Source address validation */ 470 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 471 (flags & IPV6_UNSPECSRC) == 0) { 472 error = EOPNOTSUPP; 473 IP6STAT_INC(ip6s_badscope); 474 goto bad; 475 } 476 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 477 error = EOPNOTSUPP; 478 IP6STAT_INC(ip6s_badscope); 479 goto bad; 480 } 481 482 IP6STAT_INC(ip6s_localout); 483 484 /* 485 * Route packet. 486 */ 487 if (ro == NULL) { 488 ro = &ip6route; 489 bzero((caddr_t)ro, sizeof(*ro)); 490 } 491 ro_pmtu = ro; 492 if (opt && opt->ip6po_rthdr) 493 ro = &opt->ip6po_route; 494 dst = (struct sockaddr_in6 *)&ro->ro_dst; 495 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 496 again: 497 /* 498 * if specified, try to fill in the traffic class field. 499 * do not override if a non-zero value is already set. 500 * we check the diffserv field and the ecn field separately. 501 */ 502 if (opt && opt->ip6po_tclass >= 0) { 503 int mask = 0; 504 505 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 506 mask |= 0xfc; 507 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 508 mask |= 0x03; 509 if (mask != 0) 510 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 511 } 512 513 /* fill in or override the hop limit field, if necessary. */ 514 if (opt && opt->ip6po_hlim != -1) 515 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 516 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 517 if (im6o != NULL) 518 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 519 else 520 ip6->ip6_hlim = V_ip6_defmcasthlim; 521 } 522 /* 523 * Validate route against routing table additions; 524 * a better/more specific route might have been added. 525 * Make sure address family is set in route. 526 */ 527 if (inp) { 528 ro->ro_dst.sin6_family = AF_INET6; 529 RT_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, fibnum); 530 } 531 if (ro->ro_rt && fwd_tag == NULL && (ro->ro_rt->rt_flags & RTF_UP) && 532 ro->ro_dst.sin6_family == AF_INET6 && 533 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 534 rt = ro->ro_rt; 535 ifp = ro->ro_rt->rt_ifp; 536 } else { 537 if (ro->ro_lle) 538 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 539 ro->ro_lle = NULL; 540 if (fwd_tag == NULL) { 541 bzero(&dst_sa, sizeof(dst_sa)); 542 dst_sa.sin6_family = AF_INET6; 543 dst_sa.sin6_len = sizeof(dst_sa); 544 dst_sa.sin6_addr = ip6->ip6_dst; 545 } 546 error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp, 547 &rt, fibnum); 548 if (error != 0) { 549 if (ifp != NULL) 550 in6_ifstat_inc(ifp, ifs6_out_discard); 551 goto bad; 552 } 553 } 554 if (rt == NULL) { 555 /* 556 * If in6_selectroute() does not return a route entry, 557 * dst may not have been updated. 558 */ 559 *dst = dst_sa; /* XXX */ 560 } 561 562 /* 563 * then rt (for unicast) and ifp must be non-NULL valid values. 564 */ 565 if ((flags & IPV6_FORWARDING) == 0) { 566 /* XXX: the FORWARDING flag can be set for mrouting. */ 567 in6_ifstat_inc(ifp, ifs6_out_request); 568 } 569 if (rt != NULL) { 570 ia = (struct in6_ifaddr *)(rt->rt_ifa); 571 counter_u64_add(rt->rt_pksent, 1); 572 } 573 574 575 /* 576 * The outgoing interface must be in the zone of source and 577 * destination addresses. 578 */ 579 origifp = ifp; 580 581 src0 = ip6->ip6_src; 582 if (in6_setscope(&src0, origifp, &zone)) 583 goto badscope; 584 bzero(&src_sa, sizeof(src_sa)); 585 src_sa.sin6_family = AF_INET6; 586 src_sa.sin6_len = sizeof(src_sa); 587 src_sa.sin6_addr = ip6->ip6_src; 588 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 589 goto badscope; 590 591 dst0 = ip6->ip6_dst; 592 if (in6_setscope(&dst0, origifp, &zone)) 593 goto badscope; 594 /* re-initialize to be sure */ 595 bzero(&dst_sa, sizeof(dst_sa)); 596 dst_sa.sin6_family = AF_INET6; 597 dst_sa.sin6_len = sizeof(dst_sa); 598 dst_sa.sin6_addr = ip6->ip6_dst; 599 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 600 goto badscope; 601 } 602 603 /* We should use ia_ifp to support the case of 604 * sending packets to an address of our own. 605 */ 606 if (ia != NULL && ia->ia_ifp) 607 ifp = ia->ia_ifp; 608 609 /* scope check is done. */ 610 goto routefound; 611 612 badscope: 613 IP6STAT_INC(ip6s_badscope); 614 in6_ifstat_inc(origifp, ifs6_out_discard); 615 if (error == 0) 616 error = EHOSTUNREACH; /* XXX */ 617 goto bad; 618 619 routefound: 620 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 621 if (opt && opt->ip6po_nextroute.ro_rt) { 622 /* 623 * The nexthop is explicitly specified by the 624 * application. We assume the next hop is an IPv6 625 * address. 626 */ 627 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 628 } 629 else if ((rt->rt_flags & RTF_GATEWAY)) 630 dst = (struct sockaddr_in6 *)rt->rt_gateway; 631 } 632 633 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 634 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 635 } else { 636 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 637 in6_ifstat_inc(ifp, ifs6_out_mcast); 638 /* 639 * Confirm that the outgoing interface supports multicast. 640 */ 641 if (!(ifp->if_flags & IFF_MULTICAST)) { 642 IP6STAT_INC(ip6s_noroute); 643 in6_ifstat_inc(ifp, ifs6_out_discard); 644 error = ENETUNREACH; 645 goto bad; 646 } 647 if ((im6o == NULL && in6_mcast_loop) || 648 (im6o && im6o->im6o_multicast_loop)) { 649 /* 650 * Loop back multicast datagram if not expressly 651 * forbidden to do so, even if we have not joined 652 * the address; protocols will filter it later, 653 * thus deferring a hash lookup and lock acquisition 654 * at the expense of an m_copym(). 655 */ 656 ip6_mloopback(ifp, m); 657 } else { 658 /* 659 * If we are acting as a multicast router, perform 660 * multicast forwarding as if the packet had just 661 * arrived on the interface to which we are about 662 * to send. The multicast forwarding function 663 * recursively calls this function, using the 664 * IPV6_FORWARDING flag to prevent infinite recursion. 665 * 666 * Multicasts that are looped back by ip6_mloopback(), 667 * above, will be forwarded by the ip6_input() routine, 668 * if necessary. 669 */ 670 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 671 /* 672 * XXX: ip6_mforward expects that rcvif is NULL 673 * when it is called from the originating path. 674 * However, it may not always be the case. 675 */ 676 m->m_pkthdr.rcvif = NULL; 677 if (ip6_mforward(ip6, ifp, m) != 0) { 678 m_freem(m); 679 goto done; 680 } 681 } 682 } 683 /* 684 * Multicasts with a hoplimit of zero may be looped back, 685 * above, but must not be transmitted on a network. 686 * Also, multicasts addressed to the loopback interface 687 * are not sent -- the above call to ip6_mloopback() will 688 * loop back a copy if this host actually belongs to the 689 * destination group on the loopback interface. 690 */ 691 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 692 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 693 m_freem(m); 694 goto done; 695 } 696 } 697 698 /* 699 * Fill the outgoing inteface to tell the upper layer 700 * to increment per-interface statistics. 701 */ 702 if (ifpp) 703 *ifpp = ifp; 704 705 /* Determine path MTU. */ 706 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 707 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 708 goto bad; 709 710 /* 711 * The caller of this function may specify to use the minimum MTU 712 * in some cases. 713 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 714 * setting. The logic is a bit complicated; by default, unicast 715 * packets will follow path MTU while multicast packets will be sent at 716 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 717 * including unicast ones will be sent at the minimum MTU. Multicast 718 * packets will always be sent at the minimum MTU unless 719 * IP6PO_MINMTU_DISABLE is explicitly specified. 720 * See RFC 3542 for more details. 721 */ 722 if (mtu > IPV6_MMTU) { 723 if ((flags & IPV6_MINMTU)) 724 mtu = IPV6_MMTU; 725 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 726 mtu = IPV6_MMTU; 727 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 728 (opt == NULL || 729 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 730 mtu = IPV6_MMTU; 731 } 732 } 733 734 /* 735 * clear embedded scope identifiers if necessary. 736 * in6_clearscope will touch the addresses only when necessary. 737 */ 738 in6_clearscope(&ip6->ip6_src); 739 in6_clearscope(&ip6->ip6_dst); 740 741 /* 742 * If the outgoing packet contains a hop-by-hop options header, 743 * it must be examined and processed even by the source node. 744 * (RFC 2460, section 4.) 745 */ 746 if (exthdrs.ip6e_hbh) { 747 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 748 u_int32_t dummy; /* XXX unused */ 749 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 750 751 #ifdef DIAGNOSTIC 752 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 753 panic("ip6e_hbh is not contiguous"); 754 #endif 755 /* 756 * XXX: if we have to send an ICMPv6 error to the sender, 757 * we need the M_LOOP flag since icmp6_error() expects 758 * the IPv6 and the hop-by-hop options header are 759 * contiguous unless the flag is set. 760 */ 761 m->m_flags |= M_LOOP; 762 m->m_pkthdr.rcvif = ifp; 763 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 764 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 765 &dummy, &plen) < 0) { 766 /* m was already freed at this point */ 767 error = EINVAL;/* better error? */ 768 goto done; 769 } 770 m->m_flags &= ~M_LOOP; /* XXX */ 771 m->m_pkthdr.rcvif = NULL; 772 } 773 774 /* Jump over all PFIL processing if hooks are not active. */ 775 if (!PFIL_HOOKED(&V_inet6_pfil_hook)) 776 goto passout; 777 778 odst = ip6->ip6_dst; 779 /* Run through list of hooks for output packets. */ 780 error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, 0, inp); 781 if (error != 0 || m == NULL) 782 goto done; 783 /* adjust pointer */ 784 ip6 = mtod(m, struct ip6_hdr *); 785 786 needfiblookup = 0; 787 /* See if destination IP address was changed by packet filter. */ 788 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 789 m->m_flags |= M_SKIP_FIREWALL; 790 /* If destination is now ourself drop to ip6_input(). */ 791 if (in6_localip(&ip6->ip6_dst)) { 792 m->m_flags |= M_FASTFWD_OURS; 793 if (m->m_pkthdr.rcvif == NULL) 794 m->m_pkthdr.rcvif = V_loif; 795 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 796 m->m_pkthdr.csum_flags |= 797 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 798 m->m_pkthdr.csum_data = 0xffff; 799 } 800 #ifdef SCTP 801 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 802 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 803 #endif 804 error = netisr_queue(NETISR_IPV6, m); 805 goto done; 806 } else { 807 RO_RTFREE(ro); 808 needfiblookup = 1; /* Redo the routing table lookup. */ 809 if (ro->ro_lle) 810 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 811 ro->ro_lle = NULL; 812 } 813 } 814 /* See if fib was changed by packet filter. */ 815 if (fibnum != M_GETFIB(m)) { 816 m->m_flags |= M_SKIP_FIREWALL; 817 fibnum = M_GETFIB(m); 818 RO_RTFREE(ro); 819 needfiblookup = 1; 820 if (ro->ro_lle) 821 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 822 ro->ro_lle = NULL; 823 } 824 if (needfiblookup) 825 goto again; 826 827 /* See if local, if yes, send it to netisr. */ 828 if (m->m_flags & M_FASTFWD_OURS) { 829 if (m->m_pkthdr.rcvif == NULL) 830 m->m_pkthdr.rcvif = V_loif; 831 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 832 m->m_pkthdr.csum_flags |= 833 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 834 m->m_pkthdr.csum_data = 0xffff; 835 } 836 #ifdef SCTP 837 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 838 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 839 #endif 840 error = netisr_queue(NETISR_IPV6, m); 841 goto done; 842 } 843 /* Or forward to some other address? */ 844 if ((m->m_flags & M_IP6_NEXTHOP) && 845 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 846 dst = (struct sockaddr_in6 *)&ro->ro_dst; 847 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 848 m->m_flags |= M_SKIP_FIREWALL; 849 m->m_flags &= ~M_IP6_NEXTHOP; 850 m_tag_delete(m, fwd_tag); 851 goto again; 852 } 853 854 passout: 855 /* 856 * Send the packet to the outgoing interface. 857 * If necessary, do IPv6 fragmentation before sending. 858 * 859 * the logic here is rather complex: 860 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 861 * 1-a: send as is if tlen <= path mtu 862 * 1-b: fragment if tlen > path mtu 863 * 864 * 2: if user asks us not to fragment (dontfrag == 1) 865 * 2-a: send as is if tlen <= interface mtu 866 * 2-b: error if tlen > interface mtu 867 * 868 * 3: if we always need to attach fragment header (alwaysfrag == 1) 869 * always fragment 870 * 871 * 4: if dontfrag == 1 && alwaysfrag == 1 872 * error, as we cannot handle this conflicting request 873 */ 874 sw_csum = m->m_pkthdr.csum_flags; 875 if (!hdrsplit) { 876 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 877 sw_csum &= ~ifp->if_hwassist; 878 } else 879 tso = 0; 880 /* 881 * If we added extension headers, we will not do TSO and calculate the 882 * checksums ourselves for now. 883 * XXX-BZ Need a framework to know when the NIC can handle it, even 884 * with ext. hdrs. 885 */ 886 if (sw_csum & CSUM_DELAY_DATA_IPV6) { 887 sw_csum &= ~CSUM_DELAY_DATA_IPV6; 888 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 889 } 890 #ifdef SCTP 891 if (sw_csum & CSUM_SCTP_IPV6) { 892 sw_csum &= ~CSUM_SCTP_IPV6; 893 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 894 } 895 #endif 896 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 897 tlen = m->m_pkthdr.len; 898 899 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 900 dontfrag = 1; 901 else 902 dontfrag = 0; 903 if (dontfrag && alwaysfrag) { /* case 4 */ 904 /* conflicting request - can't transmit */ 905 error = EMSGSIZE; 906 goto bad; 907 } 908 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ 909 /* 910 * Even if the DONTFRAG option is specified, we cannot send the 911 * packet when the data length is larger than the MTU of the 912 * outgoing interface. 913 * Notify the error by sending IPV6_PATHMTU ancillary data if 914 * application wanted to know the MTU value. Also return an 915 * error code (this is not described in the API spec). 916 */ 917 if (inp != NULL) 918 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 919 error = EMSGSIZE; 920 goto bad; 921 } 922 923 /* 924 * transmit packet without fragmentation 925 */ 926 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 927 struct in6_ifaddr *ia6; 928 929 ip6 = mtod(m, struct ip6_hdr *); 930 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 931 if (ia6) { 932 /* Record statistics for this interface address. */ 933 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 934 counter_u64_add(ia6->ia_ifa.ifa_obytes, 935 m->m_pkthdr.len); 936 ifa_free(&ia6->ia_ifa); 937 } 938 #ifdef RATELIMIT 939 if (inp != NULL) { 940 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 941 in_pcboutput_txrtlmt(inp, ifp, m); 942 /* stamp send tag on mbuf */ 943 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 944 } else { 945 m->m_pkthdr.snd_tag = NULL; 946 } 947 #endif 948 error = nd6_output_ifp(ifp, origifp, m, dst, 949 (struct route *)ro); 950 #ifdef RATELIMIT 951 /* check for route change */ 952 if (error == EAGAIN) 953 in_pcboutput_eagain(inp); 954 #endif 955 goto done; 956 } 957 958 /* 959 * try to fragment the packet. case 1-b and 3 960 */ 961 if (mtu < IPV6_MMTU) { 962 /* path MTU cannot be less than IPV6_MMTU */ 963 error = EMSGSIZE; 964 in6_ifstat_inc(ifp, ifs6_out_fragfail); 965 goto bad; 966 } else if (ip6->ip6_plen == 0) { 967 /* jumbo payload cannot be fragmented */ 968 error = EMSGSIZE; 969 in6_ifstat_inc(ifp, ifs6_out_fragfail); 970 goto bad; 971 } else { 972 u_char nextproto; 973 974 /* 975 * Too large for the destination or interface; 976 * fragment if possible. 977 * Must be able to put at least 8 bytes per fragment. 978 */ 979 hlen = unfragpartlen; 980 if (mtu > IPV6_MAXPACKET) 981 mtu = IPV6_MAXPACKET; 982 983 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 984 if (len < 8) { 985 error = EMSGSIZE; 986 in6_ifstat_inc(ifp, ifs6_out_fragfail); 987 goto bad; 988 } 989 990 /* 991 * If the interface will not calculate checksums on 992 * fragmented packets, then do it here. 993 * XXX-BZ handle the hw offloading case. Need flags. 994 */ 995 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 996 in6_delayed_cksum(m, plen, hlen); 997 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 998 } 999 #ifdef SCTP 1000 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 1001 sctp_delayed_cksum(m, hlen); 1002 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 1003 } 1004 #endif 1005 /* 1006 * Change the next header field of the last header in the 1007 * unfragmentable part. 1008 */ 1009 if (exthdrs.ip6e_rthdr) { 1010 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1011 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1012 } else if (exthdrs.ip6e_dest1) { 1013 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1014 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1015 } else if (exthdrs.ip6e_hbh) { 1016 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1017 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1018 } else { 1019 nextproto = ip6->ip6_nxt; 1020 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1021 } 1022 1023 /* 1024 * Loop through length of segment after first fragment, 1025 * make new header and copy data of each part and link onto 1026 * chain. 1027 */ 1028 m0 = m; 1029 id = htonl(ip6_randomid()); 1030 if ((error = ip6_fragment(ifp, m, hlen, nextproto, len, id))) 1031 goto sendorfree; 1032 1033 in6_ifstat_inc(ifp, ifs6_out_fragok); 1034 } 1035 1036 /* 1037 * Remove leading garbages. 1038 */ 1039 sendorfree: 1040 m = m0->m_nextpkt; 1041 m0->m_nextpkt = 0; 1042 m_freem(m0); 1043 for (; m; m = m0) { 1044 m0 = m->m_nextpkt; 1045 m->m_nextpkt = 0; 1046 if (error == 0) { 1047 /* Record statistics for this interface address. */ 1048 if (ia) { 1049 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1050 counter_u64_add(ia->ia_ifa.ifa_obytes, 1051 m->m_pkthdr.len); 1052 } 1053 #ifdef RATELIMIT 1054 if (inp != NULL) { 1055 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 1056 in_pcboutput_txrtlmt(inp, ifp, m); 1057 /* stamp send tag on mbuf */ 1058 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 1059 } else { 1060 m->m_pkthdr.snd_tag = NULL; 1061 } 1062 #endif 1063 error = nd6_output_ifp(ifp, origifp, m, dst, 1064 (struct route *)ro); 1065 #ifdef RATELIMIT 1066 /* check for route change */ 1067 if (error == EAGAIN) 1068 in_pcboutput_eagain(inp); 1069 #endif 1070 } else 1071 m_freem(m); 1072 } 1073 1074 if (error == 0) 1075 IP6STAT_INC(ip6s_fragmented); 1076 1077 done: 1078 if (ro == &ip6route) 1079 RO_RTFREE(ro); 1080 return (error); 1081 1082 freehdrs: 1083 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1084 m_freem(exthdrs.ip6e_dest1); 1085 m_freem(exthdrs.ip6e_rthdr); 1086 m_freem(exthdrs.ip6e_dest2); 1087 /* FALLTHROUGH */ 1088 bad: 1089 if (m) 1090 m_freem(m); 1091 goto done; 1092 } 1093 1094 static int 1095 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1096 { 1097 struct mbuf *m; 1098 1099 if (hlen > MCLBYTES) 1100 return (ENOBUFS); /* XXX */ 1101 1102 if (hlen > MLEN) 1103 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1104 else 1105 m = m_get(M_NOWAIT, MT_DATA); 1106 if (m == NULL) 1107 return (ENOBUFS); 1108 m->m_len = hlen; 1109 if (hdr) 1110 bcopy(hdr, mtod(m, caddr_t), hlen); 1111 1112 *mp = m; 1113 return (0); 1114 } 1115 1116 /* 1117 * Insert jumbo payload option. 1118 */ 1119 static int 1120 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1121 { 1122 struct mbuf *mopt; 1123 u_char *optbuf; 1124 u_int32_t v; 1125 1126 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1127 1128 /* 1129 * If there is no hop-by-hop options header, allocate new one. 1130 * If there is one but it doesn't have enough space to store the 1131 * jumbo payload option, allocate a cluster to store the whole options. 1132 * Otherwise, use it to store the options. 1133 */ 1134 if (exthdrs->ip6e_hbh == NULL) { 1135 mopt = m_get(M_NOWAIT, MT_DATA); 1136 if (mopt == NULL) 1137 return (ENOBUFS); 1138 mopt->m_len = JUMBOOPTLEN; 1139 optbuf = mtod(mopt, u_char *); 1140 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1141 exthdrs->ip6e_hbh = mopt; 1142 } else { 1143 struct ip6_hbh *hbh; 1144 1145 mopt = exthdrs->ip6e_hbh; 1146 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1147 /* 1148 * XXX assumption: 1149 * - exthdrs->ip6e_hbh is not referenced from places 1150 * other than exthdrs. 1151 * - exthdrs->ip6e_hbh is not an mbuf chain. 1152 */ 1153 int oldoptlen = mopt->m_len; 1154 struct mbuf *n; 1155 1156 /* 1157 * XXX: give up if the whole (new) hbh header does 1158 * not fit even in an mbuf cluster. 1159 */ 1160 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1161 return (ENOBUFS); 1162 1163 /* 1164 * As a consequence, we must always prepare a cluster 1165 * at this point. 1166 */ 1167 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1168 if (n == NULL) 1169 return (ENOBUFS); 1170 n->m_len = oldoptlen + JUMBOOPTLEN; 1171 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1172 oldoptlen); 1173 optbuf = mtod(n, caddr_t) + oldoptlen; 1174 m_freem(mopt); 1175 mopt = exthdrs->ip6e_hbh = n; 1176 } else { 1177 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1178 mopt->m_len += JUMBOOPTLEN; 1179 } 1180 optbuf[0] = IP6OPT_PADN; 1181 optbuf[1] = 1; 1182 1183 /* 1184 * Adjust the header length according to the pad and 1185 * the jumbo payload option. 1186 */ 1187 hbh = mtod(mopt, struct ip6_hbh *); 1188 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1189 } 1190 1191 /* fill in the option. */ 1192 optbuf[2] = IP6OPT_JUMBO; 1193 optbuf[3] = 4; 1194 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1195 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1196 1197 /* finally, adjust the packet header length */ 1198 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1199 1200 return (0); 1201 #undef JUMBOOPTLEN 1202 } 1203 1204 /* 1205 * Insert fragment header and copy unfragmentable header portions. 1206 */ 1207 static int 1208 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1209 struct ip6_frag **frghdrp) 1210 { 1211 struct mbuf *n, *mlast; 1212 1213 if (hlen > sizeof(struct ip6_hdr)) { 1214 n = m_copym(m0, sizeof(struct ip6_hdr), 1215 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1216 if (n == NULL) 1217 return (ENOBUFS); 1218 m->m_next = n; 1219 } else 1220 n = m; 1221 1222 /* Search for the last mbuf of unfragmentable part. */ 1223 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1224 ; 1225 1226 if (M_WRITABLE(mlast) && 1227 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1228 /* use the trailing space of the last mbuf for the fragment hdr */ 1229 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1230 mlast->m_len); 1231 mlast->m_len += sizeof(struct ip6_frag); 1232 m->m_pkthdr.len += sizeof(struct ip6_frag); 1233 } else { 1234 /* allocate a new mbuf for the fragment header */ 1235 struct mbuf *mfrg; 1236 1237 mfrg = m_get(M_NOWAIT, MT_DATA); 1238 if (mfrg == NULL) 1239 return (ENOBUFS); 1240 mfrg->m_len = sizeof(struct ip6_frag); 1241 *frghdrp = mtod(mfrg, struct ip6_frag *); 1242 mlast->m_next = mfrg; 1243 } 1244 1245 return (0); 1246 } 1247 1248 /* 1249 * Calculates IPv6 path mtu for destination @dst. 1250 * Resulting MTU is stored in @mtup. 1251 * 1252 * Returns 0 on success. 1253 */ 1254 static int 1255 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1256 { 1257 struct nhop6_extended nh6; 1258 struct in6_addr kdst; 1259 uint32_t scopeid; 1260 struct ifnet *ifp; 1261 u_long mtu; 1262 int error; 1263 1264 in6_splitscope(dst, &kdst, &scopeid); 1265 if (fib6_lookup_nh_ext(fibnum, &kdst, scopeid, NHR_REF, 0, &nh6) != 0) 1266 return (EHOSTUNREACH); 1267 1268 ifp = nh6.nh_ifp; 1269 mtu = nh6.nh_mtu; 1270 1271 error = ip6_calcmtu(ifp, dst, mtu, mtup, NULL, 0); 1272 fib6_free_nh_ext(fibnum, &nh6); 1273 1274 return (error); 1275 } 1276 1277 /* 1278 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1279 * and cached data in @ro_pmtu. 1280 * MTU from (successful) route lookup is saved (along with dst) 1281 * inside @ro_pmtu to avoid subsequent route lookups after packet 1282 * filter processing. 1283 * 1284 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1285 * Returns 0 on success. 1286 */ 1287 static int 1288 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1289 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1290 int *alwaysfragp, u_int fibnum, u_int proto) 1291 { 1292 struct nhop6_basic nh6; 1293 struct in6_addr kdst; 1294 uint32_t scopeid; 1295 struct sockaddr_in6 *sa6_dst; 1296 u_long mtu; 1297 1298 mtu = 0; 1299 if (do_lookup) { 1300 1301 /* 1302 * Here ro_pmtu has final destination address, while 1303 * ro might represent immediate destination. 1304 * Use ro_pmtu destination since mtu might differ. 1305 */ 1306 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1307 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1308 ro_pmtu->ro_mtu = 0; 1309 1310 if (ro_pmtu->ro_mtu == 0) { 1311 bzero(sa6_dst, sizeof(*sa6_dst)); 1312 sa6_dst->sin6_family = AF_INET6; 1313 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1314 sa6_dst->sin6_addr = *dst; 1315 1316 in6_splitscope(dst, &kdst, &scopeid); 1317 if (fib6_lookup_nh_basic(fibnum, &kdst, scopeid, 0, 0, 1318 &nh6) == 0) 1319 ro_pmtu->ro_mtu = nh6.nh_mtu; 1320 } 1321 1322 mtu = ro_pmtu->ro_mtu; 1323 } 1324 1325 if (ro_pmtu->ro_rt) 1326 mtu = ro_pmtu->ro_rt->rt_mtu; 1327 1328 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1329 } 1330 1331 /* 1332 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1333 * hostcache data for @dst. 1334 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1335 * 1336 * Returns 0 on success. 1337 */ 1338 static int 1339 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1340 u_long *mtup, int *alwaysfragp, u_int proto) 1341 { 1342 u_long mtu = 0; 1343 int alwaysfrag = 0; 1344 int error = 0; 1345 1346 if (rt_mtu > 0) { 1347 u_int32_t ifmtu; 1348 struct in_conninfo inc; 1349 1350 bzero(&inc, sizeof(inc)); 1351 inc.inc_flags |= INC_ISIPV6; 1352 inc.inc6_faddr = *dst; 1353 1354 ifmtu = IN6_LINKMTU(ifp); 1355 1356 /* TCP is known to react to pmtu changes so skip hc */ 1357 if (proto != IPPROTO_TCP) 1358 mtu = tcp_hc_getmtu(&inc); 1359 1360 if (mtu) 1361 mtu = min(mtu, rt_mtu); 1362 else 1363 mtu = rt_mtu; 1364 if (mtu == 0) 1365 mtu = ifmtu; 1366 else if (mtu < IPV6_MMTU) { 1367 /* 1368 * RFC2460 section 5, last paragraph: 1369 * if we record ICMPv6 too big message with 1370 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1371 * or smaller, with framgent header attached. 1372 * (fragment header is needed regardless from the 1373 * packet size, for translators to identify packets) 1374 */ 1375 alwaysfrag = 1; 1376 mtu = IPV6_MMTU; 1377 } 1378 } else if (ifp) { 1379 mtu = IN6_LINKMTU(ifp); 1380 } else 1381 error = EHOSTUNREACH; /* XXX */ 1382 1383 *mtup = mtu; 1384 if (alwaysfragp) 1385 *alwaysfragp = alwaysfrag; 1386 return (error); 1387 } 1388 1389 /* 1390 * IP6 socket option processing. 1391 */ 1392 int 1393 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1394 { 1395 int optdatalen, uproto; 1396 void *optdata; 1397 struct inpcb *in6p = sotoinpcb(so); 1398 int error, optval; 1399 int level, op, optname; 1400 int optlen; 1401 struct thread *td; 1402 #ifdef RSS 1403 uint32_t rss_bucket; 1404 int retval; 1405 #endif 1406 1407 /* 1408 * Don't use more than a quarter of mbuf clusters. N.B.: 1409 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1410 * on LP64 architectures, so cast to u_long to avoid undefined 1411 * behavior. ILP32 architectures cannot have nmbclusters 1412 * large enough to overflow for other reasons. 1413 */ 1414 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1415 1416 level = sopt->sopt_level; 1417 op = sopt->sopt_dir; 1418 optname = sopt->sopt_name; 1419 optlen = sopt->sopt_valsize; 1420 td = sopt->sopt_td; 1421 error = 0; 1422 optval = 0; 1423 uproto = (int)so->so_proto->pr_protocol; 1424 1425 if (level != IPPROTO_IPV6) { 1426 error = EINVAL; 1427 1428 if (sopt->sopt_level == SOL_SOCKET && 1429 sopt->sopt_dir == SOPT_SET) { 1430 switch (sopt->sopt_name) { 1431 case SO_REUSEADDR: 1432 INP_WLOCK(in6p); 1433 if ((so->so_options & SO_REUSEADDR) != 0) 1434 in6p->inp_flags2 |= INP_REUSEADDR; 1435 else 1436 in6p->inp_flags2 &= ~INP_REUSEADDR; 1437 INP_WUNLOCK(in6p); 1438 error = 0; 1439 break; 1440 case SO_REUSEPORT: 1441 INP_WLOCK(in6p); 1442 if ((so->so_options & SO_REUSEPORT) != 0) 1443 in6p->inp_flags2 |= INP_REUSEPORT; 1444 else 1445 in6p->inp_flags2 &= ~INP_REUSEPORT; 1446 INP_WUNLOCK(in6p); 1447 error = 0; 1448 break; 1449 case SO_REUSEPORT_LB: 1450 INP_WLOCK(in6p); 1451 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1452 in6p->inp_flags2 |= INP_REUSEPORT_LB; 1453 else 1454 in6p->inp_flags2 &= ~INP_REUSEPORT_LB; 1455 INP_WUNLOCK(in6p); 1456 error = 0; 1457 break; 1458 case SO_SETFIB: 1459 INP_WLOCK(in6p); 1460 in6p->inp_inc.inc_fibnum = so->so_fibnum; 1461 INP_WUNLOCK(in6p); 1462 error = 0; 1463 break; 1464 case SO_MAX_PACING_RATE: 1465 #ifdef RATELIMIT 1466 INP_WLOCK(in6p); 1467 in6p->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1468 INP_WUNLOCK(in6p); 1469 error = 0; 1470 #else 1471 error = EOPNOTSUPP; 1472 #endif 1473 break; 1474 default: 1475 break; 1476 } 1477 } 1478 } else { /* level == IPPROTO_IPV6 */ 1479 switch (op) { 1480 1481 case SOPT_SET: 1482 switch (optname) { 1483 case IPV6_2292PKTOPTIONS: 1484 #ifdef IPV6_PKTOPTIONS 1485 case IPV6_PKTOPTIONS: 1486 #endif 1487 { 1488 struct mbuf *m; 1489 1490 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1491 printf("ip6_ctloutput: mbuf limit hit\n"); 1492 error = ENOBUFS; 1493 break; 1494 } 1495 1496 error = soopt_getm(sopt, &m); /* XXX */ 1497 if (error != 0) 1498 break; 1499 error = soopt_mcopyin(sopt, m); /* XXX */ 1500 if (error != 0) 1501 break; 1502 error = ip6_pcbopts(&in6p->in6p_outputopts, 1503 m, so, sopt); 1504 m_freem(m); /* XXX */ 1505 break; 1506 } 1507 1508 /* 1509 * Use of some Hop-by-Hop options or some 1510 * Destination options, might require special 1511 * privilege. That is, normal applications 1512 * (without special privilege) might be forbidden 1513 * from setting certain options in outgoing packets, 1514 * and might never see certain options in received 1515 * packets. [RFC 2292 Section 6] 1516 * KAME specific note: 1517 * KAME prevents non-privileged users from sending or 1518 * receiving ANY hbh/dst options in order to avoid 1519 * overhead of parsing options in the kernel. 1520 */ 1521 case IPV6_RECVHOPOPTS: 1522 case IPV6_RECVDSTOPTS: 1523 case IPV6_RECVRTHDRDSTOPTS: 1524 if (td != NULL) { 1525 error = priv_check(td, 1526 PRIV_NETINET_SETHDROPTS); 1527 if (error) 1528 break; 1529 } 1530 /* FALLTHROUGH */ 1531 case IPV6_UNICAST_HOPS: 1532 case IPV6_HOPLIMIT: 1533 1534 case IPV6_RECVPKTINFO: 1535 case IPV6_RECVHOPLIMIT: 1536 case IPV6_RECVRTHDR: 1537 case IPV6_RECVPATHMTU: 1538 case IPV6_RECVTCLASS: 1539 case IPV6_RECVFLOWID: 1540 #ifdef RSS 1541 case IPV6_RECVRSSBUCKETID: 1542 #endif 1543 case IPV6_V6ONLY: 1544 case IPV6_AUTOFLOWLABEL: 1545 case IPV6_ORIGDSTADDR: 1546 case IPV6_BINDANY: 1547 case IPV6_BINDMULTI: 1548 #ifdef RSS 1549 case IPV6_RSS_LISTEN_BUCKET: 1550 #endif 1551 if (optname == IPV6_BINDANY && td != NULL) { 1552 error = priv_check(td, 1553 PRIV_NETINET_BINDANY); 1554 if (error) 1555 break; 1556 } 1557 1558 if (optlen != sizeof(int)) { 1559 error = EINVAL; 1560 break; 1561 } 1562 error = sooptcopyin(sopt, &optval, 1563 sizeof optval, sizeof optval); 1564 if (error) 1565 break; 1566 switch (optname) { 1567 1568 case IPV6_UNICAST_HOPS: 1569 if (optval < -1 || optval >= 256) 1570 error = EINVAL; 1571 else { 1572 /* -1 = kernel default */ 1573 in6p->in6p_hops = optval; 1574 if ((in6p->inp_vflag & 1575 INP_IPV4) != 0) 1576 in6p->inp_ip_ttl = optval; 1577 } 1578 break; 1579 #define OPTSET(bit) \ 1580 do { \ 1581 INP_WLOCK(in6p); \ 1582 if (optval) \ 1583 in6p->inp_flags |= (bit); \ 1584 else \ 1585 in6p->inp_flags &= ~(bit); \ 1586 INP_WUNLOCK(in6p); \ 1587 } while (/*CONSTCOND*/ 0) 1588 #define OPTSET2292(bit) \ 1589 do { \ 1590 INP_WLOCK(in6p); \ 1591 in6p->inp_flags |= IN6P_RFC2292; \ 1592 if (optval) \ 1593 in6p->inp_flags |= (bit); \ 1594 else \ 1595 in6p->inp_flags &= ~(bit); \ 1596 INP_WUNLOCK(in6p); \ 1597 } while (/*CONSTCOND*/ 0) 1598 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1599 1600 #define OPTSET2_N(bit, val) do { \ 1601 if (val) \ 1602 in6p->inp_flags2 |= bit; \ 1603 else \ 1604 in6p->inp_flags2 &= ~bit; \ 1605 } while (0) 1606 #define OPTSET2(bit, val) do { \ 1607 INP_WLOCK(in6p); \ 1608 OPTSET2_N(bit, val); \ 1609 INP_WUNLOCK(in6p); \ 1610 } while (0) 1611 #define OPTBIT2(bit) (in6p->inp_flags2 & (bit) ? 1 : 0) 1612 #define OPTSET2292_EXCLUSIVE(bit) \ 1613 do { \ 1614 INP_WLOCK(in6p); \ 1615 if (OPTBIT(IN6P_RFC2292)) { \ 1616 error = EINVAL; \ 1617 } else { \ 1618 if (optval) \ 1619 in6p->inp_flags |= (bit); \ 1620 else \ 1621 in6p->inp_flags &= ~(bit); \ 1622 } \ 1623 INP_WUNLOCK(in6p); \ 1624 } while (/*CONSTCOND*/ 0) 1625 1626 case IPV6_RECVPKTINFO: 1627 OPTSET2292_EXCLUSIVE(IN6P_PKTINFO); 1628 break; 1629 1630 case IPV6_HOPLIMIT: 1631 { 1632 struct ip6_pktopts **optp; 1633 1634 /* cannot mix with RFC2292 */ 1635 if (OPTBIT(IN6P_RFC2292)) { 1636 error = EINVAL; 1637 break; 1638 } 1639 optp = &in6p->in6p_outputopts; 1640 error = ip6_pcbopt(IPV6_HOPLIMIT, 1641 (u_char *)&optval, sizeof(optval), 1642 optp, (td != NULL) ? td->td_ucred : 1643 NULL, uproto); 1644 break; 1645 } 1646 1647 case IPV6_RECVHOPLIMIT: 1648 OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT); 1649 break; 1650 1651 case IPV6_RECVHOPOPTS: 1652 OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS); 1653 break; 1654 1655 case IPV6_RECVDSTOPTS: 1656 OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS); 1657 break; 1658 1659 case IPV6_RECVRTHDRDSTOPTS: 1660 OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS); 1661 break; 1662 1663 case IPV6_RECVRTHDR: 1664 OPTSET2292_EXCLUSIVE(IN6P_RTHDR); 1665 break; 1666 1667 case IPV6_RECVPATHMTU: 1668 /* 1669 * We ignore this option for TCP 1670 * sockets. 1671 * (RFC3542 leaves this case 1672 * unspecified.) 1673 */ 1674 if (uproto != IPPROTO_TCP) 1675 OPTSET(IN6P_MTU); 1676 break; 1677 1678 case IPV6_RECVFLOWID: 1679 OPTSET2(INP_RECVFLOWID, optval); 1680 break; 1681 1682 #ifdef RSS 1683 case IPV6_RECVRSSBUCKETID: 1684 OPTSET2(INP_RECVRSSBUCKETID, optval); 1685 break; 1686 #endif 1687 1688 case IPV6_V6ONLY: 1689 /* 1690 * make setsockopt(IPV6_V6ONLY) 1691 * available only prior to bind(2). 1692 * see ipng mailing list, Jun 22 2001. 1693 */ 1694 if (in6p->inp_lport || 1695 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1696 error = EINVAL; 1697 break; 1698 } 1699 OPTSET(IN6P_IPV6_V6ONLY); 1700 if (optval) 1701 in6p->inp_vflag &= ~INP_IPV4; 1702 else 1703 in6p->inp_vflag |= INP_IPV4; 1704 break; 1705 case IPV6_RECVTCLASS: 1706 /* cannot mix with RFC2292 XXX */ 1707 OPTSET2292_EXCLUSIVE(IN6P_TCLASS); 1708 break; 1709 case IPV6_AUTOFLOWLABEL: 1710 OPTSET(IN6P_AUTOFLOWLABEL); 1711 break; 1712 1713 case IPV6_ORIGDSTADDR: 1714 OPTSET2(INP_ORIGDSTADDR, optval); 1715 break; 1716 case IPV6_BINDANY: 1717 OPTSET(INP_BINDANY); 1718 break; 1719 1720 case IPV6_BINDMULTI: 1721 OPTSET2(INP_BINDMULTI, optval); 1722 break; 1723 #ifdef RSS 1724 case IPV6_RSS_LISTEN_BUCKET: 1725 if ((optval >= 0) && 1726 (optval < rss_getnumbuckets())) { 1727 INP_WLOCK(in6p); 1728 in6p->inp_rss_listen_bucket = optval; 1729 OPTSET2_N(INP_RSS_BUCKET_SET, 1); 1730 INP_WUNLOCK(in6p); 1731 } else { 1732 error = EINVAL; 1733 } 1734 break; 1735 #endif 1736 } 1737 break; 1738 1739 case IPV6_TCLASS: 1740 case IPV6_DONTFRAG: 1741 case IPV6_USE_MIN_MTU: 1742 case IPV6_PREFER_TEMPADDR: 1743 if (optlen != sizeof(optval)) { 1744 error = EINVAL; 1745 break; 1746 } 1747 error = sooptcopyin(sopt, &optval, 1748 sizeof optval, sizeof optval); 1749 if (error) 1750 break; 1751 { 1752 struct ip6_pktopts **optp; 1753 optp = &in6p->in6p_outputopts; 1754 error = ip6_pcbopt(optname, 1755 (u_char *)&optval, sizeof(optval), 1756 optp, (td != NULL) ? td->td_ucred : 1757 NULL, uproto); 1758 break; 1759 } 1760 1761 case IPV6_2292PKTINFO: 1762 case IPV6_2292HOPLIMIT: 1763 case IPV6_2292HOPOPTS: 1764 case IPV6_2292DSTOPTS: 1765 case IPV6_2292RTHDR: 1766 /* RFC 2292 */ 1767 if (optlen != sizeof(int)) { 1768 error = EINVAL; 1769 break; 1770 } 1771 error = sooptcopyin(sopt, &optval, 1772 sizeof optval, sizeof optval); 1773 if (error) 1774 break; 1775 switch (optname) { 1776 case IPV6_2292PKTINFO: 1777 OPTSET2292(IN6P_PKTINFO); 1778 break; 1779 case IPV6_2292HOPLIMIT: 1780 OPTSET2292(IN6P_HOPLIMIT); 1781 break; 1782 case IPV6_2292HOPOPTS: 1783 /* 1784 * Check super-user privilege. 1785 * See comments for IPV6_RECVHOPOPTS. 1786 */ 1787 if (td != NULL) { 1788 error = priv_check(td, 1789 PRIV_NETINET_SETHDROPTS); 1790 if (error) 1791 return (error); 1792 } 1793 OPTSET2292(IN6P_HOPOPTS); 1794 break; 1795 case IPV6_2292DSTOPTS: 1796 if (td != NULL) { 1797 error = priv_check(td, 1798 PRIV_NETINET_SETHDROPTS); 1799 if (error) 1800 return (error); 1801 } 1802 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1803 break; 1804 case IPV6_2292RTHDR: 1805 OPTSET2292(IN6P_RTHDR); 1806 break; 1807 } 1808 break; 1809 case IPV6_PKTINFO: 1810 case IPV6_HOPOPTS: 1811 case IPV6_RTHDR: 1812 case IPV6_DSTOPTS: 1813 case IPV6_RTHDRDSTOPTS: 1814 case IPV6_NEXTHOP: 1815 { 1816 /* new advanced API (RFC3542) */ 1817 u_char *optbuf; 1818 u_char optbuf_storage[MCLBYTES]; 1819 int optlen; 1820 struct ip6_pktopts **optp; 1821 1822 /* cannot mix with RFC2292 */ 1823 if (OPTBIT(IN6P_RFC2292)) { 1824 error = EINVAL; 1825 break; 1826 } 1827 1828 /* 1829 * We only ensure valsize is not too large 1830 * here. Further validation will be done 1831 * later. 1832 */ 1833 error = sooptcopyin(sopt, optbuf_storage, 1834 sizeof(optbuf_storage), 0); 1835 if (error) 1836 break; 1837 optlen = sopt->sopt_valsize; 1838 optbuf = optbuf_storage; 1839 optp = &in6p->in6p_outputopts; 1840 error = ip6_pcbopt(optname, optbuf, optlen, 1841 optp, (td != NULL) ? td->td_ucred : NULL, 1842 uproto); 1843 break; 1844 } 1845 #undef OPTSET 1846 1847 case IPV6_MULTICAST_IF: 1848 case IPV6_MULTICAST_HOPS: 1849 case IPV6_MULTICAST_LOOP: 1850 case IPV6_JOIN_GROUP: 1851 case IPV6_LEAVE_GROUP: 1852 case IPV6_MSFILTER: 1853 case MCAST_BLOCK_SOURCE: 1854 case MCAST_UNBLOCK_SOURCE: 1855 case MCAST_JOIN_GROUP: 1856 case MCAST_LEAVE_GROUP: 1857 case MCAST_JOIN_SOURCE_GROUP: 1858 case MCAST_LEAVE_SOURCE_GROUP: 1859 error = ip6_setmoptions(in6p, sopt); 1860 break; 1861 1862 case IPV6_PORTRANGE: 1863 error = sooptcopyin(sopt, &optval, 1864 sizeof optval, sizeof optval); 1865 if (error) 1866 break; 1867 1868 INP_WLOCK(in6p); 1869 switch (optval) { 1870 case IPV6_PORTRANGE_DEFAULT: 1871 in6p->inp_flags &= ~(INP_LOWPORT); 1872 in6p->inp_flags &= ~(INP_HIGHPORT); 1873 break; 1874 1875 case IPV6_PORTRANGE_HIGH: 1876 in6p->inp_flags &= ~(INP_LOWPORT); 1877 in6p->inp_flags |= INP_HIGHPORT; 1878 break; 1879 1880 case IPV6_PORTRANGE_LOW: 1881 in6p->inp_flags &= ~(INP_HIGHPORT); 1882 in6p->inp_flags |= INP_LOWPORT; 1883 break; 1884 1885 default: 1886 error = EINVAL; 1887 break; 1888 } 1889 INP_WUNLOCK(in6p); 1890 break; 1891 1892 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1893 case IPV6_IPSEC_POLICY: 1894 if (IPSEC_ENABLED(ipv6)) { 1895 error = IPSEC_PCBCTL(ipv6, in6p, sopt); 1896 break; 1897 } 1898 /* FALLTHROUGH */ 1899 #endif /* IPSEC */ 1900 1901 default: 1902 error = ENOPROTOOPT; 1903 break; 1904 } 1905 break; 1906 1907 case SOPT_GET: 1908 switch (optname) { 1909 1910 case IPV6_2292PKTOPTIONS: 1911 #ifdef IPV6_PKTOPTIONS 1912 case IPV6_PKTOPTIONS: 1913 #endif 1914 /* 1915 * RFC3542 (effectively) deprecated the 1916 * semantics of the 2292-style pktoptions. 1917 * Since it was not reliable in nature (i.e., 1918 * applications had to expect the lack of some 1919 * information after all), it would make sense 1920 * to simplify this part by always returning 1921 * empty data. 1922 */ 1923 sopt->sopt_valsize = 0; 1924 break; 1925 1926 case IPV6_RECVHOPOPTS: 1927 case IPV6_RECVDSTOPTS: 1928 case IPV6_RECVRTHDRDSTOPTS: 1929 case IPV6_UNICAST_HOPS: 1930 case IPV6_RECVPKTINFO: 1931 case IPV6_RECVHOPLIMIT: 1932 case IPV6_RECVRTHDR: 1933 case IPV6_RECVPATHMTU: 1934 1935 case IPV6_V6ONLY: 1936 case IPV6_PORTRANGE: 1937 case IPV6_RECVTCLASS: 1938 case IPV6_AUTOFLOWLABEL: 1939 case IPV6_BINDANY: 1940 case IPV6_FLOWID: 1941 case IPV6_FLOWTYPE: 1942 case IPV6_RECVFLOWID: 1943 #ifdef RSS 1944 case IPV6_RSSBUCKETID: 1945 case IPV6_RECVRSSBUCKETID: 1946 #endif 1947 case IPV6_BINDMULTI: 1948 switch (optname) { 1949 1950 case IPV6_RECVHOPOPTS: 1951 optval = OPTBIT(IN6P_HOPOPTS); 1952 break; 1953 1954 case IPV6_RECVDSTOPTS: 1955 optval = OPTBIT(IN6P_DSTOPTS); 1956 break; 1957 1958 case IPV6_RECVRTHDRDSTOPTS: 1959 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1960 break; 1961 1962 case IPV6_UNICAST_HOPS: 1963 optval = in6p->in6p_hops; 1964 break; 1965 1966 case IPV6_RECVPKTINFO: 1967 optval = OPTBIT(IN6P_PKTINFO); 1968 break; 1969 1970 case IPV6_RECVHOPLIMIT: 1971 optval = OPTBIT(IN6P_HOPLIMIT); 1972 break; 1973 1974 case IPV6_RECVRTHDR: 1975 optval = OPTBIT(IN6P_RTHDR); 1976 break; 1977 1978 case IPV6_RECVPATHMTU: 1979 optval = OPTBIT(IN6P_MTU); 1980 break; 1981 1982 case IPV6_V6ONLY: 1983 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1984 break; 1985 1986 case IPV6_PORTRANGE: 1987 { 1988 int flags; 1989 flags = in6p->inp_flags; 1990 if (flags & INP_HIGHPORT) 1991 optval = IPV6_PORTRANGE_HIGH; 1992 else if (flags & INP_LOWPORT) 1993 optval = IPV6_PORTRANGE_LOW; 1994 else 1995 optval = 0; 1996 break; 1997 } 1998 case IPV6_RECVTCLASS: 1999 optval = OPTBIT(IN6P_TCLASS); 2000 break; 2001 2002 case IPV6_AUTOFLOWLABEL: 2003 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2004 break; 2005 2006 case IPV6_ORIGDSTADDR: 2007 optval = OPTBIT2(INP_ORIGDSTADDR); 2008 break; 2009 2010 case IPV6_BINDANY: 2011 optval = OPTBIT(INP_BINDANY); 2012 break; 2013 2014 case IPV6_FLOWID: 2015 optval = in6p->inp_flowid; 2016 break; 2017 2018 case IPV6_FLOWTYPE: 2019 optval = in6p->inp_flowtype; 2020 break; 2021 2022 case IPV6_RECVFLOWID: 2023 optval = OPTBIT2(INP_RECVFLOWID); 2024 break; 2025 #ifdef RSS 2026 case IPV6_RSSBUCKETID: 2027 retval = 2028 rss_hash2bucket(in6p->inp_flowid, 2029 in6p->inp_flowtype, 2030 &rss_bucket); 2031 if (retval == 0) 2032 optval = rss_bucket; 2033 else 2034 error = EINVAL; 2035 break; 2036 2037 case IPV6_RECVRSSBUCKETID: 2038 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2039 break; 2040 #endif 2041 2042 case IPV6_BINDMULTI: 2043 optval = OPTBIT2(INP_BINDMULTI); 2044 break; 2045 2046 } 2047 if (error) 2048 break; 2049 error = sooptcopyout(sopt, &optval, 2050 sizeof optval); 2051 break; 2052 2053 case IPV6_PATHMTU: 2054 { 2055 u_long pmtu = 0; 2056 struct ip6_mtuinfo mtuinfo; 2057 struct in6_addr addr; 2058 2059 if (!(so->so_state & SS_ISCONNECTED)) 2060 return (ENOTCONN); 2061 /* 2062 * XXX: we dot not consider the case of source 2063 * routing, or optional information to specify 2064 * the outgoing interface. 2065 * Copy faddr out of in6p to avoid holding lock 2066 * on inp during route lookup. 2067 */ 2068 INP_RLOCK(in6p); 2069 bcopy(&in6p->in6p_faddr, &addr, sizeof(addr)); 2070 INP_RUNLOCK(in6p); 2071 error = ip6_getpmtu_ctl(so->so_fibnum, 2072 &addr, &pmtu); 2073 if (error) 2074 break; 2075 if (pmtu > IPV6_MAXPACKET) 2076 pmtu = IPV6_MAXPACKET; 2077 2078 bzero(&mtuinfo, sizeof(mtuinfo)); 2079 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2080 optdata = (void *)&mtuinfo; 2081 optdatalen = sizeof(mtuinfo); 2082 error = sooptcopyout(sopt, optdata, 2083 optdatalen); 2084 break; 2085 } 2086 2087 case IPV6_2292PKTINFO: 2088 case IPV6_2292HOPLIMIT: 2089 case IPV6_2292HOPOPTS: 2090 case IPV6_2292RTHDR: 2091 case IPV6_2292DSTOPTS: 2092 switch (optname) { 2093 case IPV6_2292PKTINFO: 2094 optval = OPTBIT(IN6P_PKTINFO); 2095 break; 2096 case IPV6_2292HOPLIMIT: 2097 optval = OPTBIT(IN6P_HOPLIMIT); 2098 break; 2099 case IPV6_2292HOPOPTS: 2100 optval = OPTBIT(IN6P_HOPOPTS); 2101 break; 2102 case IPV6_2292RTHDR: 2103 optval = OPTBIT(IN6P_RTHDR); 2104 break; 2105 case IPV6_2292DSTOPTS: 2106 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2107 break; 2108 } 2109 error = sooptcopyout(sopt, &optval, 2110 sizeof optval); 2111 break; 2112 case IPV6_PKTINFO: 2113 case IPV6_HOPOPTS: 2114 case IPV6_RTHDR: 2115 case IPV6_DSTOPTS: 2116 case IPV6_RTHDRDSTOPTS: 2117 case IPV6_NEXTHOP: 2118 case IPV6_TCLASS: 2119 case IPV6_DONTFRAG: 2120 case IPV6_USE_MIN_MTU: 2121 case IPV6_PREFER_TEMPADDR: 2122 error = ip6_getpcbopt(in6p, optname, sopt); 2123 break; 2124 2125 case IPV6_MULTICAST_IF: 2126 case IPV6_MULTICAST_HOPS: 2127 case IPV6_MULTICAST_LOOP: 2128 case IPV6_MSFILTER: 2129 error = ip6_getmoptions(in6p, sopt); 2130 break; 2131 2132 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2133 case IPV6_IPSEC_POLICY: 2134 if (IPSEC_ENABLED(ipv6)) { 2135 error = IPSEC_PCBCTL(ipv6, in6p, sopt); 2136 break; 2137 } 2138 /* FALLTHROUGH */ 2139 #endif /* IPSEC */ 2140 default: 2141 error = ENOPROTOOPT; 2142 break; 2143 } 2144 break; 2145 } 2146 } 2147 return (error); 2148 } 2149 2150 int 2151 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2152 { 2153 int error = 0, optval, optlen; 2154 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2155 struct inpcb *in6p = sotoinpcb(so); 2156 int level, op, optname; 2157 2158 level = sopt->sopt_level; 2159 op = sopt->sopt_dir; 2160 optname = sopt->sopt_name; 2161 optlen = sopt->sopt_valsize; 2162 2163 if (level != IPPROTO_IPV6) { 2164 return (EINVAL); 2165 } 2166 2167 switch (optname) { 2168 case IPV6_CHECKSUM: 2169 /* 2170 * For ICMPv6 sockets, no modification allowed for checksum 2171 * offset, permit "no change" values to help existing apps. 2172 * 2173 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2174 * for an ICMPv6 socket will fail." 2175 * The current behavior does not meet RFC3542. 2176 */ 2177 switch (op) { 2178 case SOPT_SET: 2179 if (optlen != sizeof(int)) { 2180 error = EINVAL; 2181 break; 2182 } 2183 error = sooptcopyin(sopt, &optval, sizeof(optval), 2184 sizeof(optval)); 2185 if (error) 2186 break; 2187 if ((optval % 2) != 0) { 2188 /* the API assumes even offset values */ 2189 error = EINVAL; 2190 } else if (so->so_proto->pr_protocol == 2191 IPPROTO_ICMPV6) { 2192 if (optval != icmp6off) 2193 error = EINVAL; 2194 } else 2195 in6p->in6p_cksum = optval; 2196 break; 2197 2198 case SOPT_GET: 2199 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2200 optval = icmp6off; 2201 else 2202 optval = in6p->in6p_cksum; 2203 2204 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2205 break; 2206 2207 default: 2208 error = EINVAL; 2209 break; 2210 } 2211 break; 2212 2213 default: 2214 error = ENOPROTOOPT; 2215 break; 2216 } 2217 2218 return (error); 2219 } 2220 2221 /* 2222 * Set up IP6 options in pcb for insertion in output packets or 2223 * specifying behavior of outgoing packets. 2224 */ 2225 static int 2226 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2227 struct socket *so, struct sockopt *sopt) 2228 { 2229 struct ip6_pktopts *opt = *pktopt; 2230 int error = 0; 2231 struct thread *td = sopt->sopt_td; 2232 2233 /* turn off any old options. */ 2234 if (opt) { 2235 #ifdef DIAGNOSTIC 2236 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2237 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2238 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2239 printf("ip6_pcbopts: all specified options are cleared.\n"); 2240 #endif 2241 ip6_clearpktopts(opt, -1); 2242 } else 2243 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2244 *pktopt = NULL; 2245 2246 if (!m || m->m_len == 0) { 2247 /* 2248 * Only turning off any previous options, regardless of 2249 * whether the opt is just created or given. 2250 */ 2251 free(opt, M_IP6OPT); 2252 return (0); 2253 } 2254 2255 /* set options specified by user. */ 2256 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2257 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2258 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2259 free(opt, M_IP6OPT); 2260 return (error); 2261 } 2262 *pktopt = opt; 2263 return (0); 2264 } 2265 2266 /* 2267 * initialize ip6_pktopts. beware that there are non-zero default values in 2268 * the struct. 2269 */ 2270 void 2271 ip6_initpktopts(struct ip6_pktopts *opt) 2272 { 2273 2274 bzero(opt, sizeof(*opt)); 2275 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2276 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2277 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2278 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2279 } 2280 2281 static int 2282 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2283 struct ucred *cred, int uproto) 2284 { 2285 struct ip6_pktopts *opt; 2286 2287 if (*pktopt == NULL) { 2288 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2289 M_WAITOK); 2290 ip6_initpktopts(*pktopt); 2291 } 2292 opt = *pktopt; 2293 2294 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2295 } 2296 2297 #define GET_PKTOPT_VAR(field, lenexpr) do { \ 2298 if (pktopt && pktopt->field) { \ 2299 INP_RUNLOCK(in6p); \ 2300 optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \ 2301 malloc_optdata = true; \ 2302 INP_RLOCK(in6p); \ 2303 if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { \ 2304 INP_RUNLOCK(in6p); \ 2305 free(optdata, M_TEMP); \ 2306 return (ECONNRESET); \ 2307 } \ 2308 pktopt = in6p->in6p_outputopts; \ 2309 if (pktopt && pktopt->field) { \ 2310 optdatalen = min(lenexpr, sopt->sopt_valsize); \ 2311 bcopy(&pktopt->field, optdata, optdatalen); \ 2312 } else { \ 2313 free(optdata, M_TEMP); \ 2314 optdata = NULL; \ 2315 malloc_optdata = false; \ 2316 } \ 2317 } \ 2318 } while(0) 2319 2320 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \ 2321 (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3) 2322 2323 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \ 2324 pktopt->field->sa_len) 2325 2326 static int 2327 ip6_getpcbopt(struct inpcb *in6p, int optname, struct sockopt *sopt) 2328 { 2329 void *optdata = NULL; 2330 bool malloc_optdata = false; 2331 int optdatalen = 0; 2332 int error = 0; 2333 struct in6_pktinfo null_pktinfo; 2334 int deftclass = 0, on; 2335 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2336 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2337 struct ip6_pktopts *pktopt; 2338 2339 INP_RLOCK(in6p); 2340 pktopt = in6p->in6p_outputopts; 2341 2342 switch (optname) { 2343 case IPV6_PKTINFO: 2344 optdata = (void *)&null_pktinfo; 2345 if (pktopt && pktopt->ip6po_pktinfo) { 2346 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2347 sizeof(null_pktinfo)); 2348 in6_clearscope(&null_pktinfo.ipi6_addr); 2349 } else { 2350 /* XXX: we don't have to do this every time... */ 2351 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2352 } 2353 optdatalen = sizeof(struct in6_pktinfo); 2354 break; 2355 case IPV6_TCLASS: 2356 if (pktopt && pktopt->ip6po_tclass >= 0) 2357 deftclass = pktopt->ip6po_tclass; 2358 optdata = (void *)&deftclass; 2359 optdatalen = sizeof(int); 2360 break; 2361 case IPV6_HOPOPTS: 2362 GET_PKTOPT_EXT_HDR(ip6po_hbh); 2363 break; 2364 case IPV6_RTHDR: 2365 GET_PKTOPT_EXT_HDR(ip6po_rthdr); 2366 break; 2367 case IPV6_RTHDRDSTOPTS: 2368 GET_PKTOPT_EXT_HDR(ip6po_dest1); 2369 break; 2370 case IPV6_DSTOPTS: 2371 GET_PKTOPT_EXT_HDR(ip6po_dest2); 2372 break; 2373 case IPV6_NEXTHOP: 2374 GET_PKTOPT_SOCKADDR(ip6po_nexthop); 2375 break; 2376 case IPV6_USE_MIN_MTU: 2377 if (pktopt) 2378 defminmtu = pktopt->ip6po_minmtu; 2379 optdata = (void *)&defminmtu; 2380 optdatalen = sizeof(int); 2381 break; 2382 case IPV6_DONTFRAG: 2383 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2384 on = 1; 2385 else 2386 on = 0; 2387 optdata = (void *)&on; 2388 optdatalen = sizeof(on); 2389 break; 2390 case IPV6_PREFER_TEMPADDR: 2391 if (pktopt) 2392 defpreftemp = pktopt->ip6po_prefer_tempaddr; 2393 optdata = (void *)&defpreftemp; 2394 optdatalen = sizeof(int); 2395 break; 2396 default: /* should not happen */ 2397 #ifdef DIAGNOSTIC 2398 panic("ip6_getpcbopt: unexpected option\n"); 2399 #endif 2400 INP_RUNLOCK(in6p); 2401 return (ENOPROTOOPT); 2402 } 2403 INP_RUNLOCK(in6p); 2404 2405 error = sooptcopyout(sopt, optdata, optdatalen); 2406 if (malloc_optdata) 2407 free(optdata, M_TEMP); 2408 2409 return (error); 2410 } 2411 2412 void 2413 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2414 { 2415 if (pktopt == NULL) 2416 return; 2417 2418 if (optname == -1 || optname == IPV6_PKTINFO) { 2419 if (pktopt->ip6po_pktinfo) 2420 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2421 pktopt->ip6po_pktinfo = NULL; 2422 } 2423 if (optname == -1 || optname == IPV6_HOPLIMIT) 2424 pktopt->ip6po_hlim = -1; 2425 if (optname == -1 || optname == IPV6_TCLASS) 2426 pktopt->ip6po_tclass = -1; 2427 if (optname == -1 || optname == IPV6_NEXTHOP) { 2428 if (pktopt->ip6po_nextroute.ro_rt) { 2429 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2430 pktopt->ip6po_nextroute.ro_rt = NULL; 2431 } 2432 if (pktopt->ip6po_nexthop) 2433 free(pktopt->ip6po_nexthop, M_IP6OPT); 2434 pktopt->ip6po_nexthop = NULL; 2435 } 2436 if (optname == -1 || optname == IPV6_HOPOPTS) { 2437 if (pktopt->ip6po_hbh) 2438 free(pktopt->ip6po_hbh, M_IP6OPT); 2439 pktopt->ip6po_hbh = NULL; 2440 } 2441 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2442 if (pktopt->ip6po_dest1) 2443 free(pktopt->ip6po_dest1, M_IP6OPT); 2444 pktopt->ip6po_dest1 = NULL; 2445 } 2446 if (optname == -1 || optname == IPV6_RTHDR) { 2447 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2448 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2449 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2450 if (pktopt->ip6po_route.ro_rt) { 2451 RTFREE(pktopt->ip6po_route.ro_rt); 2452 pktopt->ip6po_route.ro_rt = NULL; 2453 } 2454 } 2455 if (optname == -1 || optname == IPV6_DSTOPTS) { 2456 if (pktopt->ip6po_dest2) 2457 free(pktopt->ip6po_dest2, M_IP6OPT); 2458 pktopt->ip6po_dest2 = NULL; 2459 } 2460 } 2461 2462 #define PKTOPT_EXTHDRCPY(type) \ 2463 do {\ 2464 if (src->type) {\ 2465 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2466 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2467 if (dst->type == NULL)\ 2468 goto bad;\ 2469 bcopy(src->type, dst->type, hlen);\ 2470 }\ 2471 } while (/*CONSTCOND*/ 0) 2472 2473 static int 2474 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2475 { 2476 if (dst == NULL || src == NULL) { 2477 printf("ip6_clearpktopts: invalid argument\n"); 2478 return (EINVAL); 2479 } 2480 2481 dst->ip6po_hlim = src->ip6po_hlim; 2482 dst->ip6po_tclass = src->ip6po_tclass; 2483 dst->ip6po_flags = src->ip6po_flags; 2484 dst->ip6po_minmtu = src->ip6po_minmtu; 2485 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2486 if (src->ip6po_pktinfo) { 2487 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2488 M_IP6OPT, canwait); 2489 if (dst->ip6po_pktinfo == NULL) 2490 goto bad; 2491 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2492 } 2493 if (src->ip6po_nexthop) { 2494 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2495 M_IP6OPT, canwait); 2496 if (dst->ip6po_nexthop == NULL) 2497 goto bad; 2498 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2499 src->ip6po_nexthop->sa_len); 2500 } 2501 PKTOPT_EXTHDRCPY(ip6po_hbh); 2502 PKTOPT_EXTHDRCPY(ip6po_dest1); 2503 PKTOPT_EXTHDRCPY(ip6po_dest2); 2504 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2505 return (0); 2506 2507 bad: 2508 ip6_clearpktopts(dst, -1); 2509 return (ENOBUFS); 2510 } 2511 #undef PKTOPT_EXTHDRCPY 2512 2513 struct ip6_pktopts * 2514 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2515 { 2516 int error; 2517 struct ip6_pktopts *dst; 2518 2519 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2520 if (dst == NULL) 2521 return (NULL); 2522 ip6_initpktopts(dst); 2523 2524 if ((error = copypktopts(dst, src, canwait)) != 0) { 2525 free(dst, M_IP6OPT); 2526 return (NULL); 2527 } 2528 2529 return (dst); 2530 } 2531 2532 void 2533 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2534 { 2535 if (pktopt == NULL) 2536 return; 2537 2538 ip6_clearpktopts(pktopt, -1); 2539 2540 free(pktopt, M_IP6OPT); 2541 } 2542 2543 /* 2544 * Set IPv6 outgoing packet options based on advanced API. 2545 */ 2546 int 2547 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2548 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2549 { 2550 struct cmsghdr *cm = NULL; 2551 2552 if (control == NULL || opt == NULL) 2553 return (EINVAL); 2554 2555 ip6_initpktopts(opt); 2556 if (stickyopt) { 2557 int error; 2558 2559 /* 2560 * If stickyopt is provided, make a local copy of the options 2561 * for this particular packet, then override them by ancillary 2562 * objects. 2563 * XXX: copypktopts() does not copy the cached route to a next 2564 * hop (if any). This is not very good in terms of efficiency, 2565 * but we can allow this since this option should be rarely 2566 * used. 2567 */ 2568 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2569 return (error); 2570 } 2571 2572 /* 2573 * XXX: Currently, we assume all the optional information is stored 2574 * in a single mbuf. 2575 */ 2576 if (control->m_next) 2577 return (EINVAL); 2578 2579 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2580 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2581 int error; 2582 2583 if (control->m_len < CMSG_LEN(0)) 2584 return (EINVAL); 2585 2586 cm = mtod(control, struct cmsghdr *); 2587 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2588 return (EINVAL); 2589 if (cm->cmsg_level != IPPROTO_IPV6) 2590 continue; 2591 2592 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2593 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2594 if (error) 2595 return (error); 2596 } 2597 2598 return (0); 2599 } 2600 2601 /* 2602 * Set a particular packet option, as a sticky option or an ancillary data 2603 * item. "len" can be 0 only when it's a sticky option. 2604 * We have 4 cases of combination of "sticky" and "cmsg": 2605 * "sticky=0, cmsg=0": impossible 2606 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2607 * "sticky=1, cmsg=0": RFC3542 socket option 2608 * "sticky=1, cmsg=1": RFC2292 socket option 2609 */ 2610 static int 2611 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2612 struct ucred *cred, int sticky, int cmsg, int uproto) 2613 { 2614 int minmtupolicy, preftemp; 2615 int error; 2616 2617 if (!sticky && !cmsg) { 2618 #ifdef DIAGNOSTIC 2619 printf("ip6_setpktopt: impossible case\n"); 2620 #endif 2621 return (EINVAL); 2622 } 2623 2624 /* 2625 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2626 * not be specified in the context of RFC3542. Conversely, 2627 * RFC3542 types should not be specified in the context of RFC2292. 2628 */ 2629 if (!cmsg) { 2630 switch (optname) { 2631 case IPV6_2292PKTINFO: 2632 case IPV6_2292HOPLIMIT: 2633 case IPV6_2292NEXTHOP: 2634 case IPV6_2292HOPOPTS: 2635 case IPV6_2292DSTOPTS: 2636 case IPV6_2292RTHDR: 2637 case IPV6_2292PKTOPTIONS: 2638 return (ENOPROTOOPT); 2639 } 2640 } 2641 if (sticky && cmsg) { 2642 switch (optname) { 2643 case IPV6_PKTINFO: 2644 case IPV6_HOPLIMIT: 2645 case IPV6_NEXTHOP: 2646 case IPV6_HOPOPTS: 2647 case IPV6_DSTOPTS: 2648 case IPV6_RTHDRDSTOPTS: 2649 case IPV6_RTHDR: 2650 case IPV6_USE_MIN_MTU: 2651 case IPV6_DONTFRAG: 2652 case IPV6_TCLASS: 2653 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2654 return (ENOPROTOOPT); 2655 } 2656 } 2657 2658 switch (optname) { 2659 case IPV6_2292PKTINFO: 2660 case IPV6_PKTINFO: 2661 { 2662 struct ifnet *ifp = NULL; 2663 struct in6_pktinfo *pktinfo; 2664 2665 if (len != sizeof(struct in6_pktinfo)) 2666 return (EINVAL); 2667 2668 pktinfo = (struct in6_pktinfo *)buf; 2669 2670 /* 2671 * An application can clear any sticky IPV6_PKTINFO option by 2672 * doing a "regular" setsockopt with ipi6_addr being 2673 * in6addr_any and ipi6_ifindex being zero. 2674 * [RFC 3542, Section 6] 2675 */ 2676 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2677 pktinfo->ipi6_ifindex == 0 && 2678 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2679 ip6_clearpktopts(opt, optname); 2680 break; 2681 } 2682 2683 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2684 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2685 return (EINVAL); 2686 } 2687 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2688 return (EINVAL); 2689 /* validate the interface index if specified. */ 2690 if (pktinfo->ipi6_ifindex > V_if_index) 2691 return (ENXIO); 2692 if (pktinfo->ipi6_ifindex) { 2693 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2694 if (ifp == NULL) 2695 return (ENXIO); 2696 } 2697 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2698 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2699 return (ENETDOWN); 2700 2701 if (ifp != NULL && 2702 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2703 struct in6_ifaddr *ia; 2704 2705 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2706 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2707 if (ia == NULL) 2708 return (EADDRNOTAVAIL); 2709 ifa_free(&ia->ia_ifa); 2710 } 2711 /* 2712 * We store the address anyway, and let in6_selectsrc() 2713 * validate the specified address. This is because ipi6_addr 2714 * may not have enough information about its scope zone, and 2715 * we may need additional information (such as outgoing 2716 * interface or the scope zone of a destination address) to 2717 * disambiguate the scope. 2718 * XXX: the delay of the validation may confuse the 2719 * application when it is used as a sticky option. 2720 */ 2721 if (opt->ip6po_pktinfo == NULL) { 2722 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2723 M_IP6OPT, M_NOWAIT); 2724 if (opt->ip6po_pktinfo == NULL) 2725 return (ENOBUFS); 2726 } 2727 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2728 break; 2729 } 2730 2731 case IPV6_2292HOPLIMIT: 2732 case IPV6_HOPLIMIT: 2733 { 2734 int *hlimp; 2735 2736 /* 2737 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2738 * to simplify the ordering among hoplimit options. 2739 */ 2740 if (optname == IPV6_HOPLIMIT && sticky) 2741 return (ENOPROTOOPT); 2742 2743 if (len != sizeof(int)) 2744 return (EINVAL); 2745 hlimp = (int *)buf; 2746 if (*hlimp < -1 || *hlimp > 255) 2747 return (EINVAL); 2748 2749 opt->ip6po_hlim = *hlimp; 2750 break; 2751 } 2752 2753 case IPV6_TCLASS: 2754 { 2755 int tclass; 2756 2757 if (len != sizeof(int)) 2758 return (EINVAL); 2759 tclass = *(int *)buf; 2760 if (tclass < -1 || tclass > 255) 2761 return (EINVAL); 2762 2763 opt->ip6po_tclass = tclass; 2764 break; 2765 } 2766 2767 case IPV6_2292NEXTHOP: 2768 case IPV6_NEXTHOP: 2769 if (cred != NULL) { 2770 error = priv_check_cred(cred, 2771 PRIV_NETINET_SETHDROPTS, 0); 2772 if (error) 2773 return (error); 2774 } 2775 2776 if (len == 0) { /* just remove the option */ 2777 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2778 break; 2779 } 2780 2781 /* check if cmsg_len is large enough for sa_len */ 2782 if (len < sizeof(struct sockaddr) || len < *buf) 2783 return (EINVAL); 2784 2785 switch (((struct sockaddr *)buf)->sa_family) { 2786 case AF_INET6: 2787 { 2788 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2789 int error; 2790 2791 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2792 return (EINVAL); 2793 2794 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2795 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2796 return (EINVAL); 2797 } 2798 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2799 != 0) { 2800 return (error); 2801 } 2802 break; 2803 } 2804 case AF_LINK: /* should eventually be supported */ 2805 default: 2806 return (EAFNOSUPPORT); 2807 } 2808 2809 /* turn off the previous option, then set the new option. */ 2810 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2811 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2812 if (opt->ip6po_nexthop == NULL) 2813 return (ENOBUFS); 2814 bcopy(buf, opt->ip6po_nexthop, *buf); 2815 break; 2816 2817 case IPV6_2292HOPOPTS: 2818 case IPV6_HOPOPTS: 2819 { 2820 struct ip6_hbh *hbh; 2821 int hbhlen; 2822 2823 /* 2824 * XXX: We don't allow a non-privileged user to set ANY HbH 2825 * options, since per-option restriction has too much 2826 * overhead. 2827 */ 2828 if (cred != NULL) { 2829 error = priv_check_cred(cred, 2830 PRIV_NETINET_SETHDROPTS, 0); 2831 if (error) 2832 return (error); 2833 } 2834 2835 if (len == 0) { 2836 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2837 break; /* just remove the option */ 2838 } 2839 2840 /* message length validation */ 2841 if (len < sizeof(struct ip6_hbh)) 2842 return (EINVAL); 2843 hbh = (struct ip6_hbh *)buf; 2844 hbhlen = (hbh->ip6h_len + 1) << 3; 2845 if (len != hbhlen) 2846 return (EINVAL); 2847 2848 /* turn off the previous option, then set the new option. */ 2849 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2850 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2851 if (opt->ip6po_hbh == NULL) 2852 return (ENOBUFS); 2853 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2854 2855 break; 2856 } 2857 2858 case IPV6_2292DSTOPTS: 2859 case IPV6_DSTOPTS: 2860 case IPV6_RTHDRDSTOPTS: 2861 { 2862 struct ip6_dest *dest, **newdest = NULL; 2863 int destlen; 2864 2865 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2866 error = priv_check_cred(cred, 2867 PRIV_NETINET_SETHDROPTS, 0); 2868 if (error) 2869 return (error); 2870 } 2871 2872 if (len == 0) { 2873 ip6_clearpktopts(opt, optname); 2874 break; /* just remove the option */ 2875 } 2876 2877 /* message length validation */ 2878 if (len < sizeof(struct ip6_dest)) 2879 return (EINVAL); 2880 dest = (struct ip6_dest *)buf; 2881 destlen = (dest->ip6d_len + 1) << 3; 2882 if (len != destlen) 2883 return (EINVAL); 2884 2885 /* 2886 * Determine the position that the destination options header 2887 * should be inserted; before or after the routing header. 2888 */ 2889 switch (optname) { 2890 case IPV6_2292DSTOPTS: 2891 /* 2892 * The old advacned API is ambiguous on this point. 2893 * Our approach is to determine the position based 2894 * according to the existence of a routing header. 2895 * Note, however, that this depends on the order of the 2896 * extension headers in the ancillary data; the 1st 2897 * part of the destination options header must appear 2898 * before the routing header in the ancillary data, 2899 * too. 2900 * RFC3542 solved the ambiguity by introducing 2901 * separate ancillary data or option types. 2902 */ 2903 if (opt->ip6po_rthdr == NULL) 2904 newdest = &opt->ip6po_dest1; 2905 else 2906 newdest = &opt->ip6po_dest2; 2907 break; 2908 case IPV6_RTHDRDSTOPTS: 2909 newdest = &opt->ip6po_dest1; 2910 break; 2911 case IPV6_DSTOPTS: 2912 newdest = &opt->ip6po_dest2; 2913 break; 2914 } 2915 2916 /* turn off the previous option, then set the new option. */ 2917 ip6_clearpktopts(opt, optname); 2918 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2919 if (*newdest == NULL) 2920 return (ENOBUFS); 2921 bcopy(dest, *newdest, destlen); 2922 2923 break; 2924 } 2925 2926 case IPV6_2292RTHDR: 2927 case IPV6_RTHDR: 2928 { 2929 struct ip6_rthdr *rth; 2930 int rthlen; 2931 2932 if (len == 0) { 2933 ip6_clearpktopts(opt, IPV6_RTHDR); 2934 break; /* just remove the option */ 2935 } 2936 2937 /* message length validation */ 2938 if (len < sizeof(struct ip6_rthdr)) 2939 return (EINVAL); 2940 rth = (struct ip6_rthdr *)buf; 2941 rthlen = (rth->ip6r_len + 1) << 3; 2942 if (len != rthlen) 2943 return (EINVAL); 2944 2945 switch (rth->ip6r_type) { 2946 case IPV6_RTHDR_TYPE_0: 2947 if (rth->ip6r_len == 0) /* must contain one addr */ 2948 return (EINVAL); 2949 if (rth->ip6r_len % 2) /* length must be even */ 2950 return (EINVAL); 2951 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2952 return (EINVAL); 2953 break; 2954 default: 2955 return (EINVAL); /* not supported */ 2956 } 2957 2958 /* turn off the previous option */ 2959 ip6_clearpktopts(opt, IPV6_RTHDR); 2960 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2961 if (opt->ip6po_rthdr == NULL) 2962 return (ENOBUFS); 2963 bcopy(rth, opt->ip6po_rthdr, rthlen); 2964 2965 break; 2966 } 2967 2968 case IPV6_USE_MIN_MTU: 2969 if (len != sizeof(int)) 2970 return (EINVAL); 2971 minmtupolicy = *(int *)buf; 2972 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2973 minmtupolicy != IP6PO_MINMTU_DISABLE && 2974 minmtupolicy != IP6PO_MINMTU_ALL) { 2975 return (EINVAL); 2976 } 2977 opt->ip6po_minmtu = minmtupolicy; 2978 break; 2979 2980 case IPV6_DONTFRAG: 2981 if (len != sizeof(int)) 2982 return (EINVAL); 2983 2984 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2985 /* 2986 * we ignore this option for TCP sockets. 2987 * (RFC3542 leaves this case unspecified.) 2988 */ 2989 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2990 } else 2991 opt->ip6po_flags |= IP6PO_DONTFRAG; 2992 break; 2993 2994 case IPV6_PREFER_TEMPADDR: 2995 if (len != sizeof(int)) 2996 return (EINVAL); 2997 preftemp = *(int *)buf; 2998 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 2999 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3000 preftemp != IP6PO_TEMPADDR_PREFER) { 3001 return (EINVAL); 3002 } 3003 opt->ip6po_prefer_tempaddr = preftemp; 3004 break; 3005 3006 default: 3007 return (ENOPROTOOPT); 3008 } /* end of switch */ 3009 3010 return (0); 3011 } 3012 3013 /* 3014 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3015 * packet to the input queue of a specified interface. Note that this 3016 * calls the output routine of the loopback "driver", but with an interface 3017 * pointer that might NOT be &loif -- easier than replicating that code here. 3018 */ 3019 void 3020 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3021 { 3022 struct mbuf *copym; 3023 struct ip6_hdr *ip6; 3024 3025 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3026 if (copym == NULL) 3027 return; 3028 3029 /* 3030 * Make sure to deep-copy IPv6 header portion in case the data 3031 * is in an mbuf cluster, so that we can safely override the IPv6 3032 * header portion later. 3033 */ 3034 if (!M_WRITABLE(copym) || 3035 copym->m_len < sizeof(struct ip6_hdr)) { 3036 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3037 if (copym == NULL) 3038 return; 3039 } 3040 ip6 = mtod(copym, struct ip6_hdr *); 3041 /* 3042 * clear embedded scope identifiers if necessary. 3043 * in6_clearscope will touch the addresses only when necessary. 3044 */ 3045 in6_clearscope(&ip6->ip6_src); 3046 in6_clearscope(&ip6->ip6_dst); 3047 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3048 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3049 CSUM_PSEUDO_HDR; 3050 copym->m_pkthdr.csum_data = 0xffff; 3051 } 3052 if_simloop(ifp, copym, AF_INET6, 0); 3053 } 3054 3055 /* 3056 * Chop IPv6 header off from the payload. 3057 */ 3058 static int 3059 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3060 { 3061 struct mbuf *mh; 3062 struct ip6_hdr *ip6; 3063 3064 ip6 = mtod(m, struct ip6_hdr *); 3065 if (m->m_len > sizeof(*ip6)) { 3066 mh = m_gethdr(M_NOWAIT, MT_DATA); 3067 if (mh == NULL) { 3068 m_freem(m); 3069 return ENOBUFS; 3070 } 3071 m_move_pkthdr(mh, m); 3072 M_ALIGN(mh, sizeof(*ip6)); 3073 m->m_len -= sizeof(*ip6); 3074 m->m_data += sizeof(*ip6); 3075 mh->m_next = m; 3076 m = mh; 3077 m->m_len = sizeof(*ip6); 3078 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3079 } 3080 exthdrs->ip6e_ip6 = m; 3081 return 0; 3082 } 3083 3084 /* 3085 * Compute IPv6 extension header length. 3086 */ 3087 int 3088 ip6_optlen(struct inpcb *in6p) 3089 { 3090 int len; 3091 3092 if (!in6p->in6p_outputopts) 3093 return 0; 3094 3095 len = 0; 3096 #define elen(x) \ 3097 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3098 3099 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3100 if (in6p->in6p_outputopts->ip6po_rthdr) 3101 /* dest1 is valid with rthdr only */ 3102 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3103 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3104 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3105 return len; 3106 #undef elen 3107 } 3108