1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 #include "opt_ipfw.h" 69 #include "opt_ipsec.h" 70 #include "opt_sctp.h" 71 #include "opt_route.h" 72 #include "opt_rss.h" 73 74 #include <sys/param.h> 75 #include <sys/kernel.h> 76 #include <sys/malloc.h> 77 #include <sys/mbuf.h> 78 #include <sys/errno.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/protosw.h> 82 #include <sys/socket.h> 83 #include <sys/socketvar.h> 84 #include <sys/syslog.h> 85 #include <sys/ucred.h> 86 87 #include <machine/in_cksum.h> 88 89 #include <net/if.h> 90 #include <net/if_var.h> 91 #include <net/netisr.h> 92 #include <net/route.h> 93 #include <net/pfil.h> 94 #include <net/vnet.h> 95 96 #include <netinet/in.h> 97 #include <netinet/in_var.h> 98 #include <netinet/ip_var.h> 99 #include <netinet6/in6_var.h> 100 #include <netinet/ip6.h> 101 #include <netinet/icmp6.h> 102 #include <netinet6/ip6_var.h> 103 #include <netinet/in_pcb.h> 104 #include <netinet/tcp_var.h> 105 #include <netinet6/nd6.h> 106 #include <netinet/in_rss.h> 107 108 #ifdef IPSEC 109 #include <netipsec/ipsec.h> 110 #include <netipsec/ipsec6.h> 111 #include <netipsec/key.h> 112 #include <netinet6/ip6_ipsec.h> 113 #endif /* IPSEC */ 114 #ifdef SCTP 115 #include <netinet/sctp.h> 116 #include <netinet/sctp_crc32.h> 117 #endif 118 119 #include <netinet6/ip6protosw.h> 120 #include <netinet6/scope6_var.h> 121 122 #ifdef FLOWTABLE 123 #include <net/flowtable.h> 124 #endif 125 126 extern int in6_mcast_loop; 127 128 struct ip6_exthdrs { 129 struct mbuf *ip6e_ip6; 130 struct mbuf *ip6e_hbh; 131 struct mbuf *ip6e_dest1; 132 struct mbuf *ip6e_rthdr; 133 struct mbuf *ip6e_dest2; 134 }; 135 136 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 137 struct ucred *, int); 138 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 139 struct socket *, struct sockopt *); 140 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 141 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 142 struct ucred *, int, int, int); 143 144 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 145 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 146 struct ip6_frag **); 147 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 148 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 149 static int ip6_getpmtu(struct route_in6 *, struct route_in6 *, 150 struct ifnet *, struct in6_addr *, u_long *, int *, u_int); 151 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 152 153 154 /* 155 * Make an extension header from option data. hp is the source, and 156 * mp is the destination. 157 */ 158 #define MAKE_EXTHDR(hp, mp) \ 159 do { \ 160 if (hp) { \ 161 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 162 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 163 ((eh)->ip6e_len + 1) << 3); \ 164 if (error) \ 165 goto freehdrs; \ 166 } \ 167 } while (/*CONSTCOND*/ 0) 168 169 /* 170 * Form a chain of extension headers. 171 * m is the extension header mbuf 172 * mp is the previous mbuf in the chain 173 * p is the next header 174 * i is the type of option. 175 */ 176 #define MAKE_CHAIN(m, mp, p, i)\ 177 do {\ 178 if (m) {\ 179 if (!hdrsplit) \ 180 panic("assumption failed: hdr not split"); \ 181 *mtod((m), u_char *) = *(p);\ 182 *(p) = (i);\ 183 p = mtod((m), u_char *);\ 184 (m)->m_next = (mp)->m_next;\ 185 (mp)->m_next = (m);\ 186 (mp) = (m);\ 187 }\ 188 } while (/*CONSTCOND*/ 0) 189 190 void 191 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 192 { 193 u_short csum; 194 195 csum = in_cksum_skip(m, offset + plen, offset); 196 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 197 csum = 0xffff; 198 offset += m->m_pkthdr.csum_data; /* checksum offset */ 199 200 if (offset + sizeof(u_short) > m->m_len) { 201 printf("%s: delayed m_pullup, m->len: %d plen %u off %u " 202 "csum_flags=%b\n", __func__, m->m_len, plen, offset, 203 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 204 /* 205 * XXX this should not happen, but if it does, the correct 206 * behavior may be to insert the checksum in the appropriate 207 * next mbuf in the chain. 208 */ 209 return; 210 } 211 *(u_short *)(m->m_data + offset) = csum; 212 } 213 214 /* 215 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 216 * header (with pri, len, nxt, hlim, src, dst). 217 * This function may modify ver and hlim only. 218 * The mbuf chain containing the packet will be freed. 219 * The mbuf opt, if present, will not be freed. 220 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 221 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 222 * then result of route lookup is stored in ro->ro_rt. 223 * 224 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and 225 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 226 * which is rt_mtu. 227 * 228 * ifpp - XXX: just for statistics 229 */ 230 int 231 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 232 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 233 struct ifnet **ifpp, struct inpcb *inp) 234 { 235 struct ip6_hdr *ip6, *mhip6; 236 struct ifnet *ifp, *origifp; 237 struct mbuf *m = m0; 238 struct mbuf *mprev = NULL; 239 int hlen, tlen, len, off; 240 struct route_in6 ip6route; 241 struct rtentry *rt = NULL; 242 struct sockaddr_in6 *dst, src_sa, dst_sa; 243 struct in6_addr odst; 244 int error = 0; 245 struct in6_ifaddr *ia = NULL; 246 u_long mtu; 247 int alwaysfrag, dontfrag; 248 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 249 struct ip6_exthdrs exthdrs; 250 struct in6_addr finaldst, src0, dst0; 251 u_int32_t zone; 252 struct route_in6 *ro_pmtu = NULL; 253 int hdrsplit = 0; 254 int sw_csum, tso; 255 struct m_tag *fwd_tag = NULL; 256 257 ip6 = mtod(m, struct ip6_hdr *); 258 if (ip6 == NULL) { 259 printf ("ip6 is NULL"); 260 goto bad; 261 } 262 263 if (inp != NULL) 264 M_SETFIB(m, inp->inp_inc.inc_fibnum); 265 266 finaldst = ip6->ip6_dst; 267 bzero(&exthdrs, sizeof(exthdrs)); 268 if (opt) { 269 /* Hop-by-Hop options header */ 270 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 271 /* Destination options header(1st part) */ 272 if (opt->ip6po_rthdr) { 273 /* 274 * Destination options header(1st part) 275 * This only makes sense with a routing header. 276 * See Section 9.2 of RFC 3542. 277 * Disabling this part just for MIP6 convenience is 278 * a bad idea. We need to think carefully about a 279 * way to make the advanced API coexist with MIP6 280 * options, which might automatically be inserted in 281 * the kernel. 282 */ 283 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 284 } 285 /* Routing header */ 286 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 287 /* Destination options header(2nd part) */ 288 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 289 } 290 291 #ifdef IPSEC 292 /* 293 * IPSec checking which handles several cases. 294 * FAST IPSEC: We re-injected the packet. 295 */ 296 switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp)) 297 { 298 case 1: /* Bad packet */ 299 goto freehdrs; 300 case -1: /* IPSec done */ 301 goto done; 302 case 0: /* No IPSec */ 303 default: 304 break; 305 } 306 #endif /* IPSEC */ 307 308 /* 309 * Calculate the total length of the extension header chain. 310 * Keep the length of the unfragmentable part for fragmentation. 311 */ 312 optlen = 0; 313 if (exthdrs.ip6e_hbh) 314 optlen += exthdrs.ip6e_hbh->m_len; 315 if (exthdrs.ip6e_dest1) 316 optlen += exthdrs.ip6e_dest1->m_len; 317 if (exthdrs.ip6e_rthdr) 318 optlen += exthdrs.ip6e_rthdr->m_len; 319 unfragpartlen = optlen + sizeof(struct ip6_hdr); 320 321 /* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */ 322 if (exthdrs.ip6e_dest2) 323 optlen += exthdrs.ip6e_dest2->m_len; 324 325 /* 326 * If there is at least one extension header, 327 * separate IP6 header from the payload. 328 */ 329 if (optlen && !hdrsplit) { 330 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 331 m = NULL; 332 goto freehdrs; 333 } 334 m = exthdrs.ip6e_ip6; 335 hdrsplit++; 336 } 337 338 /* adjust pointer */ 339 ip6 = mtod(m, struct ip6_hdr *); 340 341 /* adjust mbuf packet header length */ 342 m->m_pkthdr.len += optlen; 343 plen = m->m_pkthdr.len - sizeof(*ip6); 344 345 /* If this is a jumbo payload, insert a jumbo payload option. */ 346 if (plen > IPV6_MAXPACKET) { 347 if (!hdrsplit) { 348 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 349 m = NULL; 350 goto freehdrs; 351 } 352 m = exthdrs.ip6e_ip6; 353 hdrsplit++; 354 } 355 /* adjust pointer */ 356 ip6 = mtod(m, struct ip6_hdr *); 357 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 358 goto freehdrs; 359 ip6->ip6_plen = 0; 360 } else 361 ip6->ip6_plen = htons(plen); 362 363 /* 364 * Concatenate headers and fill in next header fields. 365 * Here we have, on "m" 366 * IPv6 payload 367 * and we insert headers accordingly. Finally, we should be getting: 368 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 369 * 370 * during the header composing process, "m" points to IPv6 header. 371 * "mprev" points to an extension header prior to esp. 372 */ 373 u_char *nexthdrp = &ip6->ip6_nxt; 374 mprev = m; 375 376 /* 377 * we treat dest2 specially. this makes IPsec processing 378 * much easier. the goal here is to make mprev point the 379 * mbuf prior to dest2. 380 * 381 * result: IPv6 dest2 payload 382 * m and mprev will point to IPv6 header. 383 */ 384 if (exthdrs.ip6e_dest2) { 385 if (!hdrsplit) 386 panic("assumption failed: hdr not split"); 387 exthdrs.ip6e_dest2->m_next = m->m_next; 388 m->m_next = exthdrs.ip6e_dest2; 389 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 390 ip6->ip6_nxt = IPPROTO_DSTOPTS; 391 } 392 393 /* 394 * result: IPv6 hbh dest1 rthdr dest2 payload 395 * m will point to IPv6 header. mprev will point to the 396 * extension header prior to dest2 (rthdr in the above case). 397 */ 398 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 399 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 400 IPPROTO_DSTOPTS); 401 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 402 IPPROTO_ROUTING); 403 404 /* 405 * If there is a routing header, discard the packet. 406 */ 407 if (exthdrs.ip6e_rthdr) { 408 error = EINVAL; 409 goto bad; 410 } 411 412 /* Source address validation */ 413 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 414 (flags & IPV6_UNSPECSRC) == 0) { 415 error = EOPNOTSUPP; 416 IP6STAT_INC(ip6s_badscope); 417 goto bad; 418 } 419 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 420 error = EOPNOTSUPP; 421 IP6STAT_INC(ip6s_badscope); 422 goto bad; 423 } 424 425 IP6STAT_INC(ip6s_localout); 426 427 /* 428 * Route packet. 429 */ 430 if (ro == 0) { 431 ro = &ip6route; 432 bzero((caddr_t)ro, sizeof(*ro)); 433 } 434 ro_pmtu = ro; 435 if (opt && opt->ip6po_rthdr) 436 ro = &opt->ip6po_route; 437 dst = (struct sockaddr_in6 *)&ro->ro_dst; 438 #ifdef FLOWTABLE 439 if (ro->ro_rt == NULL) 440 (void )flowtable_lookup(AF_INET6, m, (struct route *)ro); 441 #endif 442 again: 443 /* 444 * if specified, try to fill in the traffic class field. 445 * do not override if a non-zero value is already set. 446 * we check the diffserv field and the ecn field separately. 447 */ 448 if (opt && opt->ip6po_tclass >= 0) { 449 int mask = 0; 450 451 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 452 mask |= 0xfc; 453 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 454 mask |= 0x03; 455 if (mask != 0) 456 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 457 } 458 459 /* fill in or override the hop limit field, if necessary. */ 460 if (opt && opt->ip6po_hlim != -1) 461 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 462 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 463 if (im6o != NULL) 464 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 465 else 466 ip6->ip6_hlim = V_ip6_defmcasthlim; 467 } 468 469 /* adjust pointer */ 470 ip6 = mtod(m, struct ip6_hdr *); 471 472 if (ro->ro_rt && fwd_tag == NULL) { 473 rt = ro->ro_rt; 474 ifp = ro->ro_rt->rt_ifp; 475 } else { 476 if (fwd_tag == NULL) { 477 bzero(&dst_sa, sizeof(dst_sa)); 478 dst_sa.sin6_family = AF_INET6; 479 dst_sa.sin6_len = sizeof(dst_sa); 480 dst_sa.sin6_addr = ip6->ip6_dst; 481 } 482 error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp, 483 &rt, inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m)); 484 if (error != 0) { 485 if (ifp != NULL) 486 in6_ifstat_inc(ifp, ifs6_out_discard); 487 goto bad; 488 } 489 } 490 if (rt == NULL) { 491 /* 492 * If in6_selectroute() does not return a route entry, 493 * dst may not have been updated. 494 */ 495 *dst = dst_sa; /* XXX */ 496 } 497 498 /* 499 * then rt (for unicast) and ifp must be non-NULL valid values. 500 */ 501 if ((flags & IPV6_FORWARDING) == 0) { 502 /* XXX: the FORWARDING flag can be set for mrouting. */ 503 in6_ifstat_inc(ifp, ifs6_out_request); 504 } 505 if (rt != NULL) { 506 ia = (struct in6_ifaddr *)(rt->rt_ifa); 507 counter_u64_add(rt->rt_pksent, 1); 508 } 509 510 511 /* 512 * The outgoing interface must be in the zone of source and 513 * destination addresses. 514 */ 515 origifp = ifp; 516 517 src0 = ip6->ip6_src; 518 if (in6_setscope(&src0, origifp, &zone)) 519 goto badscope; 520 bzero(&src_sa, sizeof(src_sa)); 521 src_sa.sin6_family = AF_INET6; 522 src_sa.sin6_len = sizeof(src_sa); 523 src_sa.sin6_addr = ip6->ip6_src; 524 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 525 goto badscope; 526 527 dst0 = ip6->ip6_dst; 528 if (in6_setscope(&dst0, origifp, &zone)) 529 goto badscope; 530 /* re-initialize to be sure */ 531 bzero(&dst_sa, sizeof(dst_sa)); 532 dst_sa.sin6_family = AF_INET6; 533 dst_sa.sin6_len = sizeof(dst_sa); 534 dst_sa.sin6_addr = ip6->ip6_dst; 535 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 536 goto badscope; 537 } 538 539 /* We should use ia_ifp to support the case of 540 * sending packets to an address of our own. 541 */ 542 if (ia != NULL && ia->ia_ifp) 543 ifp = ia->ia_ifp; 544 545 /* scope check is done. */ 546 goto routefound; 547 548 badscope: 549 IP6STAT_INC(ip6s_badscope); 550 in6_ifstat_inc(origifp, ifs6_out_discard); 551 if (error == 0) 552 error = EHOSTUNREACH; /* XXX */ 553 goto bad; 554 555 routefound: 556 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 557 if (opt && opt->ip6po_nextroute.ro_rt) { 558 /* 559 * The nexthop is explicitly specified by the 560 * application. We assume the next hop is an IPv6 561 * address. 562 */ 563 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 564 } 565 else if ((rt->rt_flags & RTF_GATEWAY)) 566 dst = (struct sockaddr_in6 *)rt->rt_gateway; 567 } 568 569 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 570 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 571 } else { 572 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 573 in6_ifstat_inc(ifp, ifs6_out_mcast); 574 /* 575 * Confirm that the outgoing interface supports multicast. 576 */ 577 if (!(ifp->if_flags & IFF_MULTICAST)) { 578 IP6STAT_INC(ip6s_noroute); 579 in6_ifstat_inc(ifp, ifs6_out_discard); 580 error = ENETUNREACH; 581 goto bad; 582 } 583 if ((im6o == NULL && in6_mcast_loop) || 584 (im6o && im6o->im6o_multicast_loop)) { 585 /* 586 * Loop back multicast datagram if not expressly 587 * forbidden to do so, even if we have not joined 588 * the address; protocols will filter it later, 589 * thus deferring a hash lookup and lock acquisition 590 * at the expense of an m_copym(). 591 */ 592 ip6_mloopback(ifp, m, dst); 593 } else { 594 /* 595 * If we are acting as a multicast router, perform 596 * multicast forwarding as if the packet had just 597 * arrived on the interface to which we are about 598 * to send. The multicast forwarding function 599 * recursively calls this function, using the 600 * IPV6_FORWARDING flag to prevent infinite recursion. 601 * 602 * Multicasts that are looped back by ip6_mloopback(), 603 * above, will be forwarded by the ip6_input() routine, 604 * if necessary. 605 */ 606 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 607 /* 608 * XXX: ip6_mforward expects that rcvif is NULL 609 * when it is called from the originating path. 610 * However, it may not always be the case. 611 */ 612 m->m_pkthdr.rcvif = NULL; 613 if (ip6_mforward(ip6, ifp, m) != 0) { 614 m_freem(m); 615 goto done; 616 } 617 } 618 } 619 /* 620 * Multicasts with a hoplimit of zero may be looped back, 621 * above, but must not be transmitted on a network. 622 * Also, multicasts addressed to the loopback interface 623 * are not sent -- the above call to ip6_mloopback() will 624 * loop back a copy if this host actually belongs to the 625 * destination group on the loopback interface. 626 */ 627 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 628 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 629 m_freem(m); 630 goto done; 631 } 632 } 633 634 /* 635 * Fill the outgoing inteface to tell the upper layer 636 * to increment per-interface statistics. 637 */ 638 if (ifpp) 639 *ifpp = ifp; 640 641 /* Determine path MTU. */ 642 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 643 &alwaysfrag, inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m))) != 0) 644 goto bad; 645 646 /* 647 * The caller of this function may specify to use the minimum MTU 648 * in some cases. 649 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 650 * setting. The logic is a bit complicated; by default, unicast 651 * packets will follow path MTU while multicast packets will be sent at 652 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 653 * including unicast ones will be sent at the minimum MTU. Multicast 654 * packets will always be sent at the minimum MTU unless 655 * IP6PO_MINMTU_DISABLE is explicitly specified. 656 * See RFC 3542 for more details. 657 */ 658 if (mtu > IPV6_MMTU) { 659 if ((flags & IPV6_MINMTU)) 660 mtu = IPV6_MMTU; 661 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 662 mtu = IPV6_MMTU; 663 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 664 (opt == NULL || 665 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 666 mtu = IPV6_MMTU; 667 } 668 } 669 670 /* 671 * clear embedded scope identifiers if necessary. 672 * in6_clearscope will touch the addresses only when necessary. 673 */ 674 in6_clearscope(&ip6->ip6_src); 675 in6_clearscope(&ip6->ip6_dst); 676 677 /* 678 * If the outgoing packet contains a hop-by-hop options header, 679 * it must be examined and processed even by the source node. 680 * (RFC 2460, section 4.) 681 */ 682 if (exthdrs.ip6e_hbh) { 683 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 684 u_int32_t dummy; /* XXX unused */ 685 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 686 687 #ifdef DIAGNOSTIC 688 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 689 panic("ip6e_hbh is not contiguous"); 690 #endif 691 /* 692 * XXX: if we have to send an ICMPv6 error to the sender, 693 * we need the M_LOOP flag since icmp6_error() expects 694 * the IPv6 and the hop-by-hop options header are 695 * contiguous unless the flag is set. 696 */ 697 m->m_flags |= M_LOOP; 698 m->m_pkthdr.rcvif = ifp; 699 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 700 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 701 &dummy, &plen) < 0) { 702 /* m was already freed at this point */ 703 error = EINVAL;/* better error? */ 704 goto done; 705 } 706 m->m_flags &= ~M_LOOP; /* XXX */ 707 m->m_pkthdr.rcvif = NULL; 708 } 709 710 /* Jump over all PFIL processing if hooks are not active. */ 711 if (!PFIL_HOOKED(&V_inet6_pfil_hook)) 712 goto passout; 713 714 odst = ip6->ip6_dst; 715 /* Run through list of hooks for output packets. */ 716 error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp); 717 if (error != 0 || m == NULL) 718 goto done; 719 ip6 = mtod(m, struct ip6_hdr *); 720 721 /* See if destination IP address was changed by packet filter. */ 722 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 723 m->m_flags |= M_SKIP_FIREWALL; 724 /* If destination is now ourself drop to ip6_input(). */ 725 if (in6_localip(&ip6->ip6_dst)) { 726 m->m_flags |= M_FASTFWD_OURS; 727 if (m->m_pkthdr.rcvif == NULL) 728 m->m_pkthdr.rcvif = V_loif; 729 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 730 m->m_pkthdr.csum_flags |= 731 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 732 m->m_pkthdr.csum_data = 0xffff; 733 } 734 #ifdef SCTP 735 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 736 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 737 #endif 738 error = netisr_queue(NETISR_IPV6, m); 739 goto done; 740 } else 741 goto again; /* Redo the routing table lookup. */ 742 } 743 744 /* See if local, if yes, send it to netisr. */ 745 if (m->m_flags & M_FASTFWD_OURS) { 746 if (m->m_pkthdr.rcvif == NULL) 747 m->m_pkthdr.rcvif = V_loif; 748 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 749 m->m_pkthdr.csum_flags |= 750 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 751 m->m_pkthdr.csum_data = 0xffff; 752 } 753 #ifdef SCTP 754 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 755 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 756 #endif 757 error = netisr_queue(NETISR_IPV6, m); 758 goto done; 759 } 760 /* Or forward to some other address? */ 761 if ((m->m_flags & M_IP6_NEXTHOP) && 762 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 763 dst = (struct sockaddr_in6 *)&ro->ro_dst; 764 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 765 m->m_flags |= M_SKIP_FIREWALL; 766 m->m_flags &= ~M_IP6_NEXTHOP; 767 m_tag_delete(m, fwd_tag); 768 goto again; 769 } 770 771 passout: 772 /* 773 * Send the packet to the outgoing interface. 774 * If necessary, do IPv6 fragmentation before sending. 775 * 776 * the logic here is rather complex: 777 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 778 * 1-a: send as is if tlen <= path mtu 779 * 1-b: fragment if tlen > path mtu 780 * 781 * 2: if user asks us not to fragment (dontfrag == 1) 782 * 2-a: send as is if tlen <= interface mtu 783 * 2-b: error if tlen > interface mtu 784 * 785 * 3: if we always need to attach fragment header (alwaysfrag == 1) 786 * always fragment 787 * 788 * 4: if dontfrag == 1 && alwaysfrag == 1 789 * error, as we cannot handle this conflicting request 790 */ 791 sw_csum = m->m_pkthdr.csum_flags; 792 if (!hdrsplit) { 793 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 794 sw_csum &= ~ifp->if_hwassist; 795 } else 796 tso = 0; 797 /* 798 * If we added extension headers, we will not do TSO and calculate the 799 * checksums ourselves for now. 800 * XXX-BZ Need a framework to know when the NIC can handle it, even 801 * with ext. hdrs. 802 */ 803 if (sw_csum & CSUM_DELAY_DATA_IPV6) { 804 sw_csum &= ~CSUM_DELAY_DATA_IPV6; 805 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 806 } 807 #ifdef SCTP 808 if (sw_csum & CSUM_SCTP_IPV6) { 809 sw_csum &= ~CSUM_SCTP_IPV6; 810 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 811 } 812 #endif 813 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 814 tlen = m->m_pkthdr.len; 815 816 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 817 dontfrag = 1; 818 else 819 dontfrag = 0; 820 if (dontfrag && alwaysfrag) { /* case 4 */ 821 /* conflicting request - can't transmit */ 822 error = EMSGSIZE; 823 goto bad; 824 } 825 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ 826 /* 827 * Even if the DONTFRAG option is specified, we cannot send the 828 * packet when the data length is larger than the MTU of the 829 * outgoing interface. 830 * Notify the error by sending IPV6_PATHMTU ancillary data as 831 * well as returning an error code (the latter is not described 832 * in the API spec.) 833 */ 834 u_int32_t mtu32; 835 struct ip6ctlparam ip6cp; 836 837 mtu32 = (u_int32_t)mtu; 838 bzero(&ip6cp, sizeof(ip6cp)); 839 ip6cp.ip6c_cmdarg = (void *)&mtu32; 840 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 841 (void *)&ip6cp); 842 843 error = EMSGSIZE; 844 goto bad; 845 } 846 847 /* 848 * transmit packet without fragmentation 849 */ 850 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 851 struct in6_ifaddr *ia6; 852 853 ip6 = mtod(m, struct ip6_hdr *); 854 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 855 if (ia6) { 856 /* Record statistics for this interface address. */ 857 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 858 counter_u64_add(ia6->ia_ifa.ifa_obytes, 859 m->m_pkthdr.len); 860 ifa_free(&ia6->ia_ifa); 861 } 862 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 863 goto done; 864 } 865 866 /* 867 * try to fragment the packet. case 1-b and 3 868 */ 869 if (mtu < IPV6_MMTU) { 870 /* path MTU cannot be less than IPV6_MMTU */ 871 error = EMSGSIZE; 872 in6_ifstat_inc(ifp, ifs6_out_fragfail); 873 goto bad; 874 } else if (ip6->ip6_plen == 0) { 875 /* jumbo payload cannot be fragmented */ 876 error = EMSGSIZE; 877 in6_ifstat_inc(ifp, ifs6_out_fragfail); 878 goto bad; 879 } else { 880 struct mbuf **mnext, *m_frgpart; 881 struct ip6_frag *ip6f; 882 u_int32_t id = htonl(ip6_randomid()); 883 u_char nextproto; 884 885 int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len; 886 887 /* 888 * Too large for the destination or interface; 889 * fragment if possible. 890 * Must be able to put at least 8 bytes per fragment. 891 */ 892 hlen = unfragpartlen; 893 if (mtu > IPV6_MAXPACKET) 894 mtu = IPV6_MAXPACKET; 895 896 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 897 if (len < 8) { 898 error = EMSGSIZE; 899 in6_ifstat_inc(ifp, ifs6_out_fragfail); 900 goto bad; 901 } 902 903 /* 904 * Verify that we have any chance at all of being able to queue 905 * the packet or packet fragments 906 */ 907 if (qslots <= 0 || ((u_int)qslots * (mtu - hlen) 908 < tlen /* - hlen */)) { 909 error = ENOBUFS; 910 IP6STAT_INC(ip6s_odropped); 911 goto bad; 912 } 913 914 915 /* 916 * If the interface will not calculate checksums on 917 * fragmented packets, then do it here. 918 * XXX-BZ handle the hw offloading case. Need flags. 919 */ 920 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 921 in6_delayed_cksum(m, plen, hlen); 922 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 923 } 924 #ifdef SCTP 925 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 926 sctp_delayed_cksum(m, hlen); 927 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 928 } 929 #endif 930 mnext = &m->m_nextpkt; 931 932 /* 933 * Change the next header field of the last header in the 934 * unfragmentable part. 935 */ 936 if (exthdrs.ip6e_rthdr) { 937 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 938 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 939 } else if (exthdrs.ip6e_dest1) { 940 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 941 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 942 } else if (exthdrs.ip6e_hbh) { 943 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 944 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 945 } else { 946 nextproto = ip6->ip6_nxt; 947 ip6->ip6_nxt = IPPROTO_FRAGMENT; 948 } 949 950 /* 951 * Loop through length of segment after first fragment, 952 * make new header and copy data of each part and link onto 953 * chain. 954 */ 955 m0 = m; 956 for (off = hlen; off < tlen; off += len) { 957 m = m_gethdr(M_NOWAIT, MT_DATA); 958 if (!m) { 959 error = ENOBUFS; 960 IP6STAT_INC(ip6s_odropped); 961 goto sendorfree; 962 } 963 m->m_flags = m0->m_flags & M_COPYFLAGS; 964 *mnext = m; 965 mnext = &m->m_nextpkt; 966 m->m_data += max_linkhdr; 967 mhip6 = mtod(m, struct ip6_hdr *); 968 *mhip6 = *ip6; 969 m->m_len = sizeof(*mhip6); 970 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 971 if (error) { 972 IP6STAT_INC(ip6s_odropped); 973 goto sendorfree; 974 } 975 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 976 if (off + len >= tlen) 977 len = tlen - off; 978 else 979 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 980 mhip6->ip6_plen = htons((u_short)(len + hlen + 981 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 982 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 983 error = ENOBUFS; 984 IP6STAT_INC(ip6s_odropped); 985 goto sendorfree; 986 } 987 m_cat(m, m_frgpart); 988 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 989 m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum; 990 m->m_pkthdr.rcvif = NULL; 991 ip6f->ip6f_reserved = 0; 992 ip6f->ip6f_ident = id; 993 ip6f->ip6f_nxt = nextproto; 994 IP6STAT_INC(ip6s_ofragments); 995 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 996 } 997 998 in6_ifstat_inc(ifp, ifs6_out_fragok); 999 } 1000 1001 /* 1002 * Remove leading garbages. 1003 */ 1004 sendorfree: 1005 m = m0->m_nextpkt; 1006 m0->m_nextpkt = 0; 1007 m_freem(m0); 1008 for (m0 = m; m; m = m0) { 1009 m0 = m->m_nextpkt; 1010 m->m_nextpkt = 0; 1011 if (error == 0) { 1012 /* Record statistics for this interface address. */ 1013 if (ia) { 1014 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1015 counter_u64_add(ia->ia_ifa.ifa_obytes, 1016 m->m_pkthdr.len); 1017 } 1018 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1019 } else 1020 m_freem(m); 1021 } 1022 1023 if (error == 0) 1024 IP6STAT_INC(ip6s_fragmented); 1025 1026 done: 1027 if (ro == &ip6route) 1028 RO_RTFREE(ro); 1029 if (ro_pmtu == &ip6route) 1030 RO_RTFREE(ro_pmtu); 1031 return (error); 1032 1033 freehdrs: 1034 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1035 m_freem(exthdrs.ip6e_dest1); 1036 m_freem(exthdrs.ip6e_rthdr); 1037 m_freem(exthdrs.ip6e_dest2); 1038 /* FALLTHROUGH */ 1039 bad: 1040 if (m) 1041 m_freem(m); 1042 goto done; 1043 } 1044 1045 static int 1046 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1047 { 1048 struct mbuf *m; 1049 1050 if (hlen > MCLBYTES) 1051 return (ENOBUFS); /* XXX */ 1052 1053 if (hlen > MLEN) 1054 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1055 else 1056 m = m_get(M_NOWAIT, MT_DATA); 1057 if (m == NULL) 1058 return (ENOBUFS); 1059 m->m_len = hlen; 1060 if (hdr) 1061 bcopy(hdr, mtod(m, caddr_t), hlen); 1062 1063 *mp = m; 1064 return (0); 1065 } 1066 1067 /* 1068 * Insert jumbo payload option. 1069 */ 1070 static int 1071 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1072 { 1073 struct mbuf *mopt; 1074 u_char *optbuf; 1075 u_int32_t v; 1076 1077 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1078 1079 /* 1080 * If there is no hop-by-hop options header, allocate new one. 1081 * If there is one but it doesn't have enough space to store the 1082 * jumbo payload option, allocate a cluster to store the whole options. 1083 * Otherwise, use it to store the options. 1084 */ 1085 if (exthdrs->ip6e_hbh == 0) { 1086 mopt = m_get(M_NOWAIT, MT_DATA); 1087 if (mopt == NULL) 1088 return (ENOBUFS); 1089 mopt->m_len = JUMBOOPTLEN; 1090 optbuf = mtod(mopt, u_char *); 1091 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1092 exthdrs->ip6e_hbh = mopt; 1093 } else { 1094 struct ip6_hbh *hbh; 1095 1096 mopt = exthdrs->ip6e_hbh; 1097 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1098 /* 1099 * XXX assumption: 1100 * - exthdrs->ip6e_hbh is not referenced from places 1101 * other than exthdrs. 1102 * - exthdrs->ip6e_hbh is not an mbuf chain. 1103 */ 1104 int oldoptlen = mopt->m_len; 1105 struct mbuf *n; 1106 1107 /* 1108 * XXX: give up if the whole (new) hbh header does 1109 * not fit even in an mbuf cluster. 1110 */ 1111 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1112 return (ENOBUFS); 1113 1114 /* 1115 * As a consequence, we must always prepare a cluster 1116 * at this point. 1117 */ 1118 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1119 if (n == NULL) 1120 return (ENOBUFS); 1121 n->m_len = oldoptlen + JUMBOOPTLEN; 1122 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1123 oldoptlen); 1124 optbuf = mtod(n, caddr_t) + oldoptlen; 1125 m_freem(mopt); 1126 mopt = exthdrs->ip6e_hbh = n; 1127 } else { 1128 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1129 mopt->m_len += JUMBOOPTLEN; 1130 } 1131 optbuf[0] = IP6OPT_PADN; 1132 optbuf[1] = 1; 1133 1134 /* 1135 * Adjust the header length according to the pad and 1136 * the jumbo payload option. 1137 */ 1138 hbh = mtod(mopt, struct ip6_hbh *); 1139 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1140 } 1141 1142 /* fill in the option. */ 1143 optbuf[2] = IP6OPT_JUMBO; 1144 optbuf[3] = 4; 1145 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1146 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1147 1148 /* finally, adjust the packet header length */ 1149 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1150 1151 return (0); 1152 #undef JUMBOOPTLEN 1153 } 1154 1155 /* 1156 * Insert fragment header and copy unfragmentable header portions. 1157 */ 1158 static int 1159 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1160 struct ip6_frag **frghdrp) 1161 { 1162 struct mbuf *n, *mlast; 1163 1164 if (hlen > sizeof(struct ip6_hdr)) { 1165 n = m_copym(m0, sizeof(struct ip6_hdr), 1166 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1167 if (n == 0) 1168 return (ENOBUFS); 1169 m->m_next = n; 1170 } else 1171 n = m; 1172 1173 /* Search for the last mbuf of unfragmentable part. */ 1174 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1175 ; 1176 1177 if ((mlast->m_flags & M_EXT) == 0 && 1178 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1179 /* use the trailing space of the last mbuf for the fragment hdr */ 1180 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1181 mlast->m_len); 1182 mlast->m_len += sizeof(struct ip6_frag); 1183 m->m_pkthdr.len += sizeof(struct ip6_frag); 1184 } else { 1185 /* allocate a new mbuf for the fragment header */ 1186 struct mbuf *mfrg; 1187 1188 mfrg = m_get(M_NOWAIT, MT_DATA); 1189 if (mfrg == NULL) 1190 return (ENOBUFS); 1191 mfrg->m_len = sizeof(struct ip6_frag); 1192 *frghdrp = mtod(mfrg, struct ip6_frag *); 1193 mlast->m_next = mfrg; 1194 } 1195 1196 return (0); 1197 } 1198 1199 static int 1200 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro, 1201 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup, 1202 int *alwaysfragp, u_int fibnum) 1203 { 1204 u_int32_t mtu = 0; 1205 int alwaysfrag = 0; 1206 int error = 0; 1207 1208 if (ro_pmtu != ro) { 1209 /* The first hop and the final destination may differ. */ 1210 struct sockaddr_in6 *sa6_dst = 1211 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1212 if (ro_pmtu->ro_rt && 1213 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 || 1214 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) { 1215 RTFREE(ro_pmtu->ro_rt); 1216 ro_pmtu->ro_rt = (struct rtentry *)NULL; 1217 } 1218 if (ro_pmtu->ro_rt == NULL) { 1219 bzero(sa6_dst, sizeof(*sa6_dst)); 1220 sa6_dst->sin6_family = AF_INET6; 1221 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1222 sa6_dst->sin6_addr = *dst; 1223 1224 in6_rtalloc(ro_pmtu, fibnum); 1225 } 1226 } 1227 if (ro_pmtu->ro_rt) { 1228 u_int32_t ifmtu; 1229 struct in_conninfo inc; 1230 1231 bzero(&inc, sizeof(inc)); 1232 inc.inc_flags |= INC_ISIPV6; 1233 inc.inc6_faddr = *dst; 1234 1235 if (ifp == NULL) 1236 ifp = ro_pmtu->ro_rt->rt_ifp; 1237 ifmtu = IN6_LINKMTU(ifp); 1238 mtu = tcp_hc_getmtu(&inc); 1239 if (mtu) 1240 mtu = min(mtu, ro_pmtu->ro_rt->rt_mtu); 1241 else 1242 mtu = ro_pmtu->ro_rt->rt_mtu; 1243 if (mtu == 0) 1244 mtu = ifmtu; 1245 else if (mtu < IPV6_MMTU) { 1246 /* 1247 * RFC2460 section 5, last paragraph: 1248 * if we record ICMPv6 too big message with 1249 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1250 * or smaller, with framgent header attached. 1251 * (fragment header is needed regardless from the 1252 * packet size, for translators to identify packets) 1253 */ 1254 alwaysfrag = 1; 1255 mtu = IPV6_MMTU; 1256 } else if (mtu > ifmtu) { 1257 /* 1258 * The MTU on the route is larger than the MTU on 1259 * the interface! This shouldn't happen, unless the 1260 * MTU of the interface has been changed after the 1261 * interface was brought up. Change the MTU in the 1262 * route to match the interface MTU (as long as the 1263 * field isn't locked). 1264 */ 1265 mtu = ifmtu; 1266 ro_pmtu->ro_rt->rt_mtu = mtu; 1267 } 1268 } else if (ifp) { 1269 mtu = IN6_LINKMTU(ifp); 1270 } else 1271 error = EHOSTUNREACH; /* XXX */ 1272 1273 *mtup = mtu; 1274 if (alwaysfragp) 1275 *alwaysfragp = alwaysfrag; 1276 return (error); 1277 } 1278 1279 /* 1280 * IP6 socket option processing. 1281 */ 1282 int 1283 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1284 { 1285 int optdatalen, uproto; 1286 void *optdata; 1287 struct inpcb *in6p = sotoinpcb(so); 1288 int error, optval; 1289 int level, op, optname; 1290 int optlen; 1291 struct thread *td; 1292 #ifdef RSS 1293 uint32_t rss_bucket; 1294 int retval; 1295 #endif 1296 1297 level = sopt->sopt_level; 1298 op = sopt->sopt_dir; 1299 optname = sopt->sopt_name; 1300 optlen = sopt->sopt_valsize; 1301 td = sopt->sopt_td; 1302 error = 0; 1303 optval = 0; 1304 uproto = (int)so->so_proto->pr_protocol; 1305 1306 if (level != IPPROTO_IPV6) { 1307 error = EINVAL; 1308 1309 if (sopt->sopt_level == SOL_SOCKET && 1310 sopt->sopt_dir == SOPT_SET) { 1311 switch (sopt->sopt_name) { 1312 case SO_REUSEADDR: 1313 INP_WLOCK(in6p); 1314 if ((so->so_options & SO_REUSEADDR) != 0) 1315 in6p->inp_flags2 |= INP_REUSEADDR; 1316 else 1317 in6p->inp_flags2 &= ~INP_REUSEADDR; 1318 INP_WUNLOCK(in6p); 1319 error = 0; 1320 break; 1321 case SO_REUSEPORT: 1322 INP_WLOCK(in6p); 1323 if ((so->so_options & SO_REUSEPORT) != 0) 1324 in6p->inp_flags2 |= INP_REUSEPORT; 1325 else 1326 in6p->inp_flags2 &= ~INP_REUSEPORT; 1327 INP_WUNLOCK(in6p); 1328 error = 0; 1329 break; 1330 case SO_SETFIB: 1331 INP_WLOCK(in6p); 1332 in6p->inp_inc.inc_fibnum = so->so_fibnum; 1333 INP_WUNLOCK(in6p); 1334 error = 0; 1335 break; 1336 default: 1337 break; 1338 } 1339 } 1340 } else { /* level == IPPROTO_IPV6 */ 1341 switch (op) { 1342 1343 case SOPT_SET: 1344 switch (optname) { 1345 case IPV6_2292PKTOPTIONS: 1346 #ifdef IPV6_PKTOPTIONS 1347 case IPV6_PKTOPTIONS: 1348 #endif 1349 { 1350 struct mbuf *m; 1351 1352 error = soopt_getm(sopt, &m); /* XXX */ 1353 if (error != 0) 1354 break; 1355 error = soopt_mcopyin(sopt, m); /* XXX */ 1356 if (error != 0) 1357 break; 1358 error = ip6_pcbopts(&in6p->in6p_outputopts, 1359 m, so, sopt); 1360 m_freem(m); /* XXX */ 1361 break; 1362 } 1363 1364 /* 1365 * Use of some Hop-by-Hop options or some 1366 * Destination options, might require special 1367 * privilege. That is, normal applications 1368 * (without special privilege) might be forbidden 1369 * from setting certain options in outgoing packets, 1370 * and might never see certain options in received 1371 * packets. [RFC 2292 Section 6] 1372 * KAME specific note: 1373 * KAME prevents non-privileged users from sending or 1374 * receiving ANY hbh/dst options in order to avoid 1375 * overhead of parsing options in the kernel. 1376 */ 1377 case IPV6_RECVHOPOPTS: 1378 case IPV6_RECVDSTOPTS: 1379 case IPV6_RECVRTHDRDSTOPTS: 1380 if (td != NULL) { 1381 error = priv_check(td, 1382 PRIV_NETINET_SETHDROPTS); 1383 if (error) 1384 break; 1385 } 1386 /* FALLTHROUGH */ 1387 case IPV6_UNICAST_HOPS: 1388 case IPV6_HOPLIMIT: 1389 case IPV6_FAITH: 1390 1391 case IPV6_RECVPKTINFO: 1392 case IPV6_RECVHOPLIMIT: 1393 case IPV6_RECVRTHDR: 1394 case IPV6_RECVPATHMTU: 1395 case IPV6_RECVTCLASS: 1396 case IPV6_V6ONLY: 1397 case IPV6_AUTOFLOWLABEL: 1398 case IPV6_BINDANY: 1399 case IPV6_BINDMULTI: 1400 #ifdef RSS 1401 case IPV6_RSS_LISTEN_BUCKET: 1402 #endif 1403 if (optname == IPV6_BINDANY && td != NULL) { 1404 error = priv_check(td, 1405 PRIV_NETINET_BINDANY); 1406 if (error) 1407 break; 1408 } 1409 1410 if (optlen != sizeof(int)) { 1411 error = EINVAL; 1412 break; 1413 } 1414 error = sooptcopyin(sopt, &optval, 1415 sizeof optval, sizeof optval); 1416 if (error) 1417 break; 1418 switch (optname) { 1419 1420 case IPV6_UNICAST_HOPS: 1421 if (optval < -1 || optval >= 256) 1422 error = EINVAL; 1423 else { 1424 /* -1 = kernel default */ 1425 in6p->in6p_hops = optval; 1426 if ((in6p->inp_vflag & 1427 INP_IPV4) != 0) 1428 in6p->inp_ip_ttl = optval; 1429 } 1430 break; 1431 #define OPTSET(bit) \ 1432 do { \ 1433 INP_WLOCK(in6p); \ 1434 if (optval) \ 1435 in6p->inp_flags |= (bit); \ 1436 else \ 1437 in6p->inp_flags &= ~(bit); \ 1438 INP_WUNLOCK(in6p); \ 1439 } while (/*CONSTCOND*/ 0) 1440 #define OPTSET2292(bit) \ 1441 do { \ 1442 INP_WLOCK(in6p); \ 1443 in6p->inp_flags |= IN6P_RFC2292; \ 1444 if (optval) \ 1445 in6p->inp_flags |= (bit); \ 1446 else \ 1447 in6p->inp_flags &= ~(bit); \ 1448 INP_WUNLOCK(in6p); \ 1449 } while (/*CONSTCOND*/ 0) 1450 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1451 1452 #define OPTSET2(bit, val) do { \ 1453 INP_WLOCK(in6p); \ 1454 if (val) \ 1455 in6p->inp_flags2 |= bit; \ 1456 else \ 1457 in6p->inp_flags2 &= ~bit; \ 1458 INP_WUNLOCK(in6p); \ 1459 } while (0) 1460 #define OPTBIT2(bit) (in6p->inp_flags2 & (bit) ? 1 : 0) 1461 1462 case IPV6_RECVPKTINFO: 1463 /* cannot mix with RFC2292 */ 1464 if (OPTBIT(IN6P_RFC2292)) { 1465 error = EINVAL; 1466 break; 1467 } 1468 OPTSET(IN6P_PKTINFO); 1469 break; 1470 1471 case IPV6_HOPLIMIT: 1472 { 1473 struct ip6_pktopts **optp; 1474 1475 /* cannot mix with RFC2292 */ 1476 if (OPTBIT(IN6P_RFC2292)) { 1477 error = EINVAL; 1478 break; 1479 } 1480 optp = &in6p->in6p_outputopts; 1481 error = ip6_pcbopt(IPV6_HOPLIMIT, 1482 (u_char *)&optval, sizeof(optval), 1483 optp, (td != NULL) ? td->td_ucred : 1484 NULL, uproto); 1485 break; 1486 } 1487 1488 case IPV6_RECVHOPLIMIT: 1489 /* cannot mix with RFC2292 */ 1490 if (OPTBIT(IN6P_RFC2292)) { 1491 error = EINVAL; 1492 break; 1493 } 1494 OPTSET(IN6P_HOPLIMIT); 1495 break; 1496 1497 case IPV6_RECVHOPOPTS: 1498 /* cannot mix with RFC2292 */ 1499 if (OPTBIT(IN6P_RFC2292)) { 1500 error = EINVAL; 1501 break; 1502 } 1503 OPTSET(IN6P_HOPOPTS); 1504 break; 1505 1506 case IPV6_RECVDSTOPTS: 1507 /* cannot mix with RFC2292 */ 1508 if (OPTBIT(IN6P_RFC2292)) { 1509 error = EINVAL; 1510 break; 1511 } 1512 OPTSET(IN6P_DSTOPTS); 1513 break; 1514 1515 case IPV6_RECVRTHDRDSTOPTS: 1516 /* cannot mix with RFC2292 */ 1517 if (OPTBIT(IN6P_RFC2292)) { 1518 error = EINVAL; 1519 break; 1520 } 1521 OPTSET(IN6P_RTHDRDSTOPTS); 1522 break; 1523 1524 case IPV6_RECVRTHDR: 1525 /* cannot mix with RFC2292 */ 1526 if (OPTBIT(IN6P_RFC2292)) { 1527 error = EINVAL; 1528 break; 1529 } 1530 OPTSET(IN6P_RTHDR); 1531 break; 1532 1533 case IPV6_FAITH: 1534 OPTSET(INP_FAITH); 1535 break; 1536 1537 case IPV6_RECVPATHMTU: 1538 /* 1539 * We ignore this option for TCP 1540 * sockets. 1541 * (RFC3542 leaves this case 1542 * unspecified.) 1543 */ 1544 if (uproto != IPPROTO_TCP) 1545 OPTSET(IN6P_MTU); 1546 break; 1547 1548 case IPV6_V6ONLY: 1549 /* 1550 * make setsockopt(IPV6_V6ONLY) 1551 * available only prior to bind(2). 1552 * see ipng mailing list, Jun 22 2001. 1553 */ 1554 if (in6p->inp_lport || 1555 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1556 error = EINVAL; 1557 break; 1558 } 1559 OPTSET(IN6P_IPV6_V6ONLY); 1560 if (optval) 1561 in6p->inp_vflag &= ~INP_IPV4; 1562 else 1563 in6p->inp_vflag |= INP_IPV4; 1564 break; 1565 case IPV6_RECVTCLASS: 1566 /* cannot mix with RFC2292 XXX */ 1567 if (OPTBIT(IN6P_RFC2292)) { 1568 error = EINVAL; 1569 break; 1570 } 1571 OPTSET(IN6P_TCLASS); 1572 break; 1573 case IPV6_AUTOFLOWLABEL: 1574 OPTSET(IN6P_AUTOFLOWLABEL); 1575 break; 1576 1577 case IPV6_BINDANY: 1578 OPTSET(INP_BINDANY); 1579 break; 1580 1581 case IPV6_BINDMULTI: 1582 OPTSET2(INP_BINDMULTI, optval); 1583 break; 1584 #ifdef RSS 1585 case IPV6_RSS_LISTEN_BUCKET: 1586 if ((optval >= 0) && 1587 (optval < rss_getnumbuckets())) { 1588 in6p->inp_rss_listen_bucket = optval; 1589 OPTSET2(INP_RSS_BUCKET_SET, 1); 1590 } else { 1591 error = EINVAL; 1592 } 1593 break; 1594 #endif 1595 } 1596 break; 1597 1598 case IPV6_TCLASS: 1599 case IPV6_DONTFRAG: 1600 case IPV6_USE_MIN_MTU: 1601 case IPV6_PREFER_TEMPADDR: 1602 if (optlen != sizeof(optval)) { 1603 error = EINVAL; 1604 break; 1605 } 1606 error = sooptcopyin(sopt, &optval, 1607 sizeof optval, sizeof optval); 1608 if (error) 1609 break; 1610 { 1611 struct ip6_pktopts **optp; 1612 optp = &in6p->in6p_outputopts; 1613 error = ip6_pcbopt(optname, 1614 (u_char *)&optval, sizeof(optval), 1615 optp, (td != NULL) ? td->td_ucred : 1616 NULL, uproto); 1617 break; 1618 } 1619 1620 case IPV6_2292PKTINFO: 1621 case IPV6_2292HOPLIMIT: 1622 case IPV6_2292HOPOPTS: 1623 case IPV6_2292DSTOPTS: 1624 case IPV6_2292RTHDR: 1625 /* RFC 2292 */ 1626 if (optlen != sizeof(int)) { 1627 error = EINVAL; 1628 break; 1629 } 1630 error = sooptcopyin(sopt, &optval, 1631 sizeof optval, sizeof optval); 1632 if (error) 1633 break; 1634 switch (optname) { 1635 case IPV6_2292PKTINFO: 1636 OPTSET2292(IN6P_PKTINFO); 1637 break; 1638 case IPV6_2292HOPLIMIT: 1639 OPTSET2292(IN6P_HOPLIMIT); 1640 break; 1641 case IPV6_2292HOPOPTS: 1642 /* 1643 * Check super-user privilege. 1644 * See comments for IPV6_RECVHOPOPTS. 1645 */ 1646 if (td != NULL) { 1647 error = priv_check(td, 1648 PRIV_NETINET_SETHDROPTS); 1649 if (error) 1650 return (error); 1651 } 1652 OPTSET2292(IN6P_HOPOPTS); 1653 break; 1654 case IPV6_2292DSTOPTS: 1655 if (td != NULL) { 1656 error = priv_check(td, 1657 PRIV_NETINET_SETHDROPTS); 1658 if (error) 1659 return (error); 1660 } 1661 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1662 break; 1663 case IPV6_2292RTHDR: 1664 OPTSET2292(IN6P_RTHDR); 1665 break; 1666 } 1667 break; 1668 case IPV6_PKTINFO: 1669 case IPV6_HOPOPTS: 1670 case IPV6_RTHDR: 1671 case IPV6_DSTOPTS: 1672 case IPV6_RTHDRDSTOPTS: 1673 case IPV6_NEXTHOP: 1674 { 1675 /* new advanced API (RFC3542) */ 1676 u_char *optbuf; 1677 u_char optbuf_storage[MCLBYTES]; 1678 int optlen; 1679 struct ip6_pktopts **optp; 1680 1681 /* cannot mix with RFC2292 */ 1682 if (OPTBIT(IN6P_RFC2292)) { 1683 error = EINVAL; 1684 break; 1685 } 1686 1687 /* 1688 * We only ensure valsize is not too large 1689 * here. Further validation will be done 1690 * later. 1691 */ 1692 error = sooptcopyin(sopt, optbuf_storage, 1693 sizeof(optbuf_storage), 0); 1694 if (error) 1695 break; 1696 optlen = sopt->sopt_valsize; 1697 optbuf = optbuf_storage; 1698 optp = &in6p->in6p_outputopts; 1699 error = ip6_pcbopt(optname, optbuf, optlen, 1700 optp, (td != NULL) ? td->td_ucred : NULL, 1701 uproto); 1702 break; 1703 } 1704 #undef OPTSET 1705 1706 case IPV6_MULTICAST_IF: 1707 case IPV6_MULTICAST_HOPS: 1708 case IPV6_MULTICAST_LOOP: 1709 case IPV6_JOIN_GROUP: 1710 case IPV6_LEAVE_GROUP: 1711 case IPV6_MSFILTER: 1712 case MCAST_BLOCK_SOURCE: 1713 case MCAST_UNBLOCK_SOURCE: 1714 case MCAST_JOIN_GROUP: 1715 case MCAST_LEAVE_GROUP: 1716 case MCAST_JOIN_SOURCE_GROUP: 1717 case MCAST_LEAVE_SOURCE_GROUP: 1718 error = ip6_setmoptions(in6p, sopt); 1719 break; 1720 1721 case IPV6_PORTRANGE: 1722 error = sooptcopyin(sopt, &optval, 1723 sizeof optval, sizeof optval); 1724 if (error) 1725 break; 1726 1727 INP_WLOCK(in6p); 1728 switch (optval) { 1729 case IPV6_PORTRANGE_DEFAULT: 1730 in6p->inp_flags &= ~(INP_LOWPORT); 1731 in6p->inp_flags &= ~(INP_HIGHPORT); 1732 break; 1733 1734 case IPV6_PORTRANGE_HIGH: 1735 in6p->inp_flags &= ~(INP_LOWPORT); 1736 in6p->inp_flags |= INP_HIGHPORT; 1737 break; 1738 1739 case IPV6_PORTRANGE_LOW: 1740 in6p->inp_flags &= ~(INP_HIGHPORT); 1741 in6p->inp_flags |= INP_LOWPORT; 1742 break; 1743 1744 default: 1745 error = EINVAL; 1746 break; 1747 } 1748 INP_WUNLOCK(in6p); 1749 break; 1750 1751 #ifdef IPSEC 1752 case IPV6_IPSEC_POLICY: 1753 { 1754 caddr_t req; 1755 struct mbuf *m; 1756 1757 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1758 break; 1759 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1760 break; 1761 req = mtod(m, caddr_t); 1762 error = ipsec_set_policy(in6p, optname, req, 1763 m->m_len, (sopt->sopt_td != NULL) ? 1764 sopt->sopt_td->td_ucred : NULL); 1765 m_freem(m); 1766 break; 1767 } 1768 #endif /* IPSEC */ 1769 1770 default: 1771 error = ENOPROTOOPT; 1772 break; 1773 } 1774 break; 1775 1776 case SOPT_GET: 1777 switch (optname) { 1778 1779 case IPV6_2292PKTOPTIONS: 1780 #ifdef IPV6_PKTOPTIONS 1781 case IPV6_PKTOPTIONS: 1782 #endif 1783 /* 1784 * RFC3542 (effectively) deprecated the 1785 * semantics of the 2292-style pktoptions. 1786 * Since it was not reliable in nature (i.e., 1787 * applications had to expect the lack of some 1788 * information after all), it would make sense 1789 * to simplify this part by always returning 1790 * empty data. 1791 */ 1792 sopt->sopt_valsize = 0; 1793 break; 1794 1795 case IPV6_RECVHOPOPTS: 1796 case IPV6_RECVDSTOPTS: 1797 case IPV6_RECVRTHDRDSTOPTS: 1798 case IPV6_UNICAST_HOPS: 1799 case IPV6_RECVPKTINFO: 1800 case IPV6_RECVHOPLIMIT: 1801 case IPV6_RECVRTHDR: 1802 case IPV6_RECVPATHMTU: 1803 1804 case IPV6_FAITH: 1805 case IPV6_V6ONLY: 1806 case IPV6_PORTRANGE: 1807 case IPV6_RECVTCLASS: 1808 case IPV6_AUTOFLOWLABEL: 1809 case IPV6_BINDANY: 1810 case IPV6_FLOWID: 1811 case IPV6_FLOWTYPE: 1812 #ifdef RSS 1813 case IPV6_RSSBUCKETID: 1814 #endif 1815 switch (optname) { 1816 1817 case IPV6_RECVHOPOPTS: 1818 optval = OPTBIT(IN6P_HOPOPTS); 1819 break; 1820 1821 case IPV6_RECVDSTOPTS: 1822 optval = OPTBIT(IN6P_DSTOPTS); 1823 break; 1824 1825 case IPV6_RECVRTHDRDSTOPTS: 1826 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1827 break; 1828 1829 case IPV6_UNICAST_HOPS: 1830 optval = in6p->in6p_hops; 1831 break; 1832 1833 case IPV6_RECVPKTINFO: 1834 optval = OPTBIT(IN6P_PKTINFO); 1835 break; 1836 1837 case IPV6_RECVHOPLIMIT: 1838 optval = OPTBIT(IN6P_HOPLIMIT); 1839 break; 1840 1841 case IPV6_RECVRTHDR: 1842 optval = OPTBIT(IN6P_RTHDR); 1843 break; 1844 1845 case IPV6_RECVPATHMTU: 1846 optval = OPTBIT(IN6P_MTU); 1847 break; 1848 1849 case IPV6_FAITH: 1850 optval = OPTBIT(INP_FAITH); 1851 break; 1852 1853 case IPV6_V6ONLY: 1854 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1855 break; 1856 1857 case IPV6_PORTRANGE: 1858 { 1859 int flags; 1860 flags = in6p->inp_flags; 1861 if (flags & INP_HIGHPORT) 1862 optval = IPV6_PORTRANGE_HIGH; 1863 else if (flags & INP_LOWPORT) 1864 optval = IPV6_PORTRANGE_LOW; 1865 else 1866 optval = 0; 1867 break; 1868 } 1869 case IPV6_RECVTCLASS: 1870 optval = OPTBIT(IN6P_TCLASS); 1871 break; 1872 1873 case IPV6_AUTOFLOWLABEL: 1874 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 1875 break; 1876 1877 case IPV6_BINDANY: 1878 optval = OPTBIT(INP_BINDANY); 1879 break; 1880 1881 case IPV6_FLOWID: 1882 optval = in6p->inp_flowid; 1883 break; 1884 1885 case IPV6_FLOWTYPE: 1886 optval = in6p->inp_flowtype; 1887 break; 1888 #ifdef RSS 1889 case IPV6_RSSBUCKETID: 1890 retval = 1891 rss_hash2bucket(in6p->inp_flowid, 1892 in6p->inp_flowtype, 1893 &rss_bucket); 1894 if (retval == 0) 1895 optval = rss_bucket; 1896 else 1897 error = EINVAL; 1898 break; 1899 #endif 1900 1901 case IPV6_BINDMULTI: 1902 optval = OPTBIT2(INP_BINDMULTI); 1903 break; 1904 1905 } 1906 if (error) 1907 break; 1908 error = sooptcopyout(sopt, &optval, 1909 sizeof optval); 1910 break; 1911 1912 case IPV6_PATHMTU: 1913 { 1914 u_long pmtu = 0; 1915 struct ip6_mtuinfo mtuinfo; 1916 struct route_in6 sro; 1917 1918 bzero(&sro, sizeof(sro)); 1919 1920 if (!(so->so_state & SS_ISCONNECTED)) 1921 return (ENOTCONN); 1922 /* 1923 * XXX: we dot not consider the case of source 1924 * routing, or optional information to specify 1925 * the outgoing interface. 1926 */ 1927 error = ip6_getpmtu(&sro, NULL, NULL, 1928 &in6p->in6p_faddr, &pmtu, NULL, 1929 so->so_fibnum); 1930 if (sro.ro_rt) 1931 RTFREE(sro.ro_rt); 1932 if (error) 1933 break; 1934 if (pmtu > IPV6_MAXPACKET) 1935 pmtu = IPV6_MAXPACKET; 1936 1937 bzero(&mtuinfo, sizeof(mtuinfo)); 1938 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1939 optdata = (void *)&mtuinfo; 1940 optdatalen = sizeof(mtuinfo); 1941 error = sooptcopyout(sopt, optdata, 1942 optdatalen); 1943 break; 1944 } 1945 1946 case IPV6_2292PKTINFO: 1947 case IPV6_2292HOPLIMIT: 1948 case IPV6_2292HOPOPTS: 1949 case IPV6_2292RTHDR: 1950 case IPV6_2292DSTOPTS: 1951 switch (optname) { 1952 case IPV6_2292PKTINFO: 1953 optval = OPTBIT(IN6P_PKTINFO); 1954 break; 1955 case IPV6_2292HOPLIMIT: 1956 optval = OPTBIT(IN6P_HOPLIMIT); 1957 break; 1958 case IPV6_2292HOPOPTS: 1959 optval = OPTBIT(IN6P_HOPOPTS); 1960 break; 1961 case IPV6_2292RTHDR: 1962 optval = OPTBIT(IN6P_RTHDR); 1963 break; 1964 case IPV6_2292DSTOPTS: 1965 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1966 break; 1967 } 1968 error = sooptcopyout(sopt, &optval, 1969 sizeof optval); 1970 break; 1971 case IPV6_PKTINFO: 1972 case IPV6_HOPOPTS: 1973 case IPV6_RTHDR: 1974 case IPV6_DSTOPTS: 1975 case IPV6_RTHDRDSTOPTS: 1976 case IPV6_NEXTHOP: 1977 case IPV6_TCLASS: 1978 case IPV6_DONTFRAG: 1979 case IPV6_USE_MIN_MTU: 1980 case IPV6_PREFER_TEMPADDR: 1981 error = ip6_getpcbopt(in6p->in6p_outputopts, 1982 optname, sopt); 1983 break; 1984 1985 case IPV6_MULTICAST_IF: 1986 case IPV6_MULTICAST_HOPS: 1987 case IPV6_MULTICAST_LOOP: 1988 case IPV6_MSFILTER: 1989 error = ip6_getmoptions(in6p, sopt); 1990 break; 1991 1992 #ifdef IPSEC 1993 case IPV6_IPSEC_POLICY: 1994 { 1995 caddr_t req = NULL; 1996 size_t len = 0; 1997 struct mbuf *m = NULL; 1998 struct mbuf **mp = &m; 1999 size_t ovalsize = sopt->sopt_valsize; 2000 caddr_t oval = (caddr_t)sopt->sopt_val; 2001 2002 error = soopt_getm(sopt, &m); /* XXX */ 2003 if (error != 0) 2004 break; 2005 error = soopt_mcopyin(sopt, m); /* XXX */ 2006 if (error != 0) 2007 break; 2008 sopt->sopt_valsize = ovalsize; 2009 sopt->sopt_val = oval; 2010 if (m) { 2011 req = mtod(m, caddr_t); 2012 len = m->m_len; 2013 } 2014 error = ipsec_get_policy(in6p, req, len, mp); 2015 if (error == 0) 2016 error = soopt_mcopyout(sopt, m); /* XXX */ 2017 if (error == 0 && m) 2018 m_freem(m); 2019 break; 2020 } 2021 #endif /* IPSEC */ 2022 2023 default: 2024 error = ENOPROTOOPT; 2025 break; 2026 } 2027 break; 2028 } 2029 } 2030 return (error); 2031 } 2032 2033 int 2034 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2035 { 2036 int error = 0, optval, optlen; 2037 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2038 struct inpcb *in6p = sotoinpcb(so); 2039 int level, op, optname; 2040 2041 level = sopt->sopt_level; 2042 op = sopt->sopt_dir; 2043 optname = sopt->sopt_name; 2044 optlen = sopt->sopt_valsize; 2045 2046 if (level != IPPROTO_IPV6) { 2047 return (EINVAL); 2048 } 2049 2050 switch (optname) { 2051 case IPV6_CHECKSUM: 2052 /* 2053 * For ICMPv6 sockets, no modification allowed for checksum 2054 * offset, permit "no change" values to help existing apps. 2055 * 2056 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2057 * for an ICMPv6 socket will fail." 2058 * The current behavior does not meet RFC3542. 2059 */ 2060 switch (op) { 2061 case SOPT_SET: 2062 if (optlen != sizeof(int)) { 2063 error = EINVAL; 2064 break; 2065 } 2066 error = sooptcopyin(sopt, &optval, sizeof(optval), 2067 sizeof(optval)); 2068 if (error) 2069 break; 2070 if ((optval % 2) != 0) { 2071 /* the API assumes even offset values */ 2072 error = EINVAL; 2073 } else if (so->so_proto->pr_protocol == 2074 IPPROTO_ICMPV6) { 2075 if (optval != icmp6off) 2076 error = EINVAL; 2077 } else 2078 in6p->in6p_cksum = optval; 2079 break; 2080 2081 case SOPT_GET: 2082 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2083 optval = icmp6off; 2084 else 2085 optval = in6p->in6p_cksum; 2086 2087 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2088 break; 2089 2090 default: 2091 error = EINVAL; 2092 break; 2093 } 2094 break; 2095 2096 default: 2097 error = ENOPROTOOPT; 2098 break; 2099 } 2100 2101 return (error); 2102 } 2103 2104 /* 2105 * Set up IP6 options in pcb for insertion in output packets or 2106 * specifying behavior of outgoing packets. 2107 */ 2108 static int 2109 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2110 struct socket *so, struct sockopt *sopt) 2111 { 2112 struct ip6_pktopts *opt = *pktopt; 2113 int error = 0; 2114 struct thread *td = sopt->sopt_td; 2115 2116 /* turn off any old options. */ 2117 if (opt) { 2118 #ifdef DIAGNOSTIC 2119 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2120 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2121 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2122 printf("ip6_pcbopts: all specified options are cleared.\n"); 2123 #endif 2124 ip6_clearpktopts(opt, -1); 2125 } else 2126 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2127 *pktopt = NULL; 2128 2129 if (!m || m->m_len == 0) { 2130 /* 2131 * Only turning off any previous options, regardless of 2132 * whether the opt is just created or given. 2133 */ 2134 free(opt, M_IP6OPT); 2135 return (0); 2136 } 2137 2138 /* set options specified by user. */ 2139 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2140 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2141 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2142 free(opt, M_IP6OPT); 2143 return (error); 2144 } 2145 *pktopt = opt; 2146 return (0); 2147 } 2148 2149 /* 2150 * initialize ip6_pktopts. beware that there are non-zero default values in 2151 * the struct. 2152 */ 2153 void 2154 ip6_initpktopts(struct ip6_pktopts *opt) 2155 { 2156 2157 bzero(opt, sizeof(*opt)); 2158 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2159 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2160 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2161 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2162 } 2163 2164 static int 2165 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2166 struct ucred *cred, int uproto) 2167 { 2168 struct ip6_pktopts *opt; 2169 2170 if (*pktopt == NULL) { 2171 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2172 M_WAITOK); 2173 ip6_initpktopts(*pktopt); 2174 } 2175 opt = *pktopt; 2176 2177 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2178 } 2179 2180 static int 2181 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2182 { 2183 void *optdata = NULL; 2184 int optdatalen = 0; 2185 struct ip6_ext *ip6e; 2186 int error = 0; 2187 struct in6_pktinfo null_pktinfo; 2188 int deftclass = 0, on; 2189 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2190 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2191 2192 switch (optname) { 2193 case IPV6_PKTINFO: 2194 if (pktopt && pktopt->ip6po_pktinfo) 2195 optdata = (void *)pktopt->ip6po_pktinfo; 2196 else { 2197 /* XXX: we don't have to do this every time... */ 2198 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2199 optdata = (void *)&null_pktinfo; 2200 } 2201 optdatalen = sizeof(struct in6_pktinfo); 2202 break; 2203 case IPV6_TCLASS: 2204 if (pktopt && pktopt->ip6po_tclass >= 0) 2205 optdata = (void *)&pktopt->ip6po_tclass; 2206 else 2207 optdata = (void *)&deftclass; 2208 optdatalen = sizeof(int); 2209 break; 2210 case IPV6_HOPOPTS: 2211 if (pktopt && pktopt->ip6po_hbh) { 2212 optdata = (void *)pktopt->ip6po_hbh; 2213 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2214 optdatalen = (ip6e->ip6e_len + 1) << 3; 2215 } 2216 break; 2217 case IPV6_RTHDR: 2218 if (pktopt && pktopt->ip6po_rthdr) { 2219 optdata = (void *)pktopt->ip6po_rthdr; 2220 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2221 optdatalen = (ip6e->ip6e_len + 1) << 3; 2222 } 2223 break; 2224 case IPV6_RTHDRDSTOPTS: 2225 if (pktopt && pktopt->ip6po_dest1) { 2226 optdata = (void *)pktopt->ip6po_dest1; 2227 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2228 optdatalen = (ip6e->ip6e_len + 1) << 3; 2229 } 2230 break; 2231 case IPV6_DSTOPTS: 2232 if (pktopt && pktopt->ip6po_dest2) { 2233 optdata = (void *)pktopt->ip6po_dest2; 2234 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2235 optdatalen = (ip6e->ip6e_len + 1) << 3; 2236 } 2237 break; 2238 case IPV6_NEXTHOP: 2239 if (pktopt && pktopt->ip6po_nexthop) { 2240 optdata = (void *)pktopt->ip6po_nexthop; 2241 optdatalen = pktopt->ip6po_nexthop->sa_len; 2242 } 2243 break; 2244 case IPV6_USE_MIN_MTU: 2245 if (pktopt) 2246 optdata = (void *)&pktopt->ip6po_minmtu; 2247 else 2248 optdata = (void *)&defminmtu; 2249 optdatalen = sizeof(int); 2250 break; 2251 case IPV6_DONTFRAG: 2252 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2253 on = 1; 2254 else 2255 on = 0; 2256 optdata = (void *)&on; 2257 optdatalen = sizeof(on); 2258 break; 2259 case IPV6_PREFER_TEMPADDR: 2260 if (pktopt) 2261 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2262 else 2263 optdata = (void *)&defpreftemp; 2264 optdatalen = sizeof(int); 2265 break; 2266 default: /* should not happen */ 2267 #ifdef DIAGNOSTIC 2268 panic("ip6_getpcbopt: unexpected option\n"); 2269 #endif 2270 return (ENOPROTOOPT); 2271 } 2272 2273 error = sooptcopyout(sopt, optdata, optdatalen); 2274 2275 return (error); 2276 } 2277 2278 void 2279 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2280 { 2281 if (pktopt == NULL) 2282 return; 2283 2284 if (optname == -1 || optname == IPV6_PKTINFO) { 2285 if (pktopt->ip6po_pktinfo) 2286 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2287 pktopt->ip6po_pktinfo = NULL; 2288 } 2289 if (optname == -1 || optname == IPV6_HOPLIMIT) 2290 pktopt->ip6po_hlim = -1; 2291 if (optname == -1 || optname == IPV6_TCLASS) 2292 pktopt->ip6po_tclass = -1; 2293 if (optname == -1 || optname == IPV6_NEXTHOP) { 2294 if (pktopt->ip6po_nextroute.ro_rt) { 2295 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2296 pktopt->ip6po_nextroute.ro_rt = NULL; 2297 } 2298 if (pktopt->ip6po_nexthop) 2299 free(pktopt->ip6po_nexthop, M_IP6OPT); 2300 pktopt->ip6po_nexthop = NULL; 2301 } 2302 if (optname == -1 || optname == IPV6_HOPOPTS) { 2303 if (pktopt->ip6po_hbh) 2304 free(pktopt->ip6po_hbh, M_IP6OPT); 2305 pktopt->ip6po_hbh = NULL; 2306 } 2307 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2308 if (pktopt->ip6po_dest1) 2309 free(pktopt->ip6po_dest1, M_IP6OPT); 2310 pktopt->ip6po_dest1 = NULL; 2311 } 2312 if (optname == -1 || optname == IPV6_RTHDR) { 2313 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2314 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2315 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2316 if (pktopt->ip6po_route.ro_rt) { 2317 RTFREE(pktopt->ip6po_route.ro_rt); 2318 pktopt->ip6po_route.ro_rt = NULL; 2319 } 2320 } 2321 if (optname == -1 || optname == IPV6_DSTOPTS) { 2322 if (pktopt->ip6po_dest2) 2323 free(pktopt->ip6po_dest2, M_IP6OPT); 2324 pktopt->ip6po_dest2 = NULL; 2325 } 2326 } 2327 2328 #define PKTOPT_EXTHDRCPY(type) \ 2329 do {\ 2330 if (src->type) {\ 2331 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2332 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2333 if (dst->type == NULL && canwait == M_NOWAIT)\ 2334 goto bad;\ 2335 bcopy(src->type, dst->type, hlen);\ 2336 }\ 2337 } while (/*CONSTCOND*/ 0) 2338 2339 static int 2340 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2341 { 2342 if (dst == NULL || src == NULL) { 2343 printf("ip6_clearpktopts: invalid argument\n"); 2344 return (EINVAL); 2345 } 2346 2347 dst->ip6po_hlim = src->ip6po_hlim; 2348 dst->ip6po_tclass = src->ip6po_tclass; 2349 dst->ip6po_flags = src->ip6po_flags; 2350 dst->ip6po_minmtu = src->ip6po_minmtu; 2351 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2352 if (src->ip6po_pktinfo) { 2353 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2354 M_IP6OPT, canwait); 2355 if (dst->ip6po_pktinfo == NULL) 2356 goto bad; 2357 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2358 } 2359 if (src->ip6po_nexthop) { 2360 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2361 M_IP6OPT, canwait); 2362 if (dst->ip6po_nexthop == NULL) 2363 goto bad; 2364 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2365 src->ip6po_nexthop->sa_len); 2366 } 2367 PKTOPT_EXTHDRCPY(ip6po_hbh); 2368 PKTOPT_EXTHDRCPY(ip6po_dest1); 2369 PKTOPT_EXTHDRCPY(ip6po_dest2); 2370 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2371 return (0); 2372 2373 bad: 2374 ip6_clearpktopts(dst, -1); 2375 return (ENOBUFS); 2376 } 2377 #undef PKTOPT_EXTHDRCPY 2378 2379 struct ip6_pktopts * 2380 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2381 { 2382 int error; 2383 struct ip6_pktopts *dst; 2384 2385 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2386 if (dst == NULL) 2387 return (NULL); 2388 ip6_initpktopts(dst); 2389 2390 if ((error = copypktopts(dst, src, canwait)) != 0) { 2391 free(dst, M_IP6OPT); 2392 return (NULL); 2393 } 2394 2395 return (dst); 2396 } 2397 2398 void 2399 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2400 { 2401 if (pktopt == NULL) 2402 return; 2403 2404 ip6_clearpktopts(pktopt, -1); 2405 2406 free(pktopt, M_IP6OPT); 2407 } 2408 2409 /* 2410 * Set IPv6 outgoing packet options based on advanced API. 2411 */ 2412 int 2413 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2414 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2415 { 2416 struct cmsghdr *cm = 0; 2417 2418 if (control == NULL || opt == NULL) 2419 return (EINVAL); 2420 2421 ip6_initpktopts(opt); 2422 if (stickyopt) { 2423 int error; 2424 2425 /* 2426 * If stickyopt is provided, make a local copy of the options 2427 * for this particular packet, then override them by ancillary 2428 * objects. 2429 * XXX: copypktopts() does not copy the cached route to a next 2430 * hop (if any). This is not very good in terms of efficiency, 2431 * but we can allow this since this option should be rarely 2432 * used. 2433 */ 2434 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2435 return (error); 2436 } 2437 2438 /* 2439 * XXX: Currently, we assume all the optional information is stored 2440 * in a single mbuf. 2441 */ 2442 if (control->m_next) 2443 return (EINVAL); 2444 2445 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2446 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2447 int error; 2448 2449 if (control->m_len < CMSG_LEN(0)) 2450 return (EINVAL); 2451 2452 cm = mtod(control, struct cmsghdr *); 2453 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2454 return (EINVAL); 2455 if (cm->cmsg_level != IPPROTO_IPV6) 2456 continue; 2457 2458 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2459 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2460 if (error) 2461 return (error); 2462 } 2463 2464 return (0); 2465 } 2466 2467 /* 2468 * Set a particular packet option, as a sticky option or an ancillary data 2469 * item. "len" can be 0 only when it's a sticky option. 2470 * We have 4 cases of combination of "sticky" and "cmsg": 2471 * "sticky=0, cmsg=0": impossible 2472 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2473 * "sticky=1, cmsg=0": RFC3542 socket option 2474 * "sticky=1, cmsg=1": RFC2292 socket option 2475 */ 2476 static int 2477 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2478 struct ucred *cred, int sticky, int cmsg, int uproto) 2479 { 2480 int minmtupolicy, preftemp; 2481 int error; 2482 2483 if (!sticky && !cmsg) { 2484 #ifdef DIAGNOSTIC 2485 printf("ip6_setpktopt: impossible case\n"); 2486 #endif 2487 return (EINVAL); 2488 } 2489 2490 /* 2491 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2492 * not be specified in the context of RFC3542. Conversely, 2493 * RFC3542 types should not be specified in the context of RFC2292. 2494 */ 2495 if (!cmsg) { 2496 switch (optname) { 2497 case IPV6_2292PKTINFO: 2498 case IPV6_2292HOPLIMIT: 2499 case IPV6_2292NEXTHOP: 2500 case IPV6_2292HOPOPTS: 2501 case IPV6_2292DSTOPTS: 2502 case IPV6_2292RTHDR: 2503 case IPV6_2292PKTOPTIONS: 2504 return (ENOPROTOOPT); 2505 } 2506 } 2507 if (sticky && cmsg) { 2508 switch (optname) { 2509 case IPV6_PKTINFO: 2510 case IPV6_HOPLIMIT: 2511 case IPV6_NEXTHOP: 2512 case IPV6_HOPOPTS: 2513 case IPV6_DSTOPTS: 2514 case IPV6_RTHDRDSTOPTS: 2515 case IPV6_RTHDR: 2516 case IPV6_USE_MIN_MTU: 2517 case IPV6_DONTFRAG: 2518 case IPV6_TCLASS: 2519 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2520 return (ENOPROTOOPT); 2521 } 2522 } 2523 2524 switch (optname) { 2525 case IPV6_2292PKTINFO: 2526 case IPV6_PKTINFO: 2527 { 2528 struct ifnet *ifp = NULL; 2529 struct in6_pktinfo *pktinfo; 2530 2531 if (len != sizeof(struct in6_pktinfo)) 2532 return (EINVAL); 2533 2534 pktinfo = (struct in6_pktinfo *)buf; 2535 2536 /* 2537 * An application can clear any sticky IPV6_PKTINFO option by 2538 * doing a "regular" setsockopt with ipi6_addr being 2539 * in6addr_any and ipi6_ifindex being zero. 2540 * [RFC 3542, Section 6] 2541 */ 2542 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2543 pktinfo->ipi6_ifindex == 0 && 2544 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2545 ip6_clearpktopts(opt, optname); 2546 break; 2547 } 2548 2549 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2550 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2551 return (EINVAL); 2552 } 2553 2554 /* validate the interface index if specified. */ 2555 if (pktinfo->ipi6_ifindex > V_if_index) 2556 return (ENXIO); 2557 if (pktinfo->ipi6_ifindex) { 2558 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2559 if (ifp == NULL) 2560 return (ENXIO); 2561 } 2562 2563 /* 2564 * We store the address anyway, and let in6_selectsrc() 2565 * validate the specified address. This is because ipi6_addr 2566 * may not have enough information about its scope zone, and 2567 * we may need additional information (such as outgoing 2568 * interface or the scope zone of a destination address) to 2569 * disambiguate the scope. 2570 * XXX: the delay of the validation may confuse the 2571 * application when it is used as a sticky option. 2572 */ 2573 if (opt->ip6po_pktinfo == NULL) { 2574 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2575 M_IP6OPT, M_NOWAIT); 2576 if (opt->ip6po_pktinfo == NULL) 2577 return (ENOBUFS); 2578 } 2579 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2580 break; 2581 } 2582 2583 case IPV6_2292HOPLIMIT: 2584 case IPV6_HOPLIMIT: 2585 { 2586 int *hlimp; 2587 2588 /* 2589 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2590 * to simplify the ordering among hoplimit options. 2591 */ 2592 if (optname == IPV6_HOPLIMIT && sticky) 2593 return (ENOPROTOOPT); 2594 2595 if (len != sizeof(int)) 2596 return (EINVAL); 2597 hlimp = (int *)buf; 2598 if (*hlimp < -1 || *hlimp > 255) 2599 return (EINVAL); 2600 2601 opt->ip6po_hlim = *hlimp; 2602 break; 2603 } 2604 2605 case IPV6_TCLASS: 2606 { 2607 int tclass; 2608 2609 if (len != sizeof(int)) 2610 return (EINVAL); 2611 tclass = *(int *)buf; 2612 if (tclass < -1 || tclass > 255) 2613 return (EINVAL); 2614 2615 opt->ip6po_tclass = tclass; 2616 break; 2617 } 2618 2619 case IPV6_2292NEXTHOP: 2620 case IPV6_NEXTHOP: 2621 if (cred != NULL) { 2622 error = priv_check_cred(cred, 2623 PRIV_NETINET_SETHDROPTS, 0); 2624 if (error) 2625 return (error); 2626 } 2627 2628 if (len == 0) { /* just remove the option */ 2629 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2630 break; 2631 } 2632 2633 /* check if cmsg_len is large enough for sa_len */ 2634 if (len < sizeof(struct sockaddr) || len < *buf) 2635 return (EINVAL); 2636 2637 switch (((struct sockaddr *)buf)->sa_family) { 2638 case AF_INET6: 2639 { 2640 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2641 int error; 2642 2643 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2644 return (EINVAL); 2645 2646 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2647 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2648 return (EINVAL); 2649 } 2650 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2651 != 0) { 2652 return (error); 2653 } 2654 break; 2655 } 2656 case AF_LINK: /* should eventually be supported */ 2657 default: 2658 return (EAFNOSUPPORT); 2659 } 2660 2661 /* turn off the previous option, then set the new option. */ 2662 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2663 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2664 if (opt->ip6po_nexthop == NULL) 2665 return (ENOBUFS); 2666 bcopy(buf, opt->ip6po_nexthop, *buf); 2667 break; 2668 2669 case IPV6_2292HOPOPTS: 2670 case IPV6_HOPOPTS: 2671 { 2672 struct ip6_hbh *hbh; 2673 int hbhlen; 2674 2675 /* 2676 * XXX: We don't allow a non-privileged user to set ANY HbH 2677 * options, since per-option restriction has too much 2678 * overhead. 2679 */ 2680 if (cred != NULL) { 2681 error = priv_check_cred(cred, 2682 PRIV_NETINET_SETHDROPTS, 0); 2683 if (error) 2684 return (error); 2685 } 2686 2687 if (len == 0) { 2688 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2689 break; /* just remove the option */ 2690 } 2691 2692 /* message length validation */ 2693 if (len < sizeof(struct ip6_hbh)) 2694 return (EINVAL); 2695 hbh = (struct ip6_hbh *)buf; 2696 hbhlen = (hbh->ip6h_len + 1) << 3; 2697 if (len != hbhlen) 2698 return (EINVAL); 2699 2700 /* turn off the previous option, then set the new option. */ 2701 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2702 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2703 if (opt->ip6po_hbh == NULL) 2704 return (ENOBUFS); 2705 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2706 2707 break; 2708 } 2709 2710 case IPV6_2292DSTOPTS: 2711 case IPV6_DSTOPTS: 2712 case IPV6_RTHDRDSTOPTS: 2713 { 2714 struct ip6_dest *dest, **newdest = NULL; 2715 int destlen; 2716 2717 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2718 error = priv_check_cred(cred, 2719 PRIV_NETINET_SETHDROPTS, 0); 2720 if (error) 2721 return (error); 2722 } 2723 2724 if (len == 0) { 2725 ip6_clearpktopts(opt, optname); 2726 break; /* just remove the option */ 2727 } 2728 2729 /* message length validation */ 2730 if (len < sizeof(struct ip6_dest)) 2731 return (EINVAL); 2732 dest = (struct ip6_dest *)buf; 2733 destlen = (dest->ip6d_len + 1) << 3; 2734 if (len != destlen) 2735 return (EINVAL); 2736 2737 /* 2738 * Determine the position that the destination options header 2739 * should be inserted; before or after the routing header. 2740 */ 2741 switch (optname) { 2742 case IPV6_2292DSTOPTS: 2743 /* 2744 * The old advacned API is ambiguous on this point. 2745 * Our approach is to determine the position based 2746 * according to the existence of a routing header. 2747 * Note, however, that this depends on the order of the 2748 * extension headers in the ancillary data; the 1st 2749 * part of the destination options header must appear 2750 * before the routing header in the ancillary data, 2751 * too. 2752 * RFC3542 solved the ambiguity by introducing 2753 * separate ancillary data or option types. 2754 */ 2755 if (opt->ip6po_rthdr == NULL) 2756 newdest = &opt->ip6po_dest1; 2757 else 2758 newdest = &opt->ip6po_dest2; 2759 break; 2760 case IPV6_RTHDRDSTOPTS: 2761 newdest = &opt->ip6po_dest1; 2762 break; 2763 case IPV6_DSTOPTS: 2764 newdest = &opt->ip6po_dest2; 2765 break; 2766 } 2767 2768 /* turn off the previous option, then set the new option. */ 2769 ip6_clearpktopts(opt, optname); 2770 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2771 if (*newdest == NULL) 2772 return (ENOBUFS); 2773 bcopy(dest, *newdest, destlen); 2774 2775 break; 2776 } 2777 2778 case IPV6_2292RTHDR: 2779 case IPV6_RTHDR: 2780 { 2781 struct ip6_rthdr *rth; 2782 int rthlen; 2783 2784 if (len == 0) { 2785 ip6_clearpktopts(opt, IPV6_RTHDR); 2786 break; /* just remove the option */ 2787 } 2788 2789 /* message length validation */ 2790 if (len < sizeof(struct ip6_rthdr)) 2791 return (EINVAL); 2792 rth = (struct ip6_rthdr *)buf; 2793 rthlen = (rth->ip6r_len + 1) << 3; 2794 if (len != rthlen) 2795 return (EINVAL); 2796 2797 switch (rth->ip6r_type) { 2798 case IPV6_RTHDR_TYPE_0: 2799 if (rth->ip6r_len == 0) /* must contain one addr */ 2800 return (EINVAL); 2801 if (rth->ip6r_len % 2) /* length must be even */ 2802 return (EINVAL); 2803 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2804 return (EINVAL); 2805 break; 2806 default: 2807 return (EINVAL); /* not supported */ 2808 } 2809 2810 /* turn off the previous option */ 2811 ip6_clearpktopts(opt, IPV6_RTHDR); 2812 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2813 if (opt->ip6po_rthdr == NULL) 2814 return (ENOBUFS); 2815 bcopy(rth, opt->ip6po_rthdr, rthlen); 2816 2817 break; 2818 } 2819 2820 case IPV6_USE_MIN_MTU: 2821 if (len != sizeof(int)) 2822 return (EINVAL); 2823 minmtupolicy = *(int *)buf; 2824 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2825 minmtupolicy != IP6PO_MINMTU_DISABLE && 2826 minmtupolicy != IP6PO_MINMTU_ALL) { 2827 return (EINVAL); 2828 } 2829 opt->ip6po_minmtu = minmtupolicy; 2830 break; 2831 2832 case IPV6_DONTFRAG: 2833 if (len != sizeof(int)) 2834 return (EINVAL); 2835 2836 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2837 /* 2838 * we ignore this option for TCP sockets. 2839 * (RFC3542 leaves this case unspecified.) 2840 */ 2841 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2842 } else 2843 opt->ip6po_flags |= IP6PO_DONTFRAG; 2844 break; 2845 2846 case IPV6_PREFER_TEMPADDR: 2847 if (len != sizeof(int)) 2848 return (EINVAL); 2849 preftemp = *(int *)buf; 2850 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 2851 preftemp != IP6PO_TEMPADDR_NOTPREFER && 2852 preftemp != IP6PO_TEMPADDR_PREFER) { 2853 return (EINVAL); 2854 } 2855 opt->ip6po_prefer_tempaddr = preftemp; 2856 break; 2857 2858 default: 2859 return (ENOPROTOOPT); 2860 } /* end of switch */ 2861 2862 return (0); 2863 } 2864 2865 /* 2866 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2867 * packet to the input queue of a specified interface. Note that this 2868 * calls the output routine of the loopback "driver", but with an interface 2869 * pointer that might NOT be &loif -- easier than replicating that code here. 2870 */ 2871 void 2872 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 2873 { 2874 struct mbuf *copym; 2875 struct ip6_hdr *ip6; 2876 2877 copym = m_copy(m, 0, M_COPYALL); 2878 if (copym == NULL) 2879 return; 2880 2881 /* 2882 * Make sure to deep-copy IPv6 header portion in case the data 2883 * is in an mbuf cluster, so that we can safely override the IPv6 2884 * header portion later. 2885 */ 2886 if ((copym->m_flags & M_EXT) != 0 || 2887 copym->m_len < sizeof(struct ip6_hdr)) { 2888 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2889 if (copym == NULL) 2890 return; 2891 } 2892 2893 #ifdef DIAGNOSTIC 2894 if (copym->m_len < sizeof(*ip6)) { 2895 m_freem(copym); 2896 return; 2897 } 2898 #endif 2899 2900 ip6 = mtod(copym, struct ip6_hdr *); 2901 /* 2902 * clear embedded scope identifiers if necessary. 2903 * in6_clearscope will touch the addresses only when necessary. 2904 */ 2905 in6_clearscope(&ip6->ip6_src); 2906 in6_clearscope(&ip6->ip6_dst); 2907 2908 (void)if_simloop(ifp, copym, dst->sin6_family, 0); 2909 } 2910 2911 /* 2912 * Chop IPv6 header off from the payload. 2913 */ 2914 static int 2915 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 2916 { 2917 struct mbuf *mh; 2918 struct ip6_hdr *ip6; 2919 2920 ip6 = mtod(m, struct ip6_hdr *); 2921 if (m->m_len > sizeof(*ip6)) { 2922 mh = m_gethdr(M_NOWAIT, MT_DATA); 2923 if (mh == NULL) { 2924 m_freem(m); 2925 return ENOBUFS; 2926 } 2927 m_move_pkthdr(mh, m); 2928 MH_ALIGN(mh, sizeof(*ip6)); 2929 m->m_len -= sizeof(*ip6); 2930 m->m_data += sizeof(*ip6); 2931 mh->m_next = m; 2932 m = mh; 2933 m->m_len = sizeof(*ip6); 2934 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2935 } 2936 exthdrs->ip6e_ip6 = m; 2937 return 0; 2938 } 2939 2940 /* 2941 * Compute IPv6 extension header length. 2942 */ 2943 int 2944 ip6_optlen(struct inpcb *in6p) 2945 { 2946 int len; 2947 2948 if (!in6p->in6p_outputopts) 2949 return 0; 2950 2951 len = 0; 2952 #define elen(x) \ 2953 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 2954 2955 len += elen(in6p->in6p_outputopts->ip6po_hbh); 2956 if (in6p->in6p_outputopts->ip6po_rthdr) 2957 /* dest1 is valid with rthdr only */ 2958 len += elen(in6p->in6p_outputopts->ip6po_dest1); 2959 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 2960 len += elen(in6p->in6p_outputopts->ip6po_dest2); 2961 return len; 2962 #undef elen 2963 } 2964